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Abstract

The Columbia River and its tributaries provide essential spawning and rearing habitat for

many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook

salmon were historically abundant throughout the basin and Native Americans in the region

relied heavily on these fish for thousands of years. Following the arrival of Europeans in the

1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion

projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish,

and hydropower development. Despite historical abundance, many native salmonids are

now at risk of extinction. Research and management related to Chinook salmon is usually

explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower;

here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial

DNA variation from Chinook salmon were analyzed to characterize and compare population

genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this spe-

cies. A total of 346 ancient and 366 contemporary samples were processed during this

study. Species was determined for 130 of the ancient samples and control region haplo-

types of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook

salmon were compared to 379 contemporary samples. Our analysis provides the first direct

measure of reduced genetic diversity for Chinook salmon from the ancient to the contempo-

rary period, as measured both in direct loss of mitochondrial haplotypes and reductions in

haplotype and nucleotide diversity. However, these losses do not appear equal across the

basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The

results are unexpected, as the two groups were predicted to share a common history as

parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these

subbasins may have divergent demographic histories.
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Introduction

Chinook salmon are the largest, and perhaps most well-known, of the Pacific salmon (Oncor-
hynchus spp.). Hatched and reared in freshwater, young fish migrate to the ocean to mature

and grow for two to six years before returning to their natal location for spawning and subse-

quent mortality. Chinook salmon exhibit a wide variety of life histories that are intimately

linked to environmental variables such as temperature, photoperiod, and stream discharge [1,

2]. Two generalized forms have evolved, often termed races [3]. The ocean-type race limits its

time in freshwater, migrating to the ocean shortly after hatching and delaying their return

until shortly before spawning. The stream-type race spends a greater proportion of their lives

in freshwater during both the juvenile and adult portions of the life cycle. Chinook salmon

also display seasonal variability in migrations, with runs returning from the ocean in all four

seasons. The runs are named for the season of freshwater reentry which initiates the spawning

migration.

Chinook salmon have a native distribution in the North Pacific Ocean, ranging from north-

ern Japan and north-east Siberia south to California. The Pacific Northwest provides essential

habitat in the species range. Native American utilization of Chinook salmon, along with other

salmonids, has been documented in the region for over 9000 years [4]. Fishing tended to cen-

ter around natural barriers, most commonly waterfalls, which concentrated runs as fish

attempted to navigate upriver [5]. Prominent Columbia River falls fishing sites such as Celilo

Falls and Kettle Falls were so productive that several thousand Native Americans may have

been present at one location over the course of a fish run [6]. Moreover, on the sandy shoals of

the lower river, large seines were used to capture fish and, in smaller tributaries, weirs were

commonly constructed to guide fish into small baskets or bins for collection [7].

European settlers were quick to recognize the economic opportunity of these extensive

salmon runs. Commercial exploitation of Chinook salmon in the Columbia River system can

be broadly segregated into four major phases: (1) 1866 to 1888: initial development of the fish-

ery, (2) 1889 to 1922: the productive phase, (3) 1923 to 1958: period of notable decline, (4)

1958 to current: maintenance of reduced productivity [8]. During the productive phase as

many as 11 million kg of Chinook salmon were harvested annually. The Chinook salmon har-

vest was reduced to 6.8 million kg during the decline and is now maintained at around 2 mil-

lion kg [8]. Hatcheries were viewed as a means to mitigate the losses and increase production.

By the 1905, 62 million eggs and fry were released by hatcheries in the Pacific Northwest [9].

Hatchery mitigation in the Columbia River intensified in the 1960s and by 1995 as much as

80% of the Columbia River Chinook salmon were hatchery-origin fish [8].

Further threats to salmon followed construction of the first mainstem dam on the Columbia

River at Rock Island in 1933 (Fig 1). Construction of Bonneville Dam began the same year,

with completion in 1938. This was followed by the construction of Grand Coulee Dam in

1941. Grand Coulee Dam had the greatest impact, blocking anadromous salmonids from 1770

river kilometers (rkm) of the upper-Columbia, approximately 40% of their historically avail-

able habitat [7, 10]. Hydroelectric development in the Snake River tributary followed a decade

later. Dams were constructed on the lower portion of the river (i.e., Ice Harbor, Lower Monu-

mental, Little Goose, and Lower Granite Dams) from 1956 to 1975. These lower river dams

included at least some fish passage for Chinook salmon. However, the Hells Canyon Dam,

located on the upper Snake and completed in 1967, did not.

The Columbia River Basin river system is now one of the most hydroelectrically-developed

in world [11]. Over four hundred dams can be found in the Columbia River Basin, 56 of which

were constructed exclusively for hydropower. Today there are nine dams between the furthest

inland salmon spawning tributaries in the mid-Columbia and the ocean, and eight dams

Increased mtDNA diversity in ancient Chinook salmon

PLOS ONE | https://doi.org/10.1371/journal.pone.0190059 January 10, 2018 2 / 26

NOAA or any of its sub-agencies. Funding was also

provided by the Palouse Audubon Society,

palouseaudubon.org, awarded to BMJ; the

Washington National Aeronautics and Space

Administration Space Grant Consortium,

waspacegrant.org, awarded to BMJ; the Northwest

Scientific Association, northwestscience.org,

awarded to BMJ; and the Edward R. Meyer

Distinguished Professorship, awarded to GHT. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190059


between the furthest inland salmon spawning Snake River tributaries and the ocean. In total,

more than 55% of the historically available spawning habitat in the Columbia River Basin is

now blocked by dams [12].

