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Abstract

The manufacturing cost-tolerance optimization problem for tolerance 

determination is quite extensively published. However, the total manufacturing 

time to assembly optimization problem is not studied very extensively. 

Especially, the combined optimization of these apparently contradicting trends 

has not been studied very much in literature.

In this dissertation, the contradicting trends are modeled as a series of 

approximate bi-criteria optimization problems. Each of these problems is solved 

by developed heuristic methods that generate efficient solutions. These models 

are verified on several generated data sets.

The results serve as a first proof-of-concept for the combined tolerance- 

cost-time problem. This model can be used for process selection during process 

planning. Most importantly, this approach provides a mathematical basis to 

selective assembly.

XI



CHAPTER 1 

Introduction

1.1 Background

Important goals for the manufacturing industry include economic and 

timely delivery of products. Product tolerances are quite important in achieving 

these goals. Tolerances are critical in both product and process design. Tolerance 

assignment presents a significant impact on manufacturing cost, delivery time, 

and product quality [Zhang and Wang, 1993]. In other words, the goal for better, 

cheaper, and higher quality performance can be realized by analyzing and 

developing relationships between cost, tolerance, and time for manufacturing a 

part or an assembly.

Tolerance analysis and synthesis have been the focus of much research for 

the last three decades. The aim is to control production variation and to produce 

high quality parts which, in turn, increase competitiveness and market share. In 

tolerance analysis, assembly tolerances are usually modeled to determine critical 

assembly allowances. In tolerance synthesis, assembly tolerances are optimized 

with respect to manufacturing cost. The relationship between tolerance and cost 

is assumed or derived for use in subsequent automation [Chase et. al., 1990; 

Spotts, 1973; Peters, 1970; Sutherland and Roth, 1975; Wilde and Prentice, 1975; 

W uet. al., 1988].



Systematic methodologies are needed for modeling manufacturing 

processes to evaluate processing alternatives for given tolerances. One 

recognized need central to the concept o f design for manufacturability is how to 

provide this information to obtain more robust and cost-effective designs [ASME 

CRDT-15, 1990].

1.2 Context, Contribution, and Objective

Selective Assembly (SA) is a standard procedure for loosening the 

tolerances and conducting selective sorting. This way the original assembly 

tolerance can still be met. The major assumption is that the cost of sorting and 

assembly is not higher than the cost to manufacture tight tolerances. This 

procedure is largely qualitative and lacks a mathematical basis for comparing the 

losses in tolerance optimization. While manufacturing costs can be reduced by 

maintaining looser tolerances, the assembly cost could actually increase. The 

total manufacturing time to assembly comprises of manufacturing time and the 

time it takes to put together the assembly. The high cost o f tighter tolerances 

could be tied to the high initial and running costs of expensive machinery and 

instrumentation. Looser tolerances can result in more time for assembly. Further, 

it could take longer time to manufacture using less expensive machines. The 

fundamental contribution of this research is in the development of a mathematical 

basis for considering the manufacturing cost as well as the total manufacturing 

time to assembly costs while selecting tolerances.



Accordingly, the objective of this research is to explain and analyze the 

mechanism o f the relationship between cost, tolerance, and time, from a 

manufacturing perspective for selective assembly.

We use the widely reported, monotonically decreasing (exponential) 

relationship between cost and tolerances and an assumed increasing function 

between tolerances and time. These apparently different trends motivate us to 

study this problem as a bi-criteria optimization in principle, although 

approximated to solve the applied problem at hand. In other words, rather than 

solve a true multi-criteria model (response surface model), tliree individual 

approximate bi-criteria cases, most relevant to selective assembly and tolerance 

determination in manufacturing are solved. Numerical examples are developed to 

show the feasibility of the solutions. These tolerances are expected to help 

determine a suitable process sequence.



Chapter 2

Literature Review

2.1 Introduction

In mechanical design and manufacture, the tolerance assignment has an 

important effect in selecting manufacturing processes, in reducing manufacturing 

cost and in increasing quality and productivity. The introduction of the concept of 

interchangeability has made the design and manufacturing researchers keep in touch 

with the tolerance assignment since the seventies [Evans, 1974]. Until that time, 

many products were manufactured as individual entities with each part being fitted 

to its mated part.

The need for tolerance assignment arises from the 'interchangeability^ o f 

parts that are 'sufficiently identicat. But it would be impossible to make 

components identical by considering technological capabilities o f manufacturing and 

measuring equipment. Therefore, an acceptable range about the nominal size called 

the tolerance is specified on parts.

Tolerance is defined as the maximum deviation from a nominal specification 

within which the component is still acceptable for its intended purpose [Wu et. al., 

1988]. The assignment o f tolerance makes us recognize the expected variations 

between components produced using manufacturing processes, fri the traditional 

manufacturing fields, the design engineers or manufacturer have used their



experiences, standard information, and handbooks to assign tolerances to the 

components and assemblies. Such tolerance assignments do not propose complete 

models. As a result, incorrect tolerance assignment caused lower quality of products 

at high costs of production.

Tolerance assignment should be sufficiently tight to guarantee that a 

component or an assembly will perform as intended from a statistical basis. Also, it 

should be noted that cost has to be minimized as low as possible within the operating 

range o f the assembly. The design department tries to assign tight tolerances to the 

components and assemblies so as to guarantee the intended high quality and proper 

operation of the product. On the contrary, the manufacturing department is more 

concerned with loosening tolerances for lowering the cost. The conflict o f concerns 

between these two departments must be resolved in a mutually agreeable fashion.

Various dimensional design tolerance models have been presented in the 

literature and each model has its own advantages and limitations. For a proper 

selection of a design tolerance method for intended manufacture, it is very useful to 

know each model's pros and cons and to compare the tolerance analysis and 

allocation methods. Wu et. al. [1988] proposed a good guideline for this, and hence 

the experimental procedure and results accomplished by them are presented to 

provide for the understanding o f tolerance methodology.

2.2 Dimensional Tolerance Analysis Models

Tolerance analysis models are designed for calculation of the assembly 

tolerance from component tolerances. It should predict assembly tolerance close to



actual assembly tolerance limits for minimizing predicted rejects or scrap. Also, 

different types of distributions o f the component tolerances should be considered, 

because they play a significant role in the assembly dimensional tolerance. Four 

types of distributions of component tolerance are used in analyzing the tolerance 

analysis models that are shown in Fig. 2.1. These are: uniform, truncated normal, 

Weibull, and normal distributions. The imiform and truncated normal distributions 

are symmetric and the Weibull distribution is skewed. The characteristics and 

parameters of distributions used in the Wu et. al.’s [1988] paper are given as 

follows:

Uniform Distribution

A random variable Thas a uniform density, and is referred to as a continuous 

uniform random variable, if and only if its probability density function, f(y), o f  a 

component dimensional tolerance is given by [Freund and Walpole, 1987]:

(1)

The parameters a  and p  are real constants with a <  p  and r means the tolerance 

range {p - d). In the uniform distribution, the mean n  and the variance cr are 

expressed as:

a-k- p

(2)



f(y)

yr

f(y)

yr

(a) Uniform (b) Truncated Normal

f(y)

yr

f(y)

yr

(c) Weibull (d) Normal

Fig. 2.1 Probability Density Function f(y) for Dimension y



They assumed that the mean value is on the x-axis, and is given by // = 0. The 

deviation multiplier z is the range of tolerance deviated by the standard deviation and 

is expressed as:

z = Z . = 2VÎ
cr

(3)

Truncated Normal Distribution

The probability density function of a component dimensional tolerance with 

a tnmcated normal distribution [Wu et. al., 1988] is represented by:

-, , 1.0478/(> ') = - 7= — exp 
V2;T(Tn -  -

fo r a < y  <P

Also, the mean n  has the value o f zero and the variance cr has

'dy
2̂ 0

rr- -  f . 1.0478 V-o  — #
Æ < t, 2UJ _

y

= cr; i - f .
4cr„

1
U<K2<t„) J

where <To = r/4 = standard deviation of the original normal distribution 

z = 4.547.

(4)

(5)

Weibull Distribution

The Weibull distribution is defined as:

y > Y



where y is the location parameter (-00 < y < 00), 5>0 is the scale parameter, and p>0 

is the shape parameter. The mean and the variance of the Weibull distribution are;

n = y sr

f 21 r .
2'

= s~ r 1 + — -  r I + —
1 P) I  P)

The values o f each parameter are given with respect to y = -(r/2), 5 = r/3, and P = 2. 

By inserting those values of parameters, Weibull probability density function is 

given by:

(6)

Also, the variance and the mean are represented by the following equations: 

<T‘ = - [r(2) -  r(li)‘ = 0.02384r- (<r = 0.1544r)

w -  r f 1 + -1  = -0.020459r
^  2 3 I  2 /

Then the deviation multiplier r  becomes by the definition as:

z = — = ---------- = 6.4760

(7)

a  0.l544r
(8)

Normal distribution

The probability^ density function o f the normal dimensional tolerance 

distribution is given by:



L i | ' z
1"

ĉr>
/ ( y )  = — exp 1 — (9)

And the mean, standard deviation, and deviation multiplier are also given by:

// = 0 CT = — z = 6 (10)
6

Eight tolerance analysis models have been discussed with comments as 

follows; Worst-case model. Statistical model, Spotts' modified model. Modified 

statistical model. Mean shift model, Monte-Carlo model. Moment model. Hybrid 

model.

(1) Worst-case Model

For the worst-case model [Peters, 1970, Chase and Greenwood, 1988], the 

assembly tolerance is the sum o f each component's tolerance and each component 

dimension has its maximum or minimum limit so that the assembly can get the worst 

possible limits. The model is represented by:

Ta = 'L ‘, (1 »
1=1

where Ta is an assembly tolerance, f, is the component tolerance, and n is the 

number o f components.

The worst-case model is simple and leads to the 100% probability of 

satisfaction on the specified assembly tolerance, but it has the disadvantage o f large 

value of resulting assembly tolerance. Also, the individual allocated component 

tolerances tend to be very tight for a given assembly tolerance.

10



(2) Statistical Model

The statistical model [Peters, 1970, Brooks, 1961, Chase and Greenwood, 

1988] expresses the root sum squared (RSS) of the component tolerances as follows:

n

z M li»i

Oj
(12)

where

Z = assembly deviation multiplier (6 for normal distribution)

Zi = deviation multiplier for the /**' component tolerance 

= 3.4641 for uniform distribution 

= 4.547 for truncated normal distribution 

= 6.4858 for Weibull distribution 

= 6 for normal distribution.

For the case of normal distribution with ±3ct range, the statistical model has 

a simple form with z,- = 6 and Z = 6 as follows:

<=i

0.5

Brooks [1961] demonstrated that the benefits of this model were “higher 

quality design through better fits and clearances, lower manufacturing cost through 

wider part tolerances, and less scrap and rework through use o f process controls”. 

Especially when the number o f  components is large, the statistical model has the 

smallest assembly tolerance with respect to other models.

11



(3) Spotts' Modified Model

Spotts [1978] presented the model with the average between the arithmetic 

and the normal laws as follows:

Z ' .  H Z '?
|«1 /  V ,a|

05

(13)

This model uses both the worst-case model and statistical model.

(4) Modified Statistical Model

The statistical model is generalized as [Chase and Greenwood, 1988] :

T,=CZ\
m ]

OJ
(14)

where

C = correction factor to account for any non-ideal conditions 

typical value 1.4 or 1.5 [Chase and Greenwood, 1988],

Z = deviation multiplier o f the assembly tolerance, and 

z, = deviation multiplier of the component tolerance.

“By using this model the assembly tolerance usually decreases, but it is 

sometimes larger than that of the worst-case model when a distribution with small z,- 

is used, unequalized tolerance chains are employed, or the number of component 

tolerances in the assembly is small” [Wu et. al., 1988].

(S) Mean Shift Model

12



Chase and Greenwood [1988] also proposed a different statistical model

such as

^  I (15)
1=1 [ 1=1 J

where

m, = possible range o f mean shift o f the ^  component tolerance expressed as a 

fraction o f its range.

The mean shift factor was defined as "a fraction of the specified tolerance 

range for the part dimension” [Chase and Greenwood, 1988]. For the normal, 

truncated normal, and uniform distributions, the value of mi takes zero and then the 

mean shift model becomes the simple statistical model. The value of 0.4092 is 

assigned for the Weibull distribution. Factors ranging between 0 and 0.8 have been 

suggested. It is not appropriate to adapt this model unless detailed data for the 

distributions is ftilly known, since an accurate value of m, is difficult to obtain at the 

early design stages.

(6) Monte-Carlo Model

By Monte-Carlo simulation, the upper and lower limits, Xmx and X^n, 

respectively, of the assembly tolerance range are determined and expressed as;

T , = ( X ^ - X ^ )  (16)

For the Monte-Carlo simulation, 99.74% of the simulated assemblies fall in this 

tolerance range and it corresponds to the ±3a range o f the normal distribution.

13



This model is appropriate for a skewed distribution, but not for the uniform 

distribution. The most significant advantage of this model is the reduction of the 

predicted rejection for all kinds of nonnonnal distributions [Wu et. al., 1988]. 

Monte-Carlo simulation is a very useful method to model complex situations such as 

tolerance analysis in actual assembly operations where the product and process 

accuracy should be considered simultaneously [Redford et. al., 1981].

(7) The Moment Model

The moment model used by Chase and Greenwood [1988] is considered as 

a simple form which has only the first two moments, and assembly tolerance is 

assumed to be distributed normally. The moment model has an assembly 

tolerance expressed as:

T , = { X ^ - X ^ )  (17)

where

^max — M a +  3D a,

^min — M a -  3Da.

Ma = 2’mt, and 

Da

The type of component tolerance distribution takes an important role in the 

reduction of the assembly tolerance. For instance, while using the Weibull 

distribution, the assembly tolerance evaluated by this model has a smaller value with 

respect to the statistical model

14



(8) Hybrid Model

The hybrid model has the same assembly tolerance model as with the 

moment model whereby;

X ^ = ^ M ,^ 3 D „ a n d  (18)

X „ in  = A / ^

but the assembly mean tolerance and standard deviation are different with it because 

Monte-Carlo simulation is first used to create 1000 sample assembly tolerance 

values Xi. They will be used to calculate the moments of the assembly tolerance 

distribution directly. Thus,

= O.OOl^Xp 
1-1

1 (19)

and =
r n A
0 .001^x ,.--M ^

The advantage of this model is a shorter run time than the Monte-Carlo 

model because smaller sample size (1000). But the hybrid model predicts larger 

rejects than the Monte-Carlo model. Published techniques are summarized and 

presented in Table 2.1 [Kumar and Raman, 1992].

15



Table 2.1. Summary of tolerance analysis techniques [Kumar and Raman, 1992]

No. Model Expression for 
Assembly tolerance

Notes

1 Worst-case model

2 Statistical model

3 Spotts’ modified model

n = S < ,
1=1

r ,= z
0.5

r ,= 0 3 Z ' .  h l S ' . ’1=1 /  1=1

0.5

4 Modified statistical model = CZ

6 Monte Carlo model

7 Moment model

8 Hybrid model

sfe)'
0.5

ti = Component tolerance 

Ta = Assembly tolerance 

n -  Number of components

/w, = Mean shift o f the 

component
n n

5 Mean shift model 7  ̂ = w,r,
i»l 1=1

0.5

Combination o f 6 and 7 above

X m ax =  Ma +  3Da 
X m in =  Ma — 3Da 
Ma = Mean o f assembly 

tolerance 
Da = Standard Deviation of 

assembly tolerance

16



2.3 Cost-Tolerance Functions

After the assembly tolerance model is chosen, and set within the required 

specification, an assembly cost function should be minimized to optimize 

component tolerances. Total assembly cost function is composed of two parts which 

depend on the tolerance values: a fixed part and a variable manufacturing part. 

Various mathematical functions have been presented to fit manufacturing cost- 

tolerance field data.

Wu et. al. [1988] examined the most firequently used Cost-Tolerance 

functions to compare their errors to the actual field data: Sutherland function, 

reciprocal square function, reciprocal function, exponential function, and Michael- 

Siddall function.

The relation between cost-tolerance function and sum o f error square which 

utilizes the nonlinear least square method to fit each function to the field data and 

estimate its parameters is given by:

« = <20) 

where e = sum of the error square,

/  = cost-tolerance function,

a = a vector o f parameters to be estimated for each C-T function, 

f i  = discrete value o f cost o f the f* component, and 

ti = tolerance o f the r* component.

The value o f e  should be minimized as an index o f good fit. The following 

are cost-tolerance functions proposed by various researchers.

17



First, Sutherland and Roth [1975] presented their cost-tolerance function at 

the n cost-tolerance pairs as follows:

/ = 6 r "  (21)

where the parameters a and b are given by

a =
_ Z Qn / ) ^ ( l n r , ) - ) ]  

Z ( ln y ; ) - a Z ( ln r , )
b = exp

n

n = number o f  cost — tolerance pairs 

This function fits the field data well, but shows large fitting errors in the case of tight 

tolerances.

