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ABSTRACT

The bone marrow stroma is composed of a diverse array of cell types that have unique 

functions. Of the different types, the adipocyte is the most abundant. It is not clear what 

purpose adipocytes serve in the bone marrow. They may simply occupy space in the 

marrow cavity or they may play active roles in systemic lipid metabolism and provide an 

energy reservoir in the bone marrow. Marrow adipocytes also appear to contribute 

growth factors and cytokines that directly promote hematopoiesis and influence 

osteogenesis. The enzyme lipoprotein lipase (LPL) is an early marker of adipogenesis and 

its regulation is complex. It is the enzyme responsible for the hydrolysis of triglycerides 

into free fatty acids and the clearance of chylomicrons from the blood. It is regulated by a 

variety of transcription factors. The nuclear hormone receptor superfamily consists of an 

immense number of genes and is accepted as the largest transcription factor family in 

eukaryotes. We determine that peroxisome proliferator activated receptors (PPARs) with 

their ligands induce adipogenesis in bone marrow stromal cells and that they bind and 

activate the LPL gene promoter in vitro. The chicken ovalbumin upstream promoter 

transcription factors (Coup-TFs) are orphan receptors that bind certain DNA direct 

repeats as homodimers and heterodimers with other steroid receptor molecules such as the 

retinoid X receptor (RXR) and are accepted as repressors of other nuclear hormone 

receptors. We determine that Coup-TFs bind the LPL promoter in vitro and demonstrate 

in cotransfection analysis that they act in concert with the PPARy2 and RXRa proteins to 

multiplicatively activate its transcription. Recently, new regulatory proteins have been 

described that affect the interaction of nuclear hormone receptors with the transcriptional



apparatus. We determine that the co-regulators of nuclear hormone receptors SMRT 

(silencing mediator for retinoid and thyroid-hormone receptors) and steroid receptor 

coactivator (SRC-1) help regulate the LPL promoter in conjunction with PPARy2, RXRa 

and Coup-TFII (ARP-1) in negative and positive fashion respectively. Improved 

understanding o f the mechanisms regulating stromal adipocyte differentiation may lead to 

therapeutic interventions that can enhance osteogenesis and hematopoiesis in afflicted 

individuals.
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INTRODUCTION

The bone marrow stroma is composed of a diverse array of cell types that have unique 

functions. It is hypothesized that a single mesenchymal-derived precursor gives rise to the 

adipocytes, osteoblasts and hematopoietic-supporting cells within the bone marrow stroma 

(9,13,42,46,52,143). Of the different types, the adipocyte is the most abundant. While it 

is not completely established what roles bone marrow adipocytes play in the stroma, a 

number of reviews have been written on the subject (42,46,132). Bone marrow 

adipocytes may simply occupy space in the bone marrow cavity. They may also play 

active roles in systemic lipid metabolism and provide a localized energy reservoir in the 

bone marrow (90). Finally, marrow adipocytes appear to contribute growth factors and 

cytokines that directly promote hematopoiesis and influence osteogenesis (67,68). It is 

gradually becoming accepted that the bone marrow adipocyte plays an important role in 

health and disease. With the new interest in bone marrow adipogenesis, molecular and 

biochemical analyses of marrow adipogenesis has begun using both primary bone marrow 

cultures and clonal cell lines (8,42,46) for study. A drawback of primary bone marrow 

cultures is their greater phenotypic heterogeneity. Stromal stem cell clones offer the 

advantage of relatively greater homogeneity, but can present unrecognized artifacts as a 

consequence of the original cloning procedure. The hematopoietic and osteogenic 

literature reports an impressive array of stromal cell lines with over 50% exhibiting 

preadipocyte properties (see Ref. (30) for a comprehensive review). The BMS-2 (bone



marrow support-2) cell has many of the characteristics of a multipotential stem cell in the 

bone marrow stroma. It has hematopoietic support capacity (110), can display osteoblast- 

specific gene markers (33,45), and undergoes adipogenesis in response to a cocktail of 

agonists (methylisobutyxanthine, hydrocortisone, indomethacin, (MHl)) (43) and to the 

thiazolidinedione compounds BRL 49653 and pioglitazone (47). Thus, the BMS-2 cell 

provides a useful model for monitoring adipogénie events in the bone marrow stroma.

The enzyme lipoprotein lipase (LPL: EC 3.1.1.34) is an early marker of adipogenesis and 

its regulation is complex. It is the enzyme responsible for the hydrolysis of triglycerides 

into free fatty acids and the clearance of chylomicrons from the blood. It is an essential 

gene product. In LPL knockout mice, death occurs during the neonatal period due to a 

massive hypertriglyceridemia (21). In man, hereditary deficiencies in LPL activity cause 

extreme postprandial hypertriglyceridemia (151) and increased morbidity due to 

cardiovascular disease (36). Excess LPL activity is also detrimental. Elevated levels of 

LPL expression are found in macrophages of inbred strains of mice susceptible to 

atherosclerosis (114). The LPL gene is regulated by a variety of transcription factors.

LPL is expressed in numerous tissues (36-38,121). Analysis of transgenic mice with the - 

1824 to +187 bp region of the LPL promoter fused to a luciferase reporter construct (44) 

revealed high levels of LPL promoter activity in the murine brain as well as in adipose and 

liver with a low level of activation in the kidney. We believe that the LPL promoter offers 

a useful tool for monitoring adipogénie events in the bone marrow stroma.



The nuclear hormone receptor superfamily consists of an immense number of genes and is 

accepted as the largest transcription factor family in eukaryotes. The peroxisome 

proliferator activated receptors (PPARs) with their ligands induce adipogenesis in cells 

that can proceed along the adipogénie pathway (reviewed in (119) and (51)). They form 

heterodimers with the retinoic acid X receptors (RXR) proteins and bind to DNA elements 

know as DR-Is (6 nucleotide direct repeat with a 1 nucleotide spacer) (88,106,140). 

Ligands for the PPARs increase LPL mRNA levels and adipogenesis in pre-adipocyte cell 

models (reviewed in (119)). These ligands include natural compounds such as certain 

prostaglandin’s and long chain fatty acids, as well as synthetic drugs such as the fibrates 

and thiazolidinediones (119). In preadipocyte cell models, adipogenesis has been 

associated with increased PPARy2 (12,15,16,47,136,137,147), PPARa (12,16), and 

PPARS (2,59) mRNA levels, suggesting that each of these proteins may help regulate the 

proteins activated during adipogenesis, including LPL. mPPARa is predominantly 

expressed in liver, heart, kidney and brown adipose tissue (119) while mPPARS 

demonstrates a high level of expression in brain and fat, with a low level o f expression in 

the liver (119). PPARy2 is predominantly expressed in adipose tissue (15,136,137,154) 

and is a strong candidate as a regulator of LPL transcription.

The Chicken Ovalbumin Upstream Promoter Transcription Factors (Coup-TFs) are 

orphan nuclear hormone receptors that bind direct repeats of AGGTCA motifs with 

spacing from 0 to 12 nucleotides (DR-1 to DR-12) as homodimers and heterodimers with 

other steroid receptor molecules such as the retinoid X receptor (RXR). Coup-TF was 

originally cloned based on its ability to promote transcription of the chicken ovalbumin



gene (107,116,142) and has become accepted as a repressor of other nuclear hormone 

receptors (22,23). It was independently cloned via homology to erb A and called erb A 

related protein 3 (Ear3) (92). Somewhat later, Coup-TFII (ARP-1) was cloned from a 

HeLa cell cDNA library through its homology to hCoup-TFI (141) and from a placental 

library as apolipoprotein AI regulatory protein-1 (ARP-1) (78). Another family member, 

erbk related protein 2 (Ear2) was cloned in the same way as Ear3 (92). In humans.

Coups are expressed in a variety of cell lines (92). Coup-TFs are highly expressed in 

organs such as lung, testis, prostate, skin, intestine, pancreas, stomach, and salivary gland 

(62,85,108) and have recently been shown to be present in adipocytes (11). Coup-TFs 

bind PPAR response elements on DNA and exert a repressive force on the respective 

promoter (3,11,93). With these facts in mind, we decided to test if members o f the Coup- 

TF family could bind the LPL promoter and influence regulation of its expression.

It is becoming recognized that other proteins affect the interaction of nuclear hormone 

receptors with the transcriptional apparatus. Once a nuclear hormone receptor is bound to 

its DNA response element, it either activates or represses gene transcription depending on 

what the cell needs. Transactivation by nuclear hormone receptors can occur through 

direct interaction with components o f the transcriptional apparatus such as TFIIB 

(4,10,60). It is also suspected that other factors can act as bridges between nuclear 

hormone receptors and the transcriptional apparatus. The coregulators of nuclear 

hormone receptors SMRT (silencing mediator for retinoid and thyroid-hormone receptors) 

(18)and SRC-1 (steroid receptor coactivator-1) (104) help regulate nuclear receptor 

action in a negative or positive fashion (for reviews, see (57)). SMRT interacts with



unliganded nuclear hormone receptors to function as adapters that convey a repressive 

signal to the transcriptional apparatus (57,152). Upon binding of ligand, a conformational 

change occurs in the receptor that allows the corepressor to dissociate (57,152). In 

nuclear hormone receptors, there is a carboxyl terminal amphipathic a-helix that is known 

as AF2 (activation fimction-2) (27). When ligand is bound, AF2 serves to trigger the 

release o f corepressor (5,18) and helps recruit a coactivator (6,27,35) such as SRC-1 

which has recently been demonstrated to be a coactivator of PPARy on a PPAR response 

element (155).

This dissertation explores the activation of the adipogénie pathway in the bone marrow 

stroma through the actions of the nuclear hormone receptor family members PPAR, RXR 

and Coup-TFs on transcription directed by the LPL promoter, and the coregulation of 

these actions by SMRT and SRC-1. Improved understanding of the mechanisms 

regulating stromal adipocyte differentiation and regulation of the lipoprotein lipase gene 

may lead to therapeutic interventions that can enhance osteogenesis and hematopoiesis 

and limit atherogenesis.
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Summary:

The thiazolidinediones improve insulin sensitivity in animal models and have 

promise as potent oral antidiabetic agents. To date, their clinical use has been limited due 

to anemia and cardiac hypertrophy. Some compounds of this class have been reported to 

induce bone marrow fat accumulation in animals and this effect could account for the 

observed anemia. This work examines the biological mechanism contributing to this 

phenomenon. The thiazolidinediones, BRL49653 and pioglitazone, induced adipocyte 

differentiation in the BMS2 bone marrow stromal cell line in a dose- and time-dependent 

manner. These actions were further enhanced by the presence of glucocorticoids and other 

adipogénie agonists. The thiazolidinediones increased the mRNA levels of adipocyte- 

specific genes, including that of their receptor, the peroxisome proliferator-activated 

receptor y (PPARy). In contrast, mRNA levels of genes encoding other PPAR family 

members (PPARa, PPARô or NUC-1) were unchanged or decreased. Thiazolidinedione 

treatment of primary bone marrow stromal cells elicited a comparable dose-dependent 

response. Using a polyclonal antibody, PPARy was detected in protein lysates from 

adipose-rich bone marrow. Thus, thiazolidinediones directly regulate bone marrow stromal 

cell differentiation; induced PPARy expression may play a key regulatory role in this 

process.



The thiazolidinediones are potent oral antidiabetic agents. However, the clinical 

application of thiazolidinediones has been limited by their potential effects on blood cell 

production and cardiac hypertrophy. In both rodent and canine models, administration of 

thiazolidinediones was accompanied by fat accumulation in the bone marrow cavity and 

impaired hematopoiesis, resulting in anemia (29,146).

In vitro, thiazolidinediones have been found to induce adipocyte differentiation in 

pre-adipocyte cell lines derived from murine fetal tissue (3T3-L1) or ob/ob mice (Ob 17) 

(123). Recently, the thiazolidinediones have been identified as ligands for the peroxisome 

proliferator-activated receptor y (PPARy) (82). This protein was originally identified as 

an adipogénie transcription factor (136,137). The PPARy gene is subject to alternative 

promoter usage and splicing, giving rise to the tissue-specific subtypes, PPARy 1 (liver) 

and PPARy2 (adipose) (17,136,137,154,156). Like other PPAR family members (PPARa, 

PPARÔ), the PPARy isoforms are members of the steroid receptor family and are closely 

related to the retinoid, vitamin D3, and thyroxine receptors (140). In its ligand-bound 

form, PPARy regulates transcription from adipocyte-specific genes and will induce 

adipocyte differentiation in fibroblasts (53,72,136,137).

The mechanism underlying the bone marrow effects of the thiazolidinediones 

remains unknown. Normally, the bone marrow stroma consists of a heterogeneous 

population of hematopoietic supporting fibroblasts, adipocytes and bone-forming 

osteoblasts (42,69). It is hypothesized that this phenotypically diverse group of cells 

derives from a multipotent stromal progenitor cell (7,105). The murine BMS2 bone 

marrow stromal cell line provides a well characterized in vitro model for this progenitor 

cell. The BMS2 cells support lymphohematopoiesis (110), display osteoblast specific gene



markers (33,45), and undergo accelerated adipogenesis in response to a cocktail of 

agonists (glucocorticoids, methylisobutylxanthine, indomethacin) (48). The current work 

determines that the thiazolidinediones, pioglitazone and BRL49653, induce BMS2 

adipogenesis in a dose- and time-dependent manner. This correlates with increased levels 

of PPARy mRNA. Thiazolidinediones exert a similar effect on primary cultures of bone 

marrow stromal cells. Moreover, the PPARy protein is detected in adipose-rich bone 

marrow. Together, these data indicate that bone marrow stromal cells are a direct target 

for thiazolidinedione actions in vivo.