Study overview and objectives

Until recently, no methods existed to empirically investigate or quantify historical changes in

genetic diversity. Instead, genetic histories were extrapolated from data provided by contem-

porary samples alone. Methodological and technological advances now permit the study of

genetic material extracted from ancient specimens, allowing for more direct characterizations

of past dynamics [13–16]. The inclusion of genetic information from ancient samples has con-

firmed large losses in diversity for many species including musk ox (Ovibos moschatus) [17],

rodents (Microtus longicaudus and Ctenomys sociabilis)[18, 19], antelope (Saiga tatarica) [20]

and sea otter (Enhydra lutris) [21], among others. However, other investigations have revealed

unexpected results. In a study of the genetic history of Scandinavian bears (Ursus arcto), Bray

et al. [22] found that low genetic diversity in contemporary populations was similar to that in

ancient populations and thus, not the result of demographic declines linked to population bot-

tlenecks as previously hypothesized. While most of the current ancient DNA (aDNA) studies

have focused on mammals [17, 20, 23–27], the limited number of studies that have incorpo-

rated fish species tend to focus on taxonomic identification [28–34]. However, a few select

studies have attempted to map demographic changes in fish species as a response to environ-

mental changes [35, 36]. Most of these studies were focused on the deep past, mapping envi-

ronmental and climate fluctuations in the Pleistocene for brown trout (Salmo trutta) [35] and

Atlantic salmon (Salmo salar) [37] and the upper Paleolithic period for North Iberian salmo-

nids (Salmo spp.) [38].

Our study focuses on the more recent Holocene epoch, a period of population decline for

many species [39]. Reductions of census size can lead to lower survival, lower reproductive

success, and increased inbreeding which erodes genetic diversity [40]. As previously

Fig 1. Locations discussed in the study. Ancient sample locations for the Columbia (1–3), Snake (6–8), and Spokane

(5) sample groups are indicated with black circles. Contemporary sample locations for the Columbia (near 4) and

Snake (near 9) are indicated with blue lines.

https://doi.org/10.1371/journal.pone.0190059.g001
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summarized, large-scale declines of Chinook salmon are well-documented following the early

19th century arrival of Europeans in the Pacific Northwest. Although it is often hypothesized

that losses in genetic diversity should be coincident with losses in census sizes [10], no direct

quantification of diversity has been made of Chinook salmon from the pre-contact era to

enable such a comparison. We sought to directly test the hypothesis that genetic diversity was

higher in the pre-contact period relative to the post-contact (contemporary) period. To this

end, our objectives were to (1) characterize the mtDNA diversity in ancient Chinook salmon,

(2) to compare those patterns to analogous ones from contemporary groups, (3) to quantify

changes in diversity, if changes occurred at all, and (4) to broadly explore demographic scenar-

ios that may explain temporal and geographic patterns of diversity. Additionally, we use the

data generated to test the hypothesis that haplotypes currently found in warmer (southern)

and/or cooler (northern) portions of the species range are associated with historical climate

periods.

Methods

Samples

The research presented here focuses on three complementary sample groups of archeological

sites in the Columbia River Basin referred to as the: (1) Columbia River group, (2) Snake River

group, and (3) Spokane River group (Fig 1). The three sample groups share a lower river con-

nection to the ocean and would have experienced broadly similar climatic and geological

events. Both the ancient Columbia and Snake River samples represent fish caught by Native

Americans as the salmon migrated up the mainstem portion of the respective rivers to a num-

ber of terminal spawning locations. These groups can be thought of as “mixed stock” sample

collections. In contrast, samples in the Spokane group were collected at a terminal fishing loca-

tion a short distance below an impassable falls rather than a site where multiple local stream

populations would be passing [41]. It is likely that the remains found at this site represent fish

that were returning to spawn very near the location and the Spokane group can be thought of

as a “single stock”.

There are various definitions for subdividing the regions of the Basin; notable are defini-

tions of the mid-Columbia and upper-Columbia subbasins. For the purposes of this study we

use lower to refer to the area downstream of the Columbia-Snake confluence, mid for area

from the Snake-Columbia confluence to the Grand Coulee Dam and upper for the area above

the Grand Coulee Dam (Fig 1). Although the upper-Columbia historically supported many

anadromous fish populations, the area we refer to as the mid-Columbia now represents the

uppermost spawning habitat for these life histories.

A total of 712 ancient and contemporary samples were processed for this study. Ancient

samples consisted of a total of 346 vertebrae (S1 Fig and S2 Table), recovered from middens

(i.e., ancient garbage piles), previously classified in their respective collections as “Oncor-
hynchus spp.” or “likely Oncorhynchus spp.” based on visual analysis. Contemporary samples

consisted of 366 fin clips, stored in ethanol, taken from Chinook salmon (Table 1 and S1

Table). The data obtained from these directly extracted and sequenced samples was supple-

mented with those of Martin et al. [42] in their survey of Chinook salmon throughout the spe-

cies range. Samples are summarized by group below and specific contextual descriptions are

provided in S1 Text.

Columbia River group. Ancient samples for the Columbia River group are comprised of

vertebrae from three locations near or above the current location of the Grand Coulee Dam

(locations 1–3 depicted in Fig 1). The ancient complement of the Columbia River Group

focuses on spawning aggregates that historically migrated upstream of Grand Coulee Dam. No
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comparable contemporary samples are available from these upper-Columbia sites due to the

construction of Grand Coulee Dam in the 1930s, which abolished salmon passage upstream of

its location [10]. However, during construction of the dam, biologists implemented the Grand

Coulee Fish Maintenance Project (GCFMP), which attempted to redirect spawning efforts of

fish that would naturally pass the dam into downstream tributaries. From 1939 to 1943, fish

were captured at Rock Island Dam (see Fig 1) and transported to release points in tributaries

(the Wenatchee, Entiat and Methow Rivers) below Grand Coulee or were propagated in hatch-

eries [43]. The rivers selected for transplant had previously supported large runs of salmonids

but had highly depressed populations by the time the transplant operation was initiated [43].

Table 1. Haplotypes sampled, richness (HR), richness adjusted to smallest sample size of 24 (HRADJ), as well as haplotype (h) and nucleotide (π) diversity. Data

indicates contemporary samples have limited genetic diversity relative to ancient counterparts across all metrics for all sample groups.

