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ABSTRACT

This work investigates the flow and temperature distributions in rotating cylinders 

with a porous sleeve resulting from a combined effect due to shearing and thermal 

buoyancy. O ther secondary effects considered include the eccentricity o f  the inner 

cylinder, the permeability o f  the porous sleeve, its thickness and relative thermal 

conductivity with respect to the fluid layer. In general, this work consists o f four major 

parts.

In the first part, the flow  and temperature fields in rotating concentric or slightly 

eccentric cylinders with a porous sleeve were obtained using a perturbation method with 

the eccentricity ratio being the perturbation parameter. The flow and temperature fields 

were solved up to the second leading terms. Since the eccentricity ratio considered in this 

part is very small, the flow behaves like a polar Couette flow.

The second part deals with weak natural convection in a stationary concentric 

annulus with a porous sleeve. The inner cylinder is kept at a higher temperature than the 

outer cylinder. Once again, this study was performed using a perturbation method with 

the Rayleigh number being the perturbation parameter. The solutions for the momentum 

and energy equations were also obtained up to the second leading terms with the help o f  

Fourier Integral Transform.

A finite-difference m ethod was employed in the study o f  part three to obtain the 

flow and temperature fields in rotating cylinders with a porous sleeve. This configuration 

is identical to that in the second part, except that the inner cylinder rotates at a constant 

speed. The results obtained in this part cover all convection regimes: the forced, the

xvui



mixed, and the natural convection. Natural convection results obtained in this part agree 

very well with those from the part two.

In the last part, an experiment using a modified Hele-Shaw cell was performed to 

visualize the flow patterns in a concentric rotating cylinder with a porous sleeve. A 

custom-made stainless steel shaft was inserted through the Hele-Shaw cell that was filled 

with 50 cP silicone oil with suspended tracers. At a low rotational speed and nearly 

isothermal condition, the flow pattern observed closely resembled those o f  the numerical 

results presented in the part three.

Based on these studies, it is concluded that the buoyancy efleet promotes 

convection, but shear effect enhances shear flow and demotes convective flow. The flow 

strength decreases with the porous sleeve thickness. Consequently, viscous dissipation 

becomes more important and generates more heat. The permeability o f  the porous sleeve 

has the opposite effect o f  the sleeve thickness. The effect o f thermal-conductivity ratio 

depends on the Rayleigh number. As the annulus becomes eccentric, large velocity and 

temperature gradients will occur at the narrowest clearance. The overall heat-transfer 

performance o f  an annulus with a porous sleeve mainly depends on the Rayleigh and 

Peclet numbers. The rotation o f the inner cylinder delays the onset o f  natural convection.

Based on this investigation, the operation and performance o f  a sintered journal 

bearing is better understood. The presence o f  a porous sleeve in a journal bearing causes 

a greater velocity gradient on the shaft and thus consumes more power than a 

conventional journal bearing. For a bearing that is very poorly conductive, the lubricant 

will be greatly heated up by friction.
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW

1.1 introduction

"Tribology" is a subject related to the study of friction, wear, and lubrication. Its 

main concern is. b\ means o f lubrication, to reduce wear o f  moving mechanical parts due 

to friction. In the history o f  mankind, tribology has taken part in man\ important 

historical events and scientific discoveries. Perhaps, one o f the most famous tribological 

applications recorded is related to the building o f  the pyramids. During the construction 

of the pyramids, heavy stone blocks were placed on top o f timbers and were transported 

by rolling the timbers. A contemporary application is the bearing in a hard disk dri\e  

assembly. In the assembly, a high-performance bearing can be found between the rotor 

and the pack o f recording media. To capture a larger share o f the market, hard disk dri\ e 

manufacturers h a \e  spent a large amount o f  money and effort to make their products 

more competitive. One desirable feature is a reduced access time o f  the hard disk dri\e. 

To achieve this goal, manufacturers h a \e  increased the disk drive rotational speed. This 

eventually leads to a smaller design tolerance and higher lubrication performance for 

bearings.

In the past centuiy. solid bearings were invented. However, it was later 

discovered that it was not the ultimate solution for all engineering applications because 

the lubricant oil might be lost alter long hours o f operation due to bearing side leakage, 

oxidation, and evaporation. As a result, solid journal bearings are always connected to an
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external oil reservoir. During operation, oil is continuously fed into the bearing from the 

reservoir to prevent oil starvation. Otherwise, oil starvation will cause severe surface 

wear o f  machinery parts and thermal seizure. This drawback has made solid bearings 

less favorable in some applications because an external oil supply is simply 

impermissible owing to cost and other operational constraints. . \s  a result, extensive 

research and development efforts have been made to seek alternatives that could either 

improve or replace the solid bearings.

In the early last century, with the advancement o f  powder metallurgy, sintered 

materials were introduced in the fabrication o f journal bearings. Since then, bearings 

made o f  sintered materials have found progressively wider applications in industrv . The 

porous structure o f sintered materials allows the lubricant oil to be stored in the bearing, 

thus eliminating the need for an external oil reservoir. For this main reason, these 

relatively inexpensive sintered (porous) bearings have become so increasingly popular 

that they have left behind the conventional solid bearings in the race o f engineering 

applications.

The sintered bearings operate under hydrodynamic lubrication conditions in the 

initial stages o f their lives when the pores are saturated with lubricating oil. This is 

because the oil stored in the pores o f the bearing matrix is readily available for 

hydrodynamic support o f the Journal carrv ing an external load. Only alter frequent start- 

stop operations or significant oil loss following a long period o f  operation, they would 

operate under mixed or boundary lubrication conditions.

The alternative path o f  the oil fiow provided by the pores in the sintered material 

considerably reduces cavitation, which is detrimental for oil and bearing life. Because o f



the capillary action o f  the pores, oil is kept in the bearing. As a consequence, 

replenishment o f  oil is not necessary in short intervals. This mechanism makes these 

sintered bearings require less maintenance. Also, there is less danger o f  oil dripping (as 

in the case o f  solid bearings) which could be a source o f  contamination in the textile and 

food processing industries.

In hydrostatic (externally pressurized) solid bearings, the hydrodynamic pressure 

is not immediately developed within the recess after the lubricant oil is admitted into the 

bearing clearance, resulting in an uneven pressure distribution in the oil film. By means 

o f porous materials, the oil can fiow through the pores, yielding a more even pressure 

distribution along the journal surface. In terms o f performance, the pores spread the 

supply pressure over the clearance space more effecti\ely and allow a higher load 

capacity as compared with solid bearings with the same oil flow rate. Owing to the 

presence o f  a permeable surface adjacent to the clearance space, these bearings exhibit 

better damping characteristics than solid bearings. Zhang et al. ( 1992) found that sintered 

journal bearings are excellent dampers. Not only are these theories about porous bearings 

useful in engineering fields, but also pro\ide insights for research in biomechanics (Linn. 

1969; Tandon et al.. 1983).

Despite the advantages discussed above, a sintered bearing does have its 

limitations. Its permeability decreases with its seivice life. L ow -\iscosit\ fluids can 

flow easily through the porous bush, but the impurities in the lubricant must be a\oided 

or at least maintained to a minimum level. This is because the pores o f  a sintered bush 

may become clogged by impurities present in the lubricant. If the lubrication o f  a porous 

bearing is poor, the journal w ill eventually be in contact with the sintered bush and will



cause more pore obstructions by local deformation. Nevertheless, the clogged or 

deformed porous bushes can be easily replaced at regular intervals for better 

performance.

Since a complete description o f  lubrication theory and operational mechanisms o f 

bearings can be readily found (Fuller. 1984; Williams. 1994: Szeri. 1998; Burton. 2000; 

Khonsari and Booser. 2001). it will not be attempted here to discuss them in detail. 

Instead, the following literature review will focus mainly on oil-lubricated porous journal 

bearings. O ther bearings and lubrication effects, such as porous thrust bearings, porous 

slider bearings, and porous squeeze film effect, are not discussed here for brevitv. In 

addition, porous gas bearings are excluded from the presentation because air as a 

lubricant behaves different!) from oils and thus its solution involves a different form of 

Reynolds equation.

1.2 Literature Review

Unlike solid bearings, extensive rev iews about sintered bearings are not readily 

available in the literature. Only Morgan (1966) has presented a rather complete 

discussion about the fundamentals o f  sintered metal bearings. Although his work has 

underlain most o f  the basic theories and important issues about sintered bearings, the 

materials he presented may seem somewhat obsolete from today 's technology point o f 

view. Several years later. Kumar (1980a) reviewed the development o f  porous metal 

bearings. He commended on the tv pes o f  hydrodv namic operation and discussed some 

potential research areas for further studies. Again, his review can no longer prov ide the



most up-to-date information on the development o f porous bearings since a lot of 

research work has been carried out for the past twenty years.

The literature reviews in the following sections are intended to supplement 

Kumar's earlier review (1980a) and update the development o f lubrication theorv o f 

porous journal bearings for the past two decades. Sections 1.2.1 to 1.2.3 present the 

evaluation o f the lubrication theory from the early Reynolds equation for solid bearings 

to its latest form with the inclusion o f  Brinkman model. In sections 1.2.4 and 1.2.5. work 

related to the topics o f  stability, dynamics, and turbulence is surv eyed. In the section that 

follows, section 1.2.6 provides an overv iew o f all experimental studies reported in the 

literature, and finally the last section 1.2.7. summarizes other research activities that 

apply the lubrication theory to sintered journal bearings.

1.2.1 Development of Fundamental Theories

Based on the continuity and Navier-Stokes equations. Reynolds (1886) deri\ ed an 

equation for pressure distribution in an infinite solid journal bearing. Later, this equation 

was named Reynolds equation. In addition to this equation. Reynolds also put forward a 

set o f  boundaiy conditions that became the first phase o f what was later referred to as the 

Reynolds conditions. This theoretical model was named the lubrication theory.

Although Reynolds had developed the lubrication theory that predicts the pressure 

distribution within a solid journal bearing, the basic mathematical model o f  a full journal 

bearing was not known until Sommerfeld (1904) successfully obtained a complete 

solution o f the Reynolds equation.



Despite the fact that Reynolds put forward the premature Reynolds conditions, he 

did not attempt to apply them. Later, it was Gumbel who made a few modifications to 

the Reynolds conditions and finalized their forms. These conditions stated that p  = 0 al 0  

= 0 and 0  = a, and cp/cO  = 0 between 0  = n  + a  and 0  = 2 tz.

More than two decades later. Cameron and Wood (1949) discussed the solution o f 

full journal bearings. They examined the validity o f Reynolds conditions so as to 

improve other boundary conditions, such as the Sommerfeld s full and half conditions. 

The Sommerfeld's full condition states that cp c0  = 0 at 0  = tz + a  while the 

Sommerfeld's half conditions require that p  = 0 ai 0  = 0 and from ^  = /Tto 2/T. When 

compared with the results obtained using the Sommerfeld's conditions, the results 

associated with the Reynolds conditions were found in better agreement with the 

experimental data.

While many studies were performed to further understand the behavior o f  solid 

bearings, the technology in powder metallurgy had advanced tremendously. This had led 

to the invention o f sintered metal bearings which were possible to meet the industrial 

needs. Within a short time, sintered metal bearings became more fa\orablc in most 

engineering applications than the solid bearings.

The sintered metal bearing is one o f  the most widely used self-lubricated 

bearings. Generally, sintered bearings are made o f  bronze (Geotzel. 1950). Beside the 

bronze bearings. Storchheim and Witt (1962) claimed that, depending on the working 

environment and engineering requirements, sintered aluminum bearings were competitive 

with other bearings in terms o f cost, corrosion resistance, operating temperature and 

operation life. Other not-so-common self-lubricated bearings include those made o f



graphite, low-friction plastic and impregnated wood. Not only did engineers change the 

make o f  bearings, they also used solid lubricants to achieve their goals (Carson. 1964). 

For brevity, only oil-lubricated sintered bearings are discussed in this work.

Morgan and Cameron (1957) were the first to develop the theory for the operation 

o f  porous bearings. By assuming a certain form o f pressure gradient in the porous 

bearing, they derived the theory using the Darcy model and a modified Reynolds 

equation under the Ocvirk narrow bearing approximation (DuBois et al.. 1951: DuBois 

and Ocvick. 1952. 1953; Ocvick. 1952). They obtained the load capacity by assuming 

that the eccentricity ratio and attitude angle o f  porous journal bearings were the same as 

those o f  solid journal bearings. Not only did they address almost e\ ery important issue 

about a porous journal bearing, but also they described the differences between porous 

and solid journal bearings. In addition, they also explained the mechanism o f lubrication 

in porous metal bearings.

In the same year. Morgan (1957) established a theoretical basis for the design o f 

porous bearings. He grouped his design criteria into three main categories. The first 

category was associated with the factors related to the oil (low in the porous matrix and 

the choice o f  the bearing dimensions and material. The second and third were the 

considerations o f the behavior o f  porous metals (elastic or plastic) and the selection o f 

lubricating oil. Based on his study, he reported several factors that had significant effects 

on the performance o f porous bearings.

Rouleau (1962) extended the study by Morgan and Cameron (1957) for 

completeness. He calculated the load component acting along the line o f  centers and 

determined the total load o f narrow porous bearings (H b < 0.1). The relative load-



carrying capacity recalculated was larger than that determined by Morgan and Cameron 

(1957). Furthermore, he recalculated the coefficient o f  friction based on the total load, 

the actual eccentricity ratio and the attitude angle. Since the solution o f this study was 

not entirely satisfactory, he reformulated the boundaiy conditions and examined the 

performance o f  thicker porous bearings (H/h = 0.2 and 0.4 (Rouleau. 1963)). His 

solution satisfied the practical condition o f zero pressure at the ends o f  the bearings. In 

addition to the design parameter that Morgan and Cameron (1957) previously introduced, 

he introduced another important parameter, the ratio o f  porous wall thickness to the 

bearing length (H  h).

Morgan (1963. 1964) discussed the importance o f  the porosity o f  a hydrodynamic 

sintered journal bearing in the oil-film pressure development and the practical design o f 

thin-walled narrow porous bearings through the measurement o f  the permeability and 

design curves. He demonstrated how changes in the running clearance and shaft diameter 

could influence the overall performance o f a porous journal bearing.

Under the guidance o f  Joseph. Shir (1965) successfully performed a theoretical 

study o f infinitely long porous journal bearings. In his study. Shir (1965) made use o f the 

method o f successive approximation and the method o f  truncation to obtain the pressure 

distributions in the bearings. Based on the known pressure distribution, more important 

information regarding the force and torque was obtained.

Joseph and Tao (1966) studied a flow induced by the rotation o f  an infinite 

cylinder in an eccentric cylindrical hole in a fluid-saturated porous medium. They 

formulated the problem by introducing the Lagrange's stream function in complex 

variable. Their formulation was a limiting case for lubrication in an infinitely thick



porous journal bearing. They showed that transverse gradients in the lubricant film were 

negligible and hence justified the use o f Reynolds equation. In the same year. Shir and 

Joseph (1966) presented another limiting case, an infinite full porous bearing. They 

modified the Reynolds equation to accommodate the mass transfer between the lluid- 

saturated porous bearing and lubricant film.

Sneck (1967) proposed an analogy to predict the performance o f  a finite porous 

bearing (for H h <0.2  and e < 0.6). It allowed one to predict the performance o f  a finite 

porous bearing over a wide range o f operating conditions without additional analysis if 

the performance characteristics of a comparable solid bearing were known. 

Unfortunately, his analogy was only applicable for H h <0.2 and e  <0.6.

Morgan (1969a) discussed several most practical issues o f  porous journal bearings 

related to application, installation, performance characteristics and maintenance. In 

another paper (1969b). he provided a step-by-step guideline in the design o f a sintered 

metal bearing to meet engineering requirements. He pointed out that the running 

temperature o f  a bearing was the most critical factor in the design because it go\ emed the 

useful life o f  the lubricant oil and eventually the useful life o f  the bearing itself.

It was agreed among all participating scientists and researchers in a symposium, 

that the theory developed for porous bearings was accurate enough to predict the limit of 

hydrodynamic lubrication provided that sufficient oil was present (M organ. 1970). This 

had led to a conclusion that the use o f Sommerfeld parameter alone was unable to 

characterize porous bearings. This Sommerfeld number S  is defined as

s =  •

p, \ C J
( 1 . 1 )



where C is the radial clearance. R is the radial distance, n  is the fluid viscosity. .V, is the 

shaft speed in rev.s. and Pi is the projected load (Khonsari and Booser. 2001 ). Also, it 

was agreed in the symposium that the porosity o f  a  flooded porous bearing could be dealt 

with on the macro-scale. But it had to be considered on a micro-scale if the oil was 

reduced.

Cusano (1970) had performed a rather com plete study o f  porous Journal bearings. 

In his analytical work, he obtained solutions for infinite, short, and finite porous Journal 

bearings. Two o f  the special cases he considered were a short porous Journal bearing 

whose permeability varied with length, and an infinite porous Journal bearing in which 

pore closure took place.

The fact that the model based on Ocvirk short bearing assumptions could produce 

unrealistic results motivated Capone (1970) to develop a new model for infinite porous 

Journal bearings. The configuration that he considered was similar to that studied b\ Shir 

and Joseph (1966). Dealing with cylindrical coordinates, he presented an analytical 

solution for the pressure distribution in an infinite porous bearing using the Sommerfeld 

boundary conditions. Later. Prakash and ViJ (1972) solved the same set o f  equations but 

subject to the Reynolds conditions. They noticed a significant difference between their 

solution and C apone's numerical solution.

Murti (1971a. 1973a and 1973b) repeated Rouleau's study o f  narrow porous 

bearings (1963) using the cylindrical coordinates. The pressure distribution from his 

study was lower than that reported by Rouleau ( 1963 ). which was based on the Cartesian 

coordinates. In addition. Murti also made use o f  the cylindrical coordinates to study the 

hydrodynamic lubrication o f long, short and finite porous bearings using series solution
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and the Galerkin method (1971b. 1972a. 1972b. and 1973c). It is noteworthy that he 

attempted the first three-dimensional model for hydrodynamic lubrication o f  short porous 

bearings (1972a) but was only successful in modeling the three-dimensional flow o f 

lubricant in the porous matrix.

Before 1970. no researcher had taken into consideration the cavitation o f  lubricant 

film in porous journal bearings. Rouleau and Steiner (Steiner. 1970; Rouleau and 

Steiner. 1974) were the first to compare the results obtained from the Sommerfeld and 

Reynolds boundary conditions. Physically. Sommerfeld conditions produce a negative 

pressure field in the bearing. On the other hand. Reynolds condition forces the negative 

pressure field to be zero. Almost at the same time. Prakesh and Vij (1972) also took into 

account the cavitation in their study.

At the same year. Cusano (1972a) analyzed the performance o f  a finite porous 

journal bearing subject to Sommerfeld's half conditions. Physically, these conditions are 

less accurate than the Reynolds condition, but they are much easier to implement 

anaKiically and numerically. By using these conditions, some portion o f the pressure 

distribution would become negative. Experience has indicated that the region with 

negative pressure is usually associated with oil film rupture and ca\ itation. Although this 

might not be perfectly correct, it surely provided an approximate solution.

Reason and Dyer (1973) presented a numerical solution for a hydrodynamic 

porous journal bearing using the Cartesian coordinate system. They compared their 

computational result with the published approximate solutions (Morgan and Cameron. 

1957; Rouleau. 1963; Shir and Joseph. 1966) and found a great discrepancy among them 

because these approximate solutions suffered from the assumptions imposed.
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In an extension to the work o f  Shir and Joseph ( 1966), Kumar (1983) presented an 

exact mathematical analysis on an infinite partial porous journal bearing. His 

mathematical model was quite general because it covered partial and full journal 

bearings. In his model, these bearings could be either porous or solid.

In the physical sense, the configuration o f  ball bearings and their retainers is very 

similar to that o f  journal bearings, except that the axis o f rotation is now absent. Most 

calculations in journal bearings were performed using the Cartesian coordinate system. 

This is widely accepted because o f  the negligible curvature effects. Without any 

justification, Gohart and So ( 1981 ) performed a rather skeptical study on the ball bearing 

porous retainers using the Cartesian coordinate system.

1.2.2 Bcavers-Joscph Slip Velocity' Model

The previous model o f porous journal bearings is obviously not physically 

plausible because the governing equations for the fluid region and the porous matrix are 

o f  different orders. A discontinuity in the tangential velocity component at the interface 

is thus embedded in the model.

While Joseph and Tao (1966) argued the necessity to impose an additional 

requirement on the tangential velocity component at the interface. Rouleau (1967) 

reported the existence o f  a small shear-induced boundary layer in the permeable material 

based on his experiment. The thickness o f  this layer increased with the shear stress on 

the porous interface. Subsequently, Beavers and Joseph (1967) proposed a tangential 

velocity slip at the interface between a porous matrix and a fluid layer. They assumed
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that this slip-velocity is proportional to the shear rate at the interface. Beavers et ai. 

(1970 and 1974) later experimentally confirmed this condition.

Goldstein and Braun (1971) applied the slip-velocity condition to porous bearings 

and attempted to verify the importance o f  slip-velocity on the bearing performance o f  

small, high-speed, low-load porous bearings. Unfortunately, their attempt was based on 

an incorrect implementation o f the Beavers-Joseph slip velocity model. Similarly. Murti 

performed a series o f  analyses for short porous journal bearings using the Cartesian 

coordinate system (1972c. 1973d and 1973e) and the cylindrical coordinate system 

(1975). His results clearly showed that slip-condition was detrimental to the load 

carry ing capacity o f the bearings. At the mean time. Prakash and Vij (1974) performed a 

similar study o f  short porous journal bearings using the Cartesian coordinate system. 

Later, they extended this study for infinite porous journal bearings using the cylindrical 

coordinate system  (1976). Being inspired by the work o f  Prakash and Vij. Srinivasan 

(1977) extended Prakash and V ij's study by including the cavitation effect. Malik et al. 

(1981a) continued this line o f study and analytically examined the static and dy namic 

characteristics o f  centrally loaded partial porous bearings.

In response to M urti's paper (1975). Rouleau (1975) questioned the applicability 

o f Beavers-Joseph model in porous bearings because this model had not been verified for 

multidimensional applications. Also, he believed that a slip velocity model was 

unnecessary. In reply. Murti (1976) reasoned the validity o f  the Beavers-Joseph model 

and pointed out the fact that the slip-velocity derived from the Darcy law was a special 

case o f  the Beavers-Joseph model.
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Before the com puter became a powerful research tool, most studies in the 

lubrication o f  bearings were accomplished through the use o f  a product solution. On that 

account. Rohde (1973) outlined the steps to obtain the pointwise bounds for the solution 

o f Reynolds equation for certain smooth film profiles. With the help o f  computers. 

Reason and Siew (1985) improved the previous results reported by Reason and Dyer 

(1973) by taking into account the cur\ature o f  the bearing wall, the velocity-slip 

condition and Reynolds boundary conditions.

The lubrication model o f  porous journal bearings developed thus far was also 

extended to study the hydrostatic bearings. Chattopadhyay and Majumdar (1984a) 

investigated the steady state characteristics o f  hydrostatic porous journal bearings w ith 

the slip-velocity condition.

1.2.3 Brinkman Model

As Neale and Nader (1974) pointed out that Darcy's law is valid ever\w here 

except in the immediate vicinity o f  the permeable surface. Lin and Hwang (1993. 1994a. 

and 1996) thus replaced the use o f  Darcy's law and Beaver-Joseph slip velocity with the 

Brinkman-extended Darcy model (Brinkman. 1947a and 1947b) to investigate the 

boundar\'-layer effects within the porous sleeve. They obtained anal\iical solutions for 

the hydrodynamic lubrication o f short, finite and flexible long porous journal bearings.

In addition, they theoretically predicted the effects o f  viscous shears on the static 

and dynamic characteristics o f  long and short porous journal bearings (1994b and 1995). 

They presented their linear stability analysis and showed that the stability limits o f  the 

system were not negligible. This finding eventually motivated their subsequent linear
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stability analysis o f  short and finite porous journal bearings (1994c and 1994d). Later, 

this was further extended to the dynamic behavior o f pure squeeze film in short porous 

journal bearings (Lin. 1995).

1.2.4 Stability and Dynamic Characteristics of Porous Journal Bearings

Capone and D'Angostino (1974) were among the first to study the unsteady 

conditions o f  journal bearings. They extended their previous study on solid bearings to 

porous bearings. Their goal was to correlate the whirl amplitude and frequency to 

operating param eters such as angular velocity, oil viscosity, and bearing dimensions.

Another pioneering work was conducted by Coniy and Cusano. They first 

investigated the stability characteristics (Coniy and Cusano. 1974) and then the 

transmissibility characteristics o f porous journal bearings (Cusano and Corny. 1978) 

using short bearing approximation. .Although slip-velocity condition had been reported, 

their studies did not take this condition into consideration. They concluded that, under 

the short bearing approximation, porous journal bearings were less stable than solid 

journal bearings.

Similarly. Singh and Sinhasan (1974) examined the dynamic behavior o f  porous 

journal bearings. Instead o f solving the modified Reynolds equation, they solved the 

equation o f  m otion to investigate the stability and relative stability o f misaligned porous 

journal bearing systems.

Kumar (1976) revised the modified Reynolds equation for stability analysis by 

taking into account the slip-velocity condition, film cur\ ature and unsteady motion of the
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journal. He obtained analytical solutions for the elastic and damping properties o f  partial 

porous journal bearings subject to synchronous whirl (i.e.. dynamic loading).

Similar to their elaborate work on externally pressurized gas bearings. Majumdar 

and Rao (1979) analytically investigated the performance o f externally pressurized 

porous oil journal bearings for small eccentricity ratio.

Sinhasan and co-workers studied the static and dynamic performance 

characteristics o f  tw o-lobe (Sinhasan et al.. 1980) and three-lobe (Malik et al.. 1981b) 

porous hydrodynamic journal bearings. Later, they used the same approach to study the 

velocity-slip effects on the static and dynamic performance characteristics o f  an infinitely 

long porous journal bearing (Chandra et al.. 1981). but they ignored the rotational effect 

o f  the journal center.

Chattopadhyay and Majumdar (1984b) theoretically investigated the dynamic 

characteristics o f  finite porous journal bearings. They obtained a solution for the 

modified transient Reynolds equation which included the effect o f  velocity slip using 

perturbation technique. Later, they analyzed the threshold o f  oil whirl for a rigid rotor in 

self-acting finite porous journal bearings with and without externally pressurized oil 

(1986. 1987). They considered vibrations in both translational and azimuthal directions. 

In addition, they set up a modified Reynolds equation that took into account the 

anisotropy o f  the porous matrix and unsteady motion o f  the joumal. Guha (1986) carried 

out a similar analysis, but focused on hydrostatic porous joum al bearings.

Zhang et al. (1992) made use of porous joum al bearings as vibration dampers. 

These bearings were referred to as porous squeeze film damper (PSFD). They reported
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that the presence o f  the porous matrix remarkably improved the squeeze film damping 

properties.

1.2.5 Extension of Lubrication Theory to Turbulent Regime

Kumar studied the effects o f turbulence and slip-velocity in a narrow porous 

bearing using the perturbation approach (1978) and infinite Fourier series (1980b). He 

then extended his study using perturbation approach to infinite and finite porous joum al 

bearings (1981a and 1981b). He also attempted to derive a three-dimensional lubrication 

equation for the hydrodynamic pressure generated in a porous bearing operating in the 

fully developed turbulent regime (1979). He later included in his study the bearing arc 

span and arbitrar\ attitude angle (1987).

Kumar and Rao (1992. 1993) investigated the performance o f hybrid (combined 

hydrostatic and hydrodynamic) Joumal bearings and hydrodynamic joumal bearings in 

response to various factors such as turbulence, slendemess ratio, and isotropy o f 

permeability. Later. Kumar and Kumar (1996) numerically investigated a hydrodynamic 

porous joumal bearing with non-homogeneous permeability operating in the turbulent 

regime. The Reynolds number they considered was as high as 13.300.

Kumar and Rao (1994) theoretically examined the stability o f a rigid rotor in 

turbulent hybrid porous joum al bearings following Constantinescu's turbulent lubrication 

theory. As expected, their analysis showed that turbulence deteriorated the rotor stability. 

As a result, the bearing feeding parameter should always be kept as small as possible to 

maintain the stability o f the rotor. In a recent publication. Kumar (1998) theoretically
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investigated the stability o f  hybrid porous joumal bearings in turbulent flow due to 

conical whirl.

1.2.6 Progress in Experimental Studies

While the development o f  lubrication theory for porous bearings was carried out 

extensively, further understanding and verification o f  theories were sought through 

experimental means. Unlike the theoretical approach, the experimental obser\ations 

reported in the literature were often inconsistent and sometimes even contradicted with 

each other. On top o f  the human factors that are involved in experiments, the nature o f 

sintered bearings further complicates the study. This is because identical sintered 

bearings are impossible to be manufactured in the metallurgical process.

In conjunction with their proposed lubrication theorv' for porous joumal bearings 

(1957). Cameron et al. (1962) supplemented their theorv with experimental results. Their 

experimental findings compared favorably with analytical results after correcting the end 

leakage by applying a correction factor (same as that for a solid bearing) to account for 

the variation o f  L  D o f  a porous joum al bearing. Although the approach seemed brilliant 

at first, but later in a response to M cH ugh's inquiry. Morgan (1965) admitted that the use 

o f this factor might be invalid.

Moreover. Morgan (1964) presented his experimental proof o f  pore closure at the 

surface o f porous metal bearings as a consequence o f under design or an insufficient oil 

supply. He experimentally justified that hydrodynamic lubrication was impossible for 

porous joumal bearings w hen the Sommerfeld number was below a critical value.
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Experiments for various PV' values (whose common unit is psi ft/m in) have been 

conducted. The value o f  P  is given by the total load C  divided by the product o f  the 

journal diameter D and the bearing length L. and the value o f  V' equals to the product o f 

the revolutions per minute N  and ;rD. For a porous bearing whose service life is at least

10.000 hours. PV  values o f  20.000  to 25.000 are considered conservative. However, a 

higher PV  value is possible with good cooling mechanism or shorter operating life 

(Carson. 1964).

Youssef and Eudier (1966) found that rapid bearing failure took place at a PV  

value o f 15.000 because o f  a progressive elevation o f the oil temperature beyond 95 - 100 

or a sudden rupture o f  the oil film when the oil became too fluid or w hen there was 

too much oil loss. However, reducing the oil viscosity could provide a remedy for the 

overheating problem. On the other hand. Mitani and Yokota (1973) reported that the 

temperature increment could be as high as 40 ‘V  for a bearing with a PC  value o f  2.500 

kg/cm'-nv's. Observations by Cusano and Phelan (1973) showed that a PV  value of

50.000 was too high for hydrodynamic porous joum al bearings, but a value o f  33.000 

worked fine.

Although Cusano spent a great eflbrt on analytical study, he (1970) also 

performed some experimental studies using a testing machine he designed and built for 

porous bearings (1967). Based on his observations, he concluded that a P V  value o f

50.000 was too high for the bearing to operate unless periodic lubrication was provided. 

Almost all experimental runs reported in his study operated under hydrodynamic 

lubrication conditions. His temperature measurements indicated that the PV  value was a 

good indicator o f temperature rise o f  the bearing under boundary lubrication mode.
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Yung and Cameron (1979) used optical interferometry to visualize the lubrication 

o f porous bearings. They also went through an order o f  magnitude analysis. 

Surprisingly, all their evidences were against the existence o f  a continuous oil film in the 

bearing. Hence, it was claimed that the original postulate o f  Morgan and Cameron 

(1957) could not be satisfied under normal operation.

Braun’s investigation (1982) exclusively concerned porous joumal bearings o f  

diameters between 2.5 and 5 mm and with relatively less viscous oil. He obser\ed that, 

after a short time o f operation, the porous matrix was partially filled by air. This caused 

the hydrodynamic lubrication to break down. The oil loss, which was dependent on the 

type o f oil. shaft roughness and temperature gradient, was caused by creep and 

evaporation.

Mokhtar et al. (1984) and Shawki et al. (1984) performed an anaKlical and 

experimental study for the performance o f  both full and partial porous Joumal bearings 

operating under steady load conditions. The experiments conducted on partial bearings 

were to study the oil film behavior in the negative pressure region. Although they did not 

include the slip-velocity condition in their formulation, they claimed that their test results 

showed quite good agreement with the theoretical predictions.

Since the data reported by Yung and Cameron (1979) and Braun (1982) were 

insufficient to predict the extent o f  oil film formation in the circumferential direction. 

Kaneko and Obara (1990) attempted to visualize the mechanism o f lubrication in porous 

joumal bearings impregnated with fluorescent-dyed oil. They confirmed the existence o f 

oil circulation through the porous matrix. Due to the nature o f  the oil rupture observed, 

the half-film condition (i.e.. the Sommerfeld ha lf condition) was not applicable to the
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theoretical analysis for hydrodynamic lubrication unless the bearing oil was supplied 

continuously (Kaneko et al.. 1994a and 1994b). They also studied the effect o f oil-feed 

pressure on the static characteristics o f  porous bearing both theoretically and 

experimentally.

Kaneko and Hashimoto (1995) experimentally investigated the frictional 

characteristics o f  porous bronze bearings under hydrodynamic and mixed lubrication 

conditions. They proposed a frictional model assuming that both the load supported by 

the fluid and the friction coefficient were determined by the oil film extent. This model 

yielded frictional coefficients that agreed reasonably well with their experimental results.

Slightly different in the configuration o f  porous joum al bearings are the ball 

bearings retainers. Bertrand et al. (1995) studied the oil exchange between solid bail 

bearings and their porous Cotton-Phenolic retainers. Later, they extended their study to 

porous polyimide bearing retainers (Bertrand and Carre. 1997).

Yankovich and Stevanovich (1996a. 1996b) performed experimental and 

theoretical study to investigate the coefficients o f  sliding friction and structural parameter 

for porous tin-bronze bearings. They presented a rather complete documentation about 

their experiment.

Kaneko et al. (1997) theoretically and experimentally investigated the pressure 

distribution in the oil film o f a porous joum al bearing under hydrodynamic lubrication 

conditions. Their results from both approaches confirmed the existence o f a negati\ e 

film pressure at the trailing edge o f  the oil-film region.

Raman and Chennebasavan (1998) performed the first experimental investigation 

o f  porous joum al bearings under dynamic loads. In their experiment, a porous joum al
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bearing was subject to vertical sinusoidally fluctuating loads. The frictional force was 

measured under various fluctuating load/steady load ratios. Joumal frequencies and load 

frequencies. It was found that the mean coefficient o f  friction was proportional to the 

fluctuating load/steady load ratio, the joum al rotational speed and the Sommerfeld 

number. However, this mean coefficient was independent o f  the load frequency.

1.2.7 Other Considerations

Based on his observation in the laboratory . Heuberger (1961) discussed the effects 

o f  oil flow within the porous sleeve o f  sintered bearings. Later. Carson ( 1964) provided a 

very' complete review o f  self-lubricated bearings. In addition, another review by Pratt 

(1969) discussed the production, properties, and performance o f  five classes o f  sintered 

bearings. Most importantly, he pointed out that low shaft speeds, oscillating conditions, 

and frequent start-stop operations do not fa\ or the formation o f  a hy drody namic film in 

porous bearings.

Throughout the years, various research topics, although not directly related to the 

development o f  lubrication theory for porous bearings, have been attempted. These 

topics have covered a broad aspect o f  porous joum al bearings, from the basic design o f 

the bearings to the performance o f  lubricating oils.

Rhodes and Rouleau (1965. 1966) analyzed the effect o f  seal ends o f  full and 

partial porous bearings o f  120°. 150°. and IHO°. Later. Rouleau and Steiner studied the 

efleet o f cavitation by employ ing both Sommerfeld and Reynolds boundary conditions 

(Steiner. 1970; Rouleau and Steiner. 1974). The materials o f  seal had been 

conventionally solid metals. Kaneko foresaw the possibility o f replacing these solid
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metals with sintered material. Brilliantly, he carried out a numerical investigation to 

verify his idea (1989a). However, this idea was not further pursued until a recent study 

by Kaneko et al. (1999) on static characteristics o f  sealed-end sintered joum al bearings at 

the start o f  operation.

Conventional sintered bearings sometimes suffered from some undesirable 

operating conditions. In operation, they might become dr) in certain region. When air 

was admitted, it produced an air/oil emulsion. A similar situation was also reported by 

Heuberger (1961). To overcome this problem. Eudier and Margerand (1969) introduced 

an internal layer o f  ver\ fine powder onto the surface o f  a conventional porous bearing. 

