
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and teaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ROBUST OPTIMIZATION IN SUPPORT VECTOR MACHINES

AND APPLICATIONS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

In partial fulfillment o f the requirements for the

degree of

Doctor o f Philosophy

By

SAMIR A. ALWAZZI

Norman, Oklahoma

2002

UMI Number: 3073705

UMI
UMI Microform 3073705

Copyright 2003 by ProQuest Information and Learning Company.
All rights resen/ed. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor. Ml 48106-1346

© Copyright by Samir A. Alwazzi 2002

All Rights Reserved.

ROBUST OPTIMIZATION IN SUPPORT VECTOR MACHINES

AND APPLICATIONS

A Dissertation

APPROVED FOR THE

SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr THEODORE TRAFALIS

r. Ç A K IZ E P l^ T

Dr. DJEBB AR TIAB

Dr. SHIVAKUMAR RAMAN

Dr. RANDA SHEHAB

Acknowledgements

In the name o f God, Most Gracious, Most Merciful. “ Read, in the name of thy Lord

cherisher, who created. Created man from a (leech-like) clot. Read, and thy Lord is

most bountiful. He who taught (the use of) the pen. Taught man that which we knew

not. Nay, but man doth transgress all bounds. To thy Lord is the return (of all)- (Holy

Qur’an Surah No.96).

0 mankind! Lo! We have created you from a single pair male and female, and

have made you nations and tribes that ye may know one another and not to despise

each other. Lo! The noblest of you, in the sight o f God, is the best in conduct. Lo!

God is all Knower, all Aware-(Holy Qur’an Surah No.49).

1 would like to express my gratitude to the members o f my committee, each and

every one o f them Dr.P.S. Pulat, Dr.S.Raman, Dr.D.Tiab and Dr.R.Shehab for the

time and assistance they gave throughout the development of this work. It is not

possible for me to fully express my appreciation and sincere gratitude to my chair

advisor. Dr. Theodore Trafalis, for his generous and unlimited assistance, fruitful

guidance, understanding and support tftroughout the entire program. His expertise and

guidance were o f great importance for this research study. Also, I should not forget

Mrs.Trafalis for her encouragement and support.

A word o f thanks is also due to all my friends who helped me in one-way or

another: Dr.A.Alrefaii, Mr. M. Alramahi, Mr. N. Algiyash, Mr.A.Shaher, Dr. I.

Alsaleh, Mr. K. Habib, Mr.S.Hasanjee, Dr. H. Khattab, Dr.M. Hawari, Mr. M.

IV

Alhamly, Dr. M. Issa, Mr. L. AH, Mr. M. Amgad, Dr.H.Saber, Mr. S. Budi, Mr. I.

Hussein, Mr. A. Malyscheff and many others. A special debt o f gratitude and

affection is extended to my father and my mother for their love, understanding,

support and encouragement. Special thanks are also due to my brothers and sister,

parents-in-law, and brothers-in-law Mr. N. Alkhaznadar tor their great help and

Du’ua.

Finally, it is not possible to fully express my thankfulness to my dear wife Nala

Alkhaznadar and children (Salsabil, abdullah, Ismaeel, and Issa) for their patience and

love during these long and stressful years o f this program.

I also acknowledge the support by the National Science Foundation under NSF

Grant ECS-9978813.

Contents

ACKNOWLEDGEMENTS...IV

ABSTRACT...XVI

CHAPTER 1..1

INTRODUCTION... I

1.1 Uncertainty.. I

1.2 Machine Learning...5

1.3 Classification and Regression..6

1.4 The Kernel Method.. 7

CHAPTER 2 ... 9

Support Vector Machines...9

2.1 Introduction...9

2.2 Mathematical Background..10

2.3 Support Vector Machine Formulation Using L, Norm...................................13

2.3.1 Linearly Separable Case.. 13

2.3.2 Linearly Non-Separable Case..14

2.4 Support Vector Machine Formulation Using Loo N orm 15

2.4.1 Linearly Separable Case...16

2.4.2 Linearly Non- Separable Case.. 17

2.5 Kemelization...18

v i

2.5.1 Definitions (Features and Feature Space).. 20

CHAPTERS...22

Literature Review and Basic Concepts of Robust optimization.................. 22

3.1 Robust Optimization..22

3.1.1 Robust Solutions of Uncertain Linear Programs Via Convex

Programming.. 24

3.1.2 Robust Counterpart o f an Uncertain Linear Programming.................... 27

3.1.3 Scope on The Worst LP In (3) and In (3u).. 28

3.2 Robust Counterpart of Uncertain Convex programming............................... 31

3.2.1 Definition And Propositions... 35

3.2.2 Sensitivity Analysis For Uncertain Program s... 36

3.3 Robust Linear Programming Discrimination o f Two Linearly Inseparable

S e ts ...40

3.4 Linear Programming With Interval Coefficient “LPIC” 40

3.5 Robust Linear and Support Vector Regression... 44

3.6 Stochastic Linear Programming (Slpm)..46

3.7 Uncertainty According To Elghaoui And Lebret..52

3.8 Boyd’s Approach.. 52

3.9 The Relatioship Between Tractability, Ellipsoids And Ellipsoidal

Uncertainties................................ 57

3.10 Summary o f Robust Optimization General W ork.. 60

Vll

Robust Optimization in Support Vector Machine Lea r n in g 62

4 .1 Uncertainty and O ptim ization.. 62

4.2 Pattern R ecognition.. 63

4.3 Pattern Classification Training Examples...66

4.3.1 Introduction.. 66

4.3.2 Precise Data Case (No Uncertainty)..67

4.3.3 Sensitivity Analysis C ase .. 69

4.3.4 Robust Data Case (with bounded uncertainty).. 70

4.4 Robust “LP” Approach to Classification..74

4 .4 .1 Introduction.. 74

4.4.2 Robust Counter part o f (4.14)... 75

4.5 Kem elization.. 76

4 .5 .1 Non-Linear Case (XOR Problem) with Precise D a ta 79

4.5.2 Non-Linear Case (XOR Problem) with Uncertain D ata84

CHAPTERS... 88

Robust O ptimization in Support Vector Machine “R egression Analysis” 88

5.1 Introduction...88

5.2 Basic Idea.. 89

5.3 Linear Epsilon- Insensitive Loss Function... 90

5.4 G eneralization..92

5.5 Kem elization.. 94

CHAPTER 6 ... 98

v i i i

Computational REsuLTS..98

6 .1 Results for Pattern Recognition or Classification...98

6.1.1 Tests on Synthetic Problem s..98

6.1.2 Tests on Real World Problem s...101

6. 2 Results for Regression Analysis... 104

6.2.1 Tests on Synthetic Problem .. 104

6.2.2 Tests on Real World Problem s...105

CHAPTER?... 107

Sum mary , Recommendations for Future Wo r k s .. 107

7.1 Summary... 107

7.2 Recommendations for Future W ork..108

APPENDIX A ...109

APPENDIX B ... 125

APPENDIX C ...147

APPENDIX D ...154

APPENDIX E ... 160

APPENDIX F ... 179

REFERENCES...195

IX

List of Tables

Table I- The AND Ai net ion

Table 2- The XOR problem

Table 3- The robust Case for the AND function

Table 4- The Sensitivity Analysis Case for the AND function

Table 5- Results for the XOR problem (Non-Linear Case) using the uncertainty in the

feature space

Table 6- Results for the Echocardiogram Classification Application (Original Data)

Table 7-Results for the Echocardiogram 1 Classification Application (Generated

Randomly).

Table 8- Results for the Echocardiogram! Classification Application (Generated

Randomly).

Table 9- Results for the Breast Cancer Classification Application

Table 10- Experiments for the synthetic regression problem.

Table 11- The Average Mean Square Error (mse) with different values of

Eita (Tj) for the Synthetic Regression Problem

Table 12- Tests on the Lynx Regression Problem

List of Figures

Figures for classification problems

Figure I- The Robust Case for the AND Function with different values o f the

uncertainty (eita)-Linear Case.

Figure 2- The Sensitivity Analysis Case for the AND Function with different values

o f the uncertainty (eita)- Linear Case.

Figure 3- XOR with eita = 0 (Non-Linear Case)

Figure 4- XOR with eita = 0.1

Figure 5- XOR with eita = 0.2

Figure 6- XOR with eita = 0.3

Figure 7- XOR with eita = 0.4

Figure 8- XOR with eita = 0.5

Figure 9- XOR with eita = 0.6

Figure 10- XOR with eita = 0.7

Figure 11 - XOR with eita = 0.8

Figure 12- XOR with eita = 0.9

Figure 13-XOR with eita = LO

Figure 14- XOR with eita = 1.05

Figure 15- XOR with eita = 1.06

Figure 16- The Kernel Method for Classification

XI

Figure 17- The Kernel Method for Regression

Figure 18- Separating hyperplanes in a two dimensional Space

Figure 19-The decision Boundary of the optimal hyperplane.

Figure 20a- Decision function determined by the support vector machine with a

feature space o f order two polynomials. In the two-dimensional input space, the

decision function is nonlinear.

Figure 20b- Decision function determined by the support vector machine with a

feature space of order two polynomials. In the six-dimensional feature space, the

decision function is linear with maximum margin.

Figure 21- Misclassified testing points with uncertainty eita = 0 for echo cardio data.

There are 4 points misclassified. They are the empty circles.

Figure 22- Misclassified training points with uncertainty eita = 0 for echo cardio data.

There are 4 points misclassified. They are the empty circles.

Figure 23- Misclassified testing points with uncertainty eita = 0.03 for echo cardio

data. There are 5 points misclassified. They are the empty circles.

Figure 24- Misclassified training points with uncertainty eita = 0.03 for echo cardio

data. There are 4 points misclassified. They are the empty circles.

Figure 25- Misclassified testing points with uncertainty eita = 0.05 for echo cardio

data. There are 4 points misclassified. They are the empty circles.

Figure 26- Misclassified testing points with uncertainty eita = 0.07 for echo cardio

data. There are 5 points misclassified. They are the empty circles.

XII

Figure 27- Misclassified testing points with uncertainty eita = 0.09 for echo cardio

data. There are 5 points misclassified. They are the empty circles.

Figure 28- Misclassified training points with uncertainty eita = 0.09 for echo cardio

data. There are 3 points misclassified. They are the empty circles.

Figure 29- Misclassified testing points with uncertainty eita = 0.5 for echo cardio

data. There are 7 points misclassified. They are the empty circles.

Figure 30- Misclassified testing points with uncertainty eita = 0 tor breast cancer data.

There are 2 points misclassified. They are the empty circles.

Figure 31- Misclassified training points with uncertainty eita = 0 for breast cancer

data. There are zero points misclassified. They are the empty circles.

Figure 32- Misclassified testing points with uncertainty eita = 0 .0 1 for breast cancer

data. There are 2 points misclassified. They are the empty circles.

Figure 33- Misclassified training points with uncertainty eita = 0 .0 1 for breast cancer

data. There are zero points misclassified. They are the empty circles.

Figure 34- Misclassified testing points with uncertainty eita = 0.05 for breast cancer

data. There are 2 points misclassified. They are the empty circles.

Figure 35- Misclassified training points with uncertainty eita = 0.05 for breast cancer

data. There are zero points misclassified. They are the empty circles.

Figures for regression problems

Figure la- Synthetic problem for regression with uncertainty (eita)=O.Original Data.

Figure lb- Synthetic problem for regression with uncertainty (eita)=O.Original Data.

X lll

Figure 2a- Synthetic problem for regression with uncertainty (eita)=

0.000001.Original Data.

Figure 2b-Synthetic problem for regression with uncertainty (eita)=0.000001.Original

Data.

Figure 3a- Synthetic problem for regression with uncertainty (eita)=0.00001 .Original

Data.

Figure 3b- Synthetic problem for regression with uncertainty (eita)=0.00001.Original

Data.

Figure 4a- Synthetic problem for regression with uncertainty (eita)=0.0001.Original

Data.

Figure 4b- Synthetic problem for regression with uncertainty (eita)=0.0001.Original

Data.

Figure 5a- Synthetic problem for regression with uncertainty (eita)=0.1.Original Data.

Figure 5b- Synthetic problem for regression with uncertainty (eita)=0.1.Original Data.

Figure 6a- Synthetic problem for regression with uncertainty (eita)=0.5.Original Data.

Figure 6b-Synthetic problem for regression with uncertainty (eita)=0.5.Original Data.

Figure 7- The uncertainty against the average mean square error o f testing points for

the synthetic regression problem

Figure 8- Similar to figure 7 above, but with larger eita. It shows the behavior of

uncertainty and mean square error for synthetic regression problem.

Figure 9- Comparison among training and testing points with the original data points

for the lynx regression application with uncertainty equals to zero (precise data).

XIV

Figure 10- Comparison among training and testing points with the original data points

for the lynx regression application with uncertainty equals to 0.0001.

XV

Abstract

In the theory o f support vector machines learning, it is assumed that the data are

precise. However, real world data have uncertainties both in their inputs and outputs.

Robust optimization techniques recently have attracted a lot o f researchers who are

interested in finding solutions to problems dealing with uncertainty, erroneous, or

incomplete data. In this dissertation, robust optimization techniques are investigated

in the support vector machine approach, with uncertainties in the data in feature

space.

The main objective o f this work is to investigate the robustness and stability o f the

behavior o f the solutions o f the Support Vector Machines model under bounded

perturbations o f the input data in the feature space. The resulting optimization model

is equivalent to a second order cone-programming problem. Specifically those

techniques are used both for pattern classification and regression analysis.

Computational results are provided both for synthetic problems such as the AND

function and the XOR and real world problems such as the echocardiogram and the

breast cancer in the classification case. Also in the regression analysis case, a

synthetic problem was created to illustrate the stability o f the resulting model. Real

world problems (e.g lynx data) were examined. In both classification and regression

cases, the obtained results were consistent with the goal o f this dissertation.

XVI

Chapter 1

INTRODUCTION

1.1 Uncertainty

The decision of managers, engineers and other decision-makers are affected widely

by the reality o f uncertainty whatever the field you are working in is. Uncertainty in

future cash flows makes investment decisions in long term projects difficult,

uncertainty in price, labor and other production costs as well as in the availability o f

needed raw material supplies, complicates the task o f the production manager in

planning the mix o f products to be produced.

Uncertainty is not temporary deviation from well thought out long term plans. It

is a basic structural character of the technological and business fields or environment.

So how can it be dealt with this fact, which affects the solution o f the real-world

problems (Kouvelis and Grang 1997).

The researchers have understood this reality, and thought that, the best way to

handle the uncertainty, and to be able to make decisions under uncertainty is to accept

it, understand it, and then make some good efforts to build a model or structure a

system, which can deal easily and properly with this problem, that is the problem o f

incomplete, noisy and uncertainty data.

This uncertainty in input data sometimes is controlled by some uncontrollable

parameters or factors. So in mathematical modeling, the coefficients o f the objective

function and the constraints are supplied as input data to the model and hence, the

value o f the objective function will depend on their values.

In practice, these coefficients are seldom known with absolute certainty; as a

consequence, the solution will not be accurate under these circumstances. Each

variation in the values o f the data may affect the optimum solution found in an earlier

stage. So one has to study how it changes with the changes in the input data

coefficients (Reklaitis et al 1983). Assume e.g., that linear programming (LP) is a

model o f technological process in chemical industry. The process is comprised of a

number o f decomposition-recombination stages. In a meaningful production plan, the

balance constraints must be satisfied (the amount of every material to be used at a

particular stage can not exceed the amount of the same material yielded by the

preceding stages); at the same time, these balance constraints involve coefficients

affected by uncertainty of the raw material, parameters of the devices, e.t.c.

Since dealing with the real-world problems is our concern, researchers in recent

years have made some attempts to get closer to this concern and find the best

available solution for this problem. Thus, their attempts were successful by

developing an attractable approach known as the robust approach, which can deal

properly with the problem of uncertainty. It is important to shade some light about the

lack o f knowledge o f the data that might be in reality. The crude knowledge o f a data,

is best explained by giving examples from the real-world:

A) The data element Ç, is unknown at the time the values o f the variables x

should be determined but will be known in the future. For example in a production

problem, components o f the vector x are the production variables and Ç is the future

demand.

In construction engineering e.g., building a bridge, the vector x could be the cross-

section of bars and the data element Ç represents the future load that the bridge will

have to carry.

B) At the time, the vector x is determined, the data element Ç becomes

realizable but can not be measured; e.g material properties like the Young’s modulus,

temperature and pressure (Ben-Tal and Nemirovski 1998).

To understand more about the properties o f the uncertainty data, one should

locate the area o f study where incomplete, noisy or uncertain data can be found. In

fact, they can be located in many different areas such as:

1) In social sciences, for example, data are incomplete most o f the time like

when partially census surveys are carried out, instead of a complete census o f the

population. Also in economic modeling, problems will arise because o f these

incomplete data.

2) In business applications/management science, researchers have to deal with

noisy data since those data have some probabilistic distribution nature.

3) In engineering and physical sciences, the data are usually subject to some

measurement errors, such as in the case o f models o f image restoration from remote

sensing experiments (MuIvey et aI.I995).

Some other models are assumed to be deterministic. These can be found in the

world o f mathematical programming models. These models are usually formulated by

"best guessing" uncertain values, or by solving "worst-case" or mean-value problems,

which will lead to solutions either conservative and potentially expensive, or to an

inadequate one such as the large bounds arising in an attempt to solve the mean-value

problem (Birge, 1982).

Thus, it can be seen that there are some contradictions between the real-world

data, and the world o f mathematical programming. So to reconcile the relationship o f

these two worlds, different approaches have been used to discover the influence or the

impact of the data uncertainties on the models’ recommendations, such as the

sensitivity analysis and the stochastic linear programming (Beal, 1955 and Dantzig,

1955).

Even with these two approaches, their solutions were reactive rather than being

proactive.

The robust optimization approach leads to solutions that are less sensitive to the

model data, and therefore more robust over other methods. Despite the fact that the

robust approach is more applicable than others, it has some limitations sometimes.

This limitation can be visualized in the diet example, where the solution according to

the robust approach is less sensitive to uncertainty than the linear programming one,

but with a little higher cost. But even then, the solution will be more stable (Zenios et

al. 1995).

1.2 Machine Learning

The main idea in machine learning can be described as in the following; assume, an

experiment is conducted under specific rules and conditions, which can be

represented as a set o f parameters. Usually, the experiment is repeated under different

conditions, whenever is possible, so that a more reliable result can be observed. These

rules are called attributes or set o f attributes. If one can present the outcome of these

experiments by a mathematical expression, so that in future, predicting and

approximating the outcome becomes possible, then a great deal o f achievement will

one be proud of. Each o f these attributes can be represented by a variable known as

the input parameter. Let us name the result o f each set o f the input parameters by the

output parameter. Now after n experiments are conducted, a specific rule should be

obtained, which will lead to the correct value (with minimum number of errors), o f

the output parameter or result. This process is known as training, and the set o f

experiments is known as the training set, which is used to find the mathematical

connection or expression between the given information and the result, or between

the input and the output. Thus, during training, we learn about the behavior or the

conduct of the unknown system, which is described by a set o f input data, and the

output or the result is actually known. Thus, once training is completed and a

mathematical function (known as discriminant function) has been calculated, the

testing stage can start, where the result or the output, o f course, is unknown. This

discriminant fonction plays a vital role by being a guide for the testing experiments,

in which committing as few errors as possible is our goal. From a mathematical point

of view, let Xj represent the input parameters, and y, correspond to the output

parameters. In other words, the training set can then be described by (x j, yj), j = I ,...,

n. The problem is to find a decision function f (x), which predicts accurately y o f any

example x that may or may not belong to the training set. The discriminant function

f(x) may be parameterized with some parameter vector w = (w , ,W 2 , . . . ,W n) , that is

determined from the training examples by means o f a learning algorithm. To be

explicit we should write f(x, w).

1.3 Classification and Regression

Support vector machine (SVM) is a tool for machine learning applications. Its name

comes from those points in the input space, which support or “touch” the convex hull

o f the classes o f points we want to classify (Vapnik, 1995). The abbreviation SVM is

typically used to describe classification with support vector methods, and support

vector regression (SVR) is used to describe regression with support vector methods.

From now on, the term “SVM” will refer to both classification and regression

methods.

In the pattern classification problem, we restrict our consideration to a two-

class problem without loss of generality. The output parameter y, indicates to which

class the input parameters xj belong. So label yj = +l refers to class A and label yj = -

I refers to class B. So mathematically a label can be expressed as yj e { + l , - l }, and

XjeSR ̂is an input vector, j= l,.,.,n ,where n is the number o f experiments.

The main idea in pattern classification is to find a separating hypersurface that

separates two or more classes o f points. In the case o f linear separable data, there are

many possible linear classifiers that can separate the data points. But indeed, there is

only one, which maximizes the distance (margin) between it and the closest data

points o f each class. This linear classifier is known as the optimal separating

hyperplane. It should be pointed out here, that there are cases where data sets cannot

be linearly separable. Optical character recognition (Vapnik, 1995), breast cancer

diagnosis (Mangasarian et al., 1995), can be taken as application examples for the

pattern classification problem. In the regression problem, the purpose is to estimate a

function which approximates the input and output relationship of (X j,y j) , j= l,...,n .

Regression analysis and prediction o f the value o f financial securities is an example

for the regression problem. Note that, most applications consider “one-dimensional”

input parameters (Mangasarian and Wolberg, 1995).

1.4 The Kernel Method

Many machine learning algorithms cannot handle non-linear cases. The Kernel

method allows making the necessary transformation for the problem from the input

space to the feature space (higher dimensional) through the kernel mapping. Hence,

linear classification methods can be applied in feature space to solve non-linear

problems in the input space. Thus, the idea o f the Kernel function is to perform the

operations in the input space rather than in the potentially high dimensional feature

space. Thus, the inner product does not need to be evaluated in the feature space. An

inner product in feature space can be expressed as:

K (X i , X2> = <p(Xi). (p(X2),

where tp is a map, which maps the input space to the feature space. Finding tp

generally is a very difficult problem.

The mapping of these inner products yields a linear classification problem or a

linear regression one in the feature space. Figures 16 illustrate the transformation

process o f the problem data from input space to feature space in classification

problems. Similar procedure for transformation can be used for regression problems

as can be seen in figure 17.The most commonly employed functions are satisfying

Mercer’s condition. Among the acceptable mappings are: 1) polynomials such as (p

(X |, X2) = ((X1.X2) +1)‘‘, where d is the degree o f the polynomial, 2) Radial basis

functions such as gaussian, (p(X(, X2) = exp
-IIX^ - X j

l a -
\

• exponential kernels.

Fourier series, linear splines, B„ splines and tensor product splines functions (Gunn,

1997).

Chapter 2

Support Vector Machines

2.1 Introduction

Support vector machine (SVM) is a new technique for machine learning applications

and it is gaining popularity due to many attractive features and promising empirical

performance (Vapnik, 1995). It can be implemented in two kinds of problems, the

classification pattern problem and the regression analysis one. In most applications,

SVM performance or the error rates on test sets, either matches or dominates other

competing methods. Although SVMs have impressive performance in generalization

on unseen data, they can be slow in training (Burges 1996, Osuna and Girosi 1998).

The basic idea o f the SVM is that, for a given learning task, with a given finite

amount o f training data, the best generalization performance will be achieved if the

right balance is struck between the accuracy attained on that particular training set,

and the capacity o f the machine; in other words, the ability o f the machine to learn

any training set without error. In the theory o f SVM’s, it is assumed that the data are

precise. Therefore if we combine the idea o f robust optimization and SVM technique

to solve pattern recognition problems, then a new approach will be added to the

present techniques, and it may well work better than many o f them with more stable

or even better results, since uncertainty will be taken into consideration during

modeling or constructing the problem.

As it is well known, SVM is dealing with precise data. In this dissertation, we

consider uncertainty in the data and develop a new SVM training model by using

robust optimization methods. The robust optimization approach leads to solutions that

are less sensitive to the model data.

