
APPLICATION OF DATA ANALYTICS — CASE STUDIES

By

Jiangmin Yu

Bachelor of Science in Material Science and Engineering
Wuhan University of Technology

Wuhan, China
2004

Master of Science in Computer Science
Wuhan University of Technology

Wuhan, China
2006

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTORATE OF PHILOSOPHY

May, 2017

APPLICATION OF DATA ANALYTICS — CASE STUDIES

Dissertation Approved:

Dr. Eric Chan-Tin

Dissertation Advisor

Dr. K. M. George

Committee Member

Dr. Nohpill Park

Committee Member

Dr. Weihua Sheng

Committee Member

ii

Acknowledgments

I am grateful to many people for their support throughout the Ph.D. program.

First, I would like to give a special acknowledgment to my chair and mentor, Dr.

Eric Chan-Tin. His patience, expertise and availability have been invaluable for my

study and research. He has provided me opportunities to work on projects, given me

a wealth of knowledge regarding the research, and made my life at Oklahoma State

University an enjoyable experience.

I would also like to thank my committee members, Dr. K. M. George, Dr. Nohpill

Park, and Dr. Weihua Sheng, for their helpful insight and support throughout my

study at Oklahoma State University.

Any level of success I have made is directly attributed to my friends at Oklahoma

State University. Jiyoung Shin, Michael Farcasin and Weiqi Cui provided a great deal

of guidance. I am really fortunate that I joined a team with an outstanding cohort

of individuals. I look forward to continuing our friendships in the future.

I would like to thank my family for their always support. Mom and Dad, thank

you for loving me so much. Finally, I would like to thank my wife, Feibo. Thank you

for your support to my study and research. Thank you for all your time for taking

great care of Beverley. Thank you for being my best friend and by my side every step

of the way.

iii

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

Name: JIANGMIN YU

Date of Degree: MAY, 2017

Title of Study: APPLICATION OF DATA ANALYTICS — CASE STUDIES

Major Field: COMPUTER SCIENCE

Abstract: Data analytics is the technique of finding knowledge by examining raw
data. It is an important tool for researchers to verify existing knowledge or infer new
knowledge. In this dissertation, we focus on anonymous traffic and privacy-aware
systems. Our research is divided into three data analytics case studies. We use data
analytics to learn from and improve existing systems. Tor, an anonymous network,
is designed to protect Internet users from traffic analysis attacks. Researchers have
shown that traffic analysis like timing attack and website fingerprinting attack are still
realistic and can be used to deanonymize Tor users. We first analyze the anonymity
of Tor itself; we show that a timing attack can be used to bypass the anonymity
provided by Tor. We also propose a schema to identify this type of timing attack. Our
second case study is about website fingerprinting. We propose a new realistic cover
traffic algorithm to mitigate website fingerprinting attacks. Our algorithm reduces
the accuracy of website fingerprinting attacks to 14% with zero latency overhead and
20% bandwidth overhead. Our third case study is about webbrowser fingerprinting
in anonymous communications. We analyze the network traffic generated by web
browsers and show that features of webbrowsers can be inferred with high probability.

