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ABSTRACT

A 2D dry incompressible vorticity-stream function model is developed and used
to investigate nonlinear buoyancy waves, especially internal solitary waves and related
phenomena in the lower atmosphere. Using this model some essential properties of
internal solitary waves have been successfully simulated. For the first time reversed
recirculation within large amplitude solitary waves has been found in the simulations.
The existence of recirculation enables large amplitude solitary waves to trap air and
transport it. Meanwhile, due to viscosity the trapped air continuously leaks out during
the transport. The influences of surface friction and ambient vertical wind shear on

solitary waves are also studied.

On the basis of the preceding studies, an internal solitary wave generated by a
thunderstorm outflow, observed by NSSL's Doppler weather radar, a 444m tall tower
and a surface network, is modeled. The simulation results show a quite good agreement
with the observation in several aspects. The simulation also gives us a further
understanding of the origin, propagation, and decay of the solitary wave, as well as its
detailed kinematic and thermodynamic structure.
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Chapter

1

Introduction

When studying weather phenomena in the atmosphere, we should include
ubiquitous buoyancy waves. Buoyancy waves are believed to be an important
mechanism for the transportation of energy and momentum, the formation of turbulence,
and the initiation of severe mesoscale weather phenomena. Hence understanding the
origin, propagation, and decay of these buoyancy waves in the atmosphere is a

significant task for meteorologists.

Based on their properties, internal buoyancy waves can be divided into two
types: 1) linear periodic waves; 2) nonlinear waves. The first type has been extensively
investigated and applied to explain many atmospheric phenomena. But it has been
increasingly observed that internal buoyancy waves propagating in the atmosphere have
large amplitudes and are non-periodic and highly nonlinear. If these large amplitude

waves interact with a proper environments, they can initiate or enhance deep conviction
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(Zhang, and Fritsch 1988; Carbone et al. 1990). They also are able to produce strong
wind shear at low altitudes which can jeopardize aircraft flying near the ground (Christie
and Muirhead 1983; Doviak and Christie 1989). So more and more attention in recent
years is being paid to the second type of buoyancy waves. A good example of nonlinear
internal buoyancy wave observed in the atmosphere is the solitary wave which has a

remarkably large amplitude with a single isolated crest.

1.1 Nonlinear buoyancy waves in the atmosphere

In the late 1940’s and early 1950’s several authors suggested nonlinear waves
may exist in the atmosphere. Abdullah (1955) first reported a large amplitude wave of
single elevation (i.e. a solitary wave) which moved eastward over Kansas and produced

a pressure increase of 3.4 mb on the surface during the morning hours of June 29, 1951.

The first definitive observation of atmospheric solitary waves was made by
Christie et al. (1978) in Australia. Unlike the most common linear periodic horizontally
propagating buoyancy waves in the troposphere, they found a large number of unusual
isolated waves in over two years of continuous observation. These waves with relative
large amplitude are interpreted as internal solitary waves propagating along a nocturnal

inversion.

Another well-known phenomena related to nonlinear wave activity in the lower
atmosphere in northeastern Australia is called “morning glory”. It is a strong wind
squall or a series of wind squalls, usually in company with one or more roll-cloud

formations, occurring commonly near dawn during the spring months over the south
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margin of the Guif of Carpentaria and the adjacent Cape York Peninsula (Clarke 1972;
Neal et al. 1977a, b). Moming glory roll-clouds with considerable regularity retain their
forms for several hours and extend in length for several hundreds kilometers parallel to
the wave crests. These roll-cloud formations are found to be associated with a sequence
of evolving solitary waves. They also found that similar large amplitude propagating
wave phenomena without cloud occur frequently over much of Australia. In a recent
paper, Christie (1992) reviews some new observations of morning glory waves and
related nonlinear wave disturbances in Australia’s Gulf of Carpentaria, and further

clarifies the interpretation and propagation characteristic of morning glories.

The atmospheric phenomena associated with nonlinear large amplitude waves
are not only frequently observed in Australia, but also elsewhere (Shreffler and
Binkowski 1981; Goncharov and Matveyev 1982; Hasse and Smith 1984). Doviak and
Ge (1984) observed an atmospheric solitary wave with a Doppler radar, a tall tower and
surface network over central Oklahoma. This observation gave the first detailed and
Stereoscopic X-ray view of an atmospheric solitary wave. Using more complementary
sensors including two Doppler radars, satellite, rawisonde and a S00m tall instrumented
tower, Mahapatra, Doviak and Zrnic (1991) observed an atmospheric undular bore
which is interpreted as a sequence of solitary waves. The undular bore originated in
western Oklahoma and the Texas Panhandle and propagated southeasterly to central
Oklahoma through a ground-based stable layer created by the outflows of thunderstorm
and strengthened by nocturnal cooling during the night and early moming. These waves
then dissipated before reaching eastern Oklahoma. The leading wave of the wavetrain
was the strongest among the waves and propagated at the fastest speed, 12.3m/s. This

wave produced a pressure rise about 2.4 mb above the ambient value and a perturbation
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velocity with peak value 13m/s on the surface. The speeds of the succeeding waves
decreased progressively as the amplitudes of these waves diminish progressively. The
well-organized oscillatory structure of the first several waves were clearly observed by

all the sensors.

With the aid of a 50 MHz wind profiler, a 10 cm wavelength Doppler radar and a
balloon-borne sounding system, Ramamurthy et al. (1990) made observations of
exceptionally large amplitude waves which further confirmed the importance of
understanding the morphology and behavior of the atmospheric solitary wave. They
reported two separate solitary waves with vertical displacements on order of 4 km which
is comparable to the scale height of lower troposphere. These waves propagated over
1000 km from Missouri to Ohio with no obvious change in their structure. The waves
significantly acted on the organization of a band of precipitation and other weather

phenomena.
1.2 The development of solitary wave theory

The beginning of theoretical studies of solitary waves dates from the discovery
by Korteweg and de Vries in 1895 of a solvable nonlinear equation which has a solitary
wave solution. This nonlinear equation

of , o o 9
$+coja;-+afa—x-+ﬂé?-=0 (L1

is called KdV equation for shallow water. Where f is the profile (e.g. vertical

displacement) of the wave, and ¢, is the linear phase speed of an extremely long wave
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having infinitesimal amplitude. The coefficients of the nonlinear and dispersive terms,

a and B, are determined by the nature of wave propagation medium. A solitary wave

solution of the KdV equation is

f(x)=a*sech?[(x—ct)/7] 1.2)

where a is the amplitude of solitary wave, c is the phase speed of solitary wave and ¥yis
the wavelength determined both by the amplitude a and the depth of medium 4. The

solution is strictly correct only if a/h<<1.

Zabusky and Kruskal (1965) raised the curtain on the modern development of
KdV theory. Using a computer to solve a particular version of the KdV equation to
study the interaction of two solitary waves, they discovered the particle-like behavior of
solitary waves. They coined the term “soliton“ for a solitary wave which retains its
identity even if it collides with other waves. Since then the solitary wave theory has
widely appeared in many fields like meteorology, fluid dynamics, and electronic

engineering.

Benjamin (1967) and Davis and Acrivos (1967) independently found a whole
new class of solitary waves for deep water. Later Ono (1975) developed the theory for

this case and derived an evolution equation which has been named the Benjamin-Davis-

Ono (BDO) equation.
of  of o .
at+°°ax+°‘fax+ﬁ_7ax H()=0 (1.3)
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where H(f) denotes the Hilbert transformation of f, and o and P reflect the structure of

waveguide (For details see Chapter 3).

The basic properties of the KdV and BDO equations have been widely studied
since the discovery of the solitary wave solution. Both KdV and BDO equations have
not only one solitary wave solution, but also multiple-solitary wave solutions which
have been proved by Hirota (1971), Matsuno (1979) and Chen et al.(1979). Miura et al.
(1968) and Nakamura (1979) have separately showed the KdV and BDO equations are
completely integrative with infinitely many conservation laws and indicated both

solitary wave solutions of these two equations have the soliton nature.

The original KdV and BDO equations only provide a simplified model for the
internal atmospheric solitary wave propagating with finite amplitude on a horizontally
homogeneous inversion layer (i.e. the waveguide). Considering the stratified fluid with
wind shear, and with a slow temporal and spatial variation which is common in the
atmosphere, Grimshaw (1981a) and Maslowe and Redekopp (1979,1980) generalized
the equations which caused the coefficients a,B be functions of time and space. The
turbulence dissipation, and radiation damping due to waves propagating away from the
waveguide have been also considered by Grimshaw (1980, 1981a, b). These two factors
are included into two extra terms, one for dissipation and the other for radiation. The
possibility of the existence of a critical layer where the phase speed of the wave is equal
to the ambient flow speed have been examined by Maslowe and Redekopp (1980). The
critical layer can prevent energy radiation through the upper non-neutral stable layer.
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Generally speaking, the KdV equation is applicable to shallow fluids.
Nevertheless, the solution of the KdV equation is a good first-order approximation for
large scale atmospheric solitary waves with horizontal wavelengths comparable to the
height of troposphere (Christie et al. 1978). On the other hand, the BDO equation is
suitable for waves in deep fluids. For example, surface-based stable layer of depth h
much smaller than the depth of a deep neutral or weakly stable layer satisfies the deep
fluid condition. Thus, long buoyancy waves with finite amplitude propagating in a

shallow stable layer, overlain by deep neutral air, are governed by BDO equation.

When the internal solitary wave has a very large amplitude (i.e. a/h21) and
there is recirculation within it, the weakly-nonlinear solitary wave theory described
above is no longer applicable. The fully-nonlinear wave theory is required, but the
theoretical studies on this field are relatively limited. Davis and Acrivos (1967)
numerically and experimentally investigated the internal solitary wave propagating in a
fluid of infinite depth and found a region of closed streamlines near the center of the
solitary wave when the dimensionless amplitude (a/h) is greater than 1.2. Tung et al.
(1982) extended the weakly nonlinear theory of long internal buoyancy wave to the
fully nonlinear case in which the restriction of small amplitude and long wavelength is
removed. They showed theoretically and numerically the existence of a large amplitude
solitary wave with permanent form, and found when the amplitude of wave increases to
a certain value the phase speed ceases to be linearly proportional to the amplitude. The
closed streamline region, called the recirculation region, also appeared within the large
amplitude wave in the results of Tung et al. (1982). The other result which Tung et al.
(1982) emphasized is that " slight changes in the ambient density stratification can

produce quite different solutions at large amplitude"”. It reminds us that the accuracy of
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measured temperature profiles is actually important for studying atmospheric internal

solitary waves of large amplitude.

Pullin and Grimshaw (1988) has given an answer about the limitation of the
amplitude of solitary wave. The amplitude of internal solitary wave is unbounded and
the profiles of different amplitude waves have similar shapes and differ only by a scale

factor as the density difference vanishes.

Almost all these developments in studies of KAV and BDO equations are used to
extend investigation to all sorts of observations of nonlinear buoyancy waves in the
atmosphere. Actually the KdV and BDO equations provide only the basic tools for
studying the weakly nonlinear buoyancy wave phenomena, thus other methods like

laboratory and numerical experiments are needed.

It is worth pointing out that the derivations of KdV and BDO equations, and the
solution of fully-nonlinear internal wave theory developed by Tung et al. (1982), are all
based on the assumption that the variables such as density and potential temperature, are
constant on the same streamline and the value of a variable is determined from the
upstream unperturbed flow where the value is known. When the closed streamlines
appear in the flow, this assumption is violated and the value on the closed streamlines
can not be obtained from the upstream flow. So present theories leave a blank area in the
region of closed streamlines. However the circulating fluid within the large amplitude
internal solitary wave plays an important role in the propagation of the wave and in

trapping and transporting fluid.
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1.3 Laboratory experiments

The laboratory experiment is an important approach in the study of buoyancy
waves. Most experiments are carried out in a water tank which gives a direct view of the
behavior of buoyancy waves under different circumstances. Maxworthy (1980) showed
that an evolving sequence of highly nonlinear internal solitary waves, ordered by their
amplitudes, can be created when a region of mixed fluid, with an excess of potential
energy over the ambient, collapses into a stratified fluid. The inner-circulation inside the
solitary waves, and the trapped mixed fluid which initiated the waves, are found within
the leading solitary wave. He also found that the trapped fluid slowly leaks rearward as
the wave amplitude decreases. The experiment of interaction of two solitary waves
proved the soliton property of the internal solitary wave. He concluded the solitary wave

can be easily generated under many circumstances if a waveguide is present.

The experimental results of the formation of an internal undular bore by a
moving obstacle on the bottom or top boundary of a uniform fluid, or a static obstacle in
a flowing fluid, or movement of a gravity current through a two-layer fluid, have been
reported by several authors (Baines 1984; Wood and Simpson 1984; Rottman and
Simpson 1989). They showed the relation between the strength and speed of the bore
and the shape of obstacle or the speed and the depth of gravity current.

The temporal and spatial variation of the waveguide can affect the propagation
of solitary waves, and even cause the breaking of waves like ocean waves crashing onto
a sloping sea shore. Kao et al. (1985) provided a complete scenario of the breaking of an

internal solitary wave of depression in a fluid with hyperbolic tangent density profile.
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The wave breaking occurred when the wave encountered a sloping bottom which
changes the depth of fluid in the direction of wave travel. Through quantitative
measurements, he found “ the onset of wave-breaking was governed by shear

instability”.

1.4 Numerical Modeling

The rapid development of high-speed computers and computational fluid
dynamics has had a great impact on the way of studying wave motions in the
atmosphere. In recent years, instead of solving the KdV and BDO equations analytically
or numerically, the primitive equation model is adopted to simulate the atmospheric
phenomena of buoyancy waves. The numerical model is able to solve the analytically
intractable problem, and at very little cost compared to laboratory experiments. Most
observations of nonlinear buoyancy waves in the atmosphere provide a complicated
background fields of temperature and wind under different initial and boundary
conditions, which is difficult, and sometimes impossible, to handle using an analytical
method or laboratory experiments; but a numerical model can simulate the evolution of

buoyancy waves under these conditions.

By using a two-dimensional numerical model, Crook and Miller (1985) and
Hasse and Smith (1989) found if a density current moved into a shallow stable layer, an
undular bore was generated and propagated ahead of the density current. Hasse and
Smith have made a further study and used the ratio of the phase speed of an infinitesimal
amplitude long wave to the speed of the equivalent gravity current in absence of the

stable layer to characterize the evolution of the density current and the generation of the
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undular bore. Hasse (1991) also reported that large amplitude waves gradually decay
due to energy radiation into an upper weakly stable layer. The effects of a critical layer
on properties of an internal solitary wave have been studied by Skyllingstad (1991). The
numerical model results indicates that wave absorption at the critical level increases as
the ambient stability increases; whereas as the ambient stability becomes weak, the
absorption reduces, and then the reflection of the critical level increases, even wave
instability might happen if the Richardson number of the ambient flow is smaller than
1/4.

LS Our Research Objectives

Our key objective is to develop a numerical model to study the properties of
large amplitude solitary waves in the atmosphere and to compare these numerical results
with an observation of a family of evolving solitary waves. Although the basic structure
and behavior of atmospheric internal buoyancy waves are reasonably understood using
weakly nonlinear wave theory, laboratory and numerical simulations, questions remain
about the characteristics of the wave under complicated environments. I intend to focus

primarily on the following topics:

1) In an ideal waveguide, like a horizontal homogeneous stable layer overlaid by
a deep neutral layer without any friction, solitary waves can propagate with their identity
for all time. The atmosphere is considered as an ideal waveguide when we simplify the
problem, but strictly speaking, the realistic properties of atmosphere, such as turbulence
viscosity, surface friction, no neutral layer above the waveguide (to prevent the leakage

of wave energy to the upper atmosphere), and degradation of waveguide caused by solar
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radiation or other reasons, are not negligible most of time. These factors lead to the
decay of nonlinear internal buoyancy waves via the dissipation and radiation of the wave
energy. The vertical wind shear in the ambient is another factor which influences the
properties of the wave. Due to the limitations of the theory, laboratory, and numerical
experiments, the effects of these factors on the nonlinear buoyancy waves, especially the
waves with large amplitude, are not completely understood. I intend to examine the

influences of these factors on the properties of large amplitude waves.

2) Nonlinear buoyancy waves with large amplitude and accompanying
phenomena like recirculation within the wave and trapped ambient fluid, are found in
the theoretical studies, laboratory experiments, and observations. Previous studies have
given some preliminary results, but the structures of temperature and velocity inside the

recirculation region, and the mechanism of trapping and leaking are still unknown.

3) A multisensor observation reported by Doviak and Ge (1984) provided a
detailed view of a solitary wave. The previous analysis (Doviak et al., 1991) indicates
this observation presented a quite complete picture of a solitary wave phenomenon.
Thus it gives us an unique opportunity to probe deeply into the essence of nonlinear
atmospheric buoyancy waves by comparing the observations with our numerical

simulations.

Toward our objectives, a two-dimensional, vorticity-stream function,
incompressible model has been constructed and operated. The model equations and
operation procedure are presented in detail in Chapter 2. The numerical scheme, initial

and boundary conditions, and stretched coordinate which are adopted in the model are



Chapter 1 Introduction 13

described in the rest of Chapter 2. For testing the model performance, the results of
weakly nonlinear wave theory is used and thus it is briefly reviewed in Chapter 3. Using
the model, the propagation and collisions of solitary waves of small amplitude are
simulated and the numerical results are compared with the weakly nonlinear wave
theory in Chapter 4. Because the simulation of the solitary wave in the atmosphere and
understanding of their behavior are our ultimate objectives, the preliminary results of
generation and propagation of solitary waves are examined with the aid of an air parcel
tracer technique described in Chapter 4. In Chapter 5 the properties and structures of
large amplitude solitary waves are closely investigated. Chapter 6 presents the study of
the effects of turbulent eddy diffusivity and wind shear on solitary waves in the lower
atmospheric boundary layer. The results of numerical simulation of a solitary wave
related case are provided in Chapter 7. The main achievements in the thesis are

summarized in Chapter 8.



