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ABSTRACT

A 2D dry inconçressible vorticity-stieam function model is developed and used 

to investigate nonlinear buoyancy waves, especially internal solitary waves and related 

phenomena in the lower atmosphere. Using this model some essential properties of 

internal solitary waves have been successfully simulated. For the first time reversed 

recirculation within large anq>litude solitary waves has been found in the simulations. 

The existence of recirculation enables large an^litude solitary waves to trap air and 

transport i t  Meanwhile, due to viscosity the trt^ped air continuously leaks out during 

the transport The influences of surface Mction and ambient vertical wind shear on 

solitary waves are also studied.

On the basis of the preceding studies, an internal solitary wave generated by a 

thunderstorm outflow, observed by NSSL's Doppler weather radar, a 444m tall tower 

and a surface network, is modeled. The simulation results show a quite good agreement 

with the observation in several aspects. The simulation also gives us a further 

understanding of the origin, propagation, and decay of the solitary wave, as well as its 

detailed kinematic and thermodynamic structure.
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Chapter

1
Introduction

When studying weather phenomena in the atmosphere, we should include 

ubiquitous buoyancy waves. Buoyancy waves are believed to be an important 

mechanism for the transportation of energy and momentum, the formation of turbulence, 

and the initiation of severe mesoscale weather phenomena. Hence understanding the 

origin, propagation, and decay of these buoyancy waves in the atmosphere is a 

significant task for meteorologists.

Based on their properties, internal buoyancy waves can be divided into two 

types: 1) linear periodic waves; 2) nonlinear waves. The first type has been extensively 

investigated and applied to explain many atmospheric phenomena. But it has been 

increasingly observed that internal buoyancy waves propagating in the atmosphere have 

large amplitudes and are non-periodic and highly nonlinear. If these large amplitude 

waves interact with a proper environments, they can initiate or enhance deep conviction
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(29iang, and Fritsch 1988; Carbone et ai. 1990). They also are able to produce strong 

wind shear at low altitudes which can jeopardize aircraft flying near the ground (Christie 

and Muirhead 1983; Doviak and Christie 1989). So more and more attention in recent 

years is being paid to the second type of buoyancy waves. A good example of nonlinear 

internal buoyancy wave observed in the atmosphere is the solitary wave which has a 

remarkably large amplitude with a single isolated crest.

1.1 Nonlinear buoyancy waves in the atmosphere

In the late 1940’s and early 19S0’s several authors suggested nonlinear waves 

may exist in the atmosphere. Abdullah (1955) first reported a large amplitude wave of 

single elevation (i.e. a solitary wave) which moved eastward over Kansas and produced 

a pressure increase of 3.4 mb on the surface during the morning hours of June 29,1951.

The first definitive observation of atmospheric solitary waves was made by 

Christie et al. (1978) in Australia. Unlike the most common linear periodic horizontally 

propagating buoyancy waves in the troposphere, they found a large number of unusual 

isolated waves in over two years of continuous observation. These waves with relative 

large amplitude are interpreted as internal solitary waves propagating along a nocturnal 

inversion.

Another well-known phenomena related to nonlinear wave activity in the lower 

atmosphere in northeastern Australia is called “morning glory”. It is a strong wind 

squall or a series of wind squalls, usually in company with one or more roU-cloud 

formations, occurring commonly near dawn during the spring months over the south
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margin of the Gulf of Carpentaria and the adjacent Cape York Peninsula (Clarke 1972; 

Neal et al. 1977a, b). Morning glory roU-clouds with considerable regularity retain their 

forms for several hours and extend in length for several hundreds kilometers parallel to 

the wave crests. These roll-cloud formations are found to be associated with a sequence 

of evolving solitary waves. They also found that similar large amplitude propagating 

wave phenomena without cloud occur frequently over much of Australia. In a recent 

paper, Christie (1992) reviews some new observations of morning glory waves and 

related nonlinear wave disturbances in Australia’s Gulf of Carpentaria, and further 

clarifies the interpretation and propagation characteristic of morning glories.

The atmospheric phenomena associated with nonlinear large amplitude waves 

are not only frequently observed in Australia, but also elsewhere (Shreffler and 

Binkowski 1981; Goncharov and Matveyev 1982; Hasse and Smith 1984). Doviak and 

Ge (1984) observed an atmospheric solitary wave with a Doppler radar, a tall tower and 

surface network over central Oklahoma. This observation gave the first detailed and 

Stereoscopic X-ray view of an atmospheric solitary wave. Using more complementary 

sensors including two Doppler radars, satellite, rawisondc and a 500m tall instrumented 

tower, Mahapatra, Doviak and Zmic (1991) observed an atmospheric undular bore 

which is interpreted as a sequence of solitary waves. The undular bore originated in 

western Oklahoma and the Texas Panhandle and propagated southeasterly to central 

Oklahoma through a ground-based stable layer created by the outflows of thunderstorm 

and strengthened by nocturnal cooling during the night and early morning. These waves 

then dissipated before reaching eastern Oklahoma. The leading wave of the wavetrain 

was the strongest among the waves and propagated at the fastest speed, 12.3m/s. This 

wave produced a pressure rise about 2.4 mb above the ambient value and a perturbation
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velocity with peak value 13ni/s on the surface. The speeds of the succeeding waves 

decreased progressively as the amplitudes of these waves diminish progressively. The 

well-organized oscillatory structure of the first several waves were clearly observed by 

all the sensors.

With the aid of a 50 MHz wind profiler, a 10 cm wavelength Doppler radar and a 

balloon-borne sounding system, Ramamurthy et al. (1990) made observations of 

exceptionally large amplitude waves which further confirmed the importance of 

understanding the morphology and behavior of the atmospheric solitary wave. They 

reported two separate solitary waves with vertical displacements on order of 4 km which 

is comparable to the scale height of lower troposphere. These waves propagated over 

1000 km from Missouri to Ohio with no obvious change in their structure. The waves 

significantly acted on the organization of a band of precipitation and other weather 

phenomena.

U  The development of solitary wave theory

The beginning of theoretical studies of solitary waves dates from the discovery 

by Korteweg and de Vries in 1895 of a solvable nonlinear equation which has a solitary 

wave solution. This nonlinear equation

is called KdV equation for shallow water. Where f  is the profile (e.g. vertical 

displacement) of the wave, and c  ̂ is the linear phase speed of an extremely long wave
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having infinitesimal amplitude. The coefficients of the nonlinear and dispersive terms, 

a  and P, are determined by the nature of wave propagation medium. A solitary wave 

solution of the KdV equation is

f(x) = a*sech^[(x-ct)/y] (1.2)

where a is the amplitude of solitary wave, c is the phase speed of solitary wave and y is 

the wavelength determined both by the amplitude a and the depth of medium h. The 

solution is strictly correct only if a /h « l .

Zabusky and Kruskal (1965) raised the curtain on the modem development of 

KdV theory. Using a computer to solve a particular version of the KdV equation to 

study the interaction of two solitary waves, they discovered the particle-like behavior of 

solitary waves. They coined the term "soliton" for a solitary wave which retains its 

identity even if it collides with other waves. Since then the solitary wave theory has 

widely appeared in many fields like meteorology, fluid dynamics, and electronic 

engineering.

Benjamin (1967) and Davis and Acrivos (1967) independently found a whole 

new class of solitary waves for deep water. Lata Ono (1975) developed the theory for 

this case and derived an evolution equation which has been named the Benjamin-Davis- 

Ono (BDO) equation.

= 0 (1.3)
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where H(f) denotes the Hilbert transformation of f, and a  and p reflect the structure of 

waveguide (For details see Chapter 3).

The basic properties of the KdV and BDO equations have been widely studied 

since the discovery of the solitary wave solution. Both KdV and BDO equations have 

not only one solitary wave solution, but also multiple-solitary wave solutions which 

have been proved by Hirota (1971), Matsuno (1979) and Chen et al.(1979). Miura et al. 

(1968) and Nakamura (1979) have separately showed the KdV and BDO equations are 

completely integrative with inHnitely many conservation laws and indicated both 

solitary wave solutions of these two equations have the soliton nature.

The original KdV and BDO equations only provide a simplified model for the 

internal atmospheric solitary wave propagating with finite amplitude on a horizontally 

homogeneous inversion layer (i.e. the waveguide). Considering the stratified fluid with 

wind shear, and with a slow temporal and spatial variation which is common in the 

annosphere, Grimshaw (1981a) and Maslowe and Redekopp (1979,1980) generalized 

the equations which caused the coefficients a ,P  be functions of time and space. The 

turbulence dissipation, and radiation damping due to waves propagating away from the 

waveguide have been also considered by Grimshaw (1980,1981a, b). These two factors 

are included into two extra terms, one for dissipation and the other for radiation. The 

possibility of the existence of a critical layer where the phase speed of the wave is equal 

to the ambient flow speed have been examined by Maslowe and Redekopp (1980). The 

critical layer can prevent energy radiation through the upper non-neutral stable layer.
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Generally speaking, the KdV equation is applicable to shallow fluids. 

Nevertheless, the solution of the KdV equation is a good flrst-order approximation for 

large scale atmospheric solitary waves with horizontal wavelengths comparable to the 

height of troposphere (Christie et al. 1978). On the other hand, the BDO equation is 

suitable for waves in deep fluids. For example, surface-based stable layer of depth h 

much smaller than the depth of a deep neuual or weakly stable layer satisfies the deep 

fluid condition. Thus, long buoyancy waves with finite amplitude propagating in a 

shallow stable layer, overlain by deep neutral air, are governed by BDO equation.

When the internal solitary wave has a very large amplitude (i.e. a /h  ^  1) and 

there is recirculation within it, the weakly-nonlinear solitary wave theory described 

above is no longer 2q>plicable. The fully-nonlincar wave theory is required, but the 

theoretical studies on this field are relatively limited. Davis and Acrivos (1967) 

numerically and experimentally investigated the internal solitary wave propagating in a 

fluid of infinite depth and found a region of closed streamlines near the center of the 

solitary wave when the dimensionless amplitude (a/h) is greater than 1.2. Tung et al. 

(1982) extended the weakly nonlinear theory of long internal buoyancy wave to the 

fully nonlinear case in which the restriction of small amplitude and long wavelength is 

removed. They showed theoretically and numerically the existence of a large amplitude 

solitary wave with permanent form, and found when the amplitude of wave increases to 

a certain value the phase speed ceases to be linearly proportional to the amplitude. The 

closed streamline region, called the recirculation region, also appeared within the large 

amplitude wave in the results of Tung et al. (1982). The other result which Tung et al. 

(1982) emphasized is that " slight changes in the ambient density stratification can 

produce quite different solutions at large amplitude". It reminds us that the accuracy of
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measured temperature profiles is actually important for studying atmospheric internal 

solitary waves of large amplitude.

Pullin and Grimshaw (1988) has given an answer about the limitation of the 

amplitude of solitary wave. The amplitude of internal solitary wave is unbounded and 

the profiles of different amplitude waves have similar shapes and differ only by a scale 

factor as the density difference vanishes.

Almost all these developments in studies of KdV and BDO equations are used to 

extend investigation to all sorts of observations of nonlinear buoyancy waves in the 

atmosphere. Actually the KdV and BDO equations provide only the basic tools for 

studying the weakly nonlinear buoyancy wave phenomena, thus other methods like 

laboratory and numerical experiments are needed.

It is worth pointing out that the derivations of KdV and BDO equations, and the 

solution of fully-nonlinear internal wave theory developed by Tung et al. (1982), are all 

based on the assumption that the variables such as density and potential temperature, arc 

constant on the same streamline and the value of a variable is determined from the 

upstream unperturbed flow where the value is known. When the closed streamlines 

appear in the flow, this assumption is violated and the value on the closed streamlines 

can not be obtained from the upstream flow. So present theories leave a blank area in the 

region of closed streamlines. However the circulating fluid within the large amplitude 

internal solitary wave plays an important role in the propagation of the wave and in 

trapping and transporting fluid.
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1.3 Laboratory experiments

The laboratory experiment is an important approach in the study of buoyancy 

waves. Most experiments are carried out in a water tank which gives a direct view of the 

behavior of buoyancy waves under different circumstances. Maxworthy (1980) showed 

that an evolving sequence of highly nonlinear internal solitary waves, ordered by their 

amplitudes, can be created when a region of mixed fluid, with an excess of potential 

energy over the ambient, collapses into a stratified fluid. The inner-ciiculation inside the 

solitary waves, and the trapped mixed fluid which initiated the waves, are found within 

the leading solitary wave. He also found that the trapped fluid slowly leaks rearward as 

the wave amplitude decreases. The experiment of interaction of two solitary waves 

proved the soliton property of the internal solitary wave. He concluded the solitary wave 

can be easily generated under many circumstances if a waveguide is present

The experimental results of the formation of an internal undular bore by a 

moving obstacle on the bottom or top boundary of a uniform fluid, or a static obstacle in 

a flowing fluid, or movement of a gravity current through a two-layer fluid, have been 

reported by several authors (Baines 1984; Wood and Simpson 1984; Rottman and 

Simpson 1989). They showed the relation between the strength and speed of the bore 

and the shape of obstacle or the speed and the depth of gravity current

The temporal and spatial variation of the waveguide can affect the propagation 

of solitary waves, and even cause the breaking of waves like ocean waves crashing onto 

a sloping sea shore. Kao et al. (1985) provided a complete scenario of the breaking of an 

internal solitary wave of depression in a fluid with hyperbolic tangent density profile.
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The wave breaking occurred when the wave encountered a sloping bottom which 

changes the depth of fluid in the direction of wave travel. Through quantitative 

measurements, he found “ the onset of wave-breaking was governed by shear 

instability”.

1.4 Numerical Modeling

The rapid development of high-speed computers and computational fluid 

dynamics has had a great impact on the way of studying wave motions in the 

atmosphere. In recent years, instead of solving the KdV and BDO equations analytically 

or numerically, the primitive equation model is adopted to simulate the atmospheric 

phenomena of buoyancy waves. The numerical model is able to solve the analytically 

intractable problem, and at very little cost compared to laboratory experiments. Most 

observations of nonlinear buoyancy waves in the atmosphere provide a complicated 

background rields of temperature and wind under different initial and boundary 

conditions, which is difGcult, and sometimes impossible, to handle using an analytical 

method or laboratory experiments; but a numerical model can simulate the evolution of 

buoyancy waves under these conditions.

By using a two-dimensional numerical model. Crook and Miller (1985) and 

Hasse and Smith (1989) found if a density current moved into a shallow stable layer, an 

undular bore was generated and propagated ahead of the density current Hasse and 

Smith have made a further study and used the ratio of the phase speed of an infinitesimal 

amplitude long wave to the speed of the equivalent gravity current in absence of the 

stable layer to characterize the evolution of the density current and the generation of the
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undular bore. Hasse (1991) also reported that large amplitude waves gradually decay 

due to energy radiation into an upper weakly stable layer. The effects of a critical layer 

on properties of an internal solitary wave have been studied by Skyllingstad (1991). The 

numerical model results indicates that wave absorption at the critical level increases as 

the ambient stability increases; whereas as the ambient stability becomes weak, the 

absorption reduces, and then the reflection of the critical level increases, even wave 

instability might happen if the Richardson number of the ambient flow is smaller than 

1/4.

1.5 Our Research Objectives

Our key objective is to develop a numerical model to study the properties of 

large amplitude solitary waves in the atmosphere and to compare these numerical results 

with an observation of a family of evolving solitary waves. Although the basic structure 

and behavior of atmospheric internal buoyancy waves are reasonably understood using 

weakly nonlinear wave theory, laboratory and numerical simulations, questions remain 

about the characteristics of the wave under complicated environments. I intend to focus 

primarily on the following topics:

1) In an ideal waveguide, like a horizontal homogeneous stable layer overlaid by 

a deep neutral layer without any friction, solitary waves can propagate with their identic 

for all time. The atmosphere is considered as an ideal waveguide when we simplify the 

problem, but strictly speaking, the realistic properties of atmosphere, such as turbulence 

viscosity, surface friction, no neutral layer above the waveguide (to prevent the leakage 

of wave energy to the upper atmosphere), and degradation of waveguide caused by solar
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radiation or other reasons, are not negligible most of time. These factors lead to the 

decay of nonlinear internal buoyancy waves via the dissipation and radiation of the wave 

energy. The vertical wind shear in the ambient is another factor which influences the 

properties of the wave. Due to the limitations of the theory, laboratory, and numerical 

experiments, the effects of these factors on the nonlinear buoyancy waves, especially the 

waves with large amplitude, are not completely understood. I intend to examine the 

influences of these factors on the properties of large amplitude waves.

2) Nonlinear buoyancy waves with large amplitude and accompanying 

phenomena like recirculation within the wave and trapped ambient fluid, are found in 

the theoretical studies, laboratory experiments, and observations. Previous studies have 

given some preliminary results, but the structures of temperature and velocity inside the 

recirculation region, and the mechanism of trapping and leaking are still unknown.

3) A multisensor observation reported by Doviak and Ge (1984) provided a 

detailed view of a solitary wave. The previous analysis (Doviak et al., 1991) indicates 

this observation presented a quite complete picture of a solitary wave phenomenon. 

Thus it gives us an unique opportunity to probe deeply into the essence of nonlinear 

atmospheric buoyancy waves by comparing the observations with our numerical 

simulations.