By doing so. it not only allowed a higher / ’ ( 'value o f 1.000.000. but also it could operate 

at a higher load capacity (10 -  20 times o f  the con\entional ones), lower temperatures 

and lower fictional factors. In support o f  the above idea. Cusano's anaKlical results 

(1972b and 1972c) o f  short and infinitely long two-layer porous bearings agreed 

qualitatively well with the findings by Eudier and Margerand (1969). Along the same 

line. Verma (1983) carried out an analytical study o f  double-layer porous joum al 

bearings using the short bearing approximation. Although multiple-layer porous bearings 

were found to be beneficial, most studies were still centered on single-layer porous 

bearings.

Manufacturers o f sintered bearings fabricate bearings o f  different thickness and 

length, so that, these bearings can be selected to meet the specific requirements o f  an 

application. For this reason. Pemmal and Raman (1985) conducted experiments on 

bronze sintered bearings to further understand the design freedom. They found that the 

coefficient o f  friction increased with the bearing wall thickness but decreased with the
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bearing length. Almost at the same time, Quan et ai. (1985) found that sintered bronze 

bearings could work under hydrodynamic lubrication conditions even under high speed 

and light load. Their results indicated that it was very important to select suitable oil for 

lubrication.

Chattopadhyay (1995) presented a theoretical study to examine the elTect o f  

porous sleeve thickness on the bearing performance. Taking into account the overall 

bearing performance and practical manufacturing process, he suggested an optimum 

value o f  0.2 for the ratio o f  porous sleeve thickness to the joum al radius.

Gururajan and Prakash (1999) applied Christensen's stochastic theory o f  

hydrodynamic lubrication o f  rough surface to study the effect o f  surface roughness in 

infinitely long porous journal bearings under steady load condition. They concluded that 

its effect was considerably significant.

Another interesting topic was about nonisotropic porous bearings. Cusano 

(1973) was the first to obtain an analuica! solution for the performance o f  a short porous 

bearing whose permeability varied in both radial and axial directions. He compared these 

results to those for an isotropic bearing having the same axial permeability. Later. 

Kulkami and Kumar (1975) included the Beavers-Joseph slip velocity condition and 

obtained a set o f  equations for non-isotropic porous bearings.

Capone et al. (1980) performed the first experimental study on nonisotropic 

porous bearings. The permeability o f joum al bearings they studied consisted o f high and 

low regions. It was found that these bearings had a better performance than the 

corresponding isotropic ones.
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From their experimental observation o f  a new  type o f  porous metal bearing whose 

local permeability varied along its circumference. Quan and Wang (1985) found that 

these porous joumal bearings could work under a lower coefficient o f  friction and a 

higher load capacity than the ordinary porous Joum al bearings. Their analytical solution, 

including the effects o f  non-uniform permeability, bearing cur\ature. cavitation and 

velocity slip, supported their experimental observation. Unfortunately, their work was 

not conclusive enough because the pattern o f pem ieability was too restrictive.

Kaneko and Doi (Kaneko. 1989b; Kaneko and Doi. 1989) theoretically studied 

the static and dynamic characteristics o f oil-tilled porous joum al bearings with three non- 

uniform distributions o f  permeability. For the first type, the permeability o f the inner 

sleeve was lower than the outer sleeve. For the second type, the permeability o f  the 

loaded section o f the sleeve was lower than the unloaded section. For the third type, the 

permeability o f the bearing ends was lower than that o f  the middle. The conclusions they 

drew from this study were consistent with an analytical investigation conducted by 

Cieslicki and Krzeminski (1995a).

Later. Bujurke and Patil (1992) performed a mathematical analysis o f  the effect of 

rotation and variable permeability o f a short porous joum al bearing on the lubrication 

characteristics. The distribution o f  permeability they considered was a \ ariation o f  the 

third type that was considered by Kaneko and Doi ( 1989).

C ieslicki's theoretical and experimental results (1993) proved that the 

characteristic permeability o f  a bearing could be evaluated using either static or dy namic 

method. He even included the effect o f air flowing through porous bearing sleeves 

(1994). Later, he worked with Krzeminski (Cieslicki and Krzeminski. 1995b) to
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experimentally study the permeability distribution in porous bearing sleeves. In the 

following year, they conducted another experiment on the flow o f  air and oil through 

porous sleeve (1996) and found that the characteristic permeabilities for air and oil 

calculated from experiments and equations were comparable. This implied that the 

characteristic permeability for oil could be predicted if the characteristic permeability o f  

air was known a priori.

O ther than the bearing itself, some researchers were interested in the various load 

conditions to which the bearing is subject. Kumar (1973) modeled a hydrodynamic finite 

partial porous joum al bearing with arbitrai^ load by taking into account the bearing 

curvature and slip velocity separatelv . Then. Kumar and Wadhwa (1984) presented an 

exact solution for the performance characteristic o f  short porous joum al bearings. Their 

results for full porous bearings agreed excellently with M urti's results (1972a). They 

further reported the performance characteristics o f ISO° partial joum al bearings.

While most o f  the research work focused on the bearings and their stmcture. some 

were centered on the effect o f lubricating oil on the performance o f the porous joum al 

bearings. Scott (1963) presented a rather complete guide about the selection o f lubricant 

for porous bearings. Braun and G roenhof ( 1975) found that silicone lubricant could work 

as well as any other commercial lubricant if  additional oil is provided. Otherwise, full 

film lubrication could not be maintained even at low / ’ (’values.

Oil starvation is apparently the most serious problem in lubrication. However, 

there was not much attention paid to this subject. So far. there were only one theoretical 

and one experimental work found in the literature. Cusano (1979) performed an 

analytical study and presented his data for starved finite porous joum al bearings. The
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experimental work was conducted by Raman and Vinod Babu (1984). The only oil- 

starvation related study was an experimental investigation by Gnanaraj and Raman 

(1992). Based on their experimental measurements, they reported that the oil loss was 

minimal if the clearance was approximately 0.19%  o f  the joumal diameter.

Analytical studies about the non-Newtonian lubricating oil were reported by 

Zaheeruddin (1980), Wada and co-workers (Wada et al., 1985: W ada and Kawakami. 

1986) as well as Bujurke and Naduvinamani (1991). The different types o f  non- 

Newtonian oil considered were a micropolar lubricant, a Bingham solid (grease), and a 

couple stress fluid. A micropolar lubricant is a non-Newtonian fluid because it is a base 

lubricant in which macromolecules or suspended particles are present as additives. 

Another area o f studies on the variation o f  the lubricants considered the lubricants either 

compressible or gas-lubricated.

Most previous studies assumed that the bearings did not deform under any 

circumstances. In fact, the flexibility o f porous bearings was much greater than that of 

solid bearings. Hence, neglecting the efleets o f bearing deformation might lead to 

significant errors. Mak and Conway (1977a, 1977b and 1978) studied the effects of 

flexibility in both long and short porous joum al bearings.

Without particular significance, Sowmyan and Raman (1977) analyzed the 

performance characteristics o f  spherical sintered bearings and found that their 

characteristics could be determined more easily than those o f corresponding cylindrical 

bearings.

Zhilinskii and Zozulya (1977) pointed out that a great number o f  porous bearings 

were used in fractional-horsepower electric motors. To further understand these
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bearings, they compared the performance o f  various porous bearings in terms o f  the 

bearing lives, frictional forces, and noise levels.

It was reported that a team from Cranfield University had invented porous 

ceramic bearings. These bearings were lubricated with water pumped in from outside. 

More information and discussion about this new invention were reported by Corbett et al. 

(1998).

Numerical work that studies the flow field in porous joumal bearings was 

extremely rare. Most probably, this is because analytical studies are possible when the 

difficulty o f  this problem is reduced by assuming that the problem is two-dimensional 

and only solving for the pressure distribution in the fluid film and the porous matrix. 

Because o f these simplifications, a closed form solution is often possible.

After decades o f  studies, the first three-dimensional model was developed for gas 

lubricated thrust pads. Tian (1998) used a finite element method to discretize the 

modified Reynolds equation and Darcy equation to arrive at a set o f nonlinear equations. 

His approach was advantageous because two sets o f nonlinear equation would ha\ e to be 

solved if  a conventional approach were used.

Another three-dimensional model was reported by Meurisse and Giudicelli (1999). 

They took into account the Darcy law. the generalized Reynolds equation with an 

adoption o f Elrod's model (1981), and the mass flow conserv ation. Although this model 

did not consider slip velocity and seemed rather crude, their success in revealing the 

three-dimensional characteristics o f  oil-lubricated hydrodynamic porous Joumal bearing 

was inspiring.
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1.3 Scope of Present Study

After almost half a century o f  research, it is now understood that the general 

behavior o f  porous journal bearings does follow certain rules. Similar to solid journal 

bearings, hydrodynamic lubrication is impossible for porous journal bearings to operate 

below a certain critical Sommerfeld number. One o f the most important parameters for 

sintered journal bearings is the permeability parameter, which is proportional to the 

bearing radius and permeability, but inversely proportional to the radial clearance. When 

the permeability parameter increases, pressure, load capacity, and stability threshold 

speed decrease, but friction coefficient, eccentricity ratio, and the absolute o f  dynamic 

coefficient increase. For a given permeability parameter, there exists a load that 

corresponds to the minimum friction. Based on these rules, one can predict the behaviors 

o f other sintered journal bearings, such as multiple-layered bearings, two-lobe bearings 

and bearings with non-conventional oil.

In terms o f  geometry , finite bearings yield a higher friction coefficient than the 

long and short bearings. In terms o f  modeling, slip-velocity condition was deleterious to 

the load capacity. However, the Brinkman model yields a higher pressure distribution 

and load capacity, but lower friction param eter and attitude angle.

According to the literature, it is more beneficial to use as short a bearing as 

possible within certain limits (Y oussef and Eudier. 1966). Also, the couple stress fluid is 

a better lubricant than viscous fluids because it provides a significant load carrying 

capacity and a lower friction coefficient.

Although there arc extensive studies reported in the literature, no investigation of 

coupled flow and temperature fields in a  porous journal bearing has been conducted. It is
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the objective o f  this study to examine the flow and temperature fields in porous journal 

bearings to bring out additional information that will aid the design o f  such bearings. As 

the first attempt, only a configuration similar to an infinite porous journal bearing is 

considered here. In terms o f  geometry, the configuration o f  an infinite porous journal 

bearing is a special case o f  an eccentric annular space with a porous sleeve. It is more 

tempting to investigate an annular space than an infinite journal bearing because not only 

does the former configuration offer greater generality, but also it magnifies individual 

phenomenon that influences the lubrication mechanism o f  the bearing.

For the two main reasons described above, this work focuses on the flow and 

temperature distributions in a partially porous annular space whose inner cylinder rotates 

at a prescribed constant speed. The main interest is to understand the resultant effect due 

to centrifugal force and thermal buoyancy on the fiow and temperature fields. In addition 

to these effects, other secondary considerations include the eccentricity o f  the inner 

cylinder, the fluid viscosity, the permeability o f the porous layer, the porous layer 

thickness, and the relative thermal conductivity between the fluid and the porous layers. 

These secondary factors are considered because they are some of the major design 

parameters for sintered journal bearings.

This work includes theoretical, numerical, and experimental studies. The 

theoretical and numerical studies examine a full range o f  heat convection regimes in an 

annular space with a porous sleeve. The experimental study is to confirm the theoretical 

and numerical results.

(a) The theoretical work consists o f two cases. The first case examines the forced 

convection regime while the second case investigates the natural convection
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regime. These two cases will provide some basic understanding for the 

asymptotic heat convection regimes. They are described as follows.

(i) The flow and temperature fields in a rotating concentric or slightly 

eccentric annular space with a porous sleeve will be obtained using the 

regular perturbation method with the eccentricity ratio being the 

perturbation parameter. Since the eccentricity ratio considered is a very 

small quantity, the flow in the annular space, in the absence o f  buoyancy 

elTects. is expected to look like a Couette flow in the polar coordinates.

(ii) A weak natural convection in a pair o f  concentric cylinders with a 

porous sleeve will also be investigated using the regular perturbation 

method with the Rayleigh number being its perturbation parameter. The 

inner non-rotating cylinder is kept at a higher temperature than the outer 

cylinder.

(b) Finite difference method will be employed in the numerical work to obtain the 

flow and temperature fields in concentric cylinders with a porous sleeve. For 

this configuration, equations in both fluid and porous layers are formulated in 

the cylindrical coordinate system. This work aims to supplement the 

analytical work by providing numerical results that cover the entire 

convection regime.

(c) An experiment is performed to visualize the flow patterns in a concentric 

annul us with a porous sleeve. This is achieved by means o f a modified Helc- 

Shaw cell. The experimental setup consists o f  a Hele-Shaw' cell made o f 

Plexiglas and a rotating shaft inserted through the cell. The cell is filled with
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silicone oil with suspended particle tracers. An SLR camera is used to capture 

the trace o f  the fluid particles.

It is hoped that this study marks the first attempt to understand the mechanism o f 

lubrication and performance o f sintered journal bearings from the mechanical engineering 

aspect. This simplified yet comprehensive study will provide basic understanding to 

improve the design o f  sintered journal bearings and their applications in various 

engineering fields.
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CHAPTER TWO 

FLOW AND TEMPERATURE FIELDS IN ROTATING 

CONCENTRIC AND ECCENTRIC CYLINDERS WITH A POROUS

SLEEVE

2.1 introductory Remarks

Although the focus o f  most previous studies in journal bearings has been on the 

pressure distribution and load capacity o f  bearings, it is recognized that the lubricant flow 

in a solid Journal bearing is a special case o f  the Couette flow. The study of flow fields in 

a solid journal bearing has been extended to that in a concentric sintered journal bearings 

by Berman (1958). Following the work o f  Wood (1957) as well as Diprima and Stuart 

(1972a. 1972b). Meena and Kandaswamy (2001) included a thin porous lining in a solid 

journal bearing, thus allowing a velocity slip on the outer boundary. Using the bipolar 

coordinate system, they analvlically obtained the flow distribution in the liquid film.

The present work investigates the flow and temperature fields in a pair o f  rotating 

concentric and slightly eccentric cylinders with a porous sleeve. Different from the study 

o f  Meena and Kandaswamy (2001) that considered only a thin porous lining, the present 

study considers a porous layer o f  finite thickness. Therefore, an additional set o f 

governing equations must be prescribed for the porous layer and solved simultaneously 

with those o f the fluid layer. Although not directly related, it is interesting to note that 

Malashetty et al. (2001 ) have performed a similar study for an inclined planar system.
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2.2 Problem Statement

The physical configuration (Figure 2.1) o f  the present study consists o f  two 

infinitely long cylinders maintained at constant temperatures. 7// (on the inner cylinder) 

and Ti (on the outer cylinder), with Tn > Tl. The radii o f  the inner and outer cylinder are 

a  and c. respectively. A porous sleeve o f  radius h is press-fit into the inner surface o f  the 

outer cylinder. The annular space between these two cylinders is filled with a fluid o f  

constant properties. It is assumed that the porous sleeve is isotropic, homogeneous and 

impregnated with the same fluid in the annular space. Since the buoyancy effect is 

neglected in the present study, the flow in the annular space is induced simply by the 

shear effect o f  the rotating inner cylinder.

Under these conditions, the governing equations for the two-dimensional, steady, 

laminar flow in the annular space, along with the boundarv and interface conditions are 

given below for two special cases considered.

2.3 Annular Space without a Porous Sleeve

In the absence o f  the porous sleeve, the problem is reduced to that o f the classic 

Couette flow in the polar coordinates. However, different from the classical problem is 

that the present study also includes the case o f  eccentric cylinders.

(^-momentum equation:

dr dr )
- ^  = 0 . ( 2 . 1)

Energy equation:
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Figure 2.1 An eccentric annulas subject to rotation and differential heating from the 
inner and outer walls (7// > 7/.).
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a  J  
r dr

d T \  V
-  + ■I d r )  C\

I = 0 .
^ dr r

( 2 .2 )

which are subject to  the following boundary conditions;

\ l r  = a + e cos Û.

At r  = c.

u„ —  Li .

11̂  = 0 .

and

and

T = T„

T = T,.

(2.3a)

(2.3b)

Here, ^ i s  measured from the line o f  centers that corresponds to the minimum gap 

width and U  is given by

U = aju. (2.4)

The above equations can be cast into dimensionless form by introducing proper 

scaling parameters, which read

T - T ,
R = - .  

b
1 =  — . 0 = and

c
€ — — . 

h
(2.5)

Although b does not have any significance in the present case, the definitions o f R 

and e  in the above equations are preferred for the sake o f  consistency in the formulation 

o f the next case. The normalized governing equations and boundar\ conditions thus 

become.

dR
R

dV
dR

r
 = 0 .  and

R
(2 .6 )

1 d  
R d R

At /? = (a'b) + e c o s  0. 1 = 1 .

R d 0
dR

+ Br

and

d \ ’ V 
dR R

=  0 .

0 =

(2.7)

(2.8a)

Al R = c/b. 1 = 0 .  and 0  = 0 . (2.8b)

Appearing in Eq. (2.7) is a dimensionless parameter called the Brinkman number, 

which is the product o f the Prandtl and Eckert numbers and is given by
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The physical significance o f this number is that it represents the ratio o f  viscous 

dissipation to heat conduction. With an order o f unity or greater, it means that the 

temperature rise due to  dissipation is significant.

For this particular case, we are seeking solutions in the following forms.

r  = li, f f c o s t?  ! ] + ._ .  and (2.10)

0=© „+£'C O S^ 0 i + __  (2.11)

The subscript in the above expression represents the order o f  the solution. Clearly, the 

zeroth order solutions correspond to the classic Couette flow in polar coordinates.

The boundary condition at R = a l h  -<r£Cos6 can be expanded using Taylor series 

(see Appendix A) to yield

l^ + f c o s #  ( li + ("„ )  + ... = I . and (2.12)

0 „  + 6TC0S  ̂ (0 ,  + 0  '„) + ... = 1. (2.13)

Here, the prim es denote the derivatives with respect to R. Substitute Eqs. (2.10) 

and (2.11) back to the governing equations (Eqs. (2.6) and (2.7)) as well as the boundaiy 

conditions (Eq. (2.8)). After collecting terms o f the same power o f  ecosG,  one obtains 

the governing equations and their corresponding boundary' conditions at the various 

levels.

(a) Governing Equations and Boundary Conditions at the First Level

= (2.14)
dR ) R

37



At /î = a/h, 

\ \  R = C/h,

1 d  
R dR

F „ = l.

f o = 0 .

dR
+ Br ^ _ K

[ d R  R )
= 0.

and

and

00 =

00 =0

(2.15)

(2.16a)

(2.16b)

(b) Governing Equations and Boundary Conditions at the Second Level

t! cos &.

A t R = a/h, 

A t R =  c/h.

d R [  d R )  R

1 d  
R dR

R
de,
dR

+ 2Br

K = - i " o -

y ,  = 0 .

dR R

and

dR R
=  0 .

and

6>, = -6>'„

0 , =  0 .

(2.17)

(2.18)

(2.19a)

(2.19b)

2.4 Annular Space with a Porous Sleeve

With the presence o f  a porous sleeve, the complexity o f  the problem has increased 

considerably. Not only must more governing equations be solved simultaneously, but 

also an extra set o f  interface conditions must be satisfied. While the formulation for the 

fluid region is the same as that in the previous section, the formulation for the porous 

region is based on the Brinkman-extended Darcy model.

^m om entum  equations:

fluid region:
dr

d ^
dr

- ^  = 0 . (2.20)
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porous region: 

Energy equations: 

fluid region:

- 0 ( 2 . 2 1 )

d ( r — -
V+ — du^y

r dr \  dr  J I dr

or. d , [dUtii
r dr . dr , < dr

- ^ 1  = 0 .

= 0 .

(2.22)

(2.23)

The subscripts 1 and 2 represent the fluid region and porous layer, respectively. It 

should be noted that j j  in Eq. (2.21) is an empirical constant. Although it may play a 

role similar to that o f  the fluid viscosity, it is not exactly the same as fluid's viscosity and 

its value is usually determined experimentally (Nield and Bejan. 1999). Due to the lack 

o f  experimental data for / / .  it is customary to assume fj  = fj 'm the literature. The above 

equations are subject to the following boundary and interface conditions:

At r  = a  + e cos 0, = U . and

At r  = c.

At r  = A.

U til = 0 . and

T ,= T „ .

Ti=T,, .

dUti\ _ dll ,̂2

7; = r , . and

dr dr

dr dr

(2.24a)

(2.24b)

(2.25a)

(2.25b)

The interface conditions imposed here satisfy the requirements o f continuity in 

mass, stress, temperature and heat flux. Using the same set o f  scaling factors (Eq. (2.5)). 

the above governing equations, boundary and interface conditions are normalized to give, 

^m om entum  equations:
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fluid region:

porous region: 

Energy equation:

dR
R

dR
_ ü  = 0 .

R

d R \  dR Da
■RV\ = 0 ,

(2.26)

(2.27)

fluid r e u i o n : -------
R dR

R i/0i
~dR

+ Br

1 d
porous r e g i o n : --------

^ R d R
R

dO-,
~dR

Al R = (a/b) 4- scos  0. ( ' = 1. and

dR R

dV\ I] 
dR R

= 0

=  0 .

At R = c h.

At R — I .

r  = o.

0 ,  =<9,.

and

0  = 1.

0 =  0.

d l \  _ d l \
dR dR

do ,  k. dO-, 
and ----- ^ "

dR k, dR

(2.28)

(2.29)

(2.30a)

(2.30b)

(2.31a)

(2.31b)

An additional parameter that appears in Eq. (2.27) is the Darcy number. The 

Darcv number which is defined as

D a = - ^ .
h-

is a relative measure o f the pore size of a porous medium.

Similar to the previous case, we seek solutions in the following forms.

= I,,, + C C O S Û  (,,+...

f', = I’;,,+£'C0s6? 1’: i+ . . .

0 ,  = 0 ,„+ ^co s(9  0 , ,  +••• and

(2.32)

(2.33)

(2.34)

(2.35)

40



0 ,  =© ,„+^cos<9 © „ + . . .  (2.36)

In the above expressions, the first index in the double subscripts represents the

physical domain ( 1 for the fluid region and 2 for the porous layer as defined earlier) and

the second index represents the order o f  the solution.

Similar to Eqs. (2.12) and (2.13). the boundary condition at R = (a h) ^ ecosO is 

expressed in the following fashion.

l \ ^ + £ c o s d  (Ij, +("iu) + ... = I. and (2.37)

0,u+^C O S0 (01, + 0 ’,„) + ... = 1. (2.38)

Again, by collecting the terms o f  the same power o f  e cosO. one obtains the 

governing equations as well as their corresponding boundary and interface conditions at 

different levels.

(a) Governing Equations, Boundary Conditions, and Interface Conditions at the 

First Level

dR R

dR [ dR
- r R K „ = o .

(2.39)

(2.40)

I j L
R d R

R
d e ,10
dR

+ 5 r d\-  i;to '  10

dR R
= 0 . and (2.41)

At /? = a/h.

R d R \  dR )

( ' , 0 = 1 and

dR R
=  0 .

6>|„ = 1.

(2.42)

(2.43a)
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A t R = c/b.

At R — I .

r , o = o ,

1̂0 = ( :» '

and 0 , 0 = 0 .

dV' dV\:o

and

dR dR

d&w _ 2̂ (/(9.0
dR k, dR

(2.43b)

(2.44a)

(2.44b)

(b) Governing Equations, Boundary Conditions, and Interface Conditions at the 

Second Level

cos &.
dR

R
dV^
dR

- & . 0
R

(2.45)

dR
R

dR
(2.46)

R d R
R d&u

dR
+ l B r

d\\, r„,
dR R

dVu I'n 
dR R

= 0 . and (2.47)

1 d  
R dR

R d&2\
dR

+ l B r - ^  
k.

dV,, l ’:o 
dR R ) dR R

=  0 . (2.48)

At /Î = a  h.

At  R = c'h.

fu  = - r ' , o .

r „ = o .

and

and

0 „  = - 0 ,0

0 „ = 0.

(2.49a)

(2.49b)

At R -  I . h i -  h i  •
d \ \ , _ d \ \ ,
dR dR

(2.50a)

0,, = 0„ . and
c/0i, k^ c/0 ,1

dR L dR
(2.50b)

For convenience, we have s e t / '  = D a '  in the above equations.
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2.5 Analytical Solutions

Analytical solutions up to the second leading terms are obtained for the perturbed 

governing equations presented in the previous section.

2.5.1 Annular Space without a Porous Sleeve

Solving Eqs. (2.14). (2.15). (2.17). and (2.18) subject to boundary conditions 

(2.16) and (2.19). the functions f'o. ( j .  6>o. and 6^ are determined to be

a
h(a- - C  )

\ - R ~  —  
R

(2.51)

a'c '
-a- f  i R:a )  + c- f (  R : c } - - r r ^

h'R-
+  f (  R:c) . (2.52)

COS &.

where

a'  + c-
(a- -C-- r

h - R -  —  
R

. and

e , = 2 B r
a(a-  +c'- )
h(a '  - C  )'

- - h ' c '
R-

( a ' - c ' f  a ( a ' - c ' ) I n ( a  c ) \

f ( R :R*)  =
l n{R*  h ) - l n ( R )  

l n [ c / h ) - l n ( a  h)

(2.53)

(2.54)

(2.55)

2.5.2 Annular Space with a Porous Sleeve

Solving Eqs. (2.39) to (2.42) and (2.45) to (2.48) subject to boundary conditions 

(2.43) to (2.44) and (2.49) to (2.50). the functions 1 jo. Ij i .  1 j,,. t j , . 0 |o .  0 \ \ .  Oin. and 

(%i are determined to be
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y;+/: (2.56)

K j , = - 2 ^ [ K „ { r c / h )  I J r R ) - I ^ ( y  c / b )  K j y R ) ] .  
Jy

(2.57)

0,0 = 1 -  B r /o  [ /? "  - { h / a y  + l ]  + f ; [/« ( /?> -  l n { a  A )]. (2.58)

0,„ = l + f ir /o 2 j ^ l n ( R )  + { h / a Y  - I + F,

(2.59)

y cos &. £ ± A
R

F ^ = 2 f ^ \ ^ K ^ { y  c h) / , / / / ? y - / „ ( / c  6 ) K j y R ) ] .  

0 ,,  = - B r  f .R'~  + F, ln( R )+  F..  and

(2.60)

(2.61)

(2.62)

F>.\ = -2yh(A  a) +J\ {h a f  + 2 ^ l n ( R ) - - F -
a

+ F ^ / « ( R ) - l n [ a .  h) + S B r ^ a h ^ F ( R ) .
k., j ,

(2.63)

where /  and K  are the modified Bessel functions o f the first kind and second kind.

respectively. Other constants and functions involved are given below.

fx = F { r < ^ ^ ^ ) F j y ) - K , \ y c  h ) l j y ) .

/ :  = / [ / ( , ( / c + h ) y ( y i ] ,

/ ,  =(a-  +h'  ) J \ - ( i r - h -  )J\..

(2.64a)

(2.64b)

(2.64c)
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f *  = : [ ( a  h ) f ^  (a  + h } f , \ ,
J i

(2.64d)

J \ =  / h )  + {h  / a ) ’ - \ . (2.64e)

L  = (2.640

(2.64g)

F, =     . (2.65a)
~ l n { c  h ) - l n [ a  h)

B r \ - 2 f , { h , a ) ' + f J , \ - F , - ^ % B r ' ^ a h i f F { c  h)

F: = -------  T--------:-^ ---------------------. (2.65b)
~ l n { c  h ) - l n ( a  h)

F . = B r \ - l f , ^ [ h . a ) + f . { h  « ) ' -  F^— -  F J n { a  h ) , and (2.65c) 
L -I « ■

H

F ( R }  = y - l n ( R ) ^ R [  K;  { y c  h ) l ' (  y  R)  + l l { y c  h) K ;  ( y R ) ]  dR

I

R

^ R l n ( R ) [ K : , { y c  h ) r - ( y R ) + F ( y c ' h ) K ' - ( y R ) ' ] d R

I

+ [F'o {y c h) f j y  ) -  /„ {y c h) K j y ) ~ \ '  ln( R )

H

+ [ / ; i ^ ' / ? y - l ]  j * ^ [ A : „ ( / c  h ) I J y R ) - I „ [ y  c h ) K „ ( y R J R

I

H

-  ■ [ f „ ( / c  h ) I J y R ) - I „ { y c  b ) K , y y R ) ' ^  J R
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+ 2 / /o r (  c ')
/ T ^0 y  T V

I  h) A  b )

H

ln( R ) ^ R \ I ^ (  y R ) K ^ ( y R ) \ d R .

R

f '
-  \ R l n ( R ) [ l d y R ) ( 2 . 6 6 )

Note that F(c h} is a constant in the equations (2.65). It is evaluated as F(R) with 

/? = c h. Notice that the local Nusselt number, which signifies the relative importance 

between heat convection and heat conduction, is defined as

.. hh 
S u  = — . 

k
(2.67)

Equation (2.67) can be expressed in terms of the local temperature gradient (i.e.. 

heat flux) and it reads

c6>
Xu  = -

dR
(2.68)

For the present study, it is the average Nusselt number that provides the general 

heat transfer characteristics o f a porous bearing. Integrating the local Nusselt number 

along the inner and outer surfaces, one obtains

Xu = - —  {— c/0. 
iTt ] d R

(2.69)

Xu = - ^  +£cosO0„ ^ . . . ) Ü 0 .

0

1
2;r dR

(2.70)

(2.71)
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where / is the index o f  the physical domain as discussed. The average Nusselt numbers at 

the inner and outer cylinders are given, respectively, by

where

T7- _ 1A —------
2/T J cR fJ 0  + £ XcOsO^--^

cR
de

TT- _ 1
A Uitut — “  "" 

I t:
d 6  + e  ï c osû  ' d0J

_  0

J cR
U

h =k a

+ .

cR

c0,.

= 2 B r f ,
H=tj h

cR
= 2 B r f ,

\ n j a

+ P-, —. 
■ a

c Q :o
cR

= { l B r j ,  + F , ) f ^ - - A B r ! ^ ^ - ^ G i c  h) .  
 ̂ ' ' k , c  k, f ;

dR

G( R )  =

= (2 B r j \  + F A — — + %Br— a h — G(c  Ay. and 
- k . c  k, f .

H

Y  (/ C h) r - ( y R )  + r - { y c ,  h) K^-(yR}] dR

(2.73)

(2.74a)

(2.74b)

(2.74c)

(2.74d)

H

+2^  ^ R [ F { y ) K , { y  c /  h ) l , ( yR )K, (yR )]dR

I

+ [ /„ r /y A :„ ( /C  ' A ) - /„ ( ; 'C  / A) K j y ) ' ]  R

h ) K j y R i ]  R
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H

j ^ [ K , { r c / b ) i j r R ) - i o { r c / h ) K j r R ) J  <iR- (2.75)

2.6 Results and Discussion

Since the present solutions for the flow and temperature fields are obtained using 

the regular perturbation method, they are valid only for small eccentricities. For the 

discussion that follows, we limit our attention to a specific configuration o f  a = 1. b = 

J.5. and c = i .  unless specified otherwise.

Figure 2.2 shows the flow field in an eccentric annulus without porous sleeve for 

various Brinkman numbers and eccentricity ratios. The special case o f  concentric 

annulus {£ = 0) is also included for comparison. In this study, we limit the eccentricity 

ratio to no more than O.I. The inner and outer circles represent the rotating inner cylinder 

and the stationary outer cylinder, respectively. The magnitude and directions o f  the flow 

velocity are visualized through vector representation. Due to the rotation o f the inner 

cylinder, a shear-induced flow is observed throughout the entire fluid layer. Also 

observed is that the magnitude o f  the fluid velocity reduces to zero at the outer 

(stationary) cylinder. Since the buoyancy effect is neglected in the present analysis, the 

flow is initiated mainly due to the shearing action o f  the inner cylinder. As a result, the 

flow field is independent o f Brinkman number. As the eccentricity ratio increases, the 

inner cylinder shifts downwards causing an increase in the flow velocity across the 

narrowest gap in the annulus as compared with other clearances.

Figure 2.3 presents the corresponding isotherms for the flow fields in Figure 2.2. 

When the annulus spaces are concentric, the isotherms are concentric as well. Similarly.
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0 .0 0

0.05

0.10

Figure 2.2 Flow fields in an eccentric annulus without a porous sleeve for Da = 0.0!.  
and kf/k: = I.
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Figure 2.3 Temperature fields in an eccentric annulus without a porous sleeve for Da 
= 0.01. and k/ k: = I (AO = 0.2).
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the isotherms become eccentric for an eccentric annulus. As observed, when Br = 0, heat 

transfer is dominated by conduction. As Brinkman number increases, the isotherms start 

moving radially outwards because fluid at the vicinity o f  the inner cylinder is heated up. 

At Br = 2. there are five or more isotherms within the inner and outer cylinders. This 

implies that the heat generation due to viscous dissipation is so great that the fluid 

temperature can exceed that o f  the inner cylinder. Again, it is observed that the inner 

cylinder shifts downwards when the eccentricity ratio increases, and the isotherms are 

compressed accordingly at the narrowest gap. For >  / .  it is observed that heat 

generation due to viscous dissipation is more significant for an annulus with a large 

eccentricity ratio. This implies that the eccentricity ratio enhances the heat generation by 

viscous dissipation. As the eccentricity ratio increases lo 0.1. one observes that a ring o f 

overheated fluid (Û > I) completely surrounds the inner cylinder. As the Brinkman 

number increases, heat generation becomes even stronger. The dimensionless 

temperature o f  the fluid in the thermal plume on top o f the inner cylinder becomes greater 

than 1.2.

The effects o f porous sleeve thickness on the development o f  flow field are shown 

in Figure 2.4. In these figures, a dashed line between the inner and outer cylinders 

indicates the interface between the fluid region and the porous sleeve. Due to shearing 

action in the fluid region, it is observed that there is a flow with finite velocities in the 

porous sleeve. This can be examined more closely in the velocity profiles shown in 

Figures 2.10 and 2.11. The thickness o f porous sleeve examined here are h = 1.25. 1.50. 

and 1.75. Among these three cases, the first column (h = 1.25) corresponds to the 

thickest porous sleeve. Its velocity gradient in the fluid layer is the greatest and the
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b 1.25 1.50 1.75

0.01

0.05

0.10

Figure 2.4 Flow fields in an eccentric annulus with a porous sleeve fo r Br = / .  Da 
0.01, and ki/kj = /.
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velocity components in the porous sleeve are the smallest because o f  the highest flow 

resistance. As h increases (the thickness o f  the porous sleeve reduces), the velocity 

gradient in the fluid layer decreases and the velocity components in the porous sleeve 

remain finite. Similar to Figure 2.2. one notices that the flow velocity increases at the 

narrowest gap when the eccentricity ratio increases. This phenomenon is the most 

apparent when the fluid layer is the thinnest (i.e.. b is the smallest).

The corresponding temperature fields are shown in Figure 2.5. Notice that for b 

= 1.25 and 1.50. there are at least five isotherms in the annulus. However, for b = 1.75. 

there are only four isotherms unless the eccentricity ratio is equal to O.IO. This 

interesting finding implies that for a  thick porous sleeve, with small eccentricity ratios, 

there exists a region o f  overheated fluid next to the inner rotating cylinder. Referring to 

Figure 2.4. one sees that the velocity gradient is the greatest for the smallest b. Since the 

heat generation due to viscous dissipation is directly proportional to velocity gradient, 

heat generation is also the greatest for the smallest b. As the porous sleeve thickness 

decreases, the region o f  overheated fluid diminishes. At £■ = 0.10. a ring o f  overheated 

fluid is still observed. Although a large eccentricity ratio can enhance heat generation 

due to viscous dissipation, it is found that for an annulus with a reduced thickness o f 

porous sleeve (b = 1.75). the ring o f  overheated fluid reduces to a thermal plume arising 

from the top portion o f  the inner cylinder.

In Figures 2.6 and 2.7. one can examine the combined effects o f  Brinkman and 

Darcy numbers on the flow and temperature fields in an eccentric annulus. For a given 

Darcy number, one observes that the flow fields are identical. This is consistent with 

what observed in Figure 2.2 (i.e.. the flow is independent o f  the Brinkman number
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b 1.25 1.50 1.75

0.01

0.05

0.10

Figure 2.5 Temperature fields in an eccentric annulus with a porous sleeve for Br = I. 
Da = O.OL and k/ k: = I (AO = 0.2).
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0.0 !

1.0

Figure 2.6 Flow fields o f  in an eccentric annulus with a porous sleeve for h = 1.5. € 
0.1. and ki/k: = I.
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because buoyancy effect is neglected). As the Darcy number increases, the flow 

resistance in the porous sleeve decreases. As a result, the most remarkable difference 

among these plots is the flow in the porous sleeve. When Da = 10"*. there is almost no 

flow in the porous sleeve. As the Darcy num ber increases, this velocity component in the 

porous sleeve becom es finite. This is particularly apparent when Da  = I.O.