2.2 Mathematical Background

The SVM algorithm developed by (Vapnik and Cortes, 1995) is based on statistical

learning theory. The initial formulation o f the problem o f optimal separation o f two

classes o f data points, consists on finding the hyperplane that separates the two sets in

such a way that the distance between it (optimal hyperplane) and the nearest point of

each o f the data set is maximum. This distance is known as the margin, and since

there are many possible linear classifiers (hyperplanes) that can separate the data

well, then the hyperplane that divides these two classes with maximum distance is

called the optimal separating hyperplane. Let us now write down some formulas to

express our thoughts mathematically:

Let us have two parallel hyperplanes in Hi: w .x + bi = 0 and Hz: w .x + bz

= 0. The distance between these two hyperplanes with an Lp norm is the following:

dp(Hi, H z) = minl lx —y l l p , (2.1)
xeffi

where

10

Xl 1 p = Z K I '
V'=' /

Equation (2.1) can be rewritten as

dp(Hi, H2) = min l|x -y ||p • (2.2)
xe W,

Note, that yeH j was taken as an arbitrary point. These two hyperplanes can

have différent equations if they are shifted parallel, so if we let Hz passing through the

origin and the point y is chosen to be that origin, then the equations o f these two

hyperplanes will be as the following: Hz : w.x = 0 and Hi = w.x + (bi- bz)=0 and the

distance between them will be:

dp(Hi, Hz) = min 11 x 11 p . (2.3)
je/f’i

To be able to define the distance between these two hyperplanes, the conjugate

Lp and Lq norms are useed. Holder's inequality states the following:

|x.w| < ||x||p.||w||q , where—+ — = 1 (2.4)
P 9

Since for x g Hi |x.w| = |bi-bz| we have

min I I X lip I I w llq = 1 bi - b z |. (2.5)
X € W ’l

Thus, using the Lp norm, the distance between our two hyperplanes becomes:

dp(H|, Hz) = min 11 x 11 p = ̂ !. .. , (2.6)

where q is the conjugate norm o f p (Murata and Pedroso, 1999).

I I

It should be pointed out here, that normalization of constraints is necessary to

make sure that the values o f w and b, are bounded, so it is appropriate to consider a

canonical hyperplane (Vapnik 1995), where the parameters w and b are constrained

by:

min |.r,.w+6| = l . (2.7)

A separating hyperplane in canonical form must satisfy the following

constraints,

y [(w .X i) + b] > 1, i = l n . (2.8)

The distance d(w,b;x) o f a point x from the hyperplane (w,b) will be:

d (w,b;x) = - r -:,- - . (2.9)

The optimal hyperplane can be obtained by maximizing the margin p(w, b), which is

the distance between the hyperplane and the nearest data point o f each class, and it is

also a function o f w and b. This margin is maximized subject to the constraints o f

equation (2.8), and it can be calculated by the following mathematical equalities;

p(w,b) = min (K-.6;.r,) + min à(b:xj)
| r , : y , = l | l . t , : .V j = - I l

+ |u’_r +è|
- min —+ min ' '

\H IHI

/
min |»v'-r,-+fe|+ niin +6j

o - (2.10)Hi

12

So the hypeiplane that minimizes the function

(p(w)=||*v| (2.11)

will be the optimal hyperplane which separates the data points optimally. SVM

formulations based on a general Lp norm can be found in (Mangasarian, 1999).

2.3 Support Vector Machine Formulation Using L, Norm

When the L| norm is used for determining the distances between the separating

hyperplane and the training points, then a linear optimization problem will be

formulated. From section two, equation (2.6) and using p =1, equation (2.6) becomes:

d,(H,, Ho) = '- -7, . (2.12)ML

2.3.1 Linearly Separable Case

Since w.Xi + b = ± l for support vectors, then the support hyperplanes corresponding

to each class are expressed respectively as:

H : w.Xi + b = +1, and H : w.x, + b = -1 respectively. The distance between the two

hyperplanes and H will be:

d i (H \ H l = I— -̂1= --------------------- d. (2.13)
max^

The distance di(H^,H’) needs to be maximized which is equivalent to

minimizing the denominator o f (2.l3).This can be expressed as:

13

min maxkyl- (2.14)
w.h j

By setting min max w ■ equal to an auxiliary variable a , the SVM learning
w.b j

problem is equivalent to the following linear programming problem.

M i n a (2.15)

S.t (w .X i) + b > +1, i 6 P

(w .X i) + b < -1, i 6 N

a > W j Vj e {1......d}

a>-Wj Vj e {l,. .. ,d)

where a,b e R, w e (K,̂* , P = positive examples and N = negative examples.

Note, that the support vectors are the training data points for which w.Xi + b =

±1, (the points belong to the active or binding constraints). These points can be

determined by using an LP software (e.g.Matlab). In section three, an example will be

given to illustrate the above analysis by using Matlab.

2.3 .2 Linearly Non-Separable Case

If the problem above has no feasible solution, then some constraints such as the soft

constraints can be relaxed and a penalty will be added to the objective function. The

constraint for the positive examples becomes: (w .X j) + b > +I — Zj , and for the

14

negative one will be: (w.x,) + b < —I + z,., where Zi > 0. The objective function will be

as follows:

min < maxw.h.z I Wj + c (2.16)

where C is a positive parameter selected by the user. This parameter is

important because it can put the classification errors under control in the training

operation. The linear programming formulation is as follows:

min a + C (2.17)
> = i

S.t. (w .X i) + b >+1 - Zi, i e P

(w .X i) + b < -1+ Zi i 6 N

a > W j V j 6 { l d)

a > - W j Vj e{l , . . . ,d},

where a , b e l R , w e lR .‘‘ ,P = positive examples and N = negative examples.

2.4 Support Vector Machine Formulation Using Loo Norm

Again, if one uses the L» norm to measure the distance between the training points

and the separating hyperplane, the problem can then be formulated as a linear

optimization problem. From previous section recalling equation (2.6), we see that the

15

distance between the two parallel hyperplanes Hi: w.x + b| = 0 and Hi: w.x +bi = 0

is:

IZ), — bf I
(L (Hi, Hi) = ‘ . (2.18)

2.4.1 Linearly Separable Case

In this case, we may also choose w.x, +b = ± I for support vectors as in the Li norm

case. The distance between the two support parallel hyperplane o f each class is then:

j = i d
"111 Wj

(2.19)

Now this distance, (L. needs to be maximized; minimizing the denominator can do

this and thus we need to solve min Z subject to the constraints o f separation. This
w .b j

can be transformed to an LP problem by adding an auxiliary variable aj = \wj , and

the constraints a j > wj, and a j > - wj for every j. Hence, the problem is to

minimizeZjOt j subject to all the constraints o f separation. The complete formulation

for this LP problem is the following:

m in^of^ (2.20)
y=i

S.t

W.Xi + b > 1 V ie P

w.Xi + b < - l V ie N

16

a j >Wj V j e { ld}

a j > - W j Vj e {I d),

where b a j ,w e Sî**, P is the index set o f positive examples , and N is the index

set o f negative examples.

2.4.2 Linearly Non- Separable Case

In this case, we can still use the soft-margin constraints as in the Li case, with the

following objective function:

min
w.b4[j

r \
Wj + C Zzy

V 1 /
(2.21)

Then, the following formulation will give the complete LP problem,

min V c r . + C (2.22)

S.t. (w .X i) + b >4-1 - Z i, V i e P

(w .X i) + b < - 1 + Zi V i e N

a > W j Vj 6 (l,...,d}

a > - W j V j e { l d),

where a , b e IR., a , w 6 OR'*, z > 0,C is a user defined positive constant and P and N

are the index set o f positive and negative examples respectively. In chapter tour we

will discuss how the robust optimization methods can be used in SVM learning.

17

2.5 Kemelization

In section 1.4, we have shaded some lights about Kernels in general terms. In this

section, we would like to explore the idea of kemelization in a deeper manner. We

can observe that the decision function D(x) = w.x + b can be expressed in the form of

/
dot products, Xi.xj. Specifically we can express w = 51 y,ûr,.r,, with «i > 0. Then D(x)

(=i

I
= 'Zyiai (x,Xi)+b. Suppose we map the data to some other higher dimensional

1=1

space H, using a mapping (p. This mapping can be symbolized as (p: 51̂* —> H. D (x)=

I
Y, y^ai{(p{x),(p{xi) + b, and is called feature map. Hence, the training algorithm
1=1

would only depend on the data through dot products in H, i.e. on functions of the

form (p (Xi).(p (Xj). Note that if there is a kernel function k that equals to this dot

product, k (Xi,Xj) = (p (Xj).(p (xj), then it would be easy tor us and more practical to use

k in the training algorithm, and ultimately, we will never need to use or even to know

what (p is. Therefore the algorithm will produce a linear support vector machine in the

feature space. Indeed, we are still doing a linear separation, but in a different space.

Let us use the Li norm to maximize the margin. Then this is equivalent to minimize

the I-norm o f w (the sum of absolute values o f the components o f w), while

satisfying the separation constraints. Specifically we can consider the following

optimization problem:

i=l

18

s.t

Yi (Xi.w + b) + Zi > 1

Zi > 0 i = I I,

where the parameter C is the tradeoff between minimizing the training set error and

maximizing the margin. Zi isdefined as the nonnegative slack or error variable, which

is added to each constraint for possible violation o f the constraint.

The above problem can be transformed into a LP problem solvable by different

methods such as the simplex method or by the interior point algorithms. It should be

noticed here that, since we are minimizing the I-norm o f w, the optimal would be

very sparse. Now the problem can be formulated directly in the kernel or feature

space to create nonlinear discriminants. In the original SVM formulation, we found

that the final classification was done as follows:

fix) = sign (^ YiOC.kix, .r,)+b). (2.24)
(

U l if Z>0
where sign(z) = 4

[— I otherwise

I
Note that w = X .

1=1

Now let us substitute w as above into the LP (2.23). This yields the following

optimization problem:

19

»=I

S.t
/... \

y, '^yjajk(x, ,Xj) + b + - , > 1
V j=> /

Zj > 0,cif, > 0, / = 1 /, j =

Now by minimizing || a ||i= |a i| + | az| + ...+ |am| = we obtain a solution which
r = l

is sparse, and not too many data points will be support vectors (Bennett and Campbell

2000). Next we provide the following definitions to ease our presentation in chapters

four and five.

2 ,5 .1 Definitions (Features and Feature Space)

Definition 1

A function <pi : IR‘‘ — > IR that maps each point x in IR̂* to a real value (p, (x) is called

a feature . Combining n features (pi ,(p2 ,..., (Pn results in a feature map tp: 1R‘* — >H

and the space H is called a feature space.

In order to avoid an unnecessarily complicated notation, we will abbreviate cp(x) by x

for the rest of the dissertation. The vector x i n H is also called the representation o f

X in IR‘‘ .

2 0

Definition 2

Suppose we are given a feature map (p: IR.̂ — >H . The kernel is the inner product

function

K: 1R‘* — >: IR in H, i.e for ail x ;, x j , in 1R‘’,

K (X i , Xj) = < (p (Xi), (p(Xj)> = < X i, Xj >

Definition 3 (Kernel Matrix)

Given a kernel K: IR̂ xIR'* — >: IR and a set of I points xi , \ 2 xi in IR‘*, we call the

1 X I matrix with ,

Kj j = < tp(Xi), <p(xj)> = < Xi, Xj > the kernel matrix of k at xi , xi X|.

2 1

Chapter 3

Literature Review and Basic Concepts of

Robust optimization

The robust optimization methodology is relatively a new approach to deal with

uncertainty in the data. Researchers’ work in this field has varied from one aspect to

another. Many of them have concentrated their research on building or structuring a

modeling methodology, and then developing the analytical and computational

optimization tools to obtain solutions for uncertain, noisy, erroneous, or incomplete

data, which are common in operation research applications. In this chapter we provide

a literature survey and the basics o f the robust optiomization approach. Our

exposition in sections 3.1 and 3.2 is based on (Ben-Tal and Nemirovski, 1998).

3.1 Robust Optimization

Ben —Tal & Nemirovski (1998), proposed the foundation o f robust convex

optimization. The main idea o f their study about convex optimization problems with

uncertainty is that the data are not accurately specified, and the only knowledge about

those is that, they belong to a bounded uncertainty set U.

9 0

Any value of this data from that set must satisfy all the constraints. They have

shown, that when this set U is an ellipsoidal uncertainty set, then the robust convex

program corresponding to some o f the most important generic convex problems, such

as the linear programming, semi-definite programming and others, is either exactly or

approximately, a tractable problem which can be solved by an efficient algorithm,

such as polynomial time interior point methods. The convex optimization problem

with uncertainties can be formulated as follows,

(P) Min f (x,Ç) VÇ e U c R'" and k is a convex cone

S.t F(X, ,Ç) e K

Zhou et al (1995) used this notion o f feasibility before, in the sense o f robust control.

Their definition of the optimal solution to this uncertain optimization problem

is that, it must give the best possible value of the original objective under the given

restrictions (constraints) F(x, Ç) e K, V Çe U.Specifically,

supçeu f(x,Ç).

Such a solution should be an optimal one to the uncertain optimization

problem. Mathematically this can be expressed as the following certain optimization

problem

(F*) Min (supçeu f(x,Ç) , /F(X , , Ç) e K VÇeU}.

From now on we call feasible solutions o f (P*) robust feasible solutions of (P) and the

optimal value o f (P) is called robust optimal value o f (P). Problem (P*) will be called

the robust counterpart o f (P).

23

Special attention was given to situations where, constraints are hard, thus ail

constraints must be satisfied, and this is very common in reality, especially in

engineering applications, such as the process in the chemical industry or in the

construction field. In these applications, a small violation o f the physical balance

constraints can cause a catastrophe such as an explosion in the chemical industry or a

crush in the construction field, like the truss topology design (TTD) problem (Ben-

Tal & Nemirovisky 1998). A more detailed qanalysis will be given in section 3.2.

3.1.1 Robust Solutions o f Uncertain Linear Programs Via Convex

Programming

There have been some studies about the above subject conducted by tew researchers,

trying to deal with the uncertain data of linear programming problems. In some of

their studies, they have focused on the uncertainty associated with the hard

constraints, which must be satisfied whatever the data's actual realization is within a

known uncertainty set.

The robust counterpart (RC) problem has replaced the uncertain linear problem

through a certain convex optimization problem. They were aware o f the importance

o f the geometry o f the uncertainty set, and thus they have focused on the ellipsoidal

set, because they have noticed that computationally was tractable since it leads to a

conic quadratic program, which in turn can be solved in polynomial time (Ben-Tal &

Nemiroviski, 1996).

24

The uncertainty set of the LP problem was restricted to the constraints only.

Specifically, to the constraints matrix and the right hand side vector (RHS), which

belong to a given uncertainty, set U. This vector is feasible for the uncertain LP

problem, as long as, it is feasible for every certain realization.

An important notice worth to mention, is that there are some situations in real-

world problems, where feasible solution must be attained for all realizations o f the

data, and not only for part of it, because even a small violation o f the constraints can

lead to a severely unstable structure, as in the case for problems o f designing

engineering structures, such as bridges (Ben-Tal & Nemirovski, 1998).

In their study they refer that all constraints are equivalent to a system o f linear

constraints but indeed, only for column wise uncertainty.

The general case is the one of row-wise uncertainty that belongs to given

convex sets. In this case, the robust counterpart is not an LP problem, but rather a

conic quadratic one as long as the uncertainty sets for the rows are ellipsoids.

Therefore, they are trying to differentiate between the column-wise and the

row-wise uncertainty This is because in the column-wise case, the coefficients o f the

constraints could be very bad, that is very large which makes the problem very hard

to solve. In the row-wise case, the coefficients of the constraints can not

simultaneously be as bad as every one o f them could (Ben-Tal & Nemirovski, 1996 &

1998).

In the rest o f their paper, some definitions were given tor the robust counterpart

o f uncertain LP problems, and then they show the links between this (RC) and the

25

usual LP, taking into considerations the case o f the worst realization o f the data from

the uncertainty set U.

The semi-infinite approach was investigated, despite the fact that it could lead

theoretically to some efficient methods, but in practice and specifically for large-scale

applications, it turned out to be poor performer. This is one o f the reasons, why the

study o f uncertainty’s geometry was highly considered, and also because it leads to a

nice analytical structure, which permits the (RC) problem to be solved with high

performance methods such as the interior point methods. Also, the intersection o f

finitely many ellipsoids sets were considered, and thus a nice structure of the robust

counterpart was formed which turned out to be a conic quadratic problem (Ben-Tal &

Nemirovski 1996).

Finally a simple portfolio example was given to illustrate their robust solution

and then a comparison was made to the solution obtained by the scenario-based

approach for the robust optimization o f large-scale systems by Mu Ivey, Vanderbei

and Zenios (1995) (MVZ), known as the robust Mathematical programming. That

comparison was made between three candidate investment policies:

1-The first is called the nominal, which says to invest all we have in the most

promising shares.

2-The second is the robust counterpart, which says to invest equally in all shares.

3-The third is the robust one done by Mulvey et al. (1995).

In the result o f that comparison, one can see that the (RC) policy is about 15

times more stable than the nominal one as far as the standard deviation is concerned.

26

In term of losses, the (RC) never resulted in losses, but instead it yields at least 11%

as profit, where the nominal results in 9% losses with probability 0.5. As for the

(MVZ) policy, it was more stable than the nominal one, but less stable than the (RC)-

policy.

The (MVZ) policy depends heavily on the number of scenarios. With 16

scenarios, the (MVZ) results in losses o f about 7% of the number o f scenarios and has

standard deviation 7.5 times larger than the one for the (RC)-policy. But as the

number o f scenarios increases, the (MVZ) stability gets closer to those o f (RC),

although its standard deviation remains 1.8 times worse than the one for (RC) even

for up to 256 scenarios. You are referred to (Ben-Tal & Nemirovski, 1998) to see the

result.

3.1.2 Robust Counterpart o f an Uncertain Linear Programming

Consider the “LP” problem in the following form:

(3) min {c^x / Ax > 0 , f^x=l}, (3.1)

where c, f eR" are fixed data, and the uncertainty is associated only with the mxn

matrix A. This matrix A, is a member o f the uncertainty set U o f mxn matrix real

matrices; thus matrix A belongs to U. The robust counterpart form (3u) o f (3) is the

following:

(3u) min {c^x / A x > 0, V A eU; f x = l }. (3.2)

Therefore we deHne the robust feasible solution, as a solution, which satisfies

all realizations o f the constiaints from the uncertainty set U. Also, the robust optimal

27

solution is defined, as the robust feasible solution for which the best value o f the

objective function is obtained. Now for the sake o f flexibility, let us make some

assumptions:

1-Assume that the uncertainty set U is convex and closed, (since replacing U by its

closed convex hull will not change (5u)).

2-Fix the certain “LP” data U, c, and f. Note that c, f and some Ae U are given.

3-Denote by (3) to the family of instances or realizations o f the uncertain “LP”

program (3), then (3*) = {(3).

3.1.3 Scope on The Worst LP In (3) and In (3u)

An important question should be asked is the robust counterpart (3u) worse

than the worst instance from (3)?

To answer this question, let us assume that c* is the finite optimal value to the

feasible (RC) problem (3u), which is by construction greater than or equal to the

optimal value c*(3) o f every problem instance (3) 6 (3) . The question now is:

a) Will there be an infeasible instance (3)6(3*) if (3u) is infeasible?

b) Will there exist a problem instance (3)6 (3) with c*(3) = c*(3u)?

The following example will show that the gap between the solvability

properties o f the instances o f an uncertain “LP” program and those o f the robust one

(3u) o f the problem may exist. Consider this problem:

Min Xl + xi

28

s.t aiiXi + X2 > I

Xi + a22X2> I

Xl + X 2 = I

Xi >0, 1=1,2

an and a22 are the elements o f uncertainty set U = { an + a22 =2, 1/2 < an < 3/2),

with optimal value equals to one, then every problem instance is solvable. So for

example, if an > 1, then the corresponding optimal solution is (1,0) or (0,1). The

robust counterpart for the above example is:

Min Xl + X2

s.t 1/2 x i +X 2 ^ 1

Xl + 1/2X2^ 1

Xl + X 2 = 1

Xi >0, i=l,2

This (RC) is infeasible if we use any of the two optimal solutions above,

namely (1,0), (0,1). This is because the existence o f the gap between the solvability

properties o f the two problems (the uncertain “LP” and its certain robust). Now under

some specific natural assumptions, this gap could disappear and (3u) won't be worse

than the worst instance from (3*) (Ben-Tal and Nemirovski, 1996).

Next we make the following assumptuions.

Assumptions:

1-Constraint -w ise uncertainty

2-Boundedness existence

29

Let us elaborate about the first part o f the above assumptions:

1-Constraint -wise uncertainty

Let Uj be the set of all possible realizations o f ith row in the constraint matrix, that is

the projection of U c = R"̂ x,..xR" onto i-th direct factor of the (RHS). Hence x

is robust feasible if and only if:

a '^x>0 VasUi V i ; f ^ x = l . (3.3)

In a more simpler word, if the initial uncertainty set U is extended to the direct

product C/ = Ui X ...X U„,, then (3u) “feels” only the possible realizations o f the i-th

constraint, i=l,...,m and does not “feel” the dependencies (if any) between these

constraints in the instances. Next we provide the following definition:

Definition (Ben-Tal and Nemirovski, 1998)

The uncertainty U is called is called constraint-wise, if it coincides with

Ù rather than being a proper subset o f the later. Thus, any given uncertainty set U can

always be extended to a constraint -wise uncertainty set and still obtaining the same

RC .

Now let us elaborate about the second assumption:

2-Boundedness Existence

There is a convex compact set Q c R", which for sure contains feasible sets o f

all problem instances (3) e(3*). This assumption can be ensured; if the constraints o f

all instances have a common “certain” part, which defines a bounded set in R". As a

result o f the above two assumptions, a proposition can be generated:

30

If assumption one and two hold, then:

1-(3u) is infeasible if and only if there exists an infeasible instance (3) e (3).

2-If (3u) is feasible and c* is the optimal value o f the problem, then c* equals to the

supremum of the c* (3). Therefore

c* = sup{ c*(3) : (3)6(3*)} .

For a proof, see Ben-Tal and Nemirovki (1996).

3.2 Robust Counterpart o f Uncertain Convex programming

The convex optimization problem with uncertainties can be formulated as follows,

Min f(x ,Q

S.t F (x , , ;) € K czR*" (p ç)

V j e U ,

where:

Ç is the data element o f the problem, which belongs to .

X is the decision vector, which belongs to R".

K is a convex cone describing the constraints o f the problem.

All of the above symbols along with dimension n, m, M and the mapping f F (.

, .) , describe the structural elements of the problem.

It should be noticed here, as part o f defining the problem is that, the data element or

data vector satisfies the following properties:

It belongs to a given uncertainty set U c R

31

It is bounded.

Therefore for every Çg U, the constraints F (x, Ç) e K must be satisfied no matter

what the realization of Ç is.

Thus, for a vector x to be a feasible solution to the uncertainty optimization problem

(pç), must satisfy all possible realization o f the constraints, specifically,

F (x , ;) e K , V ; e U. (3.4)

Now, a solution to the uncertain optimization problem (P) is called optimal

solution, if it gives the best value of the original problem, which is: sup f (x, ,Ç) e K

,V Çe U.

Hence we can replace the original uncertain problem (P) with its robust

counterpart (P):

(P*) Min {sup f(x, Ç)}

S.t F(x, , ;) e K ,VÇe U.

Thus, the best guaranteed value o f the original objective under constraint (3.4)

is the optimal solution, which should also be the optimal solution to the robust

counterpart (P*).

So any feasible/optimal solution to the certain problem (P) will be also

feasible/optimal solution to the uncertain problem (P). It should be pointed out here,

that in reality, there are some situations where the constraints can be violated. If these

violations are not that crucial, then the robust counterpart method may be

conservative meaning that the solution we get may not be desirable or may be less

desirable than the one we get by the nominal approach. Many o f the arising problems

32

in some o f Ben-Tal’s (1995) papers are highly degenerate. In this case, they use the

nominal approach that ignores the uncertainty factor. The solution they normally get

is a point on the boundary from a massive set of nearly optimal solutions. Now this

point (solution) may be very bad solution to the perturbed data problem.

What we are trying to say is that, even under the above situation, it is worth to

try the (RC) approach, because it tries to choose from the most inner solution from

the massive optimal set, which normally will be more stable with respect to data

perturbations than the boundary one. The uncertain convex program (P) is nothing but

a set or a family of instances o f type (p), where (p) is

Min c^ X

(p) S.t F (x, ,^) e K , x e X (3.5)

(P) = {(p): {min c^x / F(x, ,Ç) e K, x eX} };gu, (3.6)

where:

c and X belong to R " and Çs U a A, they are the design certain cost and data vector

respectively. We need some assumptions so that we ensure that (p) always be a

convex program whenever Ç e A. Those are as follows:

1) K c: R is a closed convex cone with a non-empty interior.

2) X is a closed convex subset in R" with a non-empty interior.

3) A is a closed convex subset in R with a non-empty interior.