Toward our objectives, a two-dimensional, vorticity-stream function, 

incompressible model has been constructed and operated. The model equations and 

operation procedure are presented in detail in (Chapter 2. The numerical scheme, initial 

and boundary conditions, and stretched coordinate which are adopted in the model are
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described in the rest of Chapter 2. For testing the model performance, the results of 

weakly nonlinear wave theory is used and thus it is briefly reviewed in Chapter 3. Using 

the model, the propagation and collisions of solitary waves of small amplitude are 

simulated and the numerical results are compared with the weakly nonlinear wave 

theory in Chapter 4. Because the simulation of the solitary wave in the atmosphere and 

understanding of their behavior are our ultimate objectives, the preliminary results of 

generation and propagation of solitary waves are examined with the aid of an air parcel 

tracer technique described in Chapter 4. In Chapter 5 the properties and structures of 

large amplitude solitary waves are closely investigated Chapter 6 presents the study of 

the effects of turbulent eddy diffusivity and wind shear on solitary waves in the lower 

atmospheric boundary layer. The results of numerical simulation of a solitary wave 

related case are provided in Chapter 7. The main achievements in the thesis are 

summarized in Chiq>ter 8.
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2
Numerical Model

2.1 Model equations and operation procedure

Our major goal of developing the numerical model is to study the propagation 

and evolution of large amplitude waves in the atmosphere and to compare results with 

observations. Although wave phenomena in the real atmosphere is always three- 

dimensional, in some cases it can be treated as a two-dimensional phenomena to 

simplify the problem. Meanwhile, some two-dimensional properties of large amplitude 

waves, which we intend to study in this dissertation, arc still unknown. Under the guide 

of these desires, a two-dimensional (2D) incompressible vorticity-stream function model 

is developed because the vorticity-stream function method is one of the most popular 

methods for solving the 2D incompressible Navier-Stokes equations. The model 

equations can be derived firom the following 2D Navier-Stokes momentum equations in 

a Cartesian coordinate system.

14
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(2.1)

and the adiabatic equation

de d0 de d̂ e d̂ e

where u, w, e  are horizontal, vertical velocities and potential temperature, g is the
n

gravitational acceleration, I I  = Cp(— )c in term of Exner function, where C_ is the
Po ”

specific heat of dry air at constant pressure, p, is a reference pressure at 1(X)0 mb and 

Rj is the gas constant for dry air. d and k are kinematic and thermal viscosity, 

subscript h and v represent horizontal and vertical.

We assume there exists a basic state in which potential temperature 0o  is

constant and pressure field is in hydrostatic balance (i.e., 0 ^  = -g )  where
dz

IIo(z) is only a function of height z. Subtracting this state from Eq.(2.1) and (2.2), and 

writing 0  = 0o  + 8(x,z,t) and II = IIo(z) + 7c(x,z,t), we get

(2.5)
dt dx dz dz dz dx dz
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We also assume 0 « 0 o  . so term 0 o + 0  can be replaced by Bg. Now the 

momentum equations are simplified as

9u . du , du _ dit , d^u d^u ..

The adiabatic equation becomes

d0 d0 d0 d^0^ d^0

We differentiate Eq.(2.7) with respect to x and Eq.(2.6) with respect to z and 

subtract one from the other, the vorticity equation is thus obtained.

. y dw du where Q = —— —  
dx dz

For a two dimensional incompressible flow the continuity equation in Cartesian 

coordinates is

^  + ̂  = 0  (2 .10)
dx dz
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and stream function can be defined by

u = - ^ ,  w = ̂  (2 .11)
dz dx

By substituting Eq.(2.10) and (2.11) into Eq.(2.8), (2.9), and using the definition 

vorticity, the 2D incompressible vorticity-stream function model equations can be 

derived.

Vorticity equation

Poisson equation

Adiabatic equation

9b 9 y  9b 9 y  9b _ 9 ^  9 ^
9t 9z 9x 9x 9z '* 9x^ ’ 9z^

(2.14)

where b = g - ^ .
®o

These equations can be solved numerically by using a time-marching procedure 

described by the following steps:

1) Give initial conditions for yr and b at time t=0.
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2) Solve the vorticity and adiabatic equations for ^ and b at each interior grid 

point at time t = t+ A t by using time -marching method.

3) Solve the Poisson equation for new y  at all points by using new Ç at interior 

grid points.

4) Find the velocity components firom u = and w =
dz dx

5) Determine the values of Ç and b on the boundaries by using the values of 

yf and b inside the boundary, and boundary conditions.

6) Return to step 2 for next time step.

After completing above steps at the desired time, the velocity components u, w 

and buoyancy b are determined in the whole computational domain.

2,2 Boundary conditions

In the model, the lateral boundaries are radiation boundaries in order to allow 

internally generated waves to pass out of the model domain freely. To construct the open 

boundaries, the following equations are used instead of the model equations at right side 

boundary,

^  = - ( u + c ) ^ ,  (2.15)
dt dx

and at left side boundary.

— = - ( u - c ) — , (2.16)
dt dx
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where f represents variables ^ and b, and c is an estimate of the phase speed of the 

dominant internal waves propagating in the model domain.

Because this simple open boundary condition can not allow internal waves of all 

wavelength with different phase speeds to propagate out of the domain without 

reflections, the “sponge” boundary conditions are applied at and near the lateral and top 

boundaries to minimize the false reflections of waves at the boundaries. The following 

equation is used

^  = -Y (x,z)*f (2.17)

The damping rate Y(x,z) is a spatial function. In our simulations, it is a linear 

function of x with a maximum on the boundaries and gradually decreasing to the zero 

within a certain distance (about 1 0% of the domain width and height) in the model 

domain

In some numerical experiments, an inflow which originates from the right side 

boundary is imposed to simulate the ambient wind field or to keep the waves of interest 

in the domain.

The bottom and top boundaries in the model are rigid (i.e. w=0 at z=0 and z=H). 

Consequently, from Eq.(2.11) the boundary conditions for the stream function \{f can be 

found as constants. In this case, y  is set equal to zero on the bottom; the value on the top 

is derived from the integral of Eq.(2.11)
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Vtop=|,\(z)<iz (2.18)

where u,(z)is the wind profile of inflow at right side boundary.

For vorticity the reflection scheme is applied on the top and bottom 

boundaries for the inviscid rigid boundary condition. In implementing reflection, three 

rows of fictitious grid points are defined above the top and below the bottom of the 

domain respectively. Values of ^ at the fictitious points are assigned using the reflection 

process. The vorticity ^ is odd with respect to the top and bottom boundaries. This 

means that the values at fictitious points is set equal to the respective values at their 

mirror image points in the domain.

There is no heat flux at the top and bottom boundaries which implies that

^  = 0 at z=0 and z=H. (2.19)
dz

Hence the values of buoyancy b at the fictitious points are set equal to the values 

at the bottom and top boundaries respectively.

2.3. Finite difference scheme for integration

For appropriate and satisfactory accuracy, the third-order Adams-Bashforth 

scheme is applied for time integration in our numerical model.
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f(t+At)«f(t)+At [23F(t)-16F(t-At)+5F(t-2At)]/12 (2.20)

At the initial time, F(t-At) and F(t-2 At) are not available, so the Euler scheme is

used:

f(t+At)«f(t)+AtF(t) (2.21)

At the second time-step, the second-order Adams-Bashforth scheme 

f(t+At)«f(t)+At [3F(t)-F(t-At)]/2 (2.22)

is used.

The truncation error is the difference between the partial derivative and its finite- 

difference representation. Durran (1991) noticed that the relative importance of temporal 

and spatial differencing error in the numerical simulation of a propagating sinusoidal 

wave is largely determined by the absolute value of the Courant number.

cAt

where c is the wave speed. In our numerical experiments, the speeds of gravity wave are 

around lOm/s, the At is 1 sec (even smaller in some experiments) and Ax is 200m. So 

the Courant number is 0.05, which is much smaller than 1. It makes the truncation errors 

significantly small to satisfy the accuracy we need.
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2.4. Finite difference schemes for spatial derivative

The üfth-order, upstream advection schemes are applied to calculate the 

advective term in the model equations.

1
—  »  [-3f(x + 2Ax) + 30f(x + Ax) + 20f(x) -  60f(x -  Ax)+ 15f (x -  2 Ax) -  2f(x -  3Ax)]
dx 60 Ax

(2.23)

and

—  « ------ [2f(x + 3Ax) -  15f(x+2Ax) + 60f(x+ Ax) -  20f(x) -  30f(x -  Ax) + 3f(x -  2Ax)]
dx 60 Ax

(2.24)

The first equation is preferable for u>0 and the second for u<0 when the

advective term u—  is calculated in the model. Near the lateral boundaries it is 
dx

impossible to use the fifth-order scheme, so third-order and second-order schemes are 

applied. The numerical schemes are as follow:

The third-order scheme

1
—  » ------[f(x -  2Ax) -  6 f(x -  Ax) + 3f(x) + 2f(x + Ax)] for u>0 (2.25)
dx 6  Ax

—   -----[—2f(x — Ax) — 3f(x) + 6 f(x + Ax) — f(x+2Ax)] for u<0 (2.26)
dx 6 Ax

The second-order scheme
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ë  "  (2.27)
oX 2aX

The numerical schemes used in z direction in the model is similar to the schemes
/Vn

in X direction except the function —-  in the schemes are in a stretched vertical
dz

coordinate (see next section for detail).

The truncation errors for the third-order schemes (Eq.(2.2S) and (2.26)) and the

fifth-order schemes (Eq.(2.23) and (2.24)) can be calculated by expressing each term on

the right-hand side of these equations as a Taylor series. The lowest-order terms of the

truncation error are ± — (Ax)^ and ± —̂ (dx)^-^%  respectively. The order of
12 ax'* 720

lowest truncated spatial term in fîfth-order scheme is two larger than the order of third-

order scheme. Because Axis a rinite quantity, the rifth-order scheme has smaller

truncation error than the third-order. In particular, the fifth-order scheme produce less

damping on the solution than third-order scheme. Hence high-order spatial differences

ensure a higher degree of accuracy.

It is appropriate at this point to comment on our use of odd-order advective 

scheme in the model. The use of odd-order schemes avoids the need to introduce 

artificial viscosity terms in the model to keep it numerically stable, because odd-order 

schemes have more damping on the solution than even-order scheme. In the odd-order 

scheme, the lowest-order term of the truncation error contains even-order partial
g2n

derivatives — ^  which plays a role similar to the viscosity terms (Anderson 1984). 
dx
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Generally, this is called implicit viscosity as opposed to explicit viscosity, Uke terms 

and Dy in Eq.(2.12), which are purposely added to a model equation.

In order to find the differences of 3rd and 5th order advection schemes in the 

buoyancy wave modeling, two numerical simulations of solitary wave propagation with 

the same conditions except for the advection schemes in the model are conducted. A 

large amplitude solitary wave is given at initial time. A low level stable layer with 

constant Brunt- Vaisala frequency N covered by a deep neutral layer provides a wave 

guide for the propagation of the wave.

For the sake of comparison, the solitary waves displayed in buoyancy fields at 

the initial time, and after 25000 seconds with different numerical schemes are shown in 

the same figure (Fig.2.1). Comparing these three pictures, we found that the shapes 

(amplitude and wavelength) of the waves almost unchanged after 25000 seconds of 

propagation, if either the 3rd or 5th order schemes are applied. Theoretically, solitary 

wave should propagate with constant speed and same shape in the background condition 

employed in our model. The model results indicate that the model handles it quite well. 

More simulations for the test of the model will be shown and discussed in the 

succeeding sections.

By comparing the locations of these two waves at t=25000 sec, we also find that 

the solitary wave (3rd order wave) obtained using a 3rd order advection scheme lags 

slightly behind the wave (5th order wave) derived using a 5th order advection scheme 

(see Fig.2.1). It means the speed of 5th order wave is slightly faster than the speed of 3rd
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Fig.2.1 Buoyancy fields o f  a large amplitude solitary wave (a) at t=Osec; (b) at 
t=25000sec by using 3rd order advection scheme; (c) at t=25000sec by using 5 th order 
advection scheme. The wave propagates rightward.
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order wave. Through simple calculations, we obtained the speed of 3rd order and 5th 

order waves are lL13m/s and 11.16m/s respectively. The difference is 0.03m/s. The 

results are consistent with the previous theoretical discussions about truncation errors of 

different schemes. Because 5th order scheme provides less dissipation in the truncation 

term than 3rd order scheme, the speed of 5th order wave should be faster and more 

accurate than the speed of 3rd order wave. On the other hand, the unlikeness of these 

two schemes is not obviously displayed in the shapes of the waves. Perhaps longer 

period simulation will help to tell the difference.

Theoretically, 3rd order advection scheme costs less computer time than 5th 

order scheme. We found the difference of computer time in the above simulations is 

quite small. So a 5th order advection scheme is applied in the our model for more 

accuracy.

2.5. Stretched vertical coordinate

Because the region, in which we are interested, is within 10-20% of height of the 

domain, the stretched grid is very effective to be used in the model. The transformation 

relation between the constant grid and the stretched grid in this model is given by

z = + O ^T i^ l (2.28)
tanh(b)

where b is a stretching scale factor and T] is the new vertical coordinate. The value of t] 

is between 0 and 1. With this transformation, the chain rule is used to replaced the 

vertical derivatives.
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In the stretched system, the vertical grid intervals are no longer constant and 

increase with height Comparing with the constant grid coordinate, the higher spatial 

resolution is achieved in the region of interest with same total grid points.

2.6. biitial condition

The initial data of stream function y ,  vorticity Ç and buoyancy b are required as 

the input of the model. The initial background fields are horizontally uniform in the 

whole domain, and vertical wind profile u(z) and potential temperature profile d(z) is z 

dependent The basic state stream function \jf and vorticity ^ can be derived by

V(z) = -m s> is  (2.31)

The specified initial fields of stream function, vorticity and buoyancy vary with 

the different numerical experiments. These will be detailed in the following sections.



Chapter3
The Results of 

Weakly Nonlinear Solitary Wave Theory

Christie (1989) gives a good review of the theory of first-order weakly-nonlinear 

waves in the lower atmosphere. Following Christie, we assume the vertical displacement 

of a streamline in the stable layer is the product of two separated functions.

Tl(x, z, t) = A(x, t)(j)(z) (3.1)

where is the normalized dimensionless vertical modal function and A(x,t), with the 

dimension of displacement, is governed by the BDO equation,

where H(A) is defined by the Hilbert transform.

2 8
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H(A(x)) = i - T - ^ ^  (3.3)ÎC —s - x

Here, x is the horizontal coordinate in the direction of propagation, and z is the 

original height of streamline in the undisturbed flow far away from the disturbance. The 

linear long wave speed c,, the coeffrcients of the nonlinear and dispersive terms, a  and

P, and vertical modal function i(*(z) are determined by the characteristics of the 

background flow.

The time-dependent solitary wave solution of the BDO equation is given by Ono 

(1975) in the form

where the phase speed of solitary wave is

c = c „ + ^  (3.5)
4

and the relation between wave amplitude a and wavelength X is

,=i&X = —  (3.6)
oa

The VCTtical displacement of the solitary wave streamline in the neutral layer is 

given by

aX(X+z —h)
(x —ct)^ + (X+ z —h)^

Tl(x,z,t)=  ̂ " ,  -- , , 2  (3.7)
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where h is the height of the stable layer.

It is important to note the following properties of the weakly nonlinear internal 

solitary waves shown by the above results:

1) The solitary wave is a isolated smooth symmetric crest, not periodic.

2) In the proper waveguide without friction, solitary waves can propagate 

with unchanging form.

3) Solitary waves propagate at supercritical phase speeds which are larger 

than the long-wave speed Cq in the same medium.

4) The speed difference c-Cg between the solitary wave and the long wave is 

proportional to the amplitude of the solitary wave. It means the wave with larger 

amplitude propagates faster.

5) There is an unique relation between wavelength A, and aiiq>litude a. It 

implies if the anq>litude of a solitary wave is given, the wavelength is 

determined.

6 ) The ançlitude of solitary wave in the neutral layer decreases with height

For an incompressible fluid with infinite depth, the normalized vertical modal 

function q>(z) satisfies the eigenvalue problem (Christie 1989):

<p = 0 on z=0
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—> 0  as z —>00
d z

Through the transformation tp = (Ug-CQ)<p, Eq.(3.8) can be rewritten as the 

Taylor-Goldstein equation.

0  + i2(z)9=O  (3.9)

where i^(z) = — —— 5- — is the Scorer parameter (Scorer 1949) and
(Uo-Co)^ (Uo“ Co)

Uq is the horizontal velocity of the sheared background flow.

For a homogeneous incompressible fluid, the coefficients a  and P in the BDO 

equation are given by

3/rpo(Co-“o)^(|^)^dz
a  = --------------------- 2 -----  (3.10)

and

2 /rp o (C o -“o) (^ )^ d z

P = ---- (Po(Co“ Uo)<P̂ }z->-—  (3 .11)
2 j ;p „ (C o -u „ )(^ )^ d z
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Numerical Simulations of Solitary Waves

4.1 Propagation of solitary waves

To test and improve the numerical model, a number of simulations were 

conducted to show the evolution of solitary waves under the same background Geld as 

used to derive the analytical solutions for weakly nonlinear waves. We consider a 

neutral layer over a stable layer with constant Brunt- Vaisala frequency N, no friction, 

no temperature difference at the interface between neutral and stable layer, and no 

ambient wind. Under this simple background field, the analytic solution can be obtained. 