Unlike the flow fields, the temperature fields behave very distinctively, as shown 

in Figure 2.7. At Br  = 0. there are only 4 isotherms (AÛ = 0.2) appear between the inner 

and outer cylinders. This means that the maximum dimensionless temperature in the 

entire annular space is 1.0 and is located exactly on the inner cylinder. Also, it is 

observed that the temperature field is nearly independent o f the Darcy number when Br = 

0. This is because the flow in the porous layer is so insignificant when compared to that 

in the fluid layer, their effects on the temperature field are therefore verv negligible. As 

the Brinkman num ber increases, additional isotherms appear. This indicates that heat 

generation becomes so great that the maximum fluid temperatures in the annulus exceed 

that o f the inner cylinder and they are located near the inner cylinder. As the Darcy 

number increases, the region o f overheated fluid shrinks. Thus, one can conclude that the 

Darcy number relieves the viscous dissipation because it reduces the velocity gradient by 

allowing more fluid flowing through the porous sleeve.

In the discussion above, it has been assumed that the effective thermal 

conductivities for the fluid and porous sleeve are the same. In reality, this may not 

always be the case. In Figure 2.8. one can examine the influence o f  porous sleeve 

thickness and therm al conductivity ratio on the flow field. Again, one observes that the 

flow fields only depend on the thickness o f  porous sleeve, but not the thermal
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Da
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Figure 2.7 Temperature fields in an eccentric annulus with a porous sleeve for h 
1.5. € = O.l. and ki k: = I (AO = 0.2).
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b 1.25 1.50 1.75
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2.0

Figure 2.8 Flow fields in an eccentric annulus with a porous sleeve for Br = I. Da
O.OL and e  = 0.1.
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conductivity ratio. For the present study, the temperature field is not coupled with the 

flow field due to the assumption o f negligible buoyancy effect. Since the thermal 

conductivity ratio, similar to Brinkman number, is a thermal property o f  the assembly, it 

has absolutely no effect on the velocity field.

As expected, their corresponding temperature fields, as shown in Figure 2.9. 

depend on both porous sleeve thickness and thermal conductivity ratio. Recall that heat 

generation increases with the porous sleeve thickness. This is especially clear for ki. k: = 

I.O. When ki/k; < / .  it is found that there are fewer isotherms in the porous sleeve. This 

is because the thermal conductivity o f  the porous sleeve is high so that a smaller 

temperature gradient is required in the porous sleeve to transfer the same amount o f heat. 

It is very interesting to note that there appears a reversed thermal plume for the case o f h 

= 1.25 and ki/k: = 0.5. For ki k: = 0.5. the thermal conductivity o f  the fluid layer is only 

half of that o f  the porous sleeve. At this particular condition, viscous dissipation at the 

region on top o f the inner cylinder can be effectively removed by heat conduction into the 

inner cylinder and through the porous sleeve into the outer cylinder. On the other hand, 

when the thermal conductivity o f  the fluid layer is double o f  that o f  the porous sleeve, 

there are more isotherms appear in the porous sleeve. It is w orthw hile to point out that 

when ki/k: = 2.0 and h < 1.50. the dimensionless temperature o f  the entire fluid layer is 

greater than unity due to viscous dissipation. When the porous sleeve is thick (A = 1.25). 

it is interesting to note that there are two isolated, overheated regions appeared on both 

sides o f the fluid layer away from the inner cylinder. At this particular case, heat removal 

through the inner cylinder is vciy effective. For this reason, the heat generated by 

viscous dissipation right next to the inner cylinder is removed efTecti\ely. Only at the
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Figure 2.9 Temperature fields in an eccentric annulus with a porous sleeve for Br = I.
Da = O.OL and e  = 0.1 (AO = 0.2).
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region away from the inner cylinder, heat is removed not as effectively by conduction 

through the inner cylinder and porous sleeve.

For the ease o f  comparison, a normalized radial distance r*  is introduced, defined 

as r* = (r -  a) /(c -  a). By this definition, r*  = 0 represents the surface o f the inner 

cylinder while r* = I represents the surface o f  the outer cylinder. The interface is located 

at r*  = 0.5 if A = 1.5. As shown in Figure 2.10. the change in velocity profiles is 

significant when the Darcy number is of the order between and 10'\ For a small 

Darcy number, the flow resistance in the porous sleeve is very large, which results in a 

near-zero velocity profile in the porous layer. For a large Darcy number, the porous 

sleeve becomes more permeable. Hence, the velocity profile approaches that o f  the 

annulus without porous sleeve. As expected, the velocity profiles depend on the 

permeability o f  the porous sleeve. This dependence becomes more obvious as the Darcy 

number becomes greater than I(T^. For a sufficiently large Darcy number (e.g.. Da = I). 

the velocity profile approaches that o f a single fluid layer and becomes independent o f 

the properties o f the porous sleeve. Since the fluid friction is proportional to the 

tangential velocity gradient, this implies that the insertion o f  a porous sleeve in ajournai 

bearing increases the friction on the journal surface. More importantly, this frictional 

loss increases as the permeability o f the porous sleeve decreases. For practical 

applications, a porous journal bearing usually consumes more power than a solid journal 

bearing.

To study the effect o f various parameters on the velocity profiles, one can 

examine the results with the Darcy number varying in the range between 10'^ and I0'\ 

The effect o f porous sleeve thickness on the velocity profiles is shown in Figure 2.11. In
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Figure 2.10 Velocity profiles for various Darcy numbers in an eccentric annulus with a 
porous sleeve on the gap o f  Û = 7v2 (h = 1.50, e  = 0.05. Br = O.L and 
ki/k: = /).
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Figure 2.11 Velocity profiles for various porous sleeve thickness in an eccentric 
annulus at the cross-section o f  0  = ;r"2 (£■ = 0.05. Da = O.OL Br  = O.L and 
ki/k:  = /).
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this figure, b* (defined as h* = (h -  a} /(c -  a)) indicates the location o f  the interface (or 

R = 1). The values of b* = 0.1. 0.3. 0.5. 0.7. and 0.9 represent b = 1.1. 1.3.1.5. 1.7. and 

1.9. respectively. For a given journal bearing, the thicker the porous sleeve is. the thinner 

the fluid layer becomes. As shown by the figure, the flow velocity significantly 

decreases as the thickness o f  the porous sleeve increases. This eventually leads to a 

greater velocity gradient for a thicker porous sleeve. This also implies that a higher 

frictional loss is anticipated in a porous Journal bearing with a thicker porous sleeve.

The temperature profiles in an eccentric annulus with a porous sleeve are shown 

in Figure 2.12 for various Brinkman numbers. Since it is assum ed that the thermal 

conductivities o f  the fluid and the porous sleeve are the same for the case shown, there 

are no abrupt changes in the temperature profile across the interface. Recall that the 

Brinkman number signifies the importance o f viscous dissipation as compared to heat 

conduction in the fluid. For Br > 1. the fluid is heated up by the viscous dissipation and 

this can be clearly observed from the figure. The maximum temperature rise is 

proportional to the Brinkman number and it occurs somewhere in the fluid layer (0.0 <r* 

<0.5) but close to the inner cylinder. For Br < /. the temperature profiles are weakly 

dependent on the Brinkman number and they decrease monotonously from the inner 

cylinder towards the outer cylinder. In this case, the maximum temperature occurs at the 

inner cylinder. Heat is removed from the inner cylinder to the outer cylinder mainly by 

diffusion. As a result, the temperature profiles are almost identical regardless o f the 

porous sleeve thickness and Darcy number.

To further examine the effects o f  porous sleeve thickness on the temperature field, 

the temperature profiles are shown in Figure 2.13 for Br = 2. It is found that the
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Figure 2.12 Temperature profiles for various Brinkman numbers in an eccentric 
annulus at the gap o f # =  tv2 (h = 1.50, e  = 0.05. Da = O.OL and ki- k-> = 
/ ) .
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Figure 2.13 Temperature profiles for various porous sleeve thickness in an eccentric 
annulus at the gap o f  0  = ;T2 (£  = 0.05. Da = O.OL Br = 2.0. and k/ k^ = 
/).

66



maximum temperature rise is inversely proportional to the porous sleeve thickness. 

Recall from Figure 2 .11 that the velocity gradient increases with the porous sleeve 

thickness. Since the viscous dissipation is directly related to the velocity gradient, the 

maximum fluid temperature thus increases with the porous sleeve thickness. Also 

noticed is that the location o f  the maximum fluid temperature moves away from the inner 

cylinder as the porous sleeve thickness decreases. For Br > /. one can expect that the 

maximum temperature rise in fluid occurs along the narrow gap o f an eccentric journal 

bearing.

The trend shown in Figure 2.13 suggests that the effect o f  viscous dissipation is 

more apparent when there is a large velocity gradient. Also shown in Figure 2.10. the 

velocity gradient is inversely proportional to the Darcy number. Hence, one can expect 

that the maximum fluid temperature is also inversely proportional to the Darcy number. 

This trend is clearly depicted in Figure 2.14. Note that there is no significant difference 

between the temperature profiles for Da > / . In addition, it is observed that the 

temperature profiles approach another limiting case that corresponds to no flow in the 

porous layer when the porous sleeve permeability or the Darcy number is sufficiently 

small.

Figures 2.15 and 2.16 show the temperature profiles for various thermal 

conductivity ratios. For ki/k: > /. the thermal conductivity o f  the fluid is greater than 

that o f  the porous sleeve. For kt/k: < 1. the effective thermal conductivity o f  the porous 

sleeve is greater than that o f the fluid layer. When k/ 'k: ^  /. there is an abrupt change in 

temperature gradient across the interface. It is obseived that the greater the thermal 

conductivity ratio, the higher the fluid temperature in the annulus. The value o f  k/. k:
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actually represents the ratio o f  the temperature gradient in the porous sleeve to that in the 

fluid layer. When the thermal conductivity of the fluid layer is greater than that o f the 

porous sleeve, heat energy is removed more efficiently in the fluid layer. As a result, the 

temperature gradient in the fluid layer next to the irmer cylinder is small, and this causes 

the temperature at the interface to be accordingly higher.

As displayed in Figure 2.15. when Br < / .  the temperature profiles in the layers 

linearly decrease in the radial direction at different gradient. In contrast, as shown in 

Figure 2.16 where Br > / .  the temperature profiles in the fluid and porous layers behave 

in a different manner. In the fluid layer, it is found that the temperature profiles are 

nonlinear, while in the porous layer, the temperatures decay linearly with radial distance 

from the interface. This proves that the effect o f viscous dissipation is more apparent in 

the fluid layer than in the porous sleeve. Depending on the effective therm al conductivity 

ratio, the temperature at the vicinity o f the inner cylinder may increase with the radial 

distance.

Figure 2.17 shows the dependence o f average Nusselt num ber on thermal 

conductivity ratio and porous sleeve thickness for the rotating inner cylinder. It is 

observed that the average Nusselt numbers are negative in general. The sign o f  Nusselt 

number signifies the direction o f  the heat flow. These negative Nusselt numbers imply 

that, instead o f  removing heat from the rotating inner cylinder, the fluid actually supplies 

heat to the inner cylinder due to viscous dissipation. As the Darcy number increases, 

they approach some asymptotic limits that heavily depend on the thermal conductivity 

ratios. Notice that the smaller the thermal conductivity ratio, the larger the average 

Nusselt number. At a small Darcy number, heat generation due to viscous dissipation is
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Figure 2.16 Tem perature profiles for various effective therm al conductivity ratios in 
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significant. The effect o f  viscous dissipation is more pronounced at a smaller value o f  b. 

As the Darcy number increases, the average Nusselt numbers increases. Since the 

viscous dissipation is reduced when the Darcy number increases, less heat is generated in 

the fluid layer. The overheating o f fluid is relieved and less heat is transferred to the 

inner cylinder. In some cases, a further increase in the Darcy number will lead to a 

reversal o f the heat flow direction and the average Nusselt number becomes positive. For 

example, in the case o f  6 = 1.25. ki/k: = 0.5. and Da  > I f f ' . the porous sleeve is thick 

and its effective thermal conductivity is greater than that o f  the fluid layer. Under these 

conditions, the relatively high permeability allows a finite flow in the porous sleeve and 

thus reduces the velocity gradient in the fluid layer and also the amount o f  heat 

generation. Since there is no overheating o f  fluid, all heat generated is transferred 

through the outer cylinder.

The average Nusselt numbers on the outer cylinder for various conditions are 

illustrated in Figure 2.18. Different from those presented in Figure 2.17. the Nusselt 

numbers on the outer cylinder are always greater than I.O and the largest average Nusselt 

numbers are always associated with ki/k: = 2.0. Since the Nusselt numbers are always 

positive, the outer cylinder has served as an effective heat sink. For k ikz  = 0.5. heat 

conduction is always the dominant heat transfer mode at small Darcy numbers. However, 

heat transfer is enhanced with the presence o f  convection and its enhancement increases 

with the thermal conductivity ratio. In general, the average Nusselt number is nearly 

independent o f the Darcy number when the porous sleeve is not too thick (h > 1.25). 

Notice that for ki/k; > I. the average Nusselt number reaches its minimum at Da ~ 10''. 

Also noticed is that the average Nusselt number increases with a reduction in the
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thickness o f porous sleeve. This is expected because a thicker fluid layer provides more 

heat enhancement by convection.

The velocity and temperature profiles in an eccentric annulus with different 

eccentricity ratios and at various clearances are presented in Figures 2.19 and 2.20. 

respectively. For each eccentricity ratio, the profiles at three gaps { 0 = 0 .  7i/2. and it) are 

presented. From Figure 2.19. one notices that the perturbation solutions begin to fail as 

the eccentricity ratio increases. For example, the velocity profiles should satisfy the 

boundary condition that requires V = /  at the inner cylinder. As shown in Figure 2.19. as 

g increases from O.Ol to 0.05. the discrepancy from the specified boundar) condition at 

the inner cylinder becomes large. However, this deviation from the spefified boundary 

condition is not observed for the temperature profiles (Figure 2.20). It is believed that the 

discrepancy in velocity at the inner cylinder is attributed to truncation error from both 

perturbation method and the Taylor expansion o f  the boundaiy condition ai R = (a h) * e  

cosO.

2.7 Conclusions

The present study has shown that a closed form solution is possible not only for 

the flow and temperature fields in a rotating concentric annulus. but also possible for 

those in a rotating eccentric annulus. The present study also shows that there are two 

limiting cases for the problem considered. For a sufficiently small Darcy number {Da < 

/(T^). the flow resistance in the porous sleeve becomes so large that there is essentially no 

flow in the porous sleeve. Hence, the porous sleeve behaves like a solid wall, which 

renders a porous bearing basically a solid bearing. The heat transfer mechanism in the
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porous sleeve for this case is purely conduction. On the other hand, for a sufficiently 

large Darcy number (Da > /) . both velocity and temperature profiles approach those o f a 

single liquid film. In this case, the presence o f  the porous sleeve has little effect on the 

flow and temperature distributions.

Since buoyancy effects are neglected in this study, the Brinkm an number has 

effects only on the temperature distribution. For Br < /.  viscous dissipation in the fluid 

is insignificant and thus the temperature profile closely resembles that o f  Br  = 0. For Br 

> /, a maximum temperature occurs in the fluid region as a result o f  viscous dissipation. 

In some cases, this maximum temperature can exceed that o f the inner cylinder.

The thickness o f  the porous sleeve also plays an important role in the distribution 

o f flow and temperature profiles. When the fluid layer is much thinner than the porous 

sleeve, a high velocity gradient appears along the rotating inner cylinder producing high 

stresses and viscous dissipation, which in turn creates a region o f overheated fluid. If the 

porous sleeve is thin, the shear flow in it becomes finite. This leads to a reduction in the 

velocity gradient and hence suppresses the heat generation by viscous dissipation.

Another important factor affecting the flow and temperature fields in an annular 

space is the eccentricity. It modifies the velocity and temperature distributions in each 

clearance. Across the narrowest clearance, the velocity and temperature gradients are 

larger than those at any other clearance. Across the widest gap. there is normally a 

thermal plume developing from the top portion o f the rotating inner cylinder. For some 

cases, this thermal plum e can grow all the way to completely encom pass the inner 

cylinder and result in a ring o f  overheated fluid whose temperature is higher than that of 

the inner cylinder.
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The average Nusselt number is found to increase with a reduced porous sleeve 

thickness. The average Nusselt number o f  the inner cylinder grows with the Darcy 

number and approaches some asymptotic values that depend on the effective thermal 

conductivity ratio. The smaller the effective thermal conductivity ratio, the greater the 

average Nusselt number on the inner cylinder. On the other hand, a larger average 

Nusselt number on the outer cylinder always corresponds to a larger effective thermal 

conductivity ratio. The dependency o f Nusselt number on the Darcy number diminishes 

with a decrease in the porous sleeve thickness.

While the present study has provided useful insights on the flow and temperature 

distribution in a porous bearing, the solutions however are limited to the cases with a 

small eccentricity. For porous bearings with a moderate or large eccentricity, the 

solutions o f  flow and temperature fields m ust be obtained by numerical means.
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CHAPTER THREE 

NATURAL CONVECTION IN CONCENTRIC CYLINDERS 

WITH A POROUS SLEEVE

3.1 Introductory Remarks

In the previous chapter a special case was considered tor flow and temperature 

fields in concentric and eccentric annuli with the inner cylinder rotating at finite angular 

velocities. This chapter focuses on a totally different scenario in which both cylinders 

remain stationar) but subject to a differential heating between the two cylinders.

Natural convection in horizontal annuli has long been a subject o f  engineering 

interest. Earlier work includes several experimental studies with flow visualization by 

Bishop and Carley (1966) and Powe et al. (1969. 1971). Kuehn and Goldstein (1976. 

1980) tackled this problem from both experimental and theoretical-numerical aspects. 

On the other hand. Charrier-Mojtabi et al. (1979) performed a numerical study on the 

same subject. Since then, many closely related studies have been reported. In addition, 

this problem has been extended to the field o f  porous media. Caltagirone (1976) studied 

natural convection in a saturated porous medium bounded by two horizontal concentric 

cylinders. Later. Bau (1984) studied the natural convection in eccentric porous annulus 

at low Rayleigh numbers using the perturbation method. Actually, the study o f  flow 

interaction between the fluid and porous layers can be dated back to the sixties. Ishizawa 

and Hori (1966) had obtained the normal velocity profiles o f  a viscous fiuid through a 

porous wall into a narrow gap.
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For applications, a horizontal annulus with a porous sleeve is o f  practical interest. 

For example, heat transfer in an annulus with scale or rust deposited on the inner surface 

o f the outer cylinder is important for heat exchanger design. The present work examines 

the flow and temperature fields in a concentric annulus with a porous sleeve. Different 

from the studies published in the literature, the present study considers a fluid layer and a 

porous layer o f  finite thickness.

3.2 Problem Statement

The physical configuration o f the present study (Figure 3.1) consists o f two 

infinitely long cylinders o f radii a and c. They are maintained at constant temperatures. 

Th (on the inner cylinder) and 7^ (on the outer cylinder) with Tn > Ti. In between, a 

porous sleeve o f  radius h is press-fit into the interior o f the outer cylinder. Therefore, this 

configuration consists o f  an inner fluid region and an outer porous region. It is assumed 

that the porous matrix is homogeneous, isotropic and is saturated with the same fluid in 

the fluid region. The effects o f temperature on the fluid and porous matrix properties are 

assumed negligible due to the small temperature difference. It is further assumed that the 

flow is steady and laminar.

Since both inner and outer cylinders are stationary, the fluid motion is induced by 

the thermal buoyancy resulting from the differential heating between the cylinders. This 

buoyancy induced flow and its corresponding temperature distribution are expected to 

depend on both the radial and azimuthal directions.
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Figure 3.1 A concentric annulus with a porous sleeve subject to differential heating 
from the inner and outer wall (Tn > Tl).
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3 J  Formulation

Based on the above assumptions, the governing equations, boundary conditions, 

and interface conditions are now formulated. Unlike the previous chapter, the stream 

function is introduced in this chapter such that.

I dy/
"  ~ ~ ô ë

and
dy/
~ôi^

(3.1a. b)

This leads to the definition o f  vorticity in the following form.

I dV - y / = - —  
r cr

dy/ I g - p
^  r - ee-

(3.2)

where the vorticity is originally defined as

I c> , >1 cu^
(3.3)

Using the definitions from Eq. (3.1) for the stream function and employing 

Boussinesq approximation, the momentum equation for the liquid film is given by Yao 

(1980).

dy/^ ^y/^ cV V ,
ôr dO 3 0  3r

= g/3 sin 6 ^ ^  
dr
3T, cosO cT, ^

r 30
+ v V V i. (3.4)

where the Laplacian operator is

3- \ 3 1 3 -
V- = — -  + ------ + — -----r

3r- r 3r r '  3 0 '
(3.5)

The subscripts following the dependent variables y/ond T  are the indices referring 

to the layers. Same as those in the previous chapter, the index / refers to the fluid layer 

and 2 refers to the porous sleeve. Introduce the following dimensionless parameters.

ifj
or, and

T.-T ,
AT

(3.6a. b. c)
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The Laplacian operator can be normalized to give

dR- R ÔR R- Ô0-
(3.7)

The bar on top o f  the Laplacian operator indicates that it is dimensionless. The 

momentum equation for the fluid layer then becomes

_1_J^ 
Pr R

a y ,  a W ,
dR cO d e  dR

= Ra s in0
d 0 ,  COS0 d o .

dR R d0
+  W , . (3.8)

where

Pr=  —  
a,

and Ra =
g /3A Th^

y  a,
(3 .9 -3 .1 0 )

The dimensional momentum equation for the porous sleeve is given by

£
r

dy/^ dV'i//^ dt//^ aV'y/^ 
dr d0  d 0  dr

= PR P sin0
dT-, COS0 a r ,  )  / /  2

dr
(3.11) 

r  d 0  ) K

Assuming the above equation can be normalized to give

_l_j_ 
Pr R

a y ,  a v - y ,  a y ,  a v - y ,  1
dR d0  d 0  dR

= Ra sin0
a 0 ,  COS0 a 0 .

dR R d0
— L v V ,  + V > .  

Da

where the Darcy number is defined as

Da = - ^ .  
h-

(3.12)

(3.13)

Similar to Yao (1980). the dimensional energy equation takes the general form o f

di//_dT, di//, dT,
dr d0  d 0  dr

= a S T . (3.14)
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Again, introducing the dimensionless parameters (Eqs. (3.6)). one can rewrite the 

energy equation for each layer as

R
a y ,  50 , a y ,  0 0 ,I

a,

dR 0 6  0 6  dR

^ a y ,  a a  a y ,  a a  l

= V 0  . and

R dR d d  d6  dR
= a ,V '0 ,

The boundary' and interface conditions are 

at R = a/h.

at R = c h.

a tR  = L

a y a y
dR d6

a y . a y .
dR d6

a y a y .
dR dR

0 = 1.

0 , = 0.

a y  a y .
d6 d6

v - y ,  = v - y , .

0  = 0, .

a v - y ,  a v - y . 1 a y .
a/? a/? Di/ dR

and =

(3.15)

(3.16)

(3.17a. b. c) 

(3.17d. e. f) 

(3.17g. h) 

(3.17i.j) 

(3.17k. 1)
dR ■ cR

The derivation o f these interface conditions are explained in detail and presented 

in Appendix C.

3.4 Perturbation Methods

To solve the above system o f  equations. (3.8). (3.12). (3.15) and (3.16) the 

perturbation method is employed by assuming that the Rayleigh number is the small 

perturbed quantity. It is further assumed that the solutions take the following forms.

y,  = / ? a y ,  + / ? o - y „ + . . . . 0 , =0,1, + /?a 0 ,  + .... (3.18a. b)
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y', = /îay ',1 + ! / < „  + —  and 0^ =©̂ jo + Ra  6>,,+ . . . . (3.18c. d)

Substitute these solution fonns into the governing equations, one yields

_l_j_ 
Pr R

= Ra sin 6 > -^ (0 „ , + /?a6),, + ...)
C ’a  a  c (j

+ V * ( R a ^ , , + R a - ^ , (3.19)

1 1 
Pr R

Ra'R.,  + Ra- V',, +.• ) ^ (

—^ ( R a T . ^  + R a - ^ . . + . . ) ^ ( R a ^ . , + R a - ^ . .  + ...)

= Ra s in 0 — ( 0 ,0  + /?« 0 ,| 4 -...)+ ^°^^  ^ - ( 0 ,0  + ^ « 0 , |  + ...)  
a /? ' ’ /? 6 ^ '  ’

~ V - ( R a ^ . , + R a - ^ , ,  + ...)  + V^ ( / îa y ', ,  + /? « 'V',. + ...) . (3.20)

— (/fay 'll + /?«■ y 'l ;+ . . . )— (0,0 + /f(f0,i + ...)

= V '(0,0 + /? a 0 ,,+ . . . ) .  and ( 3 . 2 1 )

— (y?ay',, + / ? a 'y '„ + ...)  — (0,0  + /? a0 ,, + . . . )  
a /? ' - "  ’ e e ^  - ’
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 + Rü~ + Rü0t^  + ...)
d e ^  ~ ’ ÔR ’

= ct-,y' {0^^ + Ra02f + . ..) . (3.22)

The boundary and interface conditions (3.17) become

a l R = a h .  - ^ [ R a T , , + R a " R , ,  +...) = ^ ( R a H ' , , + R a ' ^ , ,  + ...)  = 0

0|o + Ra0^^ + ...  = 1.

at/? = c 6 .  + ...)  = 0

0.Q + Ra02j + . . . - 0 .

a lR  = I. ^ ( R a V ' , ,  + R a - f ' , 2 + : )  = - ^ ( R a ' f ' 2, + R a - ^ 2: + - ) -  

/?a(P,,+  /?a' ,+ . . . )  = ^ (  /?a /?a' •P,, + . . . ) .

V- (Ra*f'^,+ Ra- *f' 2̂ +---) = ^ '  (Ro'F 2  ̂+ Ra'

(3.23a. b) 

(3.23c) 

(3.23d. e) 

(3.230 

(3.23g)

(3.23H)

(3.23i)

— — { R a ^ . , + R a - ^ . . +.. . ).  
D a d R ^  - "  ’

0.„ + Ra0, ,  + ... =6>,„ + Ra0 . ,  +  and

+ /?«<9|| + ...)  = +Ra02^ + ...) .

(3.23k)

(3.231)
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3.5 Method of Solution

Following very closely with the approach outlined in the previous chapter, one 

collects terms in Eqs. (3.19) to (3.23) with the same pow er o f  Ra. To facilitate the 

solution process, transformation is used so that the equations are further simplified.

(a) First Leading Terms in the Temperature Field {Ra%

Collecting terms o f  zero order o f Ra. one obtains the following equations.

V ‘6 > ,„= 0 . and V 0,^ = 0 . (3.24a. b)

a l R = a / h .  0 |„  = 1. (3.25a)

a t R = c h .  &2o=0.  (3.25b)

at/? = / .  0 ,0 =  0 ,0 . and /(, = /t, . (3.25c. d)
■ ' dR - cR

To solve the set o f  equations above. Finite Fourier Transform is used, in which 

the independent variable 6  is transformed to a param eter <r. Osizik (1968) has 

successfully dem onstrated the use o f  this transform in classical heat conduction problems. 

In the present work, there is no prescribed boundary condition for the independent 

variable 0  except the requirement that the flow and temperature fields have to be 

continuous around the annulus with a period o f  2;r. This transformation is performed as 

follows.

Fourier transform:

0 (  r.n.cr ) = F ( 0 (  r . â  )} = \cosn( a - â  h 0 (  r . â  ) d â  .ds\d (3.26a)
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Inverse transform:

1 -  1 -
0(r . (T )  = — 0 ( r ,0 , c r ) + — >  0 ( r . n . a ) .  (3.26b)

I t: rc
n  = \

The bar on top o f  the function 0  implies that the function is in the transformed 

domain. Recognize that Eqs. (3.24) can be expressed as

a '0 ,0  15010 1 5-010 ^ . 5 -0 :0  1 50:0 I 5 '0 :o  ^  ,

Apply the transform (3.26a) on Eq. (3.27). one yields

+ = o .a n d  (3.28a)
dR- R dR R-

+ (3.28b)
dR- R dR R-

where

/; = 0. 1. 2. 3.......  (3.29)

Clearly, the solution o f Eq. (3.28) depends on the value o f n. Recognize that the 

solutions can be classified into two categories.

For n = 0. the solutions are

010 = C " , + C °, l n ( R ) .  and 0 :n  = C?„ + ln( R I . (3.30a.b)

For n X- 0. the solutions are

0,0 = C , ; , r + C , a n d  0 :o  = C ,; , r + C " „ , /?-'■. (3.31a.b)

These solutions are subject to the boundary and interface conditions (3.25). Also

noticed is that the boundary condition (3.32a) also depends on the value o f  n. This is 

more clearly shown in Appendix D.

„ , — [2;r. /j = 0.
At /( = a^h, 0,0 = < ( j.j2 a )

[ 0. M # 0.

A t /? = c/6. 0 :0  = 0 . (3.32b)

A t/i  = / ,  and (3.32c.d)
dR dR
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For w 3^0, it is easy to prove that the solutions to Eq. (3.28) are trivial. For n = 0, 

however, the solutions are non-trivial and are given by

=
(k^ / k, ) l n ( c /  h ) - l n (  R )

( k. / k, ) l n ( c / h ) - l n ( a /  h )
. and

_ ( k ^  / k ^ ) l n ( c / b f - ( k ^  /  A:, ) ln(  R)  
^20 “ ( k. k, ) l n ( c / h ) - l n ( a / h )

(3.33a)

(3.33b)

Notice that the base solutions for the temperature field are merely dependent on 

the radial distance. This is consistent with the assumption made. Since the base 

solutions correspond to the case o f  Ra = 0. thermal convection is absent under this 

condition and heat conduction is the heat transfer mode. For this reason, the dependence 

o f  azimuthal angle is nor required for the base solution. Notice that Eqs. (3.33a) and 

(3.33b) are identical if  k/ = kj.

(b) First Leading Terms in the Velocity Field (Ra')

Given the base solutions (3.33). one can proceed to solve the system o f equations 

o f  the first order o f  Ra. Extracting terms corresponding to Ra in Eqs. (3.19) and (3.20). 

one obtains

at R = a/h.

at R = c/h.

at R = 1.

V V „ = - sin^
50,n C O S 0  3 0 , ,

3R R 3 0
. and

1V 'Y . , --------V -Y ., = -
Da

50.,, co.y6>50.„
sin 0

3R R 3 0  ;

3R 30

3R 30

3R 3R
3 ^ „  5Y .,
3 0 30

(3.34)

(3.35)

(3.36a. b)

(3.36c. d)

(3.36c. 0
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a .  , 3 . 3 . . .

W ith the introduction o f  the dimensionless vorticity. the above equations can be 

split into two sets o f  equations o f  lower order. The dimensionless vorticities for the fluid 

and porous layers are defined as

V V ,,= /2 ,,  and V'V',, = /3 , , .  (3 .3 7 -3 8 )

Based on the temperature profiles obtained for 6>io and 6^,j. one can first conclude

that

B0.J, _ k, q
dR R '  dR k. R

(3 .3 9 -4 0 )

d 0  d 0
^  = 0 . and - ^  = 0 . (3 .4 1 -4 2 )

d9 d e

where

q = --------------------------------------- . (3.43)
(k^, k^ ) ln (c  h ) - l n ( a  h)

Now. introduce the dimensionless vorticities (3.37) and (2.38) into the governing

equations and then perform the Finite Fourier transform, one obtain the general equations

below.

_ S&W C,
dR- R dR R- " dR

+ and (3.44)

<3.45,

where

n = 0 . I . 2 . 3 ............ \ ' = / R .  and /  = .—  . (3.46a. b. c)
>1 Da

The boundary and interface conditions (3.36) become
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fitlj _
at /? = a/b, = y/7 = 0 .  (3.47a, b)

dR

d T  —
at /? = c/b. = j n T , = Q ,  (3.47c. d)

C//Î

d T  d T  __ __
a iR  = L  -----— = ----—. j n T ^ ^ = j n T , ^ .  (3.47e. f)

dR dR

and O A H M

where, j  = .

Before solving the equations, one can first evaluate the non-homogeneous terms 

in equations (3.44) and (3.45). According to the integral transform (3.26a).

:,T

I-F{s inOl= \cosn( <y -  0  ) s h d 0  )dO. (3.48a)

One yields.

-  [ Ttsincr, n = \.
F{s in0} = \ (j.48b)

[ 0. otherwise.

A more complete list o f the Finite Fourier Transformation is compiled and 

provided in Appendix D. It is found that the transformed non-homogeneous terms are 

essentially zero unless n = 1. Since the set o f  equations now reduces to Laplace 

equations that subject to the boundary condition whose values and gradients are zero, this

leads to trivial solutions. Therefore, only the formulation for n = I will provide a

nontrivial solution. The governing equations in terms o f dimensionless vorticity are
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d  1
(3.50)

d X ^  X  dX

where, for convenience, the following shorthand notation have been introduced

— t! — k,
= — z s i n c r ,  and = — Da q ;rsincr . (3.51a. b)

2 ■

so that the solutions (3.52) and (3.53) will take a sim pler form. Notice that and

are only angular dependent. The bar on top o f  these parameters indicates that the

parameters are defined in the transformed domain and therefore expressed in terms of the 

transformed angle cr. In equations (3.49) and (3.50). the subscript I after the comma 

indicates that the vorticity is for /? = I. The general forms o f  solutions are given by

42,, , = .T, , , / ? +f l , + 7^,/?//7r/?>. and (3.52)

+ / ! , / ( " ' .  (3.53)

where IdyR) and Ki(yR ) are the modified Bessel functions o f  the f irst  order o f  the first

and second kinds, and .4 ,,,. f i , , ,. .4 ,,,. and f l , , , are cr-dependent functions that behave

like constants in the transformed domain. Here, the subscripts /  after the comma in the 

functions mentioned above imply the same thing as those w ith the vorticity. According 

to the definitions (3.37) and (3.38). for n = I.

^ ^ 1 1 1  I 1 ^ ^ 1 1

dR- R dR R-
^ i n  - ^ '^ 1 1 .1 - — +  r r V l i  I - and (3.54)

Therefore, to obtain the stream functions, we need to solve

d - r . , ,  1 d r . . .  I — _  , _
- ^  + - - J ^ —^ f ' u ^ = A , , , R  + B , , , R - ' + f , R l n ( R ) . ^ n d  (3.56)
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21 I

dR- R dR R- 

The solutions for these equations are

\  and (3.58)

r
Ë21
rT ,u  = ^ I , ( y R )  + ^ K , ( y R )  + C, , ,R-^D,, ,R-^  + £ ^ r i „ ( R ) , (3.59)

where C ,,,. D ,,,. C , , ,, and D ,, , are four additional chdependem f u n d  ions that behaves

like constants in the transformed domain. Apply the boundary and interface conditions 

(3.47). one obtains

‘‘̂11.1 — ^1I I -  ̂^ \(y  Ï )^iw ^~i\ •

1̂11 ~ (^j:i ~ ^ h ;i‘■’7:1 ! (^« :i‘■Vci " ^ .7:1 ’̂«:i )

(3.60a)

+Cf  ̂ (c/^2I «̂21 «̂21 ^4 21 )] ' 1̂ (3.60b)

( c t / h f  - ln( a / h )  1 1---
2 4

5,1, - { a / h ) -
' ln( a h ) I '' 
. 4 8

(3.60c)

A i  I =
( a ' h ) — ( a •' h ) —

8
fl,,, + ( a ' b )

ln(a h)  I \ -
8 32

— —— / ' i , . (3.60d)

~  I { - ^ H 2 \  ^ H l l  ^ « 2 1  )  \ i ^ H \ I  ^ ’« 2 1  ~ ^ H 2 I  )

I ( ^ « 2 1  ^ H l l  ~ ^ H \ l  ^ H 2 \  ) ]  '  ^ 1  •

^ 2 1 1  ~  \ f l  \ ( ^ « 1 1 ^ . 1 2 1  ~  - ^ . 4 2 1  )  “  1 ( “ ^ . 4 2 1  ~  ^ ^ « 1 1 ^’ 421 )

I ( ^ « 1 1 ^ . 4 2 1  “  ^ 4 2 1  ^ H l  I ) J  •

(3.60e)

(3.600

Q i i  = -
' Ay -  K j y c / h ) - n,

- ' ^ 2 1  I +
2 / 2y

2̂11 “
h( c  h)  1

A , . and (3.60g)
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A l I - , c , h r l d l £ l l l
2/ r

A.:i .i

( c / h )
2 K j y c / b )  K ^ ( y c / h )

2y
+ ( c / h )

r
A l 1

( c h ) '  —

(3.60h)

where

du\ \ —---------- ln(cl, h j — ( u / h ) .
8 2

(3.61a)

Cl ,,21 - — i j y  ( + 
y

I 3 1 ^ : 1 , 4
—r  + -------(a,  h)  — ( ü  h)
/ -  8 4 8 h ( y (

l + ( c  h) '  , , c h ,  ,
+ ---------------f n ( y c  h )  - I ^ ( y c  h) .