33

4) F (x, Ç) is a continuous differentiable, mapping on the Cartesian product X x A

and K-concave in x, that is: F(Xx+(l- X,)x) > k A.F(x,Ç) +(l-X.)F(x) .

Note that b >k a stands for (b -a)e K (Ben-Tal & Nemirovski, 1998).

The (RC) of the above uncertain program (P) is the following certain

optimization problem:

(P*) {minc'^x:F(x, , Ç) e K, x e X , VÇeU} (3.7)

Note that in (3.6) the notion ÇeU refers to a specific problem, while in (3.7) refers to

every problem observing all the above assumptions.

In the case where the uncertain optimization problem (P) has concave

uncertainty then, the infimum o f the objective value at robust feasible solutions to (P)

will be the robust optimal value o f (P).

Note that the problem (P) will have concave uncertainty if the underlying

mapping

F (x, Q is K-concave in the data vector Ç if

V(x e X , Ç Ç e A) and V(A., Ç e [0,1]) we have

F (X, x; +(1 - X)C ̂ F (x,C) + (i -X)F (X,;").

So in this case (concave uncertainty), we can assume without loss o f generality

that, the uncertainty set U is a closed convex set (Ben-Tal and Nemirovski 1998).

34

3.2.1 Definition And Propositions

Many o f the generic convex programs (linear, quadratic...) are affine in the data, so

we again define the uncertainty optimization problem (P) as having affine uncertainty

if the underlying mapping F (x, Ç) is affine in Ç , V x e X .

Proposition 1 - Let (P) be the uncertain convex program obtained from (P) by

replacing the concave uncertainty set U by its closed convex hull, then the robust

counterpart of (P) and (P) are identical to each other. Specifically,

0 < K l A i F (. K , C) < K F (. X , C) .

For further information about its proof, you are referred to (Ben-Tal &

Nemirovski, 1998).

Proposition 2 - Let the feasible set of the (RC) formulation is a closed convex set. If

the (RC) is feasible, then all instances of the uncertain program are feasible, and the

robust optimal value of the program is greater or equal to the optimal values of all

instances.

It is very important to notice that, generally there exists a substantial gap

between solvability properties o f the instances o f an uncertain program and those of

the RC ones. Ting gap is zero in the case o f constraint-wise affine uncertainty, which

is a particular case of the uncertain program (P) associated with K= R"".

The constraint -wise uncertainty is exactly the ith component o f f depending on

X and the ith portion Çj. The uncertainty set U is a direct product o f a closed convex

uncertainty set U, in the space o f "s i=l...m. Now assume that the uncertain problem

(P) has constraint -wise affine uncertainty and that the set X is compact, then the

35

(RC) (P*) o f the problem is feasible if and only if all instances are feasible, and the

robust optimal value will be the supremum o f those instances then:

Z"’i=i h fi (x,Çi) < 0 , V X e X . (3.8)

According to proposition (1), it is only enough to show that all instances of (P)

are feasible, then:

i) The RC (P*) is feasible and ii) The optimal value o f (P), c* is the supremum o f the

optimal values of all instances, i) Can be proven by contradiction technique, and ii)

can be shown by adding certain constraint c^x < c* to all instances o f the original

problem (P), taking into account that X is bounded. When ii) is applied to the

resulting problem, it can be concluded that RC is feasible, hence the optimal value in

(P*) is at most c* which is finite (Ben-Tal & Nemirovski, 1995).

3.2.2 Sensitivity Analysis For Uncertain Programs

One should analyze the similarity and differences between the optimal value of the

robust RC (P*) and that o f its nominal one. In another word, what can be said about

the proximity o f the optimal value o f the nominal instance to that o f the RC?

Let the nominal instance o f an uncertain convex program (P) be the following:

(P°): min { c '^ x :x 6 X, F(x,Ç°')eK }, (3.9)

with uncertainty set; U = V, where V is the perturbation set. Then:

(P) {min {c^x : x eX , F (x, ,Ç) € K } }çeç°+v. (3.10)

The (RC) (P*) to (P) is as follows:

(P*) (min (c^X : x eX , F (x ,, ;) e K, ÇeÇV k } (3.11)

3 6

So to answer the question of proximity o f the optimal values, let us assume that:

(P°) is solvable, G° be the feasible set, x'o be the optimal solution and c*o be the

optimal value o f the instance. Now let us introduce the quantity Xv (x) o f x with

respect to V and xe G°, known as the feasibility margin of the nominal instance,

which will be our standard to measure the closeness o f the nominal and the robust

optimal values, where Xv (x) equals to:

(x)=sup {X. > 0 : V (S 6 V):[± X8 eA] and [F(x, ± X.S

e K] } .

Lemma (Ben-Tal and Nemirovski, 1990)

Let À x±eC f and (l-p) xd. + pG^ satisfies the relation Xv(x) > A. Let

also the mapping be afpne in x. The optimal value c*„ (P*) satisfies the inequality:

c*u 0 + 2 (I-p) /(pA -p +2)[c^xJ. - c \] (3.12)

The Lemma allows us to introduce definitions and propositions, which will help

in explaining the idea o f feasibility and its effect on the (RC), especially in the case

where the nominal instance (P°) has a bounded strictly feasible set with respect to the

perturbation set U. So what will happen if the nominal is not strictly feasible?

To answer this question, let us introduce the following definition:

A pair (X,,p) with X >1, p >0 is admissible, if there exists x_L for these X and p, that

satisfy the logic or the premise o f the lemma. The feasibility margin denoted as Kv/

(P°) o f the nominal instance (P°) with respect to the perturbation set V, is nothing but

the upper bound o f the quantities pX. /(l-p) taken over all admissible pairs. With the

37

help o f the definition in the previous section, a proposition can be implied from the

above lem m a, which states the following:

Proposition 3

Let (F)̂ the nominal instance has a positive feasibility margin with respect to the

perturbation set V.

Let the function F (x, Ç) be affine in X.

Let the feasible set (f of (F̂) be bounded

Then, the robust counterpart (P*) of (P) is solvable and the optimal value c v satisfies

the inequality:

c\. <c'o+ 2/l+Kv(F^) varco (c), (3.13)

where Varc (c) = max xec c^x — min xec c^x.

With the help o f the proposition in the previous section, the result can be better

explained by the following interpretation to some situations, where the actual

perturbations in the data are at most o f level k , and then the associated perturbation

set is:

V^=7t W

Where W is a symmetric set with respect to the origin o f unit perturbation of

the data. So what will happen to the (RC) as 7i —> +0? Now proposition 3, gives the

result o f one case where the nominal instance (P*̂) has bounded feasible set, and

strictly feasible with respect to the perturbation set W. Then there exist (Tc and p) >0

such that the following set:

{(XI [Ç" + It* 6 eA] and F (x,Ç° +nS)e K] VSe W}

3 8

contains a p*_ dilatation o f the nominal feasible set G °. Then, the (RC)_ (P*7i)

of the uncertain version o f (P°) associated with perturbations o f the level 7t < 7t* with

the corresponding set U = + TiW , is solvable and the corresponding robust optimal

value c*K differs from the nominal one c*o by maximum of o(Ti):

c*K <c*o + [2 7 t (l - p) / 7 t (l - p *) + r t * p *] varco (c) (3 . 1 4)

So if the problem is strictly feasible (i.e. F (xJ_,(^°) e in t K for some x_LeX) and

the unit perturbation’s set W and G° are bounded, then for sure the desired pair (7t*and

p*) exists.

In the case, where the nominal program is not strictly feasible, then c \ will not

be a desirable function because it is a bad function o f Tt. Let us illustrate with a small

one-dimensional example, where the nominal problem is:

min X (*)

S.t.
" O ' " r

X +

A

>0

As it can be seen, the optimal value is —l.Now if W is the central symmetric

convex set in R~ with nonempty interior, and if the coefficients o f x in (*) are only

affected by the unit perturbation, then the (RC) (P ̂) has the singleton feasible set

{0} for every positive n, and thus c \ = 0, (Ben-Tal & Nemirovski, 1998).

39

3.3 Robust Linear Programming Discrimination of Two

Linearly Inseparable Sets

The idea o f this approach consists o f finding a linear surface (plane), as a separator o f

two linearly inseparable sets. This linear surface is an optimal separator when we

minimize the weighted average sum o f the violations o f the points lying on the wrong

side o f the separator. These points can be described as the misclassified points

belonging to two disjoint points in n-dimensional real space. When the convex hulls

o f the two sets are also disjoint, the plane completely separates the two sets. Hence,

they have been able to overcome the problem o f the null solution, which has plagued

previous linear programming approaches by using an appropriate weighted sum.

According to them, their linear program might give an edge over other linear

programming approaches and thus, it becomes a suitable linear program for a linearly

inseparable case (Mangasarian and Bennett, 1992).

3.4 Linear Programming With Interval Coefficient “LPIC”

To solve a linear programming problem, it is assumed that the model coefficients

must be fixed at specific values. This assumption leads us to believe, that these

coefficients are totally accurate; but in real world problems, this is not true, because

they are only estimates; in other words, these coefficients are uncertain and thus,

using sensitivity testing or analysis o f the model becomes necessary to see the

changes in their values. Therefore in order to deal with this type o f uncertainty, some

40

or all o f the coefficients o f the “LP” problem are labeled as intervals. Our goal

becomes to find the best and the worst optimum, along with finding the point settings

of the interval coefficients that yields these two extremes. This approach will describe

the range of the optimized objective function; also the coefficient settings give some

insight into the likelihood of these extremes.

As an example o f the above discussion, the profit per unit o f production of an

item is likely estimated from knowledge o f average component costs, labor costs, and

wholesale prices over previous or preceding months. The question here is how a

manager is going to treat the results o f an “LP” solution in the case where coefficients

are known to be uncertain. In practice, a manager would like to know the range of

optimum solutions that could be returned by the “LP” model with various settings o f

the uncertain coefficients. So any unknown coefficient can be expressed as an

interval, that is, a range o f real numbers (lower and upper bounds). The best optimum

represents, the highest maximum or the lowest minimum and the worst optimum

represents, the lowest maximum or the highest minimum respectively. The solution of

this “LPIC” problem provides the manager with the necessary information to make

his/her decision. He/she will have the taste of risk involved by knowing the best and

the worst optimum solutions.

Similarly, the specific values of the uncertain coefficients can be chosen to

reflect the risk-taking strategy (Chinneck and Ramadan, 2000). An example will be

furnished applying the LPIC approach to taste the flavor o f solving problems with

41

interval coefficients. Algorithm 3 o f Chinneck and Ramadan, (2000) article is the

basis for solving the following problem with interval coefficients:

Min z = xi + X2

S.t

C |: - X| 4- xi > [-2, -1]

Cl: [2,3] X, + X2 = [3,4]

C3: X2 < 3

XI, X2^0

Step 1.1: Convert the equality constraint C2 into two inequality constraints:

C2a: 3xi + X2 ^ 3

C2b: 2xi + X2 < 4

Step 1.2: Solve the best optimum "LP":

Min z = X, + X2

S.t

C l i: * Xi + X2 ^ -2

C2a: 3Xi + X2 ^ 3

C2b: 2xi + X2 ^ 4

C3: X2 < 3

Xi, X2 ^ 0

Step 1.3.1: Matlab software was used to find the best optimum: z = I at x = (1,0).

Step 1.3.2: The best optimum set up for C2 , is as given in step 1.2

Step 1.3.3: Find the best optimum set up for C2 by solving the following "LP”:

42

Max a + b

S.t

I .a +• 0 = b

2 < a < 3

3 < b < 4

The solution will be: a = 3 and b = 3. Hence, the specific version o f Ci for the best

optimum is: 3xi +xz = 3.

Step 2.1: Again, according to algorithm 3, there are two models to enumerate and

solve:

Model A: min z = x, + x:

S.t

Cl It: - Xi +X2 ^ - I

Cia : 3 x i + X2 = 3

C 3 : X2 < 3

X|, X2 > 0 .

This results in: z =1 at x = (1,0)

Model B: min z = xi + X2

S.t

Cm : - X| 4-X2 ^ -1

C:a : 2 X| + xz = 4

C3: X2 < 3

X[, X z k O .

43

This results in: z = 2.333 at x = (1.667, 0.667).

Step 2.2.1: Model B provides the worst z.

Step 2.2.2: The specific version of the interval constraints that provides the worst

optimum is given by model B (Chinneck and Ramadan, 2000).

It is noticed that, there are no equality constraints having interval coefficients after

being solved. Hence, the best and the worst optima and the point settings o f the

interval coefficients that yield these optima’s can be obtained by solving only two

LPs as it has been done above. Unfortunately, an enumerative approach is required

when finding the worst optimum for type 1 and 2 “LPIC” having interval equality

constraints. For more details, you are referred to the article written by Chinneck and

Ramadan (2000).

3.5 Robust Linear and Support Vector Regression

• A new methodology for solving the Huber M-estimator problem is the main

purpose of this method. It reduces the problem to a simple quadratic program.

This formulation performs well when compared to other algorithms through

some computational results for this new quadratic programming for both

linear and nonlinear support vector problems. Then, a modification o f this

quadratic program is introduced to allow kernel functions to be used. Those

kernel functions are used to find a non-linear regression surface, which can

yield a better testing performance than a purely linear separating surface.

44

Their experiments have been conducted on a relatively large set o f data points;

specifically about 20,000 data points (Mangasarian and Musicant, 2000).

Another methodology for measuring the goodness of fit has been used. This

approach did not use the usual quadratic loss function (the mean square error),

but rather a different loss function called the e -Insensitive Loss Function,

which has some similarities to other loss functions used in the area of robust

statistics. Also it is known that in the quadratic loss function which is

commonly used in the classical regularization theory, some assumptions to the

noise which affect the data points have been made to justify its use, such as

the assumption o f Gaussian, additive noise, while in the case o f support vector

machines regression, it is not clear what noise model underlies the choice o f

insensitive loss function. So it was necessarily to understand the nature of this

noise for two reasons:

1) It makes it easy for us to decide under which conditions it is appropriate to

use the ILF in the SVMR rather than the square error loss used in classical

regularization theory;

2) It may give us a better understanding of the role o f the parameter e , which

can be found in the definition of the ILF. One should also notice that, even in the

SVMR approach, the same assumptions were used to justify the use of the ELF,

and that is that the noise affecting the data is additive and Gaussian, while the

mean does not necessarily be zero, and that its variance and mean are random

variables with given probability distributions. It should be mentioned also, the use

45

of the same Bayesian frame work to derive the result in both SVMR and

regularization theory approach. Overall, it can be said that in this study, a

comparison was made between SVMR and the classical regularization theory

(Pontil et al. 1999).

3.6 Stochastic Linear Programming (Slpm)

In many methods, the stabilization o f the solution over a period of times has been given a

special attention, such as in the case in Ben-Tal & Nemirovski's (1998) work. The (SLP)

method does not employ any penalty factors for violation of the constraints. In general, the

(SLP) minimizes the cost or maximizes the profit. The method has a probabilistic nature,

with a specific statistical distribution for the data of the problem. There have been some

developments to the stochastic programming along many branches, namely:

1-Chance-constrained programming, (Mishina, 1996).

2-Active and passive approaches to stochastic programming,(Mishina, 1996).

3-Stochastic programming, with recourses,(Mishina, 1996).

The stochastic model can be defined and solved in many ways, since stochastic

elements or components could enter the system at different stages or levels and, thus

each solution is different in concept. Since there are different forms of defining the

stochastic programming, the following simple form known, as the stochastic linear

programming with recource (SLPWR) will be introduced here. The SLPWR is

defined as follows:

Min c^x

4 6

s.t Ax > 0, x> 0

Let the resource b be a random vector in R"\ and let y be a recourse vector,

which eliminates in feasibility in the constraints. Assume that the domain o f interest is

a set of linear constraints, and can be stated as:

Ax + By = b

x ^ , y ^

Let F = {x I By = -Ax +b, y ^ are feasible for every possible resource b), be

the non-empty set from which x can be chosen. Let the coefficients, c and d, be the

unit costs of choosing x and y, respectively. So for a given x and observed b, the

recourse vector y can be chosen to solve the following deterministic problem:

Min 9 (X , b) = {d^ y | By =-Ax + b, y >0}.

Since b varies with fixed values o f x, then the feasibility o f the original problem

will be violated most of the time. In this case, the expected value o f penalties for

these violations will be minimized, despite the fact that, it tries not to employ the

penalty, but in this case it does. For more details, you are referred to Dantzig (1955)

and Lasdon (1979).

There are some important properties o f (SLPWR) and can be summarized as

follows:

I-A reasonable assumption for source b is that is drawn from a finite set {bn,...,bikl

with probabilities pi „.,pk. This observation validates the possibility of scenario

decomposition.

47

2-The size o f the problem depends on the number of variables n, the constraints m,

and the set o f probabilities k. When these terms increase, the size of the problem

increases as well. Also the hassle of the computational difficulties will increase too.

But with the help o f any of the traditional decomposition method, this problem could

be solved properly.

Other researchers. Mu Ivey et al. (1995) have developed a general framework

for achieving robustness. They have described the desirable properties o f a solution to

models, when data are described by a set of scenarios for their values, instead of

using point estimates. They have also shown how the robust optimization models

would generate robust solutions for several real-world problems, such as the diet

problem, power capacity expansion and others as well (Zenios et al., 1994). In this

study, the advantages o f robust optimization over other traditional approaches

(sensitivity analysis and stochastic programming) were discussed. Also some

comments about the suitability o f parallel and distributed computer architectures for

the solution o f robust optimization models were made. Next we describe the work o f

Mu Ivey et ai. (1995) about the robust optimization. The RO problem according to

Mu Ivey et al. (1995), is an extension of the stochastic programming, at least from the

active approach view. One feature o f (RO) can be raised as the principle o f scenario

aggregation (Rockafellar and Wets, 1991). Let us use the following stochastic

programming problem, which can be solved by using scenario aggregation.

Specifically,

(P i) Min Zs Ps z (x,s)

48

s.t x e n s R s ,

Where uncertainty is structured by a limited number o f scenarios Q ={ I,2,...,s};

z (x, s) is an error factor, and Rs are the constraints for each scenario.

The scenario aggregation is the main component of a scenario study, where a

number o f subproblems are derived from an underlying optimization problem. By

analyzing the optimal solution for each subproblem, the decision-maker will then be

able to choose the most appropriate one to the original problem. Finding the most

reasonable weights to the corresponding scenarios could do this. Many probabilistic

programming problems can be transformed into the form of (Pi), and this is counted

as an advantage for the scenario aggregation. The RO model Mu Ivey et al. (1995) has

two main components:

1-A fixed component that is free o f noise in the data, and it is known as the structural

component.

2- A component that is subject to noise in its data, and this is known as the control

component.

Two types o f variables are found in each of these two components:

1-The decision variable, x, which influences the structure o f the model and its optimal

value is not conditioned on the realization of the uncertain parameters.

2-The control variable, y, which has the role o f adjusting the model when disruptions

occur in the uncertain situations. Therefore, the linear model in which these two types

o f variables are used is as follows:

(? 2) m inc^x+d^y

4 9

s.t Ax = b —> structural constraints

Bx + Cy = e —> control constraints

x,y > 0 ,

where d, B, C and e, are subject to noise. The set o f coefficients, {ds, B*, Cs and es}of

the control constraints associates each scenario seQ with the probability p< such that

Z Ps =1- There are two solutions o f (Pi);

1-The first is a robust solution in terms o f optimality if it stays close to optimal for all

scenarios o f realizations

2-The second is robust solution in terms o f feasibility if it remains almost feasible for

all scenarios.

Since it is not possible for most o f the times to obtain a solution that is both

optimal and feasible for all scenarios, then a tradeoff between them should take place,

and it will be as follows:

First include two sets to the (Pi) problem, namely the error vector set and the

control variable set, and then we will have the following model:

(P3) min I Ps (c^x+ d s\s) + cap (z i , .„ ,Z s)

s.t Ax =b

B sX + C s y s + Zs = e s

X, ys 2:0,

50

Where ry is a goal programming weight, because we are now dealing with a

multiobjective perspective, and p (z i , . . . ,Z s) is a feasibility penalty function.

For equality constrained problems, where both positive and negative violations

of the control constraints are equally unwanted, then use the penalty function p

(Z |,.. .,Z s) = S se O Ps Zs Zs .

For inequality control constraints problems, where only positive violations are

occuned, then the penalty function p (Z| Zs) = Sseo Ps max{0, z*) (MuIvey,

Vanderbei and Zenios, f995) is used.

Also, other researchers such as Yu (1996) define robustness as the most

conservative attitude toward realization o f the model against the worst-case scenario.

Accordingly, he understood the 0 - 1 knapsack problem as a maximin problem in the

following form:

Maximize^ minses {Zvi* xi | Z a; xi < b; x; e {0,1}, i= 1.....n}, (**)

where S is a set o f scenarios, Vj*̂ is the value of item i under scenario s e S , a, is

the weight o f item i, and b is the capacity o f the knapsack. The (**) model can be

transformed in another form and the author called it the absolute robustness, which

can be expressed as follows:

Maximize^ {Zv; x; | Z ai X; < b; x; s (0,1}, i= l,...,n}, where S is a set o f

scenarios,Vi’* is the value o f item I under scenario seS , a, is the weight of item i, and b

is the capacity o f the knapsack. The (**) model can be transformed to another form

and the author called it the absolute robustness, which can be expressed as follows:

Max X {viXi I Z ai Xi < b; xie {0,1}, i= l...n } .

51

3.7 Uncertainty According To Elghaoui And Lebret

The least-squares problems with uncertain data were also considered. The coefficient

matrices A, b is unknown but bounded. In this study, work was done on minimizing

the worst-case residual error using convex second-order cone programming which

leads to an algorithm with complexity, similar to that o f singular value decomposition

of A. This method provides an exact bound on the robustness o f solution, and a

rigorous way to compute the regularization optimal parameter.

The case where A and b, are rational functions o f an unknown but bounded

perturbation vector was also considered. Numerical examples were given to illustrate

these ideas, and minimizing via Semidefinite Programming upper bounds on the

optimal-case residual was shown.

The regularization procedure known as Tikhonov’s regularization procedure, was

explained as a method for ill-conditioned problems and was interpreted for the

unstructured robust least-square problems.

In this unstructured case, both worst-case residual and (unique) robust “L-S”

solutions were shown to be continuous. Also similar (weighted) “L-S” interpretations

and continuity results were given (Elghaoui and Lebret, 1996).

3.8 Boyd’s Approach

The subject o f second -order cone programming (SOCP), was shown to be practical

to solve some simple robust convex optimization problems, in which, uncertainty in

52

the data is explicitly accounted for (Boyd 1998). He considers the following

optimization problem:

Min Cĵ X

s.t a i ^x<bi , i= l.......m,

in which, there is some uncertainty or variation in the parameters c, a; , b, . For

simplicity, it is assumed that the coefficients c, b, are fixed, and that ai lies in a given

ellipsoid, such that:

a i e U = { a i * + p i U : | | u l | < I) ,

where, Pj = > 0. Note that, when P; is singular, then we will have a flat ellipsoid o f

dimension equals to the rank o f Pi. In the worst -case framework, all constraints must

be satisfied for all possible values o f the parameter a , .

That leads to the following robust linear programming:

Min C i^ X

s.t a i ^ x <b i , Vai e U , i=l,..., m (3.15)

They have shown that, this robust “LP” can be expressed as a SOCP problem

in the following:

Min C i^ X

s.t a i* ^ X + II P iX II < bi , i= l,...,m (3.16)

The norm ||.|| acts as a “regularization term”, discouraging large x in directions

with considerable uncertainty in the parameter ai. Note that, with bi = 0, the general

SOCP, can be interpreted as a robust “LP”. From a statistical point of view, the

parameters ai in the robust LP, are the independent gaussian random vectors, with

53

mean a*i and covariance Si- Now for any probability or confidence exceeding |i > .5,

each constraint must satisfy

Prob (ai^ X < b,) > |i (3.17)

This probability constraint can be expressed as (SOC) constraints. For more detail

you are referred to Ben-Tal and Nemirovski (1996) and Oustry et al. (1996). In

summary, the problem:

Min C i^ X

S.t Prob (aj^ x < b,) >|i , i= l m, (3.18)

can be expressed as the (SOCP):

Min c ^ X

S.t ai*^x + (t)'‘(^ i) ||S 5 i‘'- x | |< b i , i=l...m. (3.19)

This formulation, can be used in applications (e.g. portfolio optimization

problem), with another form:

Min p ^ X

S.t P^X 4- <î>-‘(P) II S ' ' - XII > a (3.20)

n

X > 0; ̂ '
1=1

where, a is a given excessive loss or undesired return level, P < Yi is a given

maximum probability, and (|) is the CDF (cumulative distribution function). So (3.20)

is to be maximized, that is. to maximize the expected return subject to a bound on the

loss risk (Boyd et al., 1998).