iv

Table of Contents
Chapter Page

1 Introduction 1

1.1 Case 1: Timing Attack on Tor . 2

1.2 Case 2: Website Fingerprinting . 3

1.3 Case 3: Webbrowser Fingerprinting 4

2 Timing Attack on Tor 5

2.1 Introduction . 5

2.2 Background . 8

2.2.1 Tor . 8

2.2.2 Threat Model . 11

2.2.3 Related Work . 11

2.3 Attack Design . 14

2.4 Proposed Detection Scheme . 17

2.5 Evaluation . 19

2.5.1 Experimental Setup . 19

2.5.2 Results of Attack . 20

2.5.3 Detection Scheme . 23

2.5.4 Costs . 25

v

2.6 Discussion and Conclusion . 26

3 Website Fingerprinting 29

3.1 Introduction . 29

3.2 Background . 31

3.2.1 Website Fingerprinting . 31

3.2.2 Classification . 31

3.2.3 Mitigations . 32

3.2.4 Threat Model . 33

3.3 Proposed Noise Algorithm . 33

3.4 Experimental Setup . 38

3.5 Evaluation . 39

3.6 Related Work . 44

3.7 Conclusion . 46

4 Webbrowser Fingerprinting 47

4.1 Introduction . 47

4.2 Related Work . 49

4.3 Experimental Setup . 51

4.3.1 Collecting Data . 51

4.3.2 Processing Data . 54

4.4 Results . 55

4.4.1 Webbrowser type identification 55

4.4.2 Webbrowser plug-ins identification 56

vi

4.4.3 Varying time frames and classification algorithms 60

4.4.4 Summary . 62

4.5 Discussion and Conclusion . 62

5 Conclusion and Future Work 63

Bibliography 66

vii

List of Tables
Table Page

3.1 Comparison of our algorithm’s accuracy and overhead with previous

mitigation schemes. We showed the lowest accuracy numbers for the

other schemes, regardless of algorithms used. The table is based from [1]. 30

3.2 The parsed outgoing traffic train set. 36

3.3 The parsed incoming traffic train set. 36

3.4 Accuracy of five statistical and machine learning algorithms consider-

ing the two sets of attributes a and c mentioned in [2]. The sample

size n used is 100. 40

4.1 Software used during experiments and classification. 51

4.2 Websites used for experiments. 52

4.3 plugin usage status of browser. 53

4.4 Idenfification accuracy for specific website. 57

4.5 Different combinations of browser type and plug-ins usage status. 59

4.6 Identification accuracy for different time frame and classification algorithm. 61

viii

List of Figures
Figure Page

1.1 Process of data analytics . 2

2.1 (a) Circuit creation in Tor: the client randomly selects three Tor relays in

the Tor network to be its entry, middle, and exit nodes. The same circuit

can be used for different connections (called streams) to different servers.

(b) Onion routing and encryption: A client connects to the server through

Tor. The client wants to send a message (blue) to the server. The client

first adds a layer to the message, encrypted with the exit node’s key (green).

Then the client adds a second layer, encrypted with the middle node’s key

(black), and finally, that whole message is encrypted with the entry node’s

key (red). At each step, each relay peels off its layer and forwards the

message to the next relay. 9

2.2 The layout of our proposed attack experiment. The burst server could be a

physical server or part of the content served by another server, for example

an advertisement server. The circuit created by the client consists of real

Tor relays. The probe’s three components are hosted on the same physical

machine. The probe exit node is set up such that it only accepts exit

connections to the probe server. 15

2.3 The probe works by creating “one-hop” circuit to each Tor relay, with the

exit node being the probe exit node. In this example, the Tor network is

shown to have only two relays. 16

ix

2.4 The layout of the proposed detection scheme for circuit clogging attacks.

The two new entities are the victim probe and the victim probe server.

The probe works similar to the attack probe, except the whole circuit is

monitored instead of individual relays. 18

2.5 Probe network measurement for a Tor relay used in the client circuit. The

burst attack period starts at the red (solid) vertical line and stops at the

green (dashed) vertical line. The pattern of burst/sleep periods can be

clearly seen. 20

2.6 The probe’s network latency measurement over time for (a) the entry relay,

(b) the middle relay, (c) and (d) the other two Tor relays not part of the

circuit. 21

2.7 The Receiver Operator Characteristic (ROC) curve for the probe measure-

ments. The area under the curve (AUC) is 0.78 and the equal error rate is

28%. The y = x line indicates the random classifier. 23

2.8 One experiment showing the client’s probe of a circuit used for connecting

to the burst server. The periods of burst/sleep can be clearly seen in the

figure. 24

2.9 The Receiver Operator Characteristic (ROC) curve for the probe measure-

ments, where all the relays in the client circuit are public Tor relays. The

area under the curve (AUC) is 0.72. The y = x line indicates the random

classifier. 28

3.1 Sample of recorded network traffic. The format is<timestamp>:<packet

size>. Red indicates outgoing packets. 34

3.2 The accuracy using the Random Forest algorithm when varying the

sample size. Note the y-axis does not start at 0. 41

x

3.3 The accuracy using the Random Forest algorithm when introducing

different kinds of cover traffic. 42

3.4 The bandwidth overhead when introducing different kinds of cover traffic. 42

3.5 The accuracy using the Random Forest algorithm when considering

the incoming packet features or not. 43

3.6 The accuracy using the Random Forest algorithm when considering

the outgoing packet features or not. 44

4.1 Average identification accuracy for different type of browsers when analysis

time frame is 2 seconds. 55

4.2 Average identification accuracy for different combination of browser and

plug-ins when analysis time frame is 2 seconds. See table 4.5 for the detail

of the combination. 58

4.3 Average identification accuracy of each website for different combination of

browser and plug-ins when analysis time frame is 2 seconds. 59

4.4 Average identification accuracy of C4.5 algorithm for different type of browsers

and different time frames. 60

xi

CHAPTER 1

Introduction

Data analytics is the technique of finding knowledge by examining raw data. It

is the process of collecting data, analyzing data and drawing information. With

data analytics, researchers can verify existing knowledge and infer new knowledge.