Thus we can compare the results of the numerical simulations with the analytic solution 

to check our model.

In this case, in the stable layer the eigenvalue problem becomes

| ^ + n 1(p = o (4.1)
dz Cq

32
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with the boundary condition on the surface

<p(0) = 0

and at the interface

dç(h) ^ 0
dz

obtained by matching the gradient of vertical velocity (Doviak, 1988).

The solution of this eigenvalue problem in the stable layer is given by

(p(z) = (-1)"+^ s i n ( ^ ^  jcz), n=l,2,3.... (4.2)
2h

By using Eq.(3.9) and (3.10), the coefficients for this case in the BDO equation 

can be obtained as follow

a  = ̂  (4.4)
h

and



Chapter 4 Numerical Simulations of Solitary Waves 34

The phase speed of solitary wave and the relation between amplitude and 

wavelengths of the solitary wave for this case are derived from Eq.(3.5) and (3.8):

c = c , ( l + - ) (4.6)

[(2 n - W
(4.7)

To simplify the problem, the lowest mode (n=l) is chosen to calculate the 

wavelength in order to set up a solitary wave with matched amplitude and wavelength 

by using Eq.(3.S) at the initial time in the model. Fig.4.1 shows the schematic diagram 

of a solitary wave.

In this section, all simulations are conducted with the same background Geld as 

described at the beginning of this section. The specific parameters are shown in Table 

4.1.

Table 4.1. Parameters in the solitary wave simulations.

h N 6 o On Ub V K

1km 0.0233Hz 300k 316.6K 14.83m/s 0 0

where 6o  and 9n are the potential temperatures on the ground and at the interface 

between stable and neutral layers, respectively; Ub is the inflow speed; \> and k are the 

kinematic and thermal viscosi^.
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FigA2  Schematic diagram of the distribution of grid points in die domain.
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The model domain is 200 km long and 10 km high with 1 km horizontal and 

stretched vertical grid spacing which varies from 38.5m near the surface to 518.3m near 

the top of domain. Fig.4.2 shows schematic diagram of the distribution of grid points in 

the domain. The time step is 2 seconds. To keep the solitary waves in the numerical 

domain for a longer time, an inflow without vertical shear is imposed at the right side 

boundary. The speed of the inflow is set to equal the long wave speed c^

In the model the evolution of the solitary wave is simulated to test if this model 

is correctly coded and able to accurately duplicate the theoretical results. We take the 

solitary wave solution of EDO as the initial input of our model. A small amplitude 

(100m) solitary wave which satisfies the weakly nonlinear condition (a /h « l)  is set up 

at the initial time. The wavelength of the mode 1 (i.e. n=l) wave, obtained from 

Eq.(4.7), is 8106 m. When these conditions are met, the solitary wave should propagate 

at constant speed c without change of form for all time as shown by weakly nonlinear 

theory.

The time-dependent horizontal velocity at z=0 for the solitary wave with 

amplitude a=100 m is shown in Fig.4.3 which clearly records the propagation of the 

solitary wave during 40,(XX) seconds (about llh). We found that the initial perturbation 

evolved into a solitary wave and a series of very small amplitude dispersive waves 

during the first 4000 sec. The generation of these dispersive waves perhaps is caused by 

the fact the initial soliton-like perturbation derived from the weakly nonlinear theory is 

not exactly a soliton (i.e. a solitary wave of permanent form) for the fully nonlinear 

model, as well as the rigid top boundary condition of the model which is different from
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so 100 ISO 200 xQcm)

Hg.4.3 The dme-dependent horizontal velocity on the sm&ce for the solitary wave with 
anq)litude a=100m.
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the infinite expanse of homogeneous fluid of the weakly nonlinear theory. Actually the 

initial soliton-like perturbation adjusts itself to become a solitary wave to match the 

numerical model during this initial period. One should also noticed that the adjustment 

is quite small, to a certain extent, which implies the 9 km thick neutral layer with an 1 

km thick “sponge” layer near the top is a good alternative to the infinitely deep neutral 

layer. After the initial adjustment, the solitary wave is formed and propagates with the 

constant phase speed and almost permanent shape for all the time (~ 1  Ih).

To compare the model results with the weakly nonlinear theory in detail, the 

vertical and horizontal velocity fields, streamlines and buoyancy field in x z plane at 

initial time and t=40,000 sec are shown in Figs. 4.4 and 4.5. The features of solitary 

wave at initial time represent the results derived from the weakly nonlinear theory. It is 

clear that the position of maximum horizontal velocity is on the surface and the 

maximum and minimum vertical velocities are near the interface between the stable and 

neutral layers. The pattern of positive and negative vertical velocity are symmetric with 

respect to the center axis of the solitary wave. It is worth noticing that we found, for 

large an^litude solitary waves, the location of maximum horizontal velocity is no longer 

on the surface; this finding will be discussed in succeeded Chapter 5.

To quantitatively compare the results, the phase speed of solitary waves in the 

model is estimated using the zero vertical velocity contour in the middle of the solitary 

wave to locate the position of the wave at different times. We obtained a 15.1m/s phase 

speed for the solitary wave with amplitude a= 1 0 0  m, which is slightly smaller than the 

phase speed 15.6m/s calculated from Eq.(4.6) with Cg=14.85m/s obtained from

Eq.(4.3).
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Hg.4.6 As in Hg.4.3 except for a 300m amplitude solitary wave.
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Bg.4.6 shows the propagation of a larger amplitude (300m initially, a/h=0.3) 

solitary wave. We also found a series of small amplitude waves propagating away firom 

the solitary wave during the initial stage, but with relatively larger amplitudes compared 

to those seen in Fig.4.3 as the solitary wave evolves into a stationary state, its amplitude 

decreases from the initial 300m to about 250m. This suggests the initial soliton-like 

perturbation based on weakly nonlinear theory is not as well satisfied as for the case 

when the amplitude is small. This is reasonable because the larger the amplitude, the 

larger is the departure from the assumptions of weakly nonlinear theory.

Using the above method, the phase speed of this solitary wave is found to be 

15.8m/s which is also smaller than the speed 16.7m/s calculated from Eq.(4.6) for a 

solitary wave with amplitude 250m, but larger than 15.1m/s, the speed of solitary wave 

with amplitude a=100 m. This result accords with the character of solitary waves (i.e., 

the phase speed of the wave is proportional to the amplitude).

4,2 Collisions of two solitary waves

For a further test of the model, the collision of two solitary waves with different 

amplitudes, one 100m and the other 300m, is designed and examined using our model. 

In order to catch the behavior of these two solitary waves before, during and after the 

collision, we changed the inflow speed to 15.50m/s, the value between the phase speed 

of l(X)m and 300m solitary waves, to enable one solitary wave to propagate forward and 

the other backward in the domain. Thus the collision will occur near the center of the 

domain.
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Before describing the model results, we first introduce the previous theoretical 

and numerical studies about the interactions of solitary waves as the criterion forjudging 

our model’s performance.

Matsuno (1980) presented the nature of the interaction of two solitary waves in

detail and divided them into two classes based on the ratio of the initial amplitudes of

two solitary waves. For ^  < 3 + 2V2 = 5.83 , during the period of interaction, the larger
at

solitary wave decreases its amplitude ag to â  and increases its speed whereas the small 

one increases its amplitude from â  to a2while its speed decreases. After the interaction

they propagate with their previous forms and phase speeds respectively. This is why one
finds a “phase shift” in Fig.4.7. For ^ > 3 + 2 V z ,  the small solitary wave penetrate

ai

through the larger one (Fig.4.8). Unlike the former case, the two solitary waves pass 

through each other and propagate as before in their own ways.

Fig.4.7 presents the whole course of the collision of two solitary waves with 

amplitudes 100m and 300m respectively, the ratio of their amplitude is 3.0 smaller than 

5.83. Fig.4.8 shows another collision with a%=30m and a2=300m, the ratio is 10.0 larger 

than 5.83. It is apparent, from our model results, that the interaction of two solitary 

waves reveal the same nature as described by Matsuno (1980).

These numerical experiments indicate that the 2D vorticity-stream function 

model can successfully simulate the propagation and collision of solitary waves. 

Moreover, it shows this model is correctly coded and suggest it has capability to 

simulate more complicated phenomena related to solitary waves.
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Hg.4.7 Time-dependent horizontal velocity on the surface z= 0  for showing the collision 
of 100m and 300m amplitude solitary waves. The inflow speed is 15.5m/s.
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Rg.4,8 As in Hg.4.7 except for 30m and 300m amplitude solitary waves.
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4.3 Generation of solitary waves by thunderstorm outflow

In the atmosphere, there are a number of mechanisms for solitary wave 

generation. In this section, we focus on the interactions of the thunderstorm outflow with 

a stable layer covered by a neutral layer as the mechanism of wave generation.

To simulate this kind of phenomena in the atmosphere using our model, we fîrst 

produce a cold density current as the outflow and let it excite solitary waves. To 

generate a density current in the model, a block of cold air, 20 km wide and 3 km high, 

centered at x=30 km and on the surface, is built up by applying a cooling function to 

this area of the domain over a period of time. The cooling function is as follow

Fc(x,z,t) = r c ( l /2 /[ l+ tanh(ai(x -  xi))][l -  tanh(ai(x -  x^))]

[1 -  tanh(a2(z -  Ztop))][l -  tanhfaaft -  to))] (4.8)

where r̂  is the cooling rate and a^and a^ are constants which determine the sharpness 

of the boundaries of the cooling area, a  ̂ represents the rate of shutting off the cooling, 

X{, Xf and z ,̂p are the positions of left, right and top boundaries, t^ is the cooling

period. The shape of function used above is illustrated in Fig.4.9. As the cold air is being 

built up, it also spreads out forming a density current

In this experiment except for the inflow speed and Brunt- Vaisala frequency 

which are set to zero and 10~^Hz respectively, the other background field parameters 

are the same as beforc(i.e. h=l km, 0o=3OOK, v= 0  and k=0 ). t^ and r̂  are set equal to

400 sec and -O.OSK/sec (these can be changed to control the intensity of the density
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Fig.4.9 Sketch map of functions: (a) y=0.25[l+tanh(a(x-xl))][l-tanh(a(x-xr))]; 
(b) f(t)=0.5[l-tanh(a3(t-t0))].
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current), a^, a2 and a^ are 5x10"^(1/m), 5xlO~^(l/m) and 1.25xl0~^(l/sec) 

respectively. x%, x^ and z^p are 20 km, 40 km and 3 km respectively. At the effective

end of cooling period(i.e. at t=400 sec), the maximum temperature difference between 

cold and ambient air is about 3.5K which is a reasonable value for the thunderstorm 

outflow in the atmosphere (Goff, 1975). The temperature profiles of cold air (at the 

center of cooling area) and the background field, at the end of cooling period, are 

presented in Fig.4.10.

Fig.4.11 shows a series of buoyancy fields at difiierent times. At t= 5000 sec, we 

find that at least two well-defined waves are fully developed and cold air within them is 

trapped; this will be discussed and proved in section 4.4. To determine whether these 

waves are solitary waves, we compared the horizontal and vertical velocity fields of 

these waves with the solitary waves obtained in the previous section and found the basic 

features of them are the same. The patterns of the positive and negative vertical 

velocities and the pattern of horizontal velocity of the wave are symmetric about the 

central axis of the wave. The locations of the maximum and minimum vertical velocities 

are near the interface between the stable and neutral layers. But the location of the 

maximum horizontal velocity is above the surface, this is different from the small 

amplitude solitary wave. Fig.4.11 also clearly shows these waves with different 

amplitudes propagate at different phase speeds. For further and qualitative verification, 

the amplitude and phase speed of these waves are estimated from Fig.4.11. The leading 

wave with amplitude about 1700m propagates at average speed of 13m/s, the second one 

with 600m at lOm/s. This results indicates the speeds of these waves are directly 

proportional to their amplitudes which is the unique characteristic of evolving solitary 

waves. Hence we conclude these waves generated by the density current are evolving



Chapter 4 Numerical Simulations of Solitary Waves 50

Temperature Profile
(i=400s. x=30bnl

10000.0

9000.0

Background 
Cross the cold pool

8000.0

7000.0

6000.0

B
N

S000.0

I
4000.0

3000.0

2000.0

1000.0

0.0 3OS.03000
Potendal Temperature (K)

Hg.4.10 Potential tenqieratuie profiles of the coldpool and background field at the end 
of cooling.
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solitary waves.

Several similar numerical experiments with different sizes and maximum 

temperature defects of cold air have been conducted. Different numbers of internal 

solitary waves with different amplitudes were excited. The results indicate the internal 

solitary wave are easily generated in the numerical model. This conclusion is consistent 

with that given by Maxworthy (1980).

4.4 Trajectories of air parcels

In order to follow the motion of an air parcel, a particle tracer technique is 

applied as a tool in our model. When a particle is located, the velocity of it is calculated 

based on the velocities at the nearest four grid points using the Ciessman interpolation 

method

r^ -d ? j ^  ^  r^ -d ? j 

i j i j

where r^ = (Ax)^ + (Az)^, d,j is the distances between the particle and four adjacent 

grid points separately. If the particle is on a the grid point, the velocity at that grid point 

will used instead of the one obtained from the above method. As the velocity of the 

particle is obtained, the position of it at next time step t + At can be calculated

x(t + At) = x(t) + v(x, z) At (4.3)
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Repeating this process at each time step, a trajectory of the particle over a period 

of time can be drawn.

By utilizing this technique, we prove another unique characteristic of solitary 

waves; An air particle will be shifted a certain distance as a solitary wave passes over it 

This is unlike sinusoid waves which only drive the air particle around their balanced 

positions (Kundu, 1990). Hg.4.12 shows the trajectoiy of a particle initially located in 

front of solitary wave with amplitude 300m at a height of 100m. The trajectory clearly 

recorded the motion of the particle, being lifted by the wave during the first half period 

of the wave moving toward it, and then lowering it as the wave moves away. Comparing 

the initial and final positions of particle, we found the particle is moved about 4400m 

horizontally in the direction of wave propagation without any net vertical shift It is 

obvious the maximum lift height and net horizontal shift depend on the size of solitary 

wave and the initial location of the particle.

Trajectory
Initial location (OmJOOml

B

I
lOOJO

1 "  "  1 ' 1 "  1 1 '  r>-r 
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Range(m)

Hg.4.12 Trajectory of a air parcel as a small amplitude solitary wave pass over.
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The most useful application of this technique is to show that large amplitude 

solitary waves can trap and transport a mass of air from the wave source for a quite long 

distance. The phenomena was observed by Doviak and Ge (1984) in an evolving solitary 

wave generated by a thunderstorm outflow. Christie (1992) found a visible cloud of 

smoke along the Morning glory wave originated in bush fire in the area of wave 

generation. Doviak et al. (1991) also give a detailed description of the observations in 

1984. In addition, this trapping mechanism of large amplitude solitary waves is 

supported by the numerical model results reported by Hasse and Smith (1989). Using a 

volume of tracers, they found the waves generated by the inflow trap an amount of 

inflow fluid when the fluid is under supercritical conditions (i.e. the phase speed of 

inrinitesimal amplitude long waves on a stable layer smaller than the speed of the 

gravity current in the absence of the stable layer). The authors mentioned the tracer 

suffers some long-term diffusion which makes it an unreliable indicator for a longer 

time.

Comparing with a volume of tracers, the parcel tracer adopted in some of our 

experiments avoids the d i^s io n  problem and is able to depict the trajectory of an air 

parcel instead of motion of a volume of tracers which diffuse as well as being advected 

by the flow.

In order to determine the effects that large amplitude buoyancy waves generated 

by thunderstorm outflow have on the environment, four tracers are initially located at 

different positions. The trajectories of these four tracers during the numerical 

experiment period arc displayed in Fig.4.13. Comparing the paths of the tracers with the 

motion of the wave (see Fig.4.11), we found that tracer 1, initially at x=40 km, z=10 m
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and on the boundary of the block of cold air, is trapped and advected by the leading 

solitary wave (Fig.4.13a). Tracer 2, placed at x=36 km, z=200 m at the beginning time, 

is trapped by the front of the wave during the initial stage (t<2600 sec), then slowly 

dropped out of the leading wave and trapped by a second wave. But during the final 

stage (t>9000), it leaks out from the second wave (Fig.4.13b). Tracer 3, which 

represents the ambient air is initially positioned at x=50 km, z=100 m. As the front of 

the wave passes over it, tracer 3 was collected by the wave and trapped within the 

leading solitary wave (Fig.4.13c). Tracer 4 placed at x=50 km, z=3(X) m, 2(X)m higher 

than tracer 3 at the initial time, also represents the ambient air (Fig.4.13d). But its 

behavior is different from that of tracer 3. Instead of being collected by the wave, this 

tracer is lifted up and then laid down by the front of the wave. After that, it is only 

slightly moved by the following perturbations.

To further illustrate the relation between the motion of the air parcels and the 

large amplitude waves, the horizontal velocities of the tracers during the numerical 

experiment period are displayed together with the speed of the leading wave in Fig.4.14. 