54

Also other researchers have written articles aimed at treating the uncertainty

data. They have applied a novel modeling methodology on multi-period asset

allocation problem to deal with the issue o f uncertainty. They have started their paper

with the explanation o f the original problem o f Dantzig and Infanger (1993), and then

they applied to this model the robust counterpart approach. A comparison was made

between this resulting model and the one o f the portfolio problem. It was concluded

that in terms o f the risky market, the corresponding standard deviation of the gain in

the portfolio value was less than that for the nominal policy by factor o f 5 to 8; and by

factor o f 4.7 to 5 for the stochastic programming policy. In their reported experiments

(4 experiments), the RC never resulted in losses, where in the stochastic and in the

nominal, the loss was high about 15 to 20%.

As for the expected gain, the stochastic and the nominal policies were the same.

In terms o f the average gain, the robust policy was almost optimal. The stochastic one

was slightly better than the robust policy and far better than the nominal one. So the

robust counterpart approach to the portfolio problem from the computational point of

view (efforts and time) is incomparably less than the one for multistage stochastic

programming (Ben-Tal et al., 1996).

The idea o f robust approach to unconstrained optimization problems with

discrete variables has been investigated. The orthogonal array based on the Taguchi

concept was utilized to arrange the discrete variables. Remember that in Taguchi’s

method, noise was allowed in the system with some closer tolerance. Through several

engineering applications such as the three-bar and the ten-bar truss, the robust design

55

was performed so that the displacement of a specified node is insensitive to noise.

The optimum sectional areas were evaluated by conventional optimization

considering constraints; the robust design was applied for the post processing. Then

the sensitivity o f the robust solution was compared to the conventional optimum one.

This step was important because this approach was used as a post processing of

constrained problems, although the robust design was used for unconstrained

problems.

In their result, the sensitivity o f robust design decreased by 14 to 69%.

However, the final configuration o f the robust design may violate constraints for the

constrained problems. This means that, the robust design may be more robust but

unacceptable, so an adjustment is needed (Kwon-Hee Lee et al., 1996).

In the late seventies and eighties, the subject o f local and global properties o f

optimization problems was under the microscope of some researchers. They

developed an algorithm to help testing these problems and find solutions tor them

(Quan Zheng, 1985, 1986).

An extension of Zheng’s work took place in the early nineties. He first studied

the properties of robust sets and robust functions. Minimization problem o f a robust

function over a robust compact set was considered, using the integral approach.

Numerical tests and industrial applications used in earlier studies like the one for

(Pans, Wang, Liu and Zheng 1986), showed that the algorithm was effective (Zheng,

1990).

56

3.9 The Relatioship Between Tractability, Ellipsoids And

Ellipsoidal Uncertainties

In this section, we will speak in some detail about the ellipsoidal uncertainty sets,

which will cover all cases in which we are interested in, such as;

K-dimensional ellipsoids in R‘‘ ,2-Flat ellipsoids and 3- Cylindrical ellipsoids.

The principle o f tractability will be also discussed. This is one o f the most

important parts in constructing the RC problem for some generic programs, such as

linear programming, quadratic programming and others as well. One o f the reasons

why it is important is because the (RC) problem will be computationally tractable

{Grotschel et al., 1988). So all we need to efficiently solve a minimizing problem

with linear objective over a convex set is an efficient separation for the set oracle

{ G r o ts c h e lal., 1988). An efficient separation oracle for U (uncertainty set) implies

an efficient inclusion oracle. This in turn implies an efficient separation oracle for Gu,

and now this also leads to computational tractability o f the robust problem.

Thus, according to the tractability principles, all reasonable closed convex

uncertainty sets U, lead to computationally tractable problem. So the set Li defined by

finitely many convex constraints g; (A) < 0, can have an efficient separation oracle by

verifying whether gi (A) < 0 for all i given A. If this is the case, then AeU,

otherwise the sub-gradient o f the violated constraint (taken at A) is a separator o f A

and U.

57

This argument o f tractability is based on the assumption, that the problem is

practically solvable, which requires a simple analytical structure for the RC problem,

which in turn requires U to be relatively simple.

On the other hand, it should not be forgotten either, that making the geometry

of U too simple would cause to lose flexibility in terms of ability to model diverse

actual or practical uncertainties. Indeed, when U, is restricted to be an ellipsoidal

uncertainty or an intersection of finitely many ellipsoids - sets given by convex

quadratic inequalities, then a reasonable solution to conflicting goals can be obtained

with the help of that restricted set o f uncertainty U (Ben-Tal & Nemirovski 1996).

Some o f the arguments, which are in favor o f the importance of ellipsoids, are

as follows:

1-The robust problem associated with an ellipsoidal U possesses a very well

analytical structure, which is nothing but the known “conic quadratic program”; a

program with linear objective and constraints o f the type: a î x +% > || x +bi | | , i =

I M.

Where tti are fixed real, ai and b, are fixed vectors, B; are fixed matrices o f proper

dimensions, and || • || represents the Euchdean norm. So this RC conic quadratic

program, even if it is large-scale with ellipsoidal uncertainty, can practically be

solved, with the help o f the techniques o f interior point methods. For more detail see

the research report o f Ben-tal & Nemirovski (1996).

58

2-Ellipsoidal uncertainty sets form relatively wide tamily o f polytopes (bounded sets

given by finitely many linear inequalities), and can be used for cases of complicated

convex sets.

3-An ellipsoid is given by a moderate data size; therefore it provides a convenient

way to represent ellipsoidal uncertainty conveniently as input.

4-In some important cases, these are statistical reasons, which show the need of

ellipsoidal uncertainty

One should know that, even ellipsoids are in different forms, and used for

different cases. Consider for example the flat ellipsoids in the space E = R'"^" o f data

matrices A. Such an ellipsoid corresponds to the case where partial uncertainty exists.

This means that, the entries in the data matrix satisfy a number o f known linear

equations for sure, and thus some of the entries in A are certain.

The other type o f ellipsoids is the cylindrical ellipsoids, which are sets o f the

types “sum o f a flat ellipsoid” and a linear subspace. Imposing several ellipsoidal

restrictions on the matrix A will create these sets. Note that each o f these restrictions

deal with part o f the entries. So the uncertain set U will have an upper and lower

bounds on the entries o f the matrix. This is prescribed as an intersection o f m n

ellipsoidal cylinders (Ben-Tal & Nemirovski, 1996).

So now let us see how we can cover all these cases from a mathematical point

o f view:

Let us define an ellipsoid in as a set o f the following form:

5 9

u ={ri(u): Il Qu II <L where Q is an MxL matrix, u—>ri(u) is an affine embedding of

certain into R \

With this definition, ail cases will be covered. The dimensions M,L ,and K and

the singularity o f the matrix Q, can help in determining the type o f ellipsoid we have.

We consider the following cases:

1-L=M=K and Q is nonsingular, and then we have the K- dimensional ellipsoids in

R^.

2-L=M<K and Q is nonsingular, then we have the flat ellipsoids.

3-If Q is singular, and then the ellipsoidal cylinders are in place.

We conclude this section by summarizing the following:

U is an ellipsoidal uncertainty e R"*̂ ", if:

U is given as an intersection o f finitely many ellipsoids, and can mathematically be

expressed as

K

1- C/ = I Y(ri/.Q/), with data Qi and rii.
1=0

U is bounded.

There is at least one matrix A eU , which belongs to the relative interior o f every

ellipsoids U i, i=l...K, V 1 < K 3 u, such that A =(rii u‘) and | Q, u, | < 1.

3.10 Summary of Robust Optimization General Work

l-The (RC) o f an uncertain “LP” problem with ellipsoidal or intersection o f ellipsoids

uncertainty is an explicitly conic quadratic program.

6 0

2-The (RC) of an uncertain convex quadraiicaily constrained quadratic programming

problem with ellipsoidal uncertainty is an explicit semi-definite program, while a

general-type intersection-ellipsoidal uncertainty leads to an NP hard (RC).

3 - The conic quadratic problem will have the same result as in 2 under some minor

restrictions.

4- In the case o f uncertain semi-definite problems with a general -type ellipsoidal

uncertainty, the (RC) is NP-hard.

5- Derivation o f an explicit form of the (RC) of an affine parameterized uncertain

problem, such as the geometric problem with uncertain coefficients of the monomials,

and develops a specific saddle point form o f the (RC) for these problems (Ben-Tal &

Nemirovski, 1998).

The number o f researchers who have studied the robust optimization approach

and used mathematical programming are not that many, such as in the case o f the

study of convex programming with set-inclusive constraints and applications to

inexact linear programming (A.L.Soyster, 1973). From his work, other studies were

originated such as the work of (Singh, 1982), which is a continuation o f Soyster’s

work. Another extension of Soyster’s work was done by Falk (1976). Also some have

developed the robust counterpart approach, mainly as applied to uncertain semi-

definite programming (Oustry et al., 1996).

The robust discrete optimization with some applications was investigated

theoretically (Kouvelis and Yu 1997).

6 1

Chapter 4

Robust Optimization in Support Vector

Machine Learning

4.1 Uncertainty and Optimization

In this section, an explanation o f the relationship between the idea o f robust

optimization and support vector machines will be given. Why robust optimization

idea becomes interesting to too many researchers? The reason is that, there are some

contradictions between the real-world data, and the realm o f traditional mathematical

programming; therefore reconciliation between them becomes necessary. When

operation researchers try to construct a model o f a real-world system, they always

find incomplete, noisy or uncertain data. On the other hand, in the world of

mathematical programming, it is assumed that the model is deterministic something

that does not hold generally in the real world. It has been found that large error

bounds arise when one solves mean value problems (Birge 1982). Other inadequate

solutions for worst-case problems were also observed. An approach to incorporate

uncertainty in traditional mathematical programming is to use stochastic

programming (Zenios et al., 1995). Another way is to use the idea of sensitivity

analysis, which was employed by some management scientists; the objective is to

6 2

uncover the facts about the influence o f data uncertainty on the model’s construction

or recommendations (Zenios et al., 1995). Thus, and under these legitimate pressures,

creating model formulations that, by design, will lead to solutions, which are less

sensitive to the model data, than the usual existing methods, becomes a necessity.

Another approach is to introduce the interval coefficients methodology in LP

formulations. It is based on the fact, that some or all of the coefficients of the LP are

described as intervals. Then, best and worst optimum for the model are found along

with the point setting of the interval coefficients that yield these two extremes

(Chinneck and Ramadan, 2000). Other approaches were also introduced, such as

stochastic linear programming and sensitivity analysis (Mulvey et al., 1995) that

describe a reactive approach to controlling uncertainty. The sensitivity o f a solution to

changes in the input data is measured, but it offers no tool by which this sensitivity

can be controlled. Now in the robust optimization approach, the uncertainty is

considered in problem design itself, through some mathematical formulations. It

generates solutions that are less sensitive to realizations o f the model data. Therefore

the robust optimization approach has some advantages over the above-mentioned

approaches (Mulvey et al., 1995).

4.2 Pattern Recognition

Let us consider the following SVM optimization problem in its primal form,

Min II w II"

S.t

6 3

Aw + b >0,

where A = [(yi x i) \ ...(yixi)^], 6 ^ = [(y tb - l y i- l] .

The data o f the above problem, A and b sometimes are not completely known.

In this case, we are generalizing the uncertainty to both x and y, ultimately to the

vector b . What is known here is the domain U in the space o f data an “uncertainty

set”, which contains the actual unknown data. Since we need to satisfy the separation

constraints, knowing only that the data belongs to an uncertainty set U, the only good

way to meet the requirements is to be restricted to with robust feasible candidate

solutions w, which satisfy all possible realizations o f the uncertain constraints, i.e,

such that.

Aw + b > O V (A, b) G U.

The robust counterpart is the optimization problem:

Min II w jj-

S.t

Aw + b > 0 V (A, b) e U.

It should be noticed that, it is a usual certain optimization problem, but not with

linear constraints (Trafalis, 1999). O f course its structure will depend on the geometry

o f the uncertainty set U and can be very difhcult. We could for example specify the

uncertainty set in some R" as an ellipsoid; the image of the unit Euclidean ball under

an affine mapping or, generally, as an intersection o f finitely many ellipsoids. In cases

where the ellipsoid uncertainty is a simple one, the data o f the i-th inequality

64

constraint aj^w + Z? i > 0, are allowed to run independently o f each other through

respective ellipsoids. So assume that the uncertainty set is as follows:

y . >
Cl-

such that (uF; u; < l} ‘i=i ,where + U i =

A ' j A /

i= l,...,l } where.
r . >

Cl;
are the nominal data and Uj i = 1,. ,1, represent the data

perturbations. There are some restrictions so that these perturbations can be enforced

to vary in spheres and these can be expressed as u^, Ui < l.Now w is robust feasible if

and only if for every i = l .. .l we have:

0 < min [cii [m|h/ + Zj,[«1,
Ui’-uJ <1

Cl:
+ I II I

= (« ; y w + b : min
H,:u/u,SI

w+bi
J y

Therefore the SVM optimization problem is

Min II w II"

S.t

J y
1 w + b ;

The above optimization problem belongs to the class o f second order cone

programming problems (SOCP) (Boyd et al., 1998).

65

4.3 Pattern Classification Training Examples

4.3.1 Introduction

In this section, two examples will be given. The first deals with zero uncertainty, which

means that the data are considered to be precise. The second example deals with

uncertainty, that is the input data will be formulated with uncertainty; on the other hand,

the uncertainty will be given different values to observe how the hyperplane will change

accordingly. In constructing this example, L, norm will be used to compute the distance

between the training points and the separating hyperplane. Equation (2.13) represents this

distance which can be stated as d| (H ^ =
vqL max Ju'

Therfore we want to maximize di (H H '), which is equivalent to minimize max | wj | .

This can be done through linear optimization if an auxiliary variable a, and two sets o f

constraints are added as a > | wj 1. As explained in section 2.3.1, since the L, norm is

used to find the distance, then the learning problem in the example can be formulated as a

linear programming problem as it has been stated in section two. Remember that the two

hyperplanes are F f and H , which are equal to: F f= w.x, +b =1, and H = w.x, +b = - I

respectively. Hence, the example can be stated as follows:

Let the training data consist o f four points, each of which is represented by a vector XiĈ î**,

where i = 1,2,3,4, and assign to each o f those four points a label yi with yi e {-I, + l }. This

means that the separation will be between two classes only. Hence, constructing a learning

machine which separate the data o f two training sets in pattern space finds its geometrical

66

equivalent in identifying a hyperplane that will separate the data points labeled by y, = 4-1,

from the data points labeled by yi = -1. Hence, two cases will be considered in formulating

the problem: the first is without considering uncertainty (uncertainty is zero), and the

second is considering the uncertainty.

4.3 .2 Precise Data Case (No Uncertainty)

The formulation of the “LP” problem without having uncertainty is as follows,

min a (4.1)

S.t

w .x' + b > 1

w .x‘ + b <-1

i e P

i s N

- a < W j < a j = 1,2,

where P is the set of positive examples and N is the set o f negative examples. Remember,

that Wj and x‘ are vectors, and w.x' is the dot product o f these two vectors. Now, let us use

the AND function to illustrate the above formulation (table 1 describes the input-output

relationship for the AND function).

X| X2 y

1 1 I

1 -1 -1

-1 1 -1

-I -1 -1

Table !• AND function

6 7

Using the data in table I, (4. L) will have the following form:

min a (4.2)

S.t

w,+ Wo + b > 1

W | - W2 + b< - I

-W|+ Wo + b< -1

-wi - Wo + b< -1

a > w i , a > w o

a > - w i , a > - w o

We bring problem (4.2), in a form recognizable by Matlab optimization toolbox

min a (4.3)

S.t

- W | - Wo - b + 1 < 0

W| - Wo — b + 1 < 0

- w I +wo + b + 1 ^ 0

- W [- w o + b + 1 < 0

a > w i , a > Wo

a > - w i , a > - w o

68

4.3.3 Sensitivity Analysis Case

In this model, we are considering a traditional sensitivity analysis formulation; where

perturbations are added to each data point along axes x,, xz respectively. The

perturbations are o f magnitude y[rj, where rj > 0 . Therefore we get the following

formulation:

m i n a

S.t (W|,wz). . + b > \

(W,,Wz). . +b<- \

r
(WuWz).

(WuWz).

- I+ V ?

i + V ? .

r ' + A

. +b<- \

. +b<- l

a > w i , a >W2

a > - w i , a > - W 2 , / 7 > 0 .

The final construction o f the above formulation will be as follows.

m i n a (4.4)

S.t

(1 + 7 ^) Wl+ () W2 + b - I > 0

69

(1+ ^) W i + (- l + ^) W2 + b + I < 0

(- 1 + ^) w i+ (l+ yf i]) W2 +b + I < 0

(- 1+^/ÿ) W|+ (-1 + ^ ^) W] + b + I < 0

a > w i , a > W 2

a > - w i , a > - W 2

O f course, when a equals to zero, then we will have the precise data case. The

resulting hyperplanes o f this sensitivity case are shown in the experimental result

(table 4 and figure!). Note that r\ describes the magitude o f uncertainty.

4 .3 .4 Robust Data Case (with bounded uncertainty)

In this case, the formulation o f the problem will lead to a special kind o f mathematical

programming problem (Boyd et al., 1997) known as a conic quadratic programming. So

let us use the AND function as above. Then:

(4.5)
rr f\ + zA+

' 11 ' l + z , '
= +

^ - 1+Z,y

" - r - l + z,"-tj = +

r - i + = , ix_̂ = +

7 0

where z = (z^Zz) refers to the uncertainty vector. Now, let us substitute these variables in

(4.1), and so the problem will have the following form:

S.t

mm a

I + Z:,
+ b > \

(w, vvs).

{ŵ \v,J.
^- l + z ^+ b < - \

(vv. w J + b < - \

- a < wi < a , - a < W2 ̂ a , V z such that ||z||< yfrj.

Let us manipulate to obtain a simpler mathematical form:

min a (4.6)

S.t

W 1.Z 1+ W 2 .Z2 + W i + W 2 + b - I ^

-w,.Z|- W2 .Z2 -wi+ W2 - b - 1 >0

-W|.Z|- W2 .Z2 + W|- W2 — b - 1 > 0

- W i . Z i - W2.Z2 + W t + W 2 - b - I ^

a > w i , a > W2

a >-wi, a >-w2 . V z such that ||z||< yfrj

7 1

The above problem can be written equivalently as;

m i n a (4 . 7)

S.t

<w,z> + Wi + Wt + b - 1 ^

- < W ,Z > - W i + W2 - b - 1 ^

-<w,z> + W|- W2 - b - I > 0

-< W ,Z > + W i+ W 2 — b - 1 ^

a > w i , a > W 2

a >-wi, a >-W2 . V z such that ||z||< yff] .

Notice, that <w,z> is the dot product o f the two vectors w, z that appears in the

constraints o f (4.7). Now we are going to consider the worst case o f feasibility by

minimizing the dot product in each o f the above constraints in (4.7), subject to the

norm o f the assumed uncertainty z, which has the value o f less or equal to q, which

mathematically can be expressed as:|| z ||" < q. Hence, the problem becomes:

S.t

min < w, z > (4.8)

I N I

7 2

Where r| is a positive number. Let us make some algebraic simplification to see if a more

suitable formulation of the original problem can be obtained, so that it can be solved in a

simpler manner: By using Cauchy’s Schwarz inequality we have:

I < w, z > 1 < l|wl|.||z|| => - l|w||.||z|| < < w, z > < ||w||.||z|| (4.9)

By the constraints of (4.8) and (4.9), we have:

- T| ''' "(Iw|(< < w, z > < q ''' "llwll (4.10)

Hence, the minimum o f the dot product o f these two vectors w and z will be:

<w, z> = - ^ ||tv|| (4.11)

Finally, substitute (4.11) in problem (4.7), and then the construction o f the robust

optimization problem considering uncertainty will be as follows:

m i n a (4.12)

S.t

~ V l̂l HI + b - 1 ^

II HI " ^ 1 + W2 - b - 1 ^

.y^|vv|| + w i - W 2 - b - l > 0

- J t j W vw| W ,+ W2 - b - I ^

a > w i , a > w 2

a > - w i , a > -w 2 .

73

The above problem is a conic quadratic programming problem (Boyd et al

1998), and can be solved in polynomial time using interior point methods.

4.4 Robust “LP” Approach to Classification

4.4.1 Introduction

The Support Vector Machines approach is very flexible. The concept o f maximizing

the margin, with the help o f kernelization, and duality can be used in the inference

problem. This flexibility will help to produce a linear program (LP) model for

classification, simply by changing the norm used to measure the margin. Thus, rather

than using quadratic programming, it is possible to derive a kernel classifier which

will lead to a linear programming (LP) one. So in the following primal SVM

formulation

m n l /2 | |v f

S t (4.13)
y,.(vv..r,. + 6) + :, > 1
C, > 0 ,/ = l,..JM,

we maximize the margin between the supporting planes for each class where the

distance can be measured by using the 2-norm. This is equivalent to minimizing the

2-norm o f w. Instead of using the above quadratic programming (QP), one can

change the model to maximize the margin by using the infinity norm, and then

74

minimizing the I-norm of w (the sum of the absolute values o f the components of w)

is equivalent to:

S t (4.14)
y,(w..r, +b) + z , > l

where the parameter C is the trade off between minimizing the misclassifications and

maximizing the margin.

4.4 .2 Robust Counter part o f (4.14)

Let X- = .r, + « ,, such that |w, || < ■y/tf, where u, is the uncertainty and x̂ is the center of

the uncertainty sphere. Now substitute the new value o f x in the constraints o f (4.14),

and then we will have the following:

y.((w,X. + >1 <=>

y I « vv, .r,.) + < w , M,. > + Z?) + z, > I <=>

}'i < ‘v', 4 > + -V, < «, > + y lb + > 1 (4.15)

z, > 0 ,/ = l,...,/, V Ui such that lui l<y[rj .

Note that w is robust feasible if and only if for every i= l,...,l:

min yi < w, .v,- > + y,- < w, //,-) + y b̂ + Z/ > I .
IhlNv^

75

Therefore we need to minimize the dot product o f w and u, subject to

[«, I < Thus, we need to solve the following problem:

min (w,//, >
S t

M,-|| < V7-

Using Cauchy’s Schwarz inequality as in eq. (4.10) the minimum o f is equal

to - ̂ | | w | | . By substituting this minimum in (4 .15). We have:

y. <w,X, > - y, ^\\w\\ + y,b + z , > \
z, > 0, / = I,...,/.

Therefore we need to solve the following robust formulation o f problem (4.14):

W.O.. ,

s.t (RO)

y,- <w, X,- > - y,- IK II+>'/* + r,- > I
z,- > 0 , / = 1, . . . , / .

The solution o f the above problem provides both sparsity and robustness. Next

we discuss the case where the data are nonlinear separable in the input space.

4.5 Kemelization

I
It is known that w = ^ y , a , x , , where a , > 0 andy, = ± 1 (R).

1=1

Then IjwlP can be expressed in terms o f the training data as follows:

7 6

■ ={w, w) =(^y , a , x^, yjaj Xj)={y^a^x^ + y.a.x, -^. .+y,aiX^, 3 ',a ,x ,4 -
f=I

/ / /

y,a^_x^+...+y,a,x, >=(%];',a ,x , , >/,a,x, >+(%]y,(z,x,, >',a,x,_ >+<2;> ',a ,x ,,
;=l f=I r=l

I
y jttj Xy)+.. + < 2 >^,a,X,, X, > =

x=l

I I I I
S>'/>'i«/ai<X/,x,> + z « 2 <x,-,X2 > 4- ... + Z _ y ,y a , a <x,, Xy> + Z y ,y /a ,a /(x ,,X />
1=1 ;= l <=1 i= l

t I

1=1 y=I

By defining};J'y <x,, x^ ^ (x ,, x^), and substituting it in (T) we have:

H I ’ = O |w | = yj a'k a (S)
1=1 y = l

ft is well known (Cristianini and Taylor, 2000), that k is a positive definite

matrix. If we make the necessary substitutions by using (R), (T), (S), the constraints

o f (RO) becomes:

y i <Z y j ^ j X j Æ v i ^|a‘k a + yjb + z, > \ o
7=1

— 0, / — I,...,/.