Spotts [1973] used the reciprocal square function as a cost-tolerance function 

such as;

(22)

where

a =

Chase and Greenwood [1988] used the reciprocal function to estimate the 

cost-tolerance function which has a simple form with only one parameter. This 

function provides a reasonable fit to the field data, but is not recommended for 

tolerance allocation with the geometric programming method. The reciprocal 

function is presented as:

/  = y  (23)

18



where

a =

As a more comprehensive cost-tolerance function, Speckhart [1972] applied 

the exponential function as a nonlinear expression which showed a good fit with the 

field data next to the Michael-Siddall C-T function.

/  = aexp(-6r) (24)

where

a = exp(z)

■  Z '/

Also, Michael and Siddall [1981] adapted the following cost-tolerance 

function to minimize the total cost for assembly manufacturing.

/  exp(-^/) (25)

The constants in the function could be obtained by solving the following equations 

simultaneously;

z /i-A j^inf, = 2^iny;.,

zĵ lnr,. -6^(lnr,y -d^f.hir, = J l̂nf.ln/., 

a = exp(z)i

19



2.4 Tolerance Allocation Methods

Many authors have proposed various kinds o f tolerance allocation methods. 

Each method has its pros and cons, and has been applied to real manufacturing 

problems. To compare the tolerance allocation methods, Wu et. al. [1988] presented 

a case study where the total assembly tolerance was given as 0.05in., and which was 

to be allocated among five component tolerances while minimizing the total 

manufacturing cost.

The tolerance allocation methods considered were a proportional scaling 

method, constant precision method, Lagrange multiplier method, geometric 

programming method, discrete method, linear programming method, and nonlinear 

programming method. Among them, the proportional scaling method and the 

constant precision method are non-optimization methods and not cost-driven.

The exponential cost-tolerance function which is used for comparison o f 

various tolerance allocation methods was be expressed as:

/  = a . exp(- bjt), i = 1,2,3,... (26)

And the worst-case model was used to calculate the assembly tolerance due to its 

simplicity. The constraint function to be considered for the study o f tolerance 

allocation methods related the assembly tolerance to the individual components 

tolerance. The objective function is to minimize the manufacturing cost as:

Min C

Subject to < r
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where C = manufacturing cost,

T  = assembly tolerance, and 

ti = tolerance of the i"’ component.

(1). Proportional Scaling Method

The component tolerances are assigned by the process or product designer 

with a reasonable value at the first phase of design. Then, those tolerances are 

summed up and checked with respect to the specified assembly tolerance. If they do 

not meet the required tolerance, the designers scale the component tolerances by a 

constant proportionality factor to preserve the relative magnitudes of the tolerances.

Chase and Greenwood [1988] demonstrated this method to scale the 

component tolerances within a shaft and bearing assembly. The relations between 

the original component tolerances, and the scaled component tolerances, r„ are 

given by

1̂ 2̂ 3̂ 4̂

R='Z'-.< (27)

where R =  scaled assembly tolerance, and 

T  =  assembly tolerance.
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The proportionality or ratio factor, p, is used to set the values o f r,- and plays an 

important role in achieving favorable results. This method yields the highest 

average cost and maximum cost for production, but requires relatively short CPU 

time with the simplest formulation [Wu et. al., 1988].

(2). Constant Precision Method

Components machined to a similar precision have equal tolerances only if 

they are the same dimension. “As a components’ dimension increases, tolerance 

usually increases approximately with the cube root of dimension” [Chase and 

Greenwood, 1988]. If there exists a relation between the original component 

dimensions, and the scaled component dimensions, r„

d, d , dj d^

then, the z* component tolerance is obtained by the following equation [Wu et. al., 

1988] as:

j*  1/3

4 = 4 ^  (28)
S o "
/-I

The Proportional Scaling method requires an initial allocation for the 

component tolerances, but this method allocates the tolerances according to the 

nominal size of each component dimension. The maximum and average cost are 

high but lower than that obtained with the proportional Scaling method. Also, the 

CPU time is short and the formulation is very simple.
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(3). Lagrange Multiplier Method

If various dimensions in an assembly had different costs to produce, the 

Lagrange Multiplier method is very effective since it requires a short computer time 

to calculate the tolerances at the lowest manufacturing cost. Spotts [1973] presented 

the total cost Cv of an assembly as:

Cy = c, + c, + Cj + ...
(29)

where c, = total cost to produce the part,

k{/ti  ̂=Mi = cost to produce the part involved in the assembly, and 

Mi = all the remaining cost for the part.

The specified assembly tolerance ty is supposed to be allocated arithmetically 

among the part tolerances, then it is represented by:

= r , + ^ 3 = (30)

Also, Eq. (29) could be represented by the function of /, such as:

Ck ~  (31)

To minimize the total cost Cv subject to the resulting tolerances to be 

satisfied, the following relationships should be satisfied.
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^  + = Q / = 1 ,2 ,3 ,...
âl; a ,

(32)

where X. is a suitable multiplier that will cause all equations to be satisfied. 

Therefore, the total cost Cv will have a minimum with the part tolerances such as:

=
1 +

k,
' k Y"

i t
1/3

4- . . .

(33)

\ k ^ j

and so on.

The advantages of this method are its simplicity, shorter computer time with 

respect to other methods, and its capability to handle all the cost-tolerance functions 

except the Michael-Siddall relationship.

(4). Geometric Programming Method

The geometric programming method as designed to obtain least cost 

tolerances for an exponential cost model, by Wilde et. al. [1975]. The closed form 

derived was the same as that for the Lagrange Multiplier method, although the 

approach to derive the closed form was different.

The optimizing tolerances were acquired by the following form as:

-  r ,
T V«.r„

I — 1 ,2 ,..., /I (34)
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where z; = characteristic tolerance 

Ta = subassembly tolerance 

ti = semi tolerance of the t* component 

R„ = geometric means of the cost ranges

From the above equation, z; is a known constant called the characteristic 

tolerance, which plays an important role in the result. Normally, it is obtained either 

by nonlinear least squares curve fitting or as the negative reciprocal slope of the 

straight line obtained by plotting a variable cost versus the tolerance on 

semilogarithmic graph. The relation between the semitolerances and the 

subassembly tolerance were given as:

I ? ' '  ^  (35)
Z; > 0  / =  1, 2, . . . ,  /Z

Let Ra and ta be the geometric means o f the cost ranges r, and the 

characteristic tolerances, respectively. That is,

(3«)
1=1

= n k ) " "  (37)

where

r = Z < ,
1=1
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Like with the Lagrange Multiplier method, this method resulted in the lowest 

average manufacturing cost and a short CPU time. But only the exponential cost- 

tolerance fonction could be used.

(5). Discrete Method

Unlike the other methods which specified tolerances so that the assembly 

could function first and hopefully be the least expensive, this method guaranteed the 

true-position tolerancing with the least cost [Ostwald and Huang, 1977].

As discussed earlier in this chapter, the exponential cost-tolerance function 

was used as Eq. (25). In the Discrete method, the whole tolerance range on the 

function was segmented by discrete sections and the tolerance at each section was 

determined by the middle point in the section. There existed a corresponding 

discrete cost for a discrete tolerance determined this way.

The total cost, C, is represented by:

c  = j c ,  = j;C O SZ ti,* ,) (38)
1=1 1=1

where COST (i, kj) is a discrete cost of the z* part of an assembly and kf' discrete 

value on the exponential cost-tolerance function. The constraint function for this 

objective function is

r - X « ,  = r - 2 ; < ( * , ) a o  (39)

where t(kO is A discrete tolerance determined o f At* diserete value.

As the number o f discrete section increased, the computer time significantly 

increased, but reasonable tolerances could be acquired with small discrete sections. 

Though the average manufacturing cost and the computer time were high, this
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method had a simple formulation and could be applied to all kinds o f cost-tolerance 

functions.

(6). Linear Programming

On each cost-tolerance curve of the assembly, the optimum component 

tolerance was obtained within the surrounding region of the optimum according to 

the linearized cost-tolerance curve. The objective function to minimize the total cost 

was [Patel,1980]:

C = 'Z c ,( l ,)  (40)

where the ti and c, wee the tolerance size and manufacturing cost of the i"' linearized 

cost-tolerance curve. The constraint was given by the specified tolerance as:

^  ^  (41)

The most convenient algorithm to allocate the component tolerances was the 

simplex linear programming. As the segment size becomes smaller, the piecewise 

linearized function approached the continuous cost-tolerance hmction, and 

accordingly better optimum tolerances were acquired. Since this method used an 

iterative method, a longer computer time was needed.

(7). Nonlinear Programming

Because the cost-tolerance curve is actually a nonlinear function, more 

realistic tolerances can be obtained by nonlinear programming. But the formulations 

o f  the nonlinear programming are very seldom simple, and often longer computer
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time is required. The methods of the nonlinear programming which are widely used 

are the Hooke-Jeeves direct search method, random adaptive search method, David 

Fletcher-Powell method, Fletcher method, Jacobson-Oksman method, Powell's 

direct search method, simplex method, and reduced gradient method.

Lee et. al. [1993] provided a general framework for tolerance synthesis for 

nonlinear systems with multiple, dependent design constraints. Least-cost tolerance 

synthesis is mathematically formulated as a nonlinear programming (NLP) problem.

2.5 Tolerance Optimization for Process Selection

Besides methods to obtain the minimum manufacturing cost are methods 

that attempt an optimal selection of manufacturing processes during tolerance 

optimization.

Ostwald and Huang [1977] used the zero-one linear programming method 

for optimal selection of tolerances for a series o f dimensions. For each 

component, a set of cost associated with the different specified tolerance values is 

obtained. An integer programming model is formulated by use of zero-one 

decision variables that selects only one tolerance value available. A zero-one 

algorithm developed by Balas [1965] is used to solve this problem and obtain the 

optimum set o f tolerances for each component. The processes that correspond to 

these tolerances would then be used to manufacture the components for the 

assembly. However, if  there are a  total of N  discrete points and suppose x,y is the 

decision variable that selects the point for the part /. Using binary tree 

enumeration, the number of combinations o f the zero-one variable Xij to be
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evaluated would be of the order o f 2^. Using Balas algorithm the authors claim 

that for moderate to large designs, up to 2̂ ® in size, only 2% - 10% of the total 

number o f combinations need be evaluated. However, this method is useful only 

in the case of worst case stack-up of tolerances.

Lee and Woo [1989] present a branch and bound algorithm to solve the 

above mentioned discrete tolerance selection problem. The computation time for

this algorithm is much less, o f the order of psi (/ = /, 2 , ......N), where s, is the total

number of discrete points on the tolerance-cost curves for the component /. This 

algorithm guarantees an optimum solution under linear as well as nonlinear 

(statistical) tolerance stack-up conditions.

Chase et. al. [1990] have presented three new methods - exhaustive search 

technique, univariate search procedure and sequential quadratic programming 

(SQP) technique - for automatically selecting the most economical manufacturing 

process for each part dimension from a set o f alternative processes. In the 

exhaustive search method all the possible combinations of processes are evaluated 

and for each combination an optimization routine carried out to select the least 

value o f cost. For example, consider an assembly made of M components, each of 

these components having n, alternative manufacturing processes. Therefore, there 

are a total ofrii ^ rt2 x  nj ^ x wyv combinations to be evaluated. Each o f these 

combinations is solved as a separate optimization problem to get the optimal 

tolerances for that particular combination. After evaluating all the combinations, 

the solutions are compared and the one with the minimum objective cost value is 

taken as the optimal. Chase et. al. [1990] and Loosli [1987] have applied the

29



Lagrange multiplier technique to solve the non-linear optimization problem for 

each combination. With this type of procedure, the number of combinations to be 

evaluated increases geometrically with the number of parts and the number of 

processes.

Chase et. al. [1990] and Loosli [1987] also describe the univariate search 

problem. The number of combinations that had to be evaluated for a imivariate 

search procedure is much less than those for the exhaustive search technique. 

Specifically, for an assembly of N  components, with each part / having w/ of 

alternate processes, the number of combinations is / + n/ + n? + + ... + n s-N ,

In this method, an initial arbitrary set of processes, one for each part, is selected 

and Lagrange multiplier method is applied to allocate the tolerances. The 

objective cost value is determined by this combination. The first univariate 

search is performed by evaluating each of the alternate processes of one of the 

parts, while holding the processes constant for the remaining M-1 parts. Of all the 

alternate processes evaluated, the process, which yields the minimum cost value, 

is fixed for that part. Next, alternate processes are evaluated on the next part and 

in a similar manner the process that gives the minimum cost is fixed for this part. 

This method is repeated until all the part levels are evaluated. Loosli and Chase 

et. al. demonstrate the univariate search method with an example in which there 

are three components that make up an assembly. Out o f this, the first two parts 

have 2 alternate processes and the third has 3 alternate processes available.

To improve upon the above described univariate search technique and to 

obtain a better solution, Loosli [Loosli, 1990] proposed a continued univariate
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search method wherein starting from a current univariate optimum, the univariate 

search is repeated up to the point where there is no change in the process 

combination during the entire search. As each of the trial combination in the 

univariate search method is solved using the Lagrange multiplier technique, this 

imposes a limitation that boimded processes (processes defined only in a 

particular range of tolerance) carmot be handled. To overcome this difficulty, an 

“end-fixing” operation was performed by Loosli and Chase et. al. In this method, 

for each trial combination of the exhaustive search, tolerance allocation was 

performed without considering the process limits. Then for all parts whose 

tolerance values fell outside the limits, the tolerances were incremented (or 

decremented) in small steps. Keeping these tolerances fixed, tolerances on other 

parts were reallocated. This procedure was repeated till all the constraints were 

satisfied (i.e. all the tolerances allocated on each component fell within the 

specified tolerance limits).

In another method called the Sequential Quadratic Programming (SQP) 

technique. Chase et. al. use a non-linear optimization technique to solve a 

continuous optimization problem. This continuous optimization problem is 

different from the discrete optimization problem in that the binary coefficients x,y 

are no longer restricted to take a value of 0 or 7 but are allowed to vary 

continuously between 0 and 1. In other words an equation expressed by x,y = 0 or 

I is now replaced by 0 £  xy £ /  ( / = /, . . . ,  N  j  = 1, ... ,M). The intent is that 

the optimization procedure will drive each o f these binary coefficients to either a 

0 or 1 automatically rather than selecting a combination o f more than one process
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for any component. This is not true in all the cases and as such the SQP method 

does not always guarantee a feasible solution for all the problems. As pointed out 

by Zhang and Wang [1993], the SQP tended to select a combination of processes 

rather than selecting a single process to produce a single component for problems 

with non-overlapping curves or wide process ranges. With the analysis on 

different types o f problems, they also conclude that the SQP algorithm often fails 

to find a global optimum for moderate to large problems.

Simulated Annealing (SA) is one of the techniques used to solve this 

combinatorial problem which is NP-hard. The running time of any algorithm that 

would guarantee an optimal solution to this problem (like the exhaustive search 

technique) is an exponential function of the size o f the problem. SA is one of the 

heuristic approaches designed to give a good though not necessarily optimal 

solution, within a reasonable computing time. The SA algorithm was introduced 

by Kirkpatrick et. al. [1983] based on a model for simulating the annealing of 

solids [Metropolis, Rosenbluth, Rosenbluth and Teller, 1953]. Eglese [1990] 

describes the SA algorithm as applied to a combinatorial optimization problem. 

SA is a type o f local search algorithm that starts with an initial solution. A 

neighbor o f this solution is then generated (either randomly or by another 

mechanism) and the objective cost function value is evaluated. If the new 

solution is better than the current solution, the move (transition from current 

solution to the neighboring solution) is accepted and the current solution is 

replaced by the new one. However, to avoid getting trapped at a local minimtun, 

the SA algorithm sometimes accepts a neighborhood move which increases the
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value o f the objective cost function. The acceptance or rejection of an uphill 

move is controlled by a certain probability. The probability of accepting a move, 

which causes increment d in the objective function f, is normally set to exp(-d /  

kT) where F is a control parameter and A: is a constant. This implies that small 

increases in /  are more likely to be accepted than large increases and that when T 

is high most moves will be accepted, but as T  approaches zero most uphill moves 

will be rejected. In SA the algorithm is started with a relatively large value o f T, 

by attempting a certain number o f neighborhood moves at each temperature, 

while the temperature parameter is gradually dropped. The different simulated 

annealing algorithms as applied to the discrete tolerance optimization problem 

differ in the move used to generate a neighborhood state, or in other words how a 

neighbor is defined.

Cagan and Kurfess [1992] describe two simulated annealing based 

approaches to determine the tolerance on each component, as well as its 

manufacturing process, in an assembly. The tolerance-cost relationship used is of 

the reciprocal type given by

C, = + B,
(A,-A),

where Q  is the cost of manufacturing component /,

D, is the tolerance allocated on component /, and 

Ki, A{, B, are component specific parameters.

In the first approach, a random combination of processes for each 

component is selected. If this combination is feasible (all the constraints are
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satisfied), an optimization technique is applied to obtain the optimal tolerances for 

each component for the selected set of manufacturing processes. Then another 

feasible state is generated by using another random combination of processes for 

each component and the optimal solution is obtained for this state. If this solution 

is better than the current one, it is accepted. If not, the solution might be accepted 

or rejected based on certain probability as described earlier. These steps are 

repeated till the temperature T is reduced to zero (i.e. the probability of accepting 

an uphill move becomes zero). The best solution obtained in all the trial 

evaluations is recorded, which may not necessarily be the global optimum. 