Chapter

2

Numerical Model

2.1 Model equations and operation procedure

Our major goal of developing the numerical model is to study the propagation
and evolution of large amplitude waves in the atmosphere and to compare results with
observations. Although wave phenomena in the real atmosphere is always three-
dimensional, in some cases it can be treated as a two-dimensional phenomena to
simplify the problem. Meanwhile, some two-dimensional properties of large amplitude
waves, which we intend to study in this dissertation, are still unknown. Under the guide
of these desires, a two-dimensional (2D) incompressible vorticity-stream function model
is developed because the vorticity-stream function method is one of the most popular
methods for solving the 2D incompressible Navier-Stokes equations. The model
equations can be derived from the following 2D Navier-Stokes momentum equations in

a Cartesian coordinate system,

14



Chapter 2 Numerical Model 15

du. ., du_ .o d%u. _ 3%
-§+uax+w$- e$+°h§7+uvgf 2.1)

ow oJdw _dw on 32w 3w

-g‘i'ug'f'\ﬂ&—— 'a—z—g+‘\)h axz +Vy azz 2.2)
and the adiabatic equation

O 30 00 __ e _ e
—aT+uax+Wgz-—th‘T+Kv-az1- (2.3)

where u, w, © are horizontal , vertical velocities and potentiai temperature, g is the

R
gravitational acceleration, IT = Cp(-g-){:f in term of Exner function, where Cp is the
Po

specific heat of dry air at constant pressure, p, is a reference pressure at 1000 mb and

R, is the gas constant for dry air. v and x are kinematic and thermal viscosity,

subscript h and v represent horizontal and vertical.

We assume there exists a basic state in which potential temperature ©, is

constant and pressure field is in hydrostatic balance (i.e., 902%929-)—:—9 where

I1,(z) is only a function of height z. Subtracting this state from Eq.(2.1) and (2.2), and

writing © =0, +6(x,z,t) and I1 = I1,(2) + n(x,z t), we get

du du_ _du ax % %
§-+u$+w$--(60+6)5x-+uh-a—x—2-+uva7- 4
ow ow ow oIl m  Fw  Pw

oW ., 2% s Dk ¢ N —_— 2.5
% + ™ > 0 > (9°+0)az+uh—2-ax +ov—7-az @2.5)
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We also assume 6<<8, , so term O, +0 can be replaced by ©,. Now the

momentum equations are simplified as

du,  du. du an . %, dku

E*-u +w$__eo_+uh_7+uv_2. .6)
aw . ow  _dw _ an . @ ?*w *w
a—+u—+wa—-—6°E +g-é—o-+1)ha 2+\)va p) .7

The adiabatic equation becomes

-aﬁ+u£+wiq-x azeﬂc i) (2.8)
A ox oz e Vo '

We differentiate Eq.(2.7) with respect to x and Eq.(2.6) with respect to z and

subtract one from the other; the vorticity equation is thus obtained.

L, &, &, o dw g %

at+uax+waz+§(ax+az)-eoax+vh—2-ax +v"—78z 2.9)
ow du

Whmc—g-a—z'.

For a two dimensional incompressible flow the continuity equation in Cartesian

coordinates is

du_ aw _, (2.10)
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and stream function can be defined by

u=-—ﬂ w=a‘v (2.11)

' x
By substituting Eq.(2.10) and (2.11) into Eq.(2.8), (2.9), and using the definition
vorticity, the 2D incompressible vorticity-stream function model equations can be

derived.

Vorticity equation

96 _dyadl dyadi_db 3% . 9%
* 9zox 9xdz ox ""&T“"Ef @12

Poisson equation

2
gx‘f +%- = @2.13)

Adiabatic equation

db_dyadb dyab _ 9’b %
* dzox oz N Nz 2.14)

3]
here b=g—.
w geo

These equations can be solved numerically by using a time-marching procedure
described by the following steps:

1) Give initial conditions for {, y and b at time t=0.
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2) Solve the vorticity and adiabatic equations for { and b at each interior grid
point attime t=t+ At by using time -marching method.

3) Solve the Poisson equation for new yat all points by using new { at interior
grid points.

) : = oaw=¥
4) Find the velocity components from u= 3 and w= -
z

5) Determine the values of { and b on the boundaries by using the values of (,

v and b inside the boundary, and boundary conditions.

6) Return to step 2 for next time step.

After completing above steps at the desired time, the velocity components u, w

and buoyancy b are determined in the whole computational domain.
2.2 Boundary conditions

In the model, the lateral boundaries are radiation boundaries in order to allow
internally generated waves to pass out of the model domain freely. To construct the open

boundaries, the following equations are used instead of the model equations at right side
boundary,

of of

e ~(u+c)—, .15
and at left side boundary,

of of

_at __(u_c)_ax’ (2.16)
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where f represents variables { and b, and c is an estimate of the phase speed of the

dominant internal waves propagating in the model domain.

Because this simple open boundary condition can not allow internal waves of all
wavelength with different phase speeds to propagate out of the domain without
reflections, the “sponge” boundary conditions are applied at and near the lateral and top
boundaries to minimize the false reflections of waves at the boundaries. The following

equation is used

=-Y(x,2)*f 2.17)

¥R

The damping rate y(x,z) is a spatial function. In our simulations, it is a linear
function of x with a maximum on the boundaries and gradually decreasing to the zero
within a certain distance (about 10% of the domain width and height) in the model

domain

In some numerical experiments, an inflow which originates from the right side
boundary is imposed to simulate the ambient wind field or to keep the waves of interest

in the domain.

The bottom and top boundaries in the model are rigid (i.e. w=0 at z=0 and z=H).
Consequently, from Eq.(2.11) the boundary conditions for the stream function ¥ can be

found as constants. In this case, yis set equal to zero on the bottom; the value on the top

is derived from the integral of Eq.(2.11)
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H_
Vep = | U, (2)d2 (2.18)
where U, (z)is the wind profile of inflow at right side boundary.

For vorticity {, the reflection scheme is applied on the top and bottom
boundaries for the inviscid rigid boundary condition. In implementing reflection, three
rows of fictitious grid points are defined above the top and below the bottom of the
domain respectively. Values of { at the fictitious points are assigned using the reflection
process. The vorticity { is odd with respect to the top and bottom boundaries. This
means that the values at fictitious points is set equal to the respective values at their

mirror image points in the domain.
There is no heat flux at the top and bottom boundaries which implies that

=0 at z=0and z=H. 2.19)

¥

Hence the values of buoyancy b at the fictitious points are set equal to the values

at the bottom and top boundaries respectively.

2.3. Finite difference scheme for integration

For appropriate and satisfactory accuracy, the third-order Adams-Bashforth

scheme is applied for time integration in our numerical model.
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ft+ Aty =f(t)+ At [23F(t)-16F(t- At)+5F(t-2 At)}/12 (2.20)

At the initial time, F(t- At) and F(t-2 At) are not available, so the Euler scheme is

used:
ft+At)=f(t)+ At Ft) 2.21)
At the second time-step , the second-order Adams-Bashforth scheme
f(t+ At)=f(t)+At [3F(t)-F(t-At)])2 .22)
is used.

The truncation error is the difference between the partial derivative and its finite-
difference representation. Durran (1991) noticed that the relative importance of temporal
and spatial differencing error in the numerical simulation of a propagating sinusoidal

wave is largely determined by the absolute value of the Courant number,

where c is the wave speed. In our numerical experiments, the speeds of gravity wave are
around 10m/s, the At is 1 sec (even smaller in some experiments) and Ax is 200m. So
the Courant number is 0.05, which is much smaller than 1. It makes the truncation errors

significantly small to satisfy the accuracy we need.
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2.4. Finite difference schemes for spatial derivative

The fifth-order, upstream advection schemes are applied to calculate the

advective term in the model equations.

ﬁ = —1— [-3f(x + 2Ax) + 30f(x + Ax) + 20f(x) — 60f (x — Ax) + 15€(x — 2Ax) - 2f(x — 3Ax)]
Jx 60Ax
(2.23)
and
of 1

— = ——[2f(x + 3Ax) - 15f(x + 2Ax) + 60f(x + Ax) — 20f(x) — 30f(x — Ax) + 3f(x — 2Ax)]
Jx 60Ax

(2.24)

The first equation is preferable for u>0 and the second for u<0 when the

advective term ugf; is calculated in the model. Near the lateral boundaries it is

impossible to use the fifth-order scheme, so third-order and second-order schemes are
applied. The numerical schemes are as follow:
The third-order scheme

il = E};[f(x —2Ax) - 6f(x — Ax) + 3f(x) + 2f(x + Ax)] for w0 (2.25)

ax

of 1
Fw = 6_A_x-[—2f(x - Ax) - 3f(x) + 6f(x + Ax) — f(x + 2Ax)] for u<0 (2.26)

The second-order scheme
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-a—f- - —[f(x + Ax) - f(x - Ax)] 2.27)

ax 2Ax

The numerical schemes used in z direction in the model is similar to the schemes

in x direction except the function ﬂ in the schemes are in a stretched vertical

oz

coordinate (see next section for detail).

The truncation errors for the third-order schemes (Eq.(2.25) and (2.26)) and the
fifth-order schemes (Eq.(2.23) and (2.24)) can be calculated by expressing each term on
the right-hand side of these equations as a Taylor series. The lowest-order terms of the

4
3 04f 35t

5o& ad iﬁ(Ax)s—-g respectively. The order of

truncation error are I-Z-(Ax)
lowest truncated spatial term in fifth-order scheme is two larger than the order of third-
order scheme. Because Axis a finite quantity, the fifth-order scheme has smaller
truncation error than the third-order. In particular, the fifth-order scheme produce less
damping on the solution than third-order scheme. Hence high-order spatial differences

ensure a higher degree of accuracy.

It is appropriate at this point to comment on our use of odd-order advective
scheme in the model. The use of odd-order schemes avoids the need to introduce
artificial viscosity terms in the model to keep it numerically stable, because odd-order
schemes have more damping on the solution than even-order scheme. In the odd-order
scheme, the lowest-order term of the truncation error contains even-order partial

2n

derivatives iqﬁ- which plays a role similar to the viscosity terms (Anderson 1984).
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Generally, this is called implicit viscosity as opposed to explicit viscosity, like terms

aZ aZ
v, -a——g—. and v, 8—2 in Eq.(2.12), which are purposely added to a model equation.
X z

In order to find the differences of 3rd and Sth order advection schemes in the
buoyancy wave modeling, two numerical simulations of solitary wave propagation with
the same conditions except for the advection schemes in the model are conducted. A
large amplitude solitary wave is given at initial time. A low level stable layer with
constant Brunt- Viisili frequency N covered by a deep neutral layer provides a wave

guide for the propagation of the wave.

For the sake of comparison, the solitary waves displayed in buoyancy fields at
the initial time, and after 25000 seconds with different numerical schemes are shown in
the same figure (Fig.2.1). Comparing these three pictures, we found that the shapes
(amplitude and wavelength) of the waves almost unchanged after 25000 seconds of
propagation, if either the 3rd or Sth order schemes are applied. Theoretically, solitary
wave should propagate with constant speed and same shape in the background condition
employed in our model. The model results indicate that the model handles it quite well.
More simulations for the test of the model will be shown and discussed in the

succeeding sections.

By comparing the locations of these two waves at t=25000 sec, we also find that
the solitary wave (3rd order wave) obtained using a 3rd order advection scheme lags
slightly behind the wave (5th order wave) derived using a 5th order advection scheme
(see Fig.2.1). It means the speed of 5th order wave is slightly faster than the speed of 3rd
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Fig.2.1 Buoyancy fields of a large amplitude solitary wave (a) at t=0Osec; (b) at
t=25000sec by using 3rd order advection scheme; (c) at t=25000sec by using Sth order
advection scheme. The wave propagates rightward.
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order wave. Through simple calculations, we obtained the speed of 3rd order and 5th
order waves are 11.13m/s and 11.16m/s respectively. The difference is 0.03m/s. The
results are consistent with the previous theoretical discussions about truncation errors of
different schemes. Because 5th order scheme provides less dissipation in the truncation
term than 3rd order scheme, the speed of 5th order wave should be faster and more
accurate than the speed of 3rd order wave. On the other hand, the unlikeness of these
two schemes is not obviously displayed in the shapes of the waves. Perhaps longer

period simulation will help to tell the difference.

Theoretically, 3rd order advection scheme costs less computer time than 5th
order scheme. We found the difference of computer time in the above simulations is
quite small. So a 5th order advection scheme is applied in the our model for more

accuracy.
2.5. Stretched vertical coordinate

Because the region, in which we are interested, is within 10-20% of height of the
domain, the stretched grid is very effective to be used in the model. The transformation

relation between the constant grid and the stretched grid in this model is given by

z =[tanh(br|-b)
tanh(b)

+1]*H, 0<nsl1 (2.28)
where b is a stretching scale factor and m is the new vertical coordinate. The value of 1
is between 0 and 1. With this transformation, the chain rule is used to replaced the

vertical derivatives.
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wlg

9 _
2 - (2.29)

2
zam

Bn 2 0 azn 9
2.30
az2 8 6112 an (230)

In the stretched system, the vertical grid intervals are no longer constant and
increase with height. Comparing with the constant grid coordinate, the higher spatial

- resolution is achieved in the region of interest with same total grid points.
2.6. Initial condition

The initial data of stream function Wy, vorticity { and buoyancy b are required as
the input of the model. The initial background fields are horizontally uniform in the
whole domain, and vertical wind profile u(z) and potential temperature profile 8(z) is z

dependent. The basic state stream function ¥ and vorticity E can be derived by

V(@) = -[-T(sxls @31)
T= -aﬁa(:) 2.32)

The specified initial fields of stream function, vorticity and buoyancy vary with
the different numerical experiments. These will be detailed in the following sections.
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The Results of
Weakly Nonlinear Solitary Wave Theory

Christie (1989) gives a good review of the theory of first-order weakly-nonlinear
waves in the lower atmosphere. Following Christie, we assume the vertical displacement

of a streamline in the stable layer is the product of two separated functions.
n(x,z,t) = A(x, t)¢(z) @3.1)

where ¢(z) is the normalized dimensionless vertical modal function and A(x,t), with the
dimension of displacement, is governed by the BDO equation,

dA dA dA
5 s +aA-—+B H(A) 0 (3.2)

where H(A) is defined by the Hilbert transform,
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H(A(x)) =%T%ds (33)

Here, x is the horizontal coordinate in the direction of propagation, and z is the

original height of streamline in the undisturbed flow far away from the disturbance. The

linear long wave speed c,, the coefficients of the nonlinear and dispersive terms, a and
B, and vertical modal function ¢(z) are determined by the characteristics of the

background flow.

The time-dependent solitary wave solution of the BDO equation is given by Ono

(1975) in the form
2k 34
A(x,t) = ———a——— .
(x,t) )R G4
where the phase speed of solitary wave is
oa
=c +22 3.5
c=c,+= (3.5)
and the relation between wave amplitude a and wavelength A is
r=28 (3.6)
oa

The vertical displacement of the solitary wave streamline in the neutral layer is
given by

aA(A+z-h)

(x=ct)* +(A+z-h)’ (3.7

nx,zt) =
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where h is the height of the stable layer.

It is important to note the following properties of the weakly nonlinear internal
solitary waves shown by the above results:

1) The solitary wave is a isolated smooth symmetric crest, not periodic.

2) In the proper waveguide without friction, solitary waves can propagate

with unchanging form.

3) Solitary waves propagate at supercritical phase speeds which are larger

than the long-wave speed c,, in the same medium.

4) The speed difference c-c, between the solitary wave and the long wave is

proportional to the amplitude of the solitary wave. It means the wave with larger

amplitude propagates faster.

5) There is an unique relation between wavelength A and amplitude a. It

implies if the amplitude of a solitary wave is given, the wavelength is

determined.

6) The amplitude of solitary wave in the neutral layer decreases with height.

For an incompressible fluid with infinite depth, the normalized vertical modal
function @(z) satisfies the eigenvalue problem (Christie 1989):

%(po (Co —U,)? 3—‘:) +p, N2 =0 (3.8)

¢=0 on z=0
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o

—=-0 as = o0
0z z

Through the transformation @ = (u, -¢,)9, Eq.(3.8) can be rewritten as the

Taylor-Goldstein equation.
2
99, Pe)p=0 39)
oz
N? du,/dz

where lz(z) = is the Scorer parameter (Scorer 1949) and

(uo —coiz - (uo -Co)

u, is the horizontal velocity of the sheared background flow.

For a homogeneous incompressible fluid, the coefficients o and B in the BDO

equation are given by

- o 12,90.3
a=3I° Po(Co = U,) (a;)dz

(3.10)
2]: po(co - “o) ('aai:')zdz

and

_ 2
B= fpo(co u,)p E});'; 311
2["p,(c, - u,) (5,7 dz
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Numerical Simulations of Solitary Waves

4.1 Propagation of solitary waves

To test and improve the numerical model, a number of simulations were
conducted to show the evolution of solitary waves under the same background field as
used to derive the analytical solutions for weakly nonlinear waves. We consider a
neutral layer over a stable layer with constant Brunt- Viisild frequency N, no friction,
no temperature difference at the interface between neutral and stable layer, and no
ambient wind. Under this simple background field, the analytic solution can be obtained.
Thus we can compare the results of the numerical simulations with the analytic solution

to check our model.

In this case, in the stable layer the eigenvalue problem becomes

2 2
%}+%¢=0 @4.1)

(+]

R
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with the boundary condition on the surface

¢0)=0
and at the interface

dg(h) _
oz 0

obtained by matching the gradient of vertical velocity (Doviak, 1988).

The solution of this eigenvalue problem in the stable layer is given by

-1

0@) = (-1 sin(z‘;h nz),n=123,... 4.2)

Co=t—o__ 43)
(n-1/)=n

By using Eq.(3.9) and (3.10), the coefficients for this case in the BDO equation

can be obtained as follow

a=2e @4)
and

B= 4hc, @4.5)

[(2n -1)xP?
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The phase speed of solitary wave and the relation between amplitude and

wavelengths of the solitary wave for this case are derived from Eq.(3.5) and (3.8):

c =°°(1+£Lh) (4.6)
2
Sh @.7

i

To simplify the problem, the lowest mode (n=1) is chosen to calculate the
wavelength in order to set up a solitary wave with matched amplitude and wavelength
by using Eq.(3.5) at the initial time in the model. Fig.4.1 shows the schematic diagram

of a solitary wave.