Materials and Methods:

Cell Culture: Reagents were obtained from Sigma Chemical Co. (St. Louis MO) or 

Fisher Scientific (Dallas TX) unless otherwise noted. The BMS2 cell line was originally 

cloned by limiting dilution from the adherent population of murine bone marrow stromal 

cells (110). The cells were selected based on their ability to support the proliferation of 

stromal-dependent B lineage lymphoid cell lines in culture (110). In these experiments, the 

BMS2 cells (110) were plated at a density of 4 x 10“* cells/35 mm dish and cultured in 

Dulbecco’s Modified Eagle’s Medium (Mediatech, Washington DC) supplemented with 

10% fetal bovine serum (Hyclone, Logan UT), 1 mM Na pyruvate, 50 fiM 2- 

mercaptoethanol, 100 mg/ml streptomycin and 100 units/ml penicillin; this is referred to as 

“standard medium." Confluence was achieved within 7 days. Pioglitazone and BRL49653 

were dissolved in dimethylsulfoxide (DMSO) and added at the indicated concentrations 

with a constant final concentration of 0.5% DMSO. The DMSO carrier alone had no 

effect on cell differentiation. An adipogénie agonist cocktail, MHI (500. |iM 

methylisobutylxanthine, 0.5 |iM hydrocortisone [Elkin Sinn, Cherry Hill NJ], 60 piM 

indomethacin), was used as a control (33). Confluent cultures were maintained in the 

presence of thiazolidinediones or MHI for 3 days. The medium was removed and replaced 

with “standard medium." Individual 35 mm plates were harvested after an additional 3 

days in culture (day 6). Cell densities at this time averaged 4.7 x 10  ̂cells/35 mm plate, 

independent of culture conditions (range: 4.2 -  5.2 x 10̂ ). Primary bone marrow stromal 

cells were harvested from the femurs and tibia of 6 week old female Balb/c mice in 

“standard medium." The mice were euthanized by CO2 asphyxiation in accordance with an 

institutionally-approved protocol and the long bones of the lower extremities removed

10



under sterile conditions. The marrow cavity was flushed with "standard medium” using a 

#25 gauge needle. 10’ cells were cultured in a 25 cm  ̂flask. After 2 hours in culture, the 

nonadherent (primarily hematopoietic) cells were removed and the medium replaced. This 

step enriches for the adherent stromal population which includes fibroblasts, adipocytes, 

osteoblasts, and macrophages. Two weeks after the cultures were established, cells were 

treated with thiazolidinediones for one week, photographed using a Zeiss IM35 

microscope (magnified X 102 under phase contrast), and harvested for total RNA. Cell 

densities were not determined in these studies.

Fluorescence-Activated Cell Sorting: The BMS2 were plated at a density of 10“* 

cells/well in 24-well plates. After seven days in culture, the cells were induced with agents 

for three days and the medium changed. After an additional three days of culture, the 24- 

well plates containing BMS2 cells were harvested by treatment with 0.25% trypsin/1 mM 

EDTA, washed in phosphate-buffered saline (PBS), and fixed with the addition of a final 

concentration of 0.5% paraformaldehyde (33,124). A stock solution of Nile red (1 mg/ml 

DMSO) was diluted 1:100 and added to the cells at a final concentration of 1 pg/ml. Cells 

were analyzed on a FACscan (Becton-Dickinson, San Jose CA) multiparameter flow 

cytometer. Gold fluorescence emission was detected between 564 nm and 604 nm with a 

bandpass filter 585/42. Sample sizes of 7.5-10 x 10̂  cells were analyzed from each well.

Northern Blot Analysis: RNA was harvested from BMS2 cells cultured in 35 mm plates 

as described under “Cell Culture" above and analyzed as previously described (20,64). 

Northern blots were hybridized with the following probes: aP2 (courtesy H. Green,

11



Harvard University) (127), actin and adipsin (courtesy W. Wilkison & B.M. Spiegelman, 

Dana Farber Cancer Center) (145), lipoprotein lipase (LPL) (ATCC 63117) (48), C/EBPa 

(courtesy S. Enerback & K. Xanthopoulos, University Gotesborg) and PPARy2 (136). 

The PPARy 2 probe was cloned by reverse transcription polymerase chain reaction (PCR) 

using murine brown adipose total RNA and the following specific primers; N Terminal 

primer 5' TTTGAGCTC GCTGTTATGGGTGAAACTCTG 3 '(bp 34-54); C Terminal 

primer 5' TTTGAGCTC CCTGCTAATACAAGTCCTTGTA 3' (bp 1540-1561) (136). 

Intensity of mRNA signals on northern blots was quantitated using an Eagle Eye II Still 

Video System (Stratagene, La Jolla, CA).

Semi-quantitative PCR: Reactions were performed according to published methods 

(95). Aliquots containing 5 pg of total RNA in a 12.5 p.1 volume were heated for 5 min at 

65°C. The cDNA was reverse transcribed in a 30 pi volume of 50 mM Tris-HCl, pH 8.3,

50 mM KCl, 10 mM MgClz, 10 mM DTT, 1 mM dNTP, 0.5 mM spermidine, containing 

RNasin (1.25 units), random hexamer and oligo-dT primers (100 ng each), and AMY RT 

(2.5 units). The reaction was incubated for 60 min at 42“C, 30 min at 52°C, and 5 min at 

95°C. Polymerase chain reactions were conducted in 100 pi volumes with oligonucleotide 

primers specific for PPARa, PPARô, PPARy 1, PPARy2, and (3-actin (Table 1); a 

reaction cycle consisted of 45 sec at 94°C, 45 sec at 62°C, and 2 min at 72°C using a 

Perkin-Elmer-Cetus DNA Thermal Cycler (Norwalk CT). Aliquots (12 pi) were removed 

at 3-cycle intervals between cycles 17 to 35 and examined on 3% agarose gels stained 

with ethidium bromide.

Polyclonal Antibody Preparation: A multiple antigenic peptide (111) was synthesized

12



based on the PPARy2 amino acids 482-499 (136): HVIKKTETDMSLHPLLQE. Eight 

identical peptides were attached to a single poly lysine-resin matrix core, providing a 

potent antigen (111). After the collection of pre-immune serum, the goat was injected with 

1 mg of the multiple antigenic peptide with incomplete Freund’s adjuvant. Four weeks 

later, the animal was boosted with 1 mg of peptide alone. Immune serum was harvested 

weekly after the fifth week. Antibody was prepared by ammonium sulfate precipitation and 

affinity purified over a column prepared with the multiple antigenic peptide coupled to 

cyanogen bromide activated Sepharose 4B.

Transfections: The PPARy2 cDNA was subcloned into the pSG5 and the PPARy 1 

cDNA (provided courtesy of Drs. F. Chen and B. O’Malley, Baylor College of Medicine) 

(17) into the pEF-BOS eukaryotic expression vectors (provided by Dr. K. Oritani, 

Oklahoma Medical Research Foundation) (94). The plasmids were transiently transfected 

into the human kidney 293T cell line by calcium phosphate precipitation. Cell lysates from 

the transiently transfected 293T cells provided an enriched source of the PPAR y2 

protein. The non-transfected 293T cell lysates provided an appropriate negative control.

Western Blot Analysis: Cells or tissues were homogenized in lysis buffer (50 mM Tris- 

HCl [pH 7.5], 150 mM NaCl, 50 mM iodoacetamide, 0.1% NaNs, 5% aprotinin, 1 mM 

PMSF,.1% Triton X-100, soybean trypsin inhibitor [25 pg/ml], leupeptin [10 (ig/mlj). 

Equal protein aliquots were loaded per lane and separated by sodium dodecylsulfate- 

polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose membranes 

(BioRad, Richmond CA), and blocked overnight in buffer (10 mM sodium phosphate, 150

13



mM NaCl, 0.5% gelatin, 0.05% Tween 20, 0.1% merthiolate) (79). Blots were 

sequentially incubated with goat primary antibody (21 (ig/ml) and an anti-goat horseradish 

peroxidase coupled secondary antibody for 1 hr, followed by three washes (10 min) in 

phosphate-buffered saline 0.05% Tween 20, and visualized by chemiluminescent reagents 

according to the manufacturer’s instructions (Amersham, Arlington Heights IL).

14



Results and Discussion:

Dose-dependent Effects of Thiazolidinediones on the BMS2 Bone Marrow Stromal 

Cell Line. The BMS2 cell line was used as an in vitro model to examine the response of 

bone marrow stromal cells to thiazolidinediones. Confluent cultures of BMS2 stromal cells 

were treated with varying concentrations of the thiazolidinediones BRL49653 and 

pioglitazone. Cellular accumulation of lipid vacuoles after 6 days in culture was quantified 

by staining with a lipophilic dye, Nile red, and fluorescence-activated cell sorting (FACS) 

analysis (Figure 1, Table 2 A). In the absence of inducing factors, the cells did not 

contain lipid vacuoles after 6 days. As previously reported, a cocktail of adipogénie 

agonists (MHI: methylisobutylxanthine, hydrocortisone, indomethacin) induced lipid 

droplets in over 50% of the cells (33). Both pioglitazone and BRL49653 induced 

adipocyte differentiation in a dose-dependent manner; the cell response was greater to 

BRL49653 than pioglitazone at equal molar concentrations. At concentrations of 5 pM 

BRL49653 or 25 pM pioglitazone, up to 40% of the cells contained lipid vacuoles. The 

actions of the thiazolidinediones were partially additive with those of the MHI cocktail 

(Table 2 B). While 50% of the cells contained lipid vacuoles following treatment with the 

MHI cocktail alone, treatment with either thiazolidinedione in combination with the MHI 

cocktail induced adipogenesis in up to 70% of the BMS2 cell population. Similar 

observations have been made in the ob/ob derived pre-adipocyte cell line, Obl771, where 

glucocorticoids further enhanced the actions of BRL49653 on expression of adipocyte 

markers (59). This suggests that thiazolidinediones and glucocorticoids may activate 

distinct as well as common signaling pathways during adipogenesis. Evidence from

15



previous studies supports this hypothesis. For example, dexamethasone upregulated 

PPARa mRNA levels in hepatic cells (129).

Thiazolidinedione Induction of Adipocyte Gene Markers in BMS2 Cells. The

temporal dependent expression of adipocyte mRNAs was examined in thiazolidinedione- 

treated BMS2 cells. Confluent BMS2 cultures were treated with "standard medium” alone 

(Control) or medium supplemented with either pioglitazone (25 fiM) or BRL49653 (5 

|iM). Northern blot analyses were performed using total RNA harvested daily from the 

cells following treatment initiation (Figure 2). The blots were hybridized with a P-actin 

probe to control for the relative RNA loading between lanes. The signal intensity of each 

mRNA on day 6 relative to P actin was quantitated (Table 3A). Two relatively late 

adipocyte differentiation marker genes, the fatty acid binding protein aP2 and adipsin, 

were not detected in control cells. The thiazolidinediones Increased both mRNAs which 

reached maximal levels after 3 to 5 days. Although the relatively early adipocyte 

differentiation marker gene, lipoprotein lipase (LPL), was present in control cells, its level 

was further induced and sustained by treatment with the thiazolidinediones; near maximal 

levels were reached after 3 days of treatment. These same genes exhibited a similar 

expression pattern in 3 T3-derived and Ob 1771 pre-adipocyte cell lines following induction 

with thiazolidinediones and other adipogénie agents (2,15,16,59,136).

The transcription factors C/EBPa and PPARy are both known to regulate 

adipocyte differentiation (123). While control cells contained a detectable signal for each 

gene, thiazolidinediones accelerated the rate and extent of their accumulation by up to 

nine-fold (Figure 2, Table 3A). In 3T3-derived pre-adipocytes, adipogénie agents were
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found to induce PPARy expression in a similar time-dependent manner (15,16,136). 

Hybridization of the Northern blots with probes for PPARa and PPARÔ detected a weak 

mRNA signal at best.

Specific Induction of PPARy mRNA Levels in BMS2 Cells: Two distinct murine 

PPARy subtypes have been detected in adipose tissue (PPARy2) and liver (PPARy 1), 

respectively. The PPARy2 isoform utilizes an alternative promoter and 5' non-coding 

region and contains an additional 30 amino acids in comparison to PPARy 1 

(17,136,154,156). To determine ifBMS2 cells expressed both PPARy isoforms and to 

examine the PPARa and PPARÔ genes more closely, specific oligonucleotides (Table 1) 

were synthesized for semi-quantitative polymerase chain reactions (PGR) (95). The P- 

actin gene was used as an internal standard to allow comparison between samples (Figure 

3). The signal intensity of each PGR product at 32 cycles under individual treatment 

conditions was quantitated and normalized relative to control levels based on densitometry 

(Table 3 B); these values are intended only as an aid for comparative purposes and should 

not be viewed as quantitative. The control cells expressed detectable levels of mRNA for 

PPARa, PPARÔ, and both PPARy isoforms (Figure 3). After induction with either MHI 

or thiazolidinediones, the signal intensities of both PPARa and PPARô were reduced 

relative to control levels. In contrast, following 6 days of exposure to adipogénie 

agonists, PPARy 1 and PPARy2 levels were equal to or greater than control signals; the 

only exception was the PPARy 1 level in response to pioglitazone (Table 3B). These 

findings document that BMS2 adipocytes express both the PPARy 1 and PPARy2 

isoforms.
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While the signals for PPARa and PPARÔ are detected in BMS2 cells, adipogenesis 

reduces the levels of these rare mRNAs. This pattern of PPARÔ expression differs from 

that reported in 3T3-derived and Obi771 pre-adipocytes (2,16,136). In 3T3-L1 cells, 

PPARÔ mRNA levels increased with adipocyte differentiation (16). Recently, Amri and 

colleagues cloned the murine PPARÔ cDNA (also known as Fatty Acid-Activated 

Receptor, F AAR). Based on transfection experiments, they concluded that PPARÔ 

mediated the transcriptional effects of fatty acids on Ob 1771 adipocyte differentiation (2). 

Since their previous work indicated that fatty acids and thiazolidinediones share a common 

mechanism of action, this indicates that PPARÔ mediates the effects of thiazolidinediones 

in epididymal-derived Ob 1771 cells (59). The current results in bone marrow stromal cells 

are consistent with the original observations of Tontonoz and colleagues, indicating that 

the PPARy isoforms are induced during adipogenesis (136). This suggests that PPARy is 

partially responsible for the thiazolidinedione effects on bone marrow observed in vivo.

Thiazolidinedione Induction of Primary Murine Bone Marrow Stromal Cells. To

more closely approximate the in vivo bone marrow microenvironment, the response of 

primary murine stromal cells to thiazolidinediones was examined. Treatment of confluent 

primary stromal cultures for one week with BRL49653 (0.005 |aM to 5 |iM) or 

pioglitazone (0.025 pM to 25 pM) increased the number of adipocytes relative to control 

cultures (Figure 4 A). Based on visual examination, up to 15% of the stromal cells 

contained lipid vacuoles in the presence of 5 pM BRL49653 or 25 pM pioglitazone. This 

was accompanied by increased mRNA levels for the adipocyte gene markers aP2, adipsin, 

and lipoprotein lipase, as well as the transcription factor, PPARy (Figure 4 B, Table 4).
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Levels of induction were dose-dependent. Based on quantitation relative to the P actin 

control, maximum mRNA induction was achieved with concentrations of 0.5 jiM 

BRL49653 or 2.5 jiM pioglitazone (Table 4). Thus, these results demonstrate PPARy 

expression in primary stromal cells and are consistent with those obtained using the BMS2 

stromal cell clone. However, the possibility carmot be excluded that macrophages in the 

heterogeneous primary cultures may account for some of the PPARy signal.