2y / -
(3.61b)

1 3 1 , : 1 , 4
—7 H--------- ( ü h ) —  ( ü / h }
/■ 8 4 8

l+ rC  h)  6 ^

4 / /
(3.61c)

(a  h)*
8

■ln(a h ) + — 
4

(a h)-
-ln(a h )■¥ —

■ è K "

1 ( a h ) '  ( a h ) *  1 ( c h ) '
-------------------------------+—ln(c h)  + -----------
8 4 8 2 4

n (3.61d)

h If,, =  ln( a / h ) ----- 1-
3 (a,  h r  ( a  h)*
8 2 8

(3.61e)

, l - ( c  A r  , _ ,
A,:i = ----- : -------- l i i ( yc . ' h )  +

2y

1 ( a h ) -  ( a h ) *  1
8 4 8 y-

l ^(y)

c A . ,,
+ — r - l \ ( y c  h) .

y'
(3.610
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*«21 ' K ^ ( y c / h )  +
2/

1 ( a / b f  ( a / b f  1 

8 4 8

*/1 -
U a / b ) *

8
ln( a / b } —

( a /  b r
ln( a / b ) —

4. 4 2
'  I f , ,

32

(3.61g)

3 ( a / b f -  ( a / b ) *  1 ( c / b ) '
--------------- + ------------+—ln(c/  b ) --------------
8 4 8 2 4

r „ (3.61h)

C',21 = y Da
- y

, 1 + rc-/ b) '  . ,
i j y f — — — / *vl y D a

/ -D a J  y ' Da
(3.6H)

’̂«21 - /D a + y 7  >  +  A ' y  r  /  C - . A  y
2 /D a

y ' Da
c ' A 

y ' D a
(3.61J)

‘-Vi = ^ ii + r , | . and
2 Da 4 Da

‘ A  —  ^ « 1 1 ( * « 2 1  ‘ - / I 2 I  ~  * 1 2 1  ^ « 2 1  )  121 ( * H I  I ‘ ■’ « 2 1  - * « 2 1  )

- ' ' ^ « 2 1  ( - * 4 2 1  - ^ * « 1 1  ^’ 421 )  •

Generally, the inverse transform is given by 

1
== ^ y 'n o - ^ - l ¥ ' n „  and Y":, (3 .62 -63)

27T 2n

Since onlv the solution associated with « = / is non-trivial. one obtains

(3.61k)

(3.611)
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y ,, + ^ R l n ( R )  + C, ,R + D,,R-'  +
l n ( R )  3 

8 32
r^^R^. and (3.64)

yR)"^— ^ R \ ( y R ) + C^^R + D^iR ' + —̂ R l n ( R )
y y -

(3.65)

Notice that and T,, because and / l ,  are odependent.

whereas / ] ,  and / l ,  are ^dependent. The latter functions are obtained from the inverse 

transform as

= F ' ' { ^^^ } = - - ^ s i n O . and F^x = F ' ^{ } = - ^ D a  q sinO . (3.66a. b)

Similarly. Wn. B\\,  C ,|. D u. 4 :, .  Bz\. C ],. and D], are 0-dependent functions. 

Respectively, these functions can be derived directly from 0 , , , .  C ,,,. D ,,,. .-I.,,. 

& i I • C l , ,. and D,, | by replacing the function ;r^m cr with the function s in9  .

(c) Second Leading Terms in the Temperature Field {Ra‘)

Recall that the energy equations are given by

" R \  dR 3 9  3 9  3R
10 . and (3.67)

- t l
K \ ( 3 H ' . x 3 e . ^  a y ', ,

3R 3 0  3 0  3R
(3.68)

The corresponding boundary and interface conditions are given by 

at /? = a/h. 6>i I = 0 .

at /? = c/h. 

at /? = /. 0,1  = 0 , , .

0 1 , = 0 ,

and
kx 6 0 ,, _ 60 ,,
/t, 3R ~ 3R

(3.69a)

(3.69b)

(3.69c. d)
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Given the temperature profiles of (9io and €ho, the energy equations reduces to

and V‘0 , ,  = ' A '
R'  d0

(3 .7 0 -7 1 )

Or.

V-0 ., = q

'."fny;, , Du J l n ( R )  3 1
8 2 R I 8 32

r „ / ?

f i l '  d

k y d û
- ^  + —̂  + ^ ------
R R' 2 R

. and (3.72)

. (3.73)
R- R-

Using prime to denote the partial derivati\e  with respect to the independent 

variable 6. the above Eqs. (3.72) and (3.73) can be reduced to

V-’0 „ = ^

V -0., = q

J ', ,  „ B\ ,  l n ( R )  C',, D '„ ( l n ( R)  3 ^
8 2 R R R' 8 32

r ' u R . and (3.74)

r o
V /

I , ( y R )  B\ ,  K , ( y R t  C \ ,  D ',,  ̂ T '., ln( R )
R- ^  y- R- ^  R ^  R'  ^  2 R

(3.75)
r  ti y

Since .-In. fin . C |,. O n. .-I:!. Bi\, C \,. and 0 ; i  are functions o f T n  and / I ] ,  which 

are ^dependent, it is helpful to know the derivative and transform o f /~n and Fzz. It is 

found that

d r
r ' „  = ^ ^  = - ^ c o s e .

dO 2 - ' d û  k.

Notice that F n and F22 in equations (3.76) are functions o f c o s û . According to 

Appendix D. the transform o f equations (3.76) are

tl 1— ïï^cosa. n = \
2 . and

0 . n  1

F \ , = F I F \ J  =
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r \ ,  = F { r \ , }  =
\ K

0

-DaqJTCoscT,  » = I

M 9̂  1
(3.76c, d)

Once again, the non-homogeneous terms become zero for « /. Analogous to the

previous solutions, only n = I will provide a non-trivial solution. Hence, for n = I. the 

energy equations (3.74) and (3.75) are transformed to

^  ^111 1 ^ ^1 1 1__
dR- R dR R-

A \III ^  I ^  II I F ) I f  III I ^  III I
R-

ln( R )
8

2 '
3 2 ;

r 'l i^ ? . and

dR- R dR R

-

.-^':II V //? y  , B \ u  K d ' / R )  C \ u  . D' lu  , T ', ,  l n ( R }
y-  R- y- R- R R'' 2 R

The corresponding boundarv' and interface conditions are (for /; = /) 

at /f = A.

at /? = c/h.

d0^^^ d&.

0 |,i = 0 .

^21, = 0 ■

at /? — /. <9,1, = 0 .,, and
k. dR dR

The solutions to the above equations are

(3.77)

(3.78)

(3.79a)

(3.79b)

(3.79c. d)

<9, , ,  =9
^ , 2 j n f R r - l n f R ^ -

64 8 2 2 R

l n ( R )  l _
64 128

r „  R- . and (3.80)
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II p ^  21 I p f^oO
* J — * J — j ^  + £ j 1L r i „( R)

D \ i i l n ( R )  -p //j^ —ln( R ) —,
2 R 21 (3.81)

where

(3.82a)

^  II I “  /1 (^,h: i ’̂«:i «̂21 ’̂.421 )'*"^ / 1 (^«:i '̂.4:i ^i2i^«2i)

r\  ( ^ 4 2 1  ^ H 2 l ^ « 2 1  ^ 4 2 1  ) ] (3.82b)

( a  h) '  -  ( ln(a h)  1 )  - ,
^’'in  ---- r ~ ^ - ‘*’ii.i" T ^  n i“ ( "  *) ' ^ 4 ) ^ ' „ . < 3 . 8 2 c )

ln(a h)  1

8
r ' , , ,  (3.82d)

1
^111 = “ ^11 +^^i 2̂ £(^21.1 + ^11 j - ^ ' - ^ ' i n  + p ^ / ^ ' i i  i (3.82e)

( c /  h){(k^ /  k,  /  + l ) -
( Ar, / A:, y  — 1 

c / h
-2 6 / /  A:,. A:, f ' ( a  h)

-C/.rA:, ^ p c / A y ’ -1  Ik  (A
c / h ' -  -'I

(3.820

21 I “  n  ( ^ « 2 1  ^ H l l  ^ « 1 1  ^ « 2 1  / ' I  ( ^ ^ B I I  ^ ’ / 4 2 l  ^ A 2 I ^ ’ h I | )

+C / I (û/,21 ̂«11 ^̂ 21 )] 1̂ (3.82g)

^  21  I “  [ ^  n  ( ^ « 1 1  ^ ’ . 4 2 1  ^ . 4 2 1 ‘ •’ « I I  n  ( ^ 4 2 1  ^ ’ « 1 1  ‘ ^ « l l  ‘ ^ 4 2 1  )

+(■' n{^H\\^A2\ ^̂ 421 «̂11 )]   ̂ ‘A ' (3.82b)

1 0 0



I o ( y c / b ) - ,  K J y c / b ) - ,

2y 2y

l n ( c / h )  1 + --
2 4

r ' , , ,  (3.82i)

( c / h ) 2 I j y c / b )

2y r
A \ II

- r
(3.82j)

f : , . - )' ~ \ ^ ( u b ) +
( k̂  k-, ) '  +1 

a h hr.

( a  h)- -1  

( a b ) ( c . b )
(3.82k)

F,,I = { 2 ( c  b}cir2 -rz ^(k^ ' k 2 + \ ^ ( C l  b ) +
( k f , k-, — I

a b ' rz

- [ r a  A r - l ] ^ c v : |  c/:- (3.821)

a, 2 - ( a /  b ) ' - ( a /  b ) - ,  a  b

l n ( a / b ) ~ , r a  Ay'
64

l n (a  Ay —
2 /

r ' .  (3.83a)

, c / A

r

D< ^ U L L U„(c , b )~ - l n ( c  b ) ' ] r \ , .  
2 ( c / b )  8 L J

(3.83b)

32 8 32 / /

(3.83c)

1 0 1



d.  =
l+fA:, /  A:, ) '  

( c / h )
( a / b )

[\ + (k^ / k-^) '^(c/ b ) + \ —(k^ /  ^2 (' 
( c / b )

( a / b ) ' (3.83d)

Recall that the solutions for m /  are trivial, the inverse transforms are thus

reduced to

<9|, = —<9,11 and 0 2 , = —0211- (3 .84 -85)

Therefore, the solutions become

0,1 = q
64 8 2 R

l n ( R ) __
64 128

r ' „  R̂ and (3.86)

^ :i =</ ' A ' ± ^ R  /?//?(/?)/  J Ç’ ' y ]  4' ' 2
ln( R ) - - h i (  R)  r~, D 
 i ----------

(3.87)

The ^dependent functions. ,4'n. B'\\. C",,. D'\\. E\\. F n . .4 : i .  B ’i\. C'21. D ':i. Ei\ 

and Fi\ can be derived directly from . 4 .  5 ', , , .  C ',, ,. D ', , , .  £ , , , .  ,. .4 ',,,. f i '211

C '2, 1. iD'211. ^ 21, and F21, by replacing the function us iner  with the function sind  

respectively.

(d) Second Leading Terms in the Veioeity Field (Ra‘)

Collect the terms that correspond to the second order o f  Ra.  one obtains
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- i l
f a  y',, av-y', ,  ay, ,  av-y',

dR d û  dû  dR
s inû

d 0 ,, cos Û d &,,
dR R d û

^  L and  (3.88)

W „ — ! - v > „  = — -
-  Da -  Pr R

a y „  a W „  a y „  a v - y .  '
L dR d û  d û  dR

s i nû
a 0 ,, c o s û d 0 ^ , '
~ ^ ' ^ ~ R  a i "

(3.89)

with the corresponding boundary and interface conditions.

S I R - a h ,  ^ ^  = ^ ^  = 0 .

at /Î = c/h.

axR = I.

dR dû

a y ,  a y ,  ^
 —  =  —  =  0 ,

dR dû

a y ,  a y . a y ,  a y .

dR dR dû  d û

(3.90a. b)

(3.90c. d)

(3.90e. 0

a v - y ,  a v - y „  i a y ,
v - y ,  = v ' y „ .  and (3.90g. h)

dR dR Da dR

Before one proceeds, it is advantageous to examine each term so that one can

predict how these terms behave after the transform. Substitute the solution o f stream

function and temperature at the lower level into equations (3.88) and (3.89). one obtains

W * ^ ^ , = ÿ - a , . = X ^ R - l n ( R r + X . R - l n ( R ) ^ X , R -  + X J n ( R r

where

+.V, l n ( R )  + .V, + X, R- '  Inf R ) + X^R ' + X^R-^ . and

W „  — ! -  v - y ,  = x - n . . - y - n . . = Z ( R , û f
-  Da

1 r  r '\' _ ' La \ uI — '

(3.91)

(3.92)

Pr 4

.V, = —  
• Pr

3 r „ r ' „ ^  ^
16 - y —  -V inû r \ .  cos Û r , ,

64 " 64 "

(3.93a)

(3.93b)
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+</ + COSÔ I , 3
6 4 ' ' " ■ 1 2 8 ' ^ "

(3.93c)

Y' _  ̂ ^ 1 4  il ^  Il ^11
' ' Pr 2 ■’ —sinô B \ . - —Cüs6 B., 

8 " 8
(3.93d)

•'■’ 4 + ̂ ’i 4 ' i i “ ^ ’ n ^Il

5//7^ + CW0

• '• 4

(3.93e)

J . - ( | | f i  I I  +  5 . - 1  , 1  f l | |  1  ( ' <  I  f '  i i ' * ' ^ ^  I l  ^ 1 1  /  '  r

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   ■ - ‘ l l ^  l l  +  ' j  I I  ( - 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - — - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( -  I l  /  I l

sin 0 — C '| I H- f 11 I + COS 0  E\x
\ 2

(3 .930

- ~ ( ^ i i ^ ' i i “ A 4 ' i i “ ^ 'i i  r i ,) -c /  r r
—sin0  COS0  D̂ (3.93g)

A's =
Pr

D „ +  - D' „  r „
V

+<i s inô \ - c o s 0 F \ , (3.93h)

(3.93Î)

Z ( R, 0}  = )\ I , ( y4 ) d ^  + ^ 4  " K , ( y 4 ) d 4 + ) \ l n ( R r

I I

+ [ ) \ l J y R )  + ) \KjyR)-^-Y, , ] ln(  R ) ^ Y J , j  y  R)  + ) \Kfd Y R )  + )\
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+ { [ Y M y R )  + ynf^^(rR)Vn(R> + Y , J , ( y R ) ^ Y „ K , ( y R ) } R - '  

^ { Y J n ( R ) + \ \ , I J y R ) ^ Y , , K , < r R ) + Y \ , } R - - ^ [ Y J , ( y R ) ^ ) \ , K , ( y R ) ] R - ^ ^ ) \ , R -

}J =qik^ k . j y ' ^ ( - s / n û A \ ,  + cosû.42,).  

>', =qfk, k, /y~’ ( s /n0 B' . i -cosû B, , ) .

}'; =^q(k^ k. ) { - s i n 6  r \ ^  + cos6 r . ^ ) .

Y

K =-(i(k^ k . j
( \ 1 )sin 6 +  cos 0
U  - ' 8  ■') 1 2 8 - ' J _

} . -  - y A . ^ C \ ^ .  

y . = r B , , c \ , .

}■ = - q (  k̂  k. )
■

sin 6 - c ' , , +  £,, — r \ , + COS0 E\^2 g

} ; ,  =  & , c \ ,  +  g \ ,

(3.94)

(3.95a)

(3.95b)

(3.95c)

(3.95d)

(3.95e)

(3.950

(3.95g)

(3.95h)

(3.950

(3.95J)

(3.95k)

(3.951)

(3.95m)
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)̂ 4 = /  k-,){sinO cos 0  D^^),

1̂5 = ^ 2 1  + y /* :  s / n f û j A ’,,.

+ )y~^ sin(0 )B'.^.

}|. = q ( 4, k-̂  )
( 1 ^

sin 6 - D \ , +  £ , -COS0 F\^
k ~ y

(3.95n)

(3.950) 

(3.95p)

(3.95q)

} ; , = - f j , ( a , ( 3 . 9 5 D

= 5 , , ( D ' , , - / - ’r \ , ) - f i ' , , ( a ,  - / " r , , ) . a n d  (3.95s)

};o = - D , , r \ ,+ D ', ,  r „ .  (3.95t)

It is very helpful i f  one looks into the nature o f  these coefficients. Recognize that 

while .-III. 5 | | .  C ||.  D u . A 21, Bi\.  C:i. D21. E'i\. and F ’21 are functions o f  .vmft .-I'n. B ’\\. 

C 'li. D 'li. A'21. fl'21. C '21. D '21. £ 21- and £21 are functions o f co.v^. Consequently, the

above functions .V/. X :..........Vy and }'/.  }y> are functions o f  the product o f  s/nû  and

COSÛ. From Appendix D. it is clear that the solutions are not trivial only if  « = 2. The 

transformed governing equations become

1 d  
R dR ' ' “ 5 T

- ,  = X,R- ln(R)-  + X , R-  ln(R)  + X,R-  + .1% In(R )'
A*

+.V, In(R) -^  T , + X, R- '  /«(/?> + X^R - +X,R-^ .  and

1 = Z (  R ).
1 d

{ R ^
r 4 \ ]

R dR . J [ R '  D a )

(3.96)

(3.97)

which are subject to the following interface condition 

at £  = /. . (3.98)
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where

Z ( R }  = F{ Z (R . e ) } .  (3.99)

The coefficients .V, and Y, in Eqs. (3.96) and (3.99) can be derived directly from 

-V, and Y, in Eqs. (3.93) and (3.95). For example.

1 r „ r ' .
'^1 -  '

II' II
Pr 4

Substitute Eq. (3.66a) into Eq. (3.93a) to yield 

A', = — — - —sin0 - - C O S 0
APr yv 2

Rearranging Eq. (3.101). one obtains

(3.100)

(3.101)

A'l = --------cos 0 sin 0 .
' 16 Pr

The transformation o f Eq. (3.102) becomes

AI =  cosasincT  . or
' l 6Pr

(3.102)

(3.103)

The general solutions o f the vorticity equations are

^ i:.:  - ~ l n ( / ? ) ‘ + (  -'̂ 1 1
/

ln(/?) +
[ 9  12 J

13%, A\ A',^ 
216 18 ^  12

R'

—^ ln(/?)’ + ln(/?)' + ln(/?) + .4,2 2
12 I 16 8 J I 32 16 4 j

R-

V' t 
—  \n{R) + ̂ + -----— ln(/() + .

4 4 4
R ~ '. and

(3.104)

(3.105)
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(  « > 
f  -

(  X  \
f  -42,,, = A,,,- Uz(4 ) K , f y 4 ) d 4

< I >

I z ( yR) - ^ Uz(4)/fr4)d4
I 1 /

K , ( y R ) .

(3.106)

where Z ( ^ )  is the function defined in (3.99). h ( y ^  and K :(yÿ  are the second order

modified Bessel functions o f  the first and second kinds, respectively. They are related to 

the zeroth and first order o f  their kind in the following fashions.

L ( y ^ ) = I j y u  ) — — and (3.107a)
r4

K d y 4 )  = K j y ^ )  + ̂ K d y c ) .
yç

(3.107b)

Because no close-form solution is available for the integrals that appear in the 

above solution (3.106). numerical integration must be performed. .Associated with the 

above vorticity solutions, the stream functions are governed by the following equations.

R dR dR
4 — —

 r^i-> 1 = ■>. and
R-

1 d  
R d R dR

which are subject to the boundary and interface conditions given below, 

at /? = a/h.

at R = c/h.

at /? = /.

dR

dR

d r , ,  ^  dv ',, 
dR ~ dR

and

(3.108)

(3.109)

(3 .110a. b)

(3 .110c. d)

(3.1 lOe. f)
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J /2 ,, d f i . ,  1 j y . (3.110g. h)
dR dR Da dR 

After some manipulations and careful calculations, one yields the following 

solutions for the above equations. Because o f  the absence o f  a close-form  solution for the 

vorticity in the porous layer, the stream function in the porous layer is also expressed in 

an integral form. The solutions are

384
25.V, X , 
4608 384

RUn(R)-\-
415.V, 25%, .T,
110592 9216 384 y

+ ^ R U n ( R ) '  + 
144

 ̂ ll.V,
576 96

R U n ( R r  +
/

'85.V , 11%,  ̂ a; "  
3456 576 48

R U n ( R )

137%, . 19%, _%£, ^ .4,, ,
10368 1728 72 12

R ^ - ^ R - l n ( R ) -  + —  - ^ \ R - l n ( R )  
64 16 J

-  V  B  -
^ ^ I n (  R )  l ^  + D ,,,/? - \a n d

16 4
(3.111)

y ', , ,  =: - ^  22 2^ '  + ‘ + —  j"  , (ç)c/ç (3.112)

where

—  M V ' V V V ” — —  —

.4,,, = — L - L + : l i_ A i+ : l± _ g _ ^  + /^ r/y .4 .,. + % ,r / y ^ „ , ,  
216 18 12 4 •

(3.113a)

^1: 2 ~ [^*3 ^H22 ^H22 '̂a22 ) ■*■ ̂ *3 (^'h22 ^A22 ^A22 '̂h22 )

■*■̂33 (^3:2 ^H22 ^H22 ^A22 )] '' ^3 •

— ( a h ) ' — I , — .
6 1, , = -------------4,1, 4--------------r ( f i | , , — 4&I —2 ( a / h jk-, ).

8 * S ( a / h r  '

(3.113b)

(3.113c)
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(3 .113e)
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(3.114e)
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}

Similar to the first order solutions, one needs to perform inverse Finite Fourier 

Transform to obtain solutions in the physical domain. Recall that the inverse transforms 

are given by

and (3 .1 1 7 -1 1 8 )
"  2 ?  "  -- 

n  =  l

Since, in this case, only n = 2 gives non-trivial solutions, the solutions for the 

stream functions are

• f ' , , = ^ R " ' I n r R r  + 
- 384
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4608 384
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A rather complete sample calculation at Û = 30 is shown in Appendix E. Profiles 

o f  the first and second leading terms for stream function, vorticity. and temperature were 

plotted to prove the validity o f  the solutions. Moreover, checks for the boundary and 

interface conditions were performed to further verify the correctness o f  these solutions.

(e) Evaluation of Heat Transfer Results

To evaluate the heat transfer results, the local and average Nusselt numbers 

defined respectively in Eqs. (2.68) and (2.69) are employed. Substitute the temperature 

profiles (3.18b. d) into equation (2.69) and evaluate at the inner and out cylinders, one 

obtains

Xii,n = - ^ - R a ^  10',,
a h J'

d 6  +  and (3.121)

c h k. ;r
(3.122)

where

3/?" l n ( R r + l n ( R ) - \  l n ( R)  + \ l n ( R ) - \

R- 64
and (3.123a)

/? y-f-1 ] + 1  ) + /? r + / « ( / ? ) - 1 ] .
D \
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(3.123b)

Since Eqs. (3.123) are even functions, the limit o f  integration in Eqs. (3.121) and 

(3.122) can be evaluated from 0 to k.

3.6 Results and Discussion

The present study is focused on the effects o f  Rayleigh number, porous sleeve 

thickness. Darcy number. Prandtl number, and the effective thermal conductivity ratio on 

the flow and temperature fields in concentric annular spaces. Among the parameters 

considered. Rayleigh number signifies the thermal buoyancy induced by the differential 

heating between the inner and outer cylinders. Since the Rayleigh number is assumed 

small in the present study, the annul us is only slightly heated. Therefore, the buoyancy- 

induced flow is small but finite. Also, it is important to note that the Prandtl number for 

liquids such as water, methyl alcohol, and gasoline has a value on the order o f  U) while 

for lubricant oils, it is about U f . For the discussion that follows, we again limit our 

attention to a specific configuration o ( a  = 1. h = 1.5. c = 2. unless specified otherwise.

Unlike the previous chapter, the velocity and temperature fields in this chapter are 

presented in terms o f  stream functions and isotherms. Figure 3.2 shows the velocity 

fields for various Rayleigh and Prandtl numbers. Apparently, the velocity fields are 

symmetrical about the vertical axis. On each side o f the symmetrical axis, there exists a 

convective cell. On the left, the cell rotates in the counter-clockwise direction while on 

the right, another cell o f  equal strength rotates in the clockwise direction. It is surprising 

to find that the Prandtl number has insignificant effect on the solution. Obserse that in 

the formulation, the Prandtl number only appears in the equations with the second order
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Figure 3.2 Flow fields in a concentric annulas with a porous sleeve for h = 1.50. Da
= 10 \  and ki/k: = 1 . 0 ( A ^ =  5.0x10'%
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or higher. This in turn implies that the terms corresponding to Ra' have a negligible 

effect on the final result even \ ï  Ra = I. As the Rayleigh number increases, the strength 

o f  the convective cells grows accordingly. Since the flow fields are identical among the 

cases with different values o f  the Prandtl number, it proves that the Prandtl number effect 

is negligible, or in other words. V'/: and are relatively small compared with their 

preceding terms. Strictly speaking, a regular perturbation technique would not have a 

converged solution when the perturbed quantity (Ra in the present study) has a value 

greater than unity. However, in the literature, it has been reported that Mack and Bishop 

(1968) utilized perturbation technique to obtain solutions in which the Rayleigh number 

was as high as ! ( / .  In addition. Huetz and Petit (1974) as well as Custer and 

Shaughnessy (1977) all performed a similar study in which the perturbed quantity, the 

G rashof number Gr.  was in an order up to l ( f .

Figure 3.3 shows the temperature fields which correspond to the cases presented 

in Figure 3.2. Obviously, the temperature fields for all combinations o f  the Rayleigh and 

Prandtl numbers considered are almost the same. The temperature profiles are 

independent o f  the azimuthal angle because the isotherms appear to be a family o f 

concentric circles. These isotherms are placed in an interval that is proportional to the 

logarithm o f the radial distance. It suggests that heat conduction is the dominant heat 

transfer mode in the entire annulus space. This is consistent with the assumption made at 

the beginning o f this study, that is. the study is limited to a small value o f  the Rayleigh 

number. A small Rayleigh number indicates that heat convection is insignificant, or in 

other words, heat conduction is the dominant heat transfer mechanism in the system. 

This observation is also consistent with what Kuehn and Goldstein (1976) reported. They
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Figure 3.3 Temperature fields in a concentric annulus with a porous sleeve for h
1.50, Da = 10"'. and k/ k; = 1.0 ( A 0  = 0.2).
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have shown that the critical Rayleigh number Rai  for the onset o f  heat convection in 

concentric cylinders is about 10^. where Rat is defined based on the gap width, L. As 

concluded in the previous chapter, the presence o f  a porous sleeve suppresses convective 

fiow and thus demotes heat convection. Therefore, it is reasonable to expect that the 

critical Rayleigh number for the onset o f  heat convection in a concentric annulus with a 

porous sleeve would be higher than I( / .

Figure 3.4 presents the fiow fields for various Rayleigh num bers and sleeve 

thicknesses. Consistent with what observed in Figure 3.2, the strength o f  the convective 

cell increases with the Rayleigh number. Recall from the last chapter that an increase in 

the value o f b from 1.25 to 1.73 implies a reduction in the porous sleeve thickness. This 

can be clearly observed by the locations o f  the interface (dashed line) between the inner 

and outer cylinders. As b increases, the thickness o f the porous sleeve reduces and the 

fiow resistance in the entire system decreases accordingly. As a result, less energy is lost 

to flow resistance which leads to more energy to drive the convective flow. In general, 

the eyes o f the convective cells are located within the fluid layer. Also noticed is that the 

flow patterns depend strongly on b. At 6 = 1.75. the porous sleeve is almost 

impermeable and the main fiow is confined within the fluid layer. As b decreases, the 

convective cells penetrate the porous sleeve. At /> = 1.25. the fluid layer is too thin to 

contain the convective cells. As a result, the cells penetrate the porous sleeve, but their 

strength decreases. It is interesting to point out that the streamlines experience a change 

in the direction across the interface. This change in the direction is less obvious for 

smaller b.
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Figure 3.4 Flow fields in a concentric annulus with a porous sleeve for Da = 10" .̂
k,/k: = l.O. and Pr = 20.000 (A*P = l.OxIO'"' for h = 1.25. AV'= 2.5x10'^
for h = 1.50. and J  V' = 5.0x10''' for h = L ~5).
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The isotherms shown in Figure 3.5 are nearly identical in patterns. Regardless o f  

the location o f  the interface, the spacing between isotherms remains unchanged. This 

indicates that the sleeve thickness has nearly no effect on the temperature distribution. 

Since it is assumed that kt/k: = I.O in these cases, the temperature gradient in the annulus 

is proportional to the logarithm o f the radial distance. Recognize that the porous sleeve 

thickness only affects the flow structure because heat transfer is in a very weak heat 

convection mode. Because it is heat conduction that dominates the heat transfer in these 

cases, there is no reason for the temperature fields shown in Figure 3.5 to be different 

from each other.

Presented in Figure 3.6 are the flow fields for various Darcy and Rayleigh 

numbers. Again, the convective cells grow stronger with an increase in the Rayleigh 

number. A unity Darcy number implies that the pore size in the porous sleeve is o f the 

same order o f the gap width. This in turn signifies the flow resistance effect in the porous 

sleeve is basically non-existent. As such, the flow structures for Da = resemble those 

in an annulus without the porous sleeve. As the Darcy number decreases, the flow 

resistance becomes more significant and it is more difficult for the convective flow to 

penetrate the porous sleeve. This leads to weaker convective cells for a smaller Darcy 

number. This trend is observed for all the Rayleigh number considered. Also, it is 

clearly observed that the eye o f the convective cells moves inward as the Darcy number 

decreases. Since the flow penetration decreases with a reduction in the Darcy number, 

the cells are mostly confined in the fluid layer and thus the eyes are pushed inward. At 

Da = ICP. the eyes lie right on the interfaee between the fluid and porous sleeve, which 

locates at the center o f  the gap. This is mainly because the presence o f  a porous sleeve
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Figure 3.5 Temperature fields in a concentric annulus with a porous sleeve for Da
10"', ki^k: = 1.0. and Pr = 20.000 { A 0  = 0.2).
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Figure 3.6 Flow fields in a concentric annulus with a porous sleeve for h = 1.50. k/ k: 
= /. 0. and 
otherwise).

I.O. and P r = 20,000 ( J  V' = for Da = 1 0 \  and J  = l . SxIO'
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has basically no effect on the flow field at this value o f  the Darcy number. Figure 3.7 

shows the corresponding temperature fields for the cases presented in Figure 3.6. Since 

the conductivity ratio is unity for all the cases considered here, the isotherm patterns are 

identical. This also shows that the temperature gradients are too small to induce 

significant heat convection.

The effects o f  thermal conductivity ratio kt/k: are examined from Figures 3.8 to 

3.11. The flow fields illustrated in Figure 3.8 show similar trends discovered in Figure 

3.6. At small Rayleigh numbers, the convective cells are confined within the fluid layer. 

As the Rayleigh number increases, the cells gain more strength and eventually penetrate 

the porous sleeve {Ra = I.O). With an increase in the thermal conductivity ratio, the 

convective cells become weaker. However, it can be obser\ed that flow penetration is 

enhanced for kt/k: > /. but suppressed for kt/k: < I. At low Rayleigh numbers, the 

porous sleeve behaves as if it were impermeable. As the Rayleigh number increases, 

additional thermal energy promotes convective flow and these cells eventually gain 

enough strength to penetrate the porous layer {Ra = 1.0). Notice that the streamlines 

change their directions across the interface. It is also seen that the flow structures in the 

porous layer depend on ki/k:. For ki/kj > / . the porous sleeve has a smaller thermal 

conductivity and thus leads to a larger temperature gradient in the porous sleeve to 

promote convection and flow penetration. At Ra = I.O. flow penetrates the porous sleeve 

through a larger portion o f the interface for kj/k: = 2 0  than that for k/Zk; = 0.5.

Figure 3.9 shows the corresponding temperature fields for the cases presented in 

Figure 3.8. The results indicate that the temperature fields depend mostly on the thermal 

conductivity ratio but not the Rayleigh number. Because the dominant heat transfer
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Figure 3.7 Temperature fields In a concentric annulus with a porous sleeve for h
1.50. ki/k: = I.O. and Pr = 20.000 { A 0  = 0.2).
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Figure 3.8 Flow fields in a concentric annulus with a porous sleeve for h = 1.50. Da 
= and Pr = 20.000 ( A ^  = J.SxIO''^ for Ra = 0. / .  and J y '  = 5.0.xl0'^ 
otherwise).
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Figure 3.9 Temperature fields in a concentric annulus with a porous sleeve for h
1.50, Da = IQ-', and Pr = 20,000 { A 0  = 0.2).
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mode for these cases {Ra < I.O) is heat conduction, the Rayleigh number only plays a 

minor role. When ki/k; = I.O, the isotherms are relatively evenly distributed within the 

gap because there is no distinction between the fluid and porous sleeve as far as pure 

conduction is concerned. For ki/k: < I.O. the porous sleeve is more conductive than the 

fluid layer. As a result, a large temperature gradient is found in the fluid layer while 

temperature is almost uniform in the porous sleeve. Conversely, for kt/k: > I.O. the 

temperature in the fluid layer is more uniform than that in the porous sleeve.

Flow fields for various combinations o f ki/k:  and h are presented in Figure 3.10. 

First o f all. one observes that the strength o f the convective cells is relatively the same for 

a given porous sleeve thickness, but it increases w ith h. Recall from Figures 3.8 and 3.9. 

a larger ki/k: results in a smaller temperature gradient in the fluid layer to initiate a strong 

convection. As k) k: reduces, the temperature gradient in the fluid layer increases and 

eventually provokes the convective cell whose eye is located in the fluid layer. For 

example, at 6 = 1.25. the change in the thermal conductivity ratio modifies the 

temperature field that in turn affects the strength o f  buoyancy force. For ki k: = 2.0. a 

greater temperature gradient takes place in the porous sleeve, which promotes convection 

in the porous sleeve and thus allows more flow penetration to the porous sleeve. On the 

other hand, for k/zk: = 0.5. the temperature gradient in the fluid layer is greater. 

Consequently, the convective cells take up more space in the fluid layer when compared 

with the case o f  ki/k: = 2.0. In brief, one can conclude that an increase in the thermal 

conductivity ratio ki/k: promotes convective flows in the porous sleeve but demotes that 

in the fluid layer.
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Figure 3.10 Flow fields in a concentric annulus with a porous sleeve for Da = 10" .̂ Pr
20.000. and Ra = 0.1 {AV'= 2.0x10 \
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Figure 3.11 presents the temperature fields for the cases discussed above. 

Obviously, heat conduction is still the dominant heat transfer mode. For a given porous 

sleeve thickness, it is apparent that the temperature gradient in the fluid layer decreases 

with the thermal conductivity ratio ki/k:, but that in the porous sleeve increases. This is 

exactly what is expected because heat transfer across any annular cross-section is 

constant. As such, a layer with a larger thermal conductivity experiences a smaller 

temperature gradient. For a fixed thermal conductivity ratio ki/k:. the number o f 

isotherms in the fluid layer increases while that in the porous sleeve decreases as the 

value o f h increases. Among all the isotherms shown, it is seen that only those o f  ki k: = 

I.Oare independent o f  the porous sleeve thickness.

The flow fields presented in Figure 3.12 show a similar trend that was observed in 

Figure 3.6. As the Darcy number decreases, the convective cell weakens in strength 

along with its eye moving toward the fluid layer. Notice that the increment o f  the stream 

function for the case o f  Da = KT^ is only half o f  the other cases. Therefore, its 

strength is actually much weaker than it appears in the figure. It is interesting to note that 

the change in strength o f  the convective cells does not follow a certain rule when ki/k: 

changes. When the porous sleeve is less permeable {Da = 10"'). a sm aller thermal 

conductivity ratio {ki/k: < I) leads to a larger temperature gradient in the fluid layer. A 

larger temperature gradient represents a stronger driving force to produce a more 

vigorous convective flow. As such, the strength o f the convective flow decreases with an 

increase in the conductivity ratio. When the porous sleeve is considerably permeable (Da 

= l ( f  and /O'*), the strength o f  the convective cells on the other hand grows with the 

thermal conductivity ratio ki/k^. Remember that, at this range o f Darcy numbers, the

130



1.25 1.50 1.75

k,/

0.5

1.0

2.0

Figure 3.11 Temperature fields in a concentric annulus with a porous sleeve for Da
I 0 \  Pr = lO.OOO. and Ra = 0.1 ( A 0  = 0.2).
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Figure 3.12 Flow fields in a concentric annulus with a porous sleeve for h = 1.50. Pr =
20.000. and Ra = 0.1 (A J.S-xIO''’ for Da = 10"'. and A ^  = 5.0x10''’ 
otherwise).
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flow in the annulus behave as if it were in a single fluid layer. A t k/Zk: = 0.5. a higher 

temperature gradient appears in the fluid layer, leaving the porous sleeve almost 

isothermal. As ki 'k: increases, the temperature gradient in the porous sleeve increases, 

leading to a stronger convective cell.