Figure 1.1 shows the process of data analytics. Firstly, raw data is collected from

various sources, such as existing databases, legacy file systems etc.. Raw data then is

processed to remove redundant or unused information. Real raw data usually contains

lots of missing, even erroneous information. We clean the raw data and load it in a

nicely-formatted table such as a database. Finally, we start analyzing the data. There

are two types of analysis: 1) exploratory analysis and model building. Exploratory

analysis is to reveal features of data; usually graphs are drawn to help understand

the data, and 2) knowledge is expressed in terms of models; statistical algorithms or

data mining techniques are used to build these models.

In this dissertation, we use data analytics to learn from and improve existing sys-

tems. Three data analytics case studies are conducted in this dissertation. These

case studies are about privacy-aware systems. The aim is to improve anonymity and

preserve privacy. In the first case study, we analyze the anonymity of Tor itself. We

show that a circuit clogging attack can be used to bypass the anonymity provided

by Tor. We also propose a schema to identify circuit clogging attacks. Our second

case study is about website fingerprinting. We propose a new realistic cover traffic

1

Figure 1.1: Process of data analytics

algorithm to mitigate website fingerprinting attacks. Our algorithm reduces the ac-

curacy of website fingerprinting attacks from 92% to 14% with zero latency overhead

and 20% bandwidth overhead. Our third case study is about webbrowser fingerprint-

ing in anonymous communications. We analyze the network traffic generated by web

browsers and show that features of webbrowsers can be inferred with high probability.

1.1 Case 1: Timing Attack on Tor

Tor is a popular anonymity-providing network used by over 500, 000 users daily. The

Tor network is made up of volunteer relays. To anonymously connect to a server,

a user first creates a circuit, consisting of three relays, and routes traffic through

these proxies before connecting to the server. The client is thus hidden from the

server through three Tor proxies. If the three Tor proxies used by the client could

be identified, the anonymity of the client would be reduced. One particular way of

identifying the three Tor relays in a circuit is to perform a circuit clogging attack.

This attack requires the client to connect to a malicious server (malicious content,

such as an advertising frame, can be hosted on a popular server). The malicious

2

server alternates between sending bursts of data and sending little traffic. During the

burst period, the three relays used in the circuit will take longer to relay traffic due to

the increase in processing time for the extra messages. If Tor relays are continuously

monitored through network latency probes, an increase in network latency indicates

that this Tor relay is likely being used in that circuit. We show, through experiments

on the real Tor network, that the Tor relays in a circuit can be identified. A detection

scheme is also proposed for clients to determine whether a circuit clogging attack is

happening. The costs for both the attack and the detection mechanism are small and

feasible in the current Tor network [3].

1.2 Case 2: Website Fingerprinting

Website fingerprinting attacks have been shown to be able to predict the website

visited even if the network connection is encrypted and anonymized. These attacks

have achieved accuracies as high as 92%. Mitigations to these attacks are using

cover/decoy network traffic to add noise, padding to ensure all the network packets

are the same size, and introducing network delays to confuse an adversary. Although

these mitigations have been shown to be effective, reducing the accuracy to 10%,

the overhead is very high. The latency overhead is above 100% and the bandwidth

overhead is at least 40%. We introduce a new realistic cover traffic algorithm, based

on a user’s previous network traffic, to mitigate website fingerprinting attacks. Our

algorithms reduce the accuracy of attacks to 14% with zero latency overhead and

about 20% bandwidth overhead.

3

1.3 Case 3: Webbrowser Fingerprinting

Webbrowser fingerprinting is a powerful tool to identify an Internet end-user. Previ-

ous research has shown that the information extracted from webbrowsers can uniquely

identify an end-user. To collect webbrowser specific information, intentional JavaScript

codes are embedded in web pages. In this research, we show that fingerprinting char-

acteristics of a webbrowser can also be collected by solely checking the network traffic

data generated when browsing a website. We collect network traffic data generated

by browsing the homepage of the most popular websites. Based on this data, we

show that the browser fingerprinting characteristics can be inferred with high accu-

racy. Among these characteristics, type of webbrowser can be identified with over

70% accuracy rate, usage status of popular plug-ins like JavaScript and flash can also

be accurately identified [4].