The speed of the leading wave is calculated from Fig.4.11. From Fig.4.11 and 

Figs.4.14a, and 4.14c, we notice the leading solitary wave has fully developed at about 

t=3000 s. Tracers 1 and 3 are trapped by the wave, and their horizontal velocities 

approach the speed of the wave, but vibrate around that value. These results confirmed 

the former finding of trapping and existence of recirculation within the wave. Fig.4.14c 

and d show tracer 3 and 4 have similar patterns of horizontal velocities during the first 

2000 sec, a peak at about t=1100 sec and following by a valley at t=1500 sec. Fig.4.14b 

shows tracer 2  has approximately same speed as the leading wave, then slows down to 

about 3m/s when it is dropped out from the leading wave. Then the horizontal speed of
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Rg.4.13 Trajectories of four air parcels initially located at (a) x=40km, z=10m; (b) 
36km, 200m; (c) 50km, 100m; (d) 50km, 300m.
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tracer 2 increases to a maximum 12m/s and remains around 9m/s for about 3000 sec 

when it is captured by following second wave. Finally its horizontal speed 

monotonously decreases to Im/s when it is gradually released from the second wave.

Referring to Fig.4.11,4.13c and d, and 4.14c and d, we found the tracers 3 and 4 

are first pushed forward and raised up from the static state, during this period they gain 

their peak horizontal velocities respectively. After that, tracer 3 is collected by the 

leading wave and its horizontal velocity approaches the speed of leading wave. Tracer 4 

is pushed by the following perturbations to achieve the maximum horizontal velocity 

about 6.1m/s. Then tracer 4 slows down to static state with net horizontal shift about 20 

km in the direction of the motion of the waves.

The behaviors of these tracers clearly exhibit the effects of large amplitude 

solitary waves. The model results show the large amplitude solitary waves can trap, not 

only the air of thunderstorm outflow (tracer 1) that generated the waves, but also the 

ambient air (tracer 3). The results also indicate once the tracers are trapped by the wave, 

they not only translate with the wave, but also oscillate within the core area of the wave. 

The oscillations of the tracers moving with the wave reflect the existence of 

recirculation within the wave. The trajectory of tracer 2 implies that trapped air leaks out 

from the rear of the wave. These numerical findings of trap and leakage effects of large 

amplitude solitary wave are consistent with observations (Doviak et al. 1991). More 

detailed studies of trapping and leaking mechanism of large amplitude solitary waves 

and a case related to this mechanism are described in Chapter 5 and 7.



Chapter5
Structures and Properties 

of Large Amplitude Solitary Waves

5.1 Generation of pure large amplitude solitary waves

A pure large amplitude solitary wave is defined as a solitary wave with a 

recirculation in it, but the potential tenq)erature of fiuid in the recirculation region is not 

colder than the ground ten^)erature outside of this region. This definition is used to 

distinguish pure waves firom the large amplitude solitary waves generated by a cold 

outflow which is trapped by the wave, thus creating a recirculating region c o o I c t  than the 

environment If a wave is stationary in a moving frame, the recirculation region within 

this wave is defined by a family of closed streamlines.

In order to generate a large an^litude solitary wave in the numerical domain, a 

large an^litude solitary wave-like perturbation, described in Appendix A, is specified at 

the initial time t=0. Hg.5.1 shows the initial buoyancy b, horizontal velocity u and vertical 

velocity w fields. There is no recirculaton region within die initial large amplitude

64
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perturbation. After a period of time, this large perturbation develops into a large amplitude 

solitary wave and several small amplitude waves. Due to the speed differences of these 

waves, the largest solitary wave in which we are interested propagates at the fastest speed 

and separates from the smaller waves. To keep the largest one in the numerical domain for 

a longer time, an inflow with a guessed speed in the direction opposite to the speed of 

wave is set up. Afrer one simulation, the exact speed of the largest solitary wave can be 

estimated. Then the inflow speed is chosen as this speed. Thus the largest wave can be 

made stationary in the numerical domain.

5.2 Configurations of reversed recirculation within large amplitude 

solitary waves

For investigating the detail structure of the large amplitude wave after recirculation 

has set in and the wave is quasi-stationary, a part of the wave is enlarged. The width of 

this highlighted area is 40 km and the height is 3 km. Fig.5.2 shows the horizontal 

velocity u, vertical velocity w, and buoyancy b fields of a pure large amplitude solitary 

wave in the relatively steady stage in the frame moving with the wave. The symmetric 

pattern of the u, and b fields, opposite vertical velocities with respect of the vertical central 

line of the wave, s im ila r  to small ançlitude solitary waves, are found in these fields.

We also notice, besides these similar structures that a recirculation region does 

exist within die large amplitude solitary waves in our numerical simulations in agreement 

with the results observed in theoretical studies (Tung et al, 1982) and laboratory 

experiments (Stamp and Jacka, 1995). In Hg.5.2 there are two q)ecial features which are 

used to affirm the appearance of recirculation within the wave. One is small positive-
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negative pair of vertical velocity beneath the large pair in the w field. The other is die 

region with positive horizontal velocity (solid lines) in the core region of the wave in u 

field. Note the word recirculation' with prefix re' is used to especially describe the 

circulation inside the large anqilitude solitary wave in order to distinguish it from the 

outside circulation induced by the wave.

In comparison with previous theoretical studies and laboratory experiments, our 

numerical simulations have the advantage of being c t^ b k  of showing the detailed 

structures of the recirculation region. For the theoretical studies (Tung et al., 1982), the 

numerical solutions of large amplitude solitary wave are derived based on the assumption 

of open streamlines. In other words, information of the wave is obtained from the 

upstream flow. When recirculation appears in the wave, closed streamlines will show up 

in the flow domain. But there is no way to get any information on the flow within the 

recirculation region. Hence, Tung et al. (1982) assumed the direction of the flow in this 

region.

In the laboratory experiments it is difficult to observe the fine structure in tire 

recirculation region. Because viscosity cannot be avoided in the real fiuid, the inviscid 

assumption is invalid and strong diffusion will mix up the fine structures within die 

recirculation region of laboratory experiments. In addition, the scale of fluid movement 

becomes so small that detecting the motion directions in the recirculation region is very 

difficult in the laboratory experiment

In die simulations, the w field inside the recirculation region shows a pair of 

upward and downward vertical motions (Fig.5.2). The in^ressive point is that the
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(a) Normal

U=C
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u=c

Fig.5.3 Schematic diagram of (a) normal and (b) reversed recirculation within a large 
amplitude solitary wave in the ôame moving with the wave.
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direction of this recirculation is opposite to the motion of outside flow. This recirculation 

is opposite in direction assumed in previous theoretical studies CTung et al, 1982). We call 

it reversed recirculation.

In the previous theoretical studies (Tung et al, 1982), the rotation direction of die 

recirculation assumed to be the same as the flow outside die recirculation region as 

depicted in Fig.S.Sa. If the fluid is viscous, the drag effect will force the inner fluid to 

rotate in the same direction as the outside flow. But if we assume there is no viscosi^ in 

the fluid, the inner fluid may rotate in the direction opposite to the outside flow 

(Fig.S.3b). Our simulations show that the inner fluid does rotate in this way. Certainly, 

even without viscosity the inner fluid might recirculate in the same direction as the outside 

flow.

Following Orlanski (1969), we can show that reversed recirculation does not 

violate any physical principals. Assume that the anqilitude of solitary wave is so large that 

within the wave above the ground there is a region in which the horizontal velocity u is 

larger than the wavespeed c. Thus there must be a closed boundary C1-C2 along which u 

is equal to c (Fig.5.4). Hence in the firame moving with the wave, u on this closed 

boundary is zero, with positive u inside and negative u outside. For simplicity, we assume 

only one maximum u in the shaded region R bounded by curves C l and C2. A vertical 

line AB can be found, such that horizontal velocity u on the left of AB is always less than 

u on the right The intersection points between line AB and boundary C1-C2 are defined 

as points A and B respectively (See Fig.5.4).
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Fig.5.4 Schematic diagram of reversed recirculation. In the shaded region u>0.

In the moving frame, the wave is stationary. So the adiabatic equation can be 

simplified by neglecting the local change term:

M - r - + w - r -  =  0  .
dx dz

(5.1)

do
A t point A, u=0, the first term of Eq.5.1 is zero, and thus w —  must be equal to

dz
do

zero. —  cannot be zero because the ambient air flowing above A is stable (because 
dz

waveguide is stable) and we assume gradients are continuous. Hence, w=0 at point A. 

According to the continuity equation:

du  ̂ d v  
dx dz

= 0. (5.2)
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Along line AB, - ^  > 0 by construction, so we get ^  < 0 along AB. Since w=0 at point 
ac az

A, w must be positive below point A. At point B, w must not be zero and positive as
do

well, otherwise the continuity equation is violated. Therefore, —  must be zero at point B
az

in order to satisfy Eq.5.1. Similarly, we can apply this analysis all over the region R and 

find that on the left hand side of the u maximum, the fiuid moves upward, and on the right 

hand side, the fiuid moves downward. Moreover, w on the boundary Cl of region R is 

zero, but not zero along C2.

From our simulations, we found that the upper boundary C l, along which 

u=w=0, extends to the grotmd. The intersection points between curve Cl and ground are 

labeled G1 and G2 in Fig.5.4. The boundary C l and the rigid ground surface between 

points G1 and G2 form a closed boundary. This inq)lies that there is no flow in or out 

through this closed boundary. In the frame moving with the wave the streamlines inside 

the region is closed. The region contained by the boundary Cl and ground is the 

recirculation region Rr. The region R is formed by the boundary Cl and C2 and located 

above the ground.

In the previous discussion it has been shown that the fluid on the right (left) side 

of u maximum moves downward (upward). In addition, u>0 in region R and u=w=0 on 

the boundary C l, like a rigid boundary, the fluid between boundary C2 and ground must 

flows from right to left to satisfy the mass continuity and the incompressible assumption. 

Thus a reversed recirculation is formed, which violates no physical principals.
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Furthermore, it can be shown that, inside region R, the fluid is convectively 

unstable. Differentiating Eq.(S.l) by z, we get

I f - S - f f - S - "

30At point B, —  = 0 and u=0 because point B is on the boundary of R. Therefore 
dz

Eq,(5.3) becomes

dude 3^0
d zd x " " ^  dz^
— + w—p  = 0 (5.4)

—  # 0 at point B because the region outside R is stable, and w # 0 ,  and — #0.  
a t  dz

3^0
Then based on Eq.(5.4), - r j-  *  0 must not be zero. Hence point B is not an inflection

oz
dQ

point; it must be a maximum or minimum point Because — > 0  (i.e. stable) outside
dz
do

region R, there must be a region just above point B in which — < 0  (i.e. unstable). This
dz

demonstrates that die fluid within the region R is convectively unstable. There must be 

small scale turbulence in this region and the stable stratification will be eroded, at the same 

time the recirculation is developing. Due to recirculation, the fluid inside R will also mix 

with fluid outside R but inside recirculation region Rr. After a period of time, a relative 

steady state has been reached. This process is observed in our simulations (Fig.5.5).

In the reversed recirculation case, we find that the maximum horizontal velocity 

u is not on the ground and across the center of the waves. Fig.5.6 shows the vertical 

profile of horizontal velocity u and potential temperature 9 across the center of a large
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amplitude pure solitary wave with amplitude (1800m) displayed in Fig.5.2. The maximum 

u is located at about 1 l(X)m height above the ground. Note that the ground is frictionless 

in these simulations.

Horizontal velocity u and veitical velociQr w fields also show there arc smaller 

scale movements in the recirculation region. In some simulations, more than one positive- 

negative pair of vertical velocity appears in the recirculation region. The reason is that 

although in this numerical simulation the fluid is inviscid physically in the model 

equations, the numerical dissipation induced by the lowest-order (6 th order in our 

advection scheme) term of truncation error in the numerical scheme can not be avoided. 

This kind dissipation plays a role like viscosity to reduce all gradients and generate 

turbulence in the fluid. After a period of dme the fluid in the recirculation region is further 

mixed by numerical dissipation. The almost constant potential temperature 6  within this 

region, observed in Fig.5.2 (b field) and 5.6, confirms the mixing effect of numerical 

dissipation. The dissipation also affects the fluid outside of the recirculation region, the 

amplitude of the solitary wave is slowly decreasing during the simulation. But con^aring 

with the fluid within the recirculation region the velocity gradients are weaker outside, Ae 

dissipation effect is not so obvious.
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5.3 Configurations of normal recirculation within large amplitude 

solitary waves

Fluid inside of recirculation region has the possibiliQr to rotate in the same 

direction as the outside flow. We call this normal recirculation. As seen in Fig.5.3a, in 

this case positive horizontal velocity region R* will also be inside of recirculation region 

Rr' like the reversed recirculation case, but the bottom of region R* attaches the ground.

Normal

Fig.5.7 As in Fig.5.4 but for normal recirculation.

Assuming the upper boundary of R' as C l (Fig.5.7) on which u is equal to zero,

36but w is not because fluid flows through i t  Based on Eq.(5.1), — must vanish on the
A

boundary C l. Note w=0 on the ground. Following the similar arguments used in previous 

section, with maximum u on the ground fluid within the Rr* circulate in the same direction 

as the outside flow (Fig.5.7). The most outside closed streamline marks the upper
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boundary C l of Rr' along which u and w are not equal to zero. Hence it can also be 

demonstrated that the normal recirculation does not violate any physical principals as well.

However, so far normal recirculations have not been found in our simulations.

5.4 Trapping and leaking effects of recirculation region

Generally, in a moving frame zero velocity indicates that fluid at those points is 

stationary relative to the frame. If this frame moves with the wave, those points with zero 

velocity are stationary relative to the wave or, from other point of view, are moving with 

the wave.

Referring to our previous analysis, we know the recirculation region, in a frame 

moving with the speed of a large amplitude pure solitary wave, can be closed by a 

boundary and ground. It means that there is no fluid across this boundary. Hence in a 

fixed frame the fluid on this boundary moves with die solitary wave. In other words, the 

fluid within the recirculation region is trapped by this large anqilitude solitary wave.

But our numerical results show that the boundary of region Rr is not totally 

closed. It can be found that, in the u field (in Fig.5.2), the zero contour of u is not 

attached to the ground at the lee side of the recirculation region where the horizontal 

velocity is negative. This gap is observed after the large solitary wave formed. It implies 

that fiuid within die recirculation region is continuously leaking backward firom the 

solitary wave.
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In Older to confirm and clearly reveal this fact, we used a passive tracer technique 

to mark with a positive number the fiuid within the region Rr, and the rest of fluid with 

zero. This allow us to trace the movement of fluid originating within the region Rr. This 

procedure is exactly analogous to injecting a amount ink into a certain block of fluid within 

the region Rr. A block of ink is injected at t=0 sec when the large solitary wave is well 

formed, then the ink flows within this block of fluid. A time series of ink field from t=0 

sec to t=10000 sec is displayed in Fig.5.8. It clearly visualized the leaking process.

The reason of leaking is viscosity. As we mentioned in the previous section, 

although the fluid in our numerical experiment is physically inviscid, numerically it is not 

The wave is affected by the numerical viscosity, strongly on the interface, where there is 

strong shear due to the reverse circulation, between die recirculation and outside regions. 

The fluid near the interface is mixed by the fluid inside and outside Rr due to the strong 

shear. Thus a portion of trapped fluid persistently diffuses out whereas a portion of 

outside fluid blends into the recirculation region. Once diffusing out of the recirculation 

region, the trapped fluid will flow with the outer flow. The fluid inside Rr is continuously 

being “peeled off’ from the boundary of Rr by the outside flow. Since, in this moving, 

frame the outside flow is always moving against the stationary wave and the fluid inside 

Rr, the fiuid leaks backward. In a fixed frame, the trapped fiuid is continuously leaking 

and depositing behind the wave as the wave propagates forward.

On the other hand, we found that the majw part of ink is kept in the recirculation 

region. It confirms the trapping effect of the recirculation region. However even with 

continuous leaking, the trapped fiuid stUl lasts quite long dme in the recirculation region.
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In our numerical simulation without any physical viscosity, ink injected inside of 

recirculation region can last at least several thousand seconds. The evolution of ink density 

in the recirculation region in the simulation displayed in Fig.5.8 is shown in Hg.5.9.

Ink Profile
across thtM/mt a  (Sffertm time
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Hg.5.9 Ink profiles across the center of a large anq)litnde solitary wave with a reversed 
recirculation at t=0 (solid line), 5000sec (dot-dashed line), and lOOOOsec (square-dashed 
line).
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At initial time, the densi^ is 100% when ink is injected After 5000 sec, due to 

recirculation the ink has been redistributed and two density maxima (100%) appear. At 

t= 1 0 0 0 0  sec, even though with further mixture and leaking, the density maximum has 

only dropped 18%. With 11.3m/s wavespeed during this period of time (10000 sec), the 

solitary wave and trapped fluid have traveled for about 110 km. This result denotes that 

large amplitude solitary waves can transport trapped fluid for a long distance in a proper 

environment Theoretically, if fluid is inviscid numerically as well as physically, the fluid 

within the recirculation region will be totally trapped by a large an^litude solitary wave 

without any leaking.