Figure 3.13 shows the corresponding temperature fields for the cases presented in 

Figure 3.12. Again the results suggest that for a given conductivity ratio the temperature 

field is independent o f  the Darcy number. When ki k: = 1.0. there is no distinction 

between the fluid and porous layers as far as heat transfer is concerned. For k/ k: < /. the 

porous sleeve is more conductive than the fluid layer. For this reason, the porous sleeve 

is almost uniform in temperature. Conversely, for ki/k; > / . th e  temperature in the fluid 

layer is more uniform than that in the porous sleeve. Unlike the flow fields, the 

temperature fields for Da  = l ( f  depend heavily on ki k:. Although there is almost no 

flow resistance in the porous sleeve for Da = I0 '\  the presence o f  a porous sleeve does 

promote {ki k: > I.O) or demote (kt k: < I.O) the heat flow. For low Rayleigh numbers, 

heat conduction is the dominant heat transfer mechanism. The Darcy number, although 

dictates the flow structure, has very little effect on the temperature field. The dependence 

o f  the temperature field on the Darcy number is expected to become important for highly 

convective flows that occur at high Rayleigh numbers.

The average Nusselt numbers on the inner and outer cylinders are presented in 

Figure 3.14. It is observed that the average Nusselt numbers for the inner cylinder is 

always double o f those for the outer cylinders. However, after multiplying both average 

Nusselt numbers by their corresponding surface areas, one finds that they are equal 

because the radius o f  the outer cvlinder is twice o f  that o f  the inner cylinder. Tliis shows
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Figure 3.13 Temperature fields in a concentric annulus with a porous sleeve for h
1.50. Pr = 20.000. and Ra = 0.1 ( A 0  = 0.2).
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Figure 3.14 A verage Nusselt numbers on the inner and outer cylinders for various 
values o f  h and ki k; (Da = JO"" and Ra = 0.1).
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that energy is balance between the inner and outer cylinders. It is observed that the 

average Nusselt numbers decreases monotonously with ki/k:. The highest average 

Nusselt numbers are associated with the largest value o f h. In other words, the thinner 

the porous sleeve, the better the heat transfer result. At ki/k: = 0.5. the average Nusselt 

numbers for h = 1.25 and 1.50 becom e identical. Based on this observation, one may 

expect that for a smaller thermal conductivity ratio ki/k:. the average Nusselt numbers for 

all three values o f  h would be the same.

3.7 Conclusion

A theoretical study was performed using the regular perturbation method and 

Finite Fourier Transform. From the results obtained, it is found that there are two 

convective cells induced by the differential heating between the inner and outer cylinders. 

The strength o f  these cells increases with the Rayleigh number. Also found is that the 

Prandtl number has a very insignificant effect on the flow and temperature fields when 

the Rayleigh number is small. Although there is a finite flow induced by the temperature 

difference between the shaft and the housing, the lubricant in these bearings does not 

require special attention if the temperature difference between the shaft and the housing 

is small.

The thinner a porous sleeve, the greater the strength o f  a convective cell. For a 

sufficiently thin porous sleeve, the porous sleeve behaves as if  it were impermeable. 

Typically, the porous sleeve thickness o f  a sintered journal bearing is ver>- thin. 

Therefore, it is reasonable to expect that the convective flow generated solely by the 

differential heating is comparatively weak. At low Rayleigh numbers, the heat removal
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from the inner cylinder is mainly by conduction. However, at a high Rayleigh number 

when heat convection becomes more important, it is believed that the porous sleeve 

thickness will play a much more critical role in heat transfer from the cylinder to the 

outer cylinder.

As the pore size in the porous sleeve decreases (i.e., the Darcy number decreases), 

the flow strength weakens. If the Darcy number is o f  the order o f  unity, the flow field 

reaches its asymptotic profile. At this end, the effect o f  the porous sleeve is negligible 

because its pore size is o f  the order o f the cylinder diameters. In practical applications, 

the Darcy number associated with porous bearings is on the order o f 10''^ to 10'' .̂ 

Accordingly, the convective flow in actual bearings due to differential heating between 

the non-rotating shaft and housing is significantly small.

Because conduction is the dominant heat transfer mode for the present study, the 

parameter ki/k: does not significantly affect the flow field. Instead, it has a profound 

effect on the temperature distribution. For a given porous sleeve thickness, the 

temperature gradient in the fluid layer decreases with ki k: but it increases in the porous 

sleeve. Consequently, for a typical porous bearing {Da < 10"'). an increase in the thermal 

conductivity ratio weakens the convective cells. Also, the effects o f thermal conductivity 

ratio on the temperature gradients lead to a reduction o f  the average Nusselt numbers 

with k / /k \  Other than the thermal conductivity ratio, a thinner porous sleeve will also 

lead to a larger average Nusselt number. For sintered bearings, it is always the case that 

k/Zkj < 1.0 and h/c —> I . This study suggests that the heat dissipation by pure conduction 

is effective and sufficient when the sintered bearings are not in operation.
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CHAPTER FOUR 

MIXED CONVECTION IN ROTATING CONCENTRIC 

CYLINDERS WITH A POROUS SLEEVE

4.1 Introductory Remarks

Heat transfer in rotating bodies has various applications in industry. Some o f  the 

most commonly encountered applications include the cooling o f motor shafts, turbine 

blades, and high speed gas bearings. The cooling o f  rotating condensers for seawater 

distillation is a less common example. In these systems, buoyancy and centrifugal forces 

are the two most important factors to consider because their combined effect dictates the 

flow structure and the heat transfer mechanism. The rotational flow pattern in unheated 

rotating cylinders will end up with the Taylor vortices if  the critical Reynolds (or Taylor) 

number is reached. DiPrima and Swinney (1985) have comprehensively reviewed the 

analytical and experimental studies for annuli whose inner cylinder rotates. Ball and 

Farouk (1987) and Ball (1987) investigated the development o f  Taylor vortices and heat 

transfer in a vertical annulus with a heated rotating inner cylinder. They found that the 

flow field in a vertical annulus whose inner cylinder rotates at a moderate speed is 

axisymmetric. However, in a horizontal annulus. the strong centrifugal force will trigger 

the formation o f  the Taylor cells and yield a fully three-dimensional flow structure. 

Fusegi et al. (1986b) carried out a numerical study o f  two-dimensional mixed convection 

in horizontal concentric cylinders with the inner one maintained at a higher temperature 

and rotating at a low speed. Fusegi and Farouk (1986a) also presented numerical results
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for three-dimensional natural convection in an annulus with an aspect ratio o f  unity. 

Later, in their study o f  three-dimensional mixed convection in a horizontal rotating 

annulus, Yang and Farouk (1992) attempted to quantify the interaction between buoyancy 

and centrifugal forces and to determine the effects o f  secondary flows (i.e., the Taylor 

cells) on the heat transfer.

4.2 Objective o f the Present Study

As an extension o f the previous study by Fusegi et al. (1986b). this study 

considers an application in which an additional porous layer is added to the outer cylinder 

(Figure 4.1 ). The purpose o f the present study is to numerically investigate the combined 

effect due to the presence o f the porous layer, centrifugal, and buoyancy forces on the 

flow pattern and temperature distribution in the annulus. In contrast to the previous 

chapter that consider only weak natural convection in a concentric annulus with a porous 

sleeve, the present study considers a full range o f  convection regimes ranging from 

natural, mixed, to forced convection and thus covers a wider range o f  parameters.

4.3 Governing Equations

With the definition o f vorticity given below

the m om entum and energy equations for both fluid layer and porous sleeve 

become

d f  ^^//^\ cosO
r dr

CO,
0 6  )  r 30

CO,
dr dr r dO
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Figure 4.1 Concentric rotating cylinders with a porous sleeve.
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Note that the definition of stream function in Eq. (4.6) is different from that in the 

previous chapter. This definition (Eq. (4.6)) is preferred because it is more commonly 

adopted in numerical formulation.

Introduce the following dimensionless parameters

a, a,

and 0  =
T .-T ,

AT

where the subscript i is the index referring to the sublayer and

AT = T „ - T , ,

The goveming equations are normalized to give

(4.7a. b. c. d)

( 4 . 8 )
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Da = —  . and
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(4.9)

(4.10)

(4.11)

(4.12)

(4.13a. b)

Pr = —  .
a,

(4.13c)

Recognize that there are six variables, namely P/. P:. Oi. f2:. 0 /. and 0?. in four 

goveming equations. Hence, two more equations are needed to make this problem 

complete. These additional equations are the definitions o f  the vorticity in terms o f 

stream functions (Eq. (4.1)) for the fluid layer and the porous sleeve, respectively. Their 

dimensionless forms are

Q, - - L A .
R d R

R
d j \
dR

1 5 ( d P ,
R- dG dO

. and (4.14)
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R d R dR

\ d
R' de

{ d j \
d e

(4.15)

4.4 Boundary and Interface Conditions

The boundary and interface conditions for the problem under consideration are 

given as follow. The derivation o f these interface conditions is sim ilar to that shown in 

Appendix C.

On the surface o f  the inner cvlinder.

r = a. = 0 .

On the surface o f  the outer cvlinder.

r = c. u,,-, = 0 . and

On the interface between the fluid layer and the porous sleeve.

r = h.

T .= T,,.  (4.16a. b. c)

7̂  = 7] . (4.17a. b. c)

(4.18a. b)

zy, = •

T ,= L .

dco^ _  djo^  II,,-, 

~Daor dr
(4.18c. d)

and
' d r  - d r

(4.18e. 0

Conditions (4.16) to (4.18) are normalized using the dimensionless parameters 

defined in Eq. (4.7) and the dimensionless forms are given below.

At /? = a/b.

At /? = c/h.

de

6 y ,
d e

= 0 .
dR

= - P e .  and

0, = 1. (4.19a. b. c)

=  0 .
a y .
dR

-  = 0 . and

0 , = 0 . 
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(4 .2 le. 0

(4.22)

Notice that Eq. (4.2Id) is different from the corresponding interface condition 

derived in Appendix C because o f  the difference in the definition o f  stream function.

4.5 Finite Difference Method

Finite Difference Method is employed in this work because o f  its ease o f  use. In 

this approach, the goveming equations are first integrated over a control volume and then 

discretized to form a set o f six algebraic equations. A control volume is shown in Figure 

4.2. Consequently, these algebraic equations are solved simultaneously subject to the 

prescribed boundary and interface conditions. These algebraic equations are

ill dG R d e' " « 5 RdR dO

= Ra Pr ]] . ^ d 0 f  c o s 0 d 0 ,  
sm G  - + ■

dR R dû
RdR d û

a
dR

1 d -n ,  
R' dÛ-

R d R d û . (4.23)
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Figure 4.2 Control volume for the node P.
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a  y ,
dR )

1 d ( d ^ 2 ^  
R- d û [  dû

R d R d û (4.28)

where à  = a j / a /  = h  /  k/.
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Note that the terms in Eqs. (4.23) to (4.28) can be classified into three categories, 

namely the source, the diffusive and the convective terms (Patankar, 1980). For 

simplicity, these terms are presented separately in the generic forms in the following 

sections excluding their constant coefficients.

4.5.1 Source Terms

Source terms [S] are the terms representing the thermal buoyancy effect that 

appear in the vorticity transport equations. In numerical formulation, these terms are the 

simplest in form and thus the easiest to deal with. To be brief, only the integrals are 

considered here. The source terms in Eqs. (4.23) and (4.26) take the following form.

I R d R d û .  (4.29)

Remember that both source terms have coefficients RaPr. which are not included 

here for derivation. The integral in Eq. (4.29) can be numerically represented as

[ S  ]  = + a); 6), + + « y ̂  V , (4.30a)

where

= -\^R i,  sinOi.AO. a l Rj. sinOi.AO . (4.30b, c)

= --^co .sG iA R . and = -^cosOi.AR. (4.30d, e)

4.5.2 Diffusive Terms

The diffusive terms appear in the right hand side o f Eqs. (4.23) to (4.28). They 

represent viscous dissipation in the vorticity transport equation and heat conduction in the
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energy equation. Integrating the diffusive terms in Eqs. (4.23) to (4.28) over a control 

volume yields

[ D ]  =
^ 0 0 1 Ô-0

R- 56-
R dR dO . (4.31)

Equation (4.31 ) is a general form. The variable 0  represents O, 0 .  and Y'in Eqs. 

(4.23) to (4.28). The algebraic form o f  Eq. (4 .31 ) can be expressed as

[ D ]  = a',,’0^, + a ‘,'0,:  + + a ‘’0 ^  - a\'.0, . (4.32a)

where

all =
R^àO

AR
R,A6
AR

AR
R,.A6

n AR  . a y = ------- - .  and
R,,A6

a',I =all + a ; ' +w ".

(4.32b. c) 

(4.32d.e) 

(4.320

4.5.3 Convective Terms

Among all the terms in the transport equations, the convective terms [C] are the 

most complicated ones. They describe the transport phenomenon o f  a property 0 .  Not 

only are they more complex in physics, but also they are m ore difficult to handle 

numerically. For decades, various numerical algorithms have been proposed and applied 

for these terms (Patankar. 1980). The integral o f the general form o f the convective 

terms in Eqs. (4.23). (4.24). (4.26). and (4.27) is given by

i l l
0 dH'

e o
I Ô

R 56
0 5 T

5R
R d R d e . (4.33)
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Using the upwind scheme, the above equations can be cast into the following 

form (Gosman et al.. 1969).

[ C ]  = a], 0,. -  a ' -  a,. 0^  -  a ' ~ • (4.34a)

in which the coefficients are given by

= j[(n +n. -n -nr )+m +n„ -n -n. i]. (4.34b)

= [̂(n +n, -v, -y'» )+|n +n> -n  -n.|]- <4.340

< = [̂(n +n,r -n -n  )+|n +n« -n -n,|]. <4.34d)

“ i t * ' ' ' '  (4.34e)

+£/,', +o'\ +Wy. (4.340

4.5.4 Finite DifTcrence Equations

Substitute the convective, diffusive, and source terms into Eqs. (4.23) to (4.28). 

one obtains the finite difference equations that are preferred for computation.

For the vorticity transport equation in the fluid layer (4.23). one obtains the 

following algebraic equation.

= RaPr(a^, 0^„. +al0^,.  + i /v 6 ) , , .  )

+ P r  ̂ (4.35)

Collecting the terms at node P. one obtains

^ 1/ ~ v • (4 .j6a)
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where

-
a\y + P ra l’ 
a], + Pr a'/! ^o,i: -

a , + P r a ‘:
a , + P r a ‘;

(4.36b. c)

a ^P ra 'J
a ,  + P r a ‘!

a \+ P r a '^
. n J — -and

a). + P r a ‘;
(4.36d. e)

Pra;:+a].

In the fluid layer, the energy equation (4.24) is discretized to give

^ r ^ \r  “ ^ir^iic ~ ^ s ^ \s  ~ ^ v ^ i v

=  a / , '0 „ , .  + a ( . ' 0 ,  ,. + ^ ( ' 0 ,  ,. - « r 0 „ . .

Collecting the terms at node P. the above equation becomes

(4.360

(4.37)

(4.38a)

where

—  ^ir 1̂1 4
«/. + a/.'

(4.38b. c)

=
a + Û.V

and c -^ v = - r----- --U/, + a,,
(4.38d. e)

The definition o f  vorticity in the fluid layer (4.25) is discretized as 

- ^ , R , A R A 0  = a ! X , ,  + « (> ,.V + < y / , , - a X u -

The above equation can be rearranged to give

(4.39)

(4.40a)

where

a , .
j >  ' < -'ri =

a ,
(4.40b. c)
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a'’ a '’
~ (4.40d. e)

a , ,  o , ,

^  n^ ,R ,,A R A 0
u';

(4.400

The goveming equations for the porous sleeve are discretized in the same way. 

Substitute the terms accordingly, the vorticity transport equation in the porous sleeve 

(4.26) is given by

~ ^ s ^ i s  ~ ^ s ^ z s  

Pr
= Ra Pr{â ^■0■,^̂ . +0.^0^^ + a ^ 0 ,^ -) --------0^i,R,,ARA6,.

Da

+ Pr ( + a /’T?,, + a ' ’/2 ,, + a '? /2 ,, -  a ‘! a , .  ) . (4.41 )

which can be rewTitten as follows

^ i r  ~ ^ a . s ^ z s  • (4.42a)

where

al+ Pral^ .
a], + ( Pr/ Da) R,.ARA0,. + Pr a "  

a). + Pr a/.'

aj, +(Pr/ Da)R/.ARAÛj, + Pra,!

(4.42b)

 ̂ (tX )
"  ' a ,  + ( Pr/ Da) R ,A R A 0 ,  + Pr a ‘,! '

c = -------------- a,. + Pr a ,----------------  (4 4'>d)
a ,  + ( Pr/ Da) R ,A R A 0 ,  + Pr a'/. '

c\j V = — —  ---------------------  and (4.42e)
a ,  + ( Pr' D a) R ,A R A 0 ,  + Pr a/.’

= Ra  v (4.420
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The energy equation in the p>orous sleeve (4.27) is given by

ct/,02r

= à ( al’02„. + a ‘’02,. + a ‘̂ 02s + a 's ^ is  ~ ^ r ^ 2 r  > ■ (4.43)

Rearranging Eq. (4.43) gives

(4.44a)

where

( - /) ' â . +aUf,

( - /) 
_ a, +aa,

'■tij. -  (■ .  i,a,, +aa,.
(4.44b. c)

C '«  V =

(■ -  n

< -a I. -^auj.
and

a]. +âa',!
(4.44d. e)

Finally, the definition o f  vorticity in the porous sleeve (4.28) is given by

- n 2 ,R ,A R A 0  = • (4.45)

Rearranging the above equation yields

(4.46a)

where

^r,n- -
ai;
a„

a.
=  ■

(4.46b. c)

ÜU
^V.ir -  “77 • (4.46d. e)

n . ,R i .A R A 0
~  I )

(4.460
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4.5.5 Discretization of Interface Conditions

The discretization o f  interface conditions along the interface between the fluid 

and the porous layers requires some additional attentions. They are derived with the help 

o f  imaginary nodal points (Figure 4.3). This approach has been employed successfully in 

the past (Pan and Lai. 1995; Leong and Lai. 2001). The interface conditions for vorticity. 

temperature, and stream function can be reduced and represented in the following 

algebraic forms.

^  Da( 4 — AR ' + /? ./ )

AR- +2DaAR- -  %Da

( i - A R ) v '„  - ( : l + a r )'f , ,+ 2 a r ( S + \ iH ' , , - a r s {1 ',,
+ --------------------------------- ;-------------- ;----------------------   (4.47)

AR^ + 2D aA R ' -  %Da

0  = (4.48)
3 (l+ or)

where S  = (AR A 0 )'. IVW and EE  are the nodes further west and east to the nodes o f  II' 

and E. respectively.

4.5.6 Convergence Criteria

Gauss-Seidel iterative scheme is employed in this numerical study. In this study, 

correction o f the stream function on the inner cylinder is performed based on the 

prescribed velocity on the inner cylinder. This correction schem e bears some similarity 

with that Launder and Ying (1972. 1974) suggested. Unlike the scheme used in this 

study, their scheme involved the implementation o f  correction for the guess stream
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Figure 4.3 Imaginary nodal points for the implementation o f interface conditions.
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function on the inner cylinder based on pressure terms. As shown in Figure 4.4. the 

relative error o f  property d>at node P  and iterative step n is defined as

(p; -0 ;-'
(4.50)

0 ;

The numerical code will not stop running until the relative errors for the stream 

function, vorticity and temperature are simultaneously less than 10" .̂ Because the inner 

cylinder rotates, the value o f the stream function on the inner cylinder is not known a 

priori. For this reason, an initial guess for this value is needed to initiate the iterative 

process. A fter a converged solution is obtained, the gradient o f  the stream function on 

the inner cylinder (i.e.. the rotational speed o f the inner cylinder) is evaluated. If the 

calculated speed agrees with the given one. then the com putation is complete. Otherwise, 

the procedure repeats with a new guessed \a lue o f  the stream function on the inner 

cylinder. Based on the gradient previously obtained, a linear interpolation is performed 

to determine the corrected guessed value. The relative error o f  this corrected guessed 

value with respect to the previous one is estimated. Once again, the computation will 

only stop if  the relative error o f  this corrected guess value is less than 10" .̂

4.5.7 Evaluation of Heat Transfer Performance

The heat transfer results are evaluated through the Nusselt number on each 

surface o f  the cylinders. By definition, the local Nusselt number represents the local heat 

flux and is given by

= ,4.51)
k, ÔR

On the surfaces o f  the inner and outer cylinders, they are given by
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Figure 4.4 Algorithm of the numerical approach.
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;Vm,„ = —  = , and (4.52a)
k, ÔR

These local Nusselt numbers not only can provide us the information about heat 

transfer in the annular space, but also a means to evaluate the accuracy o f  the numerical 

results. To perform the energy balance between the inner and outer cylinders, one 

rewrites Eq. (4.52b) as

SO that the quantity h h  h i  can serve as the basis for comparison. The percentage error o f 

Nusselt numbers is given by

. .  c (k . /  k. )Nu,mi -  a Xu,,, , ,  . . .% s = ----- =-----1—= -------------- . (4.34)
a Xum

where the Nusselt numbers are the average N usselt numbers evaluated at each surface 

(which are defined below in Eq. (2.69)) and their coefficients a and c take into account 

the surface areas o f  the inner and outer cylinders.

4.6 Results and Discussion

A numerical code has been successfully developed to solve Eqs. (4.9) to (4.12). 

(4.14) and (4.15) simultaneously subject to the boundary' and interface conditions. A grid 

refinement test has been performed to determine the optimal grid size. It is found that the 

optimal grid size is 61x73 for most o f  the cases considered. Although a finer grid would 

generally yield an improvement in solution, it would consume much more computational
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time. In some cases, the time required could be more than double o f  the time it takes for 

the grid size o f  61x73. Because o f the marginal improvement yielded and enormous 

computational effort required, the grid size o f  61x73 is obviously the most appropriate 

grid size that provide reliable results. For some highly convective cases, it was found 

that finer grids, 71x91 and 81x91, were needed to ensure better solutions.

The code has been validated against several natural convection cases. The results 

obtained were found to agree very well with those presented in the previous chapter. A 

comparison o f  these solutions is shown in Figure 4.5. Table 4.1 lists the details o f  the 

parameters used in the study. As shown in the figure, the streamlines from the anal\lical 

solution are not as smooth as those from the numerical solution because the grid used for 

the form er ones was far less than that for the latter ones. A finer grid has not been 

attempted for the analytical solutions because the analytical approach requires a large 

amount o f  computational effort.

Table 4.1 Numerical parameters used for the comparison effort.

Analytical Approach* Numerical Approach
Case f a l l Case (a2)
grid size: 11x37 grid size: 81x91

h = 1.25. Da = 10"', k//k: = I. Pr = 2.xK/, Pe = 0. Ra = 0.5

Case (bl ) Case (b2)
grid size: 11x37 grid size: 81x91

b = 1.50, Da = 10"', k,./k: = 1, Pr = I 0 \  Pe = 0, Ra = 0.5

Case f e l l Case fc2)
grid size: 11x37 grid size: 81x91

b = !. 75, Da = ICT'', k , ^ :  = I, Pr = 2.xW', Pe = 0, Ra = 0.1
* These cases are solved using perturbation method and Fourier Transform, as reported 

in Chapter Three.
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(al ) (a2)

(bl ) (b2)

( c l ) (c2)

Figure 4.5 Code validation: a comparison o f  solutions obtained using analytical (the
previous chapter) and numerical approaches (zl = 5x10'^).
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The flow and temperature fields for laminar natural convection between 

horizontal circular cylinders at high Rayleigh numbers can be divided into five physically 

distinctive regions (Jischke and Farshchi. 1980; Himasekhar and Bau, 1986).

(i) Inner boundary layer

This is a very thin layer next to the inner cylinder in which buoyancy and 

viscous forces are dominant. Here, gradients in the angular direction are 

negligible compared to those in the redial direction.

(ii) Outer boundary layer

Similar to the inner boundary layer, this is a very thin layer next to the outer 

cylinder and is dominated by buoyance and viscous forces.

(iii) Plume

It exists along the vertical line o f  symmetry above the inner cylinder and 

joins the inner and outer thermal boundary layers. Buoyance is the force 

that drives it.

(iv) Core region

This region refers to the region bounded by the other four regions. The 

outer boundary layer empties into the inner one through this core region.

(v) Stagnant region

This region is located beneath the inner cylinder. Here, the buoyancy 

inhibits fluid motion and heat transfer takes place mainly by conduction. 

Different from the previous studies (Jischke and Farshchi. 1980; Himasekhar and 

Bau. 1986). the governing parameters in the current study, in addition to the Rayleigh 

number, include the Peclet number. At low Pec let numbers, the regions mentioned above
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are distorted as they will be shown later. At high Peclet numbers, the regions 

corresponding to the inner and outer boundary layers grow, merge, and eventually replace 

other regions.

Figure 4.6 shows the flow field o f  a mixed convection case, which corresponds to 

a relatively high Rayleigh number and a low Peclet number. I f  the Peclet number is zero, 

the case reduces to that o f  natural convection. When the Peclet number is small, this case 

can be viewed as natural convection perturbed by a small shear effect induced by the 

inner cylinder. Because o f  this rotational effect, the flow pattern will no longer be 

symmetric. In the figure, streamlines are plotted to illustrate the flow pattern in the 

annulus. Apparently, the streamlines are nearly symmetrical along the vertical axis. 

Since there exist buoyancy and shear effects in this case, their combined efleet leads to a 

flow structure that is relatively complicated. To confirm and better understand the 

velocity distribution, the angular velocity profiles in the vector form are superimposed on 

the figure at several cross-sections. Clearly, there appear two convective cells on each 

side of the annulus. Also noticed is that the angular velocity profiles are almost 

symmetrical along the vertical axis, implying the dominance o f  natural convection. In 

the porous sleeve, it can be seen that there is a flow with a finite velocity.

Since a shear layer is not clearly shown in Figure 4.6. the velocity profiles at 

different cross-sections {0 =  0°. 90°. 180°. and 270°) are further examined in Figure 4.7. 

In these plots, the variation o f  the angular velocity in the radial direction is presented 

from the surface o f the inner cylinder to that of the outer cylinder. The region for R < I.O 

is the fluid layer while the region for R > 1.0 is the porous sleeve. The first thing 

observed is that the slip velocity is not allowed on both the outer cylinder and the
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Figure 4.6 Velocity field in the forms o f  stream lines and angular velocity profiles at 
various cross-sections (h = 1.5. Da = 10"'. k/ k: = I. Pr = 2.xJO''. Ra = 
/fF . and Pe = 10).
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interface. Furthermore, the velocity gradient is continuous across the interface. These 

results are consistent with the assumptions o f the Darcy-Lapwood-Brinkman extended 

model. On the inner cylinder, the magnitude o f  azimuthal velocity is estimated to be

i p  _  i p
(4.55,

Theoretically, the magnitude o f  the angular velocity should equal to the Peclet 

number, which is 10 in this case. Since the approximation using Eq. (4.55) has a 

truncation error on the order o f  (AR)'. the estimated velocity on the inner cylinder is not 

exact. For this reason, the plots presented in Figure 4.7 only serves as a qualitative proof 

showing the existence of the shear layer surrounding the inner cylinder. At ^  = 0°, it is 

seen that the inner cylinder induces a shear flow in the positive angular counter

clockwise direction. A nearly identical velocity profile is observed a t # =  180°. Based 

on the velocity profile along the cross-section at 0 =  90°, it can be seen that the fluid next 

to the inner cylinder rises as a result o f buoyancy and shear effects. The flow on this side 

o f the inner boundary layer region is aided by the buoyancy force due to the differential 

heating and the shear effect due to the rotation o f  the inner cylinder. At 0  = 270°, an 

opposing flow is observed. On this side o f the inner boundary layer region, the buoyancy 

force tends to raise the fluid, but the rotation o f the inner cylinder tends to entrain the 

fluid downward. As a result, the fluid particle near the inner cylinder is found to flow 

downward with a small but finite angular velocity in the counter-clockwise direction. 

Whereas, the fluid particle at the outer edge o f the inner boundary layer, although still has 

a negative angular velocity, is getting a lift from buoyancy. It is observed that the shear 

flow only exists in a very thin layer between the convective cell and the inner cylinder. 

At the plume region, the shear flow from the right hand side splits into two streams, one
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Figure 4.7 Angular velocity profiles at various cross-sections (A = 7.5. Da = 10"'. 
k/Zkj = I. Pr ^  2x10''. Ra = ! ( / .  and Pe = 10).
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o f  which follows the inner cylinder and enters the left shear layer while the other flows 

around the right convective cell and penetrates the porous sleeve. At the lower section, 

these two streams merge and flow into the right shear layer again.

In Figure 4.8. the flow fields at various Rayleigh and Peclet numbers are 

presented in the form o f  streamline contours. As the Peclet number increases, it implies 

that the rotational speed o f  the inner cylinder increases. This leads to a thicker shear flow 

layer immediately next to the inner cylinder as well as a finite shear flow in the porous 

sleeve. Also noticed is the sharper gradient o f streamlines w ith an increase o f  the Peclet 

number, which indicates that the shear flow is becom ing stronger. Because o f  the 

increasing shear effect, the shear flow dominates in the fluid layer and suppresses the 

formation o f the convective cells. An increase in the Rayleigh number signifies the 

dominance of buoyancy effect. As the buoyancy grows, the convective cells evidently 

become stronger. At a relatively low Rayleigh number, the convective cells only occupy 

the fluid layer. As the Rayleigh number increases, the cells gain more strength and 

penetrate the porous layer. When Pe = 10. the system is dominated by the buoyancy 

effect. Somewhat similar to the plots presented in the earlier study of natural con\ ection, 

there exist two primary convective cells o f almost equal strength in the annular space. 

Also, the flow patterns are almost symmetrical except for the region immediately next to 

the rotating inner cylinder. Because o f the rotational effect, the convective cells are 

deformed by the shearing action. As the Peclet number increases to l ( f .  the buoyancy 

effect is almost overcome by the shear effect. Therefore, the convective cells are 

suppressed and will eventually disappear if the rotational speed is further increased. At 

Ra = I ( f .  the left convective cell is completely suppressed and the right convective cell
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Figure 4.8 Flow fields in concentric rotating cylinders with a porous sleeve for h =
1.5. Da = 10"'. ki k: = I. and Pr = 20.000 (A P  = 0.1 for Pe = I and Ra = 
lO'. A ^  = I iov Pe = 1 and Ra = I ( f  and I ( f . A P =  10 for Pe = I ( / .  and 
A P =  2000  for Pe = !(f).
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becomes so weak that it barely survives in the fluid layer. A further increase o f  the Peclet 

number \o I ( f  causes the entire flow field to rotate like a rigid body. This is a clear 

evidence that the flow is dominated by the shear effect. From the plots shown in this 

figure, one observes that flow penetration is more likely to occur at low Peclet and high 

Rayleigh numbers, which suggests that the buoyancy effect assists flow penetration 

whereas the shear effect limits flow penetration.

The corresponding isotherms are shown in Figure 4.9 to demonstrate the 

dependence o f  temperature fields on the Rayleigh and Peclet numbers. As the Rayleigh 

number increases, the uniform distribution o f  isotherms is disturbed. The thermal plume 

is seen to tilt to one side and the development o f  the five natural convection regions is 

more complete. This signifies the growing importance o f  heat convection. In contrast, 

the Peclet num ber has a completely opposite effect. Clearly, the distribution o f  the 

isotherms become more and more proportional to the logarithm o f  the radial distance in 

the annulus and eventually form a family o f  concentric circles. Consequently, the 

thermal plume diminishes. In other words, an increase in the Peclet number suppresses 

the buoyancy effect. As shown in the previous chapter, if  the annulus remains stationary, 

there is always a thermal plume developing vertically upward from the inner cylinder. 

Here, the uprising thermal plume is distorted by the shear effect resulted from the rotation 

of the inner cylinder. When the buoyancy effect is much stronger than the shear effect, 

the ver\' thin layer o f  shear flow causes the thermal plume shifted to the right. Recall 

from Figures 4.6 and 4.7 that the velocity component is greater on the right hand side o f  

the annulus. Therefore, a larger temperature gradient is also found on this side o f  annulus. 

As the shear layer grows, the isotherms become more circular and its thermal plume
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Figure 4.9 Temperature fields in concentric rotating cylinders with a porous sleeve
for h = 1.5. Da = 10"'. kj/k: = I. and Pr = 20,000 ( A 0  = 0.2).
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points to the left, which is closely related to the flow structure. At a high Peclet number, 

the flow rotates like a solid body, contributing nearly no flow in the radial direction. As a 

result, the flow does not contribute to heat removal in the radial direction. Hence, the 

heat transfer mechanism is mainly by conduction. The temperature distribution for this 

case is evidently very similar to that o f purely conduction. From this figure, it was shown 

that the onset o f  convection in rotating cylinders dependent on both Rayleigh and Peclet 

number. Mack and Bishop (1968) reported that the onset o f  natural convection in a non

rotating annulus takes place at Ra = / ( / .  From the present results, one can conclude that 

the rotation o f inner cylinder delays the onset o f natural convection.

Figure 4.10 shows the flow fields for various values o f  h and Rayleigh number. 

Since h is the inner radius o f  the porous sleeve, an increase in h implies a decrease in the 

porous sleeve thickness. As the porous sleeve becomes thinner, the fluid layer is thicker. 

Since the flow resistance in the porous sleeve is greater than that in the fluid layer, the 

overall flow resistance reduces when the porous sleeve is thinner and the fluid layer is 

thicker. Not only does this thicker fluid layer offer more space for the shear flow and 

convective cells to develop, but also it imposes a lower overall flow resistance that the 

shear flow and convective cells must overcome. As a result, the strength o f the shear 

flow and convective cells both increases with h. Since there is more space for the flow to 

develop in the annulus, the flow is less likely to penetrate the porous sleeve. In this case, 

the porous sleeve would behave as if it were impermeable. In general, the eyes o f the 

convective cells tend to locate in the fluid layer. For a thicker porous sleeve {h = 1.25). it 

is possible that the eyes o f  the cells fall on the interface. When this happens, it is found 

that the strength o f  the convective cells decreases tremendously. Even at Ra = l ( f .  the
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Figure 4.10 Flow fields in concentric rotating cylinders with a porous sleeve for Da = 
I 0 \  k,/k: = L  Pe = 10, and Pr = 20,000 (AV'= 0.5 for Ra = I 0 \  = I
for Ra = and J V' = 2 for Ra = Uf).
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shear layer is thin and the convective cell is weak. As the porous layer thickness 

decreases (i.e.. b increases), both convective cell strength and shear layer thickness

increase.

From Figure 4.11. it is obvious that convection increases with h. When the 

porous sleeve is thin, the overall flow resistance is low and therefore a small amount o f 

energy is needed to initiate a convective flow. For example, heat convection is already 

present at Ra = 10^ when h = 1.75. As h decreases, it is seen that the isotherms become 

more circular. Eventually, the heat transfer mode at A = 1.25 is dominated by conduction. 

This clearly indicates that porous sleeve thickness delays the onset o f  natural convection. 

By the same reason, at Ra = 10^. only a small perturbation in the isotherms is observed 

when b = 1.25. As b increases to 1 .75. it is noticed that a thermal plume rises from the 

inner cylinder. At Ra = l ( f .  a thermal plume rises upward and grows into a mushroom

like cloud that points to the upper right. As b increases, the isotherms are further twisted. 

Because o f  the presence o f the thermal plume, the highest heat transfer rate occurs at the 

top upper portion o f the outer cylinder and the lower portion o f  the inner cylinder. 

Although the heat transfer mode at Ra = ! ( f  is convection, the stagnant region is much 

greater for b = 1.25 than b = I. 75.

The flow fields for various Rayleigh and Darcy numbers are shown in Figure 4.12. 

Recall that Darcy number signifies the relative pore size in the porous sleeve. As the 

Darcy number decreases, the strength o f  the convective cells decreases. This is because 

the flow experiences a higher resistance in the porous layer as the pore size reduces. 