However, statistically if the algorithm is run for sufficient time it is likely to have 

found the optimal state. This algorithm can deal with nonoverlapping process 

limits.

In another approach, Cagan and Kurfess [1992] first start with an initial 

feasible solution, then randomly generate new tolerances in the neighborhood of 

the first n-1 components with the final component assigned the remaining 

available tolerance range. Based on the tolerance selected for each component the 

cost function for each component is evaluated and total cost of assembly is 

obtained. Based on the annealing technique this new solution is accepted or 

rejected. Termination is achieved when the temperature reaches zero and the 

best-recorded solution is taken as the final answer.

Cost-based analysis on process selections and determination of target 

process capability indices was conducted by Vasseur [1994] emphasizing the need 

to allocate tolerances and select manufacturing processes concurrently. He had
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shown that an optimum process selection was not compatible with the decision to 

impose uniform process capability indices for all processes. He cited as “process 

selection is best performed by taking into account the characteristics of the part 

manufactured as well as that o f the final product considered.” He counted the 

characteristics such as measurement uncertainty, inspection cost, and inspection 

delays as hindering conformance verification.

Zhang and Wang [1993] have coded and compared the simulated 

annealing technique to solve the discrete tolerance optimization model, with the 

SQP method on a range of problems. The SA algorithm which they used differs 

in that a move from the current configuration to the neighboring configuration. A 

move comprised of a random increment in the tolerance values on each 

component and a process selection combination after one move. The authors 

conclude that the SA algorithm is robust and effective for solving a wide variety 

o f the discrete optimization problems whereas the SQP method is only applicable 

for a small range of problems. Although the SQP was foimd to be more efficient 

for smaller problems that have narrow process precision limits and overlapping 

cost curves, the SA algorithm often provided global or near-global optimum 

solutions for complex discrete optimization.

Process approximations have also been applied by Nagarwala et. al. 

[1995]. They used a slope-based (SB) method for tolerance optimization and 

process selection. After defining tolerance-cost curve using the process 

tolerance-cost curves for each component o f the assembly, the optimal solution 

for the cost-effective process with the associated tolerance value was obtained
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using the SB method. They tested the SB method with test problems and obtained 

global solution or near-global solution. Kim et. al. [1999] developed the 

algorithm to obtain the least cost tolerance allocation for a bi-criteria optimization 

problem. Through the slope-defined investigation for the cost and tolerance, the 

optimal process selection was conducted by minimizing both the cost and 

tolerance. A similar approach to these is used in solving the bi-criteria problems 

in this dissertation.

Process selection in the above context is largely the selection of a simple 

process / component. Process planning is however more detailed in the sense that 

each component is manufactured through a combination o f multiple processes / 

operations.

2.6 Process Planning

Process planning is defined as, “the function within a manufacturing 

facility that establishes the processes and process parameters to be used (as well 

as those machines capable of performing these processes) in order to convert a 

piece-part from its initial form to a final form which is predetermined (usually by 

a design engineer) on a detailed engineering drawing” [Chang and Wysk, 1985)].

Alternate process plans are defined as a set o f process plans where each 

plan is capable of completing the machining activities required for a part, based 

on the availability of resources such as machines, cutting tools, and part fixtures, 

in a specific production environment. Alternate process plan may be used in 

several ways in a production system. Simulation and analytical models of
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production systems having alternate process plans permit flexibility in scheduling 

jobs in the system [Khoshnevis and Chen, 1990, 1993]. This flexibility allows the 

scheduler to perform functions such as balancing of workload on machines and 

routing of jobs to avoid bottleneck machines. Disruption in the production system 

due to machine failures, sudden changes in demand, and arrival of “hot” jobs, can 

be handled better by using alternate process plans for reactive rescheduling [Foote 

et. a l, 1993]. The selection of a specific process plan is usually based on multiple 

factors that include typical shop practices, processing times, processing costs, 

tolerance stack-ups, and work-piece deflections.

Process planning is an essential function within a discrete part 

manufacturing facility. Recent literature in process planning comes from the area 

of Computer Aided Process Planning (CAPP). CAPP approaches are classified 

into three categories: (i) variant process planning, (ii) generative process planning, 

and (iii) semi-generative process planning. Several knowledge-based and AI- 

based approaches have been used in CAPP for feature extraction, precedence 

representation, process selection, and sequencing.

2.6.1. Variant Process Planning

In variant process planning, the process plan for a new part is created by “recalling, 

identifying, and retrieving an existing process plan for a similar part, and then 

making the necessary modifications for the new part” [Alting and Zhang, 1989]. 

The principles o f  Group Technology (GT) are used for process planning, in this 

approach. Usually, a part family or a group o f part families has a standard plan

37



called a master plan. The process plan for a new part is obtained by retrieving and 

modifying the master plan o f its part family.

A structured procedure for variant process planning is given by Chang and 

Wysk [1985] and Chang et. al. [1991]. The procedure for setting up a variant 

process planning system (preparatory stage) and for developing the process plan 

for an incoming part (production stage) is discussed. The preparatory stage 

involves coding of existing part drawings, formation of part families, and 

development of master process plans for each part family. The production stage 

involves coding of an incoming part, part family search, retrieval of master plan, 

and plan editing.

MIPLAN is a variant process planning system developed around 1976 

[Alting and Zhang, 1989]. MIPLAN has been modified to a new process 

planning system called MultiCapp, based on the MULTI-IL GT scheme. A 

typical route sheet produced by the MultiCapp system is shown by Groover 

[1987]. CAPP is a very popular variant process planning system that was 

developed aroimd the same period as MIPLAN [Link, 1976; Tulkoff, 1978]. It 

comprises of an extensive database from which process plans can be retrieved 

based on GT methods. A more recent variant process planning system is 

MICRO-CAPP [Wang and Wysk, 1986]. It is limited to rotational parts and uses 

the KK-3 coding scheme. Alting and Zhang [1989], and Chang and Wysk [1985] 

review some of the other variant process planning systems.

2.6.2. Generative Process Planning
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Generative process planning works by creating the process plan based on 

logical procedures that a human process planner would use to convert the part 

from raw material to finished state [Groover, 1987]. In such an approach, 

“processing decisions are made based on decision logic, mathematical formulae, 

technology algorithms, and geometry based data” [Alting and Zhang, 1989]. In 

its ideal form, a generative process plan is obtained by extracting geometric data 

from a CAD file and then creating the process plan without any manual 

intervention.

The basic principles involved in generative process planning is described 

by Chang and Wysk [1985], and Chang et. al. [1991]. APPAS [Wysk, 1977] is 

one of the earliest generative process planning system, and is limited to prismatic 

parts. AUTAP [Eversheim and Holz, 1982] is a popular generative process 

planning system with a CAD interface. In conjunction with AUTAP-NC, it has 

the capability of generating part programs. Alting and Zhang [1989], and Chang 

and Wysk [1985] review several other generative process planning systems.

2.6.3. Semi-Generative Process Planning

The semi-generative approach is “a combination o f the variant and the 

generative approaches for process planning” [Alting and Zhang, 1989]. An initial 

process plan is developed by variant or generative procedures. This initial plan is 

modified manually to obtain the final process plan for the part. Joshi et. al. 

[1994] give a detailed description of the design, development, and implementation
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of a semi-generative process planning system. Alting and Zhang [1989] review 

some of the semi-generative process planning systems.

2.6.4. Interpretation of Design Data

In many generative process planning systems, the first step is the 

interpretation of design data. A true generative process planning system should 

be capable of interpreting data from a CAD file. This is an area of ongoing 

research and there are several techniques given in the literature. Many of them 

are limited by the types o f parts that are permitted or the nature of design 

representation in the CAD file.

Shah [1991] reviews three distinct methodologies that are prevalent for 

creating feature models for parts: (i) interactive definition, (ii) automatic 

recognition, and (iii) design by features. Of these, automatic recognition is the 

most popular method for CAPP. Wang and Wysk [1988] present an algorithm for 

automatic identification of machined surfaces on symmetric rotational parts. This 

algorithm is implemented on a wireframe model generated by AutoCAD. Yeh 

and Fischer [1991] use automatic recognition o f features from Initial Graphics 

Exchange Specification (ICES) in the AMOPPS generative process planning 

system. Cho et. al. [1994] illustrate a procedure for identifying geometric entities 

and for forming primitive features from a Drawing Exchange Format (DXF) file. 

Two very important challenges in past feature recognition and interpretation exist 

in tolerance representation & transfer; and manufacturing precedence 

representation.
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2.6.5. Precedence Information Representation

Precedence constraints between machining activities must be satisfied for 

generating feasible operation sequences. Several methods for obtaining and 

representing precedence information are seen in the literature. Prabhu et. al. 

[1990] use a datum table for representing precedence information between 

machining operations.

Yeh and Fischer [1991] use a fixed precedence relationship which does 

facing, then turning, and finally grooving operations. In a similar approach. 

Smith et. al. [1992] use a fixed hierarchical sequence for obtaining feature 

precedence for sheet metal parts in the FCAPP/SM process planning system. In 

expert system and Ai-based approaches, the precedence information is predefined 

in the rule base [Alting et. al., 1988]. The limitation of such procedures is that the 

precedence information is fixed and cannot be made part-specific. There is no 

flexibility for adding or removing precedence relationships that are often required 

to represent the true nature of the machining activity. Moreover, an “optimal” 

process plan for a specific part need not follow the fixed precedence relationship.

Irani et. al. [1995] restrict specific predecessor-successor relationships 

among part features by means of high penalty costs. This procedure can prevent a 

feature from immediately following another feature i.e., FI-F2 can be prevented 

by making it a high penalty transition. However, it cannot always prevent the 

latter feature from following the former feature at a later stage as in F1-F3-F2, 

and FI-F3 and F3-F2 may be low penalty transitions. Also, the procedure for
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finding such predecessor-successor relationships have not been investigated in 

their work.

In graph theory, a precedence graph is a very popular method for 

representing precedence relationships. Lee et. al. [1994] illustrate a simple 

precedence graph. Such a graph defines the set of activities (nodes) that must be 

completed before the start of other activities. The information represented by a 

precedence graph is similar to that represented by the datum table suggested by 

Prabhu et. al. [1990]. This is illustrated in Table 2.2, which is the datum table for 

the precedence graph shown in Figure 2.2. Precedence graphs are limited by the 

fact that mutually exclusive precedence relationships of the form “A precedes B 

OR C precedes D” cannot be represented.

Table 2.2. Datum Table

Surface Datum

1 2

2 -

3 2,4

4 2,1

5 2
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Fig. 2.2. Precedence Graph

The limitations o f precedence graphs can be overcome by the use of 

AND/OR graphs. De Mello and Sanderson [1986] use AND/OR graphs for 

assembly sequence planning. This procedure is adopted by Mettala [1989], and 

Mettala and Joshi [1993] for representing precedence information for process 

planning. However, the procedure for obtaining precedence information from a 

design drawing for representing as an AND/OR graph is not discussed in most 

works. Also, unlike a datum table, it is not possible to represent any arbitrary set 

of precedence relationships in the form of an AND/OR graph.

Cho et. a/. [1994] is one o f the new works that describe an orderly 

procedure for obtaining precedence information from a CAD file. The design 

information in standard DXF file is converted to an AND/OR graph of primitive 

features based on feature precedence. This is later converted to an AND/OR 

graph o f machining tasks. However, the representation of precedence information
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is purely based on the location of a particular volume o f material with respect to 

other volumes of material within the part. It has no means of incorporating 

precedence relationships that occur due to factors such part dimensioning, work

piece location, shock loading o f tools, thickness limitations, and standard 

practices that come naturally to a experienced machinist. Further, the precedence 

relationship is developed for a single machine case with single tool approach 

direction.

Korde et. al. [1992] use a feature-precedence graph (PPG) to represent 

precedence information. The precedence information is obtained by identifying 

resource independent constraints such as accessibility constraint, non-destruction 

constraint, and required-holding constraint on the part features.

More information on precedence representation is available in Mani 

[1996]. Some tolerance representation details are worked in Kumar and Raman 

[1992].

2.6.6. Preferred Sequences and Alternate Sequences

The use of alternate process plans has been illustrated in various research 

works. Foote et. a i  [1993] have proposed alternate process plans for 

rescheduling in the face of disruptions in the production system such as machine 

breakdowns, changes in demand, and arrival of “hot” jobs. They have also 

proposed using alternate process plans for proactive scheduling. Khoshnevis and 

Chen [1990] and Chen and Khoshnevis [1993] have integrated alternate process 

plans with scheduling functions and have noticed improvements over traditional
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methods of process planning and scheduling. Lenderink and Kas [1993] have 

used alternate process plans in developing an integrated planning system called 

PART.

There is very little literature available on formal procedures for developing 

alternate process plans. Prabhu et. al. [1990] present an efficient method for 

generating all feasible operation sequences for a part without enumerating all n! 

sequences and checking each sequence for feasibility. They use a recursive 

relationship for developing an out-trees structure where each branch in the out- 

tree is a feasible operation sequence. No procedure is suggested for evaluation of 

the operation sequences and finding a preferred sequence. Ben-Arieh and Kramer 

[1994] present a similar procedure for generating all feasible assembly sequences 

of a part.

The liberalization of a feature-precedence graph (FPG) to a state-transition 

(ST) graph by Korde et. al. [1992] generates all feasible process plans for a part. 

The ST graph is pruned by identifying certain resource independent constraints. 

It is suggested by Korde et. al. [1992] that a cost function based on certain 

optimality criteria be used for identifying a preferred process plan.

Smith et. al. [1992] use a network approach for finding a preferred 

machine sequence for sheet metal parts. An acyclic diagraph is developed where 

each level in the graph corresponds to a feature and contains all machines capable 

o f producing that feature. Each arc in the diagraph represents the cost of 

transportation between the machines. Dijkstra’s algorithm [Ahuja et .al., 1993] is 

then used for obtaining the least cost machine sequence between start and end
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nodes. This method is very good for sheet metal operations since the diagraph 

can be developed based on a fixed feature precedence relationship 

(hoies->slots->bends.). In process planning for machining, this procedure can be 

adopted only by fixing the operation sequence and then determining a least cost 

machine for the operation sequence. This restriction may prevent the “optimal” 

machine sequence from being determined.

Irani et. al. [1995] perform a constrained enumeration o f feasible 

Hamiltonian Paths using the Latin Multiplication Method [Gibbons, 1985]. These 

paths are then evaluated based on penalty costs for machine changes, set-up 

changes, tool changes, and parameter changes. This procedure has the 

shortcoming that some of the generated sequences could end up being infeasible 

because of limitations in precedence information representation.

Cho et. al. [1994] describe a formal procedure for converting a CAD 

model of a product to a hierarchical set of process plans. Wysk et. al. [1995] and 

Lee et. al. [1994] illustrate how these process plans can be used for shop floor 

control function. By maintaining alternate process plans as AND/OR graphs, they 

are useful for making online decisions at a shop level, workstation level, and 

equipment level [Joshi et. al., 1990]. A good process plan is chosen from the 

alternatives in real-time, depending on the condition of the shop floor. Since 

AND/OR graphs are used for representing alternatives in these works, there are 

certain limitations.

2.7 Multi-Criteria Optimization Problem
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In engineering problems, the need for formulating a design with several 

criteria or design objectives is quite common. If there are opposing objectives in 

the formulation, the problem should be solved to find out the best possible design 

with satisfying opposing objectives and the subjective constraints. This type of 

problem is known as either a multi-objective, multi-criteria, or a vector 

optimization problem and can be defined as follows (Osyczka, 1985): “A vector 

o f decision variables that satisfies constraints and optimizes a vector function 

whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria that are usually in conflict with 

each other. Hence, the term "optimize" means finding such a solution that would 

give the values of all the objective functions acceptable to the decision maker.” 

As an example, in the design of an automobile an engineer may wish to maximize 

crash resistance for safety and minimize weight for fuel economy. This is a multi

objective problem with two opposing objectives, and thus a step towards 

improving one of the objectives, increasing crash resistance, is a step away from 

improving the other, increasing weight.

2.7.1 History and Background

Lebnitz and Euler used infinitesimal calculus to find the extreme values o f 

functions. This made it possible for pioneers such as Newton to study various new 

fields o f physics and mechanics. A French-Italian economist named Pareto 

developed the principle o f multi-criteria optimization for use in economics. His 

theories became collectively known as Pareto's optimality concept. While having
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several objective functions, the notion o f “optimum” changes, since trade-offs are 

sought rather than a single solution as in global optimization.

2.7.2 Pareto Optimality [Coello, 1999]

We say that a vector of decision variables x ' e  F  is Pareto optimal if 

there does not exist another x e  F  such that f;{x) < f { x  ) for all / = 1, . . . , A: 

and / fix )  < f i ix  ) for at least one j .

It is expressed as x is Pareto optimal if there exists no feasible vector o f 

decision variables x e F  which would decrease some criterion without causing 

a simultaneous increase in at least one other criterion. We do not always obtain a 

single solution, but rather a set o f solutions. It is called the Pareto optimal set.