So if hazardous materials originates in or near the source of large amplitude 

waves, they may not only be spread out by the wind or diffusion, but also transported by 

waves. It is important for monitoring and warning of potential danger over a larger area.

An interesting and strong evidence of trapping in the atmosphere is reported by 

Christie (1992). He states a visible cloud and strong smell of smoke, which is originated 

in the bush fire in the area of generation of waves and is about 2 0 0  km away from the 

observation site, appeared with the solitary waves.

When Stamp and Jacka (1995) investigated deep-waters waves with recirculation 

regions by using laboratory experiments, he also observed “fluid was continuously 

entrained into and ejected from this region". But he mentioned the boundary of 

recirculation region is not clear because turbulence develops in this region.



Chapter 5 Structures and Properties of Large Amplitude Solitary waves 93

5.5 Relations among amplitude, wavelength, and wave speed of solitary 

waves

Using the background potential tençeratuie field and the method described in the 

previous section, solitary waves with different wavelengths and amplitudes can be 

generated in the simulations. By adjusting the inflow speed, we can keep one solitary 

wave stationary in the domain. The wavelengths and amplitudes of solitary waves can be 

estimated through analysis of the numerical results.

Amplitude vs Wave speed
Solitaiy waves

3.0

2.0
u

I
s-
t
S I.O

0.0
1.0 2.0 3.00.0

Amplitude (a/h)

Hg.5.10 The relations between amplitude and speed of solitary waves. Circle solid line 
represents our simulation results; Square solid line Stamp's results; Dashed line weakly 
nonlinear theory's results.
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The relation, attained &om tiie simulations, between amplitude and speed of 

solitary waves is shown in Fig.5.10. We found the wave speed increases almost linearly 

as anq>litude increases. In order to compare our results to others, tite results obtained by 

Stanq) and Jacka (1995), and prediction of weakly nonlinear theory are also plotted in the 

same figure. The results of weakly nonlinear theory are calculated by using Eq.(4.6) The 

simulation results coincide with others quite well for all waves, even with weakly 

nonlinear theory.

N

h

0

Fig.5.11 Potential temperature profiles (1) tanh (solid line); (2) linear (dashed line). H 
is the height of stable layer.
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Note that, in the experiments of Tung et al. (1982) and Stamp and Jacka (1995), 

the density profile of background field is described or approximated by a hyperbolic 

tangent function. Whereas in our experiments, the potential temperature of background 

field constantly increases in the stable layer (i.e. with constant Brunt-Vaisala fiequency) 

above the ground, and is constant above the stable layer. It is known that the shape of 

density profile is the same as the s h ^  of potential temperature in an incon^ressible fluid. 

Hence the results they obtained are comparable to ours under the similar background field. 

Note that these two profiles are only slightly different near the transition zone (Fig.5.11).

Fig.5.12 is the plot of the amplitude versus the wavelength. The results of weakly 

nonlinear theory. Stamp and Jacka (1995) and Tung et al. (1982) are also shown in this 

plot It can be clearly seen that the wavelength decreases as amplitude increases for small 

amplitude solitary waves (a/h<l). When the amplitude exceeds the height of the stable 

layer h, the wavelength increases with increasing amplitude.

It is evident that the simulation results shown in Fig.5.12 are consistent with the 

results obtained in the laboratory (Stamp and Jacka, 1995). Because weakly nonlinear 

theory is valid only for small amplitude solitary waves (a /h « l) , the large difference 

between the results predicted by weakly nonlinear theory and the simulation are expected. 

But, c/co vs a/h is surprisingly in good agreement with weakly nonlinear theory. However 

we should not be mislead by this agreement because it does not extend to X. Only for the 

smallest amplitude (2 0 0 m, i.e. a/h=4.2) is the solitary wave in the simulation close to die 

theoretical prediction.
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Amplitude vs Wavelength
Solitary waves
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Fig.5.12 As in Fig.5.10 except for the relations between anq)litude and wavelength.
Star' represents the result of Tung et al..

For large amplitude solitary waves, as we discussed previously, one significant 

difference from small an^litude waves is that recirculation appears within the waves when 

the amplitude is reaching the height of stable layer. It is just the turning point of the curve 

of the relation of the ançlitude and the wavelength. For this reason, we believe the 

recirculation within the waves critically affects the relation between die ançlitude and the 

wavelength.



Chapter6
The Effects of Eddy Diffusivity and Wind Shear 

on Solitary Waves

6.1. K Theory

The flow in the real atmosphere near the surface of the earth is strongly affected by 

the surface. The velocity at the surface vanishes due to the surface irregularities. As a 

consequence, even a small movement of air near the surface will cause a large wind shear, 

and it will generate turbulence. Meanwhile surface heating due to solar radiation will cause 

convective eddies. Such shear induced and convective eddies transfer momentum and heat 

between the lower and upper layers. Hence, the turbulent diffusion determines die 

dynamic structure of atmospheric boundary layer (ABL) rather than viscosiQr.

In the stable or neutral boundary layer, the generation of turbulence largely comes 

from the instability associated with wind shear. The traditional method to close the 

momentum and heat equations is to assume that turbulent flux is proportional to the local

97
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mean gradient of the quantity being transferred. Under horizontally honwgeneous 

condition, the two dimensional momentum and heat equations give the momentum flux

dz

and the heat flux

u'w" = - K ^ ( — ) (6 ,1)

dz
9  W -  ) (6 ,2 )

where K ^and K,, are the diffusivities of momentum and heat respectively. This closure 

is often referred to as K theory.

6.2. Effects o f eddy diffusivity

6.2.1 Model results for uniform eddy diffusivity

In this section we shall investigate the effects of eddy diffusivity on solitary waves 

in the ABL. First, as a reference, we make a simulation without any kind surface friction. 

Then simulations will be executed with surface friction and different diffusivity 

coefficients under the same initial and boundary conditions, and background potential 

temperature and wind fields. By comparing the formation, development and propagation 

of the waves, and the speed, amplitude and structure of the wave with and without surface 

friction and eddy diffusivity, we can acquire the knowledge about the effects of surface 

friction and eddy diffusivity.
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In the first simulation (S6.1), = K|,=0. A coldpool built up during the initial

stage (t from 0 to 400 sec), is used to generate solitary waves in a calm (i.e. = 0)

stable layer. The height of col(^)ool is 3 km. After cooling, the maximum teii^)erature 

difference between coldpool and the environment on the ground is about 4K. In order to 

show the motion of the cold air during the simulation period, the coldpool region is 

marked by ink'(a passive tracer) at the initial time.

Fig.6.1 is a series of buoyancy b field to show the generation, development and 

propagation of the waves in S6.1. Two solitary waves can be clearly found in Ae 

buoyancy fields. The first wave (with larger amplitude) has an^litude a=1290 m and 

propagates at speed c=10.6 m/s. The wavelength of the first wave is 3890m. The 

maximum vertical velocity w^ax induced by the first wave is 3.0m/s. The second one has 

a=820 m, A.=3610 p, and c= 8.7m/s.

The detailed structure of these two waves in u, w and b fields in shown in 

Fig.6.2. The maximum horizontal velocity Uniax induced by the first wave is 11.4m/s

which is larger than the speed of the wave and locates above the ground at z=521 m. In 

the w field beneath the large positive-negative w pair there is small positive-negative pair 

with opposite motion to the outside pair. According to the analysis in Chapter 5, it means 

reversed recirculation exists within the first solitary wave.
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After conducting the reference simulation, several simulations with surface friction 

and different viscosity coefGcients are carried out For simplicity, K ^and K |, are

assumed constant Typically, in the ABL « Im ^/s (J.R. G airatt 1992). F irst to

investigate the effects of weak diffusivity, relative small value of the eddy viscosity 

coefGcient and diffusivity are chosen. They are O .lm ^/f and Q.\2m^Is

respectively, because Brost and Wyngaard (1978) found that the ratio between K |, and

is about 1.2. The height of boundary layer (1 km) is the same as the height of stable

layer, u is set to be zero on the ground. So the heat and momentum exchanges due to 

turbulent eddies only affect the waves in the laya below 1 km. To avoid a sudden 

influence on the flow, which may generate unrealistic perturbations if the diffusivity terms 

are turned at the a certain time during the simulation, these heat and momentum exchanges 

act from the begiiming of the simulation including the coldpool building stage.

Fig.6.3 shows a time series of buoyancy b field for the simulation (S6.2) with 

eddy di#isivity. We also found two solitary waves are generated and the evolution of 

these waves in this simulation is similar to the evolution in S6.1. The amplitude and speed 

of the leading solitary wave is 1270m and 10.4m/s, which are slightly smaller comparing 

with the wave in S6.1. The wavelength and u^ax decrease to 3750m and ll.Om/s at 

t=12000 sec. Because u^ax is still larger than the speed of the wave, the recirculation 

occurs within the wave. The detailed structures of solitary waves shown in Fig.6.4 

confirm the existence of reversed recirculation. In the w field, a reversed motion pair 

appears within the wave. However, the w ^ ^  is 3.0m/s, the same as m S6.1. These

results indicates that eddy diffusivity does have some effects on the waves (i.e., 

decreasing the amplitude, speed, and u^a* of the wave), but not too much with relatively

small values of Kg, and K}, that were chosen.
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Fig.6.4 Magnified buoyancy b, horizontal veloci^ u, and vertical velocity w fields at 
t=12000sec for Kg,=0.1m^/s and Kj,=0.12m^/s.
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In order to enhance the effects of turbulent diffusiviQr in ABL, the typical eddy 

viscosity coefficient and diffusivity K,, in the ABL are increased to l .Om^/s  and

l .2m^/ s  in this simulation (S6.3). Because the generation and evolution of the solitary 

waves in this simulation are similar to the previous one (S6.2), the time series of b, u and 

w fields are not shown here. Fig.6.5 shows the detailed structures of the two solitary 

waves which are generated under the condition of increased diffusivity. In this case, the 

amplitude a and the speed c of the first solitary wave are reduced to 1220m and 10.3m/s 

respectively. The wavelength also shrank to 3470m. The most inqwrtant point is that 

Umax decreases to lO.Om/s which is smaller than c. It indicates the recirculation does not

exist within the first large anpUtude solitary wave although a/h» 1.22 which is slightly 

larger than 1.2 for the criterion of the existence of recirculation (Davis and Acrivos, 

1967). In Fig.6.5 the small positive-negative pair no longer appears beneath the large pair 

in w field. It is another evidence of distqjpearance of recirculation. So strong eddy 

viscosity in ABL will in^)ede the formation of recirculation.

6.2.2 Model results for a more realistic vertical dependence o f eddy diffiisivity

Generally, in the real ABL turbulent fluxes usually are not singly proportional to

the local mean gradients. Supposing K theory provides a reasonable estimate of die 

turbulent exchange, it still would not be proper to assume constant K^^and They

vary rapidly with height Based on their numerical studies, Brost and Wyngaard (1978) 

give a formula of eddy diffusivty as a function of zfa. and h/L,

Km = (6,3)
l + 4.7(f)(f) 

n L
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where vis von Karman constant, and a generally accepted value for it in the stable ABL is 

0.4 (Kaimal and Finnigan, 1994). u, q is friction velocity on the surface, h is the depth of

stable ABL, and L is Monin-Obuhov length. They also found Eq.(6,3) “works about as 

well for K I, if 1.2 is inserted on the right side" of Eq.(6.3). That is.

K j= l.2 M i.o h -f i (6.4)
1 + 4 .7 C -X -)

n L

In the following simulations, Eq.(6,3) and Eq.(6,4) are used instead of constant 

and K,, in Eq.(6,l) and Eq.(6,2). In S6.4, u*Q, L, and h are chosen as 0.3m/s 

(Garratt, 1992), 50m (Brost and Wyngaard, 1978), and 1000m. In S6.5, u*Qand h are

the same as in S6.4 except L=500 m. We intend to make evidently different degrees of 

eddy diffusivity by choosing these two values of L. Fig.6.6 shows the profiles of 

K ^l(z) (L=50 m) and K ^2(z) (L=500 m) in whole boundary layer. The maximum

value of Km 2(z) is about 6m^fs  which is 6 times Kq, in S6.3.

Because structures of the waves generated in S6.4 are similar to the structures seen

in S6.5, they are not shown here. Fig.6.7 displays magnified buoyancy b, horizontal 

velocity u, and vertical velocity w fields at t=12000 sec for K ^(z) with L=500 m. But

the values of anq)litude, wave speed, wavelength, u^ax and w^ax in S6.4 differ

considerably from that in S6.S.
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Fig.6.5 Magnified buoyancy b, horizontal velocity u, and vertical velocity w fields at 
t=12000sec for K j,=I.O m ^/s and K j,=I.2m ^/s.
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The results of S6.5 reflect the significant effea of eddy viscosity in ABL on the 

waves. Two solitary waves are still generated and propagate in steady shape with almost 

constant speeds. But the an^litude and speed of the first wave reduce to 1180m and 

lO.Om/s, respectively, u^ax and Wmax also decrease to 8.9nVs and 2.3m/s, respectively. 

Qeaiiy Umax ^  smaller than the speed of the wave, hence recirculation does not exist in 

the first wave. Fig.6.7 exhibits the detailed structures of these two solitary waves. As in 

S6.3, the small positive and negative w pair does not appear beneath the large pair for die 

first wave. Furthermore the constant b area totally dis^ipears within the first wave.
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Hg.6.6Profiles for anifonn eddy difhuivi^ K g»0 .1m ^ /s and K g = 1 .0 m ^ /s , and 
fcrmore realistic profiles Kgj(z)with\fonin-ObahovIengtfaL>50m(E[g,l(z}) and 
L=500m (K g,2(z)).
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Fig.6.7 Magnified buoyancy b, horizontal velocity u, and vertical velocity w fields at 
t= 12000sec for K^Cz) with L=500m.



Chapter 6 The Effects of Eddy Diffusivity and Wind Shear on Solitary Waves 112

Note that die eddy viscosity acts on the fluid motion from die initial dme, even 

when the colt^ool is collapsing to form a density cunent So the strength of density 

current which generates the waves is weaker with stronger eddy diffusion.

6.2.3 Relations o f amplitude a vs wavespeed c, and amplitude a vs 

wavelength X

For the convenience of comparison, the major properties o f the first solitary wave 

and second solitary wave under different eddy viscosity conditions are listed together in 

Table 6.1 and Table 6.2 respectively.
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Fig.6.8 Wavelength X vs wave an^litude a . Opoi circle with solid line represents the 
results described in section 5.5. '+' signs are the results fiom S6.1 without eddy 
diffusivity. signs from S6.2-6.5 with eddy diffusivity.
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To clearly display the differences of the properties of between the solitary wave 

generated by a density current with and without eddy diffusivity, and waves generated by 

a solitary wave-like perturbation in the inviscid fluid, the results of wave amplitudes, 

speeds, and wavelengths in Table 6.1 and Table 6.2 with results obtained in Chapter 5 are 

shown together in Fig.6.8 and 6.9. Fig.6.8 gives the relation between amplitude a and 

wavelength X. The relation of amplitude a and wave speed c is presented in Fig.6.9. In

both figures, open circles with solid lines represent the results fiom Chapter 5. sign 

represents result in S6.1 without eddy diffusivity. signs stand for the results in S6.2- 

6.5 with eddy viscosity.

IIJO

9J0

300.0 600JO 900JO 1200J0 1500JO ISOOjO 2100.0 2400D
Amplitude (m)

OD

Fig.6.9 Wavespeed c vs wave amplitude a . The signs represent the same as in Fig.6.8.



Chapter 6 The Effects of Eddy Diffusivity and Wind Shear on Solitary Waves 114

In an inviscid fluid the wavelength shrinks as the amplitude decreases for large 

amplitude solitary wave (a/h>1.0). In contrast, the wavelength increases as the an^litude

Table 6.1: The properties of die first waves at t=12000 sec with different eddy viscosity 
inthe ABL.

K„(m ^/s) a(m) c(mls) X(m) Un^(m/s) w „^(m /s) R
S6.1 0.0 1290 10.6 3890 11.4 3.0 Yes
S6.2 0.1 1270 10.4 3750 11.0 3.0 Yes
S6.3 1.0 1220 10.3 3470 10.0 2.7 No
S6.4 KmKz) 1180 10.2 3540 10.0 2.7 No
S6.5 Km2(z) 1180 10.0 4170 8.9 2.3 No

where R indicates the existence of recirculation.

Table 6.2: The properties of the second waves at t=12000 sec with different eddy 
viscosity in the ABL.

Krn(m^/s) a(m) c (mis) X(m)
S6.1 0.0 800 9.2 3610
S6.2 0.1 780 8.9 3820
S6.3 1.0 730 8.8 4240
S6.4 KmKz) 760 8.6 3680
S6.5 Km2(z) 730 8.3 4510

decreases for small amplitude solitary waves (a/h<1.0). Without eddy di^usivity, die 

shape and speed of the solitary waves (V  signs in Fig.6.8 and 6.9) created by a density 

current fairly agree with the waves (open circle signs in Fig.6.8 and 6.9) generated by a 

solitary wave-like perturbation. The results presented in Fig.6.8 show similar relationship
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between amplitude and wavelength for the waves in the fluid with eddy diffusivity, except 

for Kpi=Km(z) in S6.4 and S6.5.