When Da = /o". the presence o f  the porous sleeve becomes irrelevant because the pore 

size o f the porous sleeve is on the same order o f the gap width. In reality, this case does
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Figure 4.11 Temperature fields in concentric rotating cylinders with a porous sleeve
for Da = 10"'. k/ k: = /. Pe = 10. and Pr = 20.000 ( J 0  = 0.2).
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Figure 4.12 Flow fields in concentric rotating cylinders with a porous sleeve for h =
1.5. ki/k: = I. Pe = 10. and Pr = 20.000 (A 'P  = I for Ra = I 0 \  AH ' ^  2
for Ra = l ( f . and AH ' = 5 for Ra = Uf) .
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not have too much physical meaning. For the present study, it represents a limiting case 

for the cylinders without a porous sleeve. On the other end. when Da = 10"', the pore 

size is greatly reduced. At Ra = 10^, there is only one convective cell in the annulus. but 

it is too weak to be shown in the figure. As the Rayleigh number increases, two 

convective cells develop in the fluid layer. For a fixed Rayleigh number, the strength o f 

the convective cells reduces with a decrease in the Darcy number. At the same time, the 

eyes o f the cells shift downward and move toward the inner cylinder. At Ra = lo '  and 

Da = lof .  the convective cells are strong, but the shear layer is thin. However, when the 

Darcy number is reduced to 10"', the convective cells diminish and the shear layer grows 

thicker. For Da > W '.  the eyes o f  the convective cells always fall on the interface 

because the porous layer effect is insignificant. When Da = 10"', the eyes o f  the 

convective cells are always in the fluid layer because the primary' flow is squeezed in the 

fluid layer.

Figure 4.13 shows the temperature distributions for the corresponding cases in 

Figure 4.12. Apparently, an increase in the Darcy number promotes heat convection. 

When Ra = 10'' and Da = 10"', the distribution o f isotherms, which is proportional to the 

logarithm o f the radial distance, indicates the onset o f  heat convection. As the pore size 

increases, a thermal plume develops from the inner cylinder. The isotherms are 

compressed against the outer cylinder. In other words, the local Nusselt number 

increases with the Darcy number. As the Rayleigh number increases {Ra > 1(f), there is 

a sudden change in heat transfer mode (from conduction to convection) when the Darcy 

number increases from 10'' to 10''. A further increase in the Darcy number from 10'' to 

lO" leads to a stronger convection. The temperature gradient around the inner cylinder
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Figure 4.13 Temperature fields in concentric rotating cylinders with a porous sleeve
for A = 1.5. k//k: = I, Pe = 10. and Pr = 20,000 ( A 0  = 0.2).
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increases and the thermal buoyancy layer becomes thinner. Notice that the differences in 

temperature distribution between Da = I ( f  and Da  = I(T~ are relatively small.

The dependence o f  flow field on the Peclet number and thermal conductivity ratio 

is shown in Figure 4.14. The appearance o f two convective cells at Pe < I(P has clearly 

implied that the flow field is dominated by buoyancy effect whereas the thick shear layer 

at Pe = ! ( /  indicates that the flow field is taken over by the shear effect when the Peclet 

number increases. Notice that the shear layer extends into the porous sleeve at the left 

portion o f  the annular space. On the right, the shear layer is squeezed in the annular 

space and coexists with a secondary cell. For k/. k: = 0.5. the porous sleeve is twice more 

conductive than the fluid. Conversely, for kj/k: = 2.0. the thermal conductivity o f  the 

fluid is twice as large as the effective conductivity o f  the porous sleeve. In most 

engineering applications, ki/k: is less than unity because the porous sleeve is mostly made 

o f metals or ceramics. It is found that the convective cell is stronger when the porous 

sleeve is more conductive than the fluid layer. When k i k :  < / . t he  temperature gradient 

in the fluid layer is greater than that in the porous sleeve. It is this temperature gradient 

that produces stronger convective cells. If kt/k: > I. the reversed trend is observed. It is 

interesting to observe that the strength o f the shear flow actually grows with k/Zk: at Pe = 

10^.

Shown in Figure 4.15 are the temperature fields for the corresponding flow fields 

discussed previously in Figure 4.14. At Pe = 10^. it is remarkable to notice that the 

thermal plume rises vertically from the inner cylinder. These patterns look somewhat 

similar to those o f natural convection at different Rayleigh numbers (Kuchn and 

Goldstein, 1976; Date, 1986). However, it is noticed that isotherms at the lower portion
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Figure 4.14 Flow fields in concentric rotating cylinders with a porous sleeve for h =
1.5. Da = 10"*. Pr = 20.000. and Ra = 10^ ( J  V' = /O for Pe = I& . and J P  
= 0.5 otherwise).
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Figure 4.15 Temperature fields in concentric rotating cylinders with a porous sleeve
for h = 1.5. Da = Pr = 20.000. and Ra = U f  ( A 0  = 0.2).
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o f  the annulus are more distorted. In these cases, buoyancy seems to completely offset 

the shear effect. When the rotational speed is smaller {Pe = 10). the thermal plume arises 

from the inner cylinder but is slightly tilted to the right. As ki/k: increases, the thermal 

plume grows into a more noticeable mushroom like dome. As a result, a relatively large 

portion above the inner cylinder is at a higher temperature. On the other hand, if  the flow 

field is dominated by shear effect {Pc = 10^). the thermal plume is hardly noticeable. 

Instead, the isotherms look like a family o f  eccentric circles with some o f  them bent near 

the interface. In general, the isotherms are more closely packed in the porous sleeve if 

ki/k: > / . but they are more spread out in the entire annulus if k/. k: < I.

The average Nusselt numbers on the inner cylinder, which is normalized by its 

conduction value, is shown in Figure 4.16. The normalized Nusselt number depends on 

both Rayleigh and Pec let numbers. When Ra < 10^. it is found that the normalized 

Nusselt number remains unchanged (i.e.. remains at unity). This means the conduction 

Nusselt number is the lowest limit for the average Nusselt number on the inner cylinder 

( yVucw = 2.1640 ) and the heat transfer mechanism is purely conduction. As the 

Rayleigh number increases, heat convection takes place around Ra = I ff'. The cases for 

which the Peclet number is zero correspond to purely natural convection. The average 

Nusselt number for these cases increases exponentially with the Rayleigh number. As the 

Peclet number increases, the shear flow tends to suppress heat convection such that the 

average Nusselt number decreases. As shown in the plot, the average Nusselt numbers 

for Pe = 0 and Pe = 10 are different only slightly because the flow fields at Pe = 10 

remains buoyancy dominant. When the Peclet number increases further, there is a great 

reduction in the average Nusselt number. Obviously, the onset o f heat convection is
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Figure 4.16 The dependence o f  average Nusselt number on Rayleigh and Peclet 
numbers for h = 1.5. D a = ki 'k: = / .  and Pr = 20.000.
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shifted to a larger Rayleigh number when the Peclet number increases. Also noticed is 

that the average Nusselt num ber approaches the asymptotic value o f  heat conduction as 

the Peclet number continues to increase. In other words, heat conduction tends to be the 

main heat transfer mode for a porous journal bearing operating at a very high speed.

Figure 4.17 shows the dependence o f the average Nusselt number on the Rayleigh 

number for various porous sleeve thicknesses. Consistent with Figure 4.16. the transition 

o f  heat transfer mechanism from forced convection to mixed convection and natural 

convection is apparent. For a fixed porous sleeve thickness, the normalized Nusselt 

number for Ra < I ( f  remains unity. If the average Nusselt numbers were not normalized, 

one would find that they, as the Rayleigh number reduces, approach different constants 

that are proportional to the value o f  b. Recall from the definition o f  Nusselt number (Eq.

(4.51)) that it is directly proportional to the value o f  h. Therefore, even if  conduction is 

the only heat transfer mode, the Nusselt number is still dependent o f  the value o f h. If the 

normalized Nusselt numbers is used, the confusion due to definition can be avoided. 

Clearly, the only effect the porous sleeve thickness has on the heat transfer performance 

is the onset o f convection. The thinner the porous sleeve thickness (the larger the value 

o f  b). the lower the critical Rayleigh number at which convection occurs. Moreover, the 

thicker the porous sleeve thickness, the steeper the rate o f increase in the average Nusselt 

number in the natural convection regime.

Apparently, the average Nusselt number also depends on the Darcy number. In 

Figure 4.18. the normalized Nusselt numbers for four Darcy numbers are presented. The 

curve that corresponds to a  Darcy number o f  lO” implies that the effect due to the 

presence o f  the porous sleeve is negligible and thus it marks the upper bound for the
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Figure 4.17 The dependence o f  average Nusselt number on Rayleigh number and h for 
Da = 10"*. ki/k: = I. Pe = 10. and Pr ~ 20.000.
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Figure 4.18 The dependence o f  average Nusselt number on Rayleigh and Darcy 
numbers for /> = 1.5. ki/k: = 1, Pe = 10. and Pr = 20.000.
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average Nusselt numbers. S im ilar to the previous figures, the normalized Nusselt number 

is unity for Ra <10^. W ith the absence o f the porous sleeve, onset o f convection takes 

place as early as Ra = 2x10^. As the pore size in the porous sleeve reduces, the greater 

flow resistance delays the onset o f  convection. Eventually, the forced convection region 

extends to greater values o f  Rayleigh number.

For a fi.xed porous sleeve thickness, the average Nusselt number for Ra < l ( /  is 

solely a function o f  ki k:. In a pure conduction mode, according to Fourier's law. the 

temperature gradient is directly related to the thermal conductivity. For a given heat flux, 

thermal conductivity is inversely proportional to the temperature gradient. Hence, the 

asymptotic average Nusselt number is expected to follow the same trend. If the 

normalized Nusselt numbers are plotted, these asymptotic values will approach unity as 

shown in Figure 4.19. As the Rayleigh number increases, the heat transfer mode moves 

into the mixed convection regime. Also noticed is that a more conductive porous sleeve 

promotes the onset o f  convection. When the system is in the natural convection regime, 

it is observed that the average Nusselt number increases at almost the same rate for all 

values o f ki/k:.

4.7 Conclusions

The present study has been successfully performed using a numerical approach. 

Extensive runs have been performed to study the effects o f  several governing parameters 

on the flow and temperature fields in rotating cylinders with a porous sleeve.

In general, the flow and temperature fields in the annulus can be clearly divided 

into to two main categories, the buoyancy dominant regime and the shear dominant
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Figure 4.19 The dependence o f average Nusselt number on Rayleigh number and 
thermal conductivity ratio for h ^  1.5. Da = 10"'. Pe -  10. and Pr = 
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185



regime. If the system is dominated by buoyancy effect, there always exist two convective 

cells o f  almost equal strength on each side o f tiie annulus. Similar to the results in the 

previous chapter, the strength o f these cells increases with the Rayleigh number. When 

the Rayleigh num ber is relatively small, the convective cells are contained in the fluid 

layer. If the Rayleigh number is large, the convective cells will gain enough strength to 

penetrate the porous sleeve.

On the other hand, if the flow and temperature fields are shear dominant, there 

exists only a shear layer in the annulus. This shear layer is particularly strong in the fluid 

layer. As the Peclet number increases, both the strength and thickness o f the shear layer 

increases accordingly. When the shear layer is thick, the convective cells diminish. It is 

interesting to note that the Rayleigh number does not have any significant effect on the 

shear layer in this flow regime. Based on this observ ation, one would expect a shear flow 

in a high-speed concentric porous bearing. Its flow field is barely influenced by the 

differential heating between the shaft and the housing. When the bearing is not in 

operation, some weak circulation due to the differential heating between the shaft and the 

housing is possible.

When the porous sleeve thickness is thin, the reduction in overall flow resistance 

leads to an increase in the flow strength. This eventually promotes heat convection. For 

a typical sintered journal bearing, the porous sleeve is usually very thin. Therefore, it is 

expected that convective cells are more readily to develop in the fluid layer. The 

development o f these cells enhances the flow circulation in the bearing and thus the heat 

removal from the shaft through the bearing. As a result, a porous sleeve in a sintered 

journal bearing should be made as thin as possible within the design constraints.

1 8 6



Since the Darcy number represents the relative pore size in a porous sleeve, a 

small Darcy number implies that the flow resistance needs to be overcome for penetration 

to the porous sleeve is large. As shown in this study, the strength o f  the convective cells 

or the shear layer reduces tremendously when the Darcy number is small. For Da < 10"'. 

it is found that heat conduction is the dominant heat transfer mechanism. In practice, a 

typical Darcy number for a sintered journal bearing is on the order o f  10"''. Hence, the 

heat transfer mode is most likely heat conduction as long as the Darcy number is 

concerned. However, an absolute prediction is difficult based on this study because, for a 

practical sintered bearing, the porous sleeve is thin and less permeable. Since a thin 

porous sleeve promotes heat convection, but a low permeability demotes heat convection, 

the com bined result o f  these two opposite effects needs further investigation.

As shown in the present study, the strength o f  the convective cells decreases with 

the therm al conductivity ratio while the strength o f  the shear flow increases with the 

thermal conductivity ratio. Typically, the thermal conductivity ratio o f a bronze sintered 

journal bearing lubricated by SAE engine oil is on the order o f  10^. When the bearing is 

not in operation, it is expected that the thermal energy is mainly transferred through 

convection. If the bearing is under normal operation, especially when the shaft rotates at 

high speed, the flow field is mainly controlled by shear effect and thus the heat transfer 

mode changes to heat conduction.

The isotherms for temperature field at high Peclet numbers are generally 

concentric. This distribution o f isotherms look very similar to that corresponds to a 

purely conduction case. This result is consistent with the heat transfer analysis. In terms 

o f heat transfer results, it is found that the average Nusselt number deviates from that o f
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the natural convection and approaches that for pure conduction as the Peclet number 

increases. Also, it is noticed that the presence o f  a porous sleeve delays the onset of 

natural convection. These findings suggest that the heat transfer performance o f  a 

sintered journal bearing may be poor because the onset o f heat convection is delayed and 

its heat transfer mode tends to be pure conduction.
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CHAPTER FIVE 

FLOW VISUALIZATION USING A HELE SHAW CELL

5.1 Introductory Remarks

Throughout the years, a great deal o f  effort has been devoted to understanding the 

lubrication mechanism in sintered journal bearings. Aiming at obtaining a better design, 

many lubrication engineers have performed various experimental studies to improve the 

bearing performance by focusing on the shaft rotational speed, the pressure distribution in 

the bearings and its load capacity. In contrast, flow visualization in the bearings is rarely 

reported in literature.

To date, many experimental observations reported in the literature were 

commonly found inconsistent. In some instances, they even contradicted with each other 

leading to a state o f  confusion. This undesirable situation occurred because o f the nature 

involved in the experiment of porous bearings. Besides the fact that all experiments are 

subject to human factors, experiments dealing with sintered bearings face an additional 

challenge in which identical sintered bearings are almost impossible to manufacture in 

the metallurgical process. Consequently, it is difficult to find quantitative agreement 

among experimental results especially from different research groups.

Flow visualization is favorable in many experimental studies in fluid mechanics 

because it provides a clear picture o f  the flow field and can lend support to results 

obtained from theoretical and numerical studies. Yang (1989. 1994) has compiled some 

o f the most common flow visualization techniques with or without the help o f computer
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facilities. Unfortunately, flow visualization experiment in porous journal bearings is 

rather scarce. One o f  the difficulties the lubrication engineers face is to visualize the flow 

patterns in a porous bushing without affecting the operation o f bearing itself. On top of 

this, to visualize the flow within the porous sleeves without the obstruction o f  porous 

material is almost impossible or too costly to perform.

The earliest flow visualization study related to porous bearings was done more 

than twenty years ago. Using optical interferometry. Yung and Cameron (1979) 

visualized the lubrication o f  porous bearings. However, their findings were against the 

existence o f a continuous oil film in the bearing. Later. Braun (1982) observed that the 

porous journal bearings, after a short time o f  operation, were filled partially by air 

causing the hydrodynamic lubrication to break down.

To verify the results reported by Yung and Cameron (1979) as well as Braun 

(1982). Kaneko and Obara (1990) visualized the mechanism of lubrication in porous 

journal bearings using fluorescent-dyed oil. Based on the pictures they took through the 

windows on the journal housing, they confirmed the existence o f  an oil circulation 

through the porous matrix. Although their study was a great success, their pictures only 

showed the growth o f  dyed oil in the windows. Their study couldn't show the complete 

flow interactions between the fluid and porous layers. This shortcoming o f  their 

experiment has motivated the current experimental study with the goal to fully 

understand the fluid flow within the annular space and the porous sleeve.
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5.2 Hele-Shaw Analogy

O ne o f  the difficulties in the study o f  flow in porous media is to actually visualize 

the flow pattern within the medium. In fact, visualizing the flow pattern in a porous 

medium is m ore challenging than that in a fluid layer because the presence o f  the porous 

structure blocks the view of the flow pattern. For this reason, a direct visualization o f  the 

flow in porous media is almost impossible. As such, various analogies have been 

developed and used successfully to visualize the flow pattern in a porous medium. There 

are several techniques that enable the study o f  flow in a porous medium. The popular 

ones include the Sand Box Analogy, the Electric Analogy, the M embrane Analogy, and 

the Hele-Shaw Analogy (Bear, 1972). Among these analogies, the Hele-Shaw Analogy 

is found to be most appropriate for the current study.

In the early last century. Henry' S. Hele-Shaw, an English engineer, discovered the 

analogy that could be used to model the flows important to the applications in petroleum 

and chemical industry'. The main advantage o f  his model is that it is very simple in 

design and thus relatively inexpensive to build. A Hele-Shaw cell is constructed by 

placing two parallel plates very close to each other separated by a gap o f  thickness h to 

render visible streamlines of a two-dimensional potential flow (Hele-Shaw 1898a, 1898b: 

Hele-Shaw and Hay 1900). In this analogy, the Hele-Shaw cell is filled with a fluid o f 

knowTi viscosity to enable the modeling o f  flows in porous media. The flow occurs 

within the cell is known as a Hele-Shaw flow. In this analogy, the gap width between the 

two parallel plates is related to the permeability o f the porous medium to be simulated. 

With this m ethod, the flow in porous media is analogous to a two-dimensional flow in a 

very thin layer.
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SafTman and Taylor (1958) recognized the value o f  this analogy and used this 

approach to perform theoretical and experimental investigations to understand the 

stability o f the interface between two immiscible viscous fluids in a porous medium 

under the gravitational effect. Recently, McCloud and M aher (1996) experimentally 

studied the steady-state Saffman-Taylor flow in an anisotropic Hele-Shaw cell.

Wooding (1960) em ployed the concept o f Hele-Shaw analogy to examine the 

instability o f  a viscous liquid o f  variable density in a long vertical channel o f  a 

rectangular cross-section. He also analyzed the problem through theoretical means and 

found that the experimental results were slightly higher than those obtained using the 

asymptotic expansion and the simple approximate theory.

Bear et al. (1968) and Van Dyke (1982) have made use o f Hele-Shaw cells to 

study low velocity flows around bodies and the hydrodynamics o f beds while Elder 

(1965). Home and O 'Sullivan  (1974). Williams et al. (1974). and Hartline and Lister 

(1977) have made use o f  them to model thermal convection in porous media. Bychkov 

(1980. 1981) investigated more practical industrial applications by optimizing the 

geometry o f internal channels and pipeline accessories using the flow in thin fluid layers.

Koster and M uller have performed a series o f  studies related to flow visualization 

using the Hele-Shaw analogy and holographic real-time interferometry. They divided the 

Hele-Shaw box into two categories based on its geometry (i.e.. its height (/) and width 

(w)). If Hw «  1. the box is named the Hele-Shaw cell while it is referred to as the Hele- 

Shaw slot if Ihv > 1. T hey have considered both the Hele-Shaw slots (1980. 1981. and 

1984) and Hele-Shaw cells o f  different dimensions (1982. 1983). They visualized natural 

convection flows in both vertical and horizontal Hele-Shaw cells induced bv a heated
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plate at the bottom (1983). The fluids used were 3 cSi silicone oil and water. In addition. 

Koster (1983) discussed the temperature-dependent reflective index and the so-called 

“thermal memory” o f  Plexiglas. He also pointed out the advantages and disadvantages o f  

the visualization technique he employed.

Nakoryakov et al. (1991) proposed a two-dimensional model o f  the flow in a 

Hele-Shaw cell, taking into account the convective terms in the momentum equations. 

The results o f  laser Doppler velocity measurements and flow visualization with 

submerged jet and flow around a cylinder in a Hele-Shaw cell were reported. A 

suspension o f  aluminum particles in spirit solution was added to the water for 

visualization.

The Hele-Shaw cell was also modified to study the bubble behavior in a fluid 

under a magnetic field. Ishimoto et al. (1995) employed an ultrasonic wave echo and 

image processing technique to visualize the translational motion and deformation o f a 

single gas bubble in magnetic fluid.

Carrillo et al. (1996) considered a modified classical viscous fingering problem in 

a circular Hele-Shaw cell consisting o f  a controlled rotation o f  the cell around its vertical 

axis. With this modification, the instability can be driven by both the density difference 

and the viscosity contrast between the two fluids. Their experiments in a rotating cell 

laid the foundation o f  an analogy to be used for gravity-driven experiments in the channel 

geometry.
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5.3 Problem Statement

The objective o f  this work is to experimentally visualize the flow patterns in a 

porous journal bearing using Hele-Shaw analogy. The enclosure has two different gap 

widths, the one with a wider gap simulates the fluid layer while the narrower one 

simulates the porous layer. The beauty o f  this Hele-Shaw analogy is that no porous 

medium is actually needed to simulate the porous layer. Thus, better visual results can be 

expected. Flow fields will be visualized for several cases when the shaft is oriented 

vertically. Using tracing particles, the flow patterns can be visualized through time- 

elapse photography.

5.4 Theory of Hele-Shaw Analogy

The Hele-Shaw analogy that is used to simulate the flow in porous media can 

actually be derived through mathematical means. For a steady highly viscous flow in a 

Hele-Shaw cell, the Navier-Stoke equations reduce to

dp
p g , -  —  + p  

ÔX

8-ir Ô-IK c-u
ÔX- dy- dz-

= 0 . and

cp
Pgs + ̂dy

d-u.

d\'-

d-u, d-u.
=  0 .

(5.1)

(5.2)

Since the gap in a Hele-Shaw cell is very small, the second derivatives o f  velocity 

components with respect to .r and y  are significantly sm aller than those with respect to r. 

In the absence o f body forces. Eqs. (5.1) and (5.2) are simplified to give

dp dhi. (5.3)
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dp d'u^

oy Ô--
(5.4)

Integrating the above equations twice and applying the no-slip boundary condition at 

walls, r  = Ij/2  and r  = -h/2 (Figure 5.1 ). one yields

=
S p  dx f ' - ' and

M. =
i p  dy

- 1

The average velocities in the cell can be evaluated by

and

(5.5)

(5.6)

(5.7)

h

£M, = -  I U. c t .

which lead to the expressions given below.

li = ----------—, and
\2 p d x

n .  =  -

h- dp
\2 p  dy

According to Darcy's law. the bulk velocities are given by

-  ^  Aff, = -------—. and
p  dx

ff. = - ÜÊP
p  dy

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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Figure 5.1 Coordinate system used in the derivation o f  Hele-Shaw analogy.
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Figure 5.2 Cross-section o f the modified Hele-Shaw cell constructed for the current 
experiment.
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Recognize that Eqs. (5.11) and (5.12) are similar in form with Eqs. (5.9) and 

(5.10). Apparently, there is a direct correspondence between a two-dimensional flow in 

the Hele-Shaw cell and the flow in a porous medium if  the gap width h in the Hele-Shaw 

cell is carefully chosen such that it is related to the permeability K  given in Eqs. (5.11) 

and (5.12) in the following fashion.

h = y lV lK . (5.13)

Using the Hele-Shaw analogy, the porous sleeve in a journal bearing can be 

represented by a channel with a very narrow gap. As shown in Figure 5.2. the Hele-Shaw 

cell for the present study has two cross-sections o f  different gap width, where the wider 

one (hi) represents the fluid layer and the narrower one (h:) simulates the porous sleeve. 

A practical value for the permeability AT o f a porous sleeve can be as small as m'. 

From Eq. (5.13). the corresponding gap width in a Hele-Shaw cell is calculated to be on 

the order o f /  mm. After the cell is constructed, it is filled with silicone oil and 

suspended with tracing particles. When the shaft rotates, a shear flow is induced in the 

cell. As the silicone oil circulates in the cell, it carries the tracing particles with it which 

makes the flow visualization possible through time-elapse photography.

5.5 Experimental Setup

The experimental apparatus has four m ajor units, namely the cell, the reservoir, 

the rotor, and the imaging unit. Figure 5.3 shows the schematics o f  the experimental 

setup whereas Table 5.1 lists the components and their specifications.
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Figure 5.3 Sketch o f the experimental setup for flow visualization.
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Item Specification / Manufacturer Unit

Hele-Shaw Cell Five Plexiglas o f different dimensions, as shown in 
Figure 5.2. glued together by Ace clear 100% silicone 
sealant (Item # 11316), tightened with Midwest Fastener 
Corp. stainless steel 6-32x2 Phillips pan machine screws 
(Item # 07097), 6-32 finished hex nuts (Item # 05265), 
and Flat washers (Item # 05320).

Cell

Seals Two 1-7/8 ID X 2-1/16 OD c/s 3/32 washers 
Flanco Gasket and Manuf., Inc. (Item # 2-134-70)

Cell

Lubricants Fisher silicone oil (Item # S I59-500) Cell

Tracer Jones Tones, Inc. craft glitter 
(Item # CHG -  308 Silver)

Cell

Funnel One Flotool spill saver (Item # 3220010701 ) R eser\oir

Tubing One 1-3/8 ID x 1/2 OD vinyl tube 
Two 5-1/4 ID X 3/8 OD vinyl tube

R eser\oir

Valve One Assembles in M otion ball valve 
(Item # SGL-0500-T)

Reservoir

Shaft One 1.95" diameter stainless steel shaft Rotor

Couplings One Dayton 1/2 ID x 1-1/8 OD x 2-1/2 flexible shaft 
couplings (Item # 2X497)

Rotor

Motor One DeWalt 18 Volt DC gear motor 
(Item #393111-01)

Rotor

Gear system One DeWalt transmission box 
(Item # 380264-08)

Rotor

Power supply Trilectron Industries power supply 
(PP-2309 c/u; serial # 4162-115AA) 
Input: II5/220V, 50/60Hz, IPH. 10/5A 
Output: 2-36 VDC, 0-15 Amp.

Rotor

Wiring Two 2' long 12-gauge Radio Shack hookup wire 
600V, 80C, 1/32 PVC, stranded, type: AWM 
(Item # 278-565)
Four 1-3/8 Radio Shack test clips
Solder terminals, rated 3 Amp (Item # 270-1545)

Rotor

Camera One Minolta Maxxum 7000i autofocus SLR Imaging

Tripod Samsonite Imaging

Films Kodak black & white 24x400 35mm films Imaging
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5.5.1 The Cell Unit

For the present study, the conventional Hele-Shaw cell is modified to meet the 

special need o f  the present study. A conventional Hele-Shaw cell consists o f  several 

walls, two o f which are placed ver\ close to each other to simulate the flow in a porous 

medium. Because o f the presence o f  the fluid layer, two distinctive gaps must be 

incorporated in the present model. To achieve this, the Hele-Shaw cell was constructed 

using two 1/2". two 1/4". and a 7/64" thick Plexiglas plates cut into proper dimensions. 

The 7/64" thick Plexiglas plate served as a spacer in the Hele-Shaw cell to represent the 

porous sleeve whereas the two 1/4" thick Plexiglas plates were the spacers to represent 

the fluid layer.

Unlike the conventional Hele-Shaw cell that has no moving part, a shaft is 

included in the present model to produce a shear flow in the fluid layer. To facilitate the 

experiment, a stainless steel shaft was custom-made to run perpendicular through the cell. 

To prevent leakage, precise o-rings were used to seal the gaps between the shaft and the 

walls. To enable the visualization o f  the flow patterns, transparent Plexiglas plates were 

chosen for the cell walls. A black cardboard was attached to the back o f  the cell to 

enhance the visibility of the tracing particles and better improve the visual effects.

Figure 5.4 shows the dimensions o f the Plexiglas plates and stainless steel shaft. 

Additional dimensions are shown in Figure 5.4(a) and (e) for the grooves where the o- 

rings sit. With this setup, h = 1/S", the corresponding permeability is K = 6.505 x 10' m'. 

Before these five plates were assembled together with 20 bolls, a thin layer o f  silicone 

glue was applied around the edges o f  all plates to further prevent leakage. These through
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Figure 5.4 continued, (e) the top wall. (0  the shaft, (g) the assembled cell, and (h) the 
extended cell.
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holes have a diameter o f  7/32" and are 2.2" apart from each other and 0.5" away from all 

edges.

5.5.2 The Reservoir Unit

The reservoir unit was built to feed the silicone oil with suspended tracing 

particles into the cell unit. In this unit, silicone oil is poured into a funnel that is 

connected to the Hele-Shaw cell with tubing. A valve is used to regulate the flow rate 

into the cell. By the same token, both the cell and the reservoir can be drained easily by a 

hydrostatic head due to elevation when the valve is opened.

5.5.3 The Rotor Unit

The rotor unit consisted of a custom-made shaft, a flexible coupling, a 

transmission box. a gear motor, a power supply, and wiring. This was the only unit in 

this experiment setup that had moving parts. The power supply converts A.C. to D.C. 

and regulates the power output to the gear motor to produce various rotational speeds. A 

transmission box was utilized to increase the power output o f  the motor. Instead o f a 

solid coupling, a flexible coupling was preferred here so that a slight misalignment 

between the rotor and the cell could be tolerated. The stainless steel shaft was custom- 

made in the Machine Shop o f  the School o f Aerospace and M echanical Engineering. To 

reduce the dynamic friction between the shaft and the o-rings. the shaft was made 

partially hollow. The dimensions o f the shaft are shown in Figure 5.4(f).
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5.5.4 The Imaging Unit

To visualize the flow patterns, a camera aiming at the cell is securely attached to a 

tripod. Two light sources are provided on either side o f  the setup. Black and white films 

were used in this case. An SLR camera is chosen for this experiment because it allows 

greater flexibility in the art o f  photography. The im portant adjustable factors to produce 

the best pictures were the aperture size, the shuffle speed, and the exposure time o f  the 

camera.

5.6 Experimental Procedure

Prior to running the experiment, it is necessary to assemble the model, calibrate 

the power supply, and test the camera settings. Only after the above preparation was 

completed, the flow patterns in the cell was visualized and documented by means o f  a 

camera.

5.6.1 Model Assembly

A thin layer o f  clear Silicone Sealant was first applied on the Plexiglas plates 

evenly. Later, bolts, washers, and nuts were fastened to apply uniform pressure on the 

plates to ensure that the cell was completely sealed off. The cell was then left overnight 

to cure. Once the cell was ready, two rubber o-rings w ere inserted into the groove in the 

holes o f  the outermost plates. A drop o f  clean silicone oil was applied to the o-rings so 

that they could seal the cell better. The rotor assembly was put together with its shaft 

inserted into the cell. Then, both the cell and the rotor assembly were safely secured to a
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frame with predrilled holes to align the cell and the rotor assembly within a acceptable 

tolerance.

The reservoir unit was assembled and tubing was hooked up in sequence. 

Silicone oil was premixed with a small amount o f  particle tracers (in this case, glitter) in 

a beaker. Then, the silicone oil with suspended tracers was poured into the funnel at a 

proper height. Slowly, the ball valve was opened to feed the silicone oil in the funnel to 

the cell. Once, the oil filled up the entire cell, the valve was closed. Extra care was taken 

to remove any undesirable air bubbles trapped inside the cell. The cell was then 

thoroughly checked for leakage. Figure 5.5 shows a picture o f the complete setup of this 

experiment.

5.6.2 Calibration of Rotational Speed

To calibrate the rotational speed, an rpm gauge (Shimpo DT-105 Hand Digital 

Tachometer) was used to measure the rotational speed as a function o f the current output 

from the power supply. The calibration curve is shown in Figure 5.6. Notice that the 

curve is only valid for currents in the range between 6.5 A and 10.5 A. When the electric 

current was close to or less than 6.5 A. the motor would not run because the power was 

too low to overcome the static friction between the shaft and the o-rings. Also, running 

the motor beyond 10 A was very unstable. The current fluctuated vigorously causing the 

motor to spin at unsteady rotational speeds. A further increase in the current eventually 

shuts dowTi the operation o f the motor. Based on the calibration curv e, a specific current 

output from the power supply can drive the motor to a specific rotational speed. Using a
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Figure 5.5 Photograph o f  the modified Hele-Shaw cell.
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second degree polynomial curve fit. it was determined that the rotational speed could be 

estimated by

ct = 5 .2 7 1 7 / '-1 8 .3 2 3 7 -1 9 .4 7 . (5.14)

The above correlation yields a correlation coefficient R' value o f  0.9891. From either Eq. 

(5.14) or Figure 5.6. any desirable rotational speed o f the shaft can be readily obtained by 

adjusting the current output from the power supply.

5.6.3 Adjustment of Camera Settings

An autofocus SLR cam era was chosen over a fully automatic digital camera for 

this experiment because an SLR camera provides more control for the photo takings. 

Lightings were placed at the most appropriate locations. Trials for difTerent 

combinations o f aperture sizes, shuffle speeds, and degrees o f  exposure were performed 

to ensure the best quality o f  images.

5.6.4 Flow Visualization

After everything was finely tuned, the rotor assembly was switched on. When 

switching on the power supply, the current output was always turned to the minimum to 

avoid overrunning the motor with excessive electrical power. Right after the power 

supply was switched on. the current output was gradually turned to approximately 9 .A. 

Because o f  the high static friction, the shaft was manually turned initially. As soon as the 

shaft started to rotate, the current output displayed on the power supply quickly dropped 

to 6.J .4. Normally, reducing the current output below this threshold value would cause 

the motor to halt. The current output was then gradually increased which led to an
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increase in the shaft rotational speed. Referring to the calibration curve, the shaft rotating 

speed was fixed for a specific current output. After the desirable rotational speed was 

reached, pictures were taken with sufficient exposure time so that the path lines o f  tracing 

particles could be captured.

It was found that the temperature o f  the shaft rised if  the shaft rotated more than 5 

minutes. The rate o f temperature rise increased tremendously especially when the shaft 

rotational speed was high. It is believed that this increase in shaft temperature is mainly 

due to the friction between the shaft and the o-rings. After a long period o f  operation 

about an hour, the temperature o f  the shaft could reach as high as 34.3 ± 1 .2  X ' while its 

initial temperature was 2/.V ± 0  /  X2.

5.7 Results and Discussion

Figure 5.7 shows the comparison o f the flow patterns obtained from experimental 

and numerical studies. This is a relatively isothermal case. Experimentally, this case is 

more difficult to accomplish than any other cases. To obtain the result, one must try 

every effort to minimize the heat generation from the shaft. Generally, the amount o f  

heat generated is mainly proportional to how fast the shaft rotates and how long the shaft 

has operated. In this case, a low rotational speed was preferred over a higher speed 

because it generates less heat from the friction between the shaft and the o-rings. 

Specifically, the shaft rotational speed was 60 ±  9 rpm  from measurement. The picture 

was taken as soon as the flow pattern became quasi-steady, i.e.. as soon as the flow 

pattern did not change significantly. Typically, this had to be done about 3 minutes after 

the start o f  operation. After the power supply was switched off. temperatures were
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measured at different locations o f the shaft. They were in the range between 24.6 ± 0 .1  

T? to 24.S ± 0 .1  f . The temperature o f  the silicone oil was measured to be 24.5 ±0 .1  X'. 

Based on these temperature measurements, the heating due to friction between the shaft 

and the o-rings was proven negligible.

Figure 5.7(a) shows that the flow field was relatively isothermal. Only a ring o f  

shear flow appeared directly next to the rotating shaft. Away from this shear layer, the 

fluid in other parts o f  the cell was nearly motionless. For comparison, a numerical run 

was performed with equivalent Pe = 233,100  and Ra = 1,469.000. These values were 

determined using the mechanical and thermal properties listed in Table 5.2. Table 5.3 

provides some typical values of the Peclet and Rayleigh numbers based on the values 

listed in Table 5.2. The flow field obtained through numerical simulation is shown in 

Figure 5.7(b). Clearly, the flow structure in the annulus is similar to that from 

experiment. According to the numerical result, there is a ver) weak recirculation cell at 

the right hand side o f  the porous sleeve. However, its existence could not be verified 

from experiment because o f its extremely weak strength.