Group/sub-group (approx. age YBP) N Haplotype: TSA___ HR HRADJ (SE) h (var.) π x100

1a 1b 4a 10 12 17 18 19 22 23 24 25 26 27 28

Spokane River Group 26 2 - - - - 10 - - 9 - - - - - - - - - - 3 - - 1 1 6 6 (0.5) 0.52 (0.004) 0.186

(2500) 2 1 - - - - 1 - - - - - - - - - - - - - - - - - - - - - - 2

(3250) 4 - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - 1

(7200) 11 1 - - - - 3 - - 6 - - - - - - - - - - - - - - 1 - - 4 0.55 (0.005) 0.195

(3250 or 7200) 9 - - - - - - 2 - - 3 - - - - - - - - - - 3 - - - - 1 4

Columbia River Group: Ancient 34 3 9 - - 6 - - 13 - - - - - - 2 1 - - - - - - - - 6 6 (0.6) 0.73 (0.002) 0.196

Fort Colvile (100) 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

GCDPA Tail Race (3127) 28 2 6 - - 6 - - 12 - - - - - - 1 1 - - - - - - - - 6 0.71 (0.002) 0.198

Ksunku: Kettle Falls (1150) 4 - - 3 - - - - - - - - - - - - - - 1 - - - - - - - - - - 2

Shonitkwu: Kettle Falls (7627) 1 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 1

Columbia River Group: Contemporary 240 - - 5 - - 20 1 208 - - - - 6 - - - - - - - - - - - - 5 3 (0.8) 0.24 (0.001) 0.080

Carson & Leavenworth Hatch. 55 - - 1 - - 4 - - 50 - - - - - - - - - - - - - - - - - - 3 2 (0.6) 0.17 (0.004) 0.055

Entiat 53 - - 1 - - 10 - - 42 - - - - - - - - - - - - - - - - - - 3 2 (0.5) 0.34 (0.005) 0.116

Icicle Creek 52 - - 1 - - 2 - - 48 - - - - 1 - - - - - - - - - - - - 4 3 (0.8) 0.15 (0.004) 0.046

Methow 42 - - - - - - 3 - - 34 - - - - 5 - - - - - - - - - - - - 3 3 (0.6) 0.33 (0.007) 0.119

Wenatchee 38 - - 2 - - 1 1 34 - - - - - - - - - - - - - - - - - - 4 3 (0.8) 0.20 (0.007) 0.062

Priest Rapids Hatchery� (non-GCFMP) 22 4 2 - - 6 - - 9 - - 1 - - - - - - - - - - - - - - 5 0.75 (0.058) 0.276

Snake River Group: Ancient 24 4 - - - - 3 - - 12 - - - - - - 3 - - - - 1 - - - - 5 5 (NA) 0.64 (0.005) 0.216

Three Springs Bar (300–3000) 6 - - - - - - 1 - - 3 - - - - - - 1 - - - - - - - - - - 3

Granite Point (1500–2500) 1 - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - 1

Granite Point (2500–5000) 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

Harder site (1450) 3 - - - - - - - - - - 1 - - - - - - 2 - - - - - - - - - - 2

Hatiuhpuh (500–4000) 2 - - - - - - - - - - 1 - - - - - - - - - - - - 1 - - - - 2

Wexpusnime (700–1000) 9 2 - - - - 1 - - 6 - - - - - - - - - - - - - - - - - - 3 0.50 (0.016) 0.179

Windust Caves (300–4500) 2 1 - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 2

Snake River Group: Contemporary 139 11 12 1 6 - - 105 1 1 - - - - - - 2 - - - - - - 8 4 (0.9) 0.42 (0.003) 0.141

Chamberlain 10 - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - 1 0.00 (0.000) 0.000

Grande Ronde 20 3 - - - - - - - - 16 - - - - - - - - - - 1 - - - - - - 3 0.32 (0.012) 0.115

Imnaha River 9 1 1 - - 2 - - 5 - - - - - - - - - - - - - - - - - - 4 0.64 (0.016) 0.189

Lemhi 8 1 - - - - - - - - 7 - - - - - - - - - - - - - - - - - - 2 0.25 (0.032) 0.089

Lyons Ferry Hatchery�� 22 3 11 1 4 - - 1 1 1 - - - - - - - - - - - - - - 7 0.72 (0.007) 0.300

Middle Fork Salmon R. 17 1 - - - - - - - - 16 - - - - - - - - - - - - - - - - - - 2 0.12 (0.010) 0.042

South Fork Salmon R. 12 1 - - - - - - - - 11 - - - - - - - - - - - - - - - - - - 2 0.17 (0.018) 0.059

Tucannon�� 21 - - - - - - - - - - 21 - - - - - - - - - - - - - - - - - - 1 0.00 (0.000) 0.000

Upper Salmon 20 1 - - - - - - - - 18 - - - - - - - - - - 1 - - - - - - 3 0.18 (0.011) 0.065

�Data from Martin et al. [42] not included in contemporary Columbia River summary data.

��Data from Martin et al. [42] not included in contemporary Snake River summary data.

https://doi.org/10.1371/journal.pone.0190059.t001
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As a result of the effort, subsequent generations of Chinook salmon in the redirection tributar-

ies became a mix of the progeny of the relocated stocks and any fish autochthonous to the

tributaries [10]. Contemporary samples in this group are from fish collected from the trans-

plant rivers utilized for the Grand Coulee Fish Maintenance project (location 4 depicted in Fig

1). The contemporary portion of the Columbia River group is comprised of samples collected

from the redirection tributaries between 1995 and 2011 (S1 Table). Contextual descriptions

are provided in S1 Text.

Snake River group. Ancient samples for the Snake River group are comprised of vertebrae

from seven excavation locations coinciding with three contemporary dams along the Snake

River (locations 6–8 depicted in Fig 1). Sample dating for the Snake River group proved diffi-

cult. Many of the collections indicated high levels of disturbance attributed to construction of

a nearby railroad line and/or looting of the archaeological sites [44–48]. In these cases, the

dates are conservatively provided as a range of possible ages (Table 1 and S2 Table). Contem-

porary samples in the Snake River group consisted of wild and hatchery origin fish with fall,

spring, and summer run timing life histories (location 9 depicted in Fig 1). Locations were tar-

geted to include all stock reporting groups, providing the opportunity to adequately capture

the genetic diversity in the Snake subbasin today [49]. Contextual descriptions are provided in

S1 Text.