The vectors x corresponding to the solutions included in the Pareto optimal set 

are called non-dominated. It is also called as an efficient solution, and defined as 

“A feasible solution is efficient if there is no other feasible solution which is 

better with respect to every criterion.” [Coello, 1999]. The plot o f the objective 

functions whose non-dominated vectors are in the Pareto optimal set is called the 

Pareto front.

A Multiple-Objective (MO) optimum design problem is solved in a 

manner similar to the Single- Objective (SO) problem. In a SO problem, the idea 

is to find a set o f values for the design variables that, when subject to a number o f 

constraints, yield an optimum value o f the objective (or cost) function. In MO
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problems, the designer tries to find the values for the design variables that 

optimize the objective functions simultaneously. In this manner, the solution is 

chosen from a so-called Pareto optimal set. In general, for multi-objective 

problems the optimal solutions obtained by individual optimization of the 

objectives (i.e., SO optimization) is not a feasible solution to the multi-objective 

problem. Multi-criteria mathematical programming handles the deterministic 

criterion with infinite alternatives.

It is worth to trace the path of emergence and development of methods and 

techniques to solve the multiple-criteria optimization problem. There are several 

useful books that explain principles and tools for multi-criterion decisions such as 

Multiple Criteria Optimization [Steuer, 1966], Muiticriteria Decision Making 

[Zeleny, 1982], and Multiple Objective Decision Making and Application 

[Hwang et. al., 1979]. The problem of multiple criteria in linear programming 

was also tackled by Kuhn and Tucker (1951), and later by specialists in 

operational research such as Hitch (1953), Klahr (1958) and several others.

Linear Programming method for Multi-dimensional Analysis of 

Preferences (LINMAP) was introduced by Srinivasan and Shocker [1973]. The 

method was based on the paired comparison between alternatives. After ranking 

and weighting procedures, the objective is obtained suitable to the decision 

maker. Goal programming method was introduced by Chames and Cooper 

[1961]. They solved the problem of multicriterion choice in linear programming 

by a  search for a solution at minimal distance from a multicriterion goal, generally
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non-achievabie, set by the decision maker. The first applications quickly 

demonstrate the GP interest in a number of areas (Chames et. al., 1963, 1968). 

Later, numerous variants and a number of impressive applications followed 

(Chames and Cooper, 1977). Zanakis and Gupta (1985) and later Romero (1986, 

1991) and Schneideijans (1995) have itemized hundreds of papers dealing with a 

wide range of problems.

The most decisive element of the eighties was the introduction of 

computer methods in to multicriterion decision making. By 1970, interactive 

methods were proposed; the main novelty was the ease with which they could be 

installed and the fact that the tasks which computers and microcomputers were 

now capable of performing had a powerful influence on the design of methods 

[Sadagopan et. al, 1982, 1986; Wallenius, 1975; Zionts et. al, 1976, Shin et. al. 

1991]. Steuer [1977] used the Interval Programming to generate a cluster of 

efficient solutions with the number of 2p+l where p is the number o f criteria. 

Also Geof&ion et. al. [1972] applied the interactive method to the operation of an 

academic department. More information about multi-criteria optimization 

problem could be obtained through the reference survey of Coello [2002].

2.8 Cost and Time Analysis and Recent Literature

With respect to the cost-tolerance analysis, there are few approaches which 

discuss cost-time analysis. Bukchin and Tzur [2000] proposed an optimal and a 

heuristic algorithm for the problem o f designing a flexible assembly line when 

several equipment alternatives are available. Its objective was to minimize total
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equipment costs, given a predetermined cycle time (production rate). They did not 

relate the time factor to the tolerance analysis, but used the time factor for getting the 

equipment cost which resulted in obtaining the manufacturing cost.

A new method. Cost Tolerance Sensitivity Analysis (CTSA), of determining 

which features are critical and non-critical early in the design phase when cost 

information is uncertain, was presented by Gerth and Pfeifer [2000]. They used 

minimum cost tolerancing methods combined with designed experiments to 

determine which features are sensitive or insensitive to uncertainties in the cost- 

tolerance curve estimates.

They did not use ANOVA tool to analyze, and concluded that one cannot 

determine the critical dimension critically based on the stack up function alone, nor 

based on the processing costs. The most difficult aspect of the methodology is 

obtaining cost tolerance information. Therefore, the research area of how cost 

tolerance information should be structured, obtained, organized, and disseminated 

should be emphasized. With this point of view, cost tolerance and cost time analysis 

are critical to manufacturing industry.

Using analytical and mathematical approaches, it is not possible to quantify 

and transform these imprecise and subjective criteria and random factors into proper 

input variables in the cost estimation model. Therefore, Jahan-Shahi et. al. [1999] 

used fuzzy sets probability distribution approaches to tackle the problem of 

uncertainty in cost estimation in order to generate reliable cost estimates in flat plate 

processing industry. They suggest that application of fuzzy approach can overcome
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the limitations of traditional mathematical formulations of cost estimation 

relationships.

In general, literature does not provide any optimization models that attempt 

to study tolerances under both time and cost constraints. However, such an analysis 

will be particularly useful in cases such as selective assembly. In selective 

assembly, assembly allowances are maintained at the expense of component 

tolerances. This can cause time expenses in sorting and pairing.
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Chapter 3 

Mathematical Formulation

3.1 Introduction

The main interest for designers and manufacturers is to manufacture an 

assembly with the least cost and the most reliable tolerance within a given time 

period. Many researchers and scholars devote themselves to determine the 

relationship o f cost-tolerance and cost-time to obtain the least manufacturing cost. 

To accomplish a company’s expected pro Ills in a last changing market, the least 

cost-tolerance-time model and optimal manufacturing processes should be 

considered. Most o f  the models that have been developed and applied to the real 

manufacturing fields deal with only the cost-tolerance relation to achieve their 

goals.

In the continuously fast-changing modem market, time plays an important 

role in reducing the total manufacturing cost and in meeting deadlines. 

Sometimes customers want to hasten the normal manufacturing time for their 

special occasions, and/or manufacturing lines require more llcxible tolerance 

range to meet their equipment conditions. In such cases, it is important to 

consider time in addition to cost and tolerance. It is the primary objective o f this 

research to develop an optimization model based on the cost-time-tolerance 

relation. Further, this research seeks to evaluate, qualitatively the selection o f 

manufacturing processes to meet time and cost objectives.
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3.1.1 Primary Objective

The least cosl-loierance-time model for an optimal manufacturing process is 

considered. The objective o f this study is to determine a mathematical model for 

integrating the influences o f  manufacturing cost and total manufacturing time to 

assembly in the determination o f  tolerances. There exists the tradeofTs between the 

cost-tolerance relationship and the cost-time relationship to obtain the best quality, 

the least cost, and delivery o f the most competitive product on time to the customers 

or markets. By considering the tradeoffs between factors, the most optimal process 

should be presented to the decision-maker for choosing the final process in 

accordance to his or her priorities. The mathematical Humiliation is a multi-criteria 

optimization model to minimize the total manufacturing cost, the total 

manufacturing time to assemble a final product, and the total assembly tolerance.

3.1.2 Overview

There are three key factors to be considered which are time, cost and 

tolerance. Each model has a bi-criteria optimization problem with one factor as a 

constraint form. For instance. Model I has two objective functions. One is a 

minimization o f  time, the other is a minimization of cost. In this case, the other 

factor, tolerance, is given as a constraint with allowable ranges. A mathematical 

formulation with two objectives and a set o f constraints provide a series o f 

effective solutions to get the most optimal solution. By using a computer code, 

every effective solution could be obtained through a full enumeration. In this
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research, a new algorilhm is proposed, and it would extract many solutions 

without a full enumeration within an efficient computer amning time.

The algorithm developed gives not only the guarantee to get a set o f 

effective solutions comparable in speed to published algorithms, but also, the 

general understanding o f the manufacturing process fitted to the customer’s 

special requirements.

3.2 Mathematical Models

3.2.1 Road to the general problem

Let's consider an assembly with N  components. Let T be the desired 

assembly tolerance value. For each component i, it is assumed that », many 

processes are available. Let c,y and r,y be the tolerance-related manufacturing cost 

and the achievable tolerance value for component i with process j  respectively. 

The decision variable .Vy is a zero-one variable taking the value o f  one if  process j  

is selected for the component and zero otherwise. The mathematical model for 

selecting the best process sequence can be defined as follows:

[M l] Min (3.1)
1=1 /=!

N  n.

St. (3.2)
i-\ y=i

E  fy = I fo r  i = U 2 , . . . , N  (3.3)
/=!
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-v,y={0,l} (3.4)

where / =  Index o f the eoniponent (i =  1,2 N)

j  = Index o f the proeess (/ = 1,2......./»,)

{I i f  component I is produced in process j  
0 otherwise

Cij = Normal manufacturing cost

when component / is produced in process j  

t- = Tolerance when component / is produced in process j

r =  Total tolerance 

C = Total budget.

The above model assumes the worst case tolerance staek-up which simply 

adds the tolerances selected to determine the Hnal assembly tolerance. Chase et 

al. (1990) investigated zero-one search and concluded that it is impractical. 

Then, three new methods (exhaustive search, univariate search and sequential 

quadratic programming) were proposed. For the deterministic integer 

programming, Kusiak and Feng [1995] presented three examples - single loop 

dimensional chain, multiloops dimensional chain with large number o f component 

dimensions, and integer programming formulations. In order to adapt to the 

nonlinear case, they used experimental design method and Taguchi method. 

Balakrishnan [1993] presented the shortcomings of three methods proposed by 

Chase et al. [1990] and modified the mathematical fomiulation expressed above 

to be suitable for a multiple-choice knapsack model. Then he employed the
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branch and bound algorithm in Sinha and Zoilncrs [1979] to solve the problem. 

However, these approaches are suitable only for the single objective case.

According to T  value, a desired assembly tolerance which is pre-specified 

may be o f  interest for the decision maker to see how much additional cost will be 

incurred in order to select the best process sequence with the next least final 

assembly tolerance. In fact, one may be interested in the following bi-criteria 

(cost and tolerance) integer programming problem.

[M2] (3.5)
(=1 /=i

(36)
|e| /»!

(3.7)
1=1 y»i

Z   ̂ / o r  i = 1 ,2 ,..., M (3.8)
. /= i

-r..= (0 ,l}  (3.9)

By using a simple algorithm called slope-based method with some 

conditions, all efficient solutions could be generated for M2 problem. Besides 

cost and tolerance to figure out the manufacturing scheme in real fields, there is 

one more criteria to consider which is the time component.

Let lÿ be the completion time related to the assembly cost and 

corresponding tolerance value for component / with process j .  The multi-criteria
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optimization problem for the cost, tolerance, and time could be expressed as 

follows:

[M3] Min X X c .-V , (3.10)
1=1 /=!

Mm (3 II)
1=1 /= l

■V « ,

Min (3.12)
l»l /=l

s.t.  S  ' = 1,2.......N  (3.13)
/ = !

.v,y={0,l} (3.14)

The formulation [M3] would be an optimization problem  to obtain the 

most efficient process with decision factors such as cost, time, and tolerance. 

This is a three criteria integer programming problem. Eqs. (3.10), (3.11), and 

(3.12) represent minimization o f  total manufacturing cost, minimization of total 

assembly tolerance, and minimization o f total manufacturing time to assemble o f 

the final product, respectively. If the total assembly tolerance is known, the 

problem [M2] becomes the problem [M l] with a single objective function by 

using the constraint method. By the same reasoning, the problem [M3] becomes a 

bi-criteria integer programming problem which contains manufacturing cost and 

manufacturing time to assemble as objective functions and assembly tolerance as 

constraint.
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3.2.2 Model I : Cost-Time Model

As stated above, the problem [M3] becomes a bi-criteria integer 

programming problem with a fixed assembly tolerance value T. Minimization of 

total manufacturing cost and Minimization of total manufacturing time to 

assemble as objective functions, is expressed as follows;

Mm (3 15)
(=1 ĵ \

,V " ,

Mm (3 16)
t I /--I

(3.17)
(=1 >1

= 1 f o r  , = 1 ,2 ,...,7V (3.18)
y» I

r,y = {0,l} (3.19)

With this model, a relationship between cost and time will be found within

a predetermined tolerance and also will be discussed with respect to the three

factors that affect process planning and selection. After obtaining the relationship 

between cost and time, if  we set the manufacturing time to assemble as a fixed 

value, within allowable value o f  tolerance, a model that shows the relationship 

between cost and tolerance should be obtained.
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3.2.3 Model 2: Cost-Tolerance Model

In the model 1, total assembly tolerance was fixed to obtain the efficient 

solutions, but in the model 2, we set a total manufacturing time to assemble as 

a fixed value. From the formulation [M3], the minimization of total 

manufacturing cost and minimization o f total assembly tolerance are set as the 

objective fimctions. Therefore, the mathematical formulation for the model 2 

could be expressed as follows:

Min (3.20)
i-i y-i

Min (3.21)
i»i y-i

s.t (3.22)
i»i y-i

^  Xy = 1 fo r  i = 1,2,... (3.23)
y-i

x^ = {0,l} (3.24)

3.2.4 Model 3:Tolerance-Tiine Model

The relationships between cost and time, and between cost and tolerance 

are discussed by models 1 and 2. The one that should be discussed is a 

relationship between time and tolerance. In this case, a manufacturing cost is 

fixed as a constraint, and the minimization o f total assembly tolerance and total
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manufacturing time to assemble are set as objective functions, and it is expressed 

as follows:

i«i y=i

Min (326)
1=1 y=i

s i (3.27)
1=1 y-i

^  x,y = 1 fo r  f = 1,2,...,AT (3.28)
y-i

AT; ={».!} (3.29)

Between these three models, the nature o f relationship between the 

tolerance, time, and cost is handled. For instance, while manufacturing cost 

increases while tight tolerances are specified, the manufacturing time reduces due 

to better accuracies: when the manufacturing cost reduces, the assembly cost 

(time) goes up. Thus, we have arrived at a first modeling scheme to describe the 

tolerance, time, and cost trade-offs in a practical setting.
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Chapter 4 

Solutions Approach

For each model developed in the preceding chapter, the algorithms leading to 

efficient solutions are developed and presented here. In each section, algorithms are 

developed and explained to obtain the efficient solutions with step-by-step 

procedures. The typical cost-versus-tolerance function and cost-versus-time 

function are presented in Figure 4.1

a
to
Ô

Tolerance Time

Figure 4.1 Typical Cost vs.Tolerance and Cost vs.Time Function

4.1. Cost-Time Model (Model 1)

The cost-tolerance function in the literature [Chase et. al. 1990] shows that 

cost is increasing as tolerance decreases, hi project management applications, the
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relationship between cost and time is o f similar nature as the relationship between 

cost and tolerance in the tolerance allocation problem (i.e., cost is increasing as 

manufacturing time decreases). In real situations, the more the manufacturing 

cost, usually the less assembly time to assemble is required and / or the more 

tightened assembly tolerance is obtained. There are trade-offs between 

manufacturing cost and total manufacturing (manufacturing + assembly) time to 

assemble with total assembly tolerance constraint.

Given the total assembly tolerance, T, sort n, points to an increasing order 

o f assembly tolerances (i.e., /,/, /,2, ..., /j, ) as well as manufacturing time to

assembles (i.e., %?/, •• •. r̂ ,̂ ) and decreasing order o f  manufacturing costs (i.e.,

Cih ci2, ..., ). Here, the cost-time ratio Rÿ for component / is defined as (c,y —

c,;_/+,) / (Tij+i — îÿ), where i = 1,2, ...,N  and j  -  1,2, That  is, the cost-time 

ratio denotes the cost saving when manufacturing time to assemble is increased 

firom Tij to Zf y+/.

Lemma 4.1.1. If total manufacturing time for each component is set to its lowest 

level (that is a  base process sequence: x// = .r /̂ = ... = x»/ =  I and other xy 

variables are zero) and the total tolerance of dimensions does not violate the total 

assembly tolerance constraint, it is an efficient solution with respect to the total 

manufacturing time criterion.
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Proof; Since we assign the manufacturing time o f each dimension to its lowest 

level which is the shortest manufacturing time x//, xji, • •• x„i, it is impossible to 

obtain less manufacturing time than that of the base process sequence even though 

it requires maximum manufacturing cost. Since the total assembly tolerance is 

satisfied by the corresponding dimension tolerances, it is an efficient solution.

Consider a cost-tolerance-time model with discrete cost, tolerance and 

time points that is presented as model 1 in the preceding chapter. Since it would 

be desirable to report as many possible combinations o f manufacturing cost and 

manufacturing time to assemble to a decision maker when total assembly 

tolerance is bounded, an algorithm generating all efficient solutions, if  possible, 

would be more desirable. Therefore, a simple algorithm is presented to obtain 

efficient solutions. In order to generate efficient solutions for decision makers,

when the assumption that Rij ̂ Rij+i is relaxed, we will be needed to define R ” to

be (c,j+„-c,J) / (Tij-Tij+m), where m = l,2 ,...,(«/-y) and the following algorithm 

is constructed.

4.1.1 Algorithm 1

To obtain as many efficient solutions as possible, the following heuristic 

algorithm was applied that showed the efficient solutions with the tolerance 

condition.
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Step 1: ReadiV, T, ni, c,y, and fy fo r /=  l,2 ,.. JVand f o r j -  l,2,...w,.