4

CHAPTER 2

Timing Attack on Tor

2.1 Introduction

Anonymity and censorship-resistant systems are becoming more prominent due to the

recent unrest in Egypt and other countries [5–7]. To avoid prosecution and identifica-

tion by oppressive authorities, citizens of these countries require a system that allow

them to maintain their anonymity on the Internet. Various anonymization-providing

services exist nowadays [8–14], with Tor [13, 14] being one of the most popular ones

with over 500, 000 users [15]. Tor is known as a “low-latency” service as interactive

applications such as web-browsing, chat, and remote connections (VPN and ssh for

example) can be used on top of Tor.

A client, who wants to connect to a remote server anonymously, uses Tor as a

proxy. All the connections and messages go through Tor first, then to the server.

Thus, the server believes that the connection is coming from Tor, which hides who

the real client is. The Tor system is made up of a network of relays. Each relay is a

volunteer machine. The client picks three relays from the network to form a circuit:

the entry node, middle node, and exit node. The client establishes a connection with

the entry node, then using the entry node as a proxy, extends that connection to the

middle node, and finally, extends the same connection to the exit node. Then, the

client hops through each of the relays to connect to the server. In this case, the server

5

believes the connection is coming from the exit relay. Only the entry relay knows who

the client is, but believes the destination is the middle relay.

The Tor project started around 2004 and has been growing in popularity since.

It is used by citizens of oppressive regimes, dissidents, whistle-blowers, journalists,

and governments’ military for anonymous communication. Currently, there are over

500, 000 users [15] in Tor and over 3, 000 relay nodes [15]. The premise of anonymity

relies on the three relays used by the client to be non-colluding (especially the entry

and exit nodes). Moreover, the identity of the three relays used by a client to connect

to a server is hidden. If an adversary could somehow identify the three relays used by

a client, this breaks some of the anonymity of the client as it reveals which three Tor

relays the client chose. It has been shown in [16] that after the Tor relays in the circuit

have been identified, the identity of the client is also leaked. Thus, deanonymizing

the three relays used by a client is the first step towards identifying which client is

communicating with which server. This has a huge impact on Tor as the anonymity

of any Tor user can be compromised.

There exists many attacks [17–25] in the literature on deanonymizing the client

and the three Tor relays, such as timing attacks, network flow attacks, and circuit

clogging attacks. In this research, we revisit the circuit clogging attack described

in [20] and show that it is still applicable in the current Tor network. The three

relays used in Tor is called a circuit. In a circuit clogging attack, the premise is

that a client creates a circuit and connects to a server using that circuit. The server

or parts of the content of the server (for example an advertising frame) is malicious.

The malicious content alternates between sending a lot of data and sending very little

data. If there were a direct connection between the client and the server, there were

no issue with the extra data. Since each Tor relay can be part of multiple circuits,

when even one circuit is busy delivering a lot of data, that Tor relay will slow down.

In this particular attack, the goal is to identify the three relays used by a client.

6

Every relay in the Tor network is continuously monitored, for example, by creating a

1-hop circuit or through system pings. When a relay slows down during the period

of sending burst data (sending a lot of data), its monitoring will show a spike in

network latency. The three Tor relays that show an increase in network latency in

the monitoring are most likely the three relays used in the circuit by the client.

The first described circuit clogging attack [20] on Tor was performed a few years

ago when Tor was still in its infancy. There were only 50 Tor relays at the time, of

which 13 were used to demonstrate the attack. Now, there are over 3, 000 relays and

Tor is heavily used for web traffic and bulk downloads, such as BitTorrent [26] or

peer-to-peer file download traffic. We revisit this attack and show that this circuit

clogging attack to identify the three nodes in a Tor circuit is still applicable today.

Although the authors in [22] claimed that this attack is no longer possible, their

experiments were limited. We performed a full-scale experiment with real Tor nodes.

Our proposed circuit clogging attack and network experiments are slightly different

from the experimental setup in [20] or [22], as shown in Section 2.3. Section 2.5

shows that a distinct pattern can be observed for the Tor relays in the circuit versus

Tor relays not in the circuit. The pattern shows that during the burst period, an

increase in network latency can be observed, while during the “sleep” period, the

network latency decreases to normal. Through experiments performed on the real

Tor network, all the Tor relays used in a circuit under a circuit clogging attack can

be identified over 78% of the time. The bandwidth required to perform the circuit

clogging attack is less than 30KB/second, and the bandwidth needed to monitor all

the 3, 000 Tor relays is 391KB/second.

A detection scheme for clients is also proposed. The detection mechanism probes

all the user’s created circuits for timing information. If it detects a high and un-

expected increase in network latency, the user can disconnect from the server and

destroy the affected circuit. Experiments indicate that the proposed scheme can de-

7

tect over 85% of attacks. The scheme also incurs a very low overhead, requiring less

than 3KB/second extra bandwidth to operate. The scheme proposed detects when

a possible circuit-clogging attack is occurring; it does not prevent circuit-clogging

attacks.