Spokane River group. The third sample group originated from a collection of materials

excavated near the Spokane River (location 5 depicted in Fig 1). The location was an ancient

fishing site used for over 7000 years [50, 51]. Contextual data for the samples is provided in S1

Text. Anadromous fish have been extirpated from the Spokane River since the 1930s, leaving

no directly comparable contemporary counterpart for this group. Throughout this study, com-

parisons are made between the ancient Spokane River group and the contemporary Columbia

River subgroups. While not directly connected, the intent is to compare them as single-stock

components of Chinook salmon, to ones sampled from proximate geographic locations in the

Columbia Basin.

Ethics statement. No tissue (contemporary) or archeological (ancient) samples were

directly collected for this study. All samples were provided by external agencies and groups

(See S1 Table and S1 Text). As such, no permits or institutional oversight by the Institutional

Animal Care and Use Committee (IACUC) or equivalent ethics committee(s) were required
for the described study, which complied with all relevant regulations.

DNA extraction and amplification

The ancient DNA work described here was performed in the dedicated ancient DNA lab at

Washington State University. Prior to destructive analysis, sample weight was collected for all

vertebrae, including partial samples. DNA extractions were then attempted and the extracts

systematically tested for inhibition and amplification following Kemp et al. [52]. Following

amplification, species was confirmed using a 148 bp mtDNA sequences from the 12S region of

the genome [53].

Haplotypes were based on a 563 bp sequence, corresponding to bp 573–1135 of the com-

plete reference sequence (NCBI accession NC_002980), which included 414 base pairs (bp) of

the 3’ end of the ‘control region, the complete phenylalanine tRNA gene, and 81 bp of the 5’

end of the 12S ribosomal RNA gene. The sequenced region was homologous to that previously

sequenced from Chinook salmon throughout their range [42]. Processing of contemporary

samples consisted of DNA extraction, amplification, and haplotype determination. Detailed

methodology for ancient and contemporary samples is described in S2 Text.
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For both the 12S and control region results, all new or rare (those observed from less-than

three samples) haplotypes, any sequences with multiple peaks, as well as a random sample

(31%) of all results were confirmed via repeated PCR amplification and sequencing of the tem-

plate [54].

Genetic diversity and differentiation

Haplotype richness (the number of haplotypes sampled) was drawn directly from the data.

However, the final number of haplotyped individuals varied between the contemporary and

ancient sample components (7:1 for the Columbia River group and 6:1 for the Snake River

group). To account for sampling variance, rarefaction curves [55, 56] were generated for the

Columbia, Snake, and Spokane samples. Rarefaction curves were generated using Vegan [57]

in program R v.3.3.1 [58]. An adjusted value of haplotype richness (HRADJ), based on the

smallest sample size, was taken from the rarefaction data. The data was plotted with SigmaPlot

v.12.0 (Systat Software, San Jose, CA) to allow graphical comparison of ancient and contempo-

rary data sets.

Haplotype (h) and nucleotide (π) diversity [59] were calculated using DNAsp [60]. Samples

were grouped spatially by subbasin (i.e., Columbia subbasin, Snake subbasin) for analysis

(Table 1). The single, intermediate Fort Colvile sample was excluded when calculating genetic

diversity for pooled ancient and contemporary groupings.

Haplotype networks were constructed in program Network version 4.613 [61]. Character

weights were set to 20 for indels and 30 for transversions to account for the rarity of such

events. Transitions and other characters were left at default weight of ten. Three-dimensional

haplotype networks were created as described here, and then reproduced by hand using graph-

ical software. The single Fort Colvile sample was excluded from the ancient and contemporary

networks (Fig 2), but was included in the three-dimensional network (Fig 3).

The extent of genetic differentiation between ancient and contemporary subgroups was

investigated with pairwise comparisons (φST) [62, 63] and modified exact tests of population

differentiation [64]. The intermediate Fort Colvile sample was excluded from both analyses.

Values of pairwise φST were calculated in Arlequin [65]. Five-thousand permutations of haplo-

types between populations was used to test the null hypothesis of no difference between the

defined populations [62]. Quartiles of low, moderate, high, and very high differentiation were

defined directly from the data. Exact tests were implemented in Arlequin [65] using 10,000

Markov chain steps and 1,000 dememorization steps. The null hypothesis of panmixia based

on expected vs. observed haplotype frequencies [64, 66] was evaluated using significance at the

0.05 level of probability.

Phylogenetic analysis

The survey of Chinook salmon mtDNA haplotypes provided by Martin et al. [42] indicated

that distinct haplotypes are present in the northern (Alaska and Kamchatka, Russia) and

southern (California) portions of their range. To explore if any of the novel types sampled here

fit with the northern or southern clades, we generated a Bayesian cladogram comparing them

to the haplotypes sampled by Martin et al. [42]. The phylogeny was generated using MrBayes

3.2 [67]. By default, this program ignores positions that include gaps (indels) so these were

coded as binary characters and included in the analysis. We used the General Time Reversible

(GTR) model with a proportion of invariable sites (I), and gamma-shaped (Γ) distribution of

rates across sites, as determined as the best fitting model using jModelTest [68]. The program

was run for 1,000,000 generations and sampled every 100th generation. To ensure that the sam-

pling was taken from a stationary posterior distribution, two independent, simultaneous runs
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were completed and the standard deviation of the runs compared. The first 25% of runs were

discarded as burn-in, with sampling taken from the remaining runs.

Demographic history

Demographic history was explored via a coalescent model, implemented in BEAST v. 1.8.3

[69]. Two demographic models (1) constant population size [70] and (2) extended Bayesian

skyline plot (EBSP) [71] were applied to the Columbia River Group the Snake River group.