Antibody Detection of PPAR Protein in Bone Marrow. Additional experiments were 

undertaken to document the presence of the PPARy in the bone marrow in vivo. To 

directly detect the PPARy protein, a polyclonal antibody was prepared using a PPARy C 

terminal peptide as antigen. Previously, a peptide from the comparable region of the 

retinoic acid receptor y had been employed successfully for this same purpose (115). The 

final affinity-purified a-PPARy antibody was tested on Western blots prepared with 

extracts from cells transfected with a PPARy2 expression vector. The antibody 

specifically detected an approximately 63 IcDa protein (Figure 5). The protein was not 

detected in antisense oriented control expression constructs nor by the pre-immune serum.

Control studies determined that the a-PPARy antibody detected an identically 

sized protein on Western blots of both murine and rat white adipose tissues (data not 

shown). Rats were used instead of mice to examine PPARy protein expression in bone 

marrow due to their greater size and the relative prominence of adipocytes in their marrow 

cavity. Of course, the marrow is heterogeneous, containing macrophages and other blood 

cell lineages in addition to the stromal cells themselves. It cannot be ruled out that proteins 

derived from the hematopoietic cell population might account for some component of the
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signal obtained from the bone marrow specimens. On Western blots prepared with bone 

marrow (BM), white (WAT) and brown (BAT) adipose tissue specimens, the antibody 

detected a major protein of 63 kDa (Figure 6 A). This was identical in size to the 

transfected PPARy2 control vector and was not detected by pre-immune antibody. 

Addition of the multi-antigenic peptide (MAP) antigen specifically competed away the 

protein signal in bone marrow (Figure 6 B). Similar observations were made with WAT 

protein lysates (data not shown).
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Conclusions:

The current study has examined the mechanism underlying the effects of the 

thiazolidinediones on bone marrow. Both clonal and primary bone marrow stromal cell 

cultures underwent adipocyte differentiation in a time- and dose-dependent manner 

following thiazolidinedione treatment (Figure 1, Table 2). This induction was similar to 

that described in other murine pre-adipocyte cell lines (56,71,82,125). In the BMS2 cells, 

adipogenesis correlated with a specific increase in the mRNA levels of the 

thiazolidinedione receptor, PPARy (82), while other PPAR mRNAs were unchanged or 

decreased. It is likely that the thiazolidinediones, acting as PPARy ligands, directly induce 

transcription of adipocyte-specific genes (Figures 2 and 4). In transient transfection 

assays, expression of PPARy and its heterodimerization partner, RXRa, increases reporter 

gene expression under the regulation of the aP2 enhancer (136) or the LPL promoter 

[unpublished observations, CER & JMG]. Using an antibody reagent, the PPARy 

protein was detected in bone marrow tissue extracts (Figure 6). Together, these findings 

suggest that thiazolidinedione interactions with PPARy as opposed to other receptor 

proteins underlies bone marrow stromal cell adipogenesis. In the future, it may be possible 

to decrease these bone marrow effects through the development of thiazolidinedione 

derivatives that do not activate PPARy proteins in the marrow stromal cell lineages.

21



Acknowledgements:

The authors acknowledge Drs. Chen, Enerback, O’Malley, Oritani, Spiegelman, 

Wilkison, and Xanthopoulos for plasmids: V. Dandapanl for FACS analysis; Dr. H. Jiang 

for assistance with the Eagle Eye H software; P. Anderson and the OMRF OASIS staff for 

editorial and photographic preparation; K. Buchanan, M.R. Hill, P.W. Kincade, G. Resta, 

L. Thompson, and C.F. Webb for critical comments and review of the manuscript. K.K. 

was supported by a Dentist Scientist Award (DE00360) from the National Institute of 

Dental Research. The work was funded by NIK Grant CA50898 (J.M.G.) and support 

from the Oklahoma Medical Research Foundation.

22



Table 1. Primers for Semi-Quantitative PCR Analyses.

Gene 
& (ref)

PPARa (61) 

PPARÔ (2)

PPARyl(17,l
54)

PPARy2
(136)

P-actin (134)

5' Oligonucleotide

CGACAAGTGTGATCGGAGCT 
GCAAG bp 574-598

3 ' Oligonucleotide

GTTGAAGTTCTTCAGGTAGGC 
TTC bp 800-777

GGCCAACGGCAGTGGCTTCGTC GGCTGCGGCCTTAGTACATGT
bp 912-933 CCTbp 1390-1367

TTCTGACAGGACTGTGTGACAG ATAAGGTGGAGATGCAGGTTC
bp 391-412

GCTGTTATGGGTGAAACTCTG 
bp 34-54

CCTAAGGCCAACCGTGAAAAG 
bp 414-434

bp 745-725

ATAAGGTGGAGATGCAGGTTC 
bp 384-364

TCTTCATGGTGCTAGGAGCCA 
bp 1059-1039
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Table 2. FACS Analysis of Thiazolidinedione Induction of Adipocyte 
Differentiation.

Table 2 A. Dose-Dependent Adipogénie Response to Thiazolidinediones.

OpM 0.005 pM 0.05 pM 0.5 pM 5 pM 25 pM MHI

pro  0.00 N.D. 2.4 ± 3.1 4.2 ± 2.4 18.5 ± 5.7 34.5 ± 3.2 53.6 ± 3.2

BRL 0.00 0.00 13.6 ± 6.8 25.1 ± 9.9 42.9 ± .7 N.D. 53.4 ±4.1

(In all studies, values are reported as percentage of all cells staining positive for Nile Red 

based on fluorescence intensity. P values are <0.0001 relative to the MHI point for all 

concentrations of thiazolidinediones. The results are the mean ± S.D. from 10 data points 

collected in four experiments. Abbr. BRL = BRL49563; MHI = methylisobutylxanthine/- 

hydrocortisone/indomethacin; N.D. = not done; PIO = pioglitazone.)
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Table 2 B. Additive ElTects of Thiazolidinediones and MHI as Adipogénie 
Agonists.

CONTROL 0

MHI 50.5 ± 12.2

MHI + BRL 5 |jM 70.6 ± 2.2*

MHI + PIO 25 nM 68.9 ± 5.9*

('indicates a P value <0.0001 relative to the MHI point. Values are expressed as the 

percentage of all cells positive for Nile red fluorescence. The results are the mean ± S.D. 

from 14 data points collected in four experiments.)
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Table 3. Densitometric Quantitation of BMS2 mRNA Levels on Day 6 Relative to 
Actin.

A. Based on Northern Blot Analysis (Figure 2)

Gene: aP2 Adipsin LPL C/EBP a PPARy Actin

Agent

Control 0 0 0 0 0.2 1.0

PIO 2.6 2.5 0.9 0.2 1.9 1.0

BRL 0.8 1.3 0.5 0.1 0.9 1.0

B. Based on PCR Analysis at 32 Cycles (Figure 3) and Normalized Relative to 
Control.

Gene: PPARa PPARÔ PPARy 1 PPARy2 Actin

Agent

Control 1.0 1.0 1.0 1.0 1.0

MHI 0.6 0.7 1.2 1.6 1.0

BRL 0.2 0.1 1.0 1.1 1.0

PIO 0.2 0.2 0.5 1.0 1.0

Abbreviations; BRL = 5 p.M BRL49653; MHI = 0.5 mM Methylisobutylxanthine, 60 jiM 

indomethacine, 5 x 10-7 M hydrocortisone; PIO = 25 pioglitazone. Values are based 

on the signal intensity of the positive image from northern blots (A) or the negative image 

from PCR gels (B), measured using a Stratagene Eagle Eye Video System as described in 

Materials and Methods. All signal intensities are normalized relative to actin at an 

equivalent day (A) and cycle number (B).
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Table 4. Densitometric Quantitation of Primary Stromal Cell mRNA Levels 
Normalized Relative to Actin mRNA Signal Intensity.

Agent BRL (pM) PIO (pM)

Gene C D .005 .05 .5 5 .025 .25 2.5 25

aP2 0 0 0 0.3 1.1 1.3 0 0 1.0 1.1

Adipsin 0 0 0 0.7 0.5 0.5 0 0.4 0.9 0.1

LPL 0 0 0 0.4 0.3 0.6 0.1 0.3 0.9 0.9

PPARy 0 0 0 0.1 0.6 0.3 0 0 0.1 0.2

Actin 1 1 1 1 1 1 1 1 1 1

Abbreviations: C = Control, D = DMSO vehicle alone, BRL = BRL49653 treated cells at 

indicated nM concentrations, PIO = pioglitazone treated cells at indicated p,M 

concentrations. Values are derived from data presented in Figure 4 as described in 

Materials and Methods.
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FIGURE LEGENDS:

FIGURE 1. FACS ANALYSIS OF BMS2 STROMAL CELL ADIPOGENESIS IN 

RESPONSE TO THIAZOLIDINEDIONE COMPOUNDS.

Confluent, quiescent cultures of BMS2 stromal cells were untreated (CTRL) or induced 

with the thiazolidinedione compounds BRL49653 (BRL) or pioglitazone (PIO) at 

increasing concentrations for 3 days. The cells were returned to standard medium for an 

additional 3 days, at which time they were fixed, stained with the lipophilic fluorescent dye 

Nile red, and monitored by FACS for enhanced fluorescence in the gold wavelength (cells 

in the Ml region of the profile). This percentage value of the total cell population is 

reported in TABLE 2 A.
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FIGURE 2. NORTHERN BLOT ANALYSIS OF ADIPOCYTE-SPECinC GENES 

INDUCED BY THIAZOLIDINEDIONES.

Confluent, quiescent BMS2 stromal cells were cultured without inducing factors in 

“standard medium” (Control) or in the presence of either 25 pM pioglitazone (PIO) or 5 

|iM BRL49653 (BRL) for 3 days; at this time, all cultures were converted to “standard 

medium" alone. Individual cultures were harvested daily from day 0 to day 6. Northern 

blots prepared with total RNA from these cells were hybridized with the following cDNA 

probes and the autoradiographs exposed for the number of days indicated within the 

parentheses: the fatty acid binding protein aP2 (1); adipsin (1); lipoprotein lipase, LPL (1); 

CAAT/enhancer binding protein a, C/EBPa (9); peroxisome proliferator-activated 

receptor y, PPARy (8); P-actin (1).
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FIGURE 3. SEMI-QUANTITATIVE PCR DETECTION OF PEROXISOME 

PROLIFERATOR-ACTIVATED RECEPTOR mRNA.

Total RNA was prepared from BMS2 cells 6 days after treatment initiation. Cells were 

cultured in standard medium alone (Control), with the classical adipogénie agonists 

(methylisobutyl-xanthine, hydrocortisone, indomethacin: MHI), with 5 pM BRL49653 

(BRL), or with 25 pM pioglitazone (PIO). Equal aliquots of total RNA were reverse 

transcribed and amplified with oligonucleotide primers specific for PPARa, PPARÔ, 

PPARy I and PPARy2 (described in TABLE 1). The P-actin gene was used as a control. 

Aliquots were removed from each reaction volume at 3-cycle intervals and examined on 

3% agarose gels to compare the relative signal intensity.
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FIGURE 4. RESPONSE OF PRIMARY BONE MARROW STROMAL CELLS.

A. Confluent cultures of primary murine bone marrow stromal cells were cultured in the 

absence (Control) or presence of thiazolidinediones (0.5 |iM BRL49653 or 2.5 (oM 

pioglitazone) for one week. Cultures were photographed under phase contrast at X I02 

magnification.

B. Total RNA harvested from primary stromal cell cultures afier one week in the 

presence of inducing agents (pM) was examined on Northern blots hybridized with the 

following cDNA probes, and the autoradiographs were exposed for the number of 

days indicated in parentheses: P-actin (1), aP2 (1), adipsin (1), lipoprotein lipase (LPL) 

(1) or peroxisome proliferator activated receptor y  (PPARy) (5). Cells were cultured 

in standard medium (Control, C), in the presence of vehicle alone (0.25% DMSO, D), 

in the presence of BRL48653 (BRL 0.005 to 5 (iM), or in the presence of pioglitazone 

(PIO 0.025 to 25 pM).
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FIGURE 5. ANTIBODY DETECTION OF THE RECOMBINANT PPARy 

PROTEIN.

Equal aliquots of total cell lysates (51 (ag) from transiently transfected 293T kidney cells 

were examined on Western blots probed with either the goat pre-immune antibody or the 

affinity- purified a-PPARy antibody. Eukaryotic expression vectors contained the murine 

PPARy2 full-length cDNA in the sense orientation or the murine PPARy 1 full-length 

cDNA in the antisense orientation. The empty pEF-BOS vector served as an additional 

control. Antibody complexes were detected using chemiluminescent reagents.
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FIGURE 6. ANTIBODY DETECTION OF THE NATIVE PPARy PROTEIN IN

BONE MARROW AND ADIPOSE TISSUE.

A. Total tissue lysates were prepared from rat bone marrow (BM), brown adipose tissue 

(BAT) and white adipose tissue (WAT). Equal aliquots of tissue protein (124 pg) 

were examined on Western blots with the a-PPARy antibody or pre-immune antibody 

and complexes detected using chemiluminescent reagents. Lysates (25 pg) from 293T 

cells transfected with the PPARy2 expression construct served as a control. The 

arrows indicate the PPARy specific protein of approximately 63 kDa.

B. Western blots prepared with rat bone marrow protein lysates were examined with the 

anti-PPARy antibody in the absence or presence of increasing pg concentrations of the 

multiple antigenic peptide antigen (MAP). The arrow indicates the PPARy specific 

protein complex.
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ABSTRACT

Lipoprotein lipase (LPL) gene expression is complex and reflects the influence of 

multiple tissue-specific transcription factors. The novel steroid receptors, the 

peroxisome proiiferator activated receptors (PPARs), and their ligands induce 

adipocyte differentiation accompanied by increased LPL mRNA levels. The 

coregulators of steroid receptor action SMRT (silencing mediator for retinoid and 

thyroid-hormone receptors) and SRC-1 (steroid receptor coactivator-1) are thought 

to help regulate nuclear receptor action in a positive or negative fashion. Based on 

this and the identification of a putative PPAR recognition element conserved within 

the murine and human LPL promoters, we examined the effect of each PPAR protein 

on LPL transcription in cotransfection experiments and the ability of SMRT and 

mSRC-1 to influence this effect. Using a full-length (-1824/+187 bp) murine LPL 

promoter/luciferase reporter construct, the PPARcc/RXRa heterodimer increased 

transcription by 2-3 fold activation while PPARÔ alone inhibited the reporter 

construct below baseline levels. Based on deletion analyses, the PPARa recognition 

element fell between -564 to -181 bp and was subject to negative regulation. The 

PPARy2/RXRa heterodimer induced transcription by 13-fold from the full-length 

promoter in the absence of exogenous ligand; further increases were observed with 

thiazolidinedione compounds. Increasing addition of SMRT vector decreased the 

activation by the PPARy2/RXRa heterodimer to baseline levels in a dose-dependent 

manner. With increasing amounts of SRC-1 vector, no increase in the level of 

activation by the PPARy2/RXRa heterodimer was observed. However, addition of
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SRC-1 to PPARy2 in the presence of ligand activated the LPL promoter to the level 

observed with the PPARy2/RXRa heterodimer. The addition of ligand to the 

PPARy2/RXRa heterodimeric complex increased activation 2.5 fold over the 

PPARy2/RXRa heterodimer alone. Addition of SRC-1 to this system did not further 

increase activation. Based on deletion and mutation analyses as well as 

electromobility shift assays, the PPARy2 DNA recognition site was localized to a 

polypyrimidine tract between -171 bp and -156 bp. Upon binding, the 

PPARy2/RXRa protein heterodimer causes distortion of the DNA. This DNA 

recognition element is conserved between the murine and human promoters and 

resembles the polypyrimidine sequences identified as single stranded DNA binding 

sites within the promoters of the adipsin and c-myc genes. These data support a role 

for PPAR proteins and the coregulators SMRT and SRC-1 in the regulation o f LPL 

transcription.
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INTRODUCTION

The enzyme lipoprotein lipase (LPL: EC 3.1.1.34) is responsible for the hydrolysis of 

triglycerides into free fatty acids and is necessary for the clearance of chylomicrons 

from the bloodstream (36,37). In mice where the LPL gene has been inactivated by 

homologous recombination, death occurs during the neonatal period due to a massive 

hypertriglyceridemia (21). Inborn errors of metabolism reveal similar defects in man; 

hereditary deficiencies in LPL activity cause increased morbidity due to 

cardiovascular disease (36). Lipid-lowering agents such as the fibrate compounds are 

used in the treatment of these disorders (36,119).