In this section, all simulations are conducted with the same background field as
described at the beginning of this section. The specific parameters are shown in Table
4.1.

Table 4.1. Parameters in the solitary wave simulations.

l1km | 0.0233Hz | 300k | 316.6K | 14.83m/s 0

where 0o and On are the potential temperatures on the ground and at the interface
between stable and neutral layers, respectively; Ub is the inflow speed; v and x are the
kinematic and thermal viscosity.
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Fig.4.2 Schematic diagram of the distribution of grid points in the domain.
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The model domain is 200 km long and 10 km high with 1 km horizontal and
stretched vertical grid spacing which varies from 38.5m near the surface to 518.3m near
the top of domain. Fig.4.2 shows schematic diagram of the distribution of grid points in
the domain. The time step is 2 seconds. To keep the solitary waves in the numerical

domain for a longer time, an inflow without vertical shear is imposed at the right side
boundary. The speed of the inflow is set to equal the long wave speed c,

In the model the evolution of the solitary wave is simulated to test if this model
is correctly coded and able to accurately duplicate the theoretical results. We take the
solitary wave solution of BDO as the initial input of our model. A small amplitude
(100m) solitary wave which satisfies the weakly nonlinear condition (a/h<<1) is set up
at the initial time. The wavelength of the mode 1 (i.e. n=1) wave, obtained from
Eq.(4.7), is 8106 m. When these conditions are met, the solitary wave should propagate
at constant speed ¢ without change of form for all time as shown by weakly nonlinear

theory.

The time-dependent horizontal velocity at z=0 for the solitary wave with
amplitude a=100 m is shown in Fig.4.3 which clearly records the propagation of the
solitary wave during 40,000 seconds (about 11h). We found that the initial perturbation
evolved into a solitary wave and a series of very small amplitude dispersive waves
during the first 4000 sec. The generation of these dispersive waves perhaps is caused by
the fact the initial soliton-like perturbation derived from the weakly nonlinear theory is
not exactly a soliton (i.e. a solitary wave of permanent form) for the fully nonlinear

model, as well as the rigid top boundary condition of the model which is different from
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Fig.4.3 The time-dependent horizontal velocity on the surface for the solitary wave with
amplitude a=100m.
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the infinite expanse of homogeneous fluid of the weakly nonlinear theory. Actually the
initial soliton-like perturbation adjusts itself to become a solitary wave to match the
numerical model during this initial period. One should also noticed that the adjustment
is quite small, to a certain extent, which implies the 9 km thick neutral layer with an 1
km thick “sponge” layer near the top is a good alternative to the infinitely deep neutral
layer. After the initial adjustment, the solitary wave is formed and propagates with the
constant phase speed and almost perrnanent shape for all the time (~11h).

To compare the model results with the weakly nonlinear theory in detail, the
vertical and horizontal velocity fields, streamlines and buoyancy field in x-z plane at
initial time and t=40,000 sec are shown in Figs. 4.4 and 4.5. The features of solitary
wave at initial time represent the results derived from the weakly nonlinear theory. It is
clear that the position of maximum horizontal velocity is on the surface and the
maximum and minimum vertical velocities are near the interface between the stable and
neutral layers. The pattern of positive and negative vertical velocity are symmetric with
respect to the center axis of the solitary wave. It is worth noticing that we found, for
large amplitude solitary waves, the location of maximum horizontal velocity is no longer

on the surface; this finding will be discussed in succeeded Chapter 5.

To quantitatively compare the results, the phase speed of solitary waves in the
model is estimated using the zero vertical velocity contour in the middle of the solitary
wave to locate the position of the wave at different times. We obtained a 15.1m/s phase

speed for the solitary wave with amplitude a=100 m, which is slightly smaller than the
phase speed 15.6m/s calculated from Eq.(4.6) with c,=14.85m/s obtained from

Eq.(4.3).
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Fig.4.6 As in Fig.4.3 except for a 300m amplitude solitary wave.
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Fig.4.6 shows the propagation of a larger amplitude (300m initially, a/h=0.3)
solitary wave. We also found a series of small amplitude waves propagating away from
the solitary wave during the initial stage, but with relatively larger amplitudes compared
to those seen in Fig.4.3 as the solitary wave evolves into a stationary state, its amplitude
decreases from the initial 300m to about 250m. This suggests the initial soliton-like
perturbation based on weakly nonlinear theory is not as well satisfied as for the case
when the amplitude is small. This is reasonable because the larger the amplitude, the

larger is the departure from the assumptions of weakly nonlinear theory.

Using the above method, the phase speed of this solitary wave is found to be
15.8m/s which is also smaller than the speed 16.7m/s calculated from Eq.(4.6) for a
solitary wave with amplitude 250m, but larger than 15.1m/s, the speed of solitary wave
with amplitude a=100 m. This result accords with the character of solitary waves (i.e.,

the phase speed of the wave is proportional to the amplitude).

4.2 Collisions of two solitary waves

For a further test of the model, the collision of two solitary waves with different
amplitudes, one 100m and the other 300m, is designed and examined using our model.
In order to catch the behavior of these two solitary waves before, during and after the
collision, we changed the inflow speed to 15.50m/s, the value between the phase speed
of 100m and 300m solitary waves, to enable one solitary wave to propagate forward and

the other backward in the domain. Thus the collision will occur near the center of the

domain.
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Before describing the model results, we first introduce the previous theoretical
and numerical studies about the interactions of solitary waves as the criterion for judging

our model’s performance.

Matsuno (1980) presented the nature of the interaction of two solitary waves in

detail and divided them into two classes based on the ratio of the initial amplitudes of

two solitary waves. For %2- <3+2+42 = 5.83, during the period of interaction, the larger
1

solitary wave decreases its amplitude a, to a; and increases its speed whereas the small
one increases its amplitude from a; to a,while its speed decreases. After the interaction

they propagate with their previous forms and phase speeds respectively. This is why one

finds a “phase shift” in Fig.4.7. For %2-> 3+24/2, the small solitary wave penetrate
1

through the larger one (Fig.4.8). Unlike the former case, the two solitary waves pass

through each other and propagate as before in their own ways.

Fig.4.7 presents the whole course of the collision of two solitary waves with
amplitudes 100m and 300m respectively, the ratio of their amplitude is 3.0 smaller than
5.83. Fig.4.8 shows another collision with a;=30m and a,=300m, the ratio is 10.0 larger
than 5.83. It is apparent, from our model results, that the interaction of two solitary

waves reveal the same nature as described by Matsuno (1980).

These numerical experiments indicate that the 2D vorticity-stream function
model can successfully simulate the propagation and collision of solitary waves.
Moreover, it shows this model is correctly coded and suggest it has capability to

simulate more complicated phenomena related to solitary waves.
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Fig.4.7 Time-dependent horizontal velocity on the surface 2=0 for showing the collision
of 100m and 300m amplitude solitary waves. The inflow speed is 15.5m/s.
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Fig.4.8 As in Fig.4.7 except for 30m and 300m amplitude solitary waves.
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4.3 Generation of solitary waves by thunderstorm outflow

In the atmosphere, there are a number of mechanisms for solitary wave
generation. In this section, we focus on the interactions of the thunderstorm outflow with

a stable layer covered by a neutral layer as the mechanism of wave generation.

To simulate this kind of phenomena in the atmosphere using our model, we first
produce a cold density current as the outflow and let it excite solitary waves. To
generate a density current in the model, a block of cold air, 20 km wide and 3 km high,
centered at x=30 km and on the surface, is built up by applying a cooling function to

this area of the domain over a period of time. The cooling function is as follow

E.(x,2,t) = 1, (1/2)*[1 + tanh(a, (x — x,))][1 - tanh(a, (x - X, ))]
[1 - tanh(a;(z - z,,))] (1 - tanh(az (t - t,))] 4.8)

where . is the cooling rate and a,and a, are constants which determine the sharpness
of the boundaries of the cooling area, a; represents the rate of shutting off the cooling,
X, X, and z, are the positions of left, right and top boundaries, t, is the cooling
period. The shape of function used above is illustrated in Fig.4.9. As the cold air is being
built up, it also spreads out forming a density current.

In this experiment, except for the inflow speed and Brunt- Viisild frequency
which are set to zero and 1072Hz respectively, the other background field parameters
are the same as before(i.e. h=1 km, 6,=300K, v=0 and x=0). t, and r. are set equal to

400 sec and -0.05K/sec (these can be changed to control the intensity of the density
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Fig.4.9 Sketch ﬁm of functions: =0.25[ 1 +tanh(a(x-xI)[ 1-tanh(a(x- :
(S H0=0-SL L tmnra3ce s (@) y=0.25[1 +anh(a(x-x)][1-anh(a(x-xr)]



Chapter 4 Numerical Simulations of Solitary Waves 49

current). a;, a, and a3 are 5x107*(1/m), 5x1073(1/m) and 1.25x107(1/sec)
respectively. x;, X, and z,,, are 20 km, 40 km and 3 km respectively. At the effective
end of cooling period(i.e. at t=400 sec), the maximum temperature difference between
cold and ambient air is about 3.5K which is a reasonable value for the thunderstorm
outflow in the atmosphere (Goff, 1975). The temperature profiles of cold air (at the
center of cooling area) and the background field, at the end of cooling period, are

presented in Fig.4.10.

Fig.4.11 shows a series of buoyancy fields at different times. At t= 5000 sec, we
find that at least two well-defined waves are fully developed and cold air within them is
trapped; this will be discussed and proved in section 4.4. To determine whether these
waves are solitary waves, we compared the horizontal and vertical velocity fields of
these waves with the solitary waves obtained in the previous section and found the basic
features of them are the same. The patterns of the positive and negative vertical
velocities and the pattern of horizontal velocity of the wave are symmetric about the
central axis of the wave. The locations of the maximum and minimum vertical velocities
are near the interface between the stable and neutral layers. But the location of the
maximum horizontal velocity is above the surface, this is different from the small
amplitude solitary wave. Fig.4.11 also clearly shows these waves with different
amplitudes propagate at different phase speeds. For further and qualitative verification,
the amplitude and phase speed of these waves are estimated from Fig.4.11. The leading
wave with amplitude about 1700m propagates at average speed of 13m/s, the second one
with 600m at 10m/s. This results indicates the speeds of these waves are directly
proportional to their amplitudes which is the unique characteristic of evolving solitary

waves. Hence we conclude these waves generated by the d=nsity current are evolving
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solitary waves.

Several similar numerical experiments with different sizes and maximum
temperature defects of cold air have been conducted. Different numbers of internal
solitary waves with different amplitudes were excited. The results indicate the internal
solitary wave are easily generated in the numerical model. This conclusion is consistent

with that given by Maxworthy (1980).
4.4 Trajectories of air parcels

In order to follow the motion of an air parcel, a particle tracer technique is
applied as a tool in our model. When a particle is located. the velocity of it is calculated
based on the velocities at the nearest four grid points using the Cressman interpolation

method

i+l j+l i+ j+l

W7 = ZZ Tﬁ‘,,uZZ[ "’1 42)

where 2 = (Ax)2 +(Az)2, d,, is the distances between the particle and four adjacent
grid points separately. If the particle is on a the grid point, the velocity at that grid point
will used instead of the one obtained from the above method. As the velocity of the

particle is obtained, the position of it at next time step t + At can be calculated

X(t+ 4t) = X(t) + v(x,z)At 4.3)
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Repeating this process at each time step, a trajectory of the particle over a period

of time can be drawn.

By utilizing this technique, we prove another unique characteristic of solitary
waves: An air particle will be shifted a certain distance as a solitary wave passes over it.
This is unlike sinusoid waves which only drive the air particle around their balanced
positions (Kundu, 1990). Fig.4.12 shows the trajectory of a particle initially located in
front of solitary wave with amplitude 300m at a height of 100m. The trajectory clearly
recorded the motion of the particle, being lifted by the wave during the first half period
of the wave moving toward it, and then lowering it as the wave moves away. Comparing
the initial and final positions of particle, we found the particle is moved about 4400m
horizontally in the direction of wave propagation without any net vertical shift. It is

obvious the maximum lift height and net horizontal shift depend on the size of solitary

wave and the initial location of the particle.

Trajectory
Initial location (Om.l100m)
2000 [rmrr—r———— s rerpr—rr—r— Tt pr—r—p—r———r—— pprrrrrr—r poprrr
o0 dr=l00s
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E e \\
E woo - s ~ i
.
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aaemse——
00 IS N T T FETTERTTNS DY NS U TS NN R W D i W S |,
40000 20000 00 20000 40000 60000 20000
Range (m)

Fig.4.12 Trajectory of a air parcel as a small amplitude solitary wave pass over.
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The most useful application of this technique is to show that large amplitude
solitary waves can trap and transport a mass of air from the wave source for a quite long
distance. The phenomena was observed by Doviak and Ge (1984) in an evolving solitary
wave generated by a thunderstorm outflow. Christie (1992) found a visible cloud of
smoke along the Moming glory wave originated in bush fire in the area of wave
generation. Doviak et al. (1991) also give a detailed description of the observations in
1984. In addition, this trapping mechanism of large amplitude solitary waves is
supported by the numerical model results reported by Hasse and Smith (1989). Using a
volume of tracers, they found the waves generated by the inflow trap an amount of
inflow fluid when the fluid is under supercritical conditions (i.e. the phase speed of
infinitesimal amplitude long waves on a stable layer smaller than the speed of the
gravity current in the absence of the stable layer). The authors mentioned the tracer
suffers some long-term diffusion which makes it an unreliable indicator for a longer

time.

Comparing with a volume of tracers, the parcel tracer adopted in some of our
experiments avoids the diffusion problem and is able to depict the trajectory of an air
parcel instead of motion of a volume of tracers which diffuse as well as being advected

by the flow.

In order to determine the effects that large amplitude buoyancy waves generated
by thunderstorm outflow have on the environment, four tracers are initially located at
different positions. The trajectories of these four tracers during the numerical
experiment period are displayed in Fig.4.13. Comparing the paths of the tracers with the

motion of the wave (see Fig.4.11), we found that tracer 1, initially at x=40 km, z=10 m
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and on the boundary of the block of cold air, is trapped and advected by the leading
solitary wave (Fig.4.13a). Tracer 2, placed at x=36 km, z=200 m at the beginning time,
is trapped by the front of the wave during the initial stage (t<2600 sec), then slowly
dropped out of the leading wave and trapped by a second wave. But during the final
stage (©>9000), it leaks out from the second wave (Fig.4.13b). Tracer 3, which
represents the ambient air is initially positioned at x=50 km, z=100 m. As the front of
the wave passes over it, tracer 3 was collected by the wave and trapped within the
leading solitary wave (Fig.4.13c). Tracer 4 placed at x=50 km, z=300 m, 200m higher
than tracer 3 at the initial time, also represents the ambient air (Fig.4.13d). But its
behavior is different from that of tracer 3. Instead of being collected by the wave, this
tracer is lifted up and then laid down by the front of the wave. After that, it is only
slightly moved by the following perturbations.

To further illustrate the relation between the motion of the air parcels and the
large amplitude waves, the horizontal velocities of the tracers during the numerical
experiment period are displayed together with the speed of the leading wave in Fig.4.14.
The speed of the leading wave is calculated from Fig.4.11. From Fig.4.11 and
Figs.4.14a, and 4.14c, we notice the leading solitary wave has fully developed at about
t=3000 s. Tracers 1 and 3 are trapped by the wave, and their horizontal velocities
approach the speed of the wave, but vibrate around that value. These results confirmed
the former finding of trapping and existence of recirculation within the wave. Fig.4.14c
and d show tracer 3 and 4 have similar patterns of horizontal velocities during the first
2000 sec, a peak at about t=1100 sec and following by a valley at t=1500 sec. Fig.4.14b
shows tracer 2 has approximately same speed as the leading wave, then slows down to

about 3m/s when it is dropped out from the leading wave. Then the horizontal speed of
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Fig.4.13 Trajectories of four air parcels initially located at (a) x=40km, z=10m; (b)
36km, 200m; (c) 50km, 100m; (d) SOkm, 300m.



Chapter 4 Numerical Simulations of Solitary Waves

Trajectory
Inizial location (50km.100m)
zsoon;ﬁ " A L B A S & .
g C
20000 | 0 t=200s E
= 15000 o l‘ - P t“. ’\ >
- L ! <4
< L [ & § ,‘ .
3 . T L~ -"“" J
= IMD: ‘9 y ° ’, g L ‘o‘“f - :
r ! ‘}"“o s § 3
5000 - é § I 7
L 1] & 1
0.0. al .4L‘.r.l.l...1gL44. P P N PO S
00 200 4«0 600 200 1000 1200 1400 1600 1800 2000
Range (km)
Initial location (50km.300m)
2500.0) [rermpep e[ o e e "
‘ d
20000 '- { -0 22003 :
- i 1
3 - hy -
5 15000 : 1\ 30008 :
I3 [ "l ]
S 10000 -
= : I ]
[ i t=5000s ]
s000 | 4
s H k:__.,.mows 1
00 : PN PSS I BT N NPT SN B ST S BT SIS VI U NI SR Gl S T S U N S S
00 200 4900 600 200 1000 1200 1400 1600 1800 2000
Range (km)

Fig.4.13 (Continued)



Chapter 4 Numerical Simulations of Solitary Waves

Horizontal Velocity

Initial location x=40km, z=10m

200 T — \ T Y T
180
160
140
120
100
80
60
40

20

0'000 20000 40000 '
Time (sec)

'l"'l'l'l'l'

Velocity (m/s)

Initial location x=36km, z=200m
00 T T ' T M —T Y
180
160
140
120
100
80
60
40
20

Moa 20000 40000 60000 0000 100000

Velocity (m/s)

LM ML I B L A ML
\
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the speeds of solitary waves. The speed of second wave also shown in (b).
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tracer 2 increases to a maximum 12m/s and remains around 9m/s for about 3000 sec
when it is captured by following second wave. Finally its horizontal speed

monotonously decreases to 1m/s when it is gradually released from the second wave.