Step 2: Set the manufacturing time to assemble for each component to the lowest 

level (base process sequence). Store base process sequence and corresponding 

solution.

Step 3: Compute cost-time ratios /?,", where m = l,2,...,(/i, — j )  and find the

maximum cost-time ratio fi-om the candidate set (if xy = I, only R "  are in the

candidate set.). If there are ties, branch out firom all solutions for fiurther search of 

efficient solutions.

Step 4: Check the total assembly tolerance condition with all solutions in the tie 

solution set. If  it is satisfied, store the solution (Note that if  is chosen in Step 

3, then the new solution is the same as the previous one except that = 0 and 

Xp,q+s = 1). Otherwise, delete firom the candidate set.

Lemma 4.1.2. If  the total assembly tolerance constraint is large enough (i.e. T is a 

large number) and Ry ^  Rij+j for all i and J, then algorithm 4.1.1. finds exactly 

[l + ( / i , - l )  +  (/ij — 1)-»—  + (My -1 )] efficient solutions with respect to 

manufacturing cost and manufacturing time criteria.

Proof: Because o f Lemma 4.1, we can obtain an efficient solution if  the 

manufacturing time to assemble o f each component is set to its lowest level. 

Then, since Ry ^Rij+i (i.e., decreasing convex property), for component /, we can
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generate exact (n, — I) efficient solutions. Therefore, the sum o f all the efficient 

solutions for all the dimensions provides the desired result.

The flow chart for algorithm 1 is shown in the Figure 4.2. Note that the 

number o f evaluations by algorithm 1 is equal to those in the univariate search 

method by Fox (1973). To consider the validity o f the algorithm developed, the 

problems which contain cost and tolerance values for each dimension were taken 

firom Chase et. al. (1990) and the time factor was generated with the idea that as 

manufacturing cost decreases, the manufacturing time increases and as tolerance 

is tightened, assembly time decreases. For decision maker to determine the most 

suitable process for manufacturing a product/assembly, he or she should consider 

the time factor in accordance with the cost and tolerance for releasing a product / 

assembly on time and surviving in a competitive market.

An example with six different dimensions is taken to illustrate the 

algorithm I (Problem B in Appendix 1). It is a single line multi-level assembly 

system. Predefined total assembly tolerance is 23 units and it is assumed that the 

tolerances in this example are bi-lateral. Therefore, the total tolerance o f the 

components 1 through 6 must not exceed the total assembly tolerance o f 23 units. 

The procedure to obtain some o f these efficient solutions is illustrated step by step 

as:

Step 1: JV^=6. ri3 =3 and alln,=  2. T= 23.

Step 2: xjj =X2i = . . .  =  1 and all otherxÿ = 0.
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Start

Read iV, T, tth cg, Zy and Uj

Yes

Tolerance Condition

Nn

Stop

Store process sequence and 
corresponding solution with

Set Xu = 1, all otherxÿ = 0
Store (1 ,1 ,..., 1,1) as base process sequence

Compute cost-time ratios Rgfin = l,2,...,(Uf -  J). 
Find the maximum R"  from the candidate set. 
If ties, use branch method.

Figure 4.2 Flow Chart for Algorithm 1

It is a base process sequence (1,1,1,1,1,1). 

til t2i +  tji + t4i + = (3 + 2 +  2 +3 + 3 + 2) =  15.

cii + C2 i +  cji + c</ + C5/ + =  (9 + 6 + 8 +7 + 8 +  9) =47.

+  Ti\ + %y + Z)y + ZjF/ + %y =  (5 + 3 + 3 +1 +  2 + 3) =  17.
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Store solution (47,17).

Step 3: R̂  ̂ ~  1.0, /îji — 1.0, /îj, =2.0, — 1.2, R^  ̂ = 1.0, Rÿ  ̂ = 1.67, R^^

= 2.0. The maximum Rjj = /?], = /îg, = 2.0. Since we have two tie solutions, 

search both solutions (Tie solution set has Rl^ and R^i ).

Step 4: From the/?], in the tie solution set,

t// tzi + ~ (3 + 2 + 4 +3 + 3 + 2) = 17.

c// + C21 + C32 + C41 + csi + Ctf/ = (9 + 6  + 4 +7 + 8 + 9) = 43.

Î7/ + %2i + %  + Tif/ + %/ + %/ = (5 + 3 + 5 +1 + 2 + 3) = 19.

Store process sequence (1,1,2,1,1,1) and corresponding solution (43,19).

From the/2g, in the tie solution set,

tn  + tzi + tj/ + + r5/ + = (3 + 2 + 2 +3 + 3 + 3) = 16.

c/i + C21 + C31 + C41 +  C51 + Ctf2 == (9 + 6  + 8 +7 + 8 + 7) = 45.

f// + 2̂1 + *5/ + tV/ + tjf/ +  “  (5 + 3 + 3 +1 + 2 + 4) =  18.

Store process sequence (1,1,1,1,1,2) and corresponding solution (45,18). 

Step 5: Since the solutions obtained in Step 3 do not violate the total assembly 

tolerance constraint, go to Step 3.

Step 3: From the process sequence (1,1,2,1,1,1), /?,, =1.0, R^  ̂ =1.0, R^  ̂ =0.67, 

R^  ̂ =  1.0, /îj, = 1.67, /îg, =  2.0. The maximum R~ = i?g, = 2.0. From the 

process sequence (1,1,1,1,1,2), /?„ = 1 .0 , R^  ̂ = 1.0 , /?], = 2 .0 , R^  ̂ = 1.2 , /îg, =

1.0, = 1.67. The maximum R^ =  /?], =2.0.
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Step 4: The only process sequence generated in Step 3 is the process sequence

tn  + tzi + tj2 + + /5/ + /«  = (3 +  2 + 4 +3 + 3 + 3) = 18.

c// + C21 + C32 + C41 + C5/ + C62 = (9 +  6  + 4 + 7 +  8 + 7 )  = 41.

"I" %i + %  + — (5 + 3 + 5 +1 + 2 + 4) = 20.

Store process sequence (1,1,2,1,1,2) and corresponding solution (41,20). 

Step 5: Since the solution does not violate the total assembly tolerance constraint, 

go to Step 3.

Step 3: From the process sequence (1,1,2,1,1,2), R^  ̂ = 1.0 , = 1.0, R 2̂ =0.67,

R̂  ̂ = 1.0, /?j, = 1.67. The maximum R/j = R^̂  =  1.67.

Step 4: The solution obtained in Step 3 is firom a process sequence (1,1,2,1,2,2,). 

t// + tzi + 132 + + 5̂2 + = (3 + 2 + 4 +3 + 8  + 3) = 23.

c// + C21 +  C32 + C41 + Cs2 + C62 = (9+  6  + 4 + 7 +  3 + 7 )  = 36.

%)/ + + Zj2 + + %  + %  — (5 + 3 + 5 +1 + 5 + 4) = 23.

Store process sequence (1,1,2,1,2,2) and corresponding solution (36,23). 

Step 5: Since the solution does not violate the total assembly tolerance constraint,

go to Step 3. From the process sequence (1,1,2,1,2,2), R^  ̂ = 1.0, /î,, = 10, R^  ̂ = 

0.67, R^  ̂ =  1.0. The maximum R^ = = /?2, =  R^  ̂ =  1.0.

Step 4: The solution obtained in Step 3 is firom process sequences (2,1,2,1,2,2,), 

and (1,1,2,2,2,2). However, both solutions violate the total assembly tolerance 

constraint.
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Step 5: Since the solution search from tie solution set is completed and the 

solution with maximum cost-time ratio violates the total assembly tolerance 

constraint, stop.

The five efficient solutions obtained from the proposed algorithm are 

expressed in Fig. 4.5 a) and the values of cost and time are (47,17), (45,18),

(43,19), (41,20), and (36,23) from process sequences (1,1,1,1,1,1), (1,1,1,1,1,2),

(1.1.2.1.1.1), (1,1,2,1,1,2), and (1,1,2,1,2,2). By an explicit enumeration search, 

there are seven efficient solutions such as (47,17), (45,18), (43,19), (41,20), 

(40,21), (38,22), and (36,23) from process sequences (1,1,1,1,1,1), (1,1,1,1,1,2),

(1.1.2 .1. 1 .1), (1,1,2 ,1,1,2 ), ( 1,1, 1,1,2 ,2 ), (1,1,2 ,1,2 ,1), and (1 ,1,2 ,1,2 ,2 ).

Therefore, 71 percent of the efficient solutions are obtained by the algorithm 1. 

With a full exhaustive search, we need to generate 96 (2  ̂x 3) solutions but only 

five solutions are investigated with the proposed algorithm. Also, consider the 

two solutions not generated by the algorithm 1. These two solutions, (40,21), and 

(38, 22), could be dominated by the linear combination of the solutions, (41, 20) 

and (36, 23).

Since there is an emphasis on obtaining the optimization of discrete cases, 

it is important to generate as many efficient solutions as possible for decision 

maker. Therefore, it is needed to develop another algorithm to satisfy the 

requirement.

4.1.2 Algorithm 2.
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Now consider the solutions (40, 21) and (38, 22) obtained from process 

sequences (1,1,1,1,2,2) and (1,1,2,1,2,1). When nuuiing algorithm 1, processes in 

dimensions 3, S, and 6  are investigated from the base process sequence

(1.1.1.1.1.1). Note that the combination of processes in dimensions 3, 5, and 6  

can generate solutions (40, 21) and (38, 22). By using the history when nmning 

algorithm 1, the following partial enumeration algorithm can be constructed.

Step 1: Run algorithm 1. Store the processes changed in each dimension from the 

base solution ( 1,1,.. . ,1,1).

Step 2: Employ the partial emuneration search based on the processes selected for 

efficient solutions in running algorithm 1. Then, find the nondominated solutions. 

The flow chart is presented in the Figure 4.3.

Reconsider the same example applied in algorithm 1. Algorithm 2 can be 

illustrated step-by-step as follows:

Step 1: After running algorithm 1, the processes in dimensions 3, 5, and 6  are 

selected for efficient solutions.

Step 2: Processes in dimensions 1, 2, and 4 are fixed (%// = xzj = X41 = 1). 

Processes in dimensions 3 ,5 , and 6  have 2 alternatives, respectively. The process 

sequences and corresponding solutions generated by partial enumeration search 

are as follows:

(1.1.1.1.1.1) =  (4 7 ,17)

(1.1.1.1.1.2) =  (4 5 ,18)

(1,1,1,U ,1) =  (42,20)
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Start

Yes
Tolerance Condition

No

Stop

Run Algorithm 1

Employ partial enumeration search. 
Find the non-dominated solutions.

Find the processes changed by Algorithm 1. 
Store processes changed in each dimension.

Store process sequence and 
corresponding solution with RiP.

Figure 4.3 Flow Chart for Algorithm 2

(1,1,1,1,2^) =  (40,21) 

(1 ,U .U ,1 )  =  (4 3 .19) 

(1,1^,1,1,2) =  (41,20)
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(1.1.2.1.2.1) = (38,22)

(1.1.2.1.2.2) = (36,23)

Since solution (42, 20) is dominated by (41, 20), there are seven 

nondominated solutions that are the efficient solutions generated. In algorithm 2., 

eight solutions (five solutions generated in step 1 are reproduced in step 2 ) are 

investigated. It found all seven efficient solutions. Compared with the explicit 

enumeration search, only seven percent of the solutions are searched. The 

efficient solutions for the same Problem B is presented in the Figure 4.5. b) as the 

relationship between cost and time.

If the total assembly tolerance constraint is large enough (i.e., T is a large 

value), then algorithm 1 searches all possible slopes firom the candidate set. ht 

this case, the partial enumeration in algorithm 2  presents too much computational 

burden. Now consider Problem C in the Appendix 1. The solution with the 

largest total assembly tolerance (T =  38) is firom the process sequence

(3.2.2.2.2.2.2) and it does not violate the total assembly tolerance constraint. 

Therefore, the partial enumeration in algorithm 2 is the same as the explicit 

enumeration.

4.1.3 Algorithm 3

hi algorithm, the ratio based on the manufacturing cost difference and the 

manufacturing time difference is considered. From the base process sequence 

( 1, 1, ... ,1,1), the solution with the largest cost-time ratio is picked for the next
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solution. The idea o f algorithm 3 is to search the solution with the minimum 

increase o f manufacturing time or the minimum decrease of manufacturing cost. 

From the solutions in the solution set obtained in previous iterations, algorithm 3 

tries to find the process sequence with the smallest increase o f manufacturing time 

or the smallest decrease o f manufacturing cost from the new solution just 

obtained. The sum of manufacturing time difference and manufacturing cost 

difference is the criterion to search the next solution since the less variation o f 

differences provides more chance to generate efficient solutions. If there is a tie, 

it is broken based on the cost-time ratio. The algorithm 3 can be stated as in the 

next section.

Step 1: Sum up the manufacturing time differences and manufacturing cost 

differences. Pick the standard based on the minimum sum o f differences (say 

manufacturing time is selected as a standard). Start the base process sequence 

(1,1, . . . ,  1,1) with the corresponding manufacturing time, manufacturing cost and 

tolerance as initial solution set.

Step 2: Search solution from the solution set, which generates the smallest 

increase o f manufacturing time comparing the new solution just obtained. If there 

is a tie, break it based on the cost-time ratio. Compute manufacturing time, 

manufacturing cost and tolerance o f the new solution.
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Step 3: If  the tolerance o f new solution does not violate total assembly tolerance, 

store the new solution in the solution set and go to Step 2. Otherwise, find non

dominated solutions in the solution set and stop.

The flow chart for the algorithm 3 is presented in the Figure 4.4. It is 

better to consider the same example (problem B) again for a comparison and 

discussions. Algorithm 3 can be illustrated step by step as follows.

Step 1: The sum o f manufacturing time difference (2+1+2+3+3+3+1=15) is less 

than the sum o f manufacturing cost difference (2+1+4+2+3+5+2=19). Therefore, 

manufacturing time is the standard. The base process sequence (1,1,1,1,1,1) has

(47,17,15) solution tuple.

Step2: The dimensions which provide the smallest increase from the solution set 

are the second processes in dimension 2 and in dimension 6 . Both processes 

increase the manufacturing time only one unit (from 17 to 18). Because o f the 

cost-time ratio, the process sequence (1,1,1,1,1,2) is selected. Corresponding 

solution tuple is (45,18,16).

Step 3: Since the new solution does not violate total assembly tolerance 

constraint, store the new solution in the solution set and go to step 2 .

Step 2: There are three candidates to generate the smallest manufacturing time 19. 

From the process sequence (1,1,1,1,1,1) in the solution set, selecting the second 

processes in dimension 1 and in dimension 3 does increase manufacturing time 

from 17 to 19. Another candidate is the second process in dimension 2 from the
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Stop

Store process sequence and 
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Initial solution set.
Base process sequence with time, cost, and tolerance

Search solution which generates the smallest 
increase.
If there is tie, use cost-time ratio.

Sum up time difference and cost difierence. 
Pick the standard as the minimum sum of 
difference.

Figure 4.4. Flow Chart for Algorithm 3

process sequence It increases manufacturing time 6 om 18 to 19.

The cost-time ratio enforces to choose the process sequence (1,1,2,1,1,1) whose 

solution tuple is (43,19,17).
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Step 3: Because the new solution satisfies the total assembly constraint, store it. 

Step 2: There are six possible candidates. Two candidates firom process sequence

(1.1.1.1.1.1), two firom (1,1,1,1,1,2) and two from (1,1,2,1,1,1). The 

manufacturing times increases 3 units, 2 units and 1 unit from 17 to 20, from 18 to 

20 and from 19 to 20, respectively. The process sequence (1,1,2,1,1,2) has the 

minimum cost-time ratio and it has (41,20,18) solution tuple.

Step 3: Store new solution in the solution set and go to Step 2.

Step 2: From the three process sequences in the solution set, four possible 

candidates can be considered. The selected process sequence with the minimum 

cost-time ratio, 1.67, is (1,1,1,1,2,2) from (1,1,1,1,1,2). The solution tuple is (40, 

20, 21).

Step 3: Since it satisfies the total assembly tolerance constraint, keep it.

Step 2: There are five candidates with manufacturing time 22. Because o f the 

cost-time ratio, the process sequence (1,1,2 ,1,2 ,1) is chosen from the ( 1,1,2 , 1,1,1). 

The new solution has (38,22,22) tuple.

Step 3: Store the solution in the solution set.

Step 2: There are five possible candidates; two candidates from process sequence

(1.1.2.1.1.2), one from (1,1,1,1,2,2) and two from (1,1,2,1,2,1). The process 

sequence (1,1,2,1,2,2) whose solution tuple is (36,23,23), can be chosen.