The LPL gene is subject to transcriptional regulation (37) and serves as one of the 

earliest markers of adipocyte differentiation, exhibiting increased mRNA levels less 

than 4 hours after cell exposure to adipogénie agonists (26). Both the human and 

murine LPL genomic genes have been cloned (28,38,58,70,153)and these sequences 

exhibit >65% identity within the initial 1.5 kb of their 5' flanking regions (58). This 

degree of evolutionary conservation suggests that important c/j-acting DNA elements 

exist within the promoter region (58). In vivo and in vitro studies support this 

hypothesis. Analysis of transgenic mice has shown that the -1824 bp to +187 bp 

region of the murine LPL promoter is required to drive the correct tissue specific 

expression of a luciferase reporter gene; shorter regions of the LPL promoter were 

not sufficient (44). In vitro transfection studies have demonstrated the importance of 

a number of positive transcription factors in the expression of the LPL gene. These
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include the octamer binding proteins, the CAAT box binding protein NF-Y, and the 

hepatic nuclear factor-3/forkhead family of proteins, all of which bind directly to the 

LPL promoter and increase transcriptional rates (25,38,101,113). In contrast, a 

silencer element has been identified between -169 bp and -152 bp of the human LPL 

promoter which is bound by unidentified nuclear proteins (131). This DNA sequence 

is evolutionarily conserved and consists of a polypyrimidine “coding” strand and its 

polypurine “non-coding” complement. Proteins responsible for the silencing activity 

and binding specifically to the “non-coding” polypurine sequence were detected in 

nuclear extracts from HeLa cells, a cell which does not express the LPL gene 

constitutively (131).

Other transcription factors have been implicated as direct or indirect regulators of 

LPL transcription. Of particular interest are the peroxisome proiiferator activated 

receptors, novel members of the steroid receptor gene superfamily (reviewed in 

(50,120)) which include PPARa (61), PPARô (2,34,73,118)and PPARy 

(17,136,154). The PPARs act as transcriptional regulators, forming heterodimers 

with the retinoic acid X receptors (RXR) proteins and binding to DNA elements 

based on the direct-repeat 1 (DR-1) sequence “TGACCTnTGACCT” common to 

many steroid receptors (73,135,140). Ligands for the PPARs induce both LPL 

mRNA levels and adipogenesis in pre-adipocyte models

(40,47,54,56,59,72,74,82,137,150). These ligands include natural compounds, such 

as prostaglandin J and long chain fatty acids, as well as synthetic lipid-lowering drugs, 

such as the fibrates and thiazolidinediones. Recently, indomethacin and other non-
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steroidal anti-inflammatory drugs have been shown to activate PPAR y2 and a  (81).

In representative cell models, adipogenesis has been associated with increased 

PPARy2 (12,15,16,47,136,137,148). PPARa (15,148), and PPARÔ (2,59) mRNAs 

levels, suggesting that each of these proteins may regulate LPL expression.

Evidence is accumulating that nuclear hormone receptors are further regulated in their 

actions by molecules that act as coactivators and corepressors of their function (see 

(57) for reviews). SMRT (silencing mediator for retinoid and thyroid hormone 

receptor) (18) was isolated by yeast two-hybrid screening using an unliganded 

hRXRa ligand binding domain fusion protein as bait. It is considered a corepressor 

protein because it interacts with unliganded nuclear hormone receptors to transmit a 

repressive signal to the transcriptional apparatus. It is thought that binding of ligand 

to the nuclear receptor results in dissociation of the corepressor. When this occurs, 

proteins known as coactivators of steroid receptor function such as SRC-1 (104) are 

able to bind to the nuclear receptor and enhance transcription. SRC-1 was isolated by 

a yeast two-hybrid screening of a human cDNA library using the ligand binding 

domain of the human progesterone receptor as bait (104). It is widely distributed 

among different cell types and enhances the activity of ligands that are bound by 

nuclear hormone receptors. Recently, murine SRC-1 (mSRC-1) was cloned (155). It 

was demonstrated to act as a coactivator to PPARy activation of a PPAR response 

element (155) in the presence of ligand.

We noted that the polypyrimidine sequence between -169 bp to -152 bp of the murine
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and human LPL promoters exhibited similarity to the consensus PPAR recognition 

element identified in the promoters of other adipocyte-inducible genes (131,135). 

Based on this observation and the fact that PPAR ligands induce LPL expression, we 

set out to determine whether the PPAR proteins and their ligands directly regulated 

transcription from the murine LPL promoter using a cotransfection approach. Upon 

confirmation of PPARy2 regulation of the LPL promoter, we devised experiments to 

determine the role that the coregulators of nuclear hormone receptor function SMRT 

and SRC-1 play in the activation of the LPL promoter.
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MATERIALS AND METHODS

Materials: All reagents were obtained from Sigma Chemical Co. (St. Louis MO) or 

Fisher Scientific (Dallas TX) unless noted otherwise. Oligonucleotides were 

synthesized by Dr. Ken Jackson, Oklahoma Center for Molecular Biology, Oklahoma 

City OK.

Plasmid Constructs: Constructs containing varying segments of the wild type murine 

LPL promoter linked to the luciferase reporter gene were prepared in the pl9Luc 

vector (provided courtesy of D. R. Helinski, UCSD) (32) as previously described 

(44). Mutations in the promoter were introduced by PCR using the following specific 

primers anchored at the -181 bp relative to the transcription start site;

(MUTl) TTTGTCGACGCTTTCCTTAAAAAAATTTCCCCTTCTT 

(MUT2) TTTGTCGACGCTTTCCTTCCTGAAAAAAACCCTTCTTCTCG 

(MUT3 ) TTTGTCGACGCTTTCCTTCCTGCCCTAAAAAAATCTTCTCGCTGG 

(MUT4)

TTTGTCGACGCTTTCCTTCCTGCCCTTTCCAAAAAAACTCGCTGGCACC

(MUT5)

TTTGTCGACGCTTTCCTTCCTGCCCTTTCCCCTTAAAAAAACTGGCACCGTT

G

Each PCR reaction was conducted with the following oligonucleotide anchored at 

+187 bp relative to the transcription start site:
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TTTGGTACCCCCTTCTGCTTTGCTGCTGG.

The resulting PCR products were subcloned into pBIuescript SKII, sequenced with 

Sequenase 2 (Amersham, Arlington Ht. IL) and subsequently subcloned into the 

Sall/Kpnl site of the pl9Luc vector.

Eukaryotic expression vectors were prepared by excising the murine PPARa, 

PPARy2 and PPARô (82)and RXRa cDNAs (kindly provided by Dr. Ron Evans,

Salk Institute) (87) from their original vectors, ligating the fragments to BstXI linkers 

and subcloning these products into the BstXI site of the pEF-BOS vector (94).

Bacterial expression constructs were prepared using the M13mpl8 derived pET- 

1 lcHRAP30 vector (kindly provided by Ron and Joan Conaway, OMRF) (130). This 

vector contains a (histidine)e tag followed by a Sall/BamHI cloning site. The 

following primers were designed to prepare in-frame inserts of the PP ARy2 and 

RXRa cDNAs by PCR amplification; the cDNA coding sequences are underlined; 

(PPAR-1) GCAACGTCGACATGGGTGAAACTCTGGGAGA ;

(PPAR-2) GCAGCCCCGGGTCACTAATACAAGTCCTTGTAGAT:

(RXR-1) GCAACGTCGACATGGACACCAAACATTTCCT:

(RXR-2) GCAGCAGATCTTCACTAGGTGGCTTGATGTGG.

The PCR products were then digested with appropriate enzymes (PPARy2, 

Sall/Smal; RXRa, Sall/Bglll) prior to subcloning into the Sall/BamHI site of the 

vector.
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Transient Transfections: The human embryonic kidney cell line, 293T (49) 

(obtained courtesy Kenji Oritani, OMRF), was maintained in Dulbecco’s Modified 

Eagle’s Medium supplemented with 10% fetal bovine serum (Hyclone, Logan UT), 

penicillin 100 units/ml and streptomycin 100p.g/ml. A total of 8 X 10“* cells in a 2 ml 

volume were plated in 35 mm dishes 18 hours prior to transfection. Calcium 

phosphate/DNA co-precipitates (117) were prepared by mixing a total o f (LPL 

reporter + receptor expression vector + empty pEF-BOS vector) up to 24 pg of DNA 

in 1/10 TE (ImM Tris-HCl (pH 8.0); 0.1 mM EDTA (pH 8.0)), adding 23 pi of 2M 

CaClz with 183 pi of 2X HEPES buffered saline (280 mM NaCl, 10 mM KCl, 1.5 

mM Na2PÛ4, 12 mM dextrose, 50 mM HEPES pH 7.05) 25 minutes prior to equal 

additions to two 35 mm plates. Following an overnight incubation, the cells were fed 

with fresh medium, incubated an additional 24 hours and harvested in a 100 pi 

volume of 25 mM glycylglycine, 15 mM MgS04, 1 mM dithiothreitol and 1% Triton 

X-100 (84). Protein concentrations were determined by the bicinchonic acid method 

(Pierce, Rockford IL) and adjusted to 3.5 pg/pl. Luciferase assays were performed 

over a 20 second period using a 25 pi (87.5 pg) aliquot of protein and 100 pi of 

reaction buffer (0.5 mM D-luciferin, 2.5mM ATP, 7.5 mM MgS04, 100 mM 

KH2PO4) in a Monolight 2010 Luminometer (Analytical Luminescence Laboratory, 

San Diego CA) as previously described (58).

Ligand treatment of transient transfections: Ligands were obtained from the 

following sources: BRL49653 and pioglitazone from Glaxo/Wellcome; Wy 14653 (4-
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chlorQ-6-(2,3-xylidinQ)-2pyrimidinylthiQ acetic acid), 9-cis retinoic acid (9-Cis RA) 

and ET YA (5,8,11,14-eicosatetraynoic acid from Biomol (Plymouth Meeting, PA); 

fenofibrate (FF) and docosahexanoic acid (DHA) from Sigma. Each ligand was 

prepared as a concentrated stock in dimethyl sulfoxide (DMSO). The 293T cells 

were transfected in bulk (4X10^ cells/10 cm plate, in triplicate) with the full length 

LPL reporter construct and both the PPARy2 and RXRa expression constructs. One 

day after transfection, the cells were released by trypsin digestion, pooled, and plated 

at equal cell numbers in 96 well plates. Control wells were treated with vehicle 

(DMSO) alone. Treatment of the -1824 to +187 LPL promoter/luciferase reporter 

construct resulted in no activation over baseline activation of the construct in the 

absence of added ligand or receptor constructs (data not shown). Duplicate 

experimental wells were treated with varying concentrations of each ligand; a 

minimum of n = 3 studies were performed.

His-tagged protein expression and purification: Recombinant PPARy2 and RXRa 

his-tagged proteins were expressed and purified according to the method of Tan et al 

(130). The Exoli strain JM109(DE3) was cultured to a OD6oo=0.6 in LB broth, 

inoculated with cells infected with the M l3 constructs and incubated an additional 3 

hours. The cultures were then induced with 0.4 mM isopropyl-1-thio-p-D- 

galactoside (IPTG) prior to an additional 7 hour incubation. Cells were collected by 

centrifugation at 1500 X g, 4°C, resuspended in sonication buffer (20% sucrose, 40 

mM Tris pH 8.0, 1 mM EDTA, 0.5 mM PMSF, 1.25 mg/ml lysozyme), and incubated 

60 min on ice. After a 30 sec sonication, the cell supernatant was collected by
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centrifugation for 20 min at 2000 X g, 4°C, loaded on a TALON (Clonetech, Palo 

Alto CA) column, washed with sonication buffer and eluted with single column 

volume step gradients containing 2, 15 and 80 mM imidazole. The protein 

purification was followed by western blot using goat polyclonal antibodies directed 

against the C terminal peptides of the PPARy and RXRa proteins; the PPARy 

antibody and the immunoblotting methods have been described previously (47). 

Routinely, the his-tagged proteins eluted in the 15 mM imidazole fractions.

Electromobility shift assays (EMSA): The DNA electromobility shift assays were 

performed using a 67 bp Hindlll/SspI DNA fragment spanning bp -181 to -113 of the 

LPL promoter or complementary oligonucleotide primers based on the same sequence 

between bp -181 and -145. DNA labeling was performed using T4 polynucleotide 

kinase and y^^P d-ATP (ICN, Irvine CA). Probes were labeled to a specific activity 

of 10*-10* cpm/pmol. Reactions were conducted in a 30 pi volume containing 10 

mM Tris pH8.0, 0.1 M KCl, 0.05 % NP40, 1 mM DTT, 6% glycerol, 1 ng PPARy, 

0.2 ng RXRa, and 2-10X10* cpm of probe for a 20 min period at room temperature. 

Volumes were immediately separated on a 5% acrylamide/bis-acrylamide (24:1) gel 

by electrophoresis at 100 v for 3 hours. The gels were dried at 80°C for 90 min and 

exposed on Kodak XAR film for 18 hours without an intensifying screen.