Final analyses were performed with the GTR + I + Γ model of sequence evolution under a

strict molecular clock with a mutation rate of 7.5E-9 to 1.0E-8. This rate was based on that pro-

posed for the mitochondrial control region of salmonids by Shedlock et al. [72] and Thomas

et al. [73]. Population size was modeled with a lognormal distribution with initial value of

Fig 2. Haplotype networks of ancient and contemporary groups, including Columbia sub-groups. Orientation for

haplotypes is constant between networks, circle size is proportional to frequency in the grouping, lines represent

mutational connections. Four “evolutionary backbone” types as defined by Martin et al. [42]are labeled for reference in

the network.

https://doi.org/10.1371/journal.pone.0190059.g002
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10,000, mean 5.0, and standard deviation 2.0. Ages for ancient samples were entered as the

radiocarbon date and its associated error. In the case of the Snake River samples, where only a

range of dates are available, the full range was included in the model. Markov chains were run

for 5 X 108 generations (10% discarded as burn-in), sampled every 5 X 104 generations which

resulted in a final posterior of 10,000 sampled genealogies. Quality of the posterior distribution

was evaluated using the effective sample size (ESS) [74] following Kuhner [75]. Comparisons

of models utilized Bayes factor (BF) as determined by differences in marginal likelihood esti-

mates (MLE) [76, 77] described qualitatively using the framework provided in Kass and Raf-

tery [78]. ESS and MLE were calculated in Tracer v.1.6 [69]. Final model parameters were

based on comparison of independent exploratory trials. For the final models, two independent

runs of each were performed and posterior estimates taken from the combined Markov chains.

EBSPs were plotted to ~10,000 YBP using SigmaPlot v.12.0 (Systat Software, San Jose, CA).

Results

A total of 346 ancient and 366 contemporary samples were processed during this study. Spe-

cies determination was possible for 130 ancient samples with the 12S marker and sequencing

of the control region haplotypes for 84 of these 130. In the Spokane and Columbia River

groups, all samples successfully sequenced for the 12S region (species identification) were con-

firmed to be Chinook salmon. In the ancient Snake River samples, 24 of the 50 samples suc-

cessfully sequenced for the 12S region were confirmed as Chinook salmon. The remaining 26

included two coho salmon (Oncorhynchus kisutch), sixteen suckers (Catostomus spp.), and

eight pikeminnows (Ptychocheilus spp.) (S2 Table). A total of fifteen unique control region hap-

lotypes were sampled in the study (Table 1). All haplotypes were separated by five or fewer

mutations (mean = 2.8) (Fig 2). Seven previously unidentified types were sampled, one exclu-

sive to contemporary samples, five exclusive to ancient samples, and one sampled in both

ancient and contemporary samples. New types were designated according to the established

nomenclature for Chinook salmon [42, 79], TSA22 –TSA28. Sequences are available from the

NCBI database with accession numbers KY973380—KY973386. Haplotypes were determined

Fig 3. Three-dimensional, temporal haplotype network for all Columbia River samples. Circle sizes are

proportional to relative haplotype frequencies, horizontal lines represent single mutation connections between

haplotypes.

https://doi.org/10.1371/journal.pone.0190059.g003
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for 336 of the contemporary samples (no 12S identification was necessary as species was deter-

mined antemortem).

Genetic diversity and differentiation

Comparisons of haplotypes indicate a reduction in number and shift towards fixation by a sin-

gle haplotype from the ancient to the modern samples in the Columbia River group (Fig 2). In

contrast, the Snake group had more haplotypes present in the contemporary group than in the

ancient. However, after rarefaction adjustment to the smallest sample size (N = 24) the ancient

groups had the highest richness values in all groups: 6 (Spokane and Columbia), and 5 (Snake,

unadjusted) (Table 1 and S2 Fig). All estimates of haplotype and nucleotide diversity are given

in Table 1. In the Columbia River group, greater diversity is indicated for the ancient samples

(h = 0.73 and π = 0.196) than for the contemporary samples (h = 0.24 and π = 0.080) as well as

for all five subgroups (ranges of h = 0.17 to 0.34 and π = 0.055 to 0.119). In the Snake River

group, the diversity in ancient samples (h = 0.64 and π = 0.216) is greater than the contempo-

rary (h = 0.42 and π = 0.141) as well as seven of the nine contemporary subgroups. The Spo-

kane group, representing a single stock of Chinook salmon, had ancient diversity of h = 0.52

and π = 0.186 which is greater than that present in any of the contemporary Columbia

subgroups.

The Spokane samples are not significantly differentiated from the ancient Columbia sam-

ples, but are very highly differentiated from the contemporary Columbia samples (Table 2).

The Spokane and Snake were moderately differentiated (ancient) and highly differentiated

(contemporary). The ancient and contemporary Columbia samples were moderately differenti-

ated. The ancient Snake River samples were also similar to their contemporary counterpart,

with non-significant and low differentiation (φST = 0.04). Using modified exact tests, the Spo-

kane River sample group was not significantly different from the ancient Columbia samples

but was significantly different from the ancient Snake and both the contemporary sample sets

(Table 3 and S3 Table). In both the Columbia River and Snake River group, haplotype frequen-

cies for the ancient and contemporary samples were significantly different.

Phylogenetic analysis of haplotypes

Seven novel haplotypes were identified in this study. When these were combined with pub-

lished haplotypes for Chinook salmon [42], two fell into the clade of shared northern and cen-

trally sampled haplotypes and the remaining five into the clade of shared central and southerly

sampled haplotypes (Fig 4).

Demographic history

Four total models were implemented in BEAST (Table 4) which compared a model of constant

population size to a demographic EBSP model for Columbia and Snake River groups. Note,

here population refers to the temporal subgroups ancient Columbia, contemporary Columbia,

ancient Snake, and contemporary Snake. When applied to the Columbia River sample data,

the demographic (EBSP) model supported over that of constant population size and the sup-

port level qualified as “strong” (9.38) [74, 75]. For the Snake River samples, the constant popu-

lation size and EBSP models indicated relatively equal support (“not worth more than a bare

mention” BF 0.65) [75]. When plotted, the EBSP for the Columbia River group shows some

variation in effective population size overtime, such a pattern is not present in the Snake River

(Fig 5).
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Discussion

Our results reveal contemporary Chinook salmon in parts of the Columbia River basin are

genetically depauperate relative to their ancient counterparts. However, the comparisons for

genetic diversity were not uniformly distributed through the basin and distinct patterns were

present for the groups examined here. Based on our data, Chinook populations in the upper-

Columbia may have experienced larger losses in genetic diversity than those in the Snake

River. The index of φST can be connected to migration, specifically that migration erodes φST

[80]. In comparisons of the ancient and contemporary subgroups, migrants are actually tempo-
ral migrants, genetic variants persisting through time, instead of traveling through space. Few

such temporal migrants appear to be present between the ancient and contemporary compo-

nents, as indicated by high levels of differentiation (Tables 2 and 3).