Step 3; Store the solution. After then, the total assembly tolerance constraint can 

not be satisfied since the tolerance o f new solution is the same as given total 

assembly tolerance. The nondominated process sequences in the solution set are 

as follows:
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( l , l . U , U )  = (4 7 ,17,15)

(I,1,1,I,I,2) =  (45, 18,16)

(1.1.2.1.1.1) =  (43, 19,17)

(1.1.2.1.1.2)=(41,20,18)

(1.1.1.1.2.2) =  (40,21,21)

(1.1.2.1.2.1) =  (38, 22,22)

(1.1.2.1.2.2) = (36 ,23,23)

All seven efficient solutions are found after searching 7 full evaluations 

and 13 cost-time evaluations, and are presented in the Figure 4.5.c).
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Figure 4.5 Cost-Time Relation for Problem B
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4.2. Cost-Tolerance Model (Model 2)

With tighter tolerances o f each process to satisfy the requirements of 

customers, total manufacturing cost will be increased. The function to explain the 

relationship between cost and tolerance shows an exponential decreasing nature in 

literature. As the assembly tolerance o f dimensions increases, the total 

manufacturing cost decreases. Therefore, the decision maker should consider the 

trade-offs between manufacturing cost and assembly tolerance with total 

manufacturing time constraint.

In model 2, total manufacturing time to assembly is fixed as a 

constraint, and the minimization o f total manufacturing cost and minimization of

total assembly tolerance are set as the objective functions. Mathematical

formulation for the model 2  is expressed as follows from the preceding chapter;

Min f  (3.20)
i»i y -i

Min (3.21)

s i  (3.22)
i - l  /= !

^  Xij = 1 f o r  i = 1 ,2 ,..., W (3.23)
y-»

%,; =  {0,1} (3.24)
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Given the total manufacturing time to assembly, sort n,- points to an 

increasing order of manufacturing time to assembles (i.e., tu, . ., î’*,, ) as well

as assembly tolerances (i.e., t,/, ..., ) and decreasing order o f manufacturing

costs (i.e., Cii, Ci2, ..., ). Here, the cost-tolerance ratio Rÿ for component / is

defined as (c,y -  cij+i) / (tij+j -  ty), where i =  1,2, ...,N  and j  = 1,2, ...,n,. That is, 

the cost-tolerance ratio denotes the cost saving when assembly tolerance is 

increased from tg to tij+i.

Lemma 4.2.1. If the tolerance for each component is set to its lowest level (base 

process sequence: x n  =X2i = =x„j = I and otherXÿ variables are zero) and the 

assembly manufacturing time to assemble of dimensions does not violate the total 

assembly time constraint, it is an efficient solution with respect to the assembly 

tolerance criterion.

Proof: Since we assign the manufacturing tolerance o f each dimension to its 

lowest level, it is impossible to obtain less manufacturing tolerance even though it 

requires maximum costs. Since the total manufacturing time to assembly is 

satisfied by the corresponding time, it is an efficient solution.

Similar to the development o f algorithm 1 for Model 1, a simple algorithm 

could be presented to obtain efficient solutions in this case also. In order to
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generate efficient solutions for decision makers, when the assumption Ry > Rij+j 

is relaxed, we will need to define R~ as (c,y+„ -  c,J) / (r,y -  where m =

1,2 ,...,(/!/ -  j )  and the following algorithm constmcted.

4.2.1 Algorithm 1

To obtain as many efficient solutions as possible, the following algorithm 

was applied and it showed the efficient solutions with the time condition.

Step 1 : Read JV, /2 , /i„ c,y, Zij and r,y for i =  1,2,...N and fory = 1,2,..Mi.

Step 2: Set the assembly tolerance for each component to the lowest level (base 

process sequence). Store base process sequence and corresponding solution.

Step 3: Compute cost-tolerance ratios R " , where m = 1 , 2 , . -  J) and find the

maximum cost-tolerance ratio from the candidate set (if x,y = 1, only R ” are in

the candidate set.). If there are ties, branch out from all solutions for further 

search o f efficient solutions.

Step 4: Check the total manufacturing time to assembly condition with all 

solutions in the tie solution set. I f  it is satisfied, store the solution (Note that if

R*„is chosen in Step 3, then the new solution is the same as the previous one 

except thatxp, = 0 and Xp,q+s =  1). Otherwise, delete R ‘̂  ̂ from the candidate set.
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Lemma 4.2.2. If  the total manufacturing time to assembly constraint is large 

enough (i.e. is a large number) and Ry > R,j+i for all i and j ,  then algorithm

4.2.1. finds exactly [l +  (/i, -1 )  + (ai2 - 1 ) h—  + («at “ 0 ] efficient solutions with 

respect to manufacturing cost and assembly tolerance criteria.

Proof: Because o f Lemma 4.2.1, we can obtain an efficient solution if the 

assembly time o f each component is set to its lowest level. Then, since Ri/>R,j+i 

(i.e., decreasing convex property), for component i, we can generate exact (n, - 1) 

efficient solutions. Therefore, the sum of all the efficient solutions for all the 

dimensions provides the desired result.

To compare the results of Model 1 and Model 2, the same example 

(Problem B) is taken to illustrate the algorithm 1 o f Model 2. It is a single line 

multi-level assembly system with six different dimensions. To ensure 

manufacturing within the assembly tolerance, total time to assemble is predefined 

as 23 units. Therefore, the total manufacturing time to assemble of the 

components 1 through 6  must not exceed the total time of 23 units. By the 

algorithm 1, the procedure is illustrated step by step.

Step 1: N =  6 . nj =3 and all «,• = 2. 23.

Step 2: xii =xzi = ... =xg/ =  1 and all otherXÿ =  0.

It is a base process sequence ( l , l , l , l , l , l ) .
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C// C21 + c j j  + C4 1  + cs! + C6 i = (9+  6 + 8 + 7 +  8 + 9 ) =  47.

tn  + tzi + 0 / + /.#/ + /j/ + /tf/ = (3 + 2 + 2 +3 + 3 + 2) =  15.

T// + + Tij + + r /̂ + r<j/ = (5 + 3 + 3 +1 + 2 + 3) = 17.

Store solution (47,15).

Step 3: /?,, =1.0 , = 0.5, /Zj, = 2 .0 , = 1.5, =0.75, /îj, =1.0, /?g,

= 2.0. The maximum R.j = /îj, = /îg, = 2.0. Since we have two tie solutions, 

search both solutions (Tie solution set has /îj, and /îg, ).

Step 4: From the /îj, in the tie solution set.

Cl! + C21 + C3 2  + c^/ + C5/ + Ctf/ = (9 + 6 + 4 +7 + 8 + 9) = 43. 

tu  + tzi + ts2 + /¥/ + 5̂/ + /(Î/ = (3 + 2 + 4 +3 + 3 + 2) = 17.

%// + rzi + rjz + ÎV/ + rj5/ + rtf/ = (5 + 3 + 5 +1 + 2 + 3) = 19.

Store process sequence (1,1,2,1,1,1) and corresponding solution (43,17). 

From the /îg, in the tie solution set,

c// +  czi + C3 1 + C41 + C5 1 + Ctf2 = (9 + 6 + 8+7 + 8 + 7 )=  45. 

tn  +  tzi +  t3i + /</ + 0 / + ttf2 = (3 + 2 + 2 +3 + 3 + 3) = 16.

%)/ + rzi +  rj/ + TV/ + Ti/ + rtf2 =  (5 +  3 + 3 +1 + 2 + 4) = 18.

Store process sequence (1,1,1,1,1,2) and corresponding solution (45,16). 

Step 5; Since the solutions obtained in Step 3 do not violate the total 

manufacturing time to assemble constraint, go to Step 3.

Step 3: From the process sequence (1,1,2,1,1,1), /Î,, =  1.0, /î^, =0.5, = 1 0 ,

/î^, =  0.75, /îj, =  1.0, /îg, = 2.0. The maximum R,j =  /îg, =  2.0. From the
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process sequence (1,1,1,1.1,2), R^̂  =1.0, =0.5, /îj, =2.0, R^  ̂ = 1.5, R^  ̂ =

0.75, /Î5, =  1.0. The maximum Rg =  /îj, =2.0.

Step 4: The only process sequence generated in Step 3 is the process sequence

(1,1,2 ,1,1,2 ).

c// + C21 + C32 + C41 + Csi + C62 = (9+  6  + 4 + 7 +  8 +7)  = 41. 

til + tzi + ts2 + + /tfz = (3 + 2 + 4 +3 + 3 + 3) = 18.

Z// + %i + %  + ^ /  + %/ + %  = (5 + 3 + 5 +1 + 2 + 4) = 20.

Store process sequence (1,1,2,1,1,2) and corresponding solution (41,18). 

Step 5: Since the solution does not violate the total manufacturing time to 

assemble constraint, go to Step 3.

Step 3: From the process sequence (1,1,2,1,1,2), R̂  ̂ = 1.0, /î^, =0.5, R^^ = 1.0, 

/î^, = 0.75, / Î j ,  = 1.0. Since we have three tie solutions, search every solution 

(Tie solution set has R ^̂ , /Î32, and /îj, ).

Step 4: From the R̂  ̂in the tie solution set,

C12 + C21 + cj2 + c^/ +  C5/ + C(j2 = (7 + 6  + 4 +7 + 8  + 7) =  39. 

ti2 + tzi + ts2 + /^/ + <5/ + /«  ~  (5 + 2 + 4 +3 + 3 + 3) = 20. 

z)2 + Z21 + rj2 + ZV/ +  zÿ/ + = (7 + 3 + 5 +1 +  2 + 4) =  22.

Store process sequence (2,1,2,1,1,2) and corresponding solution (39,20). 

From the /Î32 in the tie solution set,

Cl I + C21 + + c^/ +  C5/ + = (9 + 6  + 6  +7 +  8  +  7) =  39.

til +  tzi + 133 + r</ +  Zi/ + Z52 = (3 + 2 + 2 +3 + 3 + 3) = 20. 

z// + zii + rjj + ÎV/ +  zÿ/ + = (5 + 3 +  8  +1 +  2 + 4) =  23.
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But this solution (39,20) with process sequence (1,1,3,1,1,2) is dominated 

by the solution (39,20) with process sequence (2,1,2,1,1,2), so this solution is not 

stored as an efficient solution.

As the final tie solution /Î5, , we have

cn  + C21 + C32 + C41 + C52 + C52 = (9 + 6  + 4 +7 + 3 + 7) =  36. 

tn  + tzi + Î32 +  /^/ + + /«  = (3 + 2 + 4 +3 + 8 + 3) = 23.

tn  + t2\ + T32 •+■ r /̂ + = (5 + 3 + 5 +1 + 5 + 4) =  23.

Store process sequence (1,1,2,1,2,2) and corresponding solution (36,23). 

Step 5: Since the solution does not violate the total assembly tolerance constraint, 

go to Step 3. From the process sequence (2,1,2,1,1,2), = 0.5, /Î4, = 0.75. The

maximum Rfj = = 0.75

Step 4: The solution obtained in Step 3 is firom a process sequence (2,1,2,2,1,2,), 

and (1,1,2,2,2,2). However, both solutions violate the total assembly time 

constraint.

Step 5: Since the solution search firom tie solution set is completed and the 

solution with maximum cost-tolerance ratio violates the total manufacturing time 

to assemble constraint, stop.

The six efficient solutions obtained firom the algorithm 1 are expressed in 

Fig. 4.6. a) and the values o f cost and tolerance are (47,15), (45,16), (43,17),

(41.18), (39,20), and (36,23) fi-om process sequences (1,1,1,1,1,1), (1,1,1,1,1,2),

(1,1,2,1,1,1), (1,1,2,1,1,2), (2,1,2,1,1,2), and (1,1,2,1,2,2). By an expUcit 

enumeration search, there are nine efficient solutions such as (47,15), (45,16),

(44.19), (43,17), (41,18), (40, 21), (39,20), (38,22) and (36,23) firom process
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sequences (1,1,1.1,1,2 ), ( l , l , l ,2 ,l .l) , ( l . l ,2 , l , l , l ) ,  ( l , l ,2 , l , l ,2 ),

(1,1,1,1,2,2), (2,l,2 ,l,l,2), ( l,l,2 ,l,2 ,l) , and (1,1,2.1,2,2). Therefore, 66.67

percent o f the efficient solutions are obtained by the algorithm 1. To obtain the 

more efficient solutions for decision making, algorithm 2  is also applied to the 

same example as used with algorithm 1.

4.2.2. Algorithm 2

Now consider the solutions (40, 21) and (38, 22) obtained firom process 

sequences (1,1,1,1,2,2) and (1,1,2,1,2,1). When running algorithm 1, processes in 

dimensions 1, 3, 5, and 6  are investigated firom the base process sequence

(1,1,1,1,1,1). Note that the combination of processes in dimensions 1, 3, S, and 6  

can generate solutions (40, 21) and (38, 22). By using the history when running 

algorithm 1, the following partial enumeration algorithm can be constructed.

Step 1: Run algorithm 1. Store the processes changed in each dimension firom the 

base solution (1,1, . . . ,1,1).

Step 2: Employ the partial enumeration search based on the processes selected for 

efficient solutions in running algorithm 1. Then, find the nondominated solutions.

Reconsider the same example applied in algorithm 1. Algorithm 2 can be 

illustrated step-by-step as follows:
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Step 1: After running algorithm 1, the processes in dimension 1, 3, 5, and 6  are 

selected for efficient solutions.

Step 2: Processes in dimensions 2, and 4 are fixed {X2i = x// = 1). Processes in 

dimensions 1 ,3 ,5 ,  and 6  have 2 alternatives, respectively. The process sequences 

and corresponding solutions generated by partial enumeration search are as 

follows:

(1.1.1.1.1.1) = (47, 15)

(1.1.1.1.1.2) =  (4 5 ,16)

(1.1.2.1.1.1) =  (43, 17)

(1.1.2.1.1.2)=(41,28)

(1.1.1.1.2.2) = (40,21)

(2.1.2.1.1.2)=(39,20)

(1.1.2.1.2.1)=(38,22)

(1.1.2.1.2.2) = (36, 23)

hi algorithm 2 , eight solutions (six solutions generated in step 1 are 

reproduced in step 2) are investigated. There are 9 efficient solutions by an 

explicit enumeration search, and algorithm 2 was applied to find 88.89 percent o f 

efficient solutions. The efficient solutions for the same Problem B is presented in 

the Figure 4.6. b) with the relationship between cost and tolerance.

There is still one more efficient solution not obtained by algorithm 1 and 2 

and the solution is (44,19) fiom process sequence o f (1,1,1,2,1,1). Because 

algorithm 2  searched the efficient solution according to the partial enumeration o f
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selected process that is identified by algorithm 1, the efficient solution including 

fixed process 4 in algorithm 1 is not considered. By applying the idea o f 

algorithm 3, every possible efficient solution might be searched.

4.2.3 Algorithm 3

The idea o f algorithm 3 in Model 2 is to search the solution with the 

minimum increase of assembly tolerance or the minimum decrease o f 

manufacturing cost. From the solutions in the solution set obtained in previous 

iterations, algorithm 3 tries to find the process sequence with the smallest increase 

of assembly tolerance or the smallest decrease o f manufacturing cost from the 

new solution just obtained. The sum of assembly tolerance difference and 

manufacturing cost difference is the criterion to search the next solution since the 

less variation o f differences provides more chance to generate efficient solutions. 

If there is a tie, it is broken based on the cost-tolerance ratio. Once again the steps 

o f algorithm 3 is set forth as follows:

Step 1: Sum up the assembly tolerance differences and manufacturing cost 

differences. Pick the standard based on the minimum sum o f differences. Start 

the base process sequence ( 1,1, ... , 1,1) with the corresponding assembly 

tolerance, manufacturing cost and time as initial solution set.

Step 2: Search solution from the solution set, which generates the smallest 

increase o f  assembly tolerance comparing the new solution just obtained. If  there
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is a tie, break it based on the cost-tolerance ratio. Compute manufacturing time,

manufacturing cost and tolerance o f the new solution.

Step 3: If the time o f new solution does not violate total manufacturing time 

constraint, store the new solution in the solution set and go to Step 2. Otherwise, 

find non-dominated solutions in the solution set and stop.

For finding the efficient solution that is not obtained by algorithm 1 and 

2, Problem B is chosen again. Algorithm 3 can be illustrated step by step as 

follows.

Step 1: The sum o f assembly tolerance difference (2+2+2+2+4+5+1=81) is less 

than the sum o f  manufacturing cost difference (2+1+4+2+3+5+2=19). Therefore, 

assembly tolerance is the standard. The base process sequence (1,1,1,1,1,1) has

(47,17,15) solution tuple.

Step2: The dimension that provides the smallest increase from the solution set is 

the second process in dimension 6 . The process increases the assembly tolerance 

only one unit (from 15 to 16). Corresponding solution tuple is (45,18,16).

Step 3: Since the new solution does not violate total manufacturing time to 

assemble constraint, store the new solution in the solution set and go to step 2 .
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Step 2: There are three candidates to generate the smallest assembly tolerance 17. 

From the process sequence (1,1,1,1,1,1) in the solution set, selecting the second 

processes in dimension 1, 2 , and 3 does increase manufacturing time from IS to 

17. The cost-tolerance ratio forces us to choose the process sequence (1,1,2,1,1,1) 

whose solution tuple is (43,19,17).

Step 3: Because the new solution satisfies the total manufacturing time to 

assemble constraint, store it.

Step 2: There are four possible candidates. Three candidates fix>m process 

sequence (1,1,1,1,1,2), one from (1,1,2,1,1,1). The assembly tolerance increases 2 

units and 1 unit from 16 to 18, and from 17 to 18, respectively. The process 

sequence (1,1,2,1,1,2) has the minimiun cost-time ratio and it has (41, 20, 18) 

solution tuple.