A non-isothermal case was also considered. The comparison o f  experimental and 

numerical results is presented in Figure 5.8. In this case, the shaft rotated at 39 rpm. Its 

flow pattern is shown in Figure 5.8(a). Because o f  the buoyancy effect, there was a jet o f  

fluid issuing radially outward from the shaft. Also, because o f  the shear effect, this je t 

was tilted to the left. Figure 5.8(b) shows a similar flow pattern obtained through 

numerical simulation. This pattern corresponds to Pe = 10^ and Ra = l ( f .  Both 

approaches predict two weak convective cells and a strong shear flow. The shear flow is 

so strong that the buoyancy-induced flow is swept away from inner cylinder in the
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Figure 5.7 Comparison o f  isothermal flow fields between (a) experimental
observation at a rotational speed o ï  m = 60 rpm. and (b) numerical result 
at Pe = 2 .33xl&  and Ra = 0 (A'P = 5x10*).
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Table 5.2 List o f  mechanical and thermal properties used in the experiment.
Properties________________________________________ Values________________________

Density o f  silicone oil at (20 C). p  963 kg/m^ (962 ± 0 ) kg/m^
Thermal diffusivity o f  silicone oil at (20 £')- oc 7x10^ m '/s  *
Thermal conductivit>' o f  silicone oil at (20 C). k O.l W/m C
Volumetric heat capacity o f  silicone oil at (20 C). Cp 1.37 x  I ( f  J/m^ *’**
Dynamic viscosity o f  silicone oil, p  (48.35 ±  1.23) cP
Kinematic viscosity o f  silicone oil. v (50.26 ±  I.28)xIO"* m '/s
Coefficient o f Thermal Expansion, p  0.00104

Ref: * ' ' https://fscimage.fishersci.com/msds/40237.htm
' *' http://www.hukseflux.com/thermal%20conductivity/thermal.htm 
' based on experimental measurements:

density measurement: Fisher brand Hydrometer (Catalog # 1 1-583 B) 
viscosity measurement: Cole-Parmer 98936 Series Rotational Viscometer

(with 95% confidence)(•■•Iconversation with technical support from Fisher Scientific Co.

Table 5.3 List o f parameters and their corresponding values in experiment. 
Tabulated Equivalent Parameters Values

Permeability, K  = h '/I2 h = O..II in 6.505x10'm'
Darcy number. Da = K/h' 6.302x10'^
Prandtl number. Pr = v/a ~I8
Rayleigh number. Ra = gfiATh^ 'v a AT  = 0.5 V 1.5201x10''

A T =  I.O C 3.0403x10'
A T  = 2.0 C 6.0806x10'

AT  = 5.0 C 15201x10'
AT  = lO.OC 3.0403x10'

Peclet number. Pe = U b/a I  = 5 .5  A oj = 39.2224 rpm 1.5142x10-'
1= 6.0  A cj = 60.3732 rpm 2.3308x10-'
I  = 6 .5  A cj -  84.1598 rpm 3.2491x1(7'
1= 7.0 A cu = 110.5823 rpm 4.2692x1(7'
1= 7.5 A ÜJ = 139.6406 rpm 5.3910x1(7'
I  = 8 .0  A m = 171.3348 rpm 6 .6 l4 6 x l( f
1 = 8 .5  A CJ = 205.6648 rpm 7.9400x1(7'
1 = 9 .0  A CJ = 242.6307 rpm 9.36/1x1(7'
I  = 9 .5  A CJ = 282.2324 rpm 1.0896.x I ( f
1= iO.OA CJ = 324.4700 rpm 1.2527x10'
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(a)

(b)

Figure 5.8 Comparison o f  non-isothermal flow fields between (a) experimental
observation at a rotational speed o f  cr = rpm. and (b) numerical result 
al Pe = I ( /  and Ra = I ( f  {Â 'P= 20).
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counter-clockwise direction. Before the fluid particles arrive at the interface, they are 

split into two streams, one to the left and another to the right. Generally, the left 

convective cell merge with the shear flow to become a stronger recirculation cell. 

Basically, the experimental and numerical results exhibit the same trend. However, it 

should be pointed out that the numerical result shown corresponds to an operating 

condition at approximately AT = 0.5 C  and m  = 0.26 rpm. If the exact experimental

condition was implemented, the flow pattern would be similar to that presented in Figure 

5.7(b).

A series o f  pictures for flow fields at various rotational speeds are presented in 

Figure 5.9. Obviously, the shear layer continued to present. Unfortunately, the paths o f  

the tracers cannot be clearly observed through the picture, but the presence o f  shear la\ er 

can still be detected. As displayed in Figure 5.9(a). the flow pattern for a rotational speed 

o i 32 ± 4  rpm. the shear flow immediately next to the shaft was represented by a ring o f

gray band and some shorter white lines whereas the convective flow was recognized by 

longer white lines. This does not mean that the flow in the shear layer was slower than 

that in the convective cell. In fact, the flow in the shear layer was much faster. To 

capture the convective flow patterns, a much slower shuffle speed had to be used. When 

this shuffle speed was used, the trace o f  the faster shear flow blended into rings o f  white 

lines, leading to a wTong impression that the convective flow was faster than the shear 

flow.

When the rotational speed was further increased, as shown in Figure 5.9(b) and 

(c), it is noticed that the shorter white lines in the shear layer disappeared and were 

replaced by a darker hole. It was observed that the higher the speed the shaft rotated, the
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(a)

I

(b)

Figure 5.9 Flow patterns in the modified Hele-Shaw cell at various shaft rotational 
speeds (a) ex = 39 rpm {Pe = l.506xl& ), (b) m  = 100 rpm {Pe = 
3.861x10^), (c) ax = 158 rpm {Pe = 6.100x10^), and (d) cx = 333 rpm {Pe 
= } .286x l(f).
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(c)

(d)

Figure 5.9 continued.
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more ambiguous the shorter white lines, the darker the shear layer, and the larger its size. 

The shear layers depicted in Figiu-e 5.9(a), (b), and (c) were circular in shape. As soon as 

the rotational speed was increased beyond a threshold value, the shear layer became 

unstable. When this happened, the shear layer rotated in a spiral fashion, which was 

somewhat vaguely captured in Figure 5.9(d).

As shown in these figures, there were two convective cells circulating in opposite 

directions. The smaller one on the left rotated in the counter-clockwise direction while 

the larger one on the right rotated in the clockwise direction. Based on the obser\ ation 

from the previous chapter, there is always a thermal plume rising from the shaft. The 

flow pattern shown in Figure 5.9(a) suggests that the thermal plume was no longer rising 

vertically upward from the shaft. Instead, it was tilted to the left. Along this direction, 

fluid particles flow radially outward and make a relatively sharp turn before they reached 

the porous sleeve. Those fluid particles that followed the left convective cell traveled in 

the convective region for a short distance and reentered the shear flow region smoothly. 

On the other hand, those fluid particles that followed the right convective cell went 

through a longer distance before they merged into the shear flow again. Before leaving 

the convective region, they made another sharp turn (almost 360° this time).

Also observed is that the line that separated two convective cells became more 

tilted as the shaft rotational speed increased. If this speed increased beyond a critical 

value, the flow evidently becam e turbulent as shown in Figure 5.9(d). Unlike the flow 

structures presented in Figures 5.9(a), (b). and (c), the longer white lines are no longer 

smooth. Instead, these lines became either spiral or circular depending on their locations.
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This proves that the instability o f  the shear layer produced eddies that were later carried 

along by the convective flows and spread all over the flow field.

The side effect from an extensive run o f  experiment was the increase o f  shaft 

temperature. The rate o f  temperatme rise was proportional to the shaft rotational speed. 

Because o f  the rise in the shaft temperature, the buoyancy effect became more and more 

pronounced. As such, the cases in which the rotational speed was high, the combined 

shear and buoyancy effects had led to a rather complicated flow pattern in the Hele-Shaw 

cell. The most apparent change in the flow field was the presence o f two convective cells 

right next to the shear flow. As reported in the literature and Chapter Three o f  this work, 

the flow field o f natural convection has two convective cells o f equal strength rotating in 

opposite direction. From this flow visualization study, it was observed that not only were 

these convective cells not equal in strength, but also their orientations were distorted 

tremendously. Clearly, the right cell had grown considerably by expanding to the top 

portion, squeezing the left one to a smaller size. What unaccounted for was the presence 

o f a motionless region below the rotating shaft. Consistent observations suggested that 

the flow structure could be divided into four flow regions.

The suggested four flow regions are shown in Figure 5.10. The innermost region 

corresponds to the shear layer. The middle section is the region where convective flow 

takes place. The outermost section is generally associated with the porous sleeve. The 

lowest triangular section is the region where flow is almost stationary.

At a relatively low rotational speed, the particles in the shear region experienced 

the highest velocity, but they generally traveled only in the angular direction. The flow 

pattern in this region resembled that of the polar Couette flow in rotating cylinders. As
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Porous Region

/  Convective Region

/  Shear Region

Stagnant Region

Figure 5.10 Various flow regions observed from the experimental study at high 
rotational speeds.
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the rotational speed increased, the corresponding Taylor number would exceed the 

threshold Taylor number in which rotational instability was triggered (Taylor. 1923; 

Coles, 1965; Kataoka and Takigawa, 1981; Ohmura et al., 1997). When this happened, 

the flow no longer behaved like a polar Couette flow. In fact, the flow pattern evolved 

into a spiral pattern (Figure 5.9(d)). Accompanied by this spiral flow pattern was that the 

fluid particles also traveled in the axial direction, causing the trace o f  the particles to be 

helical in shape. The observation o f this pattern has been well documented and this flow 

instability is referred to as Taylor instability or sometimes Taylor cells (Ohmura et al.. 

1995).

As Mâloy and Goldburg (1993) pointed out. the Taylor-Couette flow becomes 

chaotic when Re/Rcc ~ I I .  For the present study, the critical Reynolds Rec number based 

on the gap width is 125. The unsteady flow field shown in Figure 5.9(d) was for a 

rotational speed o f 523 ± 1 7  rpm  or Re/Rcc = 10.3. At this high speed, the flow was

chaotic and definitely became three-dimensional, which can be confirmed from the 

observation that the flow particles were thrown away from the shaft as it span. As the 

flow particles were moving away from the shaft, they were drawn back towards the shaft 

by recirculation. This process repeated until the flow particles reached the edge of the 

cell. There, they stuck close to the wall and flowed outward away from the shear region. 

In short, the flow inertia in the shear layer is much greater than thermal buoyancy in the 

range o f this study.

The flow structure in the convective region is mainly resulted from the 

combination o f  the shear and buoyancy effects. There were two convective cells 

circulating in this region. Because o f  the shear effect, these cells were no longer
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symmetrical about the vertical axis. As shown in Chapter Three, w hen the shaft does not 

rotate, the cells are symmetrical, in which the flow particles in the cells rise directly 

upward from the heated inner shaft. Because o f the distortion by the rotational effect, the 

convective cells were severely deformed and pushed downstream in the shaft rotational 

direction. In this region, the flow pattern can be considered as in the mixed convective 

regime. When the shaft temperature is the same as that o f  the fluid, this region is force- 

convection driven.

The flow field in the porous region was difficult to observe because the number o f  

particle tracers was small and the velocity in this region was insignificantly small. The 

distribution o f  the particle tracers was relatively even only right after the cell was filled 

with the silicone oil and its tracers. As the shaft rotated, most o f  the tracing particles 

were drawn towards the convective region, leaving behind very little tracers in the porous 

region. Because o f  the abrupt change in the gap width, very few  tracers were able to 

penetrate the porous region when they reentered the porous region from the convective 

region. In addition, the slow motion o f  the particles in the porous layer was much more 

difficult to be captured even using a longer exposure time o f  iO  sec. Even though 

recognizing the flow pattern through the pictures was still possible, especially when the 

flow particles left the porous region and entered the convective region at the lower 

portion o f  the cell. In this porous region, capillary effect is much greater than that in the 

shear and convective regions. As a result, the flow in this region is much slower than that 

in the shear and convective regions.

The stagnant region is relatively small in size as com pared to other regions 

discussed above. In this region, the fluid particles remained relatively motionless
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throughout the entire experiment. In fact, this region was not anticipated before the 

experiment was performed. Also, the presence o f  this region has never been foreseen 

from both theoretical and numerical studies. Its presence is mainly due to the 

experimental conditions. Because o f  settling, the number o f tracing particles in this 

region was higher than any other region. Within this region, the weight o f  additional 

particle tracers balances the thermal buoyancy force. Since this concentration effect has 

not been included in the theoretical and numerical studies, its presence is not expected in 

their results.

5.8 Experimental Discrepancy

Although the flow visualization has clarified some doubts about the flow field in 

an annulus with a porous sleeve, it has also cast some doubts in the comparison between 

the numerical and experimental results obtained from this study. It is believed that the 

inherent difference between the numerical and experimental models and experimental 

error have contributed to the discrepancy observed between the numerical and 

experimental results.

In the formulation o f numerical model, it is assumed that the flow is two- 

dimensional and laminar throughout the range o f  study. Also, the properties o f the fluid 

are uniform and independent o f  temperature, and the Taylor instability is absent.

To satisfy the two-dimensional flow assumption, the annulus has to be infinitely 

long. However, for the Hele-Shaw analogy to be valid, its gap width must be thin enough 

so that the second order terms in the governing equations can be neglected. To 

accommodate this condition, the gap width for the fluid layer was also made relatively
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small. With this configuration, the two-dimensional flow assumption was not exactly 

met. In addition, the abrupt change in the gap width across the interface might have 

induced undesirable secondary flows. As a result, the flow in the experimental model 

was not completely described by the numerical formulation.

Although the numerical formulation was based on the assumption o f  laminar flow, 

this is not always the case in experiment, especially when the rotational speed is high. 

Although the Reynolds number based on the highest rotational speed in this experiment 

was calculated to be less than the critical Reynolds number, turbulence could be 

originated from the rough surfaces. Because o f the imperfect fabrication o f the shaft and 

the cell, the production o f eddies from the solid wall might be critical in leading to the 

transition to turbulent flow.

The assumption o f constant properties was also not exactly met in experiment. 

This idealized situation is made only for the ease o f numerical study. It is doubtful that 

the thermal properties o f the fluid and cell walls remain constant within the range o f 

temperature experienced in this experiment.

The onset o f  Taylor instability that leads to Taylor cells is not anticipated from the 

present numerical formulation. Since the Taylor instability is transient and propagates in 

the axial direction, the present study as well as many other publications in the literature, 

which dealt with two-dimensional Reynolds equation, may need further justification.

Some experimental errors are simply unavoidable. One o f  the errors was 

introduced by the tracing particles. Since the density o f the tracing particle is greater than 

that o f the silicone oil. the particles tend to settle after some time. As these particles were 

settling down, they dragged along the fluid particles and thus induced a downward flow.
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In addition, it is very difficult to have the particle tracers mixed evenly with the 

silicone oil. When the particles start to settle, the distribution o f  the tracers was far 

denser at the lower portion o f  the cell than in any other portion. This contributed to the 

fact that the silicone oil with its suspended particle tracers was highly non-uniform. As a 

result, the fluid was not isotropic and its density was highly non-uniform. This is the 

main reason that leads to the formation o f the stagnant region in the Hele-Shaw cell.

After the power supply was switched o ff at the end o f  the experiment, several 

temperature measurements were made on the shaft surface. It was found that the 

temperature distribution on the shaft was not uniform. This temperature distribution not 

only depended on the friction between the shaft and the o-rings. but also on how heat was 

removed from the rotor unit. Several temperature measurements had shown that the 

difference in temperature on the shaft could be as large as / . 2 ‘C. This temperature 

difference was normally proportional to the average temperature o f  the shaft.

Perhaps the m ost serious discrepancy between the numerical and experimental 

models was the thermal boundary condition. As mentioned earlier, the shaft temperature 

was not constant and uniform in the experiment. In addition, the therm al boundarv' 

condition on the outer cylinder (i.e.. the journal housing) in the numerical model was not 

exactly implemented in the experiment. Unlike the numerical model, the temperature on 

the radius c in the modified Hele-Shaw cell was not exactly at a constant temperature.

5.9 Conclusions

Although the flow visualization experiment could not perfectly duplicate the 

conditions in the numerical study, it did provide some insights to the problem considered
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in the present study. Observations from this experiment have drawn the following 

conclusions.

The flow in the Hele-Shaw cell can be divided into four regions, the shear, the 

convective, the porous, and the stagnant regions. These regions can be easily recognized 

from the flow patterns captured in the photographs.

The shear region is located right next to the rotating shaft, which is driven by the 

shear effect. In this region, the fluid particles rotate due to the shearing action that the 

shaft induces. The faster the shaft rotates, the thicker the shear layer becomes and the 

faster the tracing particles travel. Flow becomes instable when the shaft rotational speed 

increases. When the shaft rotates at 333 rpm. the flow becomes chaotic.

The convective region is driven by the buoyancy effect. In this region, the 

appearance o f  two convective cells is possible if there exists a significant temperature 

difference between the shaft and the fluid. This temperature difference increases with the 

shaft rotational speed and its operational time. If the convective cells appear, the left one 

is always sm aller in size and rotates in the counter-clockwise direction. In contrast, the 

right one is always larger but rotates in the clockwise direction. Their strength is 

proportional to the temperature difference between the shaft and the fluid. When the 

shaft rotates at 333 rpm. the flow in this region becomes oscillatory in the radial direction.

In the porous region, the flow is finite but is too insignificant to be captured in 

photography. Careful exam inations from several experimental runs have confirmed the 

finite flow in this region. The effect o f  chaotic flow also affects the flow in this region 

when the shaft rotational speed w as 333 rpm.
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The stagnant region has never been disclosed in the theoretical o r numerical 

results in this study. It is probably caused by the concentration effect due to the presence 

o f  tracing particles. In this region, the large number o f  the tracing particles damps the 

action from buoyancy and shear force. Therefore, there is almost no flow motion in this 

region. As the shaft rotates faster or the temperature difference becomes larger, the size 

o f  this region reduces.
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CHAPTER SIX 

CONCLUSIONS

6.1 introductory Remarks

The study o f  flow and temperature fields in rotating cylinders with a porous 

sleeve has been successfully performed. This study includes theoretical, numerical, and 

experimental investigations.

Using the theoretical approach, two distinctive cases were investigated. The first 

case considered eccentric rotating cylinders with a porous sleeve while the second case 

focused on natural convection in concentric non-rotating cylinders with a porous sleeve. 

A regular perturbation method was employed in these investigations. The perturbed 

terms in these cases were the eccentricity ratio and the Rayleigh number, respectively.

For the numerical investigation, a finite difference code was developed to solve 

for the flow and temperature fields in concentric rotating cylinders with a porous sleeve. 

The effects o f  various parameters were investigated in great detail. Among the most 

important ones were the rotational speed o f  the inner cylinder, the strength o f buoyancy 

force, the thickness o f the porous sleeve, and its permeability.

An experimental study was conducted to visualize the flow patterns in rotating 

cylinders with a porous sleeve using a modified Hele-Shaw cell. Silicone oil with 

suspended particle tracers was used to fill the cell to reveal the flow patterns as the shaft 

rotated.
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6.2 Eflects of Various Parameters

The effects o f some o f  the most critical governing parameters on the o \erall 

performance o f  sintered journal bearings are summarized in this section.

(a) Buoyancy Effect

The buoyancy effect is represented by the Rayleigh number. It was found that the 

greater the Rayleigh number, the more important the buoyancy effect. For a specific 

configuration and material, a greater Rayleigh number implies a larger temperature 

difference between the inner and outer cylinders.

The results show that the existence o f  one or two convective cells is possible, 

depending on the shaft rotational speed. The strength o f  convective cells increases with 

the Rayleigh number. When the Rayleigh number is small, the convective cells only 

appear in the fluid layer and the heat removal from the inner cylinder is mainly by 

conduction. In contrast, when the Rayleigh number is large, the convective cells may 

penetrate the porous sleeve and the heat removal is more effective by convection.

(b) Shear Effect

The shear effect is directly related to the shaft rotational speed. In literature, two 

dimensionless parameters, the Reynolds number and the Taylor number, are normally 

used to signify the effect o f  rotational speed, depending on the nature o f  the problems or 

the applications. For non-isothermal cases (such as the present study), the Peclet number 

is used instead. The Peclet number is similar to the Reynolds and Taylor num bers in the 

sense that it is also a representation o f  speed.
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Generally, the flow and temperature fields in the annulus are affected by both 

buoyancy and shear effects. If the system is dominated by buoyancy effect, as in a 

natural convection case, there are two convective cells o f nearly equal strength appearing 

on each side o f  the annulus. When the inner cylinder rotates (a finite Pec let number), it 

produces a layer o f  fluid next to the inner cylinder. Obviously, the strength and the 

thickness o f  the shear layer increases with the Peclet number. With an increase in the 

Peclet number, the system becomes more and more dominated by the shear effect. 

Consequently, the growth o f shear layer suppresses the size o f  convective cells until the 

cells completely disappear from the flow field.

(c) Thickness of Porous Sleeve

In this study, both inner and outer radii are fixed. The porous sleeve thickness is 

represented by the porous sleeve inner radius h. As b increases, the porous sleeve 

thickness decreases. When h increases, the reduction in flow resistance leads to an 

increase in the flow strength. This increase in the flow strength can produce a stronger 

shear flow, a stronger convective cell, or a combination o f both.

If the porous sleeve is thick, a large velocity gradient appears along the rotating 

inner cylinder. This in turn produces high stresses and high heat generation rate due to 

large viscous dissipation in the fluid. If  the porous sleeve is thin, the velocity gradient 

reduces and thus the heat generation through viscous dissipation also reduces. For a 

sufficiently thin porous sleeve, the porous sleeve behaves as if  it were an impermeable 

wall that the porous journal bearing is no different from a solid journal bearing.
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(d) Permeability o f Porous Sleeve

The Darcy num ber represents the permeability o f  the porous sleeve, an indirect 

measure o f  pore size in the porous sleeve. By definition, the greater the Darcy number, 

the larger the pores in the porous sleeve.

As the Darcy number approaches unity, the presence o f  the porous sleeve 

becomes insignificant. Both velocity and temperature profiles approach those in a solid 

journal bearing. On the other hand, if the Darcy num ber approaches zero, the porous 

sleeve becomes so impermeable that it behaves like a solid wall. In this study, it was 

found that a porous sleeve with a Darcy number less than 10"’ can be considered 

impermeable.

As the Darcy number decreases, flow penetration to the porous sleeve is less 

likely to take place because o f  the increase in the flow resistance. As a result, some flow 

energy was dissipated by the flow resistance, which led to a weaker shear layer and 

convective cells.

(e) Thermal Conductivity Ratio

The thermal conductivity ratio is defined as the ratio o f the thermal conductivity 

o f  the fluid layer ki to that o f  the porous sleeve k:. The effective thermal conductivity o f 

the porous sleeve can be estimated by

k: = <(>kf+((f>-1) kp, (6.1)

where <f> is the porosity o f  the porous medium, kf is the thermal conductivity o f  the fluid, 

and kp is the thermal conductivity o f the porous medium.
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At a very small Rayleigh number, heat conduction is the dominant heat transfer 

mode. The thermal conductivity ratio does not have any significant effect on the flow 

field, but it does have a profound effect on the temperature distribution. Since this ratio 

is a material property o f  the annulus. it has close relationship with the porous sleeve 

thickness. For a given porous sleeve thickness, the temperature gradient in the fluid layer 

decreases with ki 'k: but increases in the porous sleeve.

At a large Rayleigh number, the thermal conductivity ratio plays a vital role in the

flow field when thermal buoyancy effect is important. It is found that the strength o f  the 

convective cells decreases with the thermal conductivity ratio, but that o f  the shear flow 

increases with it.

(f) Eccentricity

To study the effect o f the eccentricity o f  the inner cylinder on the flow and 

temperature fields in the annulus. the eccentricity ratio, defined as the ratio o f the

eccentricity to the inner radius o f  the porous sleeve, is used.

The most significant effect resulting from the eccentricity ratio is that it modifies 

the velocity and temperature distributions in the gap between the inner and the outer 

cylinders. As the eccentricity ratio increases, the inner cylinder moves vertically 

downward. Across the narrowest gap. the velocity and temperature gradients are greater 

than those at other locations. The reverse trend was observed across the widest gap.

Although the above conclusion is drawn based on the observation from the cases 

that the eccentricity ratio is very small, it is expected that the actual flow and temperature
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distributions in an eccentric annular space with a porous sleeve will be qualitatively 

similar to what observed here.

6.3 Heat Transfer Performance

The heat transfer perform ance is evaluated through the Nusselt number. Since the 

local heat transfer is not o f  particular interest, the local Nusselt number has not been 

investigated. To evaluate the overall heat transfer performance o f  the entire system, the 

average Nusselt number was calculated.

The average Nusselt num ber increases when the porous sleeve thickness reduces. 

Therefore, one can conclude that the presence o f  a porous sleeve delays the onset o f  

natural convection. The average Nusselt number also increases with the Darcy number 

and approaches some asymptotic values that depend on the effective thermal conductivity 

ratio ki/k:- On the other hand, the average Nusselt number decreases monotonously with 

ki/k:. The smaller the thermal conductivity ratio, the greater the average Nusselt number. 

On the other hand, a larger average Nusselt number on the outer cylinder always 

corresponds to a larger thermal conductivity ratio. The dependency o f  Nusselt number on 

the Darcy number diminishes w ith a decrease in the porous sleeve thickness.

Based on the numerical results, the average Nusselt number increases with the 

Rayleigh number. Clearly, the heat transfer mode changes from forced convection 

regime to mixed convection regim e and eventually to natural convection regime when the 

Rayleigh number increases. The transition o f these regimes depends on both Peclet and 

Rayleigh numbers. When the Peclet number is zero, the flow and temperature fields in a 

non-rotating annulus with a porous sleeve are dominated by natural convection and have
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the highest average Nusselt numbers. As the Peclet number increases, heat transfer is in 

transition to forced convection and the average Nusselt number reduces.

6.4 The Design o f  Porous Journal Bearings

The main goals in the design o f  porous journal bearings are high load capacity, 

low frictional factor, and long operational life. Since the above goals have been 

attempted for decades, it is not the objective o f  the present study to re-iterate their 

importance. Nowadays, high performance sintered journal bearings are more commonly 

used in engineering applications. These bearings are smaller in size, operate at higher 

speeds, and generate less noise as they have a lower vibration level. H ow e\er. these high 

performance bearings are more likely to subject to thermal seizure failure in operation. 

For a successful design, the heat generated in the bearing ought to be removed efficiently 

to avoid thermal seizure. It is the objective o f  this study to identify the major parameters 

that influence the heat removal.

Since the shaft rotates at a high speed, there is always a shear layer inside the 

porous journal bearing. When the bearing is in operation, the flow field is dominated by 

shear effect. As a result, convective cells are not likely to appear and the Rayleigh 

number does not have any significant effect on the shear layer. For this reason, the flow 

field is barely influenced by the differential heating between the shaft and the housing 

when the shaft rotates at high speeds. When the bearing is not in operation or the shaft 

rotates at low speeds, a weak circulation is possible due to the temperature difference 

between the shaft and the housing. Based on this observation, one should not overrun the 

bearing in application. Particularly for porous bearings, the shaft rotational speed should
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not be too high so that heat removal by convection can be promoted between the shaft 

and the housing.

For a typical sintered journal bearing, the porous sleeve thickness is very thin. 

Since the sleeve thickness promotes heat convection, the development o f  convective cells 

in the fluid layer is less likely than the conventional solid journal bearings. Clearly, these 

cells enhance the flow circulation in the bearing as well as the heat removal from the 

shaft. As a result, in designing a sintered journal bearing, its porous sleeve should be 

made as thin as possible.

For a practical sintered journal bearing, the Darcy number is on the order o f  10'^ 

to /O'^. Hence, the heat transfer mode is mainly by heat conduction as far as the Darcy 

number is concerned. However, an absolute prediction is impossible based on this study 

because, in a practical sintered bearing, the porous sleeve is thin and not very permeable. 

Since a thin porous sleeve promotes heat convection, but a less permeable porous sleeve 

demotes heat convection, the combined effect o f  these two factors needs further 

investigation.

For a typical porous bearing (Da < 10"'), an increase in the thermal conductivity 

ratio weakens the convective cells. Also, the effects o f  thermal conductivity ratio on the 

temperature gradients lead to a reduction o f the average Nusselt numbers with kj/k:. 

Other than the thermal conductivity ratio, a thinner porous sleeve will also lead to a larger 

average Nusselt number.

Since the porous sleeve in the sintered journal bearings is normally made o f 

bronze, it is generally true that kt/k: < 1 .0  and h/c —> I . A typical thermal conductivity 

ratio o f a bronze sintered journal bearing lubricated by SAE engine oil is on the order o f
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/  0'^. When the bearing is not in operation, heat is removed from the irmer shaft mainly 

by convection. When the bearing operates at high speeds, its corresponding flow field is 

mainly a shear layer and thus its heat transfer mechanism is heat conduction.

These observations suggest that the heat transfer performance o f  a sintered journal 

bearing is not optimal because the onset o f  heat convection is delayed and its heat 

transfer mode tends to be pure conduction.

6.5 Future Work

Although the present study has successfully investigated some issues related to 

the performance o f  porous journal bearings, there are still many questions remained to be 

explored. The present work can be extended to address some o f  these questions from 

experimental or numerical approaches.

To improve the experimental study, the tracing particles need to be replaced with 

more suitable ones. One o f  the critical properties o f  these tracing particles is that their 

density should be close to that o f  the silicone oil. By doing so. it is believed that the size 

o f  the stagnant region can be minimized or even eliminated. O ther than the quick fix 

related to the tracers, the current experiment can be easily modified to visualize the flow 

pattern in rotating eccentric annulus with a porous sleeve. In addition, the measurement 

o f  the temperature distribution should be added to better understand and describe the 

physics behind rotating annulus with a porous sleeve.

With the success in the present numerical solution, the code can be modified to 

accommodate the investigation o f  the flow and temperature fields in eccentric rotating 

cylinders with a porous sleeve.
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To this end. the numerical formulation may require to use both cylindrical and 

bipolar coordinate systems. As shown in Figure 6.1. the computational domain o f  an 

eccentric porous journal bearing is dem arcated by three circles. The inner domain lies 

between the two inner (eccentric) circles and the outer domain is enclosed by the two 

(outer) concentric circles. A bipolar coordinate system is used in the inner domain, while 

the cylindrical coordinate system is used in the outer domain. A sample o f  the grid 

distribution is shown in Figure 6.2. This approach is discussed in the following sections 

in greater detail.

6.5.1 Bipolar Coordinate System

Bipolar coordinate system is a  body-fitted coordinate system in which two 

coordinates maintain orthogonal. It is especially good for problems involving one or two 

circles (cylinders). Cho et al. (1982) and Bau (1984) have shown that this coordinate 

system is perfect for problems dealing w ith eccentric cylinders.

In this coordinate system, the computational domain is bounded by two eccentric 

circles, o f  the inner circle and % o f the outer circle. According to Moon and Spencer 

(1971 ). these variables are related to .r a n d )  by the following expression.

( / ' = / / .  ( f  =<P  ̂ (6.2a. b)

Z .  ' " " * 9  . (  . ,6.3a. b,
cosh rj -  cos <p cosh ij -  cos <p

h = hy= K  = ----  — :----------. and  r .  (6.4a. b)
cosh tj -  cos (p (cosh q  -  cos ç ) '

where
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Figure 6 .1 The coordinate systems for an eccentric porous journal bearing.
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Figure 6.2 The computational domain for an eccentric porous journal bearing.
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P = sinhrj^, (6.5)

is a scale factor in the bipolar coordinate system. In Eqs. (6.4), /i, and g„ are the scale

factors and the diagonal components o f  the fundamental metric tensor with respect to the

orthogonal coordinate component q' (Reddy and Rasmussen. 1990).

Making use o f  the principles in vector transformation between two orthogonal

coordinate systems, the following identities between the Cartesian and bipolar coordinate

systems can be derived.

\ -  cosh ncos(p . sinhnsin<p .
e , = ------------   e ----------------e . and (6 .6a)

cosh rj -  cos (p cosh rj -  cos <p

s in h r js in ç  . \ -  cosh q cos <p .
cosh  7  -  cos <p '' cosh r] -  cos (p

= -r - ^ — ---------------:— -— • (6 .6b)

In a bipolar coordinate system, is generally chosen to be greater than 7^. 

These two values mark the inner and outer limits o f  the bipolar coordinate system. By 

varying these two values, the coordinate system can produce three distinctive 

computational domains as shown in Figure 6.3.

(a) Setting 7  ̂ to zero implies that h is infinite. In this case, a bipolar coordinate 

system produces a computational domain between a circle and a line as shown 

in Figure 6.3(a). This configuration is best used for simulation o f the 

transport phenomena o f buried heated pipe (Bau. 1984; Cheng and Lai. 1997).

(b) If 7  ̂ has the same sign as 7^. it generates a computational domain between 

two circles (a smaller circle corresponding to 7 , and a larger circle 

corresponding to 7^, as shown in Figure 6.3(b)). This configuration is the 

most suitable for eccentric annuli. This configuration has been employed in
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(a)

3

(b)

(c)

Figure 6.3 Three computational domains in the bipolar coordinate system.
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the study o f  pipes insulation, heat exchangers, and eccentric solid journal 

bearings (Himasekhar and Bau. 1986).

(c) If  rjf, has the opposite sign as 7  ̂ . it generates a computational domain

between two separated circles. In this case, as depicted in Figure 6.3(c). the 

sm aller circle is no longer inside the larger circle. This configuration can be 

used to study bio heat transfer. For example, the two circles are the blood 

vessels whereas the computational domain represents the tissues.

6.5.2 Governing Equations

As shown in Figure 6 . 1. the Journal surface and the interface between the fluid 

and porous layers are eccentric. However, this interface is concentric with the housing 

surface. To fully describe the configuration, the values o f a. h. c. and e are prescribed.

For a Boussinesq fluid, the steady-state invariant forms o f  the continuity, 

momentum and energy equations are

div  = 0 , (6.7)

Jiv  ( fu, ) = - /5  grad  T ^ ^ g ê .  +vV-(o^. and (6.8 )

c//v(z;i;)=a,v-7;. (6.9)

where +«^i é , . and (6 . 10)

<y, =6), ê. = ( c » r / l I  j ê . . (6.11)

Here, only the z-component o f  the vorticity is considered because the .v- and \ - 

components o f  vorticity are zero for any two-dimensional flow. Recognize that the actual 

vector notation for stream function is given as
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y  = g r a d y /x ê . .  (6.12)

Equations (6 .8 ). (6.9), and (6 . I l )  can be expressed in terms o f the bipolar polar 

coordinate system using the vector operators that Moon and Spencer (1971) have 

compiled for the bipolar coordinate system. The following identities are adopted from 

their work and have been simplified for two-dimensional problems.

cosh rj -  cos Ç (g ra d  0  =
. Ô0 . 60

div E =
[cosh q -  cos(p)' ’  6 6 r 4  ]

f dq , cosh q -  cos (p ^ 6(p ^coshq -cos(p  ^

curl E = ê„
cosh q -  cos (p cE. 6E^

V - 0  =

dq> 6z 

[cosh q -  cos (p)'

6E^ cosh q -  cos ç  cE.
ÔZ

^ 6-0  6 - 0 ^

cq

f- d q ' d<p'

where is a scalar and £  is a vector defined as £  = E^ê^ + £ ,ê ^ .

The governing equations for the porous layer are

div I ] = 0 .

divicoÿ-, ) = ~ P  g r a d T ^ x g è .  + — V‘<y,, and

(6.13a)

(6.13b)

. and (6.13c)

(6.13d)

(6.14)

(6.15)

(6.16)d i \ \E  r , )  = a ,v '7 ; .

Since this layer is concentric, it is more appropriate to use the cylindrical coordinate 

system to formulate the governing equations. Reddy and Rasmussen ( 1990) and Moon 

and Spencer (1971 ) have listed the appropriate identities for this case.
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Recognize that there are six variables, namely y/i, yc, <y/, co:, T/. and T;, in the 

four governing equations presented above. Hence, two more equations are needed to 

make this problem well posed. These tw o additional equations are the definitions o f  the 

vorticity in terms o f  stream functions for both layers. For the fluid layer, it is given in Eq. 

(6 11) whereas that for the porous layer is given below.

L). = ü). ê. = {curl l \  ) • ê . . (6.17)(O,

6.5.3 Boundary and Interface Conditions

The dimensional boundary and interface conditions for the problem are given as 

follow. Here, the boundary conditions are prescribed and U = m a .