Referring to Fig.4.11, 4.13c and d, and 4.14c and d, we found the tracers 3 and 4
are first pushed forward and raised up from the static state, during this period they gain
their peak horizontal velocities respectively. After that, tracer 3 is collected by the
leading wave and its horizontal velocity approaches the speed of leading wave. Tracer 4
is pushed by the following perturbations to achieve the maximum horizontal velocity
about 6.1m/s. Then tracer 4 slows down to static state with net horizontal shift about 20

km in the direction of the motion of the waves.

The behaviors of these tracers clearly exhibit the effects of large amplitude
solitary waves. The model results show the large amplitude solitary waves can trap, not
only the air of thunderstorm outflow (tracer 1) that generated the waves, but also the
ambient air (tracer 3). The results also indicate once the tracers are trapped by the wave,
they not only translate with the wave, but also oscillate within the core area of the wave.
The oscillations of the tracers moving with the wave reflect the existence of
recirculation within the wave. The trajectory of tracer 2 implies that trapped air leaks out
from the rear of the wave. These numerical findings of trap and leakage effects of large
amplitude solitary wave are consistent with observations (Doviak et al. 1991). More
detailed studies of trapping and leaking mechanism of large amplitude solitary waves

and a case related to this mechanism are described in Chapter 5 and 7.



Chapter

5

Structures and Properties
of Large Amplitude Solitary Waves

5.1 Generation of pure large amplitude solitary waves

A pure large amplitude solitary wave is defined as a solitary wave with a
recirculation in it, but the potential temperature of fluid in the recirculation region is not
colder than the ground temperature outside of this region. This definition is used to
distinguish pure waves from the large amplitude solitary waves generated by a cold
outflow which is trapped by the wave, thus creating a recirculating region cooler than the
environment. If a wave is stationary in a moving frame, the recirculation region within

this wave is defined by a family of closed streamlines.

In order to generate a large amplitude solitary wave in the numerical domain, a
large amplitude solitary wave-like perturbation, described in Appendix A, is specified at
the initial time t=0. Fig.5.1 shows the initial buoyancy b, horizontal velocity u and vertical

velocity w fields. There is no recirculaton region within the initial large amplitude

64
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perturbation. After a period of time, this large perturbation develops into a large amplitude
solitary wave and several small amplitude waves. Due to the speed differences of these
waves, the largest solitary wave in which we are interested propagates at the fastest speed
and separates from the smaller waves. To keep the largest one in the numerical domain for
a longer time, an inflow with a guessed speed in the direction opposite to the speed of
wave is set up. After one simulation, the exact speed of the largest solitary wave can be
estimated. Then the inflow speed is chosen as this speed. Thus the largest wave can be

made stationary in the numerical domain.

5.2 Configurations of reversed recirculation within large amplitude

solitary waves

For investigating the detail structure of the large amplitude wave after recirculation
has set in and the wave is quasi-stationary, a part of the wave is enlarged. The width of
this highlighted area is 40 km and the height is 3 km. Fig.5.2 shows the horizontal
velocity u, vertical velocity w, and buoyancy b fields of a pure large amplitude solitary
wave in the relatively steady stage in the frame moving with the wave. The symmetric
pattern of the u, and b fields, opposite vertical velocities with respect of the vertical central

line of the wave, similar to small amplitude solitary waves, are found in these fields.

We also notice, besides these similar structures that a recirculation region does
exist within the large amplitude solitary waves in our numerical simulations in agreement
with the results observed in theoretical studies (Tung et al, 1982) and laboratory
experiments (Stamp and Jacka, 1995). In Fig.5.2 there are two special features which are
used to affirm the appearance of recirculation within the wave. One is small positive-
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negative pair of vertical velocity beneath the large pair in the w field. The other is the
region with positive horizontal velocity (solid lines) in the core region of the wave in u
field. Note the word 'recirculation’ with prefix 're' is used to especially describe the
circulation inside the large amplitude solitary wave in order to distinguish it from the

outside circulation induced by the wave.

In comparison with previous theoretical studies and laboratory experiments, our
numerical simulations have the advantage of being capable of showing the detailed
structures of the recirculation region. For the theoretical studies (Tung et al., 1982), the
numerical solutions of large amplitude solitary wave are derived based on the assumption
of open streamlines. In other words, information of the wave is obtained from the
upstream flow. When recirculation appears in the wave, closed streamlines will show up
in the flow domain. But there is no way to get any information on the flow within the
recirculation region. Hence, Tung et al. (1982) assumed the direction of the flow in this

region.

In the laboratory experiments it is difficult to observe the fine structure in the
recirculation region. Because viscosity cannot be avoided in the real fluid, the inviscid
assumption is invalid and strong diffusion will mix up the fine structures within the
recirculation region of laboratory experiments. In addition, the scale of fluid movement
becomes so small that detecting the motion directions in the recirculation region is very
difficult in the laboratory experiment.

In the simulations, the w field inside the recirculation region shows a pair of

upward and downward vertical motions (Fig.5.2). The impressive point is that the
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Fig.5.3 Schematic diagram of (a) normal and (b) reversed recirculation within a large
amplitude solitary wave in the frame moving with the wave.
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direction of this recirculation is opposite to the motion of outside flow. This recirculation
is opposite in direction assumed in previous theoretical studies (Tung et al, 1982). We call

it reversed recirculation.

In the previous theoretical studies (Tung et al, 1982), the rotation direction of the
recirculation assumed to be the same as the flow outside the recirculation region as
depicted in Fig.5.3a. If the fluid is viscous, the drag effect will force the inner fluid to
rotate in the same direction as the outside flow. But if we assume there is no viscosity in
the fluid, the inner fluid may rotate in the direction opposite to the outside flow
(Fig.5.3b). Our simulations show that the inner fluid does rotate in this way. Certainly,
even without viscosity the inner fluid might recirculate in the same direction as the outside

flow.

Following Orlanski (1969), we can show that reversed recirculation does not
violate any physical principals. Assume that the amplitude of solitary wave is so large that
within the wave above the ground there is a region in which the horizontal velocity u is
larger than the wavespeed c. Thus there must be a closed boundary C1-C2 along which «
is equal to ¢ (Fig.5.4). Hence in the frame moving with the wave, u on this closed
boundary is zero, with positive u inside and negative u outside. For simplicity, we assume
only one maximum # in the shaded region R bounded by curves C1 and C2. A vertical
line AB can be found, sucﬁ that horizontal velocity # on the left of AB is always less than
u on the right. The intersection points between line AB and boundary C1-C2 are defined
as points A and B respectively (See Fig.5.4).
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- Reversed

Fig.5.4 Schematic diagram of reversed recirculation. In the shaded region u>0.

In the moving frame, the wave is stationary. So the adiabatic equation can be
simplified by neglecting the local change term:
d6
9 5.1)

u}-+w§-=0 .

At point A, u=0, the first term of Eq.5.1 is zero, and thus wgzg- must be equal to

zero. -a—o- cannot be zero because the ambient air flowing above A is stable (because

oz
waveguide is stable) and we assume gradients are continuous. Hence, w=0 at point A.

According to the continuity equation:

iai+éw—=0. (5.2)

& oz
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Along line AB, % > 0 by construction, so we get % < 0 along AB. Since w=0 at point

A, w must be positive below point A. At point B, w must not be zero and positive as

well, otherwise the continuity equation is violated. Therefore, —— must be zero at point B

oz
in order to satisfy Eq.5.1. Similarly, we can apply this analysis all over the region R and
find that on the left hand side of the u maximum, the fluid moves upward, and on the right
hand side, the fluid moves downward. Moreover, w on the boundary C1 of region R is

zero, but not zero along C2.

From our simulations, we found that the upper boundary C1, along which
u=w=(), extends to the ground. The intersection points between curve C1 and ground are
labeled G1 and G2 in Fig.5.4. The boundary C1 and the rigid ground surface between
points G1 and G2 form a closed boundary. This implies that there is no flow in or out
through this closed boundary. In the frame moving with the wave the streamlines inside
the region is closed. The region contained by the boundary Cl1 and ground is the
recirculation region Rr. The region R is formed by the boundary C1 and C2 and located
above the ground.

In the previous discussion it has been shown that the fluid on the right (left) side
of u maximum moves downward (upward). In addition, u>0 in region R and u=w=0 on
the boundary C1, like a rigid boundary, the fluid between boundary C2 and ground must
flows from right to left to satisfy the mass continuity and the incompressible assumption.

Thus a reversed recirculation is formed, which violates no physical principals.
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Furthermore, it can be shown that, inside region R, the fluid is convectively

unstable. Differentiating Eq.(S.1) by z, we get

2 2
udl, F0 a‘“"’w‘i‘,’:

rx aa x % 0 5.3)

At point B, % =0 and u=0 because point B is on the boundary of R. Therefore

oz
Eq.(5.3) becomes
MO IO
Zax Va0 C9
00 . . . . ou
g# 0 at point B because the region outside R is stable, and w =0, and > #0.

2

Then based on Eq.(5.4), %26- # 0 must not be zero. Hence point B is not an inflection

point; it must be a maximum or minimum point. Because %> 0 (i.e. stable) outside

region R, there must be a region just above point B in which % <0 (i.e. unstable). This

demonstrates that the fluid within the region R is convectively unstable. There must be
small scale turbulence in this region and the stable stratification will be eroded, at the same
time the recirculation is developing. Due to recirculation, the fluid inside R will also mix
with fluid outside R but inside recirculation region Rr. After a period of time, a relative
steady state has been reached. This process is observed in our simulations (Fig.5.5).

In the reversed recirculation case, we find that the maximum horizontal velocity
u is not on the ground and across the center of the waves. Fig.5.6 shows the vertical
profile of horizontal velocity u and potential temperature © across the center of a large
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amplitude pure solitary wave with amplitude (1800m) displayed in Fig.5.2. The maximum
u is located at about 1100m height above the ground. Note that the ground is frictionless

in these simulations.

Horizontal velocity u and vertical velocity w fields also show there are smaller
scale movements in the recirculation region. In some simulations, more than one positive-
negative pair of vertical velocity appears in the recirculation region. The reason is that
although in this numerical simulation the fluid is inviscid physically in the model
equations, the numerical dissipation induced by the lowest-order (6th order in our
advection scheme) term of truncation error in the numerical scheme can not be avoided.
This kind dissipation plays a role like viscosity to reduce all gradients and generate
turbulence in the fluid. After a period of time the fluid in the recirculation region is further
mixed by numerical dissipation. The almost constant potential temperature 8 within this
region, observed in Fig.5.2 (b field) and 5.6, confirms the mixing effect of numerical
dissipation. The dissipation also affects the fluid outside of the recirculation region, the
amplitude of the solitary wave is slowly decreasing during the simulation. But comparing
with the fluid within the recirculation region the velocity gradients are weaker outside, the

dissipation effect is not so obvious.
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5.3 Configurations of normal recirculation within large amplitude

solitary waves

Fluid inside of recirculation region has the possibility to rotate in the same
direction as the outside flow. We call this normal recirculation. As seen in Fig.5.3a, in
this case positive horizontal velocity region R' will also be inside of recirculation region

Rr' like the reversed recirculation case, but the bottom of region R' attaches the ground.

Normal

C
Sl

Fig.5.7 As in Fig.5.4 but for normal recirculation.

Assuming the upper boundary of R' as C1 (Fig.5.7) on which u is equal to zero,
but w is not because fluid flows through it. Based on Eq.(5.1), % must vanish on the

boundary C1. Note w=0 on the ground. Following the similar arguments used in previous
section, with maximum u on the ground fluid within the Rr' circulate in the same direction
as the outside flow (Fig.5.7). The most outside closed streamline marks the upper
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boundary C2 of Rr' along which u and w are not equal to zero. Hence it can also be
demonstrated that the normal recirculation does not violate any physical principals as well.

However, so far normal recirculations have not been found in our simulations.

5.4 Trapping and leaking effects of recirculation region

Generally, in a moving frame zero velocity indicates that fluid at those points is
stationary relative to the frame. If this frame moves with the wave, those points with zero
velocity are stationary relative to the wave or, from other point of view, are moving with

the wave,

Referring to our previous analysis, we know the recirculation region, in a frame
moving with the speed of a large amplitude pure solitary wave, can be closed by a
boundary and ground. It means that there is no fluid across this boundary. Hence in a
fixed frame the fluid on this boundary moves with the solitary wave. In other words, the
fluid within the recirculation region is trapped by this large amplitude solitary wave.

But our numerical results show that the boundary of region Rr is not totally
closed. It can be found that, in the u field (in Fig.5.2), the zero contour of u is not
attached to the ground at the lee side of the recirculation region where the horizontal
velocity is negative. This gap is observed after the large solitary wave formed. It implies
that fluid within the recirculation region is continuously leaking backward from the

solitary wave.
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In order to confirm and clearly reveal this fact, we used a passive tracer technique
to mark with a positive number the fluid within the region Rr, and the rest of fluid with
zero. This allow us to trace the movement of fluid originating within the region Rr. This
procedure is exactly analogous to injecting a amount ink into a certain block of fluid within
the region Rr. A block of ink is injected at t=0 sec when the large solitary wave is well
formed, then the ink flows within this block of fluid. A time series of ink field from t=0
sec to t=10000 sec is displayed in Fig.5.8. It clearly visualized the leaking process.

The reason of leaking is viscosity. As we mentioned in the previous section,
although the fluid in our numerical experiment is physically inviscid, numerically it is not.
The wave is affected by the numerical viscosity, strongly on the interface, where there is
strong shear due to the reverse circulation, between the recirculation and outside regions.
The fluid near the interface is mixed by the fluid inside and outside Rr due to the strong
shear. Thus a portion of trapped fluid persistently diffuses out whereas a portion of
outside fluid blends into the recirculation region. Once diffusing out of the recirculation
region, the trapped fluid will flow with the outer flow. The fluid inside Rr is continuously
being “peeled off” from the boundary of Rr by the outside flow. Since, in this moving,
frame the outside flow is always moving against the stationary wave and the fluid inside
Rr, the fluid leaks backward. In a fixed frame, the trapped fluid is continuously leaking
and depositing behind the wave as the wave propagates forward.

On the other hand, we found that the major part of ink is kept in the recirculation
region. It confirms the trapping effect of the recirculation region. However even with

continuous leaking, the trapped fluid still lasts quite long time in the recirculation region.
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In our numerical simulation without any physical viscosity, ink injected inside of
recirculation region can last at least several thousand seconds. The evolution of ink density

in the recirculation region in the simulation displayed in Fig.5.8 is shown in Fig.5.9.

Ink Profile

across the wave at different time
D B BN B S s s e s e e e

Helght 2 (m)

Fig.5.9 Ink profiles across the center of a large amplitude solitary wave with a reversed
mgirculaﬁom t=0 (solid line), S5000sec (dot-dashed line), and 10000sec (square-dashed
line). _
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At initial time, the density is 100% when ink is injected. After 5000 sec, due to
recirculation the ink has been redistributed, and two density maxima (100%) appear. At
t=10000 sec, even though with further mixture and leaking, the density maximum has
only dropped 18%. With 11.3m/s wavespeed, during this period of time (10000 sec), the
solitary wave and trapped fluid have traveled for about 110 km. This result denotes that
large amplitude solitary waves can transport trapped fluid for a long distance in a proper
environment. Theoretically, if fluid is inviscid numerically as well as physically, the fluid
within the recirculation region will be totally trapped by a large amplitude solitary wave
without any leaking.

So if hazardous materials originates in or near the source of large amplitude
waves, they may not only be spread out by the wind or diffusion, but also transported by

waves. It is important for monitoring and warning of potential danger over a larger area.

An interesting and strong evidence of trapping in the atmosphere is reported by
Christie (1992). He states a visible cloud and strong smell of smoke, which is originated
in the bush fire in the area of generation of waves and is about 200 km away from the

observation site, appeared with the solitary waves.

When Stamp and Jacka (1995) investigated deep-waters waves with recirculation
regions by using laboratory experiments, he also observed “fluid was continuously
entrained into and ejected from this region”. But he mentioned the boundary of

recirculation region is not clear because turbulence develops in this region.
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5.5 Relations among amplitude, wavelength, and wave speed of solitary

waves

Using the background potential temperature field and the method described in the
previous section, solitary waves with different wavelengths and amplitudes can be
generated in the simulations. By adjusting the inflow speed, we can keep one solitary
wave stationary in the domain. The wavelengths and amplitudes of solitary waves can be
estimated through analysis of the numerical results.

Amplitude vs Wave speed
Solitary waves
3.0 e e e e
-
- 20 .
X
<
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0.0 i n . i i I i i L 1 el i A
0.0 10 20 3.0
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Fig.5.10 The relations between amplitude and speed of solitary waves. Circle solid line
regresents our simulation results; Square solid line Stamp's results; Dashed line weakly

nonlinear theory's results.
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The relation, attained from the simulations, between amplitude and speed of
solitary waves is shown in Fig.5.10. We found the wave speed increases almost linearly
as amplitude increases. In order to compare our results to others, the results obtained by
Stamp and Jacka (1995), and prediction of weakly nonlinear theory are also plotted in the
same figure. The results of weakly nonlinear theory are calculated by using Eq.(4.6) The

simulation results coincide with others quite well for all waves, even with weakly

nonlinear theory.

Fig.5.11 Potential temperature profiles (1) tanh (solid line); (2) linear (dashed line). H
is the height of stable layer.
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Note that, in the experiments of Tung et al. (1982) and Stamp and Jacka (1995),
the density profile of background field is described or approximated by a hyperbolic
tangent function. Whereas in our experiments, the potential temperature of background
field constantly increases in the stable layer (i.e. with constant Brunt- Viisild frequency)
above the ground, and is constant above the stable layer. It is known that the shape of
density profile is the same as the shape of potential temperature in an incompressible fluid.
Hence the results they obtained are comparable to ours under the similar background field.

Note that these two profiles are only slightly different near the transition zone (Fig.5.11).

Fig.5.12 is the plot of the amplitude versus the wavelength. The results of weakly
nonlinear theory, Stamp and Jacka (1995) and Tung et al. (1982) are also shown in this
plot. It can be clearly seen that the wavelength decreases as amplitude increases for small
amplitude solitary waves (a/h<1). When the amplitude exceeds the height of the stable

layer h, the wavelength increases with increasing amplitude.