Step 3: Store new solution in the solution set and go to Step 2.

Step 2: There is only one candidate with assembly tolerance 19. From the process 

sequences (1,1,1,1,1,1), the assembly tolerance increases 4 units firom 15 to 19. 

The process sequence with the solution (44,19) is (1,1,1,2,1,1). The solution tuple 

is a  (44,20,19). This solution is the one that could not be obtained by algorithm 1 

and 2 .
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Step 3: Since it satisfies the total manufacturing time constraint, keep it.

Step 2: There are four candidates with assembly tolerance 20. Because o f the 

cost-tolerance ratio, the process sequence (2 ,1,2 , 1,1,2 ) is chosen firom

(1.1.2.1.1.2). The new solution has (39,22,20) tuple.

Step 3: Store the solution in the solution set.

Step 2: There are five possible candidates; one candidate firom process sequence

(1.1.1.1.1.2), one fi-om (1,1,2,1,1,1) and three firom (1,1,1,2,1,1). The process 

sequence (1,1,1,1,2,2) whose solution tuple is (40,21,21), can be chosen.

Step 3; Since it satisfies the total manufacturing time to assemble constraint, store 

it.

Step 2; There is one candidate with assembly tolerance 22 fiom the process 

sequence (1,1,2,1,1,1). The second process of dimension 5 is chosen to have the 

new process sequence (1,1,2,1,2,1). The solution tuple is a (44,20,19).

Step 3; Since it satisfies the total manufacturing time to assemble constraint, store 

it.
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Step 2: There is one more candidate with assembly tolerance 23. From the 

process sequence (1,1,2 , 1, 1,2), the assembly tolerance increases S units from 18 

to 23. The process sequence is (1,1,1,2,1,1) and the solution tuple is a (44,20,19).

Step 3: Store the solution. After then, the total manufacturing time to assemble 

constraint can not be satisfied. The nondominated process sequences in the 

solution set are as follows:

(1.1.1.1.1.1) = (47 ,17,15)

(1.1.1.1.1.2) = (45 ,18,16)

(1.1.1.2.1.1) = (44 ,20 ,19)

(1.1.2.1.1.1) = (43 ,19,17)

(1.1.2.1.1.2) = (41,20,18)

(1.1.1.1.2.2) =  (40,21,21)

(2.1.2.1.1.2) = (39,22,20)

(1.1.2.1.2.1) = (38 ,22 ,22)

(1.1.2.1.2.2) = (36,23,23)

All nine efficient solutions are found after searching 7 full evaluations. The 

efficient solutions with the relationship between manufacturing cost and tolerance 

are presented in the Figure 4.6.c).

93



50

45

S 40 4

35

♦  (15,47)
♦  (16,45)
♦  (17,43)
♦  (18,41)

♦  (20,39)

♦  (23,36)

30 I I I I i T i-1 I "I I 
10 20 30

Tolerance

a) Algorithm 1

50 1 

45

S 40 4

35

30

♦  (15,47)
♦  (16,45) 
♦  (17,43)

♦  (23,36)

—r ■ ' ~i ■ r - - I

10 15 20 25 30 
Tolerance

b) Algorithm 2

50 1

♦  (15,47) 
♦ (16,45 ■

*(18o  40 -

♦  (23,36)
35 -

10 15 20 25 30

Tolerance

c) Algorithm 3

Figure 4.6 Cost-Tolerance Relation for Problem B

94



4.3. Tolerance-Time Model (Model 3)

The time-tolerance function indicates that manufacturing time is 

increasing as assembly tolerance increases. As each dimension has a loose 

tolerance, assembly tolerance is increased which results in requiring more time to 

complete. The basic time-tolerance function is indicated in figure 4.7.

I

Tolerance

Figure 4.7 Time versus Tolerance Function

The mathematical formulations are already presented in the equations 

(3.26) through (3.29). The procedures to obtain three algorithms are similar to 

those o f the cost-time model or cost-tolerance model and the algorithms o f time- 

tolerance model are not detailed here. The same problem B is used to compare 

the results o f each algorithm and the time-tolerance relation for the algorithm is 

presented in the Figure 4.8. As mentioned from the above figure, the relation 

between time and tolerance shows an increasing function that explains the
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characteristic o f the manufacturing time to assemble according to the total 

assembly tolerance.

Considering the time and tolerance objectives, there are several same 

efficient solutions with different costs and processes after obtaining efficient 

solution set. If  the manufacturing time is fixed, the decision maker can apply the 

tighter assembly tolerance because it guarantees the manufacturing of the higher 

quality production. However, if the least total manufacturing time with the tighter 

total assembly tolerance is the goal o f the manufacturing company, and if  the cost 

constraint provided by the client is set by a company, model 3 can be used to 

propose the better set of process selections to the decision maker.

97



Chapter 5 

Analysis and Discussions

The primary intention of this chapter is to demonstrate the adaptability of 

the proposed model and solution methods to different problem sets. The 

problems vary in the number o f candidate processes available for each dimension. 

For instance, drilling and punching are each candidate hole making operations 

with different costs and tolerances. Accordingly, a process selection may result in 

different levels of manufacturing assembly. Assembly with tighter tolerances is 

considered easier in general due to the closeness to perfect dimensions. This 

mirrors reality where interchangeability and standardization are both better 

affected by near-perfect dimensions. Also, there are cases where the high cost of 

tighter tolerances may be reflected purely through initial and operating expenses 

of high cost equipment and not through labor rates. In such cases, it is possible 

that a less expensive process may still take more time to run. Hence, total 

manufacturing time to assembly reflects both manufacturing and assembly times.

Eight problems taken firom Chase et. al. (1990) are tested. The problem 

instances are shown in the Appendix 1. By using three algorithms, the solutions 

o f process selection are obtained and efficiency o f each algorithm is calculated. 

Without a full enumeration o f solutions, the proposed heuristics enabled to obtain 

many efficient solutions within reasonable computer time. Complexity and other 

algorithmic and robustious quality issues are not tested or specified here as the
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scope o f this research is limited to providing a feasible mathematical solution to 

selective assembly. It is to be noted that the OR aspect is not highlighted, but just 

used as a tool to prove the mathematical representation of practical problem.

5.1 Cost-Time Model (Model 1)

5.1.1 Algorithm 1

By applying the algorithm 1, the trade-o£f between cost and time has been 

obtained with a fixed tolerance for each problem. Figures 4.1.4 a) through c) 

show the optimal value of cost and time. Now the process for each dimension is 

needed for the process selection that, at the final stage, will be determined by the 

decision maker. The solutions o f Problems A through H by algorithm 1 are 

presented in Figure 5.1. As noted from the figures, the process selection varies

from the base process (that is, 1,1,1,1,..... , 1,1) to others following the exponential

function. Table 5.1 represents the computational results; the number of 

components, assembly tolerance, and the efficient solutions obtained. Also, Table

5.2 shows the number of efficient solutions, the number of solutions searched by 

each algorithm 1 and efficiency in finding the efficient solutions with 

corresponding manufacturing costs and times. Problem E has the lowest 

performance in obtaining the efficient solutions (58.33%) and Problem A has the 

highest efficiency (83.33%). Still, there are efficient solutions not found by 

algorithm 1 .
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Table 5.1 Computational Results o f Algorithm 1 for Cost-Time Optimization

\
Number o f 

Components

Assembly

Tolerance

Efficient Solutions (cost, time)

A 4 14 (31,11) (28,13) (27,14) (26,15) (25,16)

B 5 23 (47,17) (45,18) (43,19) (41,20) (36,23)

C 7 40 (47,18) (44,19) (39,22) (38,23) (37,24) 

(36,25) (35,26) (33,29) (32,31) (31,34)

D 8 33 (57,17) (49,20) (47,21) (43,23) (41,25)

E 12 40 (120,58) (117,59) (114,60) (112,61) 

(108,63) (107,64) (103,66)

F 7 35 (79,26) (75,27) (72,28) (70,29) (68,30) 

(66,31) (64,32) (63,33) (62,34) (61,35) 

(60,36) (59,37)

G 12 36 (103,48) (101,49) (99,50) (97,51) (95,52) 

(93,53) (88,56) (85,58) (82,61) (81,62) 

(79,64) (78,65)

H 13 36 (111,51) (109,52) (105,54) (103,55) 

(101,56) (97,58) (95,59) (90,63) (88,65) 

(87,66) (86,67) (85,68) (84,69)
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Table 5.2 Number o f Efficient Solutions Searched by Algorithm 1 and Efficiency

Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 6 5 83.33%

B 7 5 71.43%

C 13 10 76.92%

D 8 5 62.50%

E 12 7 58.33%

F 20 12 60.00%

G 18 13 72.22%

H 19 13 68.42%

5.1.2 Algorithm 2

To find out the nondominated efficient solutions, algorithm 2 was used to 

obtain the solutions not found. The solutions o f Problems A through H by 

algorithm 2 are presented in Figure 5.2. In most cases, efficient solutions were 

fully detected by algorithm 2 except problem D. Only Problem D has one more 

efficient solution that could not be obtained by algorithm 2. Table 5.3 represents 

a summary o f  analysis; the number of components, assembly tolerance, and the 

efficient solutions obtained. Also, Table 5.4 shows the number o f efficient 

solutions, the number of solutions searched by algorithm 2  and efficiency in 

finding the efficient solutions with corresponding manufacturing costs and times.
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Table 5.3 Computational Results o f Algorithm 2 for Cost-Time Optimization

\
Number of 

Components

Assembly

Tolerance

Efficient Solutions (cost, time)

A 4 14 (31,11) (30,12)(28,13) (27,14) (26,15) (25,16)

B 5 23 (47,17) (45,18) (43,19) (40,21) (41,20) (38,22) (36,23)

C 7 40 (47,18) (44,19) (43,20) (42,21) (39,22) (38,23) (37,24) 

(36,25) (35,26) (34,28) (33,29) (32,31) (31,34)

D 8 33 (57,17) (55,18) (54,19) (49,20) (47,21) (43,23) (41,25)

E 12 40 (120,58) (117,59) (114,60) (112, 61) (111,62) (108,63) 

(107,64) (106,65) (103,66) (101,68) (100,71) (99,72)

F 7 35 (79,26) (75,27) (72,28) (70,29) (68,30) (66,31) (64,32) 

(63,33) (62,34) (61,35) (60,36) (59,37) (58,39) (57,40) 

(56,41) (55,43) (54,44) (53,45) (52,46) (51,47)

G 12 36
(103,48) (101,49) (99,50) (97,51) (95,52) (93,53) 

(92,54) (90,55) (88,56) (87,57) (85,58) (84,60) (82,61) 

(81,62) (79,64) (78,65) (77,68)

H 13 36 (111,51) (109,52) (108,53) (105,54) (103,55) (101,56) 

(100,57) (97,58) (95,59) (93,61) (92,62) (90,63) 

(88,65) (87,66) (86,67) (85,68) (84,69) (83,71) (82,73)
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Table 5.4 Number o f Efficient Solutions Searched by Algorithm! and Efficiency

\
Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 6 6 100%

B 7 7 100%

C 13 13 100%

D 8 7 87.50%

E 12 12 100%

F 20 2 0 100%

G 18 18 100%

H 19 19 100%

5.1.3 Algorithm 3

By applying algorithm 2, every efficient solution for Problem A through H 

was obtained except in the case of Problem D. It is the goal for system engineers 

to propose as many efficient solutions to the decision makers. Therefore, for the 

case o f  Problem D, algorithm 3 was used to determine the missed efficient 

solution (1,1,1,1,3,1,2,3) with the value o f cost and time (40,26). Therefore, the 

table to show the computational results has only the difference in number of 

efficient solutions obtained with 8 in Table 5.4 and correspondingly a  100% 

efficiency. The endeavor to find out every efficient solution was fulfilled through

107



35

30

I  25  ̂

20 

15
10

♦"««in*.¥ ü w )

12 14 16

Time

a) Problem A

—1

18

50

-

I  40 ̂
35 
30 4

15

♦ («■yjAV..,,
• m m

17 19 21 23 25

Time

b) Problem B

50 

45 

a  40 
U 35 

30 

25
15

♦  (I,I,I,I .

20 25 30
—r—
35

—I
40

Time

c) Problem C

60
55

i :
40
35

I,:)

— I-----------1-----------1—  I-----------1----------- 1---------- 1—

15 17 19 21 23 25 27 29

Time

d) Problem D

Figure 5.3 (a) Solutions for Problem A to D by Algorithm 3 (Model 1)



s

125

120

115

I  «10

105

100

105

100
95

90

85

80

75

4  ( I ,I ,I ,I ,U i , I ,I ,I ,I ,I )

* (I.I.UMI.IMIM
♦♦HtmttkWui

95 I I I I I > I I I " I ' I— r
55 57 59 61 63 65 67 69 71 73 75 77 79

Time

e) Problem A

$ (1,1,1,1,1,1,1.1,1,t.i,I)
......

45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 

Time

g) Problem G

80
75
70

U 60 

55 
50 
45

115 

110 

105 

S  100
<3 95

90

85

80

24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 

Time

f) Problem F

SO 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 

Time

h) Problem H

Figure 5.3 (b) Solutions for Problems E to H by Algorithm 3 (Model 1)



the development o f heuristic algorithms. The solutions by algorithm 3 is 

presented in the Figure 5.3.

5.2. Cost-Tolerance Model (Model 2)

5.2.1 Algorithm 1

By applying algorithm 1, the relationship between cost and tolerance are 

evaluated with a fixed manufacturing time to assemble for each problem. The 

solutions for Problem A through H by algorithm 1 are presented at Figure 5.4. As 

expected from literature (Figure 2 o f Chase et. al. [1990]), the process selection

varies from the base process sequence (that is, 1,1,1 ,1 .......,1,1) to the others

following the exponential function. As assembly tolerance increases, the total 

manufacturing cost decreases.

Table 5.5 represents the computational results; the number of components, 

manufacturing time to assemble, and the efficient solutions obtained. Also, Table 

5.6 shows the number of efficient solutions, the number of solutions searched by 

algorithm 1 for each problem and efficiency in finding the efficient solutions with 

corresponding manufacturing costs and assembly tolerance. Problem D has the 

lowest efficiency in obtaining the efficient solutions (42%) and Problem H has the 

highest efficiency (85.71%). Still, many efficient solutions are not to be found by 

algorithm 1.
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Table 5.5 Computational Results o f Algorithm 1 for Cost-Tolerance Optimization

\
Number of 

Components

Manufact.

time

Efficient Solutions (cost, tolerance)

A 4 16 (31,11) (28,12) (26,13) (25,14)

B 5 23 (47,15) (45,16) (43,17) 

(41,18) (36,23) (39,20)

C 7 34 (47,18) (44,20) (39,24) (38,25) (37,26) (36,27) 

(34,30) (33,32) (32,34) (31,38)

D 8 30 (57,23) (55,24) (47,27) (41,32) (38,34)

E 12 70 (120,30) (115,31) (113,32) (111,33) 

(109, 34) (107,35) (105,36)

F 7 45 (79,16) (76,17) (74,18) (72,19) (70,20) (67,22) 

(62,25) (58,28) (57,29)

G 12 70 (103,22) (100,23) (98,24) (94,26) (92,27) (96,25) 

(90,28) (86,30) (84,31) (88,29) (82,32) (80,33) 

(79,34) (77,36)

H 13 70 (111,23) (106,24) (103,25) (101,26) (99,27) 

(97,28) (95,29) (93,30) (91,31) (89,32) (87,33) 

(85,34)
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Table 5.6 Number o f Efficient Solutions Searched by Algorithm 1 and Efficiency

\
Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 5 4 80.00%

B 9 6 66.67%

C 15 10 66.70%

D 12 5 42.00%

E 12 7 58.33%

F 17 9 52.94%

G 18 14 77.78%

H 14 12 85.71%

5.2.2 Algorithm 2

By the partial enumeration search, more efficient solutions were found by 

algorithm 2. The solutions obtained for Problems A through H by algorithm 2 are 

presented in the Figure 5.5. Unlike in Model 1 case, full solutions for only two 

problems (A and C) were fully detected by algorithm 2. Table 5.7 and 5.8 present 

the corresponding results.
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Table 5.7 Computational Results o f Algorithm 2 for Cost-Tolerance Optimization

\
Number of 

Components

Manufact.

time

Efficient Solutions (cost, tolerance)

A 4 16 (31,11) (28,12) (26,13) (25,14) (24,16)

B 5 23 (47,15) (45,16) (43,17) (41,18) (40,21) (38,22) 

(36,23) (39,20)

C 7 34 (47,18) (46,19) (44,20) (43,21) (42,22) (41,23) 

(39,24) (38,25) (37,26) (36,27) (35,29) (34,30) 

(33,32) (32,34) (31,38)

D 8 30 (57,23) (55,24) (49,26) (47,27) (46,28) (44,29) 

(41,32) (40,33) (38,34)

E 12 70 (120,30) (115,31) (113,32) (111,33) 

(109,34) (107,35) (105,36)

F 7 45 (79,16) (76,17) (74,18) (72,19) (70,20) (69,21) 

(67,22) (66,23) (64,24) (62,25) (61,26) (60,27) 

(58,28) (57,29) (54,32)

G 12 70 (103,22) (100,23) (98,24) (94,26) (92,27) (96,25) 

(90,28) (86,30) (84,31) (88,29) (82,32) (80,33) 

(79,34) (77,36) (75,39)

H 13 70 (111,23) (106,24) (103,25) (101,26) (99,27) (97,28) 

(95,29) (93,30) (91,31) (89,32) (87,33) (85,34)

117



Table 5.8 Number o f Efficient Solutions Searched by Algorithm 2 and Efficiency

\
Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 5 5 100%

B 9 8 88.89%

C 15 15 100%

D 12 9 75.00%

E 12 7 58.33%

F 17 15 88.24%

G 18 15 83.33%

H 14 12 85.71%

5.2.3 Algorithm 3

By applying algorithm 3, every efficient solution for Problem A through H 

was obtained. From the Table 5.8, only problem A and C achieved 100% 

efficiency by using algorithm 2. To obtain as much as efficient solutions as 

possible to the decision makers, this algorithm plays a good role in arriving at the 

objectives proposed. The Figure 5.6 shows the solutions for the problems A to H. 