The following complementary oligonucleotides for the coding (c) and non-coding 

(nc) strands were used as competitors in these reactions:

52



IL6 C/EBP (c) TAAACGACGTCACATTGTGCAATCTTAA 

IL6 C/EBP (nc) TTAAGATTGCACAATGTGACGTCGTTTA (1)

ILôNFkB (c)AAATGTGGGATTTTCCCATGAG 

IL6 NFkB (nc) CTCATGGGAAAATCCCACATTT (122)

LPL (c) GCTTTCCTTCCTGCCCTTTCCCCTTCTTCTCGCTGG

LPL (nc) CCAGCGAGAAGAAGGGGAAAGGGCAGGAAGGAAAGC (58)

PPRE (c) AGCTACCAGGTCAAAGGTCACGT 

PPRE (nc) AGCTACGTGACCTTTGACCTGGT (40)

Circular permutation experiments: The 67 bp HindIII/SspI fragment of the LPL 

promoter spanning -181 bp to -113 bp was blunted by reaction with the Klenow 

fragment of DNA polymerase, ligated to Xbal linkers and subcloned into Xbal site of 

the pBend2 vector (provided courtesy Dr. C. Webb, OMRF) (65). Equal sized 

restriction fragments were prepared with the following enzymes: Bglll, Xhol,

EcoRV, SspI and BamHI. Electromobility shift assays using the recombinant 

PPARy2/RXRa protein heterodimers were performed with each fragment and the 

mobility of the bound complex measured relative to that of the free probe. The 

degree of DNA distortion (a) was estimated based on the equation Pm/|Ie = cos(a/2) 

where }Xm and pc are the mobilities of the protein/DNA complex with the protein 

located at the middle (m ) or end ( n )  of the DNA fragment (133).
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RESULTS

Two members of the PPAR family activate the LPL promoter: Our initial 

experiments set out to determine if any member of the murine PPAR family (a,y2, Ô), 

either alone or in combination with RXRa, regulated transcription from the full length 

(-1824 bp to +187 bp) LPL promoter. The human embryonic kidney cell line, 293T, 

was chosen for its ease of transfection and the absence of LPL expression in it’s tissue 

of origin (44). Cotransfection with expression constructs for the different PPAR 

and/or RXRa expression vectors revealed the following pattern of LPL 

transcriptional regulation. The PPARy2/RXRa heterodimer induced the highest 

transcriptional rate, inducing the luciferase reporter gene by 13-fold over baseline 

(Figure 1 ). Likewise, cotransfection with either PPARy2 alone or PPARa/RXRa 

resulted in statistically significant induction’s of approximately 2-fold over baseline. 

No other expression construct significantly altered LPL transcription, with the 

exception of PPARô which reduced expression of the luciferase reporter by 

approximately 60% relative to baseline.

Addition of exogenous ligands increase activation of the full-length LPL 

promoter by the PPARy2/RXRa heterodimer: The next experiments were 

designed to ask if the addition of exogenous PPAR ligands would further increase 

transcriptional activation by the transfected PPARy2/RXRa heterodimer of the LPL 

promoter. To control for equivalent transfection efficiency, cells were transfected in 

bulk with the full-length promoter construct and the PPARy2/RXRa expression
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constructs prior to exposure to varying concentrations of exogenous ligands (Figure 

2 ). In the absence of any added ligand, the luciferase expression in this system was 

already 13-fold greater than the baseline described in Figure 1. The addition of the 

thiazolidinedione compounds BRL49653 or pioglitazone resulted in a further 2.5- 

fold activation. The presence of ETYA, an arachidonic acid analog, caused a smaller 

(l;3-fold) but significant increase. However, fenofibrate, docosahexanoic acid and 

Wy 14643 did not change the level of luciferase expression. In contrast, the addition 

of 9-cis retinoic acid, the RXRa ligand, significantly decreased expression levels by 

over 50%. Preliminary experiments determined that there was only a slight activation 

of FPARo/RXRa by the compounds fenofibrate and docosahexanoic acid (data not 

shown) and no activation of PPARS/RXRa by the compounds BRL 49653, 

fenofibrate, ETYA, Wy 14643, or carbacyclin (data not shown).

Deletion analysis of the LPL promoter localizes the sites of PPARa and PPARy 2 

heterodimer binding: To localize the sites of PPAR recognition elements and to

determine if negative regulatory elements might be present, we analyzed a series of 

luciferase reporter constructs with progressive deletions of the LPL promoter 

between -1824 bp and -101 bp 5' to the transcription start site (Figure 3). Each 

reporter construct was transfected alone or cotransfected with the appropriate 

eukaryotic expression constructs for the individual PPAR/RXRa heterodimers. 

Deletion of the LPL promoter between -1824 and -181 did not alter the high level of 

PPARy2/RXRa activation. However, the deletion between -181 and -101 bp 

significantly reduced the level of PPARy2/RXRa induction from 14-fold to 2-fold
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relative to baseline (Figure 3 A). In contrast, activation by the PPARa/RXRa 

heterodimer increased with deletions between -1824 and -564 bp and decreased with 

further deletions to -181 bp (Figure 3 B). Independent of the length of the promoter 

construct, the PPARô/RXRa heterodimer consistently had no significant effect on 

luciferase levels (Figure 3 C). These findings suggest that at least two members of 

the PPAR family recognize unique DNA elements within the LPL promoter and that 

both positive and negative m-acting regulatory elements exist.

EMSA and transfection analyses identify the PPARyZ DNA recognition 

element: Since the greatest activation of the LPL promoter was observed with the 

PPARy2/RXRa heterodimeric complex, further experiments were designed to 

determine the site of PPARy 2/RXRa DNA binding and no further experiments were 

performed with PPARa or PPARÔ. Electromobility shift assays were performed 

using a DNA probe spanning bp -181 to -113 of the LPL promoter and bacterially 

expressed, histidine tagged PPARy2 and RXRa proteins (Figure 4). The presence of 

the RXRa protein alone did not shift the DNA probe while the PPARy2 protein alone 

resulted in a weak signal of mobility shifted band "A". In contrast, both proteins 

together yielded a strong signal for two mobility shifted bands, “A” and “B". The 

binding activity demonstrated specificity. Double stranded oligonucleotide probes 

based on the IL6 NFkB (122)or IL6 C/EBP (1) binding sites failed to compete for 

protein binding. In contrast, double stranded oligonucleotide probes based on an 

optimal PPAR recognition element (40) or on bp -180 to -145 bp of the LPL 

promoter (58) competed for binding in a concentration dependent manner.
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This region of the LPL promoter contains a polypyrimidine-rich sequence which 

shares features exhibited by the consensus PPAR recognition element. To define the 

PPARy2/RXRa recognition site, we prepared a series of five overlapping mutations 

spanning -171 to -149 bp of the S' flanking region (Figure SA). In EMSA analyses, 

none of the mutations specifically competed for DNA binding except for that 

spanning bp -155 to -149 (Mutant E, Figure S B ). In cotransfection analyses, the 

mutants decreased the level luciferase induction by PPARy 2/RXRa by 50-90% 

relative to the wild type control (Figure SC). Together, these experiments localize 

the minimal PPARy 2/RXRa recognition element between -171 to -156 bp. However, 

additional flanking sequences remain important for transcriptional activity.

Circular permutation experiments reveal DNA distortion due to binding of the 

PPARy 2/RXRa heterodimer: Many DNA binding proteins regulate transcription by 

changing the DNA conformation. Experimentally, the presence of a DNA bend is 

reflected by altered electrophoretic mobility of the protein/DNA complex. Fragments 

migrate slower when the DNA recognition element is located at the center of the 

DNA fragment rather than the ends. We examined the mobility of the LPL 

promoter/heterodimer complex using circular permutation analysis using DNA 

fragments generated from pBend2 constructs (Figure 6). The extent of DNA 

distortion was estimated to be approximately 46“ for the LPL promoter fragment 

(Figure 6 A,B)- These results were comparable to circular permutation analyses of 

an optimal PPAR recognition sequence which displayed DNA distortion of
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approximately 56° (Figure 6 C,D).

Coregulators of steroid receptor action modify the ability of PPARy2/RXRa to 

activate the LPL promoter; To determine if coregulators of steroid receptor action 

interact with the PPARy2/RXRa system, a corepressor protein SMRT (silencing 

mediator for retinoid and thyroid-hormone receptors) and a coactivator protein, 

steroid receptor coactivator (SRC-1) were expressed in 293T cells with PPARy2 +/- 

RXRa and the -1824 LPL promoter/luciferase reporter construct with or without 

addition of ligand (Figure 7). To test the regulatory effect of the SMRT protein, 

cotransfections were performed with a constant concentration of the PPARy2 and 

RXRa expression vectors as indicated, with increasing amounts of the SMRT 

(Figure 7A) expression vector with the -1824 LPL/luciferase reporter construct. The 

SMRT vector inhibited transcription from the LPL promoter to near baseline level of 

expression at the highest dose. This finding demonstrates that the SMRT protein 

disrupts the ability of PPARy2/RXRa to activate the LPL promoter in the absence of 

adcfed ligand. In experiments with hSRC-1, increasing concentration of hSRC-1 with 

a constant concentration of PPARy2/RXRa in the absence of added ligand 

demonstrated no significant increase in the activation of the LPL promoter (data not 

shown). When PPARy2 was transfected by itself in the presence of BRL 49653, a 

six-fold induction of the LPL promoter was observed (Figure 73). This is 

approximately a 2.5-fold increase over the induction of the promoter by PPARy2 by 

itself in the absence of added ligand (see fig. 1). When a DNA concentration of SRC-
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1 twice that of PPARy2 was added to the PPARy2/BRL transfection the activation 

increased to 13-fold, the level of activation observed when PPARy2 was transfected 

with RXRa alone in the absence of added ligand (Figure 7B). When ligand was 

added to the PPARy2/RXRa transfection, a 30-fold induction was observed as in 

figure 2. Addition of SRC-1 to the BRL treated PPARy2/RXRa transfection did not 

further increase activation. These experiments provide evidence of the ability of 

SRC-1 to enhance regulation of the LPL promoter by liganded PPARy2.
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DISCUSSION

The enzyme lipoprotein lipase plays a critical role in the clearance of plasma 

triglycerides. Adipocytes, macrophages, lactating mammary tissue and the central 

nervous system express the highest levels of this protein; other sites including the liver 

express the protein at lower levels. The complex tissue-specific regulation of the LPL 

promoter reflects the simultaneous input of multiple transcription factors (37).

Several of these have been examined in some detail. The octamer binding proteins 

recognize the sequence ATTTGCAT which is perfectly conserved at bp -46 in the 

murine (58,153) and human (28,70) LPL promoters and bp-42 in the chicken (24) 

LPL promoter. This site and its immediate flanking sequences are critical for LPL 

transcription; when it is mutated, expression is reduced by 75% (25,113). Evidence 

suggests that the octamer protein regulates transcription initiation through 

protein/protein interactions with TFIIB, a component of the RNA polymerase II 

complex (101). The protein factor NF-Y recognizes the conserved CAAT box 

located at -66 bp in the murine and human LPL promoters and -68 bp in the chicken 

LPL promoters. Tumor necrosis factor, an inhibitor of LPL transcription, reduces 

binding of both NF-Y and the octamer binding proteins to their recognition elements 

in adipocytes (96). In contrast, exposure of macrophages to lipopolysaccharide, 

which inhibits LPL mRNA levels while inducing expression of tumor necrosis factor, 

increases binding of octamer binding proteins to the LPL recognition element (55). 

Additional proteins belonging to the hepatic nuclear factor 3/forkhead related 

activator family bind to DNA recognition elements located at approximately -669 bp
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and -440 bp of the human LPL promoter (38,109). However, comparison across 

species reveals less conservation pressure at these sites and their role in the control of 

the murine LPL promoter remains unknown.

The current work extends these earlier studies on LPL transcription by demonstrating 

a role for both PPARy2 and PPARa heterodimers in the regulation of the murine 

LPL promoter as well as examining the role of the coregulators SMRT and SRC-1 in 

modulating this effect. The actions of PPARy2 may involve distortion or bending of 

the DNA. We also determine that the PPARa does not activate transcription as 

strongly as PPARy2 and that PPARa may be subject to both positive and negative 

regulation. In contrast, we find that PPARô does not activate the LPL promoter in 

the region from -1824 to +187 bp. Our findings confirm and extend those of 

Schoonjans et al. (120) who have recently reported that PPARy binds to the highly 

conserved corresponding region of the human LPL promoter. Together, these 

findings provide a mechanistic explanation for the effect of thiazoldidinediones on 

LPL expression in bone marrow stromal cells and other pre-adipocyte models 

(47,120,136,137) and the ability of coregulator proteins to modify this effect.

Previous studies by Tanuma et al. (131) demonstrated that HeLa cell extracts bound 

the identical polypyrimidine region of the human LPL promoter. However, in their 

hands, the binding proteins acted as negative regulatory factors by binding to the 

single-stranded polypurine “non-coding” strand. Our preliminary experiments have 

failed to prove that the PPARy2/RXRa heterodimer exhibits single-stranded DNA
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binding activity (data not shown). However, single-stranded DNA binding activity 

has been attributed to at least one other steroid receptor, the estrogen receptor 

(80,97,98). Likewise, the sterol response element (GTGGGGTG), recognized by the 

transcription factor known as both "sterol response element binding factor 1 " 

(SREBP-1) and “adipocyte determination- and differentiation-dependent factor 1" 

(ADDl) (66,126,138,149), is bound both as a single- and double-stranded DNA 

element by nuclear extract proteins (128). Other single-stranded DNA binding 

proteins include the heterogeneous nuclear ribonucleoprotein K (hnRNPK) (91), the 

nuclease-sensitive element protein-1 (NSEP-1)(75), and the zinc finger proteins Spl 

and ZF87/MAZ(31).

Transcription of genes by the RNA polymerase II complex requires assembly at the 

transcriptional start point of multiple factors that compose the initiation complex at 

the TATA box. While there is evidence that nuclear receptors themselves contact 

some of the factors of the initiation complex directly (4,19,60), it is thought that 

certain cofactors can form a bridge between a nuclear hormone receptor and the 

transcriptional apparatus. While the coactivator RIP 140 has recently been 

demonstrated not to bind TFIIB (14), the coactivator CBP/p300 does bind TFIIB 

(76). Evidence is accumulating that DNA bending by nuclear receptors is coupled to 

transcriptional induction (for review, see (102)). Thus, the stage is set for new 

findings involving nuclear hormone receptors and their coactivators activating the 

transcriptional apparatus through direct and indirect contact with members of the 

initiation complex through bending of the DNA to which they are bound.

62



Based on the current data, we can now add the PPARa and PPARy2 proteins to the 

growing list of transcription factors which contribute to LPL regulation. A model 

outlining the location of known DNA/protein interaction sites within the LPL 

promoter is shown in Figure 7. The relative ratio of positive and negative 

regulatory proteins in a given cell may alter the DNA conformation and determine the 

level of LPL transcription and elongation. Clearly, the regulation of the LPL 

promoter is complex and is most likely defined by the tissue-specific expression of 

multiple transcription factors; it is unlikely that any single factor determines the level 

of LPL expression in all tissue sites.
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FIGURE LEGENDS

Figure 1. Activation of the lipoprotein lipase gene promoter by the peroxisome 

proiiferator activated receptor family. Cultures of 293T cells (5 x lOVsS mm 

plate) were all transfected with 1 pg of the full-length (-1824/+187) LPL 

promoter/luciferase construct by calcium phosphate precipitation. Cells were 

additionally transfected with 4 pg each of pEF-BOS expression vectors containing 

either PPAR and/or RXRa and cultured in the presence of fetal bovine serum. 