It is evident that the simulation results shown in Fig.5.12 are consistent with the
results obtained in the laboratory (Stamp and Jacka, 1995). Because weakly nonlinear
theory is valid only for small amplitude solitary waves (a/h<<1), the large difference
between the results predicted by weakly nonlinear theory and the simulation are expected.
But, ¢/co vs a/h is surprisingly in good agreement with weakly nonlinear theory. However
we should not be mislead by this agreement because it does not extend to A. Only for the
smallest amplitude (200m, i.e. a/h=0.2) is the solitary wavc.in the simulation close to the
theoretical prediction.
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Amplitude vs Wavelength
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Fig.5.12 As in Fig.5.10 except for the relations between amplitude and wavelength.
'Star' represents the result of Tung et al..

For large amplitude solitary waves, as we discussed previously, one significant
difference from small amplitude waves is that recirculation appears within the waves when
the amplitude is reaching the height of stable layer. It is just the turning point of the curve
of the relation of the amplitude and the wavelength. For this reason, we believe the
recirculation within the waves critically affects the relation between the amplitude and the

wavelength.
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6

The Effects of Eddy Diffusivity and Wind Shear
on Solitary Waves

6.1. K Theory

The flow in the real atmosphere near the surface of the earth is strongly affected by
the surface. The velocity at the surface vanishes due to the surface irregularities. As a
consequence, even a small movement of air near the surface will cause a large wind shear,
and it will generate turbulence. Meanwhile surface heating due to solar radiation will cause
convective eddies. Such shear induced and convective eddies transfer momentum and heat
between the lower and upper layers. Hence, the turbulent diffusion determines the
dynamic structure of atmospheric boundary layer (ABL) rather than viscosity.

In the stable or neutral boundary layer, the generation of turbulence largely comes
from the instability associated with wind shear. The traditional method to close the

momentum and heat equations is to assume that turbulent flux is proportional to the local

97
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mean gradient of the quantity being transferred. Under horizontally homogeneous

condition, the two dimensional momentum and heat equations give the momentum flux

_— A
uw =-Km (-a:) 6.1)
and the heat flux
J— v
Gw ==K, (— W)
"(az) 6.2)

where K and K are the diffusivities of momentum and heat respectively. This closure

is often referred to as K theory.

6.2. Effects of eddy diffusivity

6.2.1 Model results for uniform eddy diffusivity

In this section we shall investigate the effects of eddy diffusivity on solitary waves
in the ABL. First, as a reference, we make a simulation without any kind surface friction.
Then simulations will be executed with surface friction and different diffusivity
coefficients under the same initial and boundary conditions, and background potential
temperature and wind fields. By comparing the formation, development and propagation
of the waves, and the speed, amplitude and structure of the wave with and without surface
friction and eddy diffusivity, we can acquire the knowledge about the effects of surface
friction and eddy diffusivity.
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In the first simulation (S6.1), K, = K, =0. A coldpool built up during the initial
stage (t from O to 400 sec), is used to generate solitary waves in a calm (i.e. u, =0)
stable layer. The height of coldpool is 3 km. After cooling, the maximum temperature
difference between coldpool and the environment on the ground is about 4K. In order to
show the motion of the cold air during the simulation period, the coldpool region is

marked by 'ink'(a passive tracer) at the initial time.

Fig.6.1 is a series of buoyancy b field to show the generation, development and
propagation of the waves in S6.1. Two solitary waves can be clearly found in the
buoyancy fields. The first wave (with larger amplitude) has amplitude a=1290 m and
propagates at speed c=10.6 m/s. The wavelength of the first wave is 3890m. The

maximum vertical velocity w,x induced by the first wave is 3.0m/s. The second one has

a=820 m, A=3610 1 and c= 8.7my/s.

The detailed structure of these two waves in u, w and b fields in shown in
Fig.6.2. The maximum horizontal velocity up,, induced by the first wave is 11.4m/s
which is larger than the speed of the wave and locates above the ground at z=521 m. In
the w field beneath the large positive-negative w pair there is small positive-negative pair
with opposite motion to the outside pair. According to the analysis in Chapter 5, it means

reversed recirculation exists within the first solitary wave.
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After conducting the reference simulation, several simulations with surface friction
and different viscosity coefficients are carried out. For simplicity, K jand K, are
assumed constant. Typically, in the ABL K, =1m?/s (J.R. Garratt, 1992). First, to

investigate the effects of weak diffusivity, relative small value of the eddy viscosity
coefficient K and diffusivity K, are chosen. They are 0.1m*/s and 0.12m’/s

respectively, because Brost and Wyngaard (1978) found that the ratio between K, and
K, is about 1.2. The height of boundary layer (1 km) is the same as the height of stable

layer. u is set to be zero on the ground. So the heat and momentum exchanges due to
turbulent eddies only affect the waves in the layer below 1 km. To avoid a sudden
influence on the flow, which may generate unrealistic perturbations if the diffusivity terms
are turned at the a certain time during the simulation, these heat and momentum exchanges

act from the beginning of the simulation including the coldpool building stage.

Fig.6.3 shows a time series of buoyancy b field for the simulation (S6.2) with
eddy diffusivity. We also found two solitary waves are generated and the evolution of
these waves in this simulation is similar to the evolution in $6.1. The amplitude and speed

of the leading solitary wave is 1270m and 10.4m/s, which are slightly smaller comparing
with the wave in S6.1. The wavelength and uy,, decrease to 3750m and 11.0m/s at

t=12000 sec. Because up,,y is still larger than the speed of the wave, the recirculation
occurs within the wave. The detailed structures of solitary waves shown in Fig.6.4

confirm the existence of reversed recirculation. In the w field, a reversed motion pair
appears within the wave. However, the wp,,, is 3.0m/s, the same as in S6.1. These

results indicates that eddy diffusivity does have some effects on the waves (i.e.,
decreasing the amplitude, speed, and up,, of the wave), but not too much with relatively

small values of K, and K}, that were chosen.
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In order to enhance the effects of turbulent diffusivity in ABL, the typical eddy
viscosity coefficient K, and diffusivity K, in the ABL are increased to 1.0m”/s and
1.2m? /s in this simulation (S6.3). Because the generation and evolution of the solitary
waves in this simulation are similar to the previous one (56.2), the time series of b, u and
w fields are not shown here. Fig.6.5 shows the detailed structures of the two solitary
waves which are generated under the condition of increased diffusivity. In this case, the
amplitude a and the speed ¢ of the first solitary wave are reduced to 1220m and 10.3my/s
respectively. The wavelength also shrank to 3470m. The most important point is that
Umax decreases to 10.0m/s which is smaller than c. It indicates the recirculation does not
exist within the first large amplitude solitary wave although a/h=1.22 which is slightly
larger than 1.2 for the criterion of the existence of recirculation (Davis and Acrivos,
1967). In Fig.6.5 the small positive-negative pair no longer appears beneath the large pair
in w field. It is another evidence of disappearance of recirculation. So strong eddy
viscosity in ABL will impede the formation of recirculation.

6.2.2 Model results for a more realistic vertical dependence of eddy diffusivity

Generally, in the real ABL turbulent fluxes usually are not simply proportional to
the local mean gradients. Supposing K theory provides a reasonable estimate of the
turbulent exchange, it still would not be proper to assume constant K and K. They
vary rapidly with height. Based on their numerical studies, Brost and Wyngaard (1978)
give a formula of eddy diffusivty as a function of z/h and h/L,

Sa-ts
Kp = Kusgh—D—h (6,3)

z_h
1+ 4'7(H)(E)
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where Kis von Karman constant, and a generally accepted value for it in the stable ABL is
0.4 (Kaimal and Finnigan, 1994). u, is friction velocity on the surface, h is the depth of

stable ABL, and L is Monin-Obuhov length. They also found Eq.(6,3) “works about as
well for K, if 1.2 is inserted on the right side” of Eq.(6.3). That is,

EX -2

K, =1.2xu.0h1h47 — 6:4)
+4.7(=X—~
(h)(L)

In the following simulations, Eq.(6,3) and Eq.(6,4) are used instead of constant
K,, and K, in Eq.(6,1) and Eq.(6,2). In S6.4, u.,, L, and h are chosen as 0.3m/s

(Garrart, 1992), 50m (Brost and Wyngaard, 1978), and 1000m. In S6.5, u.gpand h are
the same as in S6.4 except L=500 m. We intend to make evidently different degrees of

eddy diffusivity by choosing these two values of L. Fig.6.6 shows the profiles of
K, 1(z) (=50 m) and K ,2(z) (L=500 m) in whole boundary layer. The maximum

value of K, 2(z) is about 6 m* /s which is 6 times Ky, in S6.3.

Because structures of the waves generated in S6.4 are similar to the structures seen

in §6.5, they are not shown here. Fig.6.7 displays magnified buoyancy b, horizontal
velocity u, and vertical velocity w fields at t=12000 sec for K (z) with L=500 m. But

the values of amplitude, wave speed, wavelength, ug,x and wpay in S6.4 differ

considerably from that in S6.5.
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The results of S6.5 reflect the significant effect of eddy viscosity in ABL on the
waves. Two solitary waves are still generated and propagate in steady shape with almost
constant speeds. But the amplitude and speed of the first wave reduce to 1180m and
10.0m/s, respectively. up,, and wp,, also decrease to 8.9m/s and 2.3m/s, respectively.
Clearly up,,, is smaller than the speed of the wave, hence recirculation does not exist in
the first wave. Fig.6.7 exhibits the detailed structures of these two solitary waves. As in
$6.3, the small positive and negative w pair does not appear beneath the large pair for the
first wave. Furthermore the constant b area totally disappears within the first wave.

1000.0

600.0

z(m)

400.0

| - i ] " ] ke

3.0 . 40 50 6.0 7.0
Km (m*m/s)

Fig.6.6 Profiles for uniform eddy diffusivity K, =0.1m?/s and K, =1.0m? /s, and
for more realistic profiles K () with Monin-Obuhov length L=50m ( Kn1(2)) and
L=500m (K 2(2)).
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Note that the eddy viscosity acts on the fluid motion from the initial time, even
when the coldpool is collapsing to form a density current. So the strength of density

current which generates the waves is weaker with stronger eddy diffusion.

6.2.3 Relations of amplitude a vs wavespeed ¢, and amplitude a vs

wavelength A

For the convenience of comparison, the major properties of the first solitary wave

and second solitary wave under different eddy viscosity conditions are listed together in

Table 6.1 and Table 6.2 respectively.
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Fig.6.8 Wavelength A vs wave amplitude a. Open circle with solid line represents the
results described in section 5.5. '+' signs are the results from S6.1 without eddy
diffusivity. "' signs from $6.2-6.5 with eddy diffusivity.
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To clearly display the differences of the properties of between the solitary wave
generated by a density current with and without eddy diffusivity, and waves generated by
a solitary wave-like perturbation in the inviscid fluid, the results of wave amplitudes,
speeds, and wavelengths in Table 6.1 and Table 6.2 with results obtained in Chapter 5 are
shown together in Fig.6.8 and 6.9. Fig.6.8 gives the relation between amplitude g and
wavelength A. The relation of amplitude g and wave speed ¢ is presented in Fig.6.9. In
both figures, open circles with solid lines represent the results from Chapter 5. '+' sign
represents result in S6.1 without eddy diffusivity. '** signs stand for the results in S6.2-
6.5 with eddy viscosity.

7 e s R s o —
1305-
12.05-
lwé-

100 -

Wave speed (m/s)
S
Ty

80 F

70 -

60 |-

| IS UUN I R SO N SR S |

5 " 2 2 14L 2 ' 2 1 ' 2 2

'00.0 300.0 6000 9000 12000 15000 18000 21000 24000
Amplitude (m)

Fig.6.9 Wavespeed ¢ vs wave amplitude a . The signs represent the same as in Fig.6.8.
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In an inviscid fluid the wavelength shrinks as the amplitude decreases for large
amplitude solitary wave (a/h>1.0). In contrast, the wavelength increases as the amplitude

Table 6.1: The properties of the first waves at t=12000 sec with different eddy viscosity
in the ABL.

Kpm?/s)  a(m) c(mis) A(m) Uy, (m/s)  wy,(m/s) R
$6.1 0.0 1290 106 3890 11.4 3.0 Yes
$6.2 0.1 1270 104 3750 11.0 3.0 Yes
6.3 1.0 1220 10.3 3470 10.0 2.7 No
56.4 | Knl@) 1180 102 3540 10.0 2.7 No
$6.5 | Km2(z) 1180 100 4170 8.9 2.3 No

where R indicates the existence of recirculation.

Table 6.2: The properties of the second waves at t=12000 sec with different eddy
viscosity in the ABL.

Km(mz /) a(m) c(mis) A(m)

S6.1 0.0 800 9.2 3610
S6.2 0.1 780 8.9 3820
S6.3 1.0 730 8.8 4240

6.4 Knl@) 760 8.6 3680
$6.5 Kn2(2) 730 8.3 4510

decreases for small amplitude solitary waves (a/h<1.0). Without eddy diffusivity, the
shape and speed of the solitary waves ('+' signs in Fig.6.8 and 6.9) created by a density
current fairly agree with the waves (open circle signs in Fig.6.8 and 6.9) generated by a
solitary wave-like perturbation. The results presented in Fig.6.8 show similar relationship



Chapter 6 The Effects of Eddy Diffusivity and Wind Shear on Solitary Waves 115

between amplitude and wavelength for the waves in the fluid with eddy diffusivity, except
for Kn=Kp(z) in S6.4 and S6.5.

The amplitude of the wave in S6.4 and S6.5 are 1180m, so the ratio (a/h) of
amplitude and the height of stable layer is 1.18 which is near to 1. Perhaps the increase of
wavelength reflects the characteristic of small solitary waves. Comparing the results of
S6.4 with S6.5, we also find that there is very little change in amplitude for a large

increase in K, and Kh. More close examinations are needed to understand these wave

behaviors under the influence of eddy diffusivity.

Fig.6.9 shows that the wave speed increases with amplitude with or without
viscosity. For the same amplitudes, the wave speeds in $6.2-6.4 (i.e., viscosity is
present) are slightly smaller than the wave speeds without any viscosity; the stronger

viscosity is, the slower the wave propagates (Tables 6.1 and 6.2).

Examining Fig.6.8 and Fig.6.9, we find that the g vs ¢ results with eddy
diffusivity are consistent with those results without diffusivity. But the a vs A results with
eddy diffusivity show significant difference from the previous results in the inviscid fluid.
The large variability on the plot of amplitude vs wavelength results suggests that they are
much more sensitive to the different diffusivities than amplitude vs wavespeed results. In
other words, it is more dependable to predict solitary wave amplitude in the light of wave
speed rather than wavelength when there is difficulty to observe wave amplitude. On the
other hand, the measurement of wavelength introduces errors in a-A results. The
wavelengths of these waves are measured at half amplitude by eye, and are based on the
plots shown in figures such as Fig.6.1. In addition, Ax (grid interval in x direction) in the
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simulations is 200m. These two factors introduce at least a 200m uncertainty in the

measurement of wavelengths.
6.2.4 up .y and recirculation

Comparing the decreases of wave speed and up,,, with eddy diffusivity increases
(Tables 6.1 and 6.2), we find up,,, declines faster than wave speed. It is because strong
local wind shear, due to reverse recirculation, near the center of the wave causes strong
eddy diffusivity. Meanwhile, up,, is just located in the center area. Thus, strong
viscosity makes up,, reduce faster than the wave speed. As up,,, becomes less than the
wave speed, the recirculation will disappear within the solitary waves, even if the ratio of
amplitude a of the wave to the height 2 of stable layer is larger than 1.2. It implies that
large amplitude solitary waves may not trap fluid if the eddy viscosity is strong enough.
For example, recirculation does not appear in the first solitary wave in S5.3 although the
ratio a/h is 1.22. The 'ink’ field in S6.3 confirmed that no fluid is trapped in the wave.

6.2.5 Trapping in an eddy diffusivity environment

The previous results show that when K., is equal to 1.0m2/s (in $6.3) or
equivalently larger than 1.0m2/s (in 6.4 and S6.5), recirculation disappeared. Does

this mean K, = 1.0m? /s is so strong that no solitary wave can trap fluid? If the answer

is yes, it implies it is difficult to observe trapped fluid by solitary waves in the atmosphere
because 1.0m? /s is a typical value for K, in the stable ABL (J.R. Garratt, 1992). In

order to answer this question, simulation (86.6) was conducted.
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In §6.6, the height of coldpool is increased from 3 km to 4 km during the cooling
period to generate a larger amplitude solitary wave than the waves in S$6.1-6.5. The rest
initial and background conditions are the same as in S6.3. The simulation results show
that two solitary waves are generated. The first wave propagates in speed 11.5m/s with
amplitude 1670m. up,, is 14.1m/s at t=11000 sec. The recirculation appears within the
first wave. Fig.6.10 shows the detailed structures of the first wave at t=11000 sec. w field
clearly displays a positive-negative pair within the wave which indicates the existence of a
reversed recirculation. The 'ink’ field (not shown here) shows that a portion of cold air is
inside of the wave which confirms the existence of recirculation and trapping effect of the

wave.

Hence in such a background field if the amplitude of solitary wave is large
enough, the wave still can have recirculation and trap fluid with typical values of turbulent
eddy diffusivity in ABL.

6.3 Effects of wind shear

In this section, two simulations will be introduced to investigate the effects of
wind shear on the generation and propagation of solitary waves. The ambient wind with
shear in the simulations can be defined by

toz, 0<z<h

U@= { 6.5)
toh,, hysz<H
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where constant @ represents the shear, h; the depth of shear layer, and H the depth of
model. & and hy in both simulations are the same and equal to 107 1/s and 1 km, but the
wind is in opposite directions. So the ambient wind is Om/s at the surface (z=0) and
1 10mys at the top of shear layer (z=1 km). Above 1 km, ambient wind speed is constant
3 10my/s. If the wind is in the direction of wave propagation, it generates a downstream
shear; if wind is opposite to the direction of wave propagation, it generates a upstream
shear. Coldpool, the source of solitary waves, is also the same in both simulations. The
location and strength of the coldpool are identical as in S6.1.

The solitary waves displayed in the buoyancy field in these two simulations are
shown in Fig.6.11. They propagate from the left of domain to the right. The leading
solitary wave generated in the downstream shear ambient wind field (Fig.6.11a) has a
dramatically large amplitude of about 3 km. In contrast, the amplitude of leading wave
(about 500m) in the upstreamn shear ambient wind field (Fig.6.11b) is about 6 times
smaller than the first one.