Tables 5.9 and 5.10 summarize the corresponding results.
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Table 5.9 Computational Results of Algorithm 3 for Cost-Tolerance Optimization

\ Number of 

Components

Manufact.

time

Efficient Solutions (cost, tolerance)

A 4 16 (31,11) (28,12) (26,13) (25,14) (24,16)

B 5 23 (47,15) (45,16) (44,19) (43,17) (41,18) 

(40,21) (38,22) (36,23) (39,20)

C 7 34 (47,18) (46,19) (44,20) (43,21) (42,22) (41,23) 

(39,24) (38,25) (37,26) (36,27) (35,29) (34,30) 

(33,32) (32,34) (31,38)

D 8 30 (57,23) (55,24) (54,25) (49,26) (47,27) (46,28) 

(44,29) (42,31) (41,32) (40,33) (38,34) (36,36)

E 12 70 (120,30) (115,31) (113,32) (111,33) 

(109, 34) (107,35) (105,36) (104,37) (102,38) 

(101,39) (99,41) (98,43)

F 7 45 (79,16) (76,17) (74,18) (72,19) (70,20) (69,21) 

(67,22) (66,23) (64,24) (62,25) (61,26) (60,27) 

(58,28) (57,29) (56,31)(54,32) (53,34)

G 12 70 (103,22) (100,23) (98,24) (94,26) (92,27) (96,25) 

(90,28) (86,30) (84,31) (88,29) (82,32) (80,33) 

(79,34) (78,35) (77,36)(76,37) (75,39) (74,40)

H 13 70 (111,23) (106,24) (103,25) (101,26) (99,27) (97,28) 

(95,29) (93,30) (91,31) (89,32) (87,33) (85,34) 

(84,35) (83,37)
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Table 5.10 Number o f Efficient Solutions Searched by Algorithm 3 and Efficiency

Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 5 5 100%

B 9 9 100%

C 15 15 100%

D 12 12 100%

E 12 12 100%

F 17 17 100%

G 18 18 100%

H 14 14 100%

5.3 Tolerance -Time Model (Model 3)

5.3.1 Algorithm 1

The procedures to obtain the efficient solutions for the three algorithms 

are the same and the computational results are presented in by the same manner. 

The solutions for Problems A to D are presented in the Figure 5.7, and the 

efficient solutions are noticeably fewer than the other models. Cost constraint 

provided many solutions by one unit change, but the efficient solutions are 

determined by the non-dominated solution’s elimination from the solution set. By
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applying the algorithm 1, efiBciency for the problem A is obtained at most 75 %. For the 

problem B, only the base process (1,1,1,1,1,1) is obtained. For the other problems, 

efficiency is calculated below 30 % by the algorithm 1. Table 5.11 and 5.12 show the 

computational result and the efficiency.

Table 5.11 Computational Results of Algorithm 1 for Time-Tolerance 
Optimization

\ Number of 

Components

Assembly

Cost

Efficient Solutions (time, tolerance)

A 4 27 (11,11) (12,12) (14,13)

B 5 40 (17,15)

C 7 40 (18,18) (19,20) (21,23)

D 8 50 (17,23) (18,26)

Table 5.12 Number of Efficient Solutions Searched by Algorithm 1 and Efficiency

Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 4 3 75%

B 6 1 16.67%

C 8 3 37.5%

D 7 2 28.57%
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5.3.2 Algorithm 2

For obtaining more efficient solutions, algorithm 2 is applied to the 

problems, but the same number o f efficient solutions obtained for the problems 

except problem B that has obtained four more efficient solutions. The solutions 

for Problems A to D are presented in the Figure 5.8. By applying the algorithm 2, 

efficiency for the problem B is obtained as 83.33% in Table 5.13 and 5.14.

Table 5.13 Computational Results of Algorithm 2 for Time-Tolerance 
Optimization

\ Number of 

Components

Assembly

Cost

Efficient Solutions (time, tolerance)

A 4 27 (11,11) (12,12) (14,13)

B 5 40 (17,15) (18,16) (19,17) (20,18) (21,19)

C 7 40 (18,18) (19,20) (21,23)

D 8 50 (17,23) (18,26)

5.3.3 Algorithm 3

By applying algorithm 3, problem A obtained all o f the efficient solutions, 

but there were many efficient solutions not obtained for the other problems. The 

solutions for problem A to D are presented in the Figure 5.9, and Tables 5.15 and 

5.16 show the computational result and the efficiency.
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Table 5.14 Number of Efficient Solutions Searched by Algorithm 2 and Efficiency

Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 4 3 75%

B 6 5 83.33%

C 8 3 37.5%

D 7 2 28.57%

Table 5.15 Computational Results of Algorithm 3 for Tolerance-Time
optimization

\ Number of 

Components

Assembly

Cost

Efficient Solutions (time, tolerance)

A 4 27 (11,11) (12,12) (14,13) (15,14)

B 5 40 (17,15) (18,16) (19,17) (20,18) (21,19)

C 7 40 (18,18) (19,20) (20,19) (21,23)

D 8 50 (17,23) (18,26) (19,24) (20,27) (22,29)
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Table S. 16 Number o f EfBcient Solutions Searched by Algorithm 3 and Efficiency

\ Number of 

Efficient Solutions

Number of Efficient 

Solutions Searched

Efficiency

A 4 4 100%

B 6 5 83.33%

C 8 4 50%

D 7 5 71.43%

In general, except in the case of model 3, the proposed approximate 

solution methods are quite effective. However, it must be noted that the 

algorithms used in this research are a first attempt to solve the formulated bi

criteria problems. More efficient OR-based approaches must be used to develop 

efficient, high-quality, and speedy solution methods.

Algorithm I to 3 for models 1 & 2 each have different levels o f reaching 

efficient solution. Algorithm 3 seems the most capable o f generating efficient 

solutions in each case. The evolution of algorithms developed in this work 

followed the sequence of 1 followed by 2, and then by 3. It is suggested that the 

decision maker choose the algorithm most suited for their purposes, from these.

Nevertheless, noting the differences in the three problems (Models 1, 2, 

and 3), it is concluded that the heuristics presented in these researches are better at 

resolving the conflicting trends (Model I 1 and 2) rather than proportional trend
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(Model 3). The proportional trend tends to make the problem to deviate from a 

true bi-criteria optimization problem. The single criteria problem it tends to 

represent could be better solved with conventional OR tools.
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Chapter 6 

Conclusions

Manufacturing floors are often faced with prudent process selection 

decisions while designers have to contend with manufacturing costs and total 

manufacturing time to assembly. As can be appreciated by most concurrent 

engineers, the issues o f cost, tolerance, and time must be evaluated in an 

integrated fashion during tolerance design.

This research is founded on tolerance detennination and alternate process 

selection for effecting assembly. Tighter tolerances while quite expensive to 

manufacture are often easier in assembly completion. Since the penalties of 

trade-offs are difficult to evaluate without a former structure, a mathematical 

model with solutions is presented here.

The fundamental contribution o f this research is to mathematically model 

the combined influence o f total manufacturing time and manufacturing cost while 

determining tolerances and alternate machining processes. The nature o f the 

problem has prevented any concrete mathematical study to this date. It is 

suggested through this thesis that the problem can be formulated as a multi

criteria optimization problem. Although, the practical zones o f interest to most 

tolerance designers is in three specific problems within this integrative (multi

criteria) context: 1. m in im iz in g  manufacturing cost and manufacturing time to
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assemble for a given tolerance constraint. 2 . minimizing cost and tolerances for a 

given manufacturing time to assemble constraint. 3 minimizing the tolerance and 

time for a given cost constraint. Heuristic methods are suggested based on 

optimization models to solve these three problems. Analysis is conducted with 

multiple problem sets to evaluate the feasibility and versatility o f the model for 

standard scenarios. This research and the problem solutions are intended to serve 

as a first step towards designing decision support for tolerance designers in 

manufacturing shops. More sturdy mathematical solution methodologies must be 

employed in the future to solve the bi-criteria problems presented.

While evaluating the scenarios for problems, it is desired to propose as 

many efficient solutions as possible to the decision makers such that they can 

consider multiple alternates with respect to the factors considered. This is 

especially useful in shop environments during alternate process and production 

planning. Consequently, the models presented in this research have a 

manufacturing perspective that uses OR as a tool rather than otherwise.

More research on actual factory data sets will better verify the objectives 

and methodologies presented. It is proposed that this research be extended to 

multiple processes for single dimension problems, as well as to process 

scheduling problems. A total multi-criteria cost-tolerance-time formulation and 

solution with additional constraints on set-up times, measurement functions and 

process metrics will also serve to establish a comprehensive firameworic for 

process planning. An effective mathematical model for process planning will go 

a long way towards its computerization.
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Nomenclature

A^=Number o f components within an assembly 

T = The desired assembly tolerance value

/t, = Number of available processes to manufacture the component i

i = Index o f the component (i = 1,2,..... ,N)

j  = Index o f the process (/ = 1.2. .n,)

i f  component i is produced in process j
■’  “foIn otherwise

Ciy = Normal manufacturing cost when component i is produced in process

tij = Tolerance when component i is produced in process j

Tij = Manufacturing time related to the manufacturing cost and corresponding

tolerance value for component i with process j

T = Total tolerance

C = Total budget.

Total manufacturing time to assemble 

A =  Manufacturing cost

141



Appendix

Appendix 1.

Problem A

Dim. Process Toler. Cost Time

I 1 0.001 6.00 2

2 0.002 5.00 3

3 0.005 2.00 5

2 I 0.006 10.00 4

2 0.008 8.00 7

3 I 0.003 7.00 3

2 0.004 5.00 5

4 I 0.001 8.00 2

2 0.002 5.00 4

3 0.005 2.00 6

Assembly tolerance = 0.014

Assumption: Process, cost, and tolerance data is obtained from Chase et. al. [1990]. 

Time estimates are not what they provide. These estimates are generated based on the 

notion that looser tolerances tend to be more time expensive in assembly. This assembly 

costs and total assembly times are again assumed in the respective constraints, as 

necessary. In friture studies, validation with actual data will be quite beneficial.
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Problem B

Dim. Process Toler. Cost Time

I I 0.003 9.00 5

2 0.005 7.00 7

2 1 0.002 6.00 3

2 0.004 5.00 4

3 1 0.002 8.00 3
2 0.004 4.00 5

3 0.006 2.00 8

4 1 0.003 7.00 1
2 0.007 4.00 4

5 1 0.003 8.00 2
2 0.008 3.00 5

6 1 0.002 9.00 3

2 0.003 7.00 4

Assembly tolerance = 0.023
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Problem C

Dim. Process Toler. Cost Time

1 1 O.OOl 9.00 5

2 0.004 7.00 7

3 0.006 6.00 8

2 1 0.002 3.00 3

2 0.004 2.00 4

3 I 0.003 5.00 3
2 0.004 4.00 5

4 1 0.006 6.00 1

2 0.008 4.00 4

5 1 O.OOl 7.00 2

2 0.005 2.00 5

6 1 0.002 8.00 3
2 0.004 5.00 4

7 1 0.003 9.00 1

2 0.007 8.00 4

Assembly tolerance =  0.040
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Problem D

Dim. Process Toler. Cost Time

1 1 0.001 6.00 2

2 0.004 4.00 3

2 I 0.002 8.00 3

2 0.004 6.00 5

3 I 0.006 5.00 1
2 0.008 4.00 4

3 0.009 2.00 6

4 I 0.003 6.00 2
2 0.005 4.00 5

5 1 0.002 8.00 3
2 0.005 7.00 5
3 0.007 2.00 6

6 1 0.003 6.00 2

2 0.004 3.00 4

7 1 0.005 9.00 3

2 0.007 7.00 6

8 I 0.001 9.00 1

2 0.003 6.00 3

3 0.004 1.00 4

Assembly tolerance = 0.033
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Problem E

Dim. Process Toler. Cost Time

1 i 0.001 10.00 5

2 0.003 7.00 7

2 1 0.003 7.00 3

2 0.005 5.00 4

3 I 0.002 5.00 3
2 0.004 3.00 5

4 I 0.006 3.00 1

2 0.007 1.00 4

5 1 0.002 12.00 2

2 0.005 6.00 5

6 I 0.001 10.00 3
2 0.003 7.00 4

7 1 0.006 9.00 2

2 0.007 7.00 4

8 I 0.001 9.00 3

2 0.004 8.00 8

9 1 0.003 10.00 6

2 0.005 9.00 9

10 1 O.OOl 15.00 9

2 0.002 14.00 11

11 1 0.003 20.00 15

2 0.004 15.00 18

12 1 0.001 10.00 6

2 0.005 7.00 7

Assembly tolerance = 0.040
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Problem F
Dim. Process Toler. Cost Time

I 1 0.002 10.00 5

2 0.003 7.00 6

3 0.004 6.00 8
4 0.005 5.00 10

5 0.007 3.00 14

2 I 0.002 12.00 3

2 0.004 8.00 4

3 0.006 7.00 5

4 0.008 4.00 6

5 0.010 2.00 7

3 1 0.003 9.00 3
2 0.004 8.00 5

3 0.006 6.00 7
4 0.008 5.00 10

4 I O.OOl 14.00 1
2 0.003 12.00 3

3 0.004 10.00 5
4 0.006 9.00 8

5 1 0.002 20.00 8
2 0.003 19.00 10

3 0.004 17.00 13
4 0.007 12.00 18

6 1 0.003 4.00 3
2 0.004 3.00 4

3 0.005 2.00 6
4 0.006 1.00 8

7 1 0.003 10.00 3
2 0.004 8.00 4
3 0.008 7.00 9
4 0.009 4.00 11

Assembly tolerance = 0.035
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Problem G

Dim. Process Toler. Cost Time

1 1 0.001 10.00 5
2 0.002 9.00 7
3 0.003 8.00 9

2 1 O.OOl 9.00 3
2 0.004 7.00 6
3 0.005 6.00 8

3 I 0.002 8.00 3
2 0.004 7.00 5
3 0.006 4.00 7

4 1 0.003 7.00 1
2 0.004 4.00 4
3 0.005 2.00 8

5 1 0.001 10.00 2
2 0.004 5.00 5
3 0.005 2.00 7

6 1 0.001 6.00 3
2 0.002 4.00 4
3 0.003 3.00 6

7 1 0.002 7.00 2
2 0.003 6.00 4
3 0.006 5.00 8

8 1 0.004 10.00 3
2 0.006 9.00 5
3 0.008 8.00 7

9 1 O.OOl 10.00 6
2 0.004 7.00 9
3 0.005 6.00 10

10 1 0.002 9.00 9
2 0.004 6.00 11
3 0.005 3.00 12

11 1 0.003 8.00 5
2 0.006 7.00 8
3 0.008 6.00 10

12 1 0.001 9.00 6
2 0.002 7.00 7
3 0.004 6.00 9

Assembly tolerance =  0.036
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Problem H

Dim. Process Toler. Cost Time

1 1 0.001 10.00 5
2 0.002 9.00 7
3 0.003 8.00 9

2 1 0.001 9.00 3
2 0.004 7.00 5
3 0.005 6.00 6

3 1 0.002 8.00 3
2 0.004 7.00 5
3 0.006 4.00 7

4 1 0.003 7.00 1
2 0.004 4.00 4
3 0.005 2.00 7

5 1 0.001 10.00 2
2 0.004 5.00 5
3 0.005 2.00 6

6 1 0.001 6.00 3
2 0.002 4.00 4
3 0.003 3.00 6

7 1 0.002 7.00 2
2 0.003 6.00 4
3 0.006 5.00 8

8 1 0.004 10.00 3
2 0.006 9.00 5
3 0.008 8.00 7

9 1 0.001 10.00 6
2 0.004 7.00 9
3 0.005 6.00 10

10 1 0.002 9.00 9
2 0.004 6.00 11
3 0.005 3.00 12

11 1 0.003 8.00 5
2 0.006 7.00 8

3 0.008 6.00 10
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12

13

1 0.001 9.00 4
2 0.002 7.00 6
3 0.004 6.00 8

I 0.001 8.00 5
2 0.002 3.00 9

Assembly tolerance = 0.036
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