Numbers at the ends of the bar graph indicate the fold-activation relative to the 

luciferase baseline activity in the absence of PPAR or RXRa expression constructs, 

defined as “1". Data is normalized relative to a constant protein concentration per 

assay (87.5pg) and represents the mean ± SE o f n=3 experiments. Data were 

analyzed by One Way ANOVA and the Student-Neuman Keuls multiple comparison 

test was performed.
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Figure 2. Increased activation of the LPL promoter by treatment of 

PPARy2/RXRa transfected cells with PPAR ligands. Cultures of 293T cells (2 x 

lOVlOO mm plate) were transfected with 2.5 pg of the full-length LPL 

promoter/luciferase reporter construct and 10 pg each of PPARy2/RXRa expression 

constructs in bulk and equal numbers of cells cultured in individual wells on a 24 well 

plate. Individual wells were treated with agents at the following concentrations: 9-cis 

retinoic acid (9-Cis RA), 1 pM; docosahexaneoic acid (DHA), 10 pM; fenofibrate 

(FF), ISO pM; pioglitazone (PIO), 10 pM; BRL49653 (BRL), 1 pM; 4-chloro-6- 

(2,3-xylidino)-2-pyrimidinylthioacetic acid (Wyl4643), 10 pM; 5,8,II, 14- 

eicosatetraynoic acid (ETYA), 50 pM. Data represents the mean ± SE of n = 3 

experiments. Data were analyzed by One Way ANOVA and the Student-Neuman 

Keuls multiple comparison test was performed.
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Figure 3. Deletion analysis of the LPL promoter: activation by each PPAR 

heterodimer. 1 pg of deletion constructs linking from -1824 bp, -564 bp, -181 bp 

and -101 bp to +187 bp of the LPL'promoter to the luciferase reporter gene were 

cotransfected into 293T cells (5 x lOV 35 mm plate) in the absence or presence of 4 

pg each of the RXRo and individual PPAR expression constructs. Cotransfections 

were performed with PPARy2 (A), PPARa (B), and PPARÔ (C) expression vectors. 

Results are normalized relative to protein concentration (87.5 pg/rxn) and represent 

the mean ± SE of n=3 experiments. The fold-induction was determined relative to the 

baseline activity of each reporter construct in the absence of RXR and PPAR 

expression constructs and is indicated by numbers at the end of the bar graphs. Data 

were analyzed by One Way ANOVA and the Student-Neuman Keuls multiple 

comparison test was performed.
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Figure 4. EMSA analysis of the LPL promoter. A 67 bp fragment spanning -181 

bp to -113 bp o f the LPL promoter was used as a probe in EMSA experiments with 

recombinant RXRa and PPARyZ proteins in the absence and presence of specific 

(LPL, PPREop) and non-specific (NfkB, C/EBP) double stranded oligonucleotide 

competitors. “Free" represents the free labeled probe while “A" and “B" represent the 

slow and fast migrating protein/DNA complexes. Representative of n =2 

experiments.
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Figure 5. Eflect of mutations of the PPARy2 recognition element on EMSA and 

cotransfection assays. Mutations introduced into the LPL promoter spanning -171 

bp to -149 bp are outlined in (A). DNA fragments containing each of the mutations 

were used as competitors in EMSA assays performed using the 67 bp wild-type LPL 

promoter probe employed in Figure 4 (B). Reporter constructs linking -181 bp to 

+187 bp of the LPL promoter to the luciferase reporter were prepared with either the 

wild type (WT) or mutant (MUT) DNA sequences. 1 pg of these were transfected in 

the absence and presence of 4 pg each of the RXRa and PPARy2 expression 

constructs on 35 mm dishes containing 5x10^ 293T cells. Fold induction was 

determined relative to the baseline activity of each reporter construct in the absence of 

RXR and PPAR expression constructs. Data is normalized relative to protein 

concentration (87.5 pg/assay) and represents the mean ± SE o f n=3 experiments.

Data were analyzed by One Way ANOVA and the Student-Neuman Keuls multiple 

comparison test was performed (C).

75



+187
-181 Luciferase

WT-181 —TCCTTCCTGCCCTTTCCCCTTCTTCTCGCTGG—
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RXRa + + + + + + + + + + + + +
PPAR72 + + + + + + + + + + + + +
WT (ng) 20 100

Mut A (ng) 20 100
Mut B (ng) 20 100
Mut C (ng) 20 100
Mut D (ng) 20 100
Mut E (ng) 20 100
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Figure 6. Circular permutation analysis of DNA distortion by PPARy2/RXRa 

heterodimers. Circular permutation analysis was performed using the 67 bp LPL 

promoter and an optimal PFRE sequence subcloned into the pBend2 vector. 

Restriction digests with a battery of enzymes generated a single sized DNA fragment 

in which the protein recognition site was located at varying distances from the ends. 

The resulting DNA/protein complexes were analyzed by EMSA (A & C) and the 

relative mobility’s examined (B & D).
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Figure 7. SMRT inhibits the activation of the LPL promoter by the 

PPARy2/RXRa heterodimer while SRC-1 enhances activation in the presence of 

ligand. 293T cells (5 x 10VS5 mm plate) were cotransfected with the 1 (ig of the - 

1824 to +187 LPL/luciferase reporter construct with or without 4 |ag each of the 

PPARy2 and RXRa expression vectors in the presence of increasing concentrations 

(0.2 - 16 pg) of the SMRT expression construct (7 A). 1 pig of the -1824 LPL 

promoter was cotransfected with 4 \i% each of the PPARy2 and/or RXRa expression 

constructs in the presence or absence of a 2-fold concentration (8 |ig) o f SRC-1 

(relative to the concentration of PPAR and RXR) plus or minus addition of 5 jiM 

BRL 49653 (7B). Fold induction was determined relative to the baseline activity of 

the -1824 LPL promoter/luciferase reporter construct in the absence of added 

expression constructs. Data is normalized relative to protein concentration (87.5 

Hg/assay) and represents the mean of n=3 experiments. Data were analyzed by One 

Way ANOVA and the Student-Neuman Keuls multiple comparison test was 

performed.
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Figure 8. Map of known transcriptional regulatory sites within the LPL 

promoter.

The location of known transcriptional regulatory protein binding sites within the LPL 

promoter is outlined. Abbreviations; HNF3, hepatic nuclear factor 3; Octl, octamer 

binding protein 1; NF-Y, nuclear factor-Y; PPAR, peroxisome proliferator activated 

receptor; TSP, transcriptional start point.
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ABSTRACT

Regulation of lipoprotein lipase gene expression during adipogenesis is intricate and 

involves many tissue-specific transcription factors. Coup-TFs are orphan members of the 

nuclear hormone receptor family that have been shown to down-regulate induction by 

other nuclear hormone receptors involved in differentiation. The peroxisome proliferator 

activated receptors induce adipocyte differentiation in response to ligand treatment. The 

coregulators of nuclear hormone receptor action SMRT (silencing mediator for retinoid 

and thyroid-hormone receptors) and SRC-1 (steroid receptor coactivator) are thought to 

coregulate nuclear receptor action in a positive or negative fashion. With the discovery of 

a PPARy2 recognition element within the LPL promoter, we examined the ability of 

members of the Coup-TF family of nuclear hormone receptor molecules and the 

coregulators SMRT and SRC-1 to modulate this effect. Utilizing a -1824 bp to +187 bp 

portion of the murine LPL promoter attached to a luciferase reporter construct, we 

determined that addition of Coup-TFII (ARP-1) to the PPARy2/RXRa heterodimer in 

transfection assay increased activation of the LPL promoter by greater than 7 fold. The 

effect was greater than the activation observed by PPARy2/RXRa in the presence of 

thiazolidinedione ligands. Coup-TFI (Ear3) did not significantly activate the LPL 

promoter more than the level seen with PPARy2/RXRa alone. Ear2 activated the 

PPARy2/RXRa system about 50% as well as Coup-TFII (ARP-1). The activation of the 

PPARy2/RXRa heterodimer by Coup-TFII (ARP-1) is dose-dependent. When 

thiazolidinediones are added to the PPARy2/RXRo/Coup-TFII (ARP-1) transfection, 

activation is further increased. The corepressor protein SMRT inhibits the activation of
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the LPL promoter by the PPARy2/RXRa/Coup-TFII (ARP-1) proteins in a dose- 

dependent manner. The coactivator protein SRC-1 does not further activate the 

PPARy2/RXR(x/Coup-TFn (ARP-1) system in either the presence or absence of added 

ligand. Based on deletion analysis and EMSA and transfection analysis o f mutants of the 

LPL promoter, the PPARy2/ RXRa/ Coup-TFII (ARP-1) mediated activation of the LPL 

promoter is dependent on a polypyrimidine tract from -171 to -156 bp of the LPL 

promoter that contains the PPARy2/RXRa recognition sequence. The polypyrimidine 

DNA sequence is novel in that it appears to contain overlapping DR-1 elements and the 

sequence resembles the polypyrimidine sequences identified as single stranded DNA 

binding sites within the promoters of the adipsin and c-myc genes. These data support a 

role for Coup-TF family members as well as the coregulators SMRT and SRC-1 in 

modulation of the PPARy2/RXRa mediated regulation of LPL transcription.
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INTRODUCTION

The enzyme lipoprotein lipase (LPL: EC 3.1.1.34) hydrolyzes triglycerides into free fatty 

acids for transport across cell membranes and is responsible for the clearance of 

chylomicrons from the bloodstream (36,37). Hereditary deficiencies of LPL activity cause 

increased morbidity in man due to cardiovascular disease (36) and in murine models where 

the LPL gene has been inactivated by homologous recombination, death results during the 

neonatal period due to an overwhelming hypertriglyceridemia (21).

The LPL gene is one of the earliest markers of adipocyte differentiation, with its mRNA 

level increased in less than 4 hours after preadipocytes are exposed to adipogénie agonists 

(26). It is expressed in numerous tissues including a high level of developmental 

expression in heart, brown adipose, mammary tissue and also in skeletal muscle (37). 

There is a medium level of developmental expression in lung and brain, with a low level of 

expression in liver, kidney and spleen (37). In transgenic mouse models expressing 

portions of the LPL promoter fused to a luciferase reporter gene, brown adipose tissue 

activity was 269-fold and brain 200-fold higher than the level of promoter activity in the 

liver (44). The human and murine LPL genomic genes have been cloned 

(28,38,58,70,153) and exhibit greater than 65% identity within the first 1.5 kb of the 

transcriptional start point (TSP) (58). This suggests that there is evolutionary 

conservation of regulatory sequences through this area of the promoter (58). Some of the 

transcription factors that regulate the LPL promoter in this region have been identified. 

These include the octamer binding proteins, the CAAT box binding protein nuclear factor
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Y (NF-Y), the hepatic nuclear factor-3/fbrkhead and the peroxisome proliferator activated 

receptors a  and y2 which all increase the transcriptional rate of the LPL promoter 

(25,38,101,113)

The Chicken Ovalbumin Upstream Promoter Transcription Factor (Coup-TFI) is an 

orphan receptor that was originally cloned based on its ability to promote transcription of 

the chicken ovalbumin gene (107,116,142). It was independently cloned via homology to 

erb A and called erb A related protein 3 (Ear3) (92). Somewhat later, Coup-TFII (ARP- 

1) was cloned from a HeLa cell cDNA library through its homology to hCoup-TFI (141) 

and from a placental library as apolipoprotein AI regulatory protein-1 (ARP-1) (78). 

Another family member, erôA related protein 2 (Ear2) was cloned in the same way as 

Ear3 (92). In humans. Coups are expressed in a variety of cell lines (92). Coup-TFs are 

highly expressed in organs such as lung, testis, prostate, skin, intestine, pancreas, stomach, 

and salivary gland (62,85,108) and have recently been shown to be present in adipocytes 

(11). The importance of the Coup-TFs is suggested in studies on the homozygous null 

mutations of the Coup-TFI and Coup-TFII genes. In both cases, the null mutation is 

lethal (83).

It is becoming apparent that nuclear hormone receptors are further regulated in their 

actions by proteins that act as coactivators and corepressors of their function. These 

proteins may serve as links between other transcription factors and the transcriptional 

apparatus (see (57) for reviews). SMRT (silencing mediator for retinoid and thyroid 

hormone receptor) ( 18) was isolated by yeast two-hybrid screening using an

91



unliganded hRXRa ligand binding domain fusion protein as bait. It is considered a 

corepressor protein because it interacts with unliganded nuclear hormone receptors to 

transmit a repressive signal to the transcriptional apparatus. It is thought that binding 

of ligand to the nuclear receptor results in dissociation of the corepressor. When this 

occurs, proteins known as coactivators o f steroid receptor function such as SRC-1 

(104) are able to bind to the nuclear receptor and enhance transcription. SRC-1 was 

isolated by a yeast two-hybrid screening of a human cDNA library using the ligand 

binding domain of the human progesterone receptor as bait (104). It is widely 

distributed among different cell types and enhances the activity of ligands that are 

bound by nuclear hormone receptors. Recently, it was cloned in the mouse (mSRC- 

l) and demonstrated to be a coactivator of PPARy activation of a PPAR response 

element in the presence of ligand (155).

Because Coup-TFs have been generally described as inactivators of transcription 

(23,41,77,78,83,100,103,139,144), and more infrequently as transcriptional activators 

(86,112) we set out to determine how they interact with the PPARy2/RXRa 

activating system of the LPL gene promoter. Based on our results o f Coup-TFII 

(ARP-1) enhancing PPARy2/RXRa induced activation of the LPL promoter, and 

because coregulators of nuclear hormone receptor action are becoming recognized as 

important players in transcriptional events, we tested if the proteins SMRT or SRC-1 

interacted with the Coup-TF/PPARy2/RXRa system.
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MATERIALS AND METHODS

Materials: All reagents were purchased from Fisher Scientific (Dallas, TX) or Sigma 

Chemical Co. (St. Louis, MO) unless otherwise noted. Oligonucleotides were synthesized 

by Dr. Ken Jackson, Oklahoma Center for Molecular Biology, Oklahoma City, OK.