The amplitude of the wave in S6.4 and S6.5 are 1180m, so the ratio (a/h) of

anq)litude and the height of stable layer is 1.18 which is near to 1. Perhaps the increase of

wavelength reflects the characteristic of small solitary waves. Comparing the results of

S6.4 with S6.S, we also fînd that there is very little change in amplitude for a large 

increase in and More close examinations are needed to understand these wave

behaviors under the influence of eddy diffusivity.

Fig.6.9 shows that the wave speed increases with an^litude with or without 

viscosity. For die same ançlitudes, the wave speeds in S6.2-6.4 (i.e., viscosity is 

present) are slightly smaller than the wave speeds without any viscosity; the stronger 

viscosity is, the slower the wave propagates (Tables 6.1 and 6.2).

Examining Fig.6.8 and Fig.6.9, we find that the a vr c results with eddy 

diffusivity are consistent with those results without diffusivi^. But the a vr X. results with

eddy diffusivity show significant difference from the previous results in the inviscid fluid. 

The large variability on the plot of amplitude vs wavelength results suggests that they arc 

much more sensitive to the different diffusivities than an^litude vs wavespeed results. In 

other words, it is more dependable to predict solitary wave amplitude in the light of wave 

speed rather than wavelength when there is difficulty to observe wave an^litude. On the 

other hand, die measurement of wavelengdi introduces errors in a-X results. The 

wavelengths of these waves are measured at half an^litude by eye, and are based on die 

plots shown in figures such as Fig.6.1. In addition. Ax (grid interval in x direction) in the
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simulations is 200m. These two factors introduce at least a 200m uncertainty in the 

measurement of wavelengths.

6.2.4 and recirculation

Comparing the decreases of wave speed and u^iax with eddy diffiisivity increases 

(Tables 6.1 and 6.2), we find u^ax declines faster than wave speed. It is because strong

local wind shear, due to reverse recirculation, near die center of the wave causes strong 

eddy diffusivity. Meanwhile, u^ax is just located in the center area. Thus, strong 

viscosity makes u^ax reduce faster than the wave speed. As u^ax becomes less than the 

wave speed, the recirculation will disappear within the solitary waves, even if the ratio of 

amplitude a of the wave to the height h of stable layer is larger than 1.2. It implies that 

large an^litude solitary waves may not trap fluid if the eddy viscosity is strong enough. 

For example, recirculation does not appear in the first solitary wave in S5.3 although the 

ratio a/h is 1.22. The ink' field in S6.3 confirmed that no fluid is trapped in the wave.

6.2.5 Trapping in an eddy diffusivity environment

The previous results show that when Kg, is equal to l.Om ^/s (in S6.3) or 

equivalently larger than l.Om ^/s (in S6.4 and S6.S), recirculation disappeared. Does 

this mean Kg, = l.Om^ /s  is so strong that no solitary wave can trap fluid? If the answer

is yes, it implies it is difficult to observe trapped fluid by solitary waves in the atmosphere 

because l.O m ^/sis a typical value for Kg, in the stable ABL (J.R. Garratt, 1992). In

order to answer this question, simulation (S6.6) was conducted.
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Fig.6.10 Magnified buoyancy b, horizontal velocity a, and vertical velocity w fields at 
t=l lOOOscc for 4km height of coldpool at initial time and a uniform K^,=1.0 m^ /s.
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In S6.6, the height of coldpool is increased from 3 km to 4 km during the cooling 

period to generate a larger anq>litude solitary wave than the waves in S6.1-6.5. The rest 

initial and background conditions are the same as in S6.3. The simulation results show 

that two solitary waves are generated. The first wave propagates in speed 11.5m/s with 

amplitude 1670m. u^iax is 14.1m/s att=11000 sec. The recirculation appears within the

first wave. Fig.6.10 shows the detailed structures of the first wave at t= l 1000 sec. w field 

clearly displays a positive-negative pair within the wave which indicates the existence of a 

reversed recirculation. The ink' field (not shown here) shows that a portion of cold air is 

inside of the wave which confirms the existence of recirculation and trapping effect of the 

wave.

Hence in such a background field if the amplitude of solitary wave is large 

enough, the wave still can have recirculation and trap fluid with typical values of turbulent 

eddy diffusivity in ABL.

6.3 Effects of w ind shear

In this section, two simulations will be introduced to investigate the effects of 

wind shear on the generation and propagation of solitary waves. The ambient wind with 

shear in the simulations can be defined by

±0Z, 0 ^  z < hj

U(z)= { (6.5)
± ah g , h g ^ z ^ H
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where constant a  represents the shear, hg the depth of shear layer, and H the depth of 

model, a  and h , in both simulations are the same and equal to 10~̂  1/s and 1 km, but the

wind is in opposite directions. So the ambient wind is Om/s at the surface (z=0) and 

± lOnVs at the top of shear layer (z=l km). Above 1 km, ambient wind speed is constant 

± lOm/s. If the wind is in the direction of wave propagation, it generates a downstream 

shear; if wind is opposite to the direction of wave propagation, it generates a upstream 

shear. Coldpool, the source of solitary waves, is also the same in both simulations. The 

location and strength of the coldpool are identical as in 86.1.

The solitary waves displayed in the buoyancy field in these two simulations are 

shown in Fig.6.11. They propagate from the left of domain to the right The leading 

solitary wave generated in the downstream shear ambient wind field (Fig.6.1 la) has a 

dramatically large amplitude of about 3 km. In contrast the amplitude of leading wave 

(about 500m) in the upstream shear ambient wind field (Fig.6.1 lb) is about 6 times 

smaller than the first one.

The significant difference of the locations of the leading waves at the same time 

(t=8000 sec) indicates that their speeds relative to the ground are very different The 

average speeds of these two leading waves are 15.5m/s and 6.5m/s, respectively. Recall 

the simulation 6.1 with the same ambient tenq)erature field but without ambient wind, die 

speed and ançlitude of leading wave are 10.6m/s and 1.3 km. Hence, as expected, the 

wave in the downstream ambient wind shear propagates faster than without ambient wind; 

in contrast the wave in the upstream ambient wind shear propagates slower. The speed 

deficit between the downstream wave and the wave in 56.1 is 4.9m/s which is near die 

average ambient wind speed (i.e. 5m/s) in the shear layer, but the deficit for upstream one
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Fig.6.U Buoyancy fields at t=8000sec with same shear but two wind directions: (a) 
downstream wave; (b) upstream wave.
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is 4.1m/s which obviously differs from 5m/s. Therefore, based on these two simulations, 

we cannot conclude that the wave is advected by the average ambient wind in a shear 

environment More simulations could further clarify the relation between average ambient 

wind speed and wavespeed.

Here we still call the leading waves as solitary waves because they have a single 

main crest and a large negative-positive pair of vertical velocity (Fig.6.12) and they 

propagate at almost constant speed which is the basic character of solitary waves. 

However, the fine structure within the leading solitary waves are noticeably different from 

the solitary wave in S6.1. Unlike one smooth single peak in the solitary wave in the calm 

ambient wind, there are some wavelike perturbations within the leading solitary wave. The 

shear instability, which results in these perturbations, creates Kelvin-Helmholtz (KH) 

waves. This is confirmed by the low Richardson number (<l/4) in the region (shaded 

regions in Figs. 6.13 and 6.14) where KH waves coexist with large shear. We also find 

that the fine structures within the leading waves are not steady, especially for die 

downstream wave. Liu and Moncrieff (1996) shows unsteady vertical velocify maximum 

induced by the density current head when thqr studied the effects of ambient wind shear 

on a density current advancing in a neutral environment They also found that the height of 

the densify current head is not proportional to the shear, but the highest head occurs in a 

moderate-shear environment

A passive tracer (ink) is also applied in the simulations to mark the location of the 

air that was initially placed in the coldpool. In both simulations (i.e. up and downstream 

wave propagation) a portion of ink appeared to be tr^ped by the leading waves. For the 

downstream case, the ambient wind speed above 1 km (height of shear layer) is +10m/s
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Fig.6.12 As in Fig.6.I2 but for the vertical velocity Gelds.
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Fig.6.13 Magnified Richardson number Ri and buoyancy b fields at t=8000^ for a 
wave propagating downstream in a wind shear. Shaded region represents Ri< 1/4.
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Rg.6.14 Magnified Richardson number Ri and buoyancy b fields at t=14000sec for a 
wave propagating upstream in a wind shear. Shaded region represents Ri< 1/4.
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and the coldpool initially centers at 30 km, so a block of ink' centered about 110 km 

indicates that the ink residue of the coldpool has been advanced by ambient wind 

(Fig.6.15). Three segments of ink located around 158 km, corresponding to the position 

of leading wave fig .6 .1  la), demonstrate they are trapped by the leading wave. Note that 

the ink does not necessarily represent the cold air even though it was initially located in the 

coldpool. A lthou^ ink is injected at t=0 into the coldpool, the air in the colt^ool was 

gradually cooling down during first 400 sec, some of ink moves downward and then 

advances with the cold air near the ground as a density current, some of ink, where the air 

does not become cold yet, is advected by the ambient wind.

X(km)

Rg.6.15 Ink field for downstream wave at t^OOOsec.
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For the upstream case, in order to compare the location of ink with the waves, the 

ink and buoyancy fields at t=14000 sec are shown together in Fig.6.16. Ink field at this 

time mainly represents the cold air produced by coldpool initially, since the rest of ink has 

been advected by the ambient wind out of the model domain. It is clearly displayed that a 

portion of cold air is tr^ped by the leading wave although the anq>litude of leading 

solitary wave is only about 900m. So in a sheared environment the ratio of wave 

amplitude and height of the stable layer is not a proper parameter to determine if the wave 

is capable of trapping fluid.

Hence, shear plays a critical and complex role in modulating the structure and the 

behavior of solitary wave. As in the real atmosphere, wind fields are always 

inhomogeneous; more simulations could shed further light on the effects of wind shear on 

the generation and propagation of solitary waves.
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Fig.6.16 Ink and buoyancy fields for upstream wave at t»14000sec.



Chapter

7
A Solitary Wave Related Case Study 

by Using the Model

In the previous chapters, we have shown that this model has successfully simulate 

large and small amplitude solitary waves in different background fields. The many 

properties of solitary waves have been studied and understood.

In this chapter, this model is used to study solitary wave related case observed 

with a Doppler radar, a tall tower and a surface networic. This case has been reported 

(Doviak and Ge, 1984) and studied previously (Doviak et al, 1991). But because of 

previous theory could not provide solutions under condition of complicated environmental 

temperature and wind fields, some features in the case woe not totally understood.

1 2 8
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7.1 Brief introduction of the case

The case we studied is a solitary wave which propagates over 100 km &om its 

source in the central Œlahoma in the late evening of 11 May 1980. The wave is generated 

by a thunderstorm outflow and the whole phenomenon lasts about 1.5 hours. This event 

was observed with NSSL's Doppler weather radar, meteorological instruments on a 444m 

tall tower and with a surface network.

Observation indicates that before wave passage in central Oklahoma, an earlier 

thunderstorm outflow has moved southerly over the tower at 2130 GST (Central Standard 

Time). This outflow formed a cold and strong stable layer about 600m in depth above the 

ground.

At 2207 GST, a solitary gust generated by another thunderstorm outflow was first 

detected by the radar. This solitary gust evolved into a solitary wave propagating in the 

stable layer. Doppler radar detected the propagation of the wave from 2226 GST to 2316 

GST. Fig.7.1 shows isochrones of solitary wave position determined by the leading edge 

of zero Doppler velocity, and the location of the tower (A), and instruments of surface 

network (o). The arrival dme of the solitary wave and peak surface wind speed induced by 

the solitary vyave at each site are also shown in die parentheses. The radar reflectivity and 

radial velocity fields show the leading wave essentially as a plane wave. It indicates that 

structure along the wave is s^proximately the same.

As the wave passes the tower, it records time smes of vertical and horizontal 

velocities at different heights above the ground. The record provides detailed structures of
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Fig.7.1 Isochrones of leading solitary wave position and location of the tall tower, sites 
of the automated meteoroloj^xil instruments (SAM) and radar. The arrow indicates the 
approximate direction of wave propagation and tk  dashed line is the location of the 
cross section of the wave observed at the tower. The time of arrival of the wave at each 
surface site is indicated in parentheses next to Ae station where peak wind speed 
induced by Ae wave is also listed, (fiom Doviak and Ge, 1984).
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the wave and pre-wave environmental temperature, moisture, and wind profiles in the 

lower atmosphere. The temperature and wind profiles above the tower top is deduced 

from rawinsonde data before and after this event Doppler radar also provides wind 

profiles up to 2 km in front of the propagating wave.

1900

Z 1000

9/11/00

900

29001

DRY BULB TEMPERATURE, T « ra

Fig.7.2 Vertical profiles of temperature measured by rawinsonde and tower (from 
Doviak and Ge, 1984).

The temperature profiles observed by rawinsonde, located at (Mdahoma 

(OKQ about 15 km south of the tower and Fort Sill (FSI) about 100 km to the southwest 

5 hr before and 7 hr after the event and by tower for 10 min. average before and after the 

leading wave are shown in Fig.7.2. The vertical profile of the ambient wind components
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parallel to the cross section of the wave measured by tower (below 444m) and Doppler 

radar (from 444m to 2 km) at around 2245 are plotted in Hg.7.3.
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Fig.7.3 Ambient wind profiles measured by tower and Doppler radar (a) in the 
propagation direction of Ae leading solitary wave; (b) peqtendicidar to the propagation 
direction. The rawinsonde sites are -20 km NW (OKQ and 120 km SW C^SI) of the
Norman Doppler radar. The Doppler ladar esdmalc of wind is an average over a 40° 
sector 40 km north of radar, (from Doviak and Ge, 1984).
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IJl The set up of the model for the case study

The model used to simulate this case is described in Cht^ter 2. The background 

fields (potential temperature and horizontal wind) are given based on the observed 

temperature and wind profiles (assumed horizontally homogenous).

The potential tenq)erature profile (Fig.7.4) is calculated fiom the inferred 

temperature profile which is shown in Fig.7.2. Hydrostatic assumption is used in the 

calculation of potential ten?erature. Due to lack of observation data, a constant potential 

temperature above 2 km is given in the model

Fig.7.4 provides pre-wave ambient wind profiles perpendicular and parallel to the

solitary wave from ground to 2 km. But it has been suspected that the radar data may be

contaminated by die birds or/and insects (Doviak and Chen, 1988). Because in the radar

observations the peak in horizontal velocity perturbations lags behind the peak of

reflectivi^. Doviak and Zmic' (1984) found that the reflectivity factor Z of the ambient

has a strong vertical gradient (-17 dB^km ). The peak reflectivity is expected to coincide

with the peak horizontal velocity. Thus insects and/or flying birds or mammals might

respond to die lag. The large scatter of the mean Dopplo* velocity estimates from one

resolution volume V6 to the next V6 (Doviak and Zimic', 1984) and the unusually high 

equivalent reflectivity factor (10 dB Z^ at 300m altitude) also support this suspicion.

Contamination of radar data by the migration of birds and insects has been known 

for many years. Vaughn (1985) states that "From spring through fall, birds and/or insects 

are generally common to abundant in the atmosphere to an altitude of 1 to 2 km over most
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land areas of the world". Especially at night doling spring (March-May) seasonal 

migrations of birds and insects increases dramatically (Vaughn, 1985; l^ lson  et al, 1994; 

Wilczak et al, 1995). Flying birds can contaminate the radar observed velocity by 

vectorially adding about 7 to 15m/s to the wind. Southward migration called "reverse" 

migration of birds in spring season has also been found(Wilczak et al, 1995).

For our case, the radar data was collected in night during spring season (2245, 11 

May). It is reasonable to believe that the ambient wind deduced from radar measurements 

above 444m (Fig.7.4) is contaminated by southward movements of birds or/and insects. 

In addition, wind profiles observed by rawinsondes might not represent the realistic wind 

field in front the wave because they were measured 5 h before and 7 h after the event 

Thus we removed the wind profile portion above 444m and simply assume a constant 

velocity which is equal to the value at 444m observed by the tower.

The observation shows the gust front was initiated by a thunderstorm outflow. 

However, the three dimensional, moisture and rain related thermodynamic and kinematic 

mechanism in the generation of the thunderstorm outflow can not be simulated by this 

two-dimension dry model. Moreover, paucity of existing observation in the thunderstorm 

outflow is die other reason why the real outflow in the observation is hard to be 

reproduced by this model

In our experiments the thunderstorm outflow is simulated by a block of air which 

is gradually cooled to reach a cotain tempaature lower than ambient tenqierature. The 

colder air then continuously spreads out to form two density currents in both left and right 

directions in the numerical domain. The density current moving toward right direction is
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the one used to simulate the outflow. The left densi^ cunent will move out of the domain 

soon and not be concerned in our study.

Also because the lack of observational data about the characteristics of the

thunderstorm outflow, it is difficult for us to choose an unique model for cooling the

block of air and die block dimensions. After many trials with different combinations of

block dimensions, cooling rate, and period of cooling time, the following parameters, 

height of the block h^=610m, width of the block w^=10 km, period of cooling time

AT==600 sec, were chosen such that the leading wave speed is conqiarable with the 

observed wave speed. The block of air which is cooled is located 35 km from the left side 

of the domain. The cooling rate y  is linearly changing with time and approaching to zrao 

at the end of cooling period:

t - d T
r = r o ( - ^ )  (7.1)

where Xq=5.5 °C/sec and t is simulation time. As t > AT, /  is set to be zero.