On the surface o f  the journal.

n = riu- = 0 - = T' . and =7},. (6.18a. b. c)

On the surface o f  the housing.

r  = c . = 0 . = 0 • and T, = T, ■ (6.19a. b. c)

On the interface between the fluid and porous layers. 

rj = or r = h .  = u , . . »«,!=««:• (6 .20a. b)

r, = r , . P^= P̂  . (6 .20c. d)

7J = r , . and = q . . (6.20e. f)

6.5.4 Method o f Solution

To reduce the governing equations presented above, suitable definitions o f y/t and 

y/2  must be predetermined using Eq. (6.12). With these definitions. Eqs. (6 .8 ). (6.9).
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(6 . 11). (6.15), (6.16). and (6.17), as well as their boundary and interface conditions, can 

be greatly reduced to the stream(unction-vorticity formulation (Gosman et al., 1977).

Algorithm outlined in Chapter Four can be adopted for this extended work to 

solve for the values o f  y/i. y/:. eo/. co:. T/, and Tj. Similar to Chapter Four, the 

employment o f  imaginary nodal points in this study is mandatory. However, unlike that 

in Chapter Four, a more complicated derivation, which involves interpolations, is 

anticipated due to the fact that the governing equations for fluid and porous regions are 

expressed in different coordinate systems.
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APPENDIX A 

DERIVATION OF PERTURBED BOUNDARY CONDITION

Taylor's series expansion is given by

Using above expansion, the velocity at R = (a/h) -r £cos ûcan  be expressed in the 

following fashion.

d r
V\ =1 ' +■ ( f c o s ^ )  + ... (A.2)

u hdR

Recall that the solution is assumed to have the following form

V = v ,+ £ c o se

Substitute equation (A .3) into equation (A.2) and apply the boundary condition. T 

= I at R = (o/b) * ecos Û, one obtains.

 ̂= [^ o L ,+ ^ c o s ^  r ,L ^ + . . . ]+  g cos g [ r '„ L  ^+.ccos6> (A.4)

Here, the prime represents the partial derivative with respect to R. Equation (A.4) can be 

arranged to give.

I = Vo+£cos0 {l\ + r \ )  + . . . .  (A.5)

Alternatively, the same expression can be obtained as follows. Substitute the 

boundary condition into equation (A .3) to obtain

• = ^ o | , + ^ C 0 S ^  (A.6)
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Now, expending the velocity terms using Taylor's series expansion, one obtains

* “  (^o L /.  ̂^ c o s0  + . . . |+  fTCos^^l^l^ ^ +1^ 1̂  ̂£rcos0 + . . . j  + _ (A.7)

Collect the terms o f the same order o f 6̂ and rearrange the terms, one yields

1 = To+ é:cos0  (F 'o + f ')  + . . . . (A.8)

Apparently, equations (A.5) and (A.8) are identical. This serves as a double

check for the correct expansion o f  V a iR  = a b .
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APPENDIX B

MATHCAD CALCULATION FOR FORCED CONVECTION

This appendix presents a sample o f  worksheet that performs the calculations for flow and 

temperature fields in Chapter Two using Mathcad 2000 Professional. Cl986-1999 

MathSoft. Inc.

Couetter Flow In Cylindrical Coordinate System  

Note»:
layer 1 ; fluid layer
layer 2: porous layer (Brinkman’s  model)

Governing Parameter*:

Inner radius

Interface radius 

O uter radius 

eccen tria ty  ratio

a s 1

b s 1.5 

c s 2 

E  s  0.1

D arcy num ber o a  ^ I o’

Bnnkm an num ber Br = i

T herm al conductivity k = I
ratio k ,/k j

Plotlno Parameter»:

0 s 90 deg

i (I r  d ) .. I
b b

d ;= 0.05^1

j  := 1,1 -  d.. — 
b

(») Calculation for the velocity field

Decletion of Conetent* and Function»:

n := KO(y) lo[^y -^j -  Ko(^y lo(y) 

h := y / k O ^ - / j  l l(y)   ̂ Kl(y) lo|^y~
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^  := (a“ b-) Il -  ( a ' -  b‘ ) l2

£| := — — ^ ( a  -  b ) f |  -  (a^- b) li  J 
I3-

f g  :=
[(a“ -  b") f3 l'4 -  b"*J I’j - [ ( a “ ^ b") f] I 4 f  b"*j I'l

a l'3‘

Fif«t Leading T#nn# In th# Valocitv Field

vlO(r) :=
a b

( ||-W
n + (2

v20(r) := —— — j  Kofy—]lo(y r) -  lof y — ] KO(yr)t'3 V I b ; b ;

Checklna

i  = I

\ 10(11 = 0.lg3 — vlO(/-) = 
d/

-1.92-4

\20(I) = 0.183 — v20(/) = 
d/

-1.924

Second Leading Tenn» in the Velocity Field

V I l(r) := -I4 (I'l - l2)r-

v2l(r) := 2 q  ^KO^y -gj I0(y r) -  lo |^y~j KO(y r)

Checklna

/ . := !

v l l ( l )  = 0.449 — \ 1 !(/) - -4.716 
(1/

\2 I(I )  = 0 449 — \ 21( /I = -4.716 
(1/

Third Leading Tennm In the Velocity Field

fl * h '
vl2(D := lit (n - t2)r

v22(r) := -2  Ig | Ko| y — lo (y  r) - 10 y — | Ko(y r) 
b y  V b
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Checklna

L := 1

vl2(l) = 0.535 — vl2(z) = -5.629 
dz

v22( 1 ) = 0.535 — v22(z) = -5.629 
dz

General «olution for v ioc ltv  Meld

vl(r.o) := V IO(r) + c cos(o) \ 1 l(r) i- (c cos(o))~ \ I2(r|

v2(r,o) := v20(r)  ̂ c cos(o)■\2 l ( r ) ( c  cos(o))“ \ 22(r)

Normalized Azimuthal Veiocitv Profile

l(i.O)

i i .o )

i.J

(b) Calculation for the temperature field

Declatlon of Conatanta and Functiona:

101 := I0(y)

lOc := I0| y —

120c := (IOc|“ 

III := ll(y) 

1211 -  (II I) '

KOI := K0(y)

KOc -  K0| y -

K20c := (KOcI" 

Kll := Kl(y) 

K2I1 := ( K i l l '
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I3‘

Cj (f| 4- h)'
I7 := -2  a b

6) := ■) u ** 2 a b —  14
*3 (I'l - W'

KRI := (lOc KOI -  KOc 101)* IrtRl ... 
rR

4--y“ RlKR)iK20c (ll(y r ))‘ * 120c ( k I (y r ))‘ J dR ...

fR
-(IrtRl - II -  (KOc I0(y r) -  lOc K0(y R))“ dR ...

J| "

- y "  IrtRl j  r |_K 20c ( l l(y  R))“ -  120c (K |(  / R))‘ JdR ...

( kOc I0(y r ) -  lOc KO(y R))‘ dR ...

2 y '  lOc KOc IrtRl
çR rR

J R ll(y R) Kl(y R ) d R - J  R IrtR| Il(y R) Kl(y R) dR

Brfe 2 k . J ^  - I
\ b J  l a y

F| :=

Fl

1
-Z fe f - l  4. ij 2k I t /—

abC ib
8 Br k

c
k li

F3 := Br

1
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F; =
* ~  F I • — -  Ft- ~  “ 4 Br k

Fô := Br

kH -  - liJ -
b j  Vb,

- ' 4 = )  ' 4 =
t  F| [ - ]  -  F2- [ - 1 -  Fs-iJ 7

First Leading Term# In th# Temtwratuw Field

©10(R) := -Br Q, R '  l | ln<R| ♦ F4

02O(R) := I  ̂ Br ifi 2-k ln(R) I -  I - I f  FI I klrtR) -  It̂  —
a '  b‘

- 4  Br k  — F(R)

Checklna

z:= 1

010(1) = 0.648 —01O(z) = -2.069 
d/

02O( I ) = 0.648 — 02O(/) = -2.069 
dz

Second Leading Terms In the Temperature Field

01KR) := -Br l7 R ' " -  I :  NR) ^ F3

02KR) := Br -2-li ,-f-j + I7 2 k NR) ♦ I -

-F'2-^kNR) - ' 4 ] ]  * * F(R)

Checklna

z := 1

011(1) = 0.704 — 0 1 1 (z) = 
d/

-1.544

021(1) = 0.704 — 0 2 1 (z) = 
dz

-1 544
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Third Leading T#nn* In th# T*mo#r#tur# Field

0I2(R) := -Br tj R*"» F5 NR) ^ Fô 

022(R );=B r 3 - 2   ̂ S)

4

2 k NR) ^ I -  I -  I

F5 k NR)
■ '{b]) - 4 Br k 2  a  b  -  .  I4 '  

•3
F(R)

Checklno

z:= 1

012(1) = 0.253 — ©I2(/) 
dy.

= 1.308

022( 1 ) = 0.253 — 022(/.l
d/.

= 1.308

General tolutlon for temoeriture field

0 l ( r . o )  : =  0 1 0 ( f )  c  c o s ( o ) - 0 1  l ( r )  +  ( c  c o s ( o ) ) ' 0 1 2 ( f )  

0 2 ( f , O )  : =  0 2 0 ( f )  -  E  c o s ( o ) - 0 2 1  ( f )  +  ( e  c o s i o ) ) '  0 2 2 ( f )

Normalized Temperature Profile

0 .5

0 .8

i.j
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APPENDIX C

DERIVATION OF INTERFACE CONDITIONS

The interface conditions between the fluid layer and the porous sleeve must 

satisfy several fundamental physical laws. Across the interface, the mass, the tangential 

velocity, the stress, and the pressure must be conserved for the flow. For the temperature 

field, the local temperature and its flux must balance from both sides o f  the interface. 

Rana (1977) and Rana et al. (1979) have introduced and successfully employed these 

conditions.

(a) Conservation o f Mass across the Interface

Under the steady-state formulation, the conservation o f  mass for an 

incompressible fluid requires that the radial velocity components must be equal across the 

interface. Mathematically, this means

(C .l)

In terms o f  the dimensionless stream function. Eq. (C. 1 ) can be expressed as

1 ÔH'

R e e

Eq. (C .l)  can be further simplified to

R e e

e ^
e e

d 'f '
e e

or

(C.2)

(C.3a. b)
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For simplicity, the constant o f  integration in Eq. (C.3b) has been chosen to be 

zero without the loss o f  generality.

(b) Continuity o f  Tangential Velocity Components across the Interface

Physically, the tangential velocity components from both the fluid film and the 

porous sleeve are expected to be the same. This condition leads to the continuity of 

azimuthal velocity components given as

In terms o f the dimensionless stream function. Eq. (C.4) can be expressed as

a y
dR

a y
ÔR

(C.5)

(c) Continuity o f  Shear Stress across the Interface

The continuity o f  shear stress across the interface is given as t , = . In terms of

velocity components, this interface condition can be expressed as

- / / ■
dr cr

(C.6)

In the normalized form. Eq. (C.6) becomes

a i:,

ÔR
dV„
dR

(C .l)

Recognize that the dimensional vorticity for both the fluid and porous layers is 

given by

0,. +
r dr r dG

(C.8)
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The corresponding dimensionless form of Eq. (C.8) is expressed as

(C.9)
R ÔR R 0 0

Eq. (C.9) can be specifically expressed for the fluid and porous layers, 

respectively, to read

Vo 1 d V ,

R , dR , R d 0
. and

1 dV,

R r r R d û

(C.IO)

(C .ll)

Subtract Eq. (C.l 1 ) from Eq. (C.IO) to yield

K , f t ; dV, 1 dV,
+  I a t '.

, a r R dû , R dO
(C .I2)

Along the interface. R = I and Eq. (C .l2) is then simplified to read

ÔI-
dR

c K
dR

dV.

d 0
+ ■dV

dO
(C.13)

According to the interface conditions (a), (b). and (c). the terms in the right hand 

side o f  Eq. (C.13) cancel each other and lead to

or ^ , = ^ r  (C .14a.b)

(d) Balance o f  Pressure across the Interface 

The continuity o f pressure is given as

(C.15)

To make use o f  this piece o f  information, it is helpful to introduce the concept o f 

total pressure.
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P'  ̂ + 4 ) . (C.16)

p > K -

Combining Eqs. (C .l). (C.4). and (C .l5). it can be deduced that

(C .I7)

Recall that the general forms o f r- and 0- momentum equations for both the fluid 

layer and porous sleeve are given by

B r ^  r Be
1 BP p V Bct).

r p B r p ' r  BG
V

and (C.18)

Bu 1 BP p  Bct).
■ + —  S o + v

A:""
(C.19)

' Br r BO r p r  BO p^ ""  Br 

For the fluid layer, the term s in the square brackets in equations (C.18) and (C. 19) 

are excluded. These terms in the square brackets are only included in the momentum 

equations for the porous sleeve. Since

and
r  Br r BO

(C.20)

u.co. = + ‘̂rCUr
' Br r B O '

the general r- and 0- momentum equations can now be expressed as

r-momentum:
Br

B
Br

2

. A .
+ u.>

Br
-u„û). - — g, -

A

I' Bco.
r BO

A

1 Bu;
+  -  +  ■

Bu;
2 Br 2 Br

p  Bco.

A :"'

V

(C.21)

(C.22)

(C.23)

B
Br

P  ̂  ̂ \ p  V Bco. I'
— + -  Mr 

. A  2 ' % / ' - r
(C.24)
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V

~~k “'
. and (C.25)

^m om entum :-------
r Ô0 v A y r Ô0 r 00 A dr

V
(C.26)

l A
r d 0 vA  /

I dll' 1 dll', p  d(o.
+ ----- — + -----— + W,(U: = —

2r 06» 2r 06» A 0r
(C.27)

1 0 

r 06»
'  p  1 / . p  do). V

+  11 ,0 ). =  + r  _ 
A

(C.28)

1 0 r"  p  dû).

The derivative o f the total pressure is given as

V’
 II „

K

dr r d 0

(C.29)

(C.30)

Integrating (C.30) from point (l.O) to (I,27t) along the interface, one obtains

r
L ,  Sr 1 . 0  B e

ci0. (C.31)

Now. integrate Eqs. (C.25) and (C.29) and substitute into Eq. (C.31 ) to obtain

f p  do).

A
— —  II „ r d 0 . (C.32)

Since = P° . one obtains

r p  do).
—  g„ + v ^ - i i ^ o ) ^  

.A  àr
r J O .  (C.33)

lo I A

Since and g^are independent o f  the layer structures, it is acceptable to write 

the followings.
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—  gr = — gr and — go = —  g e
A / A r A / A

Substitute Eq. (C.34) into Eq. (C.33) and simplify, one obtains

r
dû). dû).

1
r  dO = 0 .

According to the interface conditions (a) and (b). Eq. (C .35) becomes

r dû). dû).
\

V
dr , dr P )\ 1

- u . ( û ) , ,  J  +

Introducing dimensionless parameters.

V’ =-
a  / h

Eq. (C.36) becomes

f Pr
( d Q ,  d Q \

dR dR h

Recall from (C .l4b), Eq. (C.37) is now further simplified to  become

f dR dR Da
R d o  = 0 .

(C.34)

(C.35)

r d 0  = 0 .  (C.36)

R d O ^ O .  (C.37)

(C.38)

For the integration in Eq. (C.38) to be true for all values, the  integral must be zero. 

As a result, it can be concluded that

dn. dn„ i:
dR dR Da dR dR Da

(C.39a. b)

(e) Continuity o f Local Temperature across the Interface
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Across the interface, the continuity o f local temperature is given as T, = T . In

terms o f  the normalized temperature, this interface condition can be expressed as

0 ,  = 0 ^ . (C.40)

(f) Continuity o f Heat Flux across the Interface

The continuity o f  heat flux is given as q,  =q^-  This is then expressed as

(C.41)

In terms o f  the normalized temperature. Eq. (C.41 ) can be expressed as

c 0
dR

k ,  0 0
, k,  dR

(C.42)

Based on the above derivation, the interface conditions and their equivalent 

expressions in terms o f  the dimensionless stream function and temperature are 

summarized as follows

(a) Conservation o f  Mass across the Interface

(b) Continuity o f Tangential Velocity Components across the Interface

d r
dR

d r
dR

(c) Continuity o f Shear Stress across the Interface

(d) Balance o f  Pressure across the Interface

(C.3b)

(C.5)

(C.14b)
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en ,  en^
ÔR ÔR Da

(C.39b)

(e) Continuity o f Local Temperature across the Interface

<9, = 0 p ,  and (C.40)

(f) Continuity o f  Heat Flux across the Interface

Ô0
ÔR

k, Ô0
f k,  ÔR

(C.42)
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APPENDIX D 

FINITE FOURIER COSINE TRANSFORM FROM 0 TO 2n

The table below is a brief collection o f  the transformed functions used in this 

study. In general, the integration in Eq. (D. 1 ) gives the transformation o f  other functions. 

No tabulated result is presented for the inverse transform because the calculation 

involving Eq. (D .2) is straightforward.

Integral Transform:

F { 0 (  r.cr )} = 0 (  r . n . à ) =  \c o sn ( à - a  ) 0 (  r.cr ) d a . 

where n is an integer.

:,T

f (D .l)

0 ( r , a ) n 0 ( r .n .à  )

I 0 2 n

otherwise 0

g(r)
0 2Kg(r)

otherwise 0

cos( a  ) / 71 cos( à  )
otherwise 0

sin( a  ) I 7t sin( à  )
otherwise 0

cos( a  )sin( a ) 2 7Tcos(â )s in (à  )
otherwise 0

0 K

c o s '(a  ) 2 Kcos ( a ) -  —

otherwise 0

0 7t

s in '(a  ) 2
71

-7TCOS'(a ) + —

otherwise 0
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Inverse Transform:

0 (  r .cT i =  _ , ____
l i t  n

0(r.<y ) = ^ 0 (  r .0,(7) + —'^^0(r.n,CT) (D.2)
n=l
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APPENDIX E

MATHCAD CALCULATION FOR NATURAL CONVECTION

This appendix presents a sample o f worksheet that performs the calculations for natural 

convection in Chapter Three using Mathcad 2000 Professional. ©1986-1999 MathSoft. 

Inc.

Natural Convection in Partially Porous Concentric Annulus 

Notes:
layer 1 fluid layer
layer 2 po rous layer (Brinkman’s model)

Govemino Parameters:

Inner radius 

Interface radius 

O uter radius 

Perm eability

a := I 

b := 1.5 

c :=2 

K:= Dab*

Darcy num ber

Rayleigti num ber

Thermal cond 
ratio
Prandtl Number

Da := 10 * 

Ra := 0.5 

k := I

Pr:= 20(M)0

Piotina Parameters:

0 := 30dcg

a a . ,
I -I- d . .  I

b b

d:= 0.051 I - -  
b

j := I . I " d .. —

Declarations of Constants and Funcitons

For simpliaty, we w nte k = k1/k2. ab  = a/b. cb = c/b. Inab = ln(a/b). Incb = ln(c/b). 
101 =lo(y). K01=K(j(y). I ll = l,(y ),K 11  = K ,(y ). 

lOcb = lg(y C / b ) .  KOcb= Kg(y c/b). Mcb = l,(y c/b). K icb  = K ,(y c/b)

, a ab := — 
b

q := (k lncb -  Inab)

Inab := In(ab)

Incb := In(cb) 

I
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IO!:=IO(y) KOI;=KO(y)

lOcb := lo(y cb) KOcb := K(j(y cb)

l l l := l l (y ) Kll :=Kl(y)

Ilcb := ll(y cb) Klcb:= Kl{y cb)

2
I2|\I := Idx) -  — IKx) 

\

2
K2|M := KOIM — Kl(x)

X

1 2 1 = 1 0 1 -  III
y

K2I := KOI -  -  K ll
Y

I2'l.= y III -  2 121 K2I = -y  K ll  - 2 K 2 I

lOcb := I0(y cb) Ilcb := ll(y cb)

KOcb := Ko(y cb) Klcb:= Kl(y cb)

First Leading Terms in Twniierature Field

01()(R) := q (k Incb -  ln(R)|

02O(R) := q (k Incb -  k ln(R))

01 "(il 

02(Hj)

First Leading T e m p e ra tu re  Profile

0.5

0 120.8

i.J

Checkina

inner ;= ab 0101 inner) = 1

outer := cb 0201 outer) = 0

interface := 1 0101 interface) - 0201 interlace) = 0

k 1 ----------- 0101 interface) ] -  ------------02IXinterface) = 0
V  dintcrfacc J dinterface
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Z6Z

(ICaq.llHc -  IlHq IcHb) I.ID + 
( i i «3 i t a n -  i ta a  i ia c )  iJq + (icas i iaq  -  n a 3 icaq).! ic IP" ItV

( I c V q . I c a n  -  I c a q . l t V t )  I-I3 + 

( i t a .1 i cVc  -  i tVD i : a c )  1-iq ( i : V )  i c a q  _ i t a a  i c V q j . u c ! P = : | i a
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B21:=dl an (bBn CA2I - bA21 CBIl)  ̂ (a^il cbh - 3B11 ca2i) 
+ ( a a i l  bA21 - 3A21 b a i l )

A ll := -B IU  III A2I  ̂ KII B2U  T2I

Cl I := —-— AI I -  — ^Inab + — j  Bl I  — ^ In a b  l-TI I

Dl I :=  A11 ■<- Bl I f  f Inab —  |T I  I8 V
-  I - I I

C2I := — lücb A2I ^   KOcb B 2 I  1 Incb - -  | T2I■) 7 7 I 7

D2I; = - — Y * lOcb -  cb Y " Ilcb A2I cb" - I - 2 cb"
 Y KOcb -  cb Y KIcb B2I   P2IV - J ■*

n i l ( R ) ;= A I I  R * BU R '  ' -  Til R ln(R) 

Q2KR) := A2I I |(y R) -  B2I K|(y R) -

YIKRi ;=CII R -  Dll R ’ -  [ —  -  * —  ln(R)l R'’ -  —  R ln(R)
I 8 32 8 J 2

4'2I(R) :=C2I R -  * A21 Y ‘ II(y R )* B 2 I  y ‘ K|(y r ) * R ln(R)

First Leading Vorticity Profile
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Checking

interface := I n  11( interface ) -  0 2 1( interface ) = Ü

dinterface 
I d

-O ll( interface I

Da dinterface

dinterface 

- 4*21( interface)

- 0 2 1(interface) ... = 2.217» 10 15

First L ead ing  S tream  Function Profile

0

~410

“4
- 2  10

-4
- 3  10

0.8 1.2

I.J

C hecking

inner := ab Y 11( inner) = 0

-------Y 11( inner) = 0
dinner

outer := cb 4*21( outer) = 0

------- 4"2 It outer) =0
douter

interface := 1 4'11(interface) -  Y2Kinterface) = 0

------------4'21(interface) -  ------------4*21( interface) =0
dinterface dinterface
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Second Leading Ternit In Twnpwitur» FleM

n r : = - i 2 ^ . q r21';= k D a c o s (o )q

an  -

b'f I : =

,nab -  - f  I n a b - '
2 j  4 4 / 8

8 V 32
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3 ab" ab^ 
\ 1 ~ ~ A  T
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, 1 % ' T ' T
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1  In eb .i •r2i'

c' n : = r i r I f  I ♦ —
Da

f Incb - _L £Ël i  _L
Da 4 2 Da

T2r

B i r := d l a'ri (b,\2 l CB2 I -  bB21 c,\2 l)  ̂ b 'n  (aB2 i ca 2 I -  3A2|CB2l) • 
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B21':=dl a ' r r ( b B ! l  ca21 "  b , \ 2 lCBI l )  ^ b' r ,  (3^21 CB| |  -  ^Bll  CA2l) •• 
* c ' r i  ( a B i i  b , A 2 l  - a ,\21 b f l i i )

A i r  : = - B i r ^  III A21 ' ^  K1IB 2 I ' -  r 2 i'

c i r
1

-ab” 1 ( 1 A
------- A i r Inab - — -

4 2 I 2 )

4 -, 4
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----- A 11 - B i r - -----

8 4 8

——f Inab - — i n  r
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C2I :=—  lOcb A 2 r   ̂   K0cb-B2l' -  -  f  Incb .  -  | r2l" ̂ ■> 2 I ■>

D2I': = —̂  Y lOcb -  cb y I Icb A2 I -
/ 2

 y KOcb cb y Kicb B2I -  —  T2I' 
4

act I := -ab + —  
ab

“1:2 1 := k” ab

a| 2i = k” ab 

ab̂
ai-> :=  A II ’ -*- ab

64
Inab” -  Inab 

8
B i r *  —  Inab Cl r - D l l ' -  —  a b n i ' -  —  All" 

2 2ab 128 64

a b 'f i î î î ^ - - ^ ! . r i r
64 128,
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bpii :=0

bt2I - cb

/•cb
bp2:=cb  y I t.  ̂ IO(y z) dz A2 l ' -  cb y

/•cb
/  "" iCĈ y z) dz B 2 r * -— Incb C 2 I '  D2I'

2 2 cb

-cb.lncb'-!ncb.r,,.

cpii := -!-!

CH2I = - I

CF2 I := k‘ -  I

ciT := — /\l r  Bl I’» —Cl I  D l l ' -  n  I  A 1 1  n  r  -  y 101 /\21 ...
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» y '^  KOI B2 I ' -  -  C2 r +  -  D2 IV -!• r 2 l'
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aF2 (bFII CF2I -bF:2l c f i i ) * bp2 (aF21 c f i | -  aFll CF2l) ■■ 
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■> ■> 3 I
Ell;= -F ll  * r  E2I i- k’  F2I   E l l '  All '

128 64

01 UR) := q .  i H L ^ L ^ . B i  r . R .  5 1 . R  ,n,R, -  
64 8  2 2 R

+ EI I R * —  + f I  r iF R ^
R I 64 128 j

02l( R) := q k“ /\2F ia<L 5iJ R .  « I V ,
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Second Leading Temperature Profile

~ 5
2 10

0 ll(i)
“ 5

©2 l(j)

" 5- I  10
0.8

i-J

Checkina

inner := ab 01 It inner) = 0

ouler := cb 02 It ouler ) = 0

Interlace := 1 01 It interlace) - 0 2 It interlace) = 0

k 1 ----------- 01 It interlace) -  ------------ 0 2 It interlace) = 0
V dinterface J dinterface

Second Leading Temis In Velocity Field

ab
a’r~) :=  A11 -  ab

64
Inab" -  Inab 

8

. f b . A , , _ a b V ^ _ - l | n i
64 I 64 128

Bl I  Inab C11 '*■ Dl I  ab FI I
2 2 ab 128

b't b -^ r2 = -cby  I
cb rcb

z  ̂ Kl(y z) dz A2l * cb y  ̂ z  ̂ KO(y z) dz B2I - lncb C2l  .. 
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F i r := d 2

F.2r=d2

F2r:=cl2

“V2 (bH2| CK21 -  bp2l CE2l) ^ b'n> (aF2l CE2I " “E21CF2l) • 
■Kc'r2 ( aE2l  bp2l  - a F 2 |  bE2l)

a ' n  (bF2l CFII - b F I |  CF2 l ) ^  b'r2-(aFI 1 CF2I -  aF2I ‘•'Fl 1) • 
+ c'r2 (aF21 bpii - apii bF2i)

a'F2 ( b p i l  CE2 I -  bE2 l c p i l )  + b ' n  (aE2 l c p i l  '  a p i l  '-■e2 | )

+ c'r2 ( a p i l  bE2 l - 3 E 2 I  b p i i )

Ell = -FII + k E 2 IV k F2 l ' -  —  r i l  r —  A ll
128 64

\ |  : =■
n i  n r

4 Pr

. :=  -L. ^ " ^ " 't A U j r i i  _ 3 n m i-  _ j..,i„(o) r i r - ± c o ,(o )n i
'  Pr I 4 16 j l6 4  64

A ll  A i r
—  (Aii r i r -  3 A i r  r i i  ^ n i  r i r )

in(0 )■( — AI r  — Bl r   ̂ —  n  r  | cos(o )■[ —  a  i i — — r i  i , .  
V 64 8 128 j  1 64 128 j j

I

5 B i i . r i r - B i r . r i i  ^ c i . r i r - c i r r i i  
Pr I 2 8

-4 sin(0 ).| ^  ^ cos(0 ) . f - ^  -  ^

3 . A i i . B i r - 5 . A i r . B i i _ ^ , , ^ , , . ^ ^ , , , ^ , , _ ^ B i m r . 5 . B i r n i ^ , , ^ ^ , ,  
Pr I 8 32

sin(o).( -------.► El 11  ̂ c o s ( o )  EI I'

X? : =
Bii B ir-  Dll r i r -  D irrii q

Pr
-  (sln(o) D i r  * cos(o) Dll)

I
- A l l  D l l ’ -  A i r  Dll

B I I B i r
q sin(o).[——  » Fll I -  cos(0 ) FI I’

\9  : = ■

v - B i i c i r >  B i r c i i - D i r r i i  y 

BII D i r -  BII DII
Pr

>1 := q k y  ̂ (-sin(o) A2I’ + cos(o) A2l)

>2 := q k Y  ̂ (sin(o) 1)21" -  c o s ( o )  B2|)

, -sin(o) r 2 l’  ̂ cos(o) F2 I 
> 3 := q k-----------------------------------

>4a = - p  A2 I F2 r >4b = - 7  B2 i r 2 r

> 4g : =  -q k
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>5a = -y A21 C 2I'

k sin(o)- E21 -  I 4. cos(0 ) E21

)6a = -  (A2l r2 l '+  A21T2I)

>7a = A21C2I'+ A21M C2I +
T21

v g : = r 2 l  T 2 r - q k
sin(o) D2I-+ cos(o) D21

y 5b := Y B2I C 2 r

y6b = -  (B21 r2 1 '^  B2IT2I)

r ii
>7 b : =B2 I  C2l*^ B2I*|  C2I -

>ga = A21 (y* ' r 2 l '  - y D2I") -  q k y '   ̂ sin(o) A2I' 

yqb :=-B2l (y‘ ' E2I -  y D2I") + q k y*  ̂ sin(o)-B2r 

yvc := 4 k s i n ( o ) - ^ - 2 ^ F 2 l j  - c o s ( o )  F21’

MOa = A2l (D21’- y ' ‘  r 2 r )  -  A2f  (d 2I -  y ' "  F2l)

M o b  = B 2 F ( D 2 F - y ' ‘  F2I' ) -  B2f(d21  -  y  ‘ F2|)

M l  := -D2I  F 2 r 4  D 2 I T 2 1

rR y-R
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kl
384 

M

■Inab'
-25x1 \2
4608 384

■Inab
415x| 25x2 '3

110592 9216 " 384
■ab'’ ...
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/•cb
kAC:=—  I z ' l2(yz)dz

■'l 

|-cb
=  —  J  z K2(y/)d /kBC

kcC ■= — 
4

'cb •cb

\ ( r  ^ { r  ^
L 12(y z) y /(>) K2(y y)dy dz - z ' K2(y z) y Z(y) I2(y y)dy dz
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1 I
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4 J

rcb
z  ̂ I2(y z) dz

fcb
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■* ■'l
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•cb
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a A:: :=

“B22
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1
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CBI2

c,\22

<-'B22

:= -2  -  2

= 2121 (y III -  2 121) 4- —  kAC- —  kAD 
Da Da

:= 2 K 2 l- ( - y  K I I - 2 K 2 I )  4- —  kBC- —  kBD
Da Da

ct3 := 

(J3:

7 X| 5 x2 '3 M 

54 36 3 32 16 4 4 4

X5 xy xq  ̂ f -13 X, X]

216
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X3 X*
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A22 := il3-
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4- CIO (a ,\2 2  ^82 2  ~ 3B22 ’̂A22)

“k3 (^822 CB12 “ ^812 C822> 4- b|0 (“BI2 cb22 '  3822 CBI2) • 
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Y23R) := ( c 2 2  R“ + D22 R '  ' )  ... 
rR

4 R*

■'l
rR

B2 2 + I (y / 'ey) I2(y y))dy 
I

K2(y /) ...

A 2 2 - J  (y Z(y) K2(yy ))dy I2(y /)

d/ ..

4

B22r (y Z(y) l2(y y))dy 
•'lr

A 22- f  (> Z(y) K2(y y))d> 
■'l

K2(y /) ... 

I2(y z)

d/

■'l

Second Leading Vorticity Profile
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Checking 

Interface := 1 n i 2(interface) - Q22(interface) = 0

dinterface 
1 d

-0121 interface)

Da dinterface

dinterface 

- Y23 interface)

-0221 interface) ... = -6  014 . 10 14

302



Second Leading Stream Function Profile
8 10

6 lo”’

2 I0~’

0
1.20.8

I . J

Checkina

inner := ab YI2linner| = 0

-------4'l2(inner) =0
dinner

outer ;= cb 4'22( outer ( = 0

-------4'22( outer) =0
douter

interlace := 1 T 12(interface) - 4̂ 221 interlace) = 0

----------- 4'22(interlace) - -------------Y22(interface) -  0
dinterface dinterface
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Composite Velocity and Temperature Field»

T K R l  - R a  Y IKR)  + Ra‘ 0 

' f2(R) := Ra 4'21(R) f  Ra‘  0

01(R) :=0IO|R)  4- R a 0 l l ( R )  

02(R) :=02O(R) Ra02 I(R)

T em p era tu re  Profile

0.5

0.67

S tream  Function Profile
0

“ 5- 5 1 0

“ 4
- I  10

“ 4
-1 .5  10

1.330.67

i.J
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APPENDIX F

ADDITIONAL PLOTS OF FLOW AND TEMPERATURE FIELDS

FOR MIXED CONVECTION

This appendix shows plots o f  some additional runs for Chapter Four. These plots 

are not included and discussed in the chapter because the effects o f  these cases are not o f  

primary interest.

305



Pr 10 10" 10

Ra

10

10

10

Figure FI Flow fields o f  a concentric partially porous annul us space for h = 1.50. Da 
=  l ( r \  k,/k: = I.O. and Pe = 10 (A H '= 1.0).
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Pr 10 1 0 “ 10

Ra

10

10

10

Figure F2 Temperature fields o f  a concentric partially porous annulus space for h
1.50. Da = K f'.  k//k: = I.O. and Pe = 10 { A 0  = 0.2).
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Pr 10 10 10

Pe

10

10

10

Figure F3 Flow fields o f  a concentric partially porous annulus space for h = 1.50. Da 
= I or-'. k ,/k: = I.O. and Ra = ! ( f { A ^ =  0.5).
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Pr 10 10 10

Pe
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10“
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Figure F4 Temperature fields o f  a concentric partially porous annulus space for h
1.50, Da = 10"*. k//k: = 1.0. and Ra = I ( f  { A 0  = 0.2).
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1 . 2 5 1 . 5 0 1 . 7 5

Pe
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10"
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Figure F5 Flow fields o f a concentric partially porous annulus space for Da = 10"'. 
k,/k: = 1.0. Pr = 20.000. and Ra = 5.0).
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Figure F6 Temperature fields o f  a concentric partially porous annulus space for Da 
!()-'. ki/k: = 1.0. Pr = 20.000. and Ra = U f  ( A 0  = 0.2).
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Figure F7 Flow fields o f  a concentric partially porous annulus space for h = 1.50. 
k,/k: = I.O. Pr = 20.000. and Ra = I ( f  lO.O).
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Figure F8 Temperature fields o f  a concentric partially porous annulus space for h
1.50. ki/k: = I.O. Pr = 20,000. and Ra = lO"' (A 0  = 0.2).
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Figure F9 Flow fields o f a concentric partially porous annulus space for h = 1.50. Da 
= IOr\ Pe = JO. and Pr = 20,000 (A H '= 0.5 for Ra = J 0 \ A H ' 2.0 for 
Ra = J (f.w \d A H '=  5.0 for Ra = 1 0 \
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Figure FIO Tem perature fields o f  a concentric partially porous annulus space for h
1.50. Da = IQ-\ Pe = 10. and Pr = 20.000 ( A 0  = 0.2).
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Figure FI 1 Flow fields o f  a concentric partially porous annulus space for ki/k: = I.O. 
Pe = 10. Pr = 20.000. and Ra = tof' = 10.0).
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Figure FI 2 Temperature fields o f  a concentric partially porous annulus space for ki k: 
= I.O, Pe = 10. Pr = 20.000. and Ra = H f (A&  = 0.2).
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Figure FI 3 Flow fields o f a concentric partially porous annulus space for h = 1.50. Pe 
= 10. Pr = 20.000. and Ra = I ( f  ( A r =  10.0).
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Figure F14 Tem perature fields o f a concentric partially porous annulus space for h
1.50. Pe = 10. Pr = 20.000. and Ra = /O" (A 0  = 0.2).
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Figure F I5 Flow fields o f  a concentric partially porous annulus space for Da = 10"'. 
Pe = 10. Pr = 20.000. and Ra = I O'" ( J V '=  10.0).
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Figure FI 6 Temperature fields o f  a concentric partially porous annulus space for Da 
l()-\ Pe = 10, Pr = 20.000. and Ra = l ( f  (A 0  = 0.2).
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