The Snake River sample group also indicates a reduction in genetic diversity from the

ancient to the contemporary period. However, the losses in genetic diversity were of less

Fig 4. Bayesian cladogram for Chinook haplotypes from full species range, as well as novel haplotypes detected in

this study. Previously identified types are coded according to geographic region north: blue, central: yellow, southern:

red per designations in Martin et al. [42]. All novel types fell into shared geographic clades (Northern/Central or

Central/Southern).

https://doi.org/10.1371/journal.pone.0190059.g004

Table 4. Summary of demographic models implemented in BEAST including effective sample sizes (ESS). Com-

parisons are given as the difference in likelihood, positive values indicate a better fit of the demographic model (B)

compared to the model of constant population size model (A).

Description Model ESS Bayes factor model comparison

1 A Columbia: Ancient and contemporary Constant 391 - -

B Columbia: Ancient and contemporary EBSP 207 9.38

2 A Snake: Ancient and contemporary Constant 3392 - -

B Snake: Ancient and contemporary EBSP 3665 0.65

https://doi.org/10.1371/journal.pone.0190059.t004

Increased mtDNA diversity in ancient Chinook salmon

PLOS ONE | https://doi.org/10.1371/journal.pone.0190059 January 10, 2018 13 / 26

https://doi.org/10.1371/journal.pone.0190059.g004
https://doi.org/10.1371/journal.pone.0190059.t004
https://doi.org/10.1371/journal.pone.0190059


magnitude than that observed in the Columbia group. In contrast to the Columbia River

group, more haplotypes were observed in the contemporary samples than in the ancient and

the rarified comparisons are very similar (Table 1). Diversity comparisons indicate approxi-

mately one-third less diversity (for both h and π) in the contemporary samples than in the

ancient. The ancient and contemporary Snake samples show only low, non-significant differ-

entiation (Table 2), indicative of temporal continuity in this group.

The Columbia and Snake River groups also differed in the demographic analysis. No evi-

dence for a population decline was identified for the Snake River samples and a model of con-

stant population size was equally supported when compared to the demographic model. In

contrast, the analysis of the Columbia River samples lends support for the demographic model

with a reduction in effective population size.

Coalescent analyses are powerful tools to elucidate historical demography but are not with-

out limits. As with conventional population statistics, undefined population structure in coa-

lescent analysis can lead to erroneous estimates of demographic history [81–84]. The extent

and potential impact of population structure on our dataset is difficult to infer. Salmon runs in

the Pacific Northwest were established within the past 10,000 years [4] and any population

structure would have been subsequently developed. All recolonization was accomplished via

straying [85, 86], which may have limited population structure. Further, during this period the

region was subject to climatic and geological disturbance [87–90] which may have eroded

existing structure, if present at all. The ancient Spokane samples are a single-stock component

of the mixed-stock Columbia River group, providing some data from which to test the hypoth-

esis of panmixia. Differentiation between the Spokane and the larger Columbia group is low

(0.09) (Table 2) and haplotype frequencies did not differ significantly from that expected if the

groups were panmictic (Table 3). Differentiation analysis of contemporary subgroups in our

study indicates that contemporary subpopulations are not highly differentiated from each

other either (Tables 2 and 3). However, contemporary data has likely been influenced to some

degree by management practices and the cumulative impact of 200 years of such practices is

not entirely predictable.

Fig 5. Extended Bayesian skyline plots (EBSPs) for Columbia and Snake River groups (A) and rate of reduction in

Nef indicated in the associated EBSP (B). Mean effective population size is indicated with solid black line, median

with dashed line, and 95% highest posterior density (HPD) in shaded grey. Contrasting patterns are present for the two

groups; the Columbia River groups visually indicates a reduction in mean effective population size while no such

reduction is present for Snake River samples.

https://doi.org/10.1371/journal.pone.0190059.g005
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Skyline methods are also often limited in their ability to detect recent events. Catastrophic

census declines for Columbia basin Chinook salmon were documented during the mid-19th

century. It is difficult to imagine that these declines were without genetic consequence. Yet, no

evidence for a coincident decline in genetic diversity is indicated in the EBSP for either the

Columbia or the Snake data. Even with heterochronous data, recent events are not always

detectable, especially when genetic losses are brief, extreme, or occur very near the sampling

events [91, 92]. Further, our analysis is based on a uniparentally inherited marker (mtDNA),

which can only provide a limited picture of evolution. Future investigations utilizing addi-

tional markers may contribute to increased resolution. However, we cannot exclude the possi-

bility that the demographic patterns indicated are true representations of recent history.

Examples of sustained diversity, despite periods of largescale population declines, have been

demonstrated. For example, Hawaiian petrel (Pterodroma sandwichensis) populations were so

reduced in numbers during the 1900s that many believed the species to be extinct [93, 94].

However, comparisons of ancient and contemporary DNA revealed limited losses in genetic

diversity and maintenance of effective population size through the period of population

decline and recovery [92]. Despite the potential limitations, the analysis of the EBSP as a quali-

tative heuristic for model rejection fits with the larger patterns for the Columbia and Snake

River sample groups and provides evidence of contrasting patterns.

The contrasting patterns displayed for the Columbia and Snake River samples are unex-

pected. The two groups are parts of the larger Columbia River Basin and were predicted to

largely share a common history. However, our results indicate that distinct demographic dif-

ferences for the Columbia and Snake River samples are present. We hypothesize that these dif-

ferences may be the result of fine-scale differences that extend into the pre-contact era. Here

we summarize some potential historical differences for the two groups which support the

hypothesis that both pre- and post-contact anthropological impacts may have resulted in the

genetic patterns observed.