The passive tracer technique is also used in this simulation. The value of the 

passive traco* in the cooling block is prescribed as 100 and 0 in the rest of domain at die 

initial time. It is like a cold block air dyed with 'ink'. Thereafter ink' flows with the cold 

air and displays die shape and movement of die density current created by the coU^sing 

coldpool. Thus we clearly distinguish the density current as the source of waves from 

ambient air and the waves generated by the interaction of die density current with die 

ambient stable layer.
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Surface friction and turbulent eddy viscosity in the boundary layer are considered

in the simulation. K dieoiy discussed in Chapter 6 is î^ lie d  in the model below 2 km in 

which a constant eddy viscosity coefficient K^=2.0 m^/sand eddy diffiisivity of heat 

K |,=2.4 m ^/s are used.

For numerical stability, kinematic viscosity 'Uh (in horizontal direction) and \)y (in 

vertical direction), and thermal viscosity Kh and Kv in the model equations (see Eq.(2.12)

and (2.14) ) are all given a constant 1.0 m ^/s. But the viscosity terms only act in the 

region where Richardson number R |> l/4 .

7.3 Evolution of the solitary wave in the simulation

The goal of our numerical study is 1) to demonstrate that simulated undular bore 

does evolve into a family of solitary waves observed; 2) to exhaustively investigate die 

whole process of formation, development, and decline of the wave, a process not 

con^letely observed in the short term of observation; 3) to reveal the fine features of the 

phenomenon, some of them could not be observed; 4) to verify the hypothesis made by 

Doviak et al. (1991) that when recirculation exists within the leading solitary wave, a mass 

of air will be trapped and transported by the wave.

In order to give the detailed features of density current and waves for our 

investigation, the horizontal component of wind, the ink' (passive tracer) fields, and 

buoyancy fields are magnified in wave fiont area in Fig.7.5. After close examination, we 

found that the whole process can be divided into the three following stages based on the 

evolution of leading solitary wave.
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1) Initial stage(0-1000 sec): h  this stage, a densi^ cuirent (i.e. the thunderstorm 

outflow) is created by collqising of the coldpool. As the densi^ current intrudes the lower 

atmosphere, perturbations in the ambient staWe and neutral layers are excited 

simultaneously.

The fields of buoyancy, b, and ink in Fig.7.5a (t=SOO sec) clearly show that a 

density current formed in the lower stable layer. The density current is evidenced in the b 

field by its increase in height behind the leading potuibation which moves to about 44.5 

km at this time. The height of the cutrent head is about 390m. Moreover, a single hump in 

the stable layer appears above the head of the current in the b field. The 'ink' field at the 

same time (Hg.7.5a) also confirms the shape and location of the densiQr current deduced 

firom the b field.

Recall from the previous section, the coI^ kwI is continuously cooled until t=600 

sec. The current gains more momentum firom the transformation of potential energy as the 

cold^xwl collapses. The maximum horizontal velocity u , ^  in the head has increased a

little (from 21.2m/s at t=500 sec to 21.5m/s at r=1000 sec). During the same time period 

the density current speed has increased from 9.0m/s to 14.4m/s. Hie speed of density 

current is estimated by measuring the location of the leading edge of the density current at 

different times.

A bore with a smooth tail has evidently evolved from the single hump above die 

density current
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It was also found that there are two peaks in the current head in the b and 'ink ' 

fields. They are produced by Kelvin-Hehnholtz (KH) waves due to the strong wind shear 

at the interface between the current and ambient air (Droegemeier, 1987).

In view of above observation, we found that at the initial stage the densi^ cuirent 

is dynamically dominant The motion of the current and the bore is primarily driven by the 

pressure difference between the cuirent and ambient air. In addition, the birth of the bore 

is an important fact later the bore will dramatically change the nature of the phenomenon.

2)Wave development stage (1000-3000 sec): The density current is still moving 

forward, but gradually losing its momentum because of the spreading out of the current 

and because of surface Motion. The speed of the current decreases from 14.4m/s at 

t=1000 sec to 10.4m/s at t=3000 sec. During the same period of time u^ax declines by

almost 50%, from 21.5m/s to 12.4m/s.

At t=2000 sec, small wavelike perturbations occurs in the body of the bore, and 

the head of the bore become more evident in b field (Fig.T.Sd). It indicates the bore is 

evolving into an imdular bore. The density current is modulated by the bore to exhibit 

undulations at the interface between cuirent and ambient air. The 'ink' field at t=20(X) sec 

in Fig.7.5d distinctly demonstrates these undulations.

At t=25(X) sec (Fig.7.5e) the bore head clearly separates firom the small 

perturbations and is evolving into a solitary wave, while the current head moves with the 

wave and becomes smaller and smaller. 500 sec later(Fig.7.5f) the current head slightly 

falls back from the wave and becomes even smaller.
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During this period of time (from t=1000 sec to 3000 sec), perturbations in the 

stable layer accomplished the evolution from a bore to an undular bore, and then to a 

family of an^Utude ordered solitary waves. The waves can been confirmed as solitary 

waves by the increase of distances between the waves because the propagation speed of 

solitary waves are proportional to the amplitude. The similar evolving process has been 

found in the laboratory (Maxworthy, 1980), in the atmosphere (Clark et al, 1981; Clark, 

1983; Doviak and Ge, 1984; Fulton et al, 1990) and has been theoretically investigated by 

using the BDO (Benjamin-Davis-Ono) equation Christie (1989).

After the density current reaches its maximum strength at about t=1000 sec, it 

slowly losses its momentum and is no longer dynamically dominant after this time. In 

contrast, the leading solitary wave is gradually maturing and plays the prevalent role after 

1000 sec.

3) Wave decaying stage (3000-6500 sec): At this stage the leading solitary wave 

outruns the dying density current and continuously propagates forward at neariy constant 

speed(12.0m/s). The detailed variation in the wave speed will be discussed later.

Conçaring the ink' field at t=4000 sec(Fig.7.5h) with t=4500 sec (Fig.7.5i), it is 

seen that the leading edge of density current stops at 82.7 km. This indicates that die 

density current ceases at about t=4000 sec. The density current's demise might be caused 

by a combination of three factors: 1) insufficient depth of cold air over a long range; 2) 

surface fiiction; and 3) mixing between the cold air and ambient air.
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As the densiQr current spreads out on its way, its depth is gradually becoming 

lower and lower. Meanwhile mixing leads die ten^erature deficit to decrease. Both of 

these two factors are weakening the strength of the current and reducing the current speed. 

Surface friction is an other obvious factor to slow down the cuirent

As the density current rapidly weakens in the interval from t=3500 sec to 4500 

sec, the leading solitary wave, generated by the current begins to separate from the 

cuirent Comparing ink' field with buoyancy field at t=4500 sec, it is found that the air 

tagged by the ink field is left behind the wave (Fig.7.5i).

At this time (4500 sec), the leading solitary wave is without closed recirculation 

and is in a quasi-stationary state in which it propagates at nearly constant speed. By 

slowly decreasing their magnitudes, the maximum horizontal velocity, u„,„, and 

maximum vertical velocity ^max purely induced by the wave show the dissipation effects 

of surface friction and eddy viscosity . u^ax decreases from 8.2m/s at t=4500 sec to 

7.5m/s at t=6500 sec, and W g^ from l.lm /s to 0.96m/s in the time interval from 4500 

sec to 6500 sec.

7.4 Comparison between observation and simulation results

7.4.1 Speeds o f the density current and the wave

The temperature difierence between the current and ambient air results in a 

pressure gradient force which acts on the cooler air to drive it forward thus forming a
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density cunent. The speed of density cunent relative to the ambient wind can be roughly 

estimated by using the following formula (Charba, 1974):

(7.1)

where k, the dimensionless Iroud number, had been evaluated in laboratory, atmosphere, 

and numerical models. It varies from 0.74 (Georgi, 1936) to V2 (Benjamin, 1968). h is 

the mean height of the density current, and A9 is average potential tenq)erature difference 

between the current and the ambient fluid with potential tençerature 9.

Because of the conq)lexity of the background temperature and wind field and 

because of the lack of sufficient data, it is very difficult to estimate, for our observation, 

the parameters like A9 and k in Eq.(7.1). Nevertheless Eq.(7.1) can still be used to 

estimate, based on limited observational data, the density current speed.

In order to compare the evolution of the simulated and observed leading solitary 

waves, their speeds are plotted in Fig.7.6. In the succeed sections, the wave speed refers 

to the speed of the leading solitary wave in a fiame relative to the ground. In die 

simulation, the speeds of wave and density current are estimated by measuring the location 

of the wave peak and leading edge of the current at different times, respectively. The 

speeds are the average speed between two measuring times, the measuring time interval is 

5(X) sec in this experiment

Observations suggest that the wave speed quickly drops from 26.3m/s to 11.6m/s 

in about 2S00 sec; it then reaches to a steady state with speed of about 11.5m/s. The
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simulation exactly replicates this evolution from 1500 sec to 3000 sec. Except for a small 

jump in speed at t=3500 sec, the wave speed detetmined from simulation attains a relative 

steady speed 12.0 m/s which is slightly higher than observed 11.5 m/s.

30.0

25.0
-O Wave speed from Sml 

+- —+ Wave speed from Obe 
a— A Density carrcat speed from Sal

20.0

15.0

lO.O

5.0
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Time (s)
1000.0

Fig.7.6 The evaluation of wave and density current speeds. Dot-solid line is wave 
sp&d of simulation; cross-dash line is wave speed of observation; triangle-solid line is 
density current speed of simuWon.
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During the initial 1500 sec period of time, the difference of wave speed between 

observation and simulation is obvious. Actually the model could not simulate the evolution 

of the wave during this period time. There are several reasons: 1) the environment near die 

thunderstorm which generated the wave is very different from the horizontally 

homogeneous environment used in the simulation; 2) the col(^>ool used in the 2D model 

cannot totally duplicate the real 3D thunderstorm outflow neither dynamically nor 

thermodynamically; 3) die involvement of moisture as the outflow is forming makes the 

processes more complicated. It cannot be simulated by this dry model.

Many similar simulations, with different source strengths and ambient fields, 

suggest that there is always a small jump of the wave speed right after the departure of die 

density current head from the wave. This jun^ is not an occasional phenomena or 

measurement error in this simulation, fi implies that the denser air in the current head 

somehow drags the wave when they move together. As the current head leaves the wave, 

the drag force is released from the wave, so the wave can move faster. Besides, the slope 

formed by the head perhaps accelerates the motion of wave peak when the current head is 

leaving the wake of the wave. After the small jump, the wave speed slighdy reduces and 

the wave no longer has any densiQr current The wave then adjusts to a relative steady 

state.

This small jump is not seen in the wave speed plot of the observation, adopted 

from Fig.9 (Doviak et al., 1991), in Fig.7.6. But when we carefully investigate the 

isochrones of wave position at different times (Fig.7.1), it is found that the leading wave 

propagates for a longer distance in the 5.5 minutes time interval 2305:30 to 2311, than for 

the same period in the interval from 2300 to 2305:30. This means a faster wave speed at a
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later time. It is in a good agreement with simulation. The wave speed junq) of the 

simulation is observed at 3500 sec r i^ t  after the leading wave passed the virtual tower 

located at 74.8 km. In addition, the small jun^ in bore fmnt speed had the appearance in 

another similar observation (Fulton et al., 1990) although it had not been discussed in the 

paper. Certainly, observational errors or horizontal inhomogeneousness of wave guide, 

which may also make the small ju ti^  in wave speed, cannot be excluded. So more 

observations are needed to prove this finding.

In the foregoing part, we have examined the small wave speed junq) afW the 

density current head leaves the wave. Furthermore, we notice that the speed of the density 

current quickly declines from 9.6m/s to Om/s after the junq) increase in wave speed. This 

sudden density current speed decline suggest that, without wave drag, the density current 

would not have advanced as fast as it did, nor move as fast move as fast as before the 

jump.

It is not difficult to understand this wave drag effect on the density current 

Generally, a solitary wave propagating in a waveguide attached the ground induces a 

horizontal velocity field in which the wind direction is the same as the wave propagation 

direction near the ground, and opposite above a certain height which depends on the wave 

an^litude (Fig.7.5j). The solitary wave provides a local positive wind field, even in an 

negative ambient wind field, for a density current head when it advances beneath the 

wave. This local positive wind field helps the density current advance more rapidly than in 

the environment without the wave.
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7.42 Kinetic and thermodynamic structures o f the leading wave

Tower data provides a veitical profile (from z=0 to 444m) of horizontal velocity 

induced by the leading solitary wave. At the corresponding simulation time (t =3000 sec), 

the profile of horizontal veloci^ computed at 74.8 km in the numerical domain shows 

almost same shape as the observed one below 444m (Fig.7.7).

Because of low spatial resolution of observation in vertical direction , the 

maximum of u located between 90m and 176m may not be resolved. The value might be 

larger than 11.7m/s. The simulation with higher resolution in votical direction than tower 

shows that the maximum u is 12.4m/s at height 103.6m. Thus the values and locations of 

maximum u in the simulation are in quite good agreement with in the observation.

The feature of the u profile with a maximum located above the surface is similar to 

the feature across a large ançlitude solitary wave with a reversed recirculation shower in 

Chapter 5. It easily leads us to conclude that the existence of reversed recirculation in the 

simulated and observed solitary wave. But after close examination (see section 7.4.5), we 

found thatalthough they have similar features, the mechanism is different For this case, 

surface friction instead of reversed recirculation results in the monotonous decrease of u 

near the surface below about 100m. So the u profile exhibits a maximum above die 

surface.

Tower observation not only provides an estimate of the votical profile of 

horizontal velocity across the center of the leading wave, but also a time series of 

horizontal and vertical velocities (u and w) at several observation levels. For the sake of
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comparison, u and w are recorded at the virtual tower at almost same heights as the real 

one, except the lowest level because the first level in the nrodel is 18.7m which is higher 

than 7m for the observation. The plots of the evolution of observed and simulated u at 

four different levels as the leading wave passes the tower are displayed in Fig.7.8. The 

plots in Fig.7.8 show a good agreement between the simulation and observation.

Due to coarse spatial resolution of die model, the small wave like perturbations 

overlaid on the main feature in the observation are not well represented in the simulation. 

Some of these small perturbations, more evident at the 7m level, are thought to be 

produced by KH waves and turbulence (Doviak et aL, 1989). Recall b field at t=3000 sec 

(Fig.7.5f) when the leading solitary wave passes the tower, the density current is with the 

wave. Tower instruments at the lower height are inside the density current head where the 

stability is relative weak and wind shear is relative strong due to surface friction in the 

simulation, as well as in the observation. Thus KH wave is a reasonable interpretation.

Closely comparing the wavelengths between the observation and simulation 

(Fig.7.8), we found that the wavelength of the simulated wave is larger than the observed 

one, especially at two higher heights (z=266 m and 444m). Horizontally inhomogeneous 

ambient wind and température fields in the real atmosphere might result in these 

wavelength differences because in the model the ambient wind and potential température 

fields are horizontally homogeneous. In addition, a constant ambient wind above 444m in 

the simulation might not accurately represent the real ambient wind. This could also affect 

the structure of the simulated solitary wave. The differences between the simulation and 

observation are more evident in the comparison of w fields.
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Fig.7.9 shows the time series of w component at two different heights. Unlike u 

component, w maximum and minimum from the simulation are much smaller than 

observation. The reasons why the simulation failed to reproduce the large observed 

variation of w con^nen t may be due to 1) the relative coarse spatial resolution of the 

model; 2) not well representation of real turbulence in the model The reasons, given in the 

above paragraph, which cause the differences between the simulation and observation in 

the wavelengths might also lead the simulation failure of w fields.

Small positive peaks of simulation at both heights near center of the wave are 

result from the circulation induced by the densi^r current head. So the peak at 265m near 

the head of the density current is relatively higher than at 439m. The small disturbances 

modulated on the solitary wave feature at 266m level in the observation are thought to be 

KH waves. Like the u component, the simulation does not reveal these KH waves in the 

w time series.

However, the wavelengths of simulation shown in Fig.7.9 is in a fairly close 

agreement with the observation. Moreover, w of observation shows an unsymmetric 

feature. The positive portion is snxrother and smaller than negative. This feature is also 

clearly visible in the simulation although the magnitude of w is smaller. Closely inspecting 

the shape of the u component in Fig.7.8, the unsymmetric feature is also found. The front 

half (left half in Fig.7.8) of the wave is smoother than rear half. The entire unsymmetric 

feature of the leading wave can be distinctly seen in Hg.7.5f.

These unsymmetric features are created by the density cunent head within the 

wave. The direction of circulation induced by a solitary wave is downward (upward) at
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the rear (front) of the wave and forward (backward) at lower (upper) level. The flow of 

the circulation in die wave is partially blocked by the densiQr current which is no longer 

symmetrically landed in the wave. Thus, there are sharper gradients of u and w and 

stronger downward motion in the wake to keep the continuity of the flow. Its external 

manifestation is unsymmetric b, u, and w fields. When the current leaves the wave, the 

wave regains its normal symmetric form even though the environment has wind shear 

(Fig.7.5j).