The significant difference of the locations of the leading waves at the same time
(t=8000 sec) indicates that their speeds relative to the ground are very different. The
average speeds of these two leading waves are 15.5m/s and 6.5m/s, respectively. Recall
the simulation 6.1 with the same ambient temperature field but without ambient wind, the
speed and amplitude of leading wave are 10.6m/s and 1.3 km. Hence, as expected, the
wave in the downstream ambient wind shear propagates faster than without ambient wind;
in contrast, the wave in the upstream ambient wind shear propagates slower. The speed
deficit between the downstream wave and the wave in S6.1 is 4.9m/s which is near the

average ambient wind speed (i.e. Sm/s) in the shear layer, but the deficit for upstream one
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is 4.1m/s which obviously differs from 5my/s. Therefore, based on these two simulations,
we cannot conclude that the wave is advected by the average ambient wind in a shear
environment. More simulations could further clarify the relation between average ambient
wind speed and wavespeed.

Here we still call the leading waves as solitary waves because they have a single
main crest and a large negative-positive pair of vertical velocity (Fig.6.12) and they
propagate at almost constant speed which is the basic character of solitary waves.
However, the fine structure within the leading solitary waves are noticeably different from
the solitary wave in S6.1. Unlike one smooth single peak in the solitary wave in the calm
ambient wind, there are some wavelike perturbations within the leading solitary wave. The
shear instability, which results in these perturbations, creates Kelvin-Helmholtz (KH)
waves. This is confirmed by the low Richardson number (<1/4) in the region (shaded
regions in Figs. 6.13 and 6.14) where KH waves coexist with large shear. We also find
that the fine structures within the leading waves are not steady, especially for the
downstream wave. Liu and Moncrieff (1996) shows unsteady vertical velocity maximum
induced by the density current head when they studied the effects of ambient wind shear
on a density current advancing in a neutral environment. They also found that the height of
the density current head is not proportional to the shear, but the highest head occurs in a

moderate-shear environment.

A passive tracer (ink) is also applied in the simulations to mark the location of the
air that was initially placed in the coldpool. In both simulations (i.e. up and downstream
wave propagation) a portion of ink appeared to be trapped by the leading waves. For the
downstream case, the ambient wind speed above 1 km (height of shear layer) is +10m/s
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and the coldpool initially centers at 30 km, so a block of ‘ink' centered about 110 km
indicates that the ink residue of the coldpool has been advanced by ambient wind
(Fig.6.15). Three segments of ink located around 158 km, corresponding to the position
of leading wave (Fig.6.11a), demonstrate they are trapped by the leading wave. Note that
the ink does not necessarily represent the cold air even though it was initially located in the
coldpool. Although ink is injected at t=0 into the coldpool, the air in the coldpool was
gradually cooling down during first 400 sec, some of ink moves downward and then
advances with the cold air near the ground as a density current, some of ink, where the air

does not become cold yet, is advected by the ambient wind.

r T T

t=8000sec

X(km)
Fig.6.15 Ink field for downstream wave at t=8000sec.
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For the upstream case, in order to compare the location of ink with the waves, the
ink and buoyancy fields at t=14000 sec are shown together in Fig.6.16. Ink field at this
time mainly represents the cold air produced by coldpool initially, since the rest of ink has
been advected by the ambient wind out of the model domain. It is clearly displayed that a
portion of cold air is trapped by the leading wave although the amplitude of leading
solitary wave is only about 900m. So in a sheared environment the ratio of wave
amplitude and height of the stable layer is not a proper parameter to determine if the wave
is capable of trapping fluid.

Hence, shear plays a critical and complex role in modulating the structure and the
behavior of solitary wave. As in the real atmosphere, wind fields are always
inhomogeneous; more simulations could shed further light on the effects of wind shear on

the generation and propaéation of solitary waves.
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Chapter

7

A Solitary Wave Related Case Study
by Using the Model

In the previous chapters, we have shown that this model has successfully simulate
large and small amplitude solitary waves in different background fields. The many
properties of solitary waves have been studied and understood.

In this chapter, this model is used to study solitary wave related case observed
with a Doppler radar, a tall tower and a surface network. This case has been reported
(Doviak and Ge, 1984) and studied previously (Doviak et al, 1991). But because of
previous theory could not provide solutions under condition of complicated environmental

temperature and wind fields, some features in the case were not totally understood.
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7.1 Brief introduction of the case

The case we studied is a solitary wave which propagates over 100 km from its
source in the central Oklahoma in the late evening of 11 May 1980. The wave is generated
by a thunderstorm outflow and the whole phenomenon lasts about 1.5 hours. This event
was observed with NSSL's Doppler weather radar, meteorological instruments on a 444m

tall tower and with a surface network.

Observation indicates that before wave passage in central Oklahoma, an earlier
thunderstorm outflow has moved southerly over the tower at 2130 CST (Central Standard
Time). This outflow formed a cold and strong stable layer about 600m in depth above the
ground.

At 2207 CST, a solitary gust generated by another thunderstorm outflow was first
detected by the radar. This solitary gust evolved into a solitary wave propagating in the
stable layer. Doppler radar detected the propagation of the wave from 2226 CST to 2316
CST. Fig.7.1 shows isochrones of solitary wave position determined by the leading edge
of zero Doppler velocity, and the location of the tower (4), and instruments of surface
network (0). The arrival time of the solitary wave and peak surface wind speed induced by
the solitary wave at each site are also shown in the parentheses. The radar reflectivity and
radial velocity fields show the leading wave essentially as a plane wave. It indicates that

structure along the wave is approximately the same.

As the wave passes the tower, it records time series of vertical and horizontal

velocities at different heights above the ground. The record provides detailed structures of
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Fig.7.1 Isochrones of leading solitary wave position and location of the tall tower, sites
of the automated meteorological instruments (SAM) and radar. The arrow indicates the
approximate direction of wave propagation and the dashed line is the location of the
cross section of the wave observed at the tower. The time of arrival of the wave at each
surface site is indicated in parentheses next to the station where peak wind speed
induced by the wave is also listed. (from Doviak and Ge, 1984).
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the wave and pre-wave environmental temperature, moisture, and wind profiles in the
lower atmosphere. The temperature and wind profiles above the tower top is deduced
from rawinsonde data before and after this event. Doppler radar also provides wind
profiles up to 2 km in front of the propagating wave.

4 TOWER {AVERAGE FOR 10 IS FCROO
o= t130 00 MRS $0.20.1°CQ

HEIGHT (m)
|

10 l; I; ; e - é 2 8
ORY BULB TEMPERATURE, T (°)

Fig.7.2 Vertical profiles of temperature measured by rawinsonde and tower (from
Doviak and Ge, 1984).

The temperature profiles observed by rawinsonde, located at Oklahoma City
(OKC) about 15 km south of the tower and Fort Sill (FSI) about 100 km to the southwest,
5 hr before and 7 br after the event and by tower for 10 min. average before and after the
leading wave are shown in Fig.7.2. The vertical profile of the ambient wind components
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parallel to the cross section of the wave measured by tower (below 444m) and Doppler
radar (from 444m to 2 km) at around 2245 are plotted in Fig.7.3.
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Fig.7.3 Ambient wind profiles measured by tower and Doppler radar (a) in the
propagation direction of the leading solitary wave; (b) perpendicular to the propagation
direction. The rawinsonde sites are ~20 km NW (OKC) and 120 km SW (FSI) of the
Norman Doppler radar. The Doppler radar estimate of wind is an average over a 40°
sector 40 km north of radar. (from Doviak and Ge, 1984).
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7.2 The set up of the model for the case study

The model used to simulate this case is described in Chapter 2. The background
fields (potential temperature and horizontal wind) are given based on the observed

temperature and wind profiles (assumed horizontally homogenous).

The potential temperature profile (Fig.7.4) is calculated from the inferred
temperature profile which is shown in Fig.7.2. Hydrostatic assumption is used in the
calculation of potential temperature. Due to lack of observation data, a constant potential
temperature above 2 km is given in the model.

Fig.7.4 provides pre-wave ambient wind profiles perpendicular and parallel to the
solitary wave from ground to 2 km. But it has been suspected that the radar data may be
contaminated by the birds or/and insects (Doviak and Chen, 1988). Because in the radar
observations the peak in horizontal velocity perturbations lags behind the peak of
reflectivity. Doviak and Zrnic' (1984) found that the reflectivity factor Z of the ambient
has a strong vertical gradient (-17 dBZ/km). The peak reflectivity is expected to coincide
with the peak horizontal velocity. Thus insects and/or flying birds or mammals might
respond to the lag. The large scatter of the mean Doppler velocity estimates from one

resolution volume V6 to the next V6 (Doviak and Zirnic', 1984) and the unusually high
equivalent reflectivity factor (10 dBZ, at 300m altitude) also support this suspicion.

Contamination of radar data by the migration of birds and insects has been known
for many years. Vaughn (1985) states that "From spring through fall, birds and/or insects

are generally common to abundant in the atmosphere to an altitude of 1 to 2 ki over most
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land areas of the world”. Especially at night during spring (March-May) seasonal
migrations of birds and insects increases dramatically (Vaughn, 1985; Wilson et al, 1994;
Wilczak et al, 1995). Flying birds can contaminate the radar observed velocity by
vectorially adding about 7 to 15m/s to the wind. Southward migration called "reverse"
migration of birds in spring season has also been found(Wilczak et al, 1995).

For our case, the radar data was collected in night during spring season (2245, 11
May). It is reasonable to believe that the ambient wind deduced from radar measurements
above 444m (Fig.7.4) is contaminated by southward movements of birds or/and insects.
In addition, wind profiles observed by rawinsondes might not represent the realistic wind
field in front the wave because they were measured 5 h before and 7 h after the event.
Thus we removed the wind profile portion above 444m and simply assume a constant

velocity which is equal to the value at 444m observed by the tower.

The observation shows the gust front was initiated by a thunderstorm outflow.
However, the three dimensional, moisture and rain related thermodynamic and kinematic
mechanism in the generation of the thunderstorm outflow can not be simulated by this
two-dimension dry model. Moreover, paucity of existing observation in the thunderstorm
outflow is the other reason why the real outflow in the observation is hard to be
reproduced by this model.

In our experiments the thunderstorm outflow is simulated by a block of air which
is gradually cooled to reach a certain temperature lower than ambient temperature. The
colder air then continuously spreads out to form two density currents in both left and right

directions in the numerical domain. The density current moving toward right direction is
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the one used to simulate the outflow. The left density current will move out of the domain

soon and not be concerned in our study.

Also because the lack of observational data about the characteristics of the
thunderstorm outflow, it is difficult for us to choose an unique model for cooling the
block of air and the block dimensions. After many trials with different combinations of
block dimensions, cooling rate, and period of cooling time, the following parameters,
height of the block hq,=610m, width of the block w_,=10 km, period of cooling time
AT =600 sec, were chosen such that the leading wave speed is comparable with the
observed wave speed. The block of air which is cooled is located 35 km from the left side
of the domain. The cooling rate 7 is linearly changing with time and approaching to zero
at the end of cooling period:

) (7.1)

vy (L= AT
0% AT

where 7,=5.5 °C/sec and t is simulation time. As t > AT, 7 is set to be zero.

The passive tracer technique is also used in this simulation. The value of the
passive tracer in the cooling block is prescribed as 100 and O in the rest of domain at the
initial time. It is like a cold block air dyed with 'ink’. Thereafter 'ink’ flows with the cold
air and displays the shape and movement of the density current created by the collapsing
coldpool. Thus we clearly distinguish the density current as the source of waves from
ambient-air and the waves generated by the interaction of the density current with the

ambient stable layer.
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Surface friction and turbulent eddy viscosity in the boundary layer are considered

in the simulation. K theory discussed in Chapter 6 is applied in the model below 2 km in
which a constant eddy viscosity coefficient K ,=2.0 m? /sand eddy diffusivity of heat

K;,=2.4 m? /s are used.

For numerical stability, kinematic viscosity vy, (in horizontal direction) and v,, (in
vertical direction), and thermal viscosity xj and x, in the model equations (see Eq.(2.12)

and (2.14) ) are all given a constant 1.0m2/s. But the viscosity terms only act in the
region where Richardson number R;>1/4.

7.3 Evolution of the solitary wave in the simulation

The goal of our numerical study is 1) to demonstrate that simulated undular bore
does evolve into a family of solitary waves observed; 2) to exhaustively investigate the
whole process of formation, development, and decline of the wave, a process not
completely observed in the short term of observation; 3) to reveal the fine features of the
phenomenon, some of them could not be observed; 4) to verify the hypothesis made by
Doviak et al. (1991) that when recirculation exists within the leading solitary wave, a mass
of air will be trapped and transported by the wave.

In order to give the detailed features of density current and waves for our
investigation, the horizontal component of wind, the ‘ink' (passive tracer) fields, and
buoyancy fields are magnified in wave front area in Fig.7.5. After close examination, we
found that the whole process can be divided into the three following stages based on the
evolution of leading solitary wave.
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1) Initial stage(0-1000 sec): In this stage, a density current (i.e. the thunderstorm
outflow) is created by collapsing of the coldpool. As the density current intrudes the lower
atmosphere, perturbations in the ambient stable and neutral layers are excited
simultaneously.

The fields of buoyancy, b, and ink in Fig.7.5a (t=500 sec) clearly show that a
density current formed in the lower stable layer. The density current is evidenced in the b
field by its increase in height behind the leading perturbation which moves to about 44.5
km at this time. The height of the current head is about 390m. Moreover, a single hump in
the stable layer appears above the head of the current in the b field. The 'ink' field at the
same time (Fig.7.5a) also confirms the shape and location of the density current deduced
from the b field.

Recall from the previous section, the coldpool is continuously cooled until t=600
sec. The current gains more momentum from the transformation of potential energy as the
coldpool collapses. The maximum horizontal velocity up,, in the head has increased a
little (from 21.2m/s at t=500 sec to 21.5m/s at t=1000 sec). During the same time period
the density current speed has increased from 9.0m/s to 14.4m/s. The speed of density
current is estimated by measuring the location of the leading edge of the density current at

different times.

A bore with a smooth tail has evidently evolved from the single hump above the

density current.



Chapter 7 A Solitary Wave Related Case Study by Using the Model 139

Z(km)

T ™ T

() t=500sec

3
T
4
i

E X

TY vy v T Vv T Ty
\ o

Y] r— e S T E e e e N B S S

4
4

oF ink :

i 1
26 -

[ 1
18} 5

[ -

- -y
a -— )
‘0.0 389 “0 S0 20 00
a0 v v T — - e T

1

L [}
2P~ § -
26 — -

o -

L . 3
18 - Ay /

L P .

L [

F i1 ]
A s e -

e T T

7 P S
%00 T 700

. X(km)
Fig.7.5 A time series of magnified horizontal velocity, 'ink' and buoyancy fields at (a)
t=l§005cc; (b) t=1000sec; (c) t=1500sec; (d) t=2000sec; (¢) t=2500sec, (f) t=3000sec; (g)
t=3500sec; (h) t=4000sec; (i) t=4500sec; (j) t=6500sec.



Chapter 7 A Solitary Wave Related Case Study by Using the Model

140

Z(km)

40 —p————r T v v — r——er—— v — v '
L 4
L b 4
w2l (b) t=1000sec
L 4
- -
24 . .
X bore tajl ]
L 4
1.8 -~ //_____/\ -
L
j- -
n 4
A ‘/,—-\ -
o-’
-’ ", >
N .
' b
: I : : :
20 70
a0 v v T ——r T v v T v T Y v v
L k 4
L in ]
2f -
[ ]
[ .
24 - -
L 4
L
iy -
of -
5 4
at .
X : ]
o - | . Lo .
200 Y «“o 340 2o 70
40 v v — v - Y v v y T T - v
L o 4
3 u ’ ‘\‘ E
312 - J [} -
L ! A 4
[ i 3 ]
1]
L ! H p
24 - H ‘ 7
= : ’ L
L. \ ] r
1 [
L \ 4
[}
= { -
1]
L ! )
- ‘l -
- “ -
P.‘ 4
7.0

X(km)
Fig.7.5 (Continued)




Chapter 7 A Solitary Wave Related Case Study by Using the Model 141

Z(km)

4.0 r—p— T T T P—— T T T T T T T T T T ™ T
b () t=1500sec
4
)
.
-
)
70
w0 — e v v 1 ———p———— — ]
L -
B Ink -
32 f- .
26 t J
[ ]
.4~ -
C ]
a -
L 4
- ) -
o M -
’ a5 2o %0

0.0 e “%.0
0 — T T ™ Y T v Y T y v T T T T T
’ . e
L ’ |‘ o d
- u [\ T Y
' 7 \ 1
2+ " “ ! “ o
- i ' ' Y h
- ] 1 f t p
[} \ H [}
L ! ' ] H E
26— 4 [ .‘ H -
-] H i ! 4
- ] * = ) -
b " .’ H I'
o - Pl ‘ 1} ]
1.8 = ———— o, ' ] o -
- 7 .- i 1 Pid ‘\‘ §
- ‘ N L
h: . \ ]
P— -—
‘\
-~ g
e et ey g

PO
2223TIisaaRnREsRATERI NN

X(km)
Fig.7.5 (Continued)



Chapter 7 A Solitary Wave Related Case Study by Using the Model

142

Z(km)

4.0

— T T T ' T T v T Y T Ty Y ™ T -
p
[ .
o -
ot b (d) t=2000sec
o -
| .
o -
24 — -
. . 4
I
r
1‘/_-\ ]
r
A -
IR
P I I
—soesglz= o, S s e = = -—
RN e e e e e e e o]
M e e I e
o -l : X T 2 -  a—— — ~
0.0 8.0 o 780 &0 0.0
0 —————— —————
P
o -
- ink ]
124 -
o -
-~ -
> -
26 |- n
I~ E
o -
u -
14 - -
o -
o -
- -
= —
= -
- L
R ~ - ) " " 1 N 1 L —
0.9 k- 1] “o 740 20 no
a0 T T T T ey T v —
I p
\ / -
R u 3 ! ]
2~ \ sa, J la
\ / /
" ' ; \ ; 4
1 ‘ 5\ ’
i ' [} I L
\ i [ i
i \ I A ; R
24}~ v \ ) s -
- v I
3 Ty H ! l} K B
L {0 v ! 9
p
K [ [ H g
o I A :
1.6 ! H \ : ,l ’ -
.',¢~.—'\\ ! i T ] / <4
b Voo R I 4
S H : .l > ~ ‘ﬁw',' E
3 Yoy ! - hy oYt
] ="
o

X(km)
Fig.7.5 (Continued)



Chapter 7 A Solitary Wave Related Case Study by Using the Model

143

«0 T —Y ——r— T — v —
I~ o
<L b (6) t=2500sec
b -
[ ]
24 B~ _1
1.8 :- a A .
[ /\ -
e ——
2 \‘ —.
72 St YS e )
“..