Prior to contact, Native Americans captured Chinook salmon from both the Columbia and

Snake rivers. However, the cumulative intensity of fishing may have been higher for mid-

Columbia runs than for Snake River runs. Both the Snake and upper-Columbia River spawn-

ing aggregates investigated in this study would have been exploited at Celilo Falls (Fig 1) as

well as any additional fishing locations between the ocean and their spawning grounds. How-

ever, the upper-Columbia aggregates experienced the additional, formidable pressure of the

Kettle Falls fishery and potentially the Spokane Falls fishery. It is estimated that the Colville

Tribe alone took as much as 270,000 kg of salmon from Kettle Falls in a single year [95–97].

The Snake had many quality fishing sites but lacked mainstem falls capture locations matching

the scale of Kettle or Spokane Falls [97, 98]. Although salmon constituted an important food

source, for some Snake River tribes this catch had to be substantially supplemented with other

hunting and gathering activities [99]. Non-salmonid fish alternatives may have also been more

readily available in the Snake River. White sturgeon (Acipenser transmontanus), a species

commonly reaching 20–295 kg likely formed a substantial component of the diet for Snake

River tribes as documented for the Nez Perce [97]. Other smaller fish species were also heavily

exploited [97] which was consistent with the identification of suckers (Catostomus spp.) and

pikeminnows (Ptychocheilus spp.) among the Snake River vertebrae in this study.

Differences in the exploitation realized by upper-Columbia and Snake River stocks contin-

ued beyond the prehistoric fishing period. The commercial fishery that developed shortly

post-contact was concentrated on the lower river, impacting both upper-Columbia and Snake

River stocks. Though commercial fishery operations were primarily conducted in the shared

lower river, their impact on the upper subbasins was likely unequal, with increased pressure

on mid and upper-Columbia River aggregates relative to those in the Snake River. Stocks
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containing large Chinook salmon were reduced faster than those with smaller counterparts

[100, 101]. Fish migrating to the upper-Columbia were commonly 14 to 36 kg, whereas lower

river stocks may have been considerably smaller [41]. The targeting of larger fish depleted

upper-Columbia runs faster than lower regions of the Columbia River Basin.

Run timing may have also been a factor for differences in post-contact exploitation. Fall-

run Chinook salmon arrive in freshwater in a more advanced spawning condition, making

spring and summer-run fish more commercially desirable. Accordingly, the early commercial

Chinook salmon fishery focused on spring and summer runs. In the 1880s canneries closed in

late July, effectively forgoing any opportunity to capture fall-run Chinook salmon [7]. As

salmon populations declined, commercial exploitation shifted to include fall runs by the early

1920s [7, 102]. Fall runs were prevalent in the Snake River and lower reaches of the Columbia

River. However, longer migrations and differences in mainstem river characteristics likely lim-

ited historic upper-Columbia fall run sizes [41].

Although fall-run Chinook salmon represented a smaller portion of total stocks in the

Columbia River, these fish may represent an important component of diversity within the

Basin. In the interior Columbia basin, all fall-run and all spring-run Chinook salmon popula-

tions fall into two distinct genetic lineages [87]. The divergence of these lineages is believed to

have occurred during the Pleistocene [103, 104]. Distinct spawning times likely act to maintain

reproductive isolation between the groups, allowing for the accumulation of genetic differ-

ences via drift. Evidence for historical inclusion of fall-run Chinook salmon in native fisheries

is strong [105]. Fall run fish are likely to be represented in the ancient Columbia River sample

group. Site 45DO189, from which 28 samples were studied, was occupied during the fall and

potentially winter by Native Americans [106]. Fall Chinook salmon spawn from September to

December and are likely to be present in the sample, based on the occupation time. In contrast,

no fall-run fish are included in the contemporary Columbia samples. Fall Chinook salmon

confine their spawning almost exclusively to mainstem rivers or large tributaries [107] and the

GCFMP redirection tributaries were not sufficiently large as to meet the spawning require-

ments of fall life histories. As a result, contemporary runs of fall Chinook salmon in the

Columbia River are almost exclusively confined to a 90 rkm stretch of lower river known as

Hanford Reach.

Notably, the ancient Columbia River samples display a number of similarities to contempo-

rary fall-run Chinook salmon from both the Snake River (Lyons Ferry Hatchery) and lower

Columbia River (Priest Rapids Hatchery) [42]. Comparisons of haplotype composition, overall

genetic diversity, and differentiation (based on both exact tests and φST) indicate more similar-

ity to the sample of contemporary fall Chinook salmon than to those in the contemporary

tributaries used for redirection, particularly to the Chinook salmon from Priest Rapids Hatch-

ery. Genetic components have been indicated for functional life history differences, including

run timing in Chinook salmon [108–111]. However, to our knowledge, no functional associa-

tions have been made for control region haplotypes, or for mtDNA in general, in Chinook

salmon. Previous mtDNA surveys have also indicated quantitative differences in haplotype fre-

quencies between spring/summer and fall run Chinook in the Columbia River [2, 112–114]

but a lack of haplotype fixation for either group [114]. It is likely that some haplotypes are

more or less common in fall or spring runs due to drift or possibly, yet undetected selection as

has been indicated for protein coding segments of the mtDNA genome in salmonids [115].

Summer-run fish were included in the contemporary Columbia samples (N = 19). All but one

of the samples from this summer-run subset were monomorphic for haplotype TSA17 and the

resulting haplotype diversity was 0.11. In contrast, the fall-run subset of Snake River samples

(N = 24) contained seven haplotypes, with a haplotype diversity of 0.72. Based on our data,

there is no evidence for summer runs in the upper-Columbia as stores of historic genetic
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diversity. However, a broader sampling of summer-run fish from the mid-Columbia would be

useful to further test this hypothesis.