7.43 Temperature structure o f the wave

The retrieved ten^ierature field based on the tower data is plotted in Fig.7.10. 

Assuming the wave is relatively steady as it passes over the tower, it will propagate about

13.4 km in 20 min. at its speed of 11.2 m/s. The tenqierature field at 3000 sec of 

simulation with corresponding spatial distance of 14 km is shown in Fig.7.12 as well.

The resemblance between observation and simulation is obvious. The 

unsymmetric feature of the wave also exhibits in both observed and simulated temperature 

fields. A cold core centered at about 250m with a small tail in die simulation indicates die 

position of density current head. The tail in the observation is not very obvious. But the 

core temperature minimum in the simulation is 2 degrees colder than the observation. The 

small wiggles on the contours in the core region at about 75.5 km in the simulation, which 

is not found in the observation, reflect the fine structure of the density current The 

relatively coarse spatial resolution in the vertical direction in the observation might not be 

callable of resolving these small structures (i.e. the tail and wiggles) displayed in the 

simulation. On the other hand, the observed small perturbations on the contours of 19 °C,



Chapter 7 A Solitary Wave Related Case Study by Using the Model 164

VAPOR PR ESSU R E (mb)/TEM PERATURE (*C) V  HEIGHT AND TIME
21*a) 22

400

20- 300 g

200 O

18*.
18*

100

SEN W
02 23000406081018 121416

TIME (C ST)

EAC 
N

.4

a

.1

.0 & -
mo mo74.0

X(km)

Fig.7.10 Ten^)erature field of (a) observation (solid line) (from Doviak and Ge, 1984) 
and (b) simulation. The contour interval is OJ°C.



Chapter 7 A Solitary Wave Related Case Study by Using the Modei 165

19.5°C, and 20 "C in the wake are not found in the simulation. Turbulence observed in 

the wake of the wave (Doviak and Ge, 1984) could cause these small perturbations.

7.4.4 Second wave

A second wave following the leading wave was observed by the tall tower. Its 

peak passed the tower at about 23:40 CST, 30 min. late after the leading wave. The 

simulation shows that several waves, at least four at t=6500 sec (Fig.7.4), are generated. 

The second wave of the simulation passed the virtual tower at about 5000 sec, about 33 

min. late after the first one. It agrees with 30 min. found in the observation. Tower data 

have not shown third and fourth waves, perhaps because their amplitudes are too small to 

be detected.

7.4 J  Discussion on the existence of recirculation

After a close study, we found that the recirculation does not exist in the leading 

solitary wave in the observation and simulatiotL One could argue that observed and 

simulated u maximum located above the ground is a sign to show the existence of die 

recirculation. A small couplet of positive-negative vertical velocity beneath the leading 

wave at t=3000 sec (Fig.7.11) seems to support this argument But as the head of densiQr 

current leaves the leading wave at t=4500 sec, the couplet vanishes as well (Fig.7.12). 

But u maximum is still located above the ground (see u field in Fig.7.5i). This suggests 

that the couplet is produced by the density current and the decrease of u near the ground 

results from the surface friction rather than the recirculation within the wave.
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One could continue to argue that the recirculation does exist within the leading 

solitary wave when the wave has the density current, but it is dissipated by the eddy 

viscosity in the observation and simulation. Thus the trapped current head leaks out from 

the wave in the simulation. However, small change in wave speed, before and after die 

current leaks completely out from the wave in the simulation, suggests that the wave 

amplitude does not change too much because solitary wave speed is amplitude-dependenL 

The frict of no recirculation in the wave after the departure of the density current head 

implies that the amplitude of the leading solitary wave is not large enough to have a 

recirculation within it even in the initial stage in the simulation.

Note that in a complicated background potential tenqierature field with wind shear, 

it is almost impossible to use the criterion a/h> ( or< )1 used in simple background fields 

to judge if a solitary wave is a large amplitude one. In addition, checking the b field at 

t=6500 sec (Fig.7.5j), the largest vertical displacement induced by solitary wave is no 

longer right at the interface between stable and neutral layers.

Moreover, the study in the Chapter 6 has demonstrated that strong surface friction 

hampers the formation of recirculation in a solitary wave.

Thus we conclude that for both simulation and observation the leading solitary 

wave generated by the density current is not large enough to have a recirculation inside, 

and the head of density current is not trapped, if the word 'trap' is strictly used to describe 

the trapping effect of large air^litude solitary wave with recirculation, by the leading 

solitary wave. But the wave did propagate with and 'drag' die density current head for a
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period time. After density cunent loses its momentum and spreads out on the ground, the 

wave leaves i t

Some observations (Fulton et al., 1990; Smith and Morton, 1984) suggest that this 

trapped' phenomena take place only in the early, formative stages of bores when they are 

very near the source.'. Their findings support our conclusion.

7.4.6 Scenario fo r the evolution o f the solitary waves

According to the previous study of this case, Doviak et al. (1991) suggest a 

scenario for the evolution of the solitary waves (Fig.7.13). Gathering the buoyancy fields 

at different times of the simulation into one picture (Fig.7.14), it shows dramatic similarity 

with the observation. In order to avoid uimecessary repetition of section 7.3, the detailed 

description of the evolution will not be presented here.

The similarity demonstrates diat the evolution of the solitary waves has been 

successfully simulated.
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Fig.7.13 A scenario for the evolution of thunderstonu-generaied solitary waves (From 
Doviak et aL, 1991).
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Fig.7.14 The evolution of the solitary wave and density current in the simulation 
displayed in buoyancy fields at different times. The time interval is 500sec, except the 
bottom one.
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7.5 Conclusion

The model simulation has successfully duplicated the evolution of the solitary 

wave observed by multisensers and provided more useful information, which was not 

observed, to help us to have a better understanding of the phenomena we studied.

In con^arison with previous case studies of solitary waves (e.g. Doviak and Ge, 

1984; Doviak et al., 1991; Fulton et al., 1990; Smith and Morton, 1988), this simulation 

has advantage to reproduce the evolution, generation, propagation and decay, of the wave 

in detail. It makes possible to examine the internal structures of the wave, such as velocity 

and temperature fields, and compare them with the observation with a relatively high 

resolution.



Chapter

8
Summary and Conclusions

A two-dimensional dry incompressible vorticiQr-stream function model is 

developed for the purpose of studying internal nonlinear buoyancy waves and related 

phenomena in the lower atmosphere. The model equations are vorticity, Poisson, and 

conservation of potential ten^)erature equations with three variables: vorticity, stream 

function, and buoyancy. Kinematic and thermal viscosiQr terms are included. These time- 

dependent nonlinear partial differential equations are discretized' into finite-difference 

representations and the variables exist only at grid points. The third-order Adams- 

Bashforth scheme is adopted for time integration, and the fifth-order upstream advection 

scheme is applied to spatial derivatives. A stretched votical coordinate is used to increase 

the spatial resolution near the ground because the most rapid changes in the variables 

occur there. The lateral boundaries are open in order to allow internally generated waves to 

pass out freely. To avoid reflections of the waves, sponge' boundary conditions are 

applied at and near the lateral and top boundaries.
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For testing the model, several simulations of solitary waves are conducted in a 

relatively simple background field: a deep neutral layer over a shallow stable layer near the 

ground with constant Brunt-Vaisala fiequency, in absence of surface friction, physical 

dissipation, and ambient wind shear. The simulation results are in good agreement with 

the results of weakly nonlinear theory. Two kinds of collision of two small amplitude 

solitary waves predicted by a theoretical study (Matsuno, 1980) are successfully 

reproduced. In die simulations, several solitary waves are generated by a thunderstorm 

outflow and propagate in the numerical domain, ^ t h  the aid of a parcel tracer technique, 

the influence of the waves on the ambient air parcels is tentatively examined.

In contrast to theoretical and laboratory studies, the numerical simulation described 

in this dissertation enables investigation of the detailed structure inside the recirculation 

region. In the simulations, reversed recirculation within large amplitude solitary waves has 

been found for the first time. The rotation direction of reversed recirculation is opposite to 

the outside flow and the direction of normal recirculation assumed by the previous 

theoretical study. It has been proven that both normal and reversed recirculation do not 

violate any physical principals. However, so far, normal recirculations have not been 

found in our simulations. Because of coarse spatial resolution, it is very difficult to 

observe the rotation direction of recirculation in laboratory experiments. Hence, no 

observation of either reversed or normal recirculation has been reported.

The existeiKe of recirculation enables large amplitude solitary waves to trap air and 

transport it, because recirculation forms a closed region within the wave. Theoretically, in 

an ideal waveguide without any dissipation the trapped fluid will forever be transported by 

the unchanging wave. However viscosity is inevitable, even in our simulations. Though
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no physical viscosiQr term was included in this simulation, the truncation error in the 

numerical scheme plays a similar role. Because of viscosity, the amplitude of a solitary 

wave gradually decreases, the size of recirculation region also shrinks, and the trapped 

fluid leaks ou t Furthermore, for the reversed recirculation the fluid near the interface 

between recirculation region and outside flow is continuously mixing due to strong wind 

shear. Partially trapped fluid is entrained out and flows with the outside fluid, which 

moves backward relative to the wave, eventually leaking ou t Using a passive tracer 

technique, the trapping and leaking effects are clearly visualized

The relations among amplitude, wavelength, and wave speed of solitary waves are 

obtained through many numerical simulations. For small amplitude solitary waves 

(a/h<l), the wavelength shrinks with the increase of wave amplitude. In contrast for large 

amplitude solitary waves (a/h>l), the wavelength increases with amplitude. The wave 

speed is nearly linearly proportional to amplitude for both small or large an^litude solitary 

waves. These results are consistent with the results obtained from the laboratory 

experiments and weakly nonlinear theory for extremely small amplitude solitary waves 

(a /h « l) .

The balance between dispersive and nonlinear effects results in steady solitary 

waves of small ançlitude (a /h « l). It can be employed to explain the relation between 

amplitude and wavelength. Nevertheless, the relation for large ait^litude solitary wave is 

totally different from the one for small waves. I believe that the existence of recirculation 

within large anq)litude solitary waves critically influences the relation between anq)litude 

and wavelength.
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As expected, turbulent eddy diffusivity in the atmospheric boundary layer reduces 

the an^litude and wave speed of solitary waves propagating in die stable layer. The 

induced horizontal and vertical velociQr maximums by the waves are also reduced. The 

stronger the degree of the turbulent eddy diffiisivity, die further the reduction of these 

parameters. Recirculation within the large an^litude solitary wave in absence of eddy 

diffiisivity can be eliminated by large eddy diffiisivity.

The effects of low-level wind shear on solitary waves are relatively complicated. 

First, the downstream (i.e. wave propagates in the ambient wind direction) wave 

propagates faster than the upstream (i.e. wave propagates opposite the ambient wind 

direction) wave. The wave speed increase or decrease is not singly equal to the average 

ambient wind. Second, the structures of solitary waves are modulated by the ambient 

wind shear. For example, in the simulation with 10~̂  1/s shear in the lower layer, the 

amplitude of the downstream wave is 2.3 times larger than the wave in a calm 

environment. Due to strong shear, KH waves appear in the solitary waves. The shape of 

wave becomes rough and unsymmetric. We also found that it is not proper to determine 

whether the wave can trap fluid from the ratio of wave angilitude and height of the stable 

layer if shear is present

An internal solitary wave generated by a thunderstorm outflow, observed by 

NSSL's Doppler weather radar, a 444m tall tower and a surface network in central 

Oklahoma in the late evening of 11 May 1980, is modeled. The simulation results show a 

quite good agreement with the observation in several aspects. The kinematic and thermal 

features of the simulated wave are basically coincident with the observed features. The 

evolution of the wave is reproduced by the simulation.
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It has been demonstrated that the densi^ current, which generated the solitary 

wave, is not trapped by the wave because no recirculation has been found in the wave. 

However the wave does help the current move farther and faster than it would without a 

wave in the initial stage. The simulation shows remarkable similaiiQr with the scenario 

depicted by the previous study based on the analysis of the observation.

Although the major aspects of the observation are successfully simulated, the 

model failed to reproduce the very early stages of the formation of the observed solitary 

wave. The magnitude of vertical velocity induced by the simulated wave is smaller than 

that observed. Thus further investigations with a more comprehensive model (three- 

dimensional, moisture included) are still required to explore the three-dimensional 

properties of the solitary wave, moisture effects on the waves in more realistic 

environment.

It is known that solitary waves can initiate or enhance deep convection, and induce 

a strong wind shear which can jeopardize aircraft flying near the ground, and tr^  and 

transport hazardous materials in an emergency situation at faster speed than wind 

advection and diffusion. Through studies, such as this, more characteristics of solitary 

waves, eq)ecially those with large ançlitudc in the lower atmosphere may be explored 

further. Eventually, such studies may be useful in developing better technologies for 

predicting severe weather under circumstance in which solitary waves play a vigor role.
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Appendix

A
Initial conditions 

for small and large amplitude solitary waves

When we study the basic properties of small and large solitary waves , the 

potential temperature background field is set up as a deep neutral layer over a stable layer 

with constant Brunt- Vaisala frequency N near the ground

In the cases without wind shear, inflow speed is constant The stream function 

field z)  is

V^(x,z) = Mi.?7(x,z) (A ,l)

and

T j ( X t Z ) - Z - S ( x , T j ( X t Z ) )  (A,2)

where q is the streamline height in the original unperturbed flow, S ( x ,  z )  is vertical
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displacement of a streamline (H g.A .l) and can be written as follow for each of two 

regions:

(1) In the stable layer (i.e. when 0 < z < h  +

S(Xt z) -  A(x)ipCn(x, z)) (A,3)

where A(jc) = ------- ----- and ç>(?7) =  s m ( ^ ) . For small ançlitude waves t^(x , z )
i x —x^) + À  2h

in ç(rj) is approximately equal to z as same as Eq.(4.2) for n= l. Because rj appears in

both sides of Eq.(A^) for large amplitude waves, an iteration method is used to calculate

q field.

Neutral

Stable n

Xo
Hg.A.1 Scheinatic diagram for the definitions of the parameters used in 
the appendix.
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aX"
(2) In the neutral layer (i.e. when h +  ------ — — <z<H) :

( x - X o Y + X ^

Then the initial vorticity Ç (x,z) and buoyancy b(x,z) fields can be obtained:

= (A.5)

In the stable layer

b(xjz) = N^rjiXtz) (A,6)

In the neutral layer

b(x,z)  = N^h (A,7)

Hence, by giving the inflow speed and the shape of perturbation the initial stream 

fimction, vorticity and buoyancy fields are obtained.



Appendix

B
Derivation of equations used in Chapter 6

We assume that any field variables can be separated into two parts, one is the mean 

component to represent the large-scale fiow indicated by overbars, the other is die 

fluctuating components to represent the small-scale turbulence indicated by primes. Thus 

V , w, 0 and k can be written as 

u = u4-u' 

w = w + w*

0 = 0-1-» (BA)

n = K + nf

Substitute Eq.(B.l) into Eq.(2.6), (2.7) and (2.8), then average them, we get die 

mean equations as follow

d t  OX dz dx dx dz
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. _  d h  _  a^w a^w . _ a^e a^e
where F , = «K ̂  + V, F, = i n - ^  + 1) , and 1% = t)H ̂  + i)v

For sinq>licity by assuming that the horizontal turbulent fluxes are horizontally 

homogeneous, so that horizontal turbulent flux divergent terms can be neglected. For w 

momentum equation, comparing with pressure gradient and buoyancy terms turbulent flux 

terms are relative small and neglectable. By applying K theory given in the Chapter 4, 

Eq.(B.2), (B.3), and (B.4) become

Differentiating Eq.(B.5) with respect to z and Eq.(B.6) with respect to x and 

subtract one from the other, mean vorticity equation can be obtained.

— 0 9 C 9 C
where b = g - ^ ,  and Ir  = t)h t~t + t)y T -r •

v() OX oz
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If Km and K|| are assumed as constants. Eq.(B.7) and (B.8) are simplified to

But turbulent fluxes are usually not simply proportional to the local mean gradients 

in the ABL., so formula.(4.3) and (4.4) given by Brost and Wyngaard (1978) are used in 

our other simulations instead of constant and K |,. For reader's convenience, 

Eq.(4.3) and (4.4) are shown here again.

(■r)(l” -r)^'^
K m = K u . o h  "  j ’  L (4.3)

l + 4 .7 (-)(f) 
n L

Kh = 1.2ni.ol'-®  T T T  (4.4)
l+ 4 .7 ( |) ( f )  

n L

In this case the Eq.(2.7) and (2.8) become more complicated. They are

s . . s „ s .
d t dx  dz
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where the gradient terms of and K |,. in Eq.(B .ll) and (B.12) can be 

calculated by substituting Eq.(4.3) and (4.4) into them. After a straightforward 

computation, we find.

^  = m -o t 1"-------- ^ ---------------h _ ]  (B. 13)
1 + 4 .7 -  (l + 4 .7 -)^L  

L L

3z  ̂ hO -^)‘'=“(l+ 4 .7f)
h L

9 . 4 ( 1 -  2 .5 r) 44.18z(l-T )^/^
lL  + --------------- ] (B.14)

(l + 4 .7 f)^L  (l + 4.7f)^L ^

and

^  = 1 . 2 ^ ^  (B.15)
dz dz