. — T T e e
[ J
k <
- in ]
12~ -
[ 4
p
— " 4
E >l b
L
3 L <
N ]
L
.8 P~ -
L
4
[ -
L
4
A p=- n
[*w ]
0 i " L " " i | Y N .
50.0 890 [ V) 740 no 2.0
40 —_— 77—
’ A
2 u { “ j
B o ! \
- ’ ~, ! \ p
12 4 N H \ .
o ’ 1Y I 1 -
g A U .
- ! \ ] !
24 b= ' Y ' [ -
i L : -
™~ 1]
X ; \ ! ! .
H \ \ g 4
i ? \Y \ { J
18 - 'l LY |. ,I /——\\ -
3 ] ] A
L S I N .
S FaX N1 e /[ / . -
o R Y L N \
a vy ) p Ll 1
L PO - ’ h 3
- == ES N

740

X(km)
Fig.7.5 (Continued)

scoiiies M £ £ M3 =SSsoas: S5
!’. o L 4/ ’/3\\\\‘ TR s;-“T*-r.l_._...----l 33
.o

20 920.0



Chapter 7 A Solitary Wave Related Case Study by Using the Model

144

£ s
o
1
!
f
J

»
>

-
-.'“l"'|!1l|vvu|vi

b))

=3000sec

aa l s 2 s )4y

4
e ~ AT o e
a0 %o Mo 0 [ -1 ] ;0o
“ ng v L3 l e L LJ l v L v ' v L] L l L b R
L l k p
2 - n -
- B ]
E = ;
k- g ]
—
N - 1
.8~ =1
L p
L 4
L p
.- e
L 4
L . 4
4
o WA NS S .
0.0 380 [ ] 740 =0 °0.0
40 v Y T —-r— L T 1 M M 'l ) v 1 ! ’ i -
i ' i 4
ST ; i )
i ! -
2 - ! )
- [] : b
[ i H p
} i
L | 1
b - ‘: j ]
: Y 3 /l <
B [I =| \ / ]
18 = i '.‘ ! / -
9 H 1 \ 7/ 1
- : = p— 1Y 4' h
2 N F NS ]
Y o RO A U A ! ; ; RS- ]
L : A " \ : 1 S’ ’ ety
./ SRS . Pouealiy
3 M

X(km)
Fig.7.5 (Continued)




Chapter 7 A Solitary Wave Related Case Study by Using the Model

145

Z(km)

«0 T — T ' A S e e e S S
[ ]
sl b (g) t=3500sec
[ ]
. 3
[ ]
-\-/\ -

0 —r——————r—————
L j
[ J
- Ink ]
2 P
i J
L 4
i )
26 |- -
[ ]
[ .
s - -
C 4
- 4
X 4
al- -
C J
i J
o W—l ——
"%0.0 @80 .0 kLY [ -1] )0
0 r——r————— Ty T
L J
L u ]
2t ! A
- ‘-
- h -
L ]
26 - -
o -
L )
L .
1.8 g -
-‘\ b
L)
- & -
[}
L 3 )
s -
, ‘
!

X(km)
Fig.7.5 (Continued)




Chapter 7 A Solitary Wave Related Case Study by Using the Model 146

“ —r— T T

b (h) t=4000sec

o b s ad o4y

|
|
%

N
>»
L L LA SN AN LA

4.0 [ ™ T T - T T r Y * T T T Y Y T B
- Ink ]
a2~ ]
i 4
L -
o—_—
E 24 |- N
k] r ]
N f ]
.. - ]
X 4
g N
w—— S | s —l L . .
‘o “wo 780 %o 20 100.0
a0 y——r — v ' v T A Y T L M 4
[ ! ] 1
L u ] 1 P
{ !
2 i ! -
3 H : .-
3 : : b
- : : -y
24 ~ | i -
C . /,-—\“‘ .“ ! B
- 4 1] { \ Y / b
b ! = L
.8 - s i 5 7]
- ] -
L ' 5 4
-3 H '] -
s W/
ST G 3

X(km)
Fig.7.5 (Continued)



Chapter 7 A Solitary Wave Related Case Study by Using the Model 147

)] t=4500sec

POT S YU TN U W

!

|

= e
—re

— ﬁ;‘;_één
T e e
“o 2o 1000

«0 ' v —r ————T v T —r T T ]

4

E ink ]

- B

[ 1

-k 4

o_— -

E »f .

= [ :

b

N - b
1~

L 4

- 4

T ]

o I ———————————— b . ]

‘0.0 C X 0 ®no 20 100.0

Se———

prmmmm—ea e ———.]

X(km)
Fig.7.5 (Continued)



Chapter 7 A Solitary Wave Related Case Study by Using the Model

148

Z(km)

4.0

24

) t=6500sec

' B T

?

T vy vyvprvrr

40 ——— - T r T Y Y — T v v v T T— T
<
S -
- ink 1
- -
L <
- 4
-
-
24 - -
b r
3 p
b E
1.0 - —
- 4
X p
. r
N =
3 F
b .
S
o " i 1 i - i i " L " " i 1 i " "
0.0 L0 108.0 neo 1220 1300
4.0 -r T T ™ T —p— ™ T Y v T T Y r T
\ 2 S 4
- p, " ’
- s \ 4 g
| u 'y K .\ K
% ’ \ / b
12 - Y 4 ' V4 -
1Y ! \ s
A \ / ! A
b \ (] Y ’ -
X \ { \ / ]
1 ’
24 |- \ ! H K -
S \ ' } / B
N\ Y / o
o AN N Vs P L
., ’ -
- ., \‘ ’l " -
.4~ \‘ g T -
», 4
[ —ip “\ I" ]
L . , E
g - T h S g
Lo -,

108.0 1300

X(km)
Fig.7.5 (Continued)



Chapter 7 A Solitary Wave Related Case Study by Using the Model 149

It was also found that there are two peaks in the current head in the b and 'ink’
fields. They are produced by Kelvin-Helmholtz (KH) waves due to the strong wind shear

at the interface between the current and ambient air (Droegemeier, 1987).

In view of above observation, we found that at the initial stage the density current
is dynamically dominant. The motion of the current and the bore is primarily driven by the
pressure difference between the current and ambient air. In addition, the birth of the bore

is an important fact, later the bore will dramatically change the nature of the phenomenon.

2)Wave development stage (1000-3000 sec): The density current is still moving
forward, but gradually losing its momentum because of the spreading out of the current,
and because of surface friction. The speed of the current decreases from 14.4m/s at
t=1000 sec to 10.4m/s at t=3000 sec. During the same period of time up,,, declines by

almost 50%, from 21.5m/s to 12.4m/s.

At t=2000 sec, small wavelike perturbations occurs in the body of the bore, and
the head of the bore become more evident in b field (Fig.7.5d). It indicates the bore is
evolving into an undular bore. The density current is modulated by the bore to exhibit
undulations at the interface between current and ambient air. The 'ink' field at t=2000 sec

in Fig.7.5d distinctly demonstrates these undulations.

At t=2500 sec (Fig.7.5¢) the bore head clearly separates from the small
perturbations and is evolving into a solitary wave, while the current head moves with the
wave and becomes smaller and smaller. 500 sec later(Fig.7.5f) the current head slightly
falls back from the wave and becomes even smaller.
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During this period of time (from t=1000 sec to 3000 sec), perturbations in the
stable layer accomplished the evolution from a bore to an undular bore, and then to a
family of amplitude ordered solitary waves. The waves can been confirmed as solitary
waves by the increase of distances between the waves because the propagation speed of
solitary waves are proportional to the amplitude. The similar evolving process has been
found in the laboratory (Maxworthy, 1980), in the atmosphere (Clark et al, 1981; Clark,
1983; Doviak and Ge, 1984; Fulton et al, 1990) and has been theoretically investigated by
using the BDO (Benjamin-Davis-Ono) equation Christie (1989).

After the density current reaches its maximum strength at about t=1000 sec, it
slowly losses its momentun and is no longer dynamically dominant after this time. In
contrast, the leading solitary wave is gradually maturing and plays the prevalent role after
1000 sec.

3) Wave decaying stage (3000-6500 sec): At this stage the leading solitary wave
outruns the dying density current and continuously propagates forward at nearly constant
speed(12.0my/s). The detailed variation in the wave speed will be discussed later.

Comparing the 'ink'’ field at t=4000 sec(Fig.7.5h) with t=4500 sec (Fig.7.5i), it is
seen that the leading edge of density current stops at 82.7 km. This indicates that the
density current ceases at about t=4000 sec. The density current's demise might be caused
by a combination of three factors: 1) insufficient depth of cold air over a long range; 2)

surface friction; and 3) mixing between the cold air and ambient air.
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As the density current spreads out on its way, its depth is gradually becoming
lower and lower. Meanwhile mixing leads the temperature deficit to decrease. Both of
these two factors are weakening the strength of the current and reducing the current speed.

Surface friction is an other obvious factor to slow down the current.

As the density current rapidly weakens in the interval from t=3500 sec to 4500
sec, the leading solitary wave, generated by the current, begins to separate from the
current. Comparing 'ink' field with buoyancy field at t=4500 sec, it is found that the air
tagged by the ink field is left behind the wave (Fig.7.5i).

At this time (4500 sec), the leading solitary wave is without closed recirculation

and is in a quasi-stationary state in which it propagates at nearly constant speed. By
slowly decreasing their magnitudes, the maximum horizontal velocity, up,. and
maximum vertical velocity wp,., purely induced by the wave show the dissipation effects
of surface friction and eddy viscosity . up,, decreases from 8.2m/s at t=4500 sec to

7.5m/s at t=6500 sec, and wp,, from 1.1m/s to 0.96m/s in the time interval from 4500

sec to 6500 sec.

7.4 Comparison between observation and simulation results

74.1 Speeds of the density current and the wave

The temperature difference between the current and ambient air results in a

pressure gradient force which acts on the cooler air to drive it forward thus forming a
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density current. The speed of density current relative to the ambient wind can be roughly

estimated by using the following formula (Charba, 1974):

V=k‘/gh%e (7.1)

where k, the dimensionless Froud number, had been evaluated in laboratory, atmosphere,
and numerical models. It varies from 0.74 (Georgi, 1936) to V2 (Benjamin, 1968). h is
the mean height of the density current, and A is average potential temperature difference
between the current and the ambient fluid with potential temperature 0.

Because of the complexity of the background temperature and wind field and
because of the lack of sufficient data, it is very difficult to estimate, for our observation,
the parameters like A® and k in Eq.(7.1). Nevertheless Eq.(7.1) can still be used to
estimate, based on limited observational data, the density current speed.

In order to compare the evolution of the simulated and observed leading solitary
waves, their speeds are plotted in Fig.7.6. In the succeed sections, the wave speed refers
to the speed of the leading solitary wave in a frame relative to the ground. In the
simulation, the speeds of wave and density current are estimated by measuring the location
of the wave peak and leading edge of the current at different times, respectively. The
speeds are the average speed between two measuring times, the measuring time interval is

500 sec in this experiment.

Observations suggest that the wave speed quickly drops from 26.3m/s to 11.6m/s
in about 2500 sec; it then reaches to a steady state with speed of about 11.5m/s. The
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simulation exactly replicates this evolution from 1500 sec to 3000 sec. Except for a small
jump in speed at t=3500 sec, the wave speed determined from simulation attains a relative
steady speed 12.0 m/s which is slightly higher than observed 11.5 m/s.
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Fig.7.6 The evaluation of wave and density current speeds. Dot-solid line is wave
speed of simulation; cross-dash line is wave speed of observation; triangle-solid line is
density current speed of simulation.
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During the initial 1500 sec period of time, the difference of wave speed between
observation and simulation is obvious. Actually the model could not simulate the evolution
of the wave during this period time. There are several reasons: 1) the environment near the
thunderstorm which generated the wave is very different from the horizontally
homogeneous environment used in the simulation; 2) the coldpool used in the 2D model
cannot totally duplicate the real 3D thunderstorm outflow neither dynamically nor
thermodynamically; 3) the involvement of moisture as the outflow is forming makes the
processes more complicated. It cannot be simulated by this dry model.

Many similar simulations, with different source strengths and ambient fields,
suggest that there is always a small jump of the wave speed right after the departure of the
density current head from the wave. This jump is not an occasional phenomena or
measurement error in this simulation. It implies that the denser air in the current head
somehow drags the wave when they move together. As the current head leaves the wave,
the drag force is released from the wave, so the wave can move faster. Besides, the slope
formed by the head perhaps accelerates the motion of wave peak when the current head is
leaving the wake of the wave. After the small jump, the wave speed slightly reduces and
the wave no longer has any density current. The wave then adjusts to a relative steady

state.

This small jump is not seen in the wave speed plot of the observation, adopted
from Fig.9 (Doviak et al., 1991), in Fig.7.6. But when we carefully investigate the
isochrones of wave position at different tfmes (Fig.7.1), it is found that the leading wave
propagates for a longer distance in the 5.5 minutes time interval 2305:30 to 2311, than for
the same period in the interval from 2300 to 2305:30. This means a faster wave speed at a
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later time. It is in a good agreement with simulation. The wave speed jump of the
simulation is observed at 3500 sec right after the leading wave passed the virtual tower
located at 74.8 km. In addition, the small jump in bore front speed had the appearance in
another similar observation (Fulton et al., 1990) although it had not been discussed in the
paper. Certainly, observational errors or horizontal inhomogeneousness of wave guide,
which may also make the small jump in wave speed, cannot be excluded. So more
observations are needed to prove this finding.

In the foregoing part, we have examined the small wave speed jump after the
density current head leaves the wave. Furthermore, we notice that the speed of the density
current quickly declines from 9.6m/s to Om/s after the jump increase in wave speed. This
sudden density current speed decline suggest that, without wave drag, the density current
would not have advanced as fast as it did, nor move as fast move as fast as before the

jump.

It is not difficult to understand this wave drag effect on the density current.
Generally, a solitary wave propagating in a waveguide attached the ground induces a
horizontal velocity field in which the wind direction is the same as the wave propagation
direction near the ground, and opposite above a certain height which depends on the wave
amplitude (Fig.7.5j). The solitary wave provides a local positive wind field, even in an
negative ambient wind field, for a density current head when it advances beneath the
wave. This local positive wind field helps the density current advance more rapidly than in

the environment without the wave.
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7.4 .2 Kinetic and thermodynamic structures of the leading wave

Tower data provides a vertical profile (from z=0 to 444m) of horizontal velocity
induced by the leading solitary wave. At the corresponding simulation time (t =3000 sec),
the profile of horizontal velocity computed at 74.8 km in the numerical domain shows
almost same shape as the observed one below 444m (Fig.7.7).

Because of low spatial resolution of observation in vertical direction , the
maximum of u located between 90m and 176m may not be resolved. The value might be
larger than 11.7m/s. The simulation with higher resolution in vertical direction than tower
shows that the maximum u is 12.4m/s at height 103.6m. Thus the values and locations of

maximum u in the simulation are in quite good agreement with in the observation.

The feature of the u profile with a maximum located above the surface is similar to
the feature across a large amplitude solitary wave with a reversed recirculation shower in
Chapter 5. It easily leads us to conclude that the existence of reversed recirculation in the
simulated and observed solitary wave. But after close examination (see section 7.4.5), we
found thatalthough they have similar features, the mechanism is different. For this case,
surface friction instead of reversed recirculation results in the monotonous decrease of u
near the surface below about 100m. So the u profile exhibits a maximum above the
surface.

Tower observation not only provides an estimate of the vertical profile of
horizontal velocity across the center of the leading wave, but also a time series of

horizontal and vertical velocities (u and w) at several observation levels. For the sake of
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comparison, u and w are recorded at the virtual tower at almost same heights as the real
one, except the lowest level because the first level in the model is 18.7m which is higher
than 7m for the observation. The plots of the evolution of observed and simulated u at
four different levels as the leading wave passes the tower are displayed in Fig.7.8. The

plots in Fig.7.8 show a good agreement between the simulation and observation.

Due to coarse spatial resolution of the model, the small wave like perturbations
overlaid on the main feature in the observation are not well represented in the simulation.
Some of these small perturbations, more evident at the 7m level, are thought to be
produced by KH waves and turbulence (Doviak et al., 1989). Recall b field at t=3000 sec
(Fig.7.5f) when the leading solitary wave passes the tower, the density current is with the
wave. Tower instruments at the lower height are inside the density current head where the
stability is relative weak and wind shear is relative strong due to surface friction in the

simulation, as well as in the observation. Thus KH wave is a reasonable interpretation.

Closely comparing the wavelengths between the observation and simulation
(Fig.7.8), we found that the wavelength of the simulated wave is larger than the observed
one, especially at two higher heights (z=266 m and 444m). Horizontally inhomogeneous
ambient wind and temperature fields in the real atmosphere might result in these
wavelength differences because in the model the ambient wind and potential temperature
fields are horizontally homogeneous. In addition, a constant ambient wind above 444m in
the simulation might not accurately represent the real ambient wind. This could also affect
the structure of the simulated solitary wave. The differences between the simulation and

observation are more evident in the comparison of w fields.
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Fig.7.9 shows the time series of w component at two different heights. Unlike u
component, w maximum and minimum from the simulation are much smaller than
observation. The reasons why the simulation failed to reproduce the large observed
variation of w component may be due to 1) the relative coarse spatial resolution of the
model; 2) not well representation of real turbulence in the model. The reasons, given in the
above paragraph, which cause the differences between the simulation and observation in

the wavelengths might also lead the simulation failure of w fields.