7 7

Since w I = S a ,y , .r ,
f=l

I k I I I = S “ . I k 111 assuming that ||x,||,is
1=1 1=1

;
bounded, minimizing Ivvl is equivalent to minimizing . Thus (RO) becomes as

1=1

follows:

/ /
min Z 0:; + C Za,b,zi=\ ,=|
S t

(4.17)

yi Zyj aj <Xj ;Xi) - y[^y, yja‘k a +y , b + z , > \
M
a , > 0 , z,-> 0, / = i,..y

Now Xj=Xj +Uj and <x,,x,> = <x,+u,,x,> = <x,,x,> + <u,,x,) = A:(x,,x,) + <u,,x,>,

where <Xj,x,) = ̂ (x^,x ,). Since we consider a robust counterpart o f the above

constraints, we replace (Uj,x,) with its minimum value. Specifically,

min(u,, x,> = ||u,||.||x,|| = -y[n |x ,||.

By considering the above substitutions, the robust formulation of (4.14) will be

as follows:

min 2^ a , + C '^z,
f = [t = I

St (4.18)

- ̂ y , ̂ a 'k a y^a^ [t(x, ,x\)-V^^||x,||]-»- y,b + z^>\

7 8

r,. > 0, a , > 0 / = 1,...,/ , w here ||x, [= ^ k (X j , X j) .

Now we can find the discriminant function for the optimal hyperplane to be;
/

f ix ,a ,b ,u) = Z yiCCi<Xi ,x) + 6
1=1

/ _
= S ^ /a /< X i ,+U; ,x >+6

/=!
/ / /

= S (y , « , <jq + Z >',«/• <4 , X » + Z» = , X> + (u ,, x> + Z>
»=i /=i /=i

Since we consider the worst case, we replace (u„x> by its minimum

v a l u e - ^ | |x | | . Therefore by denoting / (x , or, A) (robust discriminant function), we

have:

f ix ,a ,b) = '^ {y ,a ,k ix , ,x) -y,a,^[n\%\^)^b or equivalently
i=I

/ (x , a ,A) = ' ^ y , a , k i x „ x) - ^ \ x \ ' Y , y - ^ > (4.19)

4.5.1 Non-Linear Case (XO R Problem) with Precise Data

Xi X2 Y

1 I I

1 -1 -I

-I 1 -I

-1 -I 1

XOR- Problem

7 9

In this problem, we need to find the optimal separating hyperplane that classifies the

above data without error. It is not possible to solve this problem with a linear decision

boundary. However, a polynomial decision boundary of order 2 can separate these

data by using the general equation (4.18) in section 4.6. Notice that since we are using

the precise data the uncertainty r| equals to zero. Therfore (4.18) becomes as follows:

minin j ; » , z,
f=I f=I

St

\ >='
4- Z. > I (4.20)

z, > 0, rZ; > 0 f = I / ; y = 1 , /

Since the XOR problem has four input data points then (4.20) can be formulated

accordingly, and it will look like the following:

80

min[flri + « 2 + « 3 +oc ̂+c(z; + 2 2 + ^ 3 + 2 4)] (4.21)
s.t
y 1 [y,Of,k(xi, .r,) + y-2 « 2 (̂-'̂ i - ■' 2̂) + ysÔ ŝ 'C-'-'i,-'•'3) + >'4 ^ 4 , A4) + Zj] + Ci >1

y2[yi«iA:(.V2, -V]) + y 2 6 r 2 / : (A 2 + y3^ 3 '̂(-'^2 ̂A3) + y40r4A:(.V2,A4) + ̂] + Z2 ^ I

y3 [y ia i^ '(x 3 , .v,) + y 2 ^ 2 A : , .Vj) + y ^ a ^ k i x ^ , .1:3) + y4df4A:(x3, .V4) + /?]+ Z3 > 1

y 4 [y i« i^ '(A 4 , -V,) + y 2« 2^(A4 , A2) + y^Œ^k^x^ , A3) + y4or4/:(.V4, .V4) + ib] + Z4 > I

-, > 0 , or, > 0 (= I,...,/ ; j = 1. ...,/

As for the kernel, we have used the polynomial one with degree of 2 (ky = [(Xj

.X j) +1] “). This inner product kernel is represented as a 4 by 4 matrix since we are

using 4 points only as data points. Therefore

k =

^11 k l2 ^13 A.'i4

^'21 ^22 ^23 ^24

^31 ^32 ^33 ^34

.^'41 ^42 ^43 *44

Now let us show how to find the elements o f row number one:

8 1

1̂1 =U i.-'-'i)=

^12 = U l-^2) =

1̂3 “ (-'̂ 1 ' ^̂3) —

^14 = (-n ,':4) =

(1 I).
/ A

vV
+ l = 9

(I I).

(1 il
f \\- I

(I I).

+ l

+ 1

+ l

= 1

= 1

= 1 .

Now we do the same thing for every element in the above matrix and hence the

kernel matrix k;. will be as follows:

9 I I 1
1 9 I I
1 1 9 I
1 1 1 9

k =

By substituting the values o f kÿ and yj in (4.21) we then get the tbllowing

problem:

82

min [« 1 + « 2 + « 3 + « 4 + c (z, + Z2 + 3̂ + 4̂)] (4.22)
s.t

I .[(I 4Z| .9) + (—1 Xlf2.1) + (~ I . l) + (I 1) + ̂)]+ Z[

— I .[(1 .ûf[. l) + (—1 XXi-^) + (—I/Z 3 .I) + (1 .Ûf4.l) + ^ 1+^2 — I

— 1 .[(1 .ûf|. l) + (—1 £lf2-0 (~1 .Ûf3.9) + (1.0^4. l) + />]+ Z3 ^ I

I .[(1 .ûf|. l) + (—1.6^2 . 1) + (—I . I) + (1 zir^.9) + ^] + Z4 ^ 1

Zi > 0 , or, > 0 / = 1,...,/ ; J = I ,...,/

T he final construction o f (4 .22) a fte r som e m an ipu la tion w ill be as follow s:

in[(Cir, + « 2 + « 3 + « 4 + c (z , + 2 2 + ^ 3 + ^ 4)] (4 .23)

1 .[9ûT| —6^2 “ ^ 3 +Ûf4 Z| — 1 ^ 0

— 1 .[~CT[+96^2 +(%3 — (%4 —6]+ Z2 ~ 1 — 0

— 1 .[—Of| +CX2 + 90T3 ~CĈ —6]+ Z3 — 1 ^ 0

1 \oC\ — (%2 ~ ^ 3 +9(^4 + 6] + Z4 — 1 ^ 0

z, ^ 0 , Of, > 0 f = 1..... 4 ; j = 1,...,4

N ote th a t, to be able to so lve th is p rob lem b y M at lab so ftw are, we need to

change the s ign from > 0 to < 0 , thu s (4 .23) becom es:

min
SJ

83

min [or, + « 2 + « 3 +oc ̂ + c (z , + Z2 + - 3 + m)] (4.24)
s.t
— I .[90T1 — (%2 — (%3 +0^4 +ù] — + 1 < 0

l .[—(%! +9C(2 +0^2 ~C?4 —6]— Z2 "t" I — 0

I .[—&| +<%2 +9<%2 — <%4 —6]— Z] + 1 ^ 0

— l.[of| — <%2 — ÜTg 4-9(% 4 +Z>] — Z4 + 1 ^ 0

Z; > 0, or, > 0 / = ; j = 1,...,4.

4.5 .2 Non-Linear Case (XOR Problem) with Uncertain Data

In section 4.5.1, the precise case was implemented by using equation (4.20). In this

section the robust case will be considered and so instead of using (4.20), we are

replacing it with (4.18) which represents the robust optimization model. So (4.18) can

be rewritten as follows:

min 5] a , + C ^^z ,
f=l i= i

St (4.25)

- 4 n y , 4 ^ ' k a + y i ' ^ y j a j k (X j , x .) - y . y [r j ' ^ y . a ^ ^ [k (^ ~ ^ + y . b - i - Z i - l > 0
;=l j= l

z, > 0, or, > 0 (= I,...,/ .

84

Remember that |[5̂ ||= ^Ar(Xj ,.v^) which is square root o f the diagonal element o f the

matrix k. Note that Ar,y = y ty jk or equivalently;

k,j -

9 - I - I 1
- 1 9 1 - 1
- 1 1 9 - 1
1 - 1 - 1 9

When we use the Matlab software to solve this problem, the inequality in the

constraints must be less than or equal to 0 or < 0 . So (4.25) becomes:

min a,
/-I (=1

St (4.26)

ylrjy, ̂ a ‘k a ylKXj , Xj) -y, b - z, +1 < 0
y=i ;=i

z , > 0 , a ^ > 0 / = 1,.

So if we solve the XOR problem by using the input and output data in table 2, we will

then have four constraints. Next we construct the first constraint g (1).

8 5

g (u =

^9 - 1 - 1 n

a 2 «3 0 4̂)
- 1 9 1 - 1 «2
- 1 I 9 - 1 «3

. 1 - I - 1 9 . <^4 y

1 / 2

(I)
{l■CĈ .9)+ (— IZfo . 1)+ (— +

(l.ûTi .>/9)+ (— l.dT2'V^)+ (“ lXf3.V9)+ (i.<3T4 .V9)

So the constraint g (I) above is equivalent to the following:

(1) — yfn
a,(9or, -a^ -a^ + a ^)+ a 2 { -a i + 9 a , +a^ -a^)+a^ {-a^ + a , +9a^ - « 4)+
« 4 (a, -a^ -o fj +9cr^)

1/2

9 a , - a , - « 3 +or^

V y

4- 3 (a, - a , -« 3 + a j - b — z, +1 <0.

The same procedure as above will be conducted to construct the rest o f the

constraints; there are 3 more since the total data points are 4.The XOR model

becomes as follows:

mm Z « r , .+ C 2 c ,
i=l (=1

(4.27)

86

s0) = yfn
û f i(9 ûfi - o t 2 - « 3 + û f 4) + û r 2 (- û r , + 9 or2 + « 3 - « 4) + û r 3 (- o r , + « 2 + 9 of3 - « 4) +

a^iai - a i -a^ +9a^)

1/2

[9ûfi — (Z2 — (Zg +Of4] + -y/^[3(ûr| —a i — (Zg + 0 4̂ 1)| — 6 — Zj + 1 ^ 0 .

gi2) = Jrj
a\ (9<Z| — (%2 — + (%4) + a i (—<Z| + 9<%2 + 0^3 — <%4)+ a-̂ ^ ^ 3 ~)+
« 4 (o f | - « 2 - « 3 + 9 0 ^ 4)

1/2

+

—9(^2 — + 0 /4 1 — — <%2 — Of2 +0^4)| + 6 — Z2 + 1 — 0 -

8 0) = i f n
or,(9or, - a i -a^ +or4) + or2 (-or, +9ar2 ^or^ -o r 4)+or2 (-ar, + « 2 H-9or3 - « 4) +
or4 (or, - « 2 - o t 3 + 9 ^ 4)

1/2

[or, —or2 — 9or] + 0 f4 1 — ■̂ /7[3(or, — or2 — org +or4)| +Z? — 2 3 +1 ^0.

g(4) = V Ï

or,(9or, - a i -a^ +or4)+or2 (-or, +9ot2 i-or^ -o r 4) + org(-or, +or2 +9or3 -a^)-h
or4(or, -oro - a^ -^9a^)

1/2

[or, —or2 — Of] + 9 of4 j + ^^[3 (or, —ai — or̂ +or4)| — 6 — 2 4 + 1 ^ 0 .

87

Chapter 5

Robust Optimization in Support Vector

Machine “Regression Analysis”

5.1 Introduction

We consider the regression problem in which a response y is modeled using functions

o f input vectors x in in the form f i x) = j<l> j{x) + b, where 4>i(x), <{)2(x)... is a
J

collection of possible nonlinear features. The traditional SVM solution takes bj of the

t
form bj = ^aj t pj i Xj) , where x,,..., xi are the observed input vectors in the data set

i=l

/

of size 1. Then the regression estimator takes the form: / (.v) = ^ g. k (.r, .r,) +b ,
r=I

where the kernel k(x,x.) = '^0jix) ^jix.), and the a i , . . .a i solve a quadratic
j

optimization problem designed to produce weights of smallest I2 norm subject to

producing fits o f error e to the observed responses y,, y2, ... yi in the data sets

provided such a solution exists.

Seeking sparsity on h norm may be used in place of the I2 norm. Unfortunately,

accurate fits to the data may require that weights end up with a large norm, leading

88

also to a large statistical uncertainty concerning the values o f a , b and f in the

presence o f noise.

Assuming the “noise” to be constrained to a given sphere S or more generally

to an ellipsoid E, a robust optimization approach is proposed with the objective o f

developing a robust regressor with good generalization properties.

This chapter is organized as follows; In section 5.1, an introduction for the

support vector regression is given. In section 5.2, the basic idea o f support vector

regression (SVR) is developed. In section 5.3, the linear epsilon- insensitive loss

function is focused on. In section 5.4, the generalization o f SVR is being developed.

In section 5.5, the kemelization is used for the non-linear case.

5.2 Basic Idea

Let us consider a set o f given training data {(xi,yi)...(xi,yi)}, where 1 represents the

number o f samples or the training set size, where xjeW** and y; e9I.

SVM regression uses the e-insensitive loss function, (Vapnik, 1995), as a tool

to find a function f (x) that has at most e deviation from the original o r actual

obtained targets y, for all the training data, and at the same time, is as flat as possible.

It is assumed that the function f is linear in the <j> space. Specifically f(x) = < w, x >

+b. Therefore our objective is to find a small w in terms o f length.This can be

accomplished by minimizing the norm o f w, i.e. 1 Iw 1 p,(Smola and

Schholkopf, 1998). Thus, if the deviation between the actual and predicted value is

89

smaller than e, then the regression function is acceptable. There lore errors less than e

will be neglected, but at the same time, no deviation larger than e will be accepted

either. The above idea can be expressed mathematically as follows. Find a w in [R.**

such that

- £ < < w, Xi > -b-yi <£, Vi =1....... 1 or |y, < g , V/ =.1..... /.

From a geometric point o f view those inequalities can be visualized as a band

or a tube o f 2 e around the regression function and any point inside the tube is

considered to be without error. On the other hand points outside the band are

infeasible.

5.3 Linear Epsilon- Insensitive Loss Function

In Vapnik (1995), it can be seen that the support vector machine regression

formulation, is described by the following primal optimization problem:

Min 1 /2 I I w 11 -

St (5.1)

-< w,Xi > -b + y, < e

< w ,X i > + b-yi < e V i= l,. . . , l ,

It should be pointed out, that (5.1) has been assumed to be feasible, but this is

may not be always the case; sometimes it is wise to allow for some errors. Thus slack

variables z and z are introduced for the two kinds o f training errors. The first

90

calculates the error for underestimating the function, and the second calculates the

error for overestimating the function. It should be noticed that these slack variables

are different from zero for points outside the tube, and progressively decrease, until

they reach the zero value for points inside the tube according to the loss function

used. The above description is known as the e-SV regression. (5.1) can be modified to

cope with the infeasible constraints. So we need to minimize the norm o f w subject to

the above constraints with possible infeasibilities slack variables

zand £ respectively. Specifically the task is to solve the following optimization

problem:

(=1

St (5.2)

y i - < w , X i > - b - Z i < e V i= 1.......1,

- y i+ < w ,Xi > +b- £, <e

Zi, > 0 .

The positive constant C is the trade off between the flatness o f the regression

function f (x) corresponding to the above optimization problem (flatness means how

small w should be), and the amount o f deviation larger than e that can be tolerated or

allowed. The above formulation can be used for the linear e-insensitive loss ftmction.

The corresponding regression function f (x) to problem (5.2) is as follows:

f (x) = < w, X > + b, (5.3)

91

where x is in the (p space. As in the classification case, one can compute the

Lagrangian dual and by using kernels functions, a nonlinear regressor case can then

be constructed. The corresponding regression function to the nonlinear case is as

follows:

f (x) = Z oti k(Xi, x) + b. (5.4)

We will see how these functions were derived, when we construct the general case for

regression.

5.4 Generalization

Using the above problem (5.2), we will follow the same logic as in the case o f

classification, where the data points (Xi) i=i i had some noise (uncertainty).

Specifically, let.r, = .r ,+«, , 5 Mc/ir/iar|i<,|<7 ^ , where u; represents a bounded

uncertainty and / /)0 . By substituting this equality in the constraints o f (5.2), we will

get:

y I — (vv, .r,+ Hi) —b — Zi ^ £
- >V + < w , X i + u i) + b - Zi ^ £ _

Z i , Z i > 0 , t =

V UiS 91^ such that ||w,. ||< yfrf.

With some simple mathematical manipulation, (5.5) can be transformed into:

y, — (w ,» .)—6 — < £
(w , x .) + b — — Zj ^ £ (5.6)

z ,,c ,> 0 , (=

92

V Ui£ such that ||h, || < -Jrj.

In order to satisfy inequalities (5.6) in a “robust way”, we need to minimize the dot

product o f w and Uj subject to ||m,|| < .^/^Thus, we need to solve the following

problem:

min (w,Ui)
S t

||w,M

The minimum value of the above problem provides the worst possible scenario for

satisfaction o f the inequality in (5.6). Note that the minimum value o f (w,Uj) is equal

to —̂ /^||vv||. Again substituting this minimum in (5.6):

y I — (n% Xi) + yfrj || w|| —6 — z, < £

- Yi + (w,Xi) - yjn\\w\\ + b - Zi < £ (5.7)

Zi, Zi ̂ 0 , / = I /, Viti , with ||/r,-1| < -Jrj.

So the new problem becomes:

Min i/2 | |w l |- + C % (: , + ;)

St (5.8)

VV’, X i) - b + Vi - Z i < £

— y j t] II wjj + (w , Xi) + ̂ — >7 — Zi ^ £

Z i , Z i > 0 , i = I ,...,/, V u i 6 9?* ,̂ w i t h ||/<j|| < - J j f .

93

5.5 Kemelization

In the previous section, the linear regression problem was provided. In this section,

the above problem can be reformulated to deal with non-linear regression problems.

As in the classification case, we can express the weight vector as a linear combination

I
o f the data vectors; specifically >v = X;. Using a similar analysis as in the

i=l

classification case in chapter 4, the length o f the weight vector can also be expressed

as: ||vv|| = yfcc'ka . Now since w = ^ c r , X | , (w , X j > can also be expressed as:
1=1

<^ar^Xj,Xi> = ^or^<Xj,Xi> = Æ(Xi,Xj>, where aj is a real number
/ = ! / = ! y = l

unrestricted in sign. Now by setting Xj =x^ +Uy, the dot product o f xj and .CyCan then

be expressed as:

(X j , X ; > = < X j + U j , X i > = (X j , X i > + < U j , X i > .

Again from 2.5.1 (Definition 2), (Xj,X;) can be replaced by its kemelization

k(X y,x,), and (u^.X;) by its minimum value - . / ^ | |x ; | | . Remember that |u j| < ^ .

Thus:(w , X i > = ^ c f y Æ (. x : y , . r , > and<Xj ,X;> = < X j - t - U j . X ;) = (X j . X i) + < U j , X j > .By
7=1

setting (Uj.Xj >= -y ^ ljx il we have:

94

(w, X;) = ̂ «y[/:(:ry,) - ̂ ||X;||] = ̂ a ;/:(? ,, ? J - ^ | |X ; II) . Thus, problem
j= \ y = i y = i

(5.8) can be stated as:

- a ' k a + cŸ^{Zi+z.)
— /=!

s.t (5.9)

7 ^ ^ c c ' k a - E cC jk{X j , ? ,) + (E a - y f r j) \ \ K i \ \ - b + y , - z,- < £•
7=1 7=1

- 7 7 y l a ' k a + E c c j k (x j , ? ,) - (E ce j 7 7 f i l l + 6 - y , - z, < ^
7=1 7=1

Z , , Z, > 0, / = 1,...,/ ; j = 1,...,/; a /z unrestricted.

We will call this model the robust Support Vector Machine with non-linear

kernel. Again making some necessary substitutions in the equation o f the regression,

we can derive the final regression function and expressed as:

/
f (.x ,a ,b) = y a , (x i , x) + b

i=[

I
f (.x ,a ,b ,u) = E « / < X i + U i , x) + 6

/ = I

/ _ I
/(.V, ÛT, 6 , Z/) = Z ÛT,- <Xi, X> + E a,- <U i, X) + 6

/=! t=l

Notice that (X;,x) = A:(.?,.,.v), and by Cauchy-Scharwz inequality we

have I(U;, x) I< ||U;||.||x||. Considering the worst case, we replace (U;.x) by its

minimum value — 7 7 |M| denoting by f{.x,a,b) (robust estimator) we have:

95

/ (. r , a , b) = Y^ a ^ k (x , ,x) || x || (J] ^ , w here ||x|| = ^ J k i x , x) . (5 .1 0)
<=i <=i

In the case where we do not have any uncertainties (rj equals to zero), using non­

linear kernels such as the polynomial kernel, (5.9) will be equivalent to the following:

^a 'A -a + C ^ (r , . + f ,)
- f=l

s.t (5.11)

/

) - b + Vi-z, < s
/=!

E cCjkix ,̂ ? ,) + 6 - y,. - z . < £
y=i
Z i , Z j > 0 , i = 1, . . . , / ; j = 1, . . . , /; a is unrestricted.

We shall call this case the precise non-linear SVM. Note that (5.10) becomes:

J\.K,a,b) = ^ a^kix, ,.x) + b . (5.12)
/=l

In the case where we use the Li norm, (5.11) would lead to a linear programming

problem such as:

m in j^ a , .+ C ^ (r , + z ,)
1=1

s.t (5.13)

- y,c t jk(x j ,x^)-b + yi -Zi < £
y=i

y (Xj k (x j , X i) + b - y , - Zi < s
y=i

z,,z ,> 0, i = I,..., / ; j = I,...,/; a is unrestricted.

9 6

We call this case precise linear SVM optimization problem, and the regression

function for this case stays the same as in (5.12). The robust linear SVM, will be as

follows:

/ /

mm
f=l 1=1

i n j ^ o r , + C j] (z , . + f ,)
= I

s.t (5.14)

y f n ^ a ' k a - Z c C j k (X j ,X i) - \ - { y , a j y f r j) \ \ x i \ \ - b + - Zj < e
j=\ y=l

- / r j y l a ‘k a + 5]a :y A :(T y ,T ,)-(V v) ||x ; || + 6 - y , - z , < e
y=i y=i

0 , i = 1,...,/ ; J = 1,...,/; a is unrestricted.

where ||X;|| equals to ^A:(.v, ,.r,) . In each o f the above models, we can determine the

mean square error, as a tool to the prediction behavior o f our models, and graphs can

be used to visualize this behavior, that is how the solution o f our model changes with

the changes o f the uncertainty eita (/;) .

97

Chapter 6

Computational Results

6.1 Results for Pattern Recognition or Classification

6.1.1 Tests on Synthetic Problems

The AND function

Description

All experiments for both classification and regression have been conducted in

MATLAB. We used a 2.4 GHZ Intel processor, Dell workstation-computer with 2

GB RAM and running Microsoft windows 2000 professional version with service

pack 2 installed.

Preliminary experiments were conducted on the AND function (linear case),

which contains 4 data points with label assignments a label o f +1 and -1 respectively

as can be seen in table 1, Appendix C. Two experiments were performed; one for the

sensitivity analysis case and the other one for the robust case. A comparison and

illustration o f the results are shown in Tables 3 and 4, Appendix C and figures L and 2,

Appendix E. In the sensitivity case, uncertainty is considered only in two directions

along the axes o f xi and xi respectively where in the robust case, the uncertainty is

considered in all directions since the idea o f robustness is to consider a sphere in

which the uncertainty is bounded and represented by all possible rays of that sphere.

98

The linear kernel was used. We found that when we set the value o f the uncertainty

(eita) equal to 0.5, no separation of the two groups of data points could be performed

in the sensitivity analysis case, while in the robust case, we tbund two SV points

rather than having no separation at all. The value of the uncertainty at which no

separation could be done for the robust case is 0.7. Thus, we can see that the robust

case is a better performer than the sensitivity analysis one. Also, we noticed that in

the case o f sensitivity analysis, the separating hyperplanes had different slopes; while

in the robust case they had the same slope (parallel translation) with respect to the

optimal plane o f the precise case. We believe that this phenomenon is due to the fact

that we are considering a spherical uncertainty in the robust case with the same bound

or radius for all data points.