Tests for correlation of haplotypes with climatic periods

Climate and stream conditions in the Columbia River Basin have fluctuated dynamically over

several millennia and these conditions have been characterized for the past 11,500 years. Pub-

lished data confirm three macroclimates that overlap our samples: drought conditions with

maximum summer warmth (prior to 8000 YBP), transitioning toward moist and cool (8000–

4000 YBP), and cool temperatures while slightly drier with late period warming (4000 YBP to

contemporary) [88, 89, 116]. Two specific variables impacting salmon life history (water tem-

perature and stream discharge/flow) have also been described. Prior to 5500 YBP flows were

~30% lower than current and freshet ended in June, while from 2300–4500 YBP flows were

~30% higher with freshet ending in August [88].

Contemporary data on Chinook salmon indicates that of the seventeen published haplo-

types, two are found only in northern populations, seven in central populations, and two in

only southern populations [42]. Three other haplotypes are shared between northern and cen-

tral populations and another three between southern and central populations (Fig 6). This phy-

logeographic distribution is likely a reflection of post-glacial colonization and subsequent

genetic drift. However, it is possible that the distribution also reflects selection on functional

regions of mitochondrial DNA; evidence for such a phenomenon has recently been described

for Pacific salmon [115].

We compared haplotype and phylogeographic characterizations with the available climate

data to test the hypothesis that haplotypes currently associated with southern (warmer) regions

of the species range coincide with warmer climate periods, and those that associate with north-

ern (cooler) regions with cooler periods. Such a distribution might be anticipated if (1) the

mitochondrial haplotypes are correlated with cold or warm-adapted gene complexes in Chi-

nook salmon, (2) the haplotypes served as indicators of southern or northern-adapted nuclear

gene complexes, or (3) climate-mediated range shifts occurred in the past. Such range shifts

have been demonstrated for many species including birds [117], freshwater fish [118], insects,

[119], rodents [120] and plants [121]. The phylogeny of all haplotypes indicated that the haplo-

types novel to this study correlated with the central based types (Fig 4) and shared types were

present in all temporal climate groupings (Fig 6). We also did not identify any of the distinct

northern or southern types in the ancient samples. Our data does not support an association

or transition of Chinook salmon haplotypes during varying climate periods and instead, indi-

cates that the distribution of mtDNA lineages has been stable over long periods of time. It is

important to note the phylogeny was not well resolved and with only weak support for the

clades discussed. Better resolution may be obtained through the inclusion of additional genetic

markers.

Notes on reintroduction

An inter-agency investigation into the feasibility of reintroducing anadromous salmon above

the Chief Joseph and Grand Coulee Dams is currently being pursued [122–125]. One element

of this evaluation is the identification of candidate fish stocks for use in reintroduction. We

caution against extrapolating the data presented here to inferences on successful spawning and

recruitment. The comparisons in this study focus on genetic similarity between ancient sam-

ples and contemporary groups. However, genetic similarity does not necessarily translate to

genetic suitability. A large body of evidence exists for local adaptation in salmonids [126, 127].
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Fig 6. Comparison of spatial (top) and temporal (lower four) haplotype sampling. Orientation for haplotypes is

constant between networks, circle size is proportional to frequency in the grouping, lines represent mutational

connections. Spatial network (top) is color coded for: southern-red, central-yellow, and northern-blue portions of the

species range. No association between haplotypes and climate periods is noted.

https://doi.org/10.1371/journal.pone.0190059.g006
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Goals related strictly to levels of genetic diversity ignore the relationship between genes and

the environment demonstrated for salmonids.

Summary

Our results reveal contemporary Chinook salmon in parts of the Columbia River basin are

genetically depauperate relative to their ancient counterparts. However, the differences are not

uniformly distributed through the basin and distinct patterns are present for the groups exam-

ined here. Based on our data, Chinook populations in the upper-Columbia may have experi-

enced larger losses in genetic diversity than those in the Snake River. The contrasting patterns

displayed for the Columbia and Snake River samples are unexpected as the two groups were

predicted to share a common history as parts of the larger Columbia River Basin. However,

each of the groups contains distinct populations of Chinook salmon which may have divergent

demographic histories. We hypothesize that these differences may be the result of cumulative

effects of pre- and post-contact exploitation along with direct losses of stocks and life history

variants. Our data provided no direct evidence that large-scale genetic changes are tied to any

recent historical events, although empirical sampling of genetic data near these events was not

possible. Further, haplotype distributions did not indicate evidence for climate-mediated

migration over large timescales. To the best of our knowledge, this study provides the first

empirical test of the long-standing hypothesis that Chinook salmon in the Columbia River

basin have experienced losses in genetic diversity from pre-contact period.
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S2 Fig. Rarefaction curves. Rarefaction curves for ancient and contemporary samples from

the Columbia, Spokane and Snake River sample groups. Spokane samples are compared to
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14. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, et al. Genetic analyses from

ancient DNA. Annual Review of Genetics. 2004; 38:645–79. https://doi.org/10.1146/annurev.genet.

37.110801.143214 PMID: 15568989

15. Leonard JA. Ancient DNA applications for wildlife conservation. Molecular Ecology. 2008; 17

(19):4186–96. https://doi.org/10.1111/j.1365-294X.2008.03891.x PMID: 18684136

16. Hagelberg E, Hofreiter M, Keyser C. Ancient DNA: the first three decades. Philosophical Transactions

of the Royal Society B: Biological Sciences. 2015; 370(1660).

17. Campos PF, Willerslev E, Sher A, Orlando L, Axelsson E, Tikhonov A, et al. Ancient DNA analyses

exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population

dynamics. Proceedings of the National Academy of Sciences. 2010; 107(12):5675–80.

18. Conroy CJ, Cook JA. Phylogeography of a post-glacial colonizer: Microtus longicaudus (Rodentia:

Muridae). Molecular Ecology. 2000; 9(2):165–75. PMID: 10672160

19. Hadly EA, van Tuinen M, Chan Y, Heiman K. Ancient DNA evidence of prolonged population persis-

tence with negligible genetic diversity in an endemic tuco-tuco (Ctenomys sociabilis). Journal of Mam-

malogy. 2003; 84(2):403–17.

20. Campos PF, Kristensen T, Orlando L, Sher A, Kholodova MV, Götherström A, et al. Ancient DNA
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