Plasmid Constructs: Constructs containing portions of the wild type mouse LPL 

promoter fused to the luciferase reporter gene were prepared in the pl9Luc vector 

(provided by D. R. Helinski, UCSD) (32) as previously described (44). Mutations in the 

murine LPL promoter were introduced as described . Eukaryotic expression vectors for 

PPARy2 and RXRa (a gift from Dr. Ron Evans, Salk Institute (87)) were prepared as 

described . Coup-TFII (Arp-1), Coup-TFI (Ear3) and Ear2 (Kindly provided by Dr. John 

Ladias, Harvard) (78) were excised from their original vectors, the fragments ligated to 

BstXI linkers and subcloned into the BstXI site of the pEF-BOS vector (94). Eukaryotic 

expression vectors for SMRT (silencing mediator for retinoid and thyroid-hormone 

receptors) and SRC-1 (steroid receptor coactivator-1) were prepared as previously 

described (18,104). Recombinant PPARy2 and RXRa were prepared and purified as 

described . A recombinant bacterial expression construct for Coup-TFII (Arp-1) protein 

was prepared by creating a expression vector containing the Coup-TFII coding sequence 

with a c-myc tag and affinity purifying the protein.

Transient Transfections: The human embryonic kidney cell line, 293T (49) (obtained 

courtesy of Kenji Oritani, OMRF), was maintained in Dulbecco’s Modifed Eagle’s
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Medium supplemented with 10% fetal bovine serum (Hyclone, Logan, UT), penicillin 100 

units/ml and streptomycin 100 pg/ml. A total of 8 X 10"* cells in a 2 ml volume were 

plated in 35 mm dishes 18 hours prior to transfection. A calcium phosphate/DNA co

precipitate was prepared by mixing a total of up to 24.4 pg of DNA in 1/10 TE (ImM 

Tris-HCl (pH 8.0); 0.1 mM EOT A (pH 8.0)), adding 23 pi of 2M CaClz with 183 pi of 

2X HEPES buffered saline (280 mM NaCl, 10 mM KCl, 1.5 mM Na2?04, 12 mM 

dextrose, 50 mM HEPES pH 7.05)25 minutes prior to equal additions to two 35 mm 

plates. Following an overnight incubation, the cells were fed with fresh medium, 

incubated an additional 24 hours and harvested in a 100 pi volume of 25 mM 

glycylglycine, 15 mM MgSOi, 1 mM dithiothreitol and 1% Triton X-100. Protein 

concentrations were determined by the bicinchonic acid method (Pierce, Rockford, IL) 

and adjusted to 3.5 pg/pl. Luciferase assays were performed over a 20 second period 

using a 25 pi (87.5 pg) aliquot of protein and 100 pi of reaction buffer (0.5 mM D- 

luciferin, 2.5 mM ATP, 7.5 mM MgS04, 100 mM KH2PO4) in a Monolight 2010 

Luminometer (Analytical Luminescence Laboratory, San Diego, CA) as previously 

described (44).

Protein expression and purification: Recombinant PPARy2 and RXRa His-tagged 

proteins were expressed and purified as described . Recombinant Coup-TFII (ARP-1) c- 

myc tagged proteins were expressed and purified by attaching a c-myc tag to the Coup- 

TFII (ARP-1) cDNA and expressing the fusion protein in a bacterial system. A lysate was 

prepared from the induced bacterial culture and the proteins isolated by ammonium sulfate 

precipitation. The precipitated proteins were then affinity purified over a c-myc column.
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Electromobility shift assays (EMSA): DNA electromobility shift assays were performed 

with a 67 bp Hindlll/SspI DNA fragment spanning bp -181 to -113 of the LPL promoter. 

DNA labeling was performed using T4 polynucleotide kinase and y^^P-ATF (ICN, Irvine, 

CA). Probes were labeled to a specific activity of 10̂ -10* cpm/pmol. Reactions were 

conducted in a 30 p.1 volume containing 10 mM Tris-HCl (pH 8.0), 0.1 M KCl, 0.05% 

NP40, 1 mM DTT, 6% glycerol, with one or more of the following: 1 ng PPARy, 0.2 ng 

RXRa, 0.5 ng Coup-TFII (Arp-1), and 2-10X10* cpm of probe for a 20 min period at 

room temperature. Samples were separated on a 5% acrylamide/bis-acrylamide (24:1) gel 

by electrophoresis at 100 v for 3 hours. Gels were dried at 80° C for 90 min and exposed 

on Kodak XAR film for 18 hours without an intensifying screen.
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RESULTS

Accumulation of Coup-TFII message with adipocyte differentiation; The temporal- 

dependent expression of Coup-TFII mRNA in pre-adipocytes and adipocytes was 

examined in methylisobutylxanthine /hydrocortisone / indomethacin (MHI) or 1,25- 

dihydroxyvitamin D3 (VD3) treated BMS-2 preadipocytes (Figure 1). Confluent BMS-2 

cultures were treated with standard medium alone (control) or medium supplemented with 

either MHI or VD3. Reverse transcriptase PCR analyses were performed using total RNA 

harvested daily from the cells after treatment initiation (Figure 1). PCR was performed 

with PPARy2 and Coup-TFII (ARP-1) specific primers. PCR was also performed on the 

RNAs with P-actin primers to control for the relative RNA loading between lanes. 

Treatment with the adipogénie cocktail MHI but not the osteogenic VD3 increased the 

amount of Coup-TFII mRNA relative to control.

Members of the Coup-TF family act in concert with PPARyZ and RXRa to activate 

the LPL promoter: The next experiments were designed to ask if any of the Coup-TF 

family ( Coup-TFI, Coup-TFII, Ear2), alone or in combination with RXRa, PPARy2 or 

PPARy2/RXRa, regulated transcription from the full length (-1824 bp to +187 bp) LPL 

promoter. The experiments were carried out in the human embryonic kidney cell line,

293T, because of its ease of transcription and low level of LPL expression in its tissue of 

origin (5). Cotransfection with expression constructs for the different Coup-TF family 

members with or without PPARy2, RXRa or the combination PPARy2/RXRa revealed
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the following pattern of LPL transcriptional regulation. With no added Coup-TF vector, 

the PPARy2/RXRa heterodimer induced the highest transcriptional rate as previously 

described (Figure 2). Cotransfection with PPARy2 alone resulted in statistically 

significant induction over baseline while transfection with an RXRa vector did not 

activate significantly over baseline as previously described . Of the Coup-TF family 

members transfected alone with the LPL promoter construct, only Coup-TFII (Arp-I) and 

Ear2 significantly activated the LPL promoter over baseline. In combinations with either 

PPARy2 or RXRa, the Coup-TF family members activated the LPL promoter only 

minimally with respect to baseline activation. However, when both PPARy2 and RXRa 

were present with a Coup-TF family member, activation increased for all three Coup-TFs 

with Coup-TFII (ARP-1) activating the highest at over 100 fold, Ear2 next with 50 fold 

activation and finally Coup-TFI (Ear3) activating 25 fold which was not significantly 

different from the activation seen with PPARy2/RXRa alone.

Dose-dependent increase in the PPARy2/RXRa activation of the LPL promoter by 

Coup-TFII: To confirm the positive regulatory effect of Coup-TFII (ARP-1), 

cotransfections were performed with a constant concentration of the PPARy2/RXRa 

expression vectors and increasing concentration of the Coup-TFII (ARP-1) vector 

(Figure 3). At the highest concentration, the Coup-TFII (ARP-1) vector increased 

transcription of the -1824 to +187 LPL promoter by 7.5 times the level of activation by 

PPARy2/RXRa alone. These findings demonstrate that the Coup-TFII (ARP-1 ) protein 

can positively enhance PPARy2/RXRa activation of the LPL promoter.
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Deletion analysis of the LPL promoter localizes the region of Coup- 

TFn/FPARyZ/RXRa interaction;. To localize the position of Coup-TF recognition 

elements and to determine if negative regulatory elements might be present, we analyzed a 

series of luciferase reporter constructs with progressive deletions of the LPL promoter 

between -1824 bp and -101 bp 5’ to the transcriptional start point (TSF) (Figure 4). Each 

reporter construct was transfected alone or cotransfected with the appropriate expression 

constructs for the PPARy2/RXRa heterodimer and Coup-TF protein. With Coup-TFII 

(ARP-1) (Figure 4a), deletion of the promoter construct from -1824 to -564 bp and to - 

181 from the TSP resulted in a decrease in activation of approximately 50% (from >80 

fold to approximately 40 fold). Further deletion to -101 bp from the TSP resulted in a 

decrease in activation of the promoter construct to the level seen with Coup-TFII alone 

from the -1824 LPL promoter/luciferase reporter construct. Coup-TFI (Ear3) activated 

the -1824 LPL/luciferase reporter at a level similar to PPARy2/RXRa alone (Figure 4b). 

Successive deletion of the promoter to -564, then -181 from the TSP resulted in slightly 

increased activation of the promoter with the combination of Coup-TFI 

(Ear3)/PPARy2/RXRa with each deletion in a manner similar to the effect observed with 

PPARct/RXRa and PPARS/RXRa indicating a tendency toward a release of inhibition 

from the -1824 promoter construct. Ear2 (Figure 4c) activated the deleted LPL promoter 

constructs in a manner nearly identical to Coup-TFI (Ear3) except that it demonstrated a 

higher activation of the -1824 construct.
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EMSA analysis identifies a region of the LPL promoter that is bound by Coup- 

TFII; transfection analysis reveals that Coup-TF binding to the element may not be 

important to function; Experiments were performed to determine if Coup-TFII (ARP-1) 

binds the LPL promoter in the same region as PPARy2/RXRa . Electromobility shift 

assays were performed using a DNA probe spanning bp -181 to -113 of the LPL promoter 

and bacterially expressed, c-myc tagged Coup-TFII protein (Figure 5). A series of five 

overlapping mutations spanning -171 to -149 of the 5’ flanking region (Figure SA) were 

used as competitors in EMSA analysis against recombinant Coup-TFII (ARP-1) protein 

(Figure SB). None of the mutations specifically competed for DNA binding except for 

those spanning bp -162 to -149 (Mutants D and E, Figure SB). In cotransfection 

analysis, none of the mutants decreased the Coup-TFII (ARP-l)/PPARy2/RXRa-induced 

activation except for mutant D which repressed activation by 40% relative to the wild type 

control (Figure SC). To test if Coup-TFII (ARP-1) could bind the LPL DNA element 

simultaneously with the PPARy2/RXRa heterodimer, EMSA experiments were performed 

where recombinant PPARy2 and RXRa proteins were added with recombinant Coup-TFII 

(ARP-1) protein and the 67 bp LPL probe (Figure SD). During competition experiments 

with the LPL mutant competitors, separate bands of differing mobility are present for each 

complex (Figure SD) indicating that under these conditions the three proteins do not bind 

the LPL promoter simultaneously. These experiments demonstrate that Coup-TFII (ARP- 

1) binds a DNA element that spans from -180 bp to -163 bp from the LPL TSP that 

includes part of the PPARy2./RXRa recognition element -169 to -155 and an additional 

region from -180 to -170. There is also evidence that Coup-TFII (ARP-1) does not bind 

the DNA element at the same time as the PPARy 2/RXRa heterodimer.
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Coregulators of steroid receptor action modify the ability of Coup-TFII (ARP-1) to 

activate the LPL promoter in concert with PPARyl/RXRa; To determine if 

coregulators of steroid receptor action interact with the Coup-TFII/PPARy2/RXRa 

system, a corepressor protein SMRT (silencing mediator for retinoid and thyroid-hormone 

receptors) and a coactivator protein, human steroid receptor coactivator (hSRC-1) were 

expressed in 293T cells with Coup-TFII (ARP-l)/PPARy2/RXRa and the -1824 LPL 

promoter construct (Figure 6). To confirm the regulatory effect of the SMRT protein, 

cotransfections were performed with a constant amount of the PPARy2, RXRa and Coup- 

TFII (ARP-1) expression vectors as indicated, with increasing amounts of the SMRT 

expression vector with the -1824 LPL/luciferase reporter construct (figure 6A). The 

SMRT vector inhibited transcription from the LPL promoter to nearly baseline level of 

expression of the LPL promoter construct at the highest dose. This finding demonstrates 

that the SMRT protein can disrupt the ability of Coup-TFII (ARP-1) to enhance the 

activation of the LPL promoter by PPARy2/RXRa. In experiments with hSRC-1, 

increasing concentration of hSRC-1 with a constant concentration of PPARy2, RXRa and 

Coup-TFII (ARP-1) in the absence of added ligand demonstrated no significant increase in 

activation of the LPL promoter (data not shown). When Coup-TFII (ARP-1) was 

transfected with PPARy2 and RXRa, activation of the LPL promoter was observed 

similar to the level observed with PPARy2 and RXRa in the presence of BRL49653 

(Figure 6B). When BRL 49653 was added to the PPARy2/RXRa/Coup-TFII (ARP-1) 

transfection, induction of the LPL promoter was further increased. Addition of a two
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fold excess of SRC-1 to the BRL treated PPARy2/RXRa/Coup-TFII (ARP-1) 

transfections reduced activation of the LPL promoter to the level seen before addition of 

ligand.
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DISCUSSION

The enzyme lipoprotein lipase is an important enzyme that governs the clearance of 

plasma triglycerides and chylomicrons. It is expressed in a wide variety of tissues 

including adipocytes, macrophages, lactating mammary tissue and the central nervous 

tissue. The varying expression of LPL message in different tissue types is a direct 

reflection of the complex regulation of its promoter by the orchestrated input of numerous 

transcription factors (reviewed in Enerback and Gimble, (37)). The octamer proteins bind 

the sequence ATTTGCAT at bp -46 in both the human (28,70) and murine (58,153) LPL 

promoters and at bp -42 in the chicken (24) LPL promoter. When this site or its flanking 

regions are mutated, expression is reduced by 75% (25,113).

Coup-TFs are orphan nuclear hormone receptors that bind a variety of AGGTCA repeats 

and repress the actions of many other steroid hormone receptors. Coup-TFs inhibit 

expression of two genes that are considered to be antagonistic to adipose differentiation, 

myoD, a master-regulator gene of myogenesis (99), and bone morphogenetic protein 4 

(BMP4), a cytokine that induces bone growth (39). Generally, Coup-TFs are recognized 

as proteins that downregulate expression from target genes but evidence is accumulating 

that Coup-TFs may positively regulate certain systems. We have discovered that Coup- 

TFII (ARP-1) helps the PPARy2/RXRa heterodimer to increase activation of the 

promoter of the LPL gene, a marker of adipogénie differentiation. We believe this occurs 

independently of its ability to bind to the region of the DR-1 that PPARyZ/RXRa bind. In 

general, binding of Coup-TF to a promoter response element is antagonistic to expression
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of the gene product. Baes et al. (3) concluded that Coup-TF antagonized the 

PPARo/RXRa induced activation of the malic enzyme gene promoter by binding to the 

Malic enzyme PPRE and that reversal of this effect depended on the presence or absence 

of 9-Cis RA. In the hydratase-dehydrogenase promoter, Miyata et al. (93) found that 

Coup-TFI binds to its PPRE and antagonizes PPAR-dependent activation. Brodie et al 

(11) in the first report of Coup-TF presence in adipocytes demonstrated that inhibitors of 

preadipocyte differentiation induced Coup-TF to bind to a PPAR/RXR response element, 

and repress transcription. We believe that the activation observed in the LPL promoter by 

Coup-TFII (ARP-l)/PPARy2/RXRa is not occurring through direct binding of Coup-TF 

to the LPL PPRE but instead through protein/protein interactions involving the 

transcriptional apparatus. This is supported by recent evidence from Marcus et al. (89) 

who found through yeast two hybrid cloning, a cellular factor that binds Coup-TFII in 

vitro and allows it to function as a transcriptional activator independent of DNA binding. 