The Exclusive>OR Problem (XOR) - Non-linear case

Description

In the AND function case, we have defined hyperplanes as linear functions in the

input space. In this section, the XOR example demonstrates the mechanics o f the

support vector machine calculations for the nonlinear separable case. This problem is

not linearly separable in the input space. We need to find an optimal separating

hyperplane that classifies the data in table 2 without error. As we have mentioned

above it is not possible to solve this problem with a linear decision boundary.

However, a polynomial decision boundary o f order 2 can separate these data. The

inner product kernel for polynomials o f order 2 is defined as k (x,y) = (1+ <x, y>)".

99

The solution to the resulting SVM optimization problem (4.23) is tti = = as =

0 4 = 0.125 indicating that all four data points are support vectors. The decision

function using the above polynomial kernel will be:

D(x) = = (0.I25)T; y,[(.c,-,.v)+ l]“ .
(=i 1=1

This decision function separates the data with a maximum margin. We have

solved the XOR problem with different values for the uncertainty, using the L| norm.

Of course when uncertainty equals to zero that is, no uncertainty is involved, the

solution of the XOR problem is the same as in the case o f the precise SVM

formulation.

According to our robust constructions, some specific real world problems can

be solved, taking into account the factor o f uncertainty. Thus, if one assumes that the

uncertainty values will vary in a specific range, then it is easy to find the solution for

that specific problem, just by plugging the value o f the uncertainty in our robust

formulation. We have observed that as the value o f the uncertainty decreases, the

solution will get closer to the one with precise data.

1 0 0

6.1.2 Tests on Real World Problems

Echocardiogram Classification Application

Description and Analysis

Each exemplar contains information collected from patients who have had a recent

heart attack. The problem is to determine if the patient will survive for I year

following their heart attack. The most difficult part is predicting that the patient will

NOT survive. There are relatively few exemplars.

Number of Exemplars: 60

Attribute Elements per Exemplar: 7 continuous, 1 symbolic (discrete). Specifically

the attributes (components) of input vectors are as follows:

1. Age-at-heart-attack: age in years when heart attack occurred.

2. Pericardial-effusion (binary): Pericardial effusion is the fluid around the heart.

(0 =no fluid, 1= fluid).

3. Fractional-shortening: a measure o f contractility around the heart (lower numbers

are increasingly abnormal).

4. Epss: E-point septal separation is another measure of contractility. Larger numbers

are increasingly abnormal.

5. Lvdd: left ventricular end-diastolic dimension. This is a measure o f the size o f the

heart at end-diastole. Large hearts tend to be sick hearts.

6 . Wall-motion-score: a measure o f how the segments o f the left ventricle are

10 1

1. Wall-motion-index: it equals wall-motion-score divided by number of segments

seen. Usually 12-13 segments are seen in an echocardiogram. Use this variable

instead of the wall motion score.

8 . mult : a derivate variable which can be ignored

Number of Outputs: 1

Output Encoding: 1 for survived

In the experimental setting of this problem (echocardiogram), the total data

points were 60. We used 40 points as training points and 20 as testing. We observed

that there were no big changes in the values o f the mean square testing error (mse),

which occurred with the changes of the uncertainties values. This advocates for the

robustness (stability) of the proposed model. We were satisfied with the results we

obtained, but from the statistics point of view, we thought that it would be better if we

apply the same experiment on different data points. We then generated two other data

points from the original one randomly and named them echocardiol and echocardio2

respectively, and repeated the same experiment on these two new data. The results

were similar to the original one. Tables 6,7 and 8 , Appendix F show the results of

these three data sets. I should put a note that during these experiments, sometimes I

had to change the value o f the trade off C to get better classification by getting better

values o f the mse.

1 0 2

Breast cancer Classification Application

Description and Analysis

In this problem we try to classify breast cancer data using 9 attributes. The 2 classes

are benign and malignant repectively:

Number of Exemplars: 100

Data attributes per Exemplar: 9 continuous

1. Clump Thickness 1 - 10

2. Uniformity o f Cell Size 1 - 10

3. Uniformity o f Cell Shape 1 - 10

4. Marginal Adhesion I - 10

5. Single Epithelial Cell Size 1 - 10

6 . Bare Nuclei 1 - 10

7. Bland Chromatin I - 10

8 . Normal Nucleoli I - 10

9. Mitoses I - 10

Number o f Outputs: 1

Output Encoding:

Output 1 = benign?

In the experiment o f this problem (breast cancer), the total data points were

100. We used 60 points for training and 40 for testing. We observe stability o f the

method, that is, no big changes in the values o f the mean square testing error (mse)

103

occurred with the changes o f the uncertainties values. The results were similar to the

original one. I should put a note here, that during these experiments sometimes i had

to change the value o f the trade off C to get better classification by getting better

values o f the mse. Results can be seen in table 9, Appendix F.

6. 2 Results for Regression Analysis

6 .2 .1 Tests on Synthetic Problem

Description and Analysis

The data o f this problem was generated according to the following equation: f(x) =

x"i + x~2 . This data consists o f 100 points. In our experimental setting, we randomly

select 11 data sets where 30 points used for training and 70 for testing. We then call

our C-H- code, into the Matlab and run those eleven data sets with different values of

uncertainties (77). The purpose of our experiments was to find the mean square error

for the training and testing points for each data set. Then we calculated the average

mean square error for the eleven groups o f data points with the same value of the

uncertainty (//) . Then we start making the changes for the values o f the uncertainties.

The result was very encouraging. We run 77 experiments for those eleven data (7

experiments for each data) since 7 values o f (77) were used in these experiments. I

should point out that, there has been a consistency with the changes o f the values o f

the uncertainty (77) and the values o f the mean square error for both testing and

training points, that is when the uncertainty value increases, the value o f the mse also

1 0 4

increases but with the same proportion. This shows that the result obtained by this

model is stable as we expected. Also, we can visualize these analytical results by the

graphs we obtained for the different values o f (/;). The result can be seen in tables 10

and 11, Appendix D and the figures can also be seen in the list o f regressions’ graphs,

figures 7 and 8 , Appendix F.

6.2 .2 Tests on Real World Problems

Lynx Application Probiem

Description and Anaiysis

LYNX TRAPPING PREDICTION:

This data set contains the number o f lynx trapped in the MacKenzie River District of

Northwest Canada between 1821 and 1934. It has been used to illustrate a number of

methods associated with time series analysis.

Number of Exemplars: 114

Data Elements per Exemplar: I

Number of Outputs: prediction

Output Encoding: prediction

Problem Type: Time Series Prediction

In this application, the total points used were 40 points; 30 points for training and 10

points for testing. We tried many experiments but only two o f them gave reasonable

results. The first is when the uncertainty (//) equals to 0 and the other one is when

eita equals to 0.0001. When (77) equals to 0, the testing mse were 0.3726 and when

105

(rj) increases, the value of the testing mse were also increased. But these increases

are proportional to the increases of the uncertainty values, which means that, the

stability o f the model’s solution exists.

106

Chapter 7

Summary, Recommendations for Future

Works

7.1 Summary

In this work, we have developed new methods for solving problems in pattern

classification and regression analysis with uncertainty in the data in feature space.

Specifically we consider spherical uncertainties (data are restricted in spherical

regions o f radius .yfrj in feature space). The changes in the behavior o f the solutions

of these two types of problems were examined under different values o f the

uncertainties described through a parameter called rj. The resulting robust

discriminant functions that showed stability in several data sets was very

encouraging. These results were consistent with the goal o f this dissertation.

Problems from real world such as echocardiogram, breast cancer and the lynx, were

examined for illustrations. The contribution o f this dissertation was to investigate the

robustness and stability o f the SVMs model under bounded perturbations o f the input

data in the feature space.

107

7.2 Recommendations for Future Work

Preliminary experimentations has shown that robust techniques possess a good

stability behaviour in terms of generalization and a promising potential for predicting

solutions under unknown perturbations of the data in feature space. Future research

might focus on studies of the statistical properties o f the robust SVM solution and

performance in stochastic settings. Analyzing the numerical properties o f the

proposed models in large-scale settings is a topic for further research. Extensions to

this work to deal with models, with perturbations In a subset of the data points and

with different ellipsoidal uncertainties could be investigated. Also we recommend

extending this research to models where the uncertainties can be expressed as convex

sets and investigate connections with positive semidefinite programming. Extensions

to other methods such as the least square SVM can be examined and developed. It is

also a good idea to work on identifying the uncertainties o f the data using statistical

methods. Since we only consider the perturbation in the input data, considering

perturbations both in input and output data is a good topic for further research.

Finally, one can investigate the problem of the selection o f the value of the trade off

C in an automated procedure based on a given set o f training data.

108

Appendix A

C++ and MATLAB Code for Pattern

Recognition / Classification

109

— c++ code
#include <fstream.h>
#include <string.h>

This code generates constrain equations for the classification with dimension
n.
w(I) ... w(n) : represents ai
w(n+l)...w(2 n) : represents zi
w(2 n+l) : represents b

**/

int mainO
{

// Declaration o f some variables used in the program, such as the file name
// The input and output streams
ifstream fin;
o(stream fout;
char iFileName[50], temp[53];

// Reading the data file name in order to read the data
cout « "Enter the data file name:
cin » iFileName;
fin.open(iFileName);

// We use the file name ‘classI.m ’ to store the constrains
strcpy(temp,"class 1 ");
strcat(temp, ".m");
fout.open(temp);

// Read how many points we want to use for training
cout « "Enter the number o f points:
int NumOfPoints;
cin » NumOfPoints;

// Define the array dimensions that are going to hold the input data
float *y;
int Dimension = 2;
float x[3l][lOOI]; / /3 0 dimensions, 1000 data points
y = new float [NumOfPoints + 1];
cout « "Enter the dimension: ";
cin » Dimension;

Reading Stage: Reading the data from the file

HO

for (int i = I; i <= NumOfPoints; i++)
{

for (int j= l ; j <= Dimension; j++)
fin » x[j][i];

f i n » y[i];
}

fin.cioseO;

// Continue reading the parameters, C and Eita.
cout « "Enter the value o f C: ";
float C;
cin » C;

cout « "Enter eta: ";
float eta;
cin » eta;

* Start writing the output file that contains the constrains ‘classI.m ’ *

fout « "%l = " « NumOfPoints « endl
« "%dimension = " « Dimension « endl
« "%C = « C « endl
« "%eita = " « eta « endl;

// Start writing the declaration o f the function
fout « "function [f,g]=classi(w)" « endl

« "k=[";

// Finding polynomial kernel.
// In this program, the polynomial version o f the kernel has been used,
ktemp = 0 ;
for (i = I; i <= NumOfPoints; i++)
{

for (int j = L; j <= NumOfPoints; j++)
{

// find the k(i,j) for the dimensional data
ktemp = 0 ;
for (int k=I; k <= Dimension; k++)

ktemp = ktemp + x[k][i]*x[k]|j];
ktemp ++;
ktemp * - ktemp;

ILL

fout « ktemp « "

fout « « endl;
}
fout « « e n d l ;

//find polynomial ktildit
fout « "ktilda=[";

ktemp = 0 ;
for (i = I; i <= NumOfPoints; i++)
{

for (int j = I ; j <= NumOfPoints; j++)
{

// find the k(i,j) for the dimensional data
ktemp = 0 ;
for (int k = l ; k <= Dimension; k-H -)

ktemp = ktemp + x[k][i]*x[k][j];
ktemp ++;
ktemp *= ktemp;
fout « y[i]*y[j]*ktemp « " ";

}
fout « « endl;

fout « « endl;

* Start writing the objective function *

fout « "f= (";
for (j = I; j <= NumOfPoints; j++)
{

fout « " w (" « j « ")";
if (J < NumOfPoints)

fout «

fout « ")+" « C « "*(";

for (i= l; i <= NumOfPoints; i++)
{

fout « "w(" « NumOfPoints+i « ")";

1 1 2

if (i < NumOfPoints)
fout «

}
fout « « endl;

float ytemp;

* Start writing the constraints
*

***/
ytemp = 1 ;
for (i=l; i <= NumOfPoints; i++)
{

fout « "g(" « i « ")= sqrt(" « eta « ")*" « y[i] <<"*sqrt(";
for (int k = I; k <= NumOfPoints; k++)
{

fout « "w(" « k « ")*(";
for (int j = I ; j <= NumOfPoints; j++)
{

fout <<"w(" « j « ")*ktilda(" « j « « k « ")";
if (j < NumOfPoints)

fout « "+";
}
fout « ")";
if (k < NumOfPoints)

fout « "+";
}
fout « ")";
i f (y [i l> 0)

fout « « y[i];
else

fout « "+" « -y[i];

tout « " * (0 ";

for (int j = I ; j<= NumOfPoints; j++)
{

i f (y ü] > 0)
tout «

fout « yUl « "*w(" « j « ") * k (" « j « « i « ")";
}
fout « ")";
if (y [i]> 0)

113

fout « "+" « y[i];
else

fout « y [i] ;
fout « "*sqrt(" « eta « ")*(0 ";
tor 0 = 1 ; j<= NumOfPoints; j++)
{

i f (y ü l> 0)
fout «

fout « ylj] « "*w(" « j« ")* s q r t(k (" « j « « j «

}
fout «

if (y [i]> 0)
fout « « y[i];

else
fout « « -y[i];

fout « "*w(" « 2*NumOfPoints+l « ")-w(" « NumOfPoints + i
« ") + I « endl;

}
for (i = NumOfPoints+1; i <= 3*NumOfPoints; i++)
{

fout « "g(" « i « ")= -w(" « i-NumOfPoints « ");" « endl;
}

* End of File *

fout.closeO;
return 0 ;

114

Matlab Code

This code solves the AND function in the robust case.

%This code solves the classification problem for the AND function

% Preparing the intial values for the analysis
eita = 0 ; % uncertainly
wO = zeros(1,4); % intial values
vlb = -inf; % no lower bound
vub = inf; % no upper bound
options = 1 ;
w = constr(’andclass',wO,options,vlb,vub); %start the analysis
w'

%The code below finds the yhat (predicted function) resulted from the analysis and
plots the classification graph

load anddata.txt
xl = anddata(:,l);
x2 = anddata(:,2);
y = anddata(:,3);
pos = 1 ; % number o f +ve yhat
neg = 1 ; % number of -ve yhat
% Here we try to separate the +ve and the -ve yhat
for i= 1:4

if (y (i)> 0)
pxl(pos) = xl(i);
px2 (pos) = x2 (i);
pos = pos + 1 ;

else
nxl(neg) = xl(i);
nx2 (neg) = x2 (i);
neg = neg + 1 ;

end
end
%here we draw the figure
figure(l);
hold on
%We use the V to represent positive yhat, and the o' for negative yhat.
plot (pxl,px2 ,'+')
plot (nxl,nx2 ,’o');

115

This file graphs the AND function in the robust case

% This script file draws the classification graph for the AND function
[xcont ycont] = meshgrid(-5:l:5, -5:1:5);
zcont = w(l)*xcont+w(2)*ycont+w(4);
contour(xcont,ycont,zcont, [0 0],'b');

hold on

116

%This code solves the classification problem for the AND function using the

^Sensitivity analysis case

% Preparing the intial values for the analysis
eita = 0; % uncertainly
wO = zeros(1,4); % intial values
vlb = -inf; % no lower bound
vub = inf; % no upper bound
options = 1 ;
w = constr('andclass',wO,options,vlb,vub); %start the analysis
w’

%The code below finds the yhat (predicted function) resulted from the analysis and
%plots the classification graph

load anddata.txt
xl = anddata(:,l);
x2 = anddata(:,2);
y = anddata(:,3);
pos = 1; %number o f +ve yhat
neg = 1 ; % number o f -ve yhat
% Here we try to separate the +ve and the -ve yhat
for i= 1:4

if(y (i)> 0)
pxl(pos) = xl(i);
px2(pos) = x2(i);
pos = pos + I ;

else
nxl(neg) = xi(i);
nx2(neg) = x2(i);
neg = neg + 1 ;

end
end
%here we draw the figure
figure(2);
hold on
%We use the to represent positive yhat, and the o' for negative yhat.
plot (pxl,px2,'-t-')
plot (nxl,nx2,'o');

1 1 7

%This code graphs the AND function for the sensitivity analysis case

% This script file draws the classification graph for the AND operation using the
Sensitivity analysis

[xcont ycont] = meshgrid(-5:l:5, -5:1:5);
zcont = w(l)*xcont+w(2)*ycont+w(4);
contour(xcont,ycont,zcont,[0 0],'b');

118

%This code solves XOR classification problem and the rest of the classification

%This is a matlab script file that runs the constr command and finds the yhat for
%classification.

n = 10; %Number of training Points in the data
dimension = 2; %Number o f dimentions
eita =0.0;
datapoints =92; %Number of total data points in a specific data file
gridoption = I ; % I: turn it on, 0: turn it off

% Here is the code for the classification training
wO=zeros(1,2*n+1);
vlb=-inf;
vub=inf;
options(14)=100000;
% the file name 'classI' contains the function to be optimized
w=constr('classr,wO,options,vlb,vub);
w' % To show the result o f w

%extract alpha from w (the order o f w is: alpha(n points), z(n points) and b)
alpha = w (l:n);
%load the data file for the breastcancer (or any data file in general)
load breastcancer.txt
X = breastcancer (I :n, 1 :dimension); %extract training x
y = breastcancer (I:n,dimension+i); %extract training y
xdata = breastcancer (I;datapoints, 1 zdimension); %extract testing x
yy = breastcancer (l:datapoints, dimension+l); %extract testing y
b = w(2*n+l);

[q,r] = size(xdata);
XX = x ;

yhat = ftest(n,dimension,x,xx,y,alpha,eita,b); %yhat function
yhat=sign(yhat) %convert yhat to +1/-I

%here we calculate the Mean Square Error
trainingmse = y-yhat;
trainingmse = trainingmse.^2;
trainingmse = sum(trainingmse);
trainingmse = trainingmse/n;
trainingmse

119

%This percentage for the wrong yhat (nusclassified)
ErrorTrainingPercentage = 0;
for i=l:n

if (y(i) ~= yhat(O) % if y and yhat are different, increase the misclassitled points
by I

ErrorTrainingPercentage = ErrorTrainingPercentage + I;
end

end

ErrorTrainingPercentage = ErrorTrainingPercentage / n *100;
ErrorTrainingPercentage

1 2 0

%This code graphs the XOR problem only

% This script file draws the classification graph for the XOR operation

% Create meshgrid data matrx for the contour plot.
[xcont ycont] = meshgrid(-5:l:5, -5:1:5);
zcont = y(l)*w (l)*(l+xcont + ycont).^2 + y(2)*w(2)*(l+xcont-ycont).'^2
y(3)*w(3)*(l-xcont+ycont).'^2 + y(4)*w(4)*(l-xcont-ycont).^2 -
sqrt(eita)*3*(y(l)*w(l) +y(2)*w(2) + y(3)*w(3) + y(4)*w(4));
contour(xcont,ycont,zcont,[-.5,.5]);
% This code draws the input point.
% Points with y positive is drawn in +
% Points with y negative is drawn in o
load data.txt
xl = data(:,l);
x2 = data(:,2);
y = data(:,3);
pos = 1 ;
neg = 1;
for i=l:n

if(y (i)> 0)
pxl(pos) = xl(i);
px2(pos) = x2(i);
pos = pos + 1;

else
nxl(neg) = xl(i);
nx2(neg) = x2(i);
neg = neg + 1;

end
end

hold on
% plot x l, x2 with +ve y
plot (pxl,px2,V);
% plot x l, x2 with -ve y on the same previous graph
plot (nxl,nx2,’o');

121

%This code graphs general classification problems

% This is a matlab script file that is used to plot the trainig and the testing results for
the classification
% Two graphs are used:
% 1) Original y vs yhat, where y values represented by and yhat values represented
by 'o'
% 1) Original y vs training yhat
% 2) Original y vs testing yhat

training = n; % number of training points
testing = datapoints - n; % number o f testing points
z = zeros(al,a2);
temp = [O:datapoints-1];
yhatdata = ftest(n,dimension,x,xdata,yy,alpha,eita,b); %find yhat
yhatdata=sign(yhatdata) % is used to detect the sign of yhat
%This percentage for the wrong yhat (misclassified)
testingpercentage = 0;
for i=n+l:datapoints

if (yy(i) ~= yhatdata(i)) % if y and yhat are different, increase the misclassified
points by 1

testingpercentage = testingpercentage + 1 ;
end

end

% Calculate the testing MSE
testingpercentage = testingpercentage / (datapoints-n) * 100;
testingpercentage

% first graph, plot original y, where y values represented by '+' and yhat values
represented by o'
plot(temp(L :training),yy(I :training),'o');
hold on;
plot(temp(1 :training),yhat(1 ;training),'+') ;
if (gridoption = 1)

grid;
end
titlefcomparison between y (o) & yhat (+)');
xlabel('index');
ylabelCy, yhat');
hold off;

% Second graph, plot original y (o) vs training yhat (+)
figure(2);

1 2 2

clf
plot(temp(training+l;datapoints),yy(training+l:datapoints),'o');
hold on;
plot(temp(training+l:datapoints),yhatdata(training+l:dalapoints),'+');
if (gridoption = 1)

grid;
end
titleC'comparison between y (o) & yhat (+)');
xiabel('index');
ylabelCy, yhat);
hold off;

% Third graph, plot original y (o) vs testing yhat (+)
figure(3);
clf
plot(x(:,l),x(:,2),'o');
if (gridoption == I)

grid;
end
titleCData plot);
xlabel('xl');
ylabel('x2');
hold off;

% Calculate the MSE for the testing sample
testingmse = yy(training+l:datapoints)- yhatdata(training+l:datapoints);
testingmse = testingmse.^2;
testingmse = sum(testingmse);
testingmse = testingmse/testing;
testingmse

%This percentage for the wrong yhat (misclassified)
testingpercentage = 0;
for i=n+l:datapoints

if (yy(i) -= yhatdata(i)) % if y and yhat are different, increase the misclassified
points by 1

testingpercentage = testingpercentage + I ;
end

end

testingpercentage = testingpercentage / (datapoints-n);
testingpercentage

123

%This code solves for the decision function

% This function represents the decision function for classification.
% Call this function in order to find the yhat after running the constr command
% This file is called by the fcode.m to find the training yhat, and by the
% fgraph.m in order to find the testing yhat

function y=ftest(n,d,x,xx,y,alpha,eita,b)
temp = 0;
temp2 = 0;
%x is the training data
%xx is the testing data
%temp is used to find the term yi*alpha*k(x,xi)
for i=i:n

temp = temp + y(i)*alpha(i)*((xx*x(i, I :d)'+1
end
[q,r] = size(xx);

%k is used to find ||x||
for i=l:q

k(q) =xx(i,l:d)*xx(i,l:d)'+ I;
end

%temp is used to find the term yi*sqrt(eita)*sum(K(x,x)*alpha)
for i=l:n

temp2 = temp2 - k'.*y(i)*sqrt(eita)*alpha(i);
end
temp = temp + temp2 + b;

y = temp;

124

Appendix B

C++ and MATLAB Code for Regression

Analysis

125

This code solves the alpha_K_alpha in the objective function.