Small positive peaks of simulation at both heights near center of the wave are
result from the circulation induced by the density current head. So the peak at 265m near
the head of the density current is relatively higher than at 439m. The small disturbances
modulated on the solitary wave feature at 266m level in the observation are thought to be
KH waves. Like the u component, the simulation does not reveal these KH waves in the

w time series.

However, the wavelengths of simulation shown in Fig.7.9 is in a fairly close
agreement with the observation. Moreover, w of observation shows an unsymmetric
feature. The positive portion is smoother and smaller than negative. This feature is also
clearly visible in the simulation although the magnitude of w is smaller. Closely inspecting
the shape of the u component in Fig.7.8, the unsymmetric feature is also found. The front
half (left hailf in Fig.7.8) of the wave is smoother than rear half. The entire unsymmetric
feature of the leading wave can be distinctly seen in Fig.7.5f.

These unsymmetric features are created by the density current head within the
wave. The direction of circulation induced by a solitary wave is downward (upward) at
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the rear (front) of the wave and forward (backward) at lower (upper) level. The flow of
the circulation in the wave is partially blocked by the density current which is no longer
symmetrically landed in the wave. Thus, there are sharper gradients of u and w and
stronger downward motion in the wake to keep the continuity of the flow. Its external
manifestation is unsymmetric b, u, and w fields. When the current leaves the wave, the
wave regains its normal symmetric form even though the environment has wind shear

(Fig.7.5j).

7.4.3 Temperature structure of the wave

The retrieved temperature field based on the tower data is plotted in Fig.7.10.
Assuming the wave is relatively steady as it passes over the tower, it will propagate about
13.4 km in 20 min. at its speed of 11.2 m/s. The temperature field at 3000 sec of
simulation with corresponding spatial distance of 14 km is shown in Fig.7.12 as well.

The resembiance between observation and simulation is obvious. The
unsymmetric feature of the wave also exhibits in both observed and simulated temperature
fields. A cold core centered at about 250m with a small tail in the simulation indicates the
position of density current head. The tail in the observation is not very obvious. But the
core temperature minimum in the simulation is 2 degrees colder than the observation. The
small wiggles on the contours in the core region at about 75.5 km in the simulation, which
is not found in the observation, reflect the fine structure of the density current. The
relatively coarse spatial resolution in the vertical direction in the observation might not be
capable of resolving these small structures (i.e. the tail and wiggles) displayed in the
simulation. On the other hand, the observed small perturbations on the contours of 19°C,
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19.5°C, and 20 °C in the wake are not found in the simulation. Turbulence observed in
the wake of the wave (Doviak and Ge, 1984) could cause these small perturbations.

7.4.4 Second wave

A second wave following the leading wave was observed by the tall tower. Its
peak passed the tower at about 23:40 CST, 30 min. late after the leading wave. The
simulation shows that several waves, at least four at t=6500 sec (Fig.7.4), are generated.
The second wave of the simulation passed the virtual tower at about S000 sec, about 33
min. late after the first one. It agrees with 30 min. found in the observation. Tower data
have not shown third and fourth waves, perhaps because their amplitudes are too small to
be detected.

7.4.5 Discussion on the existence of recirculation

After a close study, we found that the recirculation does not exist in the leading
solitary wave in the observation and simulation. One could argue that observed and
simulated u maximum located above the ground is a sign to show the existence of the
recirculation. A small couplet of positive-negative vertical velocity beneath the leading
wave at t=3000 sec (Fig.7.11) seems to support this argument. But as the head of density
current leaves the leading wave at t=4500 sec, the couplet vanishes as well (Fig.7.12).
But u maximum is still located above the ground (see u field in Fig.7.5i). This suggests
that the couplet is produced by the density current and the decrease of u near the ground

results from the surface friction rather than the recirculation within the wave.
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One could continue to argue that the recirculation does exist within the leading
solitary wave when the wave has the density current, but it is dissipated by the eddy
viscosity in the observation and simulation. Thus the trapped current head leaks out from
the wave in the simulation. However, small change in wave speed, before and after the
current leaks completely out from the wave in the simulation, suggests that the wave
amplitude does not change too much because solitary wave speed is amplitude-dependent.
The fact of no recirculation in the wave after the departure of the density current head
implies that the amplitude of the leading solitary wave is not large enough to have a

recirculation within it even in the initial stage in the simulation.

Note that in a complicated background potential temperature field with wind shear,
it is almost impossible to use the criterion a/h> ( or< )1 used in simple background fields
to judge if a solitary wave is a large amplitude one. In addition, checking the b field at
t=6500 sec (Fig.7.5j), the largest vertical displacement induced by solitary wave is no

longer right at the interface between stable and neutral layers.

Moreover, the study in the Chapter 6 has demonstrated that strong surface friction

hampers the formation of recirculation in a solitary wave.

Thus we conclude that for both simulation and observation the leading solitary
wave generated by the density current is not large enough to have a recirculation inside,
and the head of density current is not trapped, if the word 'trap’ is strictly used to describe
the trapping effect of large amplitude solitary wave with recirculation, by the leading
solitary wave. But the wave did propagate with and 'drag’ the density current head for a
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period time. After density current loses its momentum and spreads out on the ground, the

wave leaves it.

Some observations (Fulton et al., 1990; Smith and Morton, 1984) suggest that this
‘trapped’ phenomena take place 'only in the early, formative stages of bores when they are

very near the source.’. Their findings support our conclusion.

7.4.6 Scenario for the evolution of the solitary waves

According to the previous study of this case, Doviak et al. (1991) suggest a
scenario for the evolution of the solitary waves (Fig.7.13). Gathering the buoyancy fields
at different times of the simulation into one picture (Fig.7.14), it shows dramatic similarity
with the observation. In order to avoid unnecessary repetition of section 7.3, the detailed

description of the evolution will not be presented here.

The similarity demonstrates that the evolution of the solitary waves has been
successfully simulated.
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7.5 Conclusion

The model simulation has successfully duplicated the evolution of the solitary
wave observed by multisensers and provided more useful information, which was not

observed, to help us to have a better understanding of the phenomena we studied.

In comparison with previous case studies of solitary waves (e.g. Doviak and Ge,
1984; Doviak et al., 1991; Fulton et al., 1990; Smith and Morton, 1988), this simulation
has advantage to reproduce the evolution, generation, propagation and decay, of the wave
in detail. It makes possible to examine the internal structures of the wave, such as velocity
and temperature fields, and compare them with the observation with a relatively high

resolution.



Chapter

8

Summary and Conclusions

A two-dimensional dry incompressible vorticity-stream function model is
developed for the purpose of studying internal nonlinear buoyancy waves and related
phenomena in the lower atmosphere. The model equations are vorticity, Poisson, and
conservation of potential temperature equations with three variables: vorticity, stream
function, and buoyancy. Kinematic and thermal viscosity terms are included. These time-
dependent nonlinear partial differential equations are 'discretized' into finite-difference
representations and the variables exist only at grid points. The third-order Adams-
Bashforth scheme is adopted for time integration, and the fifth-order upstream advection
scheme is applied to spatial derivatives. A stretched vertical coordinate is used to increase
the spatial resolution near the ground. because the most rapid changes in the variables
occur there. The lateral boundaries are open in order to allow internally generated waves to
pass out freely. To avoid reflections of the waves, 'sponge’ boundary conditions are

applied at and near the lateral and top boundaries.

173
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For testing the model, several simulations of solitary waves are conducted in a
relatively simple background field: a deep neutral layer over a shallow stable layer near the
ground with constant Brunt- Vdisidld frequency, in absence of surface friction, physical
dissipation, and ambient wind shear. The simulation results are in good agreement with
the results of weakly nonlinear theory. Two kinds of collision of two small amplitude
solitary waves predicted by a theoretical study (Matsuno, 1980) are successfully
reproduced. In the simulations, several solitary waves are generated by a thunderstorm
outflow and propagate in the numerical domain. With the aid of a parcel tracer technique,

the influence of the waves on the ambient air parcels is tentatively examined.

In contrast to theoretical and laboratory studies, the numerical simulation described
in this dissertation enables investigation of the detailed structure inside the recirculation
region. In the simulations, reversed recirculation within large amplitude solitary waves has
been found for the first time. The rotation direction of reversed recirculation is opposite to
the outside flow and the direction of normal recirculation assumed by the previous
theoretical study. It has been proven that both normal and reversed recirculation do not
violate any physical principals. However, so far, normal recirculations have not been
found in our simulations. Because of coarse spatial resolution, it is very difficult to
observe the rotation direction of recirculation in laboratory experiments. Hence, no
observation of either reversed or normal recirculation has been reported.

The existence of recirculation enables large amplitude solitary waves to trap air and
transport it, because recirculation forms a closed region within the wave. Theoretically, in
an ideal waveguide without any dissipation the trapped fluid will forever be transported by

the unchanging wave. However viscosity is inevitable, even in our simulations. Though
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no physical viscosity term was included in this simulation, the truncation error in the
numerical scheme plays a similar role. Because of viscosity, the amplitude of a solitary
wave gradually decreases, the size of recirculation region also shrinks, and the trapped
fluid leaks out. Furthermore, for the reversed recirculation the fluid near the interface
between recirculation region and outside flow is continuously mixing due to strong wind
shear. Partially trapped fluid is entrained out and flows with the outside fluid, which
moves backward relative to the wave, eventually leaking out. Using a passive tracer
technique, the trapping and leaking effects are clearly visualized.

The relations among amplitude, wavelength, and wave speed of solitary waves are
obtained through many numerical simulations. For small amplitude solitary waves
(a/h<1), the wavelength shrinks with the increase of wave amplitude. In contrast, for large
amplitude solitary waves (a/h>1), the wavelength increases with amplitude. The wave
speed is nearly linearly proportional to amplitude for both small or large amplitude solitary
waves. These results are consistent with the results obtained from the laboratory
experiments and weakly nonlinear theory for extremely small amplitude solitary waves
(a/h<<]1).

The balance between dispersive and nonlinear effects results in steady solitary
waves of small amplitude (a/h<<1). It can be employed to explain the relation between
amplitude and wavelength. Nevertheless, the relation for large amplitude solitary wave is
totally different from the one for small waves. I believe that the existence of recirculation
within large amplitude solitary waves critically influences the relation between amplitude

and wavelength.
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As expected, turbulent eddy diffusivity in the atmospheric boundary layer reduces
the amplitude and wave speed of solitary waves propagating in the stable layer. The
induced horizontal and vertical velocity maximums by the waves are also reduced. The
stronger the degree of the turbulent eddy diffusivity, the further the reduction of these
parameters. Recirculation within the large amplitude solitary wave in absence of eddy
diffusivity can be eliminated by large eddy diffusivity.

The effects of low-level wind shear on solitary waves are relatively complicated.
First, the downstream (i.e. wave propagates in the ambient wind direction) wave
propagates faster than the upstream (i.e. wave propagates opposite the ambient wind
direction) wave. The wave speed increase or decrease is not simply equal to the average
ambient wind. Second, the structures of solitary waves are modulated by the ambient
wind shear. For example, in the simulation with 10-2 1/s shear in the lower layer, the
amplitude of the downstream wave is 2.3 times larger than the wave in a calm
environment. Due to strong shear, KH waves appear in the solitary waves. The shape of
wave becomes rough and unsymmetric. We also found that it is not proper to determine
whether the wave can trap fluid from the ratio of wave amplitude and height of the stable

layer if shear is present.

An internal solitary wave generated by a thunderstorm outflow, observed by
NSSL's Doppler weather radar, a 444m tall tower and a surface network in central
Oklahoma in the late evening of 11 May 1980, is modeled. The simulation results show a
quite good agreement with the observation in several aspects. The kinematic and thermal
features of the simulated wave are basically coincident with the observed features. The

evolution of the wave is reproduced by the simulation.
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It has been demonstrated that the density current, which generated the solitary
wave, is not trapped by the wave because no recirculation has been found in the wave.
However the wave does help the current move farther and faster than it would without a
wave in the initial stage. The simulation shows remarkable similarity with the scenario
depicted by the previous study based on the analysis of the observation.

Although the major aspects of the observation are successfully simulated, the
model failed to reproduce the very early stages of the formation of the observed solitary
wave. The magnitude of vertical velocity induced by the simulated wave is smaller than
that observed. Thus further investigations with a more comprehensive model (three-
dimensional, moisture included) are still required to explore the three-dimensional
properties of the solitary wave, moisture effects on the waves in more realistic

environment.

It is known that solitary waves can initiate or enhance deep convection, and induce
a strong wind shear which can jeopardize aircraft flying near the ground, and trap and
transport hazardous materials in an emergency situation at faster speed than wind
advection and diffusion. Through studies, such as this, more characteristics of solitary
waves, especially those with large amplitude in the lower atmosphere may be explored
further. Eventually, such studies may be useful in developing better technologies for

predicting severe weather under circumstance in which solitary waves play a vigor role.
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Appendix

A

Initial conditions
for small and large amplitude solitary waves

When we study the basic properties of small and large solitary waves , the
potential temperature background field is set up as a deep neutral layer over a stable layer

with constant Brunt- Viisdld frequency N near the ground.

In the cases without wind shear, inflow speed u,, is constant. The stream function

field y(x,z) is
v(x,2)=u,n(x,z) (A1)
and

n(xy 2) =z = 6(x,1(x,2)) (A2)

where 17 is the streamline height in the original unperturbed flow; 6(x, z) is vertical
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displacement of a streamline (Fig.A.1) and can be written as follow for each of two

regions:

ak’ y
x-x)+A2"

(1) In the stable layer (i.e. when 0 <z<h+

0(x,2) = A(x)p(n(x, 2)) (A3)

_ak | :
where A(x) = Gz ) i R , and @(n) = sin( >h ). For small amplitude waves 7(x,z)

in @(n) is approximately equal to z as same as Eq.(4.2) for n=1. Because 7 appears in
both sides of Eq.(A,2) for large amplitude waves, an iteration method is used to calculate
n field.

Fig.A.1 Schematic diagram for the definitions of the parameters used in
the appendix.



Appendix A Initial conditions for small and large amplitude solitary waves

2

(2) In the neutral layer (i.e. when A+ —~<z<H)

ai
(x-x,)*+A

aA(A+z-h)

(x-ct)* +(A+z-h)} (A4

0(x,2)=

Then the initial vorticity { (x,z) and buoyancy b(x,z) fields can be obtained:

Iy

§(x,2)= %;_V_’__,,Ez_ (A.5)
In the stable layer:

b(x,z)=N’n(x,z) (A,6)
In the neutral layer:

b(x,z2)=N’h (A7)
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Hence, by giving the inflow speed and the shape of perturbation the initial stream

function, vorticity and buoyancy fields are obtained.
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B

Derivation of equations used in Chapter 6

We assume that any field variables can be separated into two parts, one is the mean
component to represent the large-scale flow indicated by overbars, the other is the

fluctuating components to represent the small-scale turbulence indicated by primes. Thus
v, w, 0 and & can be written as

u=u+u

wW=W+w
0=0+6 (B.1)
X=T+7
Substitute Eq.(B.1) into Eq.(2.6), (2.7) and (2.8), then average them, we get the

mean equations as follow

3 _3u _ou F dud Tw

9, g9, wdU__g OFE_Juu E 2
P e e R (B.2)
oW _oW _ ow OE O oUW oww

W W G _ g FE, O oUW E 3
T T Pt Tk e T2 B
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90 _090 _00_Jud owe
EAC S R B4
O A I’w . 3w %6 . 3%
where F; _uh¥+uv3z7 E, =y P + vy 32 ,and Fg = \)hgxﬂz-'i-\)vaj-

For simplicity by assuming that the horizontal turbulent fluxes are horizontally
homogeneous, so that horizontal turbulent flux divergent terms can be neglected. For w
momentum equation, comparing with pressure gradient and buoyancy terms turbulent flux
terms are relative small and neglectable. By applying K theory given in the Chapter 4,
Eq.(B.2), (B.3), and (B.4) become

du, g, _du__ &, O &
3 T e~ Ot Em ) e ®-3)

-¥+UT£+W$=—GO-B—Z-+g—e-;+FZ (B.6)
00 _00 _0d0 9
gt-'l'u-a:“' ?z-— (Kh )+F0 B.7)

Differentiating Eq.(B.5) with respect to z and Eq.(B.6) with respect to x and
subtract one from the other, mean vorticity equation can be obtained.

W—C=-7(Km )"’rz (B.8)

T, -9L
ER

=__ 8 T %
where b=g€, and Fc=0h§§-+‘\)v§§- .
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If K, and K}, are assumed as constants. Eq.(B.7) and (B.8) are simplified to

3 30 _98__ 3%

g.‘.u_ W—'Kh_'2'+F6 (B.9)
T o _aL_ . 3%

_t_+u._+w—z-—Kma_z.3-+Fc (B.10)

But turbulent fluxes are usually not simply proportional to the local mean gradients
in the ABL., so formula.(4.3) and (4.4) given by Brost and Wyngaard (1978) are used in

our other simulations instead of constant K, and K}. For reader's convenience,

Eq.(4.3) and (4.4) are shown here again.

Ea-Hs
4.3)

Km = thoh—-h—h—r

z
1+ 47(;)({)

Ky, =1.2xusgh—0—0 4.9

In this case the Eq.(2.7) and (2.8) become more complicated. They are

36,38 _30 __ 3% 9K, 00
-a—t-+u$+W‘a—z'—Kh$2-+ 3% az+l‘-b (B.11)
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+F (8.12)

where the gradient terms of K and K;. in Eq.(B.11) and (B.12) can be
calculated by substituting Eq.(4.3) and (4.4) into them. After a straightforward

computation, we find,

Z.1/2 z Z.3/2
A-=)"“1-25=-) 47z2(1--)
?Eﬂl:m,o[ h h - h

] (B.13)
dz l+4.7-z— (1+4.7_z_)2L
L L
z
azK 2—1255
—zm-=xu. [
oz “h-2V21+47%)
h L
9.401-2)1/2(1-25%) 44.18201-2)3/2
- n n h 14
PRPTLETAR TP K B9
17 7%
and
dK;, =1.23Km B.15

dz dz