The factor is identical to a recently described ligand of the tyrosine kinase signaling 

molecule p56''"̂  (63). The factor, called ORCA (orphan receptor coactivator) appears to 

mediate interactions between mitogenic and nuclear hormone receptor signal transduction 

pathways (89). In their hands, ORCA selectively activated Coup-TFII (ARP-1) versus 

Coup-TFI (Ear3) in cotransfection experiments with the hydratase-dehydrogenase PPRE 

(93). ORCA had a stimulatory effect on Coup-TFI (Ear3) but the effect was not as 

pronounced as the effect on Coup-TFII (ARP-1). These results are similar to our own in 

the LPL promoter where we find minor activation of the promoter by Coup-TFI (Ear3) 

over the effect o f PPARy2/RXRa but a dramatic increase in activation of the system by 

Coup-TFII (ARP-1). We hypothesize that Coup-TFII (ARP-1) induction of the
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PPARy2/RXRa system occurs through such a mechanism of interaction with 

transcriptional cofactors. Alternatively, Coup-TFs could be acting directly through parts 

of the transcriptional apparatus. It has been shown that Coup-TF associates with the 

Octamer binding proteins (112)and that it binds I  FllB (60) implying that it can help 

stabilize the transcriptional apparatus for other nuclear hormone receptors including 

PPARy2/RXRa.

Based on this data, we can add Coup-TFII and the coregulators of nuclear hormone 

receptor action SMRT and SRC-1 to the numbers of transcription factors that regulate 

LPL gene regulation. The coactivation of the promoter by Coup-TFII/PPARy2/RXRa is 

a novel finding in that there is evidence of activation by COUP-TFII in the absence of 

Coup-TF binding of DNA. .
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FIGURE LEGENDS

Figure 1. PCR analysis of Coup-TFII and PPARy2 mRNA levels during 

adipogenesis. Total RNA was prepared from BMS2 cells 6 days after treatment was 

initiated. BMS2 cells were plated at a density of 4 X 10̂  and were cultured in standard 

medium alone (Control), with the classical adipogénie agonists (methylisobutylxanthine, 

hydrocortisone, indomethacin: MHI), or with 1, 25-dihydroxy vitamin D3. 2 pg of total 

RNA was reverse transcribed for each sample and amplified with oligonucleotide primers 

specific for PPARy2 and (3-actin or Coup-TFII (ARP-1). The P-actin gene was used as a 

control. Aliquots of each reaction were examined on 6% acrylamide gels to compare the 

relative signal intensity. A (|)X174 Haelll DNA size marker was run on the gel to confirm 

the size of the expected fragments.
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Figure 2. Activation of the lipoprotein lipase gene promoter by Coup-TFs in 

conjunction with PPARy2 and RXRa. Cultures of293T cells (S x lOVsS mm plate) 

were transfected with 1 ng of the full-length -1824 to +187 LPL promoter/luciferase 

reporter construct by calcium phosphate coprecipitation. Cells were additionally 

transfected with 4 ng each of pEF-BOS expression vectors containing either PPARy2 ± 

RXRa ± Coup-TFII (ARP-1), Coup-TFI (Ear3), or Ear2 and cultured in the presence of 

fetal bovine serum. Fold activation is calculated relative to the luciferase baseline activity 

in the absence of nuclear hormone receptor expression constructs, defined as “1”. Data is 

normalized relative to a constant protein concentration per assay (87.5|ig) and represents 

the mean ± S.E. of n=3 experiments. Data were analyzed by One Way ANOVA and the 

Student-Neuman Keuls multiple comparison test was performed.
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Figure 3. Dose-dependent activation of the LPL promoter by Coup-TFII (ARP-1) in 

the presence of PPARy2 and RXRcu Cultures of 293T cells (5 x lOVsS mm plate) were 

cotransfected with 1 pg of the full-length LPL promoter/luciferase reporter construct and 

4 pg each of the PPARy2 and RXRa expression constructs and increasing concentrations 

(0.4 - 16 pg) of the Coup-TFII (ARP-1) expression construct. The total amount of DNA 

in each transfection was kept constant by the addition of the appropriate amount of the 

empty pEF-BOS vector. Fold activation is calculated relative to the luciferase baseline 

activity in the absence of nuclear hormone receptor expression constructs, defined as “ 1”. 

Data is normalized relative to a constant protein concentration per assay (87.5pg) and 

represents the mean + S.E. of n=3 experiments. Data were analyzed by One Way 

ANOVA and the Student-Neuman Keuls multiple comparison test was performed.
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Figure 4. Deletion analysis of the LPL promoter: activation by each Coup-TF 

family member in the presence of PPARyZ and RXRa. 1 pg each of deletion 

constructs that link portions of the LPL promoter from -1824 bp, -564 bp, -181 bp, and - 

101 bp to +187 to the luciferase reporter gene were cotransfected into 293T cells (5 x 

10Vs 5 mm plate) in the presence or absence of 4 pg each of PPARy2, RXRa and one of 

the Coup-TF family member(Coup-TFlI (ARP-1)(A), Coup-TFI (Ear3)(B), or Ear2 (C)) 

expression constructs. Results are normalized to protein concentration (87.5 pg/rxn) and 

represent the mean ± SE of n=3 experiments. Fold induction was determined relative to 

the baseline activity of each reporter construct in the absence of nuclear hormone 

receptor expression constructs. Data were analyzed by One Way ANOVA and the 

Student-Neuman Keuls multiple comparison test was performed.
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Figure S. Effect of mutations of the PFARy2 recognition element on EMSA and 

cotransfection assays with Coup-TFH (ARP-l). Mutations of the LPL promoter that 

span bp -171 to -149 are outlined in (A). DNA fragments that contain each of the 

mutations were used as competitors in EMSA assays performed using a 67 bp wild-type 

LPL promoter probe spanning -181 to -113 of the LPL promoter (B) & (D). 1 pg each of 

reporter constructs that link -181 bp to +187 bp of the mutant (MUT) and wild-type (WT) 

DNA sequences to the luciferase reporter were transfected into 293T cells (5 x 10^/35 mm 

plate) ± 4 pg each of the PPARy2, RXRa and Coup-TFII (ARP-1) expression constructs. 

Fold induction was determined relative to the baseline activity of each reporter construct 

in the absence of nuclear hormone receptor expression constructs. Data is normalized 

relative to protein concentration (87.5 pg/assay) and represents the mean ± SB of n=3 

experiments. Data were analyzed by One Way ANOVA and the Student-Neuman Keuls 

multiple comparison test was performed (C).
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Figure 6. SMRT and SRC-1 modulate the effect of Coup-TFH (ARP-1) on 

PFARyZ/RXRa induction of the lipoprotein lipase promoter: effect of 

thiazolidinedione treatment. 293T cells (5 x 10V35 mm plate) were cotransfected with 

1 |ig of the -1824 to +187 LPL/luciferase reporter construct ± 4  pg each of the PPARy2, 

RXRa and Coup-TFII (ARP-1) expression vectors in the presence of increasing 

concentrations (0.4 - 16 pg) of the SMRT expression construct. The total amount of 

DNA in each transfection was kept constant by the addition of the appropriate amount of 

the empty pEF-BOS vector (A). 1 pg of the -1824 LPL promoter was cotransfected into 

5x10* 293T cells/35 mm dish with 4 pg each of PPARy2 ± RXRa ± Coup-TFII (ARP- 

1) ± a 2X (8 pg) concentration of SRC-1 in the presence or absence of 5 pM BRL 49653. 

The total amount of DNA in the transfections was kept constant by adding the appropriate 

concentration of the empty pEF-BOS vector (B). Fold induction was determined relative 

to the baseline activity of the -1824 LPL promoter/luciferase reporter construct in the 

absence of added expression constructs. Data is normalized relative to protein 

concentration (87.5 pg/assay) and represents the mean ± SE of n=3 experiments. Data 

were analyzed by One Way ANOVA and the Student-Neuman Keuls multiple comparison 

test was performed.
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SUMMARY

The purpose of this thesis has been to investigate the molecular mechanisms governing the 

process of nuclear hormone receptor regulation of adipogenesis in the bone marrow 

stroma and the transcriptional regulation of the enzyme lipoprotein lipase, a marker of 

adipogenesis. The work put together in the thesis has established that members o f the 

nuclear hormone receptor family called peroxisome proliferator activated receptors 

(PPARs) do, in the presence of ligand and the retinoid X receptor, activate the adipogénie 

pathway in bone marrow preadipocytes. The molecular processes that occur during this 

differentiation event were investigated using the model of the lipoprotein lipase gene 

promoter as the system for study. It is demonstrated that PPARy2 and PPARa in the 

presence of RXRa activate the LPL promoter and that activation increases in the presence 

of PPARy2 ligands. The DNA binding element to which PPARy2 binds is identified 

through mutant electromobility shift assay and transfection analysis.

In the work, we also determine that a member of the chicken ovalbumin upstream 

promoter transcription factor (Coup-TF) subfamily of nuclear hormone receptors, Coup- 

TFII, acts as an auxiliary cofactor for PPARy2 and RXRa in activation of the LPL 

promoter. We determine that the effect is not through Coup-TFII binding to the LPL 

DNA element, but through another mechanism of interaction with the transcriptional 

apparatus. In attempting to determine the means through which Coup-TFII helps activate
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the LPL promoter, we employ the coregulators of nuclear hormone receptor action SMRT 

(silencing mediator for retinoid and thyroid hormone receptor) and steroid receptor 

coactivator I (SRC-1). We determine that SMRT inhibits the activation of the LPL 

promoter by the PPARy2/RXRa system in the absence of ligand. We find that it also 

totally inhibits the ability of Coup-TFII to assist in activation of the LPL promoter. SRC- 

1 helps to activate the liganded PPARy2 receptor in the absence of RXRa. The activation 

is on the order of that seen by PPARy2 with RXRa in the absence of added ligand. 

Addition of SRC-1 to the liganded PPARy2/RXRa complex does not further increase 

activation. Addition of SRC-1 to the Coup-TFII/PPARy2/RXRa system also has no 

effect on the activation of the LPL promoter. We interpret this to mean that coactivators 

do interact with the nuclear hormone receptor system, and they do so in a manner that is 

dependent on which other factors are present in the system as well as whether ligand has 

bound and changed the conformation of the receptor.

We determine that Coup-TFs may play a role in the adipogénie pathway by helping to 

activate the LPL promoter. We recognize that Coup-TFs are found abundantly in neural 

tissue and that the LPL promoter is very active in neural tissue. Thus, we hypothesize that 

Coup-TFs may also play a role in activation of the LPL promoter in neural tissue.

Future directions of this work include a search for additional coactivating factors for this 

system involving screening of preadipocyte and adipocyte lineages. With the BMS-2 cell, 

we believe we have a system that will enhance discovery of new PPAR and Coup-TF 

interacting factors since both of these molecules appear to play an important role in the
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adipocyte. An examination of the adipogénie process in Coup-TF null mice might lead to 

further understanding of the adipogénie differentiation pathway.

This dissertation has attempted to answer novel questions about the regulation of the LPL 

promoter in adipogenesis by members of the nuclear hormone receptor family and the 

actions of coregulators of these receptors on this effect. We feel that the findings are 

important because of the implications they carry in terms of human obesity, hemopoiesis, 

osteogenesis and atherogenesis. We hope that our findings help to elucidate the molecular 

mechanisms governing these conditions so that, one day, therapeutic interventions may be 

devised for human disease.
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Appendix I: Steroid Receptor cDNAs

INSERT soln SPECIE VECTOR PROMOTER in soin
# pEF-BOS #

ARP-1 5073 human PMT2 Adeno Major yes 5270
(COUP —TFII) S ource : John L adiaa. JBC 269 5944-51. 1994.

Coup-TFI 6100 mouse pABgal SV40 no
(ligand binding domain — ) so u rc e : M lng-Jer t s a l .  S ay lo r COM

EAR2 5071 human PMT2 " yes 5928
Source: John L adias . JBC 269 5944-51. 1994

EAR3 5072 human PMT2 " yes 5930
(COUP —TFI) S o u rce : John L ad ias. JBC 269 5944-51. 1994

PPARa 5021 human PSG5 T7/SY40 no
Source: Frank Gonzalez NCI NIH.

PPARa 5396 mouse PECE SV40 yes 5639
Source: S teve K liew er. GLAXO Pharm aceuticals

PPARP/ô 5052 human PJ3Q SV40 no
(hNUC—1) Source: Schmidt e t  a l .  Mol. Endo. 6 (4) 1634 . Merck Pharm.

PPARp/0 5387 mouse PSG5 T7/SV40 yes 5642
Source: S teve K liew er. GLAXO P harm aceuticals

PPARyl 5085 mouse bluescript T7 yes 5224
Source: B ert O 'M alley . B aylor U n iv e rs ity

PPARy2 5083 mouse PSG5 T7/SV40 yes 5637
Source: S teve K liew er. GLAXO P harm aceu ticals

PPARy2 5492 mouse bluescript T7 yes 5636
Source: d i r e c t  PCR o f  508 3

PPARy2 6117 mouse pCMX T7/CMV no
Source: M itch e ll L az ar. UPenn
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INSERT soin SPECIE VECTOR PROMOTER in soln
# pEF-BOS #

PPARy2SA 6116 mouse
Source: H icche ii L azar. UPenn

pCMX T7/CMV no

RAR 3970 human
Source: ATCC

PTZ19R T7 yes 5222

RXRa 5204 mouse
Source: Ron Evans. Saik I n s t i t u t e

pCMX T7/CMV yes 5312

RXRa 5493 mouse
Source: d i re c t  PCR of 5204

bluescript T7 no

rxrP 5373 mouse pCMX T7/CMV
Source: Ron Evans. Salic I n s t i t u t e

no

RXRy 5374 mouse pCMX T7/CMV
Source: Ron Evans. Salk I n s t i t u t e

no

SMRT 6119 mouse
Source: Zafar Nawaz. Baylor COM

pABDgal CMV no

SRC-1 6138 human pCR3.1 T7/CMV
Source: Sergio Onate. B aylor COM

no

VDR 3972 human
Source: ATCC

PGEM3 T7 yes 5163
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