#include <fstream.h>
#include <string.h>

This code generates constrains equations for the Robust SVM
Regression with n dimensional input.
The maximum number o f input dimension is 30, with maximum o f
1000 data points.

w (l) ... w(n) : represents ai
w(n+l)...w(2n) : represents zi
w(2n+l)...w(3n) : represents z^i
w(3n+l) : represents b

***/

int mainO
{

// Define some variables to be used in the program, such as the file name,
ifstream fin;
ofstream tout;
char iFileName[50], temp[53];

// Reading the data file name in order to read the data
cout « "Enter the data file name: ";
cin » iFileName;
fin.open(lFileName);

// We use the file name ‘rnc.m* to store the constraints in.
strcpy(temp, "rnc");
strcatftemp, ".m");
fbut.open(temp);

// Read how many points we want to use for training the SVM
cout « "Enter the number o f points: ";
int NumOfPoints;
cin » NumOfPoints;

Start reading the data from the data file

float *y;
int Dimension = 2;
float x[31][1001]; // 30 dimensions, 1000 data points

126

y = new float [NumOfPoints + 1];
cout « "Enter the dimension:
cin » Dimension;

for (int i = I; i <= NumOfPoints; i++)
{

for (int j= l ; j <= Dimension; j++)
fin » x[j][i];

f i n » y[i];
}
fin.cioseO;

// Read the C, epsilon and eita.
cout « "Enter the value o f C: ";
int C;
cin » C;

cout « "Enter epsilon: ";
float epsilon;
cin » epsilon;

cout « "Enter eta: ";
float eta;
cin » eta;

* Start writing the output file that contains the constrains *
* rnc.m *

fout « "%1 = " « NumOfPoints « endl
« "%dimension = " « Dimension « endl
« " % C = " « C « e n d l
« "%eita = " « eta « endl
« "%epsilon = " « epsilon « endl;

// Writing the minimization function
// Here we start writing the declaration of the function
fout « "ftinction [f,g]= mc(w)" « endl

« "k=[";

// Finding the polynomial kernel
ktemp = 0;
for (i = 1; i <= NumOfPoints; i++)
{

127

for (int j = I; j <= NumOfPoints; j++)
{

// find the k(i,j) for the dimensional data
ktemp = 0;
for (int k=l; k <= Dimension; k-H-)

ktemp = ktemp + x[k][i]*x[k][j];
ktemp -H-;
ktemp *= ktemp;
fout « ktemp « " ";

}

fout « « endl;
}
fout « "];" « endl;

// Finding alpha * k * alpha term
fout « "f= 0.5*(";
for (k = 1 ; k <= NumOfPoints; k-H-)
{

fout « "w(" « k « ")*(";
for (int j = I ; j <= NumOfPoints; j-H-)
{

fout « " w (" « j « ")*k(" « j « « k « ")";
if (j < NumOfPoints)

fout «
J
fout « ")";
if (k < NumOfPoints)

fout «
}
fout « ")-«-" « C « "*(";

for (i=l; i <= NumOfPoints; i-t-t-)
{

fout « "(w(" « NumOfPoints-t-i « ")-t-w(" « 2*NumOfPoints-i-i «

}
fout « "0); " « endl;

Start writing the constrains

// First set o f constrains
float ytemp;
for (i= l; i < = NumOfPoints; i-H-)

128

{
ytemp = y[i] - epsilon;
fout « "g(" « i « ")= sqrt(" « eta « ")* (";
for (int k = l; k <= NumOfPoints; k-H -)

{
fout « "w(" « k « ")*(";
for (int j = I ; j <= NumOfPoints; j-H-)
{

fout <<"w(" « j « ")*k(" « j « « k « ")";
if (j < NumOfPoints)

fout «
}
fout « ")";
if (k < NumOfPoints)

fout «
}

fout « ")";
for (int j = I; j<= NumOfPoints; J h)
{

fout « ”-w(" « j« ") » k (" « j « « i « ")";
}

fout « "-*-sqrt(" « eta « ")*(";

for (j = l; j<= NumOfPoints; j H)
{

fout « "w(" <<)«")4-";
}

fout « "0)*sqrt(k(" « i « « i « "))-w(" « 3*NumOfPoints-»-I
« ")-w(" « NumOfPoints 4- i « ")";

if (ytemp > 0)
fout « " 4- " « ytemp;

else
fout « « -ytemp;

fout « « endl;
}

// Second set o f Constrains
for (i=l; i <= NumOfPoints; iH)
{

129

ytemp = -y[i] - epsilon;
fout « "g(" « NumOfPoints + i « ")= -l*sqrt(" « eta « ")*(";
for (int k = l; k <= NumOfPoints; k++)
{

fout « "w(" « k « ")*(";
for (int j = l; j <= NumOfPoints; j++)
{

fout <<"w(" « j « ")*k(" « j « « k « ")";
if (j < NumOfPoints)

tout «
I
fout « ")";
if (k < NumOfPoints)

fout «
l

fout « ")";

for (int j = l; j<= NumOfPoints; j++)
{

fout « "+w(" << i«")*k(" « j « « i « ")";
}

fout « "-sqrt(" « eta « ")*(";

for (j = l ; j<= NumOfPoints; j++)
{

fout « "w(" « j « ") + " ;

fout « "0)*sqrt(k(" « i « « i « "))+w(" «
3*NumOfPoints+I « ")-w(" « 2*NumOfPoints + i « ")";

if (ytemp > 0)
fout « « ytemp;

else
fout « « -ytemp;

fout « « e n d l ;
}

// Writing the constrains related to ai,zi,z^i > 0
for (i = 2*NumOfPoints+l; i <= 4*NumOfPoints; i++)
{

fout « "g(" « i « ")= -w(" « i-NumOfPoints « ");" « endl;

130

}

y *

End of File

tbut.closeO;
return 0;

131

%This code solves for the alpha_alphahat in the objective function.

#include <fstream.h>
#inciude <string.h>
y *

This code generates constraints equations for the Robust LP SVM Rgression (alpha-
alpha hat) with n dimensional input.
The maximum number o f input dimension is 30, with maximum of 1000 data points.

w (l) ... w(n) : represents ai
w(n+l)...w(2n) : represents a^i
w(2n+l)...w(3n) : represents zi
w(3n+L)...w(4n) : represents z^i
w(4n+l) : represents b

$*********************/

int mainO
{

ifstream fin;
ofstream fout;
char iFileName[50], temp[53];

H Reading the data file name in order to read the data
cout « "Enter the data file name:
cin » iFileName;
fin.open(iFileName);

// The file name used to store the constrains is called rnc.m'
strcpy(temp, "rnc");
strcat(temp, ".m");
fout.open(temp);

// Read how many points we want to use for training the SVM
cout « "Enter the number o f points: ":
int NumOfPoints;
cin » NumOfPoints:

Start reading the data from the data file

float *y:
int Dimension = 2;
float x[31][1001]: // 30 dimensions, 1000 data points
y = new float [NumOfPoints +1];

132

cout « "Enter the dimension:
cin » Dimension;

for (int i = I; i <= NumOfPoints; i-H-)
{

for (int j= l; j <= Dimension; j++)
fin » x(j][i];

f i n » y[i];
}

fin .closeO ;

// Read the C, epsilon and eita.
cout « "Enter the value of C; ";
int C;
cin » C;

cout « "Enter epsilon: ";
float epsilon;
cin » epsilon;

cout « "Enter eta; ";
float eta;
cin » eta;

* Start writing the output file that contains the constrains *
* rnc.m *

fout « "%l = " « NumOfPoints « endl
« "%dimension = " « Dimension « endl
« "%C = " < < C « e n d l
« "%eita = " « eta « endl
« "%epsilon = " « epsilon « endl;

// Start writing the declaration o f the function
fout « "function [f,g]= mc(w)" « e n d l

« "k=[";

// Finding the polynomial kernel
ktemp = 0;
for (i = 1; i <= NumOfPoints; i-H-)
{

133

for (int j = 1 ; j <= NumOfPoints; j-H-)
{

// find the k(i,j) tor the dimensional data
ktemp = 0;
for (int k=l; k <= Dimension; k-H-)

ktemp = ktemp + x[k][i]*x[k][j];
ktemp ++;
ktemp *= ktemp;
fout « ktemp « " ";

}

fout « « endl;
}

fout « "];" « endl;

// finding the alpha + alphahat term

fout « "f= (";
for (k = I; k <= NumOfPoints; k++)
{

fout « "(w(" « k « ")+w(" « NumOfPoints+k « "))";
if (k < NumOfPoints)

fout «

}

fout « ")+" « C « " * (" ;

for (i=i ; i <= NumOfPoints; i++)
{

fout « "(w(" « 2*NumOfPoints+i « ")+w(" « 3*NumOfPoints+i
«

if (i < NumOfPoints)
fout «

}
fout « ");" « endl;

Start writing the constrains

// First set o f constrains
float ytemp;
for (i= l; i <= NumOfPoints; i++)
{

134

ytemp = y[i] - epsilon;
fout « "g(" « i « ")= sqrt(" « eta « ")* (";
for (int k = l; k <= NumOfPoints; k++)
{

fout « "w(" « k « ")*(";
for (int j = I; j <= NumOfPoints; j++)
{

fout <<"w(" « j « ")*k(" « j « « k « ")";
if (j < NumOfPoints)

fout « "+";
}
fout «
if (k < NumOfPoints)

fout « "+";

fout « ")";
for (int j = I ; j<= NumOfPoints; j++)
{

fout « "-(w(" « j« ") - w (" « NumOfPoints+j « "))*k(" « j
< < " , " « i « ") " ;

}

fout « "+sqrt(" « eta « ")*(";

for 0 = 1 ; j<= NumOfPoints; j++)
{

fout « ”(w(" « j« ") - w (" « NumOfPoints + j « "))";
if 0 < NumOfPoints)

fout «

fout « ")*sqrt(k(" « i « « i « "))-w(" « 4*NumOfPoints+l
« ")-w(" « 2*NumOfPoints + i « ")";

if (ytemp > 0)
fout « « ytemp;

else
fout « « -ytemp;

fout « « endl;
}

// Second set o f Constrains

135

for (i= l; i <= NumOfPoints; i++)
{

ytemp = y[i] - epsilon;
fout « "g(" « NumOtPoints+i « ")= -sqrt(" « eta « ")* (";
for (int k = I; k <= NumOfPoints; k++)
{

fout « "w(" « k « ")*(";
for (int j = I; j <= NumOfPoints; j-H-)
{

fout « " w (" « J « ")*k(" « j « « k « ")";
if (j < NumOfPoints)

fout «
}
fout « ")";
if (k < NumOfPoints)

fout « "-t-";

fout « ")";
for (int j = I; j<= NumOfPoints; j-H-)
{

fout « "-t-(w(" « j« ") - w (" « NumOfPoints-hj « "))*k(" «
j « « i « ")";

}

fout « ”-sqrt(" « e t a « ")*(";

for (j = I ; j<= NumOfPoints; j-H-)
{

tout « ”(w(" « j« ") - w (" « NumOfPoints -t-j « "))";
if (j < NumOfPoints)

fout «

fout « ")*sqrt(k(" « i « « i « "))-»-w(" « 4*NumOfPoints-t-l
« ")-w(" « 2*NumOfPoints -t- i « ")";

if (ytemp > 0)
fout « « ytemp;

else
fout « "-f" « -ytemp;

fout « « endl;
}

1 3 6

// Writing the constrains related to ai, a^i,zi,z^i > 0
for (i = 2*NumOfPoints+l; i <= 6*NumOfPoints; i++)
{

fout « "g(" « i « ")= -w(" « i-2*NumOfPoints « « endl;
}

End o f File
**/
fout.closeO;
return 0;

137

MATLAB Code for Regression Analysis (aipha_lc_alpha)

%This code solves the regression RSV

%This is a matiab script tile that runs the constr command and tlnds the yhat
%for the regression

n = 30; %Number of training Points in the data
dimension =1; %Number of Dimension for X
eita = 0; %eita
alldata = LOO; %The total number of the data sample (training + testing)
gridoption = 1 ; % I: turn grids on, 0: turn grids off

% Prepare the parameters for the constr command
wO=zeros(l,3*n+l); %the initial values
vlb=-inf; % lower bound, unrestricted
vub=inf; % upper bound, unrestricted
options(14)=100000; % Maximum number of itirations
w=constr('rnc',wO,options,vlb,vub); %Start the analysis
w' %Show the results

% Start calculating yhat
% first, load the data from the data file,
alpha = w(l:n);
load lynx.txt
X = lynx(l:n,l:dimension);
y = lynx(l:n,dimension+l);
xdata =lynx(I : alldata, I rdimension);
yy = lynx(l:alldata,dimension+l);
[q,r] = size(xdata);
b = w(3*n+l);
XX = x;

% second, call the objective function
yhat = ftest(n,dimension,x,xx,alpha,eita,b); %yhat function, x is the training data,
XX is the input data
yhat % Show the result

% here we calculate the Mean Square Error
trainingmse = y-yhat;
trainingmse = trainingmse.^2;
trainingmse = sum(trainingmse);
trainingmse = trainingmse/n;
trainingmse %Show the result

1 3 8

%This code graphs the regression for S VR

% This is a matiab script file that is used to plot
% I) Original y vs training yhat
% 2) Original y vs testing yhat
% in order to compare the results o f the SVM analysis with the original data

training = n;
testing = alldata - n;
yhatdata = ftest(n,dimension,x,xdata,alpha,eita,b); %find yhat for all the data samples

% Figure 1 is having two sub plots:
% 1) Original y vs index
% 2) training yhat vs index
figure(l);
clf;
temp = [0:q-l];

% First subplot, original y
subplot(2,l,l);
plot(temp,yy,'b);
if (gridoption == I)

grid;
end

titleC'original data);
xlabel('index');
ylabel('y');

%second subplot: training yhat compared to original y
subplot(2,l,2);
plot(temp,yy,'b);
hold on;
plot(temp(I :training),yhat(I :training),'r');
if (gridoption = 1)

grid;
end
title('comparison between the original data (blue) & the training points (red)');
xlabel('index');
ylabelCy, yhat);
hold off;
% Figure 2 is having two sub plots:
% I) Original y vs index
% 2) testing yhat vs index

139

figure(2);
clf
% First subplot, original y
subpiot(2,l,I);
piot(temp,yy,'b');
if (gridoption == I)

grid;
end
titleCoriginal data');
xlabei('index');
ylabel('y');

%second subplot: training yhat compared to original y
subplot(2,I,2);
plot(temp,yy,'b');
hold on;
plot(temp(training+1 :q),yhatdata(training+1 :q),'r') ;
if (gridoption == I)

grid;
end
title('comparison between the original data (blue) & the testing points (red)');
xlabel('index');
ylabelCy, yhat);
hold off;

% Calculate the MSB for the testing sample
testingmse = yy(training+l:q)- yhatdata(training+l:q);
testingmse = testingmse.^2;
testingmse = sum(testingmse);
testingmse = testingmse/testing;
testingmse

140

%This code finds the yhat for the regression RSV

% This function represents the objective function for regression.
% Call this function in order to find the yhat after running the constr command
% This file is called by the fcode.m to find the training yhat, and by the
% fgraph.m in order to find the testing yhat

fu net ion y=ftest(n,d,x,xx,alpha,e ita,b)
%x is the data matrix (size o f X is n)
%xx is the input matrix (size o f xx is undefined)
%n number o f points
%d dimension
temp = 0;
% Here we find the term Sum(alpha * |x|)
for i=l:n

temp = temp + alpha(i)*((xx*x(i,l:d)' + 1).^2);
end

[q,r] = size(xx);
for i=l:q

k(q) = xx(i,l:d)*xx(i,l:d)'+ 1;
end

% Here we find the term sqrt(eita)*sqrt(k(x,x))*alpha
for i=l:n

temp = temp - k’.*sqrt(eita)*alpha(i);
end

% Add b
temp = temp + b;

% The final result
y = temp;

141

MATLAB Code for Regression Analysis (alpha_ alphahat)

%This code solves the regression for RSV with alpha_alphahat

%This is a matiab script file that runs the constr command and finds the yhat
%for the regression, using the alpha*k*alpha term

n = 10; %Number o f training Points in the data
dimension =2; %Number o f Dimension for X
eita = 0; %eita
alldata = 100; %The total number of the data sample (training + testing)
gridoption = 1 ; % I: turn grids on, 0: turn grids off

% Prepare the parameters for the constr command
wO=zeros(l,4*n+l); %the initial values
vlb=-inf; % lower bound, unrestricted
vub=inf; %upper bound, unrestricted
% you can add the option 14 code line in place of the line below
%options=optimset('MaxFunEvals',600); % remove this line and put the option 14
in its place
options(14)=l00000; %Maximum number of itirations
w=constr('rnc',wO,options,vlb,vub); %Start the analysis
w' %Show the results

alpha = w(l:n);
alphahat = w(n+l;2*n);
b = w(4*n+l);

% Start calculating yhat
% first, load the data from the data file.

load data.txt
X = data(1 :n, I :dimension);
y = data(l:n,dimension+l);
xdata =data(I : alldata, 1 :dimension);
yy = data(l:aildata,dimension+l);
[q,r] = size(xdata);
XX = x;

% second, call the objective function
yhat = ftest(n,dimension,x,xx,alpha,alphahat,eita,b); %yhat function, x is the base
data, XX is the input data
yhat

142

%here we calculate the Mean Square Error
trainingmse = y-yhat;
trainingmse = trainingmse.^2;
trainingmse = sum(trainingmse);
trainingmse = trainingmse/n;
trainingmse

143

%This code graphs the regression for SVR with alpha_alphahat

% This is a matiab script file that is used to plot
% I) Original y vs training yhat
% 2) Original y vs testing yhat
% in order to compare the results of the SVM analysis with the original data
training = n;
testing = alldata - n;
yhatdata = ftest(n,dimension,x,xdata,alpha,alphahat,eita,b);

% Figure I is having two sub plots:
% I) Original y vs index
% 2) training yhat vs index
figure(l);
clf;
temp = [0:q-l];

% First subplot, original y
subplot(2,l,l);
plot(temp,yy,'b');
if (gridoption = 1)

grid;
end

titleCoriginal data);
xlabel('index');
ylabel('y');

% second subplot: training yhat compared to original y
subplot(2,l,2);
plot(temp,yy,’b');
hold on;
plot(temp(1 :training),yhat(1 :training),'r');
if (gridoption = I)

grid;
end
titleCcomparison between the original data (blue) & the training points (red)');
xlabel('index');
ylabelCy, yhat);
hold off;
% Figure 2 is having two sub plots:
% I) Original y vs index
% 2) testing yhat vs index

144

figure(2);
clf
% First subplot, original y
subplot(2,l,l);
plot(temp,yy,'b’);
if (gridoption = I)

grid;
end
titleCoriginal data);
xlabel('index');
ylabel('y’);

% second subplot; training yhat compared to original y
subplot(2,l,2);
plot(temp,yy,'b);
hold on;
plot(temp(training+1 :q),yhatdata(training+1 :q),'r’);
if (gridoption == 1)

grid;
end
titleCcomparison between the original data (blue) & the testing points (red)');
xlabel('index');
ylabelCy, yhat');
hold off;

% Calculate the MSE for the testing sample
testingmse = yy(training+l:q)- yhatdata(training+l:q);
testingmse = testingmse.^2;
testingmse = sum(testingmse);
testingmse = testingmse/testing;
testingmse

145

%This code finds yhat for regression RSV with aipha_alphahat

% This net ion represents the objective function for regression.
% Call this function in order to find the yhat after running the constr command
% This file is called by the fcode.m to find the training yhat, and by the
% fgraph.m in order to find the testing yhat

function y=ftest(n,d,x,xx,alpha,alphahat,eita,b)
%x is the data matrix (size of X is n)
%xx is the input matrix (size o f xx is undefined)
%n number o f points
%d dimension
temp = 0;
% Here we find the term Sum((ai - a^i) * |x|)
for i=l:n

temp = temp + (alpha(i)-alphahat(i))*((xx*x(i,l:d)' + 1).^2);
end

[q,r] = size(xx);
for i=l:q

k(q) = xx(i,l:d)*xx(i,l:d)' + I;
end

% Here we find the term sqrt(eita)*sqrt(k(x,x))*(ai-ai)
tor i=l:n

temp = temp - k'.*sqrt(eita)*(alpha(i)-alphahat(i));
end

temp = temp + b;
% The final result
y = temp;

146

Appendix C

Tables for Classification

147

Xi X2 y

I I I

I -I -I

-I I -I

-I -I -I

Table 1- The AND Function

Xi X2 y

I I 1

I -1 -1

-1 I -I

-I -I I

Table 2* The XOR problem

1 4 8

Trade
OfffC

Uncertainty
Eita Tl

W, W2 Alpha Offset b Comment

10,000 0 1 1 1 -1 Optimal
Separation

10,000 0.1 1 1 1 -0.5528 Separation

10,000 0.2 1 1 1 -0.3675 Separation

10,000 0.3 1 1 1 -0.2254 Separation

10,000 0.4 1 1 1 -0.1056 Separation

10,000 0.5 1 1 1 0 2 SV at the
point (o)

10,000 0.6 1 1 1 0.0954 2 S V at the
point (o)

10,000 0.7 1 1 1 0.1832 No
separation

10,000 1.0 1 1 1 0.4142 No
separation

Table 3- The Robust Case for the AND function

149

Trade Off
C

Uncertainty
Eita T|

Wi Wz Alpha Offset h Comments

10,000 0 1 1 1 -1 Optimal Separation

10,000 0.1 1 0.7597 1 -1.3162 Separation

10,000 0.2 1 0.6910 1 -1.4472 Separation

10,000 0.3 1 0.6461 1 -1.5477 Separation

10,000 0.35 1 0.6283 1 -1.5916 1 SV at the point
(+).

10,000 0.4 1 0.6126 1 -1.6325 1 SV at the point
(+)•

10,000 0.5 1 0.5858 1 -1.7071 No
Separation.

10,000 0.6 1 0.5635 1 -1.7746 No Separation

10,000 0.7 1 0.5445 1 -1.8367 No Separation

10,000 1.0 1 0.5000 1 -2.000 No Separation

Table 4- The Sensitivity Analysis Case for the AND function.

150

Trade
offC

Uncertainy
Eltan

Alpha Oi
l=l,..,4

Zi Slack
variable

b The
offset

Error%
Misclass

Separation

10,000 0 ai=a2=. 125
a3=(x,=. 125

0 0 0 Yes

10,000 0.1 at =04=. 1507
a2=aj=, 0993

0 0.0199 0 Yes

10,000 0.2 a, =04= 1701
02=0)= 0799

0 0.0468 0 Yes

10,000 0.3 01=04=, 1874
02=03= 0626

0 0.1151 0 Yes

10,000 0.4 0 |=04=. 1093
02=03= 1407

0 0.5218 0 Yes

10,000 0.5 0 |=04= 0537
02=03= 1963

0 0.8605 0 Yes

10,000 0.6 0 |=04= 0262
02=03= 2238

0 1.0298 0 Yes

10,000 0.7 0 |=04= 0140
02=03= 2360

0 1.0915 0 Yes

10,000 0.8 0 |=04= 0082
02=03= 2418

0 1.1090 0 Yes

10,000 0.9 0 |=04= 0053
02=03= 2447

0 1.1077 0 Yes

10,000 1.0 0|=02=. 125
03=04=. 125

0 0.7071 0 Yes

10,000 1.05 0 |=04= 0845
02=03= 1655

0 0.7676 0 Yes

10,000 1.06 01=04= 2462
02=03= 0038

0 1.1730 50 No
Separation

Table 5- Results for the XOR problem (Non-Linear Case) using the uncertainty
in the feature space.

151

Trade
offC

Uncertainty
Eita r\

Training
Error %

#of Training
points

misclassified

Testing
Error

%

of Testing
points

misclassified
1000 0 10 4 20 4

1000 0.03 10 4 25 5

8500 0.05 12.5 5 20 4

8500 0.07 12.5 5 25 5

8500 0.09 7.5 3 25 5

Table 6- Results for the Echocardiogram Classification Application (Original
Data).

Trade
offC

Uncertainty
Eitari

Training
Error %

#of Training
points

misclassified

Testing
Error

%

of Testing
points

misclassified
1000 0 17.5 7 30 5

1000 0.03 27 11 35 7

3000 0.05 20 8 30 6

5000 0.07 17.5 7 35 7

8500 0.09 15 6 25 5

Table 7> Results for the Echocardiograml Classification Application (Generated
Randomly).

152

Trade
OffC

Uncertainty
Eita T)

Training
Error %

#of Training
points

misclassified

Testing
Error

%

of Testing
points

misclassified
1000 0 0 0 40 8

10 0.03 0 0 40 8

1000 or
2000

0.05 0 0 40 8

1000 0.07 0 0 40 8

500 0.09 0 0 40 8

Table 8- Results for the Echocardiogram2 Classification Application
(Generated Randomly).

Trade off
C

Uncertainty
Eitari

Training
Error %

#of Training
points

misclassified

Testing
Error %

of Testing
points

misclassified
1000 0 0 0 5 2

1000 0.01 0 0 5 2

1000 0.02 0 0 5 2

1000 0.05 0 0 5 2

Table 9- Results for the Breast Cancer Classification Application

153

Appendix D

Tables for Regression

154

c Epsilon Eita mse(training) mse(testing) Data#

20000 0.0001 0 6.98E-20 8.33E-20 Original

20000 0.0001 0 2.65E-18 1.76E-18 1

20000 0.0001 0 6.28E-20 6.91E-20 2

20000 0.0001 0 1.50E-19 1.82E-19 3

20000 0.0001 0 4.41E-19 4.59E-19 4

20000 0.0001 0 8.14E-18 9.51E-18 5

20000 0.0001 0 3.30E-18 6.08E-18 6

20000 0.0001 0 1.92E-19 1.63E-19 7

20000 0.0001 0 2.23E-20 2.79E-20 8

20000 0.0001 0 1.92E-19 2.25E-19 9

20000 0.0001 0 6.89E-21 7.63E-21 10

20000 0.0001 0.000001 2.00E-06 2.00E-06 Original

20000 0.0001 0.000001 2.00E-06 2.00E-06 1

20000 0.0001 0.000001 2.00E-06 2.00E-06 2

20000 0.0001 0.000001 2.00E-06 2.00E-06 3

20000 0.0001 0.000001 2.00E-06 2.00E-06 4

20000 0.0001 0.000001 2.00E-06 2.00E-06 5

20001 0.0001 0.000001 2.00E-06 2.00E-06 6

20000 0.0001 0.000001 2.00E-06 2.00E-06 7

20000 0.0001 0.000001 2.00E-06 2.00E-06 8

20000 0.0001 0.000001 2.00E-06 2.00E-06 9

20000 0.0001 0.000001 2.00E-06 2.00E-06 10

Table 10- Experiments for the synthetic regression problem.

155

20000 0.0001 0.00001 2.00E-05 2.00E-05 Original

20000 0.0001 0.00001 2.00E-05 2.00E-05 1

20001 0.0001 0.00001 2.00E-05 2.00E-05 2

20001 0.0001 0.00001 2.00E-05 2.00E-05 3

20000 0.0001 0.00001 2.00E-05 2.00E-05 4

20000 0.0001 0.00001 2.00E-05 2.00E-05 5

20000 0.0001 0.00001 2.00E-05 2.00E-05 6

20000 0.0001 0.00001 2.00E-05 2.00E-05 7

20000 0.0001 0.00001 2.00E-05 2.00E-05 8

20000 0.0001 0.00001 2.00E-05 2.00E-05 9

20000 0.0001 0.00001 2.00E-05 2.00E-05 10

20000 0.0001 0.0001 2.00E-04 2.00E-04 Original

20000 0.0001 0.0001 2.00E-04 2.00E-04 1

20000 0.0001 0.0001 2.00E-04 2.00E-04 2

20001 0.0001 0.0001 2.00E-04 2.00E-04 3

20000 0.0001 0.0001 2.00E-04 2.00E-04 4

20000 0.0001 0.0001 2.00E-04 2.00E-04 5

20000 0.0001 0.0001 2.00E-04 2.00E-04 6

20001 0.0001 0.0001 2.00E-04 2.00E-04 7

20000 0.0001 0.0001 2.00E-04 2.00E-04 8

20000 0.0001 0.0001 2.00E-04 2.00E-04 9

20000 0.0001 0.0001 2.00E-04 2.00E-04 10

Continuation of Table 10

156

1000 0.0001 0.1 1.67E-01 1.67E-01 Original

1001 0.0001 0.1 1.67E-01 1.67E-01 1

1000 0.0001 0.1 1.67E-01 1.67E-01 2

1000 0.0001 0.1 1.67E-01 1.67E-01 3

1000 0.0001 0.1 1.67E-01 1.67E-01 4

1000 0.0001 0.1 1.67E-01 1.67E-01 5

1000 0.0001 0.1 1.67E-01 1.67E-01 6

1000 0.0001 0.1 1.67E-01 1.67E-01 7

1000 0.0001 0.1 1.67E-01 1.67E-01 8

1000 0.0001 0.1 1.67E-01 1.67E-01 9

1000 0.0001 0.1 1.67E-01 1.67E-01 10

1000 0.0001 0.5 5.00E-01 5.00E-01 Original

1000 0.0001 0.5 5.00E-01 5.00E-01 1

1000 0.0001 0.5 5.00E-01 5.00E-01 2

1000 0.0001 0.5 5.00E-01 5.00E-01 3

1000 0.0001 0.5 5.00E-01 5.00E-01 4

1000 0.0001 0.5 5.00E-01 5.00E-01 5

1000 0.0001 0.5 5.00E-01 5.00E-01 6

1000 0.0001 0.5 5.00E-01 5.00E-01 7

1000 0.0001 0.5 5.00E-01 5.00E-01 8

1000 0.0001 0.5 5.00E-01 5.00E-01 9

1000 0.0001 0.5 5.00E-01 5.00E-01 10

Continuation of Table 10

157

1000 0.0001 1 5.00E-01 6.67E-01 Original

1000 0.0001 1 5.00E-01 6.67E-01 1

1000 0.0001 1 5.00E-01 6.67E-01 2

1000 0.0001 1 5.00E-01 6.67E-01 3

1000 0.0001 1 5.00E-01 6.67E-01 4

1000 0.0001 1 5.00E-01 6.67E-01 5

1000 0.0001 1 6.67E-01 6.67E-01 6

1000 0.0001 1 5.00E-01 6.67E-01 7

1000 0.0001 1 6.70E-01 6.70E-01 8

1000 0.0001 1 5.00E-01 6.67E-01 9

1000 0.0001 1 5.00E-01 6.67E-01 10

Continuation of Table 10

158

The Uncertainty Eita (t |) Average of Testing Mean
square Error (mse)

0 1.69E-18

0.000001 2.00E-6

0.00001 2.00E-5

0.0001 2.00E-4

0.1 1.67E-01

0.5 5.00E-01

1 6.667E-01

Table 11* The Average Mean Square Error (mse) with different values of
Eita (Ti) for the Synthetic Regression Problem

C Epsilon Eita Training Error
(mse)

Testing Error
(mse)

100 0.0001 0 0.6358 0.3726

10,000 0.0001 0.0001 1.1261 0.7384

Table 12- Tests on the Lynx Regression Problem

159

Appendix E

Figures for Classification

1 6 0

AND graph

x1

Figl- The Robust Case for the AND Function with different values of the
uncertainty (eita). Solid blue for eita = 0 (precise datai. Solid red for eita =
O.l.Solid cyan for eita = 0.2. Solid green for eita = OJ.Dash-red for eita = 0.4.
Dash-blue for eita = 0.5.Dash-green for eita = 0.6.Dash-dot-blue for eita = 0.7.
Solid Yellow for eita = 1.

161

AND graph, sensetivity analysis

x1

Fig-2 The And function (Sensitivity Analysis Case) with different yaiues of the
uncertainty (eita). Solid blue for eita = 0 (precise data). Solid red for eita
O.l.Solid cyan for eita = 0.2. Solid green for eita = 0.3. Blue-dotted for eita
OJS.Dash-red for eita = 0.4. Dash-blue for eita = 0.5. Dash-green for eita
0.6.Dash-dot-blue for eita = 0.7. Dotted red &yellow for eita = 1.

162

s
4

3

2

1

9 0
-t

•2
•3
•4

4

X O R R sbw ***ph

_ _ y ' L :

\
!
1

*5 *4 *3 *2 (2 3 4 5

xl

Fig3-XOR with eita = 0 (precise case) Fig4- XOR with eita = 0.1

3

2

1
*3 0

.1
2

•3

4.

XOR R o h u s ty s p h

T
XOR R e b v tH n p h

4 -4 -3 2 •!

w
1 2 3 4 5

it

FigS- XOR with eita = 0.2 Fig6- XOR with eita = 0 J

5

4

3
2

t

% 0
t
2
3

•4

4,

XÜRRabutf>9nah

/
r 1

1

1
■ , , i l

r
U}R RoOuŝgn#!

4 -é 3 >2 -t 0 i 2 3 4 5If i l

Fig7- XOR with eita = 0.4 FigS- XOR with eita = 0.5

163

x1 I t

Fig9- XOR with eita = 0.6 FiglO- XOR with eita = 0.7

XOR R a b a t. y # n XOR R a b a t g raph

y
.

•S *4 -2 0 t 2 3 « Sx1

Figl I- XOR with eita = 0.8

XQRMutl-mA

F igl2- XOR with eita = 0.9

■3

I t

XORRohnMnah

x l

Figl3- XOR with eita = 1.0 Figl4- XOR with eita = 1.05

164

XOR Robust-graph

x1

FiglS- XOR with eita = 1.06 (No separation)

165

Input Space Feature Space

9 (x)------►

Non-Linear Separation

Figure 16 - The Kernel Method for Classification

Linear Separation

166

inputs.pace

P«»<«reSp,ce

Non-Linear Regression

Figure 17- The Kernel
Linear Regression

Method for Regression

167

Figure 18- Separating hyperplane in two dimensional space. An optimal

hyperplane in one with a maximum margin. The data points at the margin

(indicated in black) are called the support vectors because they define the

optimal hyperplane.

168

D(x) =D(x) = -1

Figurel9- The decision boundary of the optimal hyperplane is defined by Points
X for which D (x) = 0. The distance between a hyperplane and any sample x’ is
[/)(%')|
 The distance between a support vector (which define the margin) and

Ithe optimal hyperplane is j-;r.

169

Figure20a- Decision fonction determined by
the sopport vector machine with a feature
space of order two pofynomials. In the two-dimensional
input space, the decision function is nonlinear.

■ m. .
i m

m a x im u m
m a r g in

ra

D (xijB)=+l

D = 0

D (x i ^ = -1

f1gure20b- Decision function determined by the
support vector machine with a feature space of
order two polynomials. In the six-dimensional feature space,
the decision function is linear with maximum margin.

1 7 0

comparison between y (o) & yhat (+)

0.8

0.6

0.4

0.2

1 .

- 0.2

- 0.4

- 0.6

- 0.8

54 60
index

Figure21- IVIisclassified testing points with uncertainty eita = 0 for echo cardio
data. There are 4 points misclassified. They are the empty circles.

%

1

0.8

0.6

0.4

0.2

0

- 0.2

-0.4

- 0.6

-0.8

comparison between y (o) & yhat (+)
---------- r*--------r*--------

index
Figure22- IVIisclassified training points with uncertainty eita = 0 for echo cardio
data. There are 4 points misclassified. They are the empty circles.

171

comparison between y (o) & yhat (+)

0.8

0.8

0.4

0.2

- 0.2

- 0.4

- 0.6

-0.8

605442 44
index

Figure23- Misclassified testing points with uncertainty eita = 0.03 for echo
cardio data. There are 5 points misclassified. They are the empty circles.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

comparison between y (o) & yhat (+)
------------H iH ---------- q> <n qw; ---- — 1 9 rH------------

I—— * — r---------

index

Figure24> Misclassified training points with uncertainty eita = 0.03 for echo
cardio data. There are 4 points misclassified. They are the empty circles.

1 7 2

comparison between y (o) & yhat (+)

0.8

0.6

0.4

0.2

- 0.2

- 0.4

-0.6

-0.6

6042 5444
index

Figure25- IVIisclassified testing points with uncertainty eita = 0.05 for echo
cardio data. There are 4 points misclassified. They are the empty circles.

comparison between y (o) & yhat (+)

0.6

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.6

605442
index

Figure26- Misclassified testing points with uncertainty eita = 0.07 for echo
cardio data. There are 5 points misclassified. They are the empty circles.

173

comparison between y (o) & yhat (+)

0.8

0.6

0.4

0.2
TS

-0.2

- 0.4

-0.6

-0.8

605442 44
index

Figure27- Misclassified testing points with uncertainty eita = 0.09 for echo
cardio data. There are 5 points misclassified. They are the empty circles.

comparison between y (o) &. yhat (+)

0.8

0.8

0.4

0.2
<9

-0.2

-0.4

-0.6

-0.8

index
40

Figure28- Misclassified training points with uncertainty eita = 0.09 for echo
cardio data. There are 3 points misclassified. They are the empty circles.

174

comparison between y (o) & yhat (+)

0.8

0.6

0.4

0.2
-S

-0.2

- 0.4

-0.6

-0.8

6042
index

Figure29- Misclassified testing points with uncertainty eita = 0.5 for echo cardio
data. There are 7 points misclassified. They are the empty circles.

175

comparison between y (o) & yhat M

î

— # • — • • — 4 > I M » » -- - - - - - - - - - - - - - K

» • — < ---------- — L - - - - - - - - - - - - - - - - - - - L

index

Figure30-!Vfisclassified testing points with uncertainty eita = 0 for the breast
cancer data. There are 2 misclassified points. They are the empty circles.

comparison between y (o) & yhat (+)

0.8

0.6

0.4

>s
-0.2

- 0.4

-0.6

-0.8

30
index

6010

Figure) l-Misclassified training points with uncertainty eita = 0 for the breast
cancer data. There are zero misclassified points.

176

1

0.8

0.6

0.4

0.2

0

-0.2

- 0.4

-0.8

-0.8

comparison between y (o) & yhat (+)
■■ ■ 9 i---- 9 9 4 W----- l-i »------- 1 -

L-®«----- — Oilk---------i _ .

index

Figure32*lVIisclassified testing points with uncertainty eita = 0.01 for the breast
cancer data. There are 2 misclassified points. They are the empty circles.

comparison between y (o) & yhat (+)
9 <w> * , tap

0.8

0.6

0.4

0.2

I
-0.2

- 0.4

-0.6

-0.8

6030
index

Figure33-Misclassified training points with uncertainty eita = 0.01 for the breast
cancer data. There are zero misclassified points.

177

comparison between y (o) & yhat (+)
0 0 I I — • » » » • » »

0.8

0.6

0.4

0.2

-0.2

- 0.4

-0.6

-0.8

70 75 80
index

90 95 100

Figure34-IVlisclassified testing points with uncertainty eita = 0.05 for the breast
cancer data. There are 2 misclassified points. They are the empty circles.

comparison between y (o) & yhat (+)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

30
index

10 60

Figure35-Misclassified training points with uncertainty eita = 0.05 for the breast
cancer data. There are zero misclassified points.

178

Appendix F

Figures for Regression

1 7 9

comparison between the onginat data &the ptane z(j.k)

600,

Figurela- Synthetic Problem for Regression with Uncertainty

(eita) = 0. Original Data

1 8 0

original data
800

600

» 400

200

0. 10 20 30 40 50 60 70 80 90 1000
.in d e x .comparison between the original data (blue) &the training points (red)

800

600

400

200

0, 80 90 1000 10 20 30 40 50 60 70
index

cowpMMyBfliwaw'tBa anginai aata (Bmar &iw iflstihg paiws (wa?

80 90 10010 20 30 40 50 60

Figurelb> Synthetic problem for Regression with Uncertainty

eita) = 0. Original Data.

181

companson between the original data &the plane z(j,k)

Figure2a- Synthetic Problem for Regression with Uncertainty

(eita) = 0.000001. Original Data.

182

original data
800

600

>. 400

200

0, 10 20 30 40 50 60 70 80 90 1000
ndax,comparison between the original data (blue) &the training points (red)

80 90 too

eflffipansCT'Baweén m onginai aaia (biüsj Testing p6iwr(f6flj
800

600

200

index

Figure2b- Synthetic problem for Regression

with Uncertainty elta) = O.OOOOOl.Origlnal Data.

183

companson between the original data &the plane zO,k)

Figure3a- Synthetic Problem for Regression with Uncertainty

(eita) = 0.00001. Original Data.

184

original data
000

600

200

0, 30 40 50 60 70 80 90 10010 200
inilOK,comparison between the original data (blue) &the training points (red)

800

600

400

200

0 50 70 80 90 10010 20 30 40 600
index

companson Between tne onginai dala (blue) &tne testing points (red)
800

600

-5. 400

200

0. 10 20 30 40 50 60 70 80 90 1000
index

Figure3b- Synthetic problem for Regression

with Uncertainty eita) = O.OOOOl.Original Data.

185

comparison between the original data & the plane z(j,k)

1000 s

800

GOO.
o ®

Figure4a- Synthetic Problem for Regression with Uncertainty

(eita) = 0.0001. Original Data.

186

original data

1 0 2 0 3 0 4 0 S O 6 0 7 0 8 0 9 0 1 Q 0

comparison bstwaen the origina/clafa (blue) & the training points (red)

index
companson between the onginai data (blue) &the testing points (red)

800

600

200

100
index

Figure4b- Synthetic problem for Regression

with Uncertainty eita) = O.OOOl.Original Data.

187

comparison batwsen the original data & the plane zQ.k)

FigureSa- Synthetic Problem for Regression with Uncertainty

(eita) = 0.1. Original Data.

188

original data

"0 10 20 30 40 50 60 7D 80 90 100
comparison bslwesn the originafSaîa (blue) & the training points (red)

companson between tne original data (blue) &.tne testing points (red)
800

600

400
>i-

200

too
index

FigureSb- Synthetic problem for Regression

with Uncertainty eita) = O.l.Original Data.

189

companson batwsen the original data &the plane z(j,l<)

Figureéa- Synthetic Problem for Regression with Uncertainty

(eita) = 0.5. Original Data.

190

original data

10 20 30 40 50 60 70 80 90 100
comparison betwaan tha origina/%a!a (blua) &tha training points (red)

'0 10 20 30 40 50 60 70 80 90 10O

comparison between the original data (blue) & the testing points (red)
800

600

^ 400

200

100
index

Figure6b> Synthetic problem for Regression

with Uncertainty eita) = O S.Original Data.

191

Uncertainty versus Average Mean Square Error for testing points
0.7

0.S

0.5

a>

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Eita

Figure?- The Uncertainty against the average mean square error of
Testing points for the synthetic regression problem.

0.9 -

0.8 -

0.7

M 0.6

0.5

I 0.4

0.3

0.2

0.1

Eita

Figures- Similar to figure? above but with larger eita. It shows the
Behavior of uncertainty and mean square error for the synthetic
Regression problem.

192

onginai data
1 0

8

6

4

2. 35 4015 20 25 300 5 10

comparison bslwesn the origina/^a (blue) tthe training points (red)
10

8

6

4

2 , 25 30 35 4015 200 5 10
index

companson between the onginai data (blue)&the testing points (red)
10

8

8

4

2. IS 25 30 36 405 200 10
index

Figure9> Comparison Among Training and Testing points with
the Original Data Points for the Lynx Regression Application with
uncertainty equals to 0 ^ Precise Data.

193

original data
10

8

6

4

2. 3520 25 400 5 10 15 30
noax.comparison bstwaan tha original data (blua) &the training points (rad)

10

8

G

4

2, 20 25 35 400 10 15 305
indax

companson betwaen tha onginai data (blue) &the testing points (rad)
10

8

6

4

2 25 35 4010 15 20 300 5
index

FigurelO- Comparison Among Training and Testing points with
the Original Data Points for the Lynx Regression Application with
uncertainty equals to 0.0001.

194

References

[1] Ben-Tal A. and Nemirovski A., Robust Solutions to Uncertain Linear Programs

Via Convex Programming, Operations Research Letters, Vol.25, N o .l,l- l7 , 1996.

[2] Ben-Tal A. and Nemirovski A., Robust Convex Optimization, Mathematics of

Operations Research, Vol.23,4, 769-805, 1998.

[3] Ben-Tal A. and Nemirovski A., Robust, Truss Topology Design Via Semidefinite

Programming, SIAMJ. o f Optimization, Vol. 7, N o.4,991-1016, 1997.

[4] Ben-Tal A., Tamar M., and Nemirovski A., Robust Modeling o f Multi-Stage

Portfolio Problems, Applied Optimization, Vol. 33, 303-328, 2000.

[5] Ben-Tal A. and Nemirovski A., Robust Convex Optimization. Technical report,

faculty o f Industrial Engineering and Management, Technion, December 1996.

[6] Beale E.M.L., Minimizing a Convex Function Subject to Linear Inequalities, J.

Royal StatSoc, Vol. 17, 173 -184, 1955.

[7] Bennett K.P. and Mangasarian O.L., Robust Linear Programming o f Two

Inseparable Sets, Optimization Methods and Software 1, 23 - 34, 1992.

[8] Bennett K.P. and Campbell C., Support Vector Machines; Hype or Hallelujah?

SIGKDD Explorations, 2(2): 1-6,2000.

[8] Burges C.J.C., A Tutorial on Support Vector Machines for Pattern Classification,

Data mining and Knowledge Discovery, 2(2): 121-167, 1998.

[9] Birge J R., The Value o f the Statistic Solution in Stochastic Linear Programs with

Fixed Resources, Math, Programming, Vol.24, 314-325,1982.

1 9 5

[10] Boyd S., Lobe M.S., and Vandenberghe L , Applications of Second-Order Cone

Vxoffdmsc03a%, Linear Algebra and its Applications,Vo\.2%A, 193-226, 1998.

[11] Cristianini N. and Taylor J.S., An Introduction to Support Vector machines and

Other Kernel-Based Learning Methods, Cambridge University Press, Cambridge,

United Kingdom, 1999.

[12] CoUobert R. and Bengio S., SVmtorch: Support Vector Machines for Large-scale

Keg,vess\on^voh\&m&, M achine Learning Research, 1:143-160, 2001.

[13] Chinneck J.W. and Ramadan K., Linear Programming with Interval Coefficients,

Journal o f the Operation Research Society, Vol.51, 209-220, 2000.

[14] Cherkassky V. and Mulier F , Learning From Data: Concepts, Theory and

Methods, Wiley, 1998

[15] Dantzig G.B., Linear Programming Under Uncertainty, Management Science,

Vol.l, 3 and 4,197-206, 1955.

[16] Dantzig G.B. and Infanger G., Multi-stage Stochastic Linear Programs for

Portfolio Optimization, Annals o f Operations Research, Vol.45, 59-76, 1993.

[17] El Ghaoui L. and Lebret H., Robust Solutions to Least- Squares Problems with

Uncertain Data, SIA M j. Optimization Vol. 18, 4, 1035-1064, 1997.

[18] Gunn S., Support Vector Machines for Classification and Regression, ISIS

Technical Report, 1997.

[19] Grotschel, Lovasz L , and Schrijver A., The E llipsoid M ethod and

Combinatorial Optimization, Springer, Heidelberg, 1988.

196

[20] Kwon Hee Lee, In-Sup Eom, Gyung-Jin Park, and Wan-Ik Lee., Robust Design

for Unconstrained Optimization Problems Using the Taguchi Method, AlAA Journal,

Vol.34, N o .5 ,1059-1063,1996.

[21] Kouvelis P. and Gang Yu., Robust Discrete Optimization and Its Applications

Kluwer Academic Publishers, Boston, 1997.

[22] Mulvey J.M., Vanderbei R.J., and Zenios S.A., Robust Optimization o f Large-

Scale Systems, Operations Research, V ol.43,2,264-281,1995.

[23] Mangasarian O.L; Minimum- Support Solutions o f Polyhedral Concave

Ÿvo^m s, Optimization, AS, 149-162, 1999.

[24] Mangasarian O.L, and Musicant D R., Robust Linear and Support Vector

Regression, IEEE Transactions on Pattern Analysis and Machine Intelligence

22,950-955,2000

[25] Murata N. and Pedroso J.P., Support Vector Machines for Linear Programming:

Motivation and Formulations, Riken Brain Science Institute, BSIS Technical Report

N0.99-XXX, 1999.

[26] Oustry F., L.El Ghaoui, and H.Lebret, Robust Solutions to Uncertain

Semidefinite Programs, SIAMJ. on Optimization, 1998.

[27] Pontil M., Mukheqee. S., and Girosi F., On the Noise Model o f Support Vector

Machines Regression, Technical Report, Center for Biological and Computational

Learning, MIT, 1999.

[28] Quan 2[heng., Robust Analysis and Global Optimization, Annals o f Operations

Research, V ol.24 ,1-4,273-286,1990.

197

[29] Quan Zheng., Robust Analysis and Global optimization. Computer and

Mathematics With Application, Vol.2l, 6-7,1991.

[30] Reklaitis G.V. Ravindran, A., and Ragsdell K.M., Engineering Optimization

Methods and Applications, John Wiley and Sons, New York, 1983.

[31] Tsui K. -L ., Robust Design Optimization For Multiple Characteristics Problems,

InternationalJoumal o f Production Research, Vol.37,2,433-445, 1999.

[32] Tsutomu M., A Circumscribed Ellipsoid Method For Multi-Objective

Programming And Applications To Robust Optimization, Ph.D. Dissertation, School

o f Industrial Engineering, The University o f Oklahoma, 1996.

[33] Trafalis T., Robust Optimization In Support Vector Machines Learning,

Technical Report, Optimization and Intelligent Systems Laboratory, School of

Industrial Engineering, University o f Oklahoma, 1999.

[34] UCl Machine Learning Data base ftp. les. Uci. Edu /pub/machine-learning

databases/ echocardiogram.

[35] UCI Machine learning Database ftp://ftp.ics.uci.edu/oub/machine-leaming-

databases/breast-cancer-

[36] Problem Source: Time Series Data Library at Monash University.

http://www.maths.monash.edu.au/~hyndman/tseries/ecology.html.

[37] Vapnik V., The Nature o f Statistical Learning Theory, Springer Verlag, 1995.

[38] Vapnik V., Statistical Learning Theory, Wiley, 1998.

198

ftp://ftp.ics.uci.edu/oub/machine-leaming-
http://www.maths.monash.edu.au/~hyndman/tseries/ecology.html