The rest of the research is organized as follows. Section 2.2 gives a more detailed

description of how Tor works. An outline of related work is also provided in Sec-

tion 2.2. In Section 2.3, we describe the specific circuit clogging attack from [20] and

how our experiment is set up. A possible solution to identify when a clogging attack

is taking place, is given in Section 2.4. The results of our experiment are shown in

Section 2.5. Finally, in Section 2.6, we discuss future work and conclude.

2.2 Background

We provide a more detailed description of how Tor works, as well as, a threat model

for the attack. The different attacks on Tor to identify the client or the circuit are

then outlined.

2.2.1 Tor

Tor [13, 14], released around 2004, is the second generation onion router [27]. The

Tor network consists of three main entities: directory servers, relays, and clients.

The directory servers are trusted and they keep track of all the relays in the network.

Every relay contacts the directory servers to register itself as a relay and upload its

key and configuration, such as open ports, and advertised bandwidth. The directory

servers regularly form a consensus of all the relays, and sign the consensus document.

The servers also monitor the relays’ advertised bandwidths. Each client contacts the

directory servers to download the consensus document to obtain a list of all the relays

8

(a) (b)

Figure 2.1: (a) Circuit creation in Tor: the client randomly selects three Tor relays in
the Tor network to be its entry, middle, and exit nodes. The same circuit can be used for
different connections (called streams) to different servers. (b) Onion routing and encryption:
A client connects to the server through Tor. The client wants to send a message (blue) to
the server. The client first adds a layer to the message, encrypted with the exit node’s key
(green). Then the client adds a second layer, encrypted with the middle node’s key (black),
and finally, that whole message is encrypted with the entry node’s key (red). At each step,
each relay peels off its layer and forwards the message to the next relay.

and their status. A client can also serve as a relay. The directory servers are currently

hard-coded in Tor, whereas the relays are volunteer machines.

Tor works as follows. A client contacts the directory servers and downloads the

consensus document of all the active relays. The client then needs to construct a

circuit to connect to servers on the Internet. To contact a server, the client proxies

the connection through a circuit. To build a circuit, the client randomly selects

three Tor relays: an entry node, a middle node, and an exit node. The client first

establishes an encrypted connection with the entry node. The client then extends

that circuit, by going through the entry node, to establish an encrypted connection

with the middle node. The client further extends the circuit by establishing another

encrypted connection with the exit relay. Encryption and authentication of each

relay are possible since every relay’s key is part of the consensus document. Once

the circuit is built, the client uses it to proxy connections over, to contact Internet

servers. Circuits are built using onion routing, such that the connection from the

9

client to each of the three relays is onion-encrypted. None of the relays see what the

client is sending to the other relays. For example, the entry node cannot tell that

the client is extending the circuit to a particular exit node, as the message to the

middle node is encrypted with the middle node only. Figure 2.1 shows graphically

how circuits and onion encryption work.

Anonymity is achieved since no entity in the network knows who the client and

server are. The entry node only knows that the client is communicating with the

middle node. The middle node knows that a machine (entry node) is communicating

with another machine (exit node). The middle node cannot tell that it is the middle

node of a circuit. Similarly, the exit relay knows that a machine (middle node)

is communicating with a server. Finally, the server believes that the connection is

coming from the exit relay. To prevent an adversary from potentially controlling a

large fraction of entry nodes in all circuits, a client randomly selects three Tor relays

as its entry guard nodes. This means that the client will only pick one of these three

entry guards as its first entry node in any circuit the client creates. The middle and

exit nodes in the circuit are still randomly selected from the consensus document. It

is noted that there are over 3, 000 relays in the Tor network, with about 800 of these

relays marked as exit relays.

Due to the heavy cost, in terms of encryption and processing, in creating circuits, a

client can use one circuit for multiple connections (or streams) to different servers. By

default, each circuit is used for at least 10 minutes before it is recycled and a new one

created. If a connection is still active in a circuit, that circuit is not destroyed but no

new connections are created through that circuit. Circuits can be created in parallel

to increase efficiency. Rate limiting is applied end-to-end using TCP. However, Tor

also implements its own rate limiting. Every connection is associated with a token

bucket. Once a connection runs out of tokens, no new packets can be accepted or

delivered until previous packets have been received.

10

In Tor, every packet is a cell, and each cell’s size is 512 bytes. By default, for each

relay, the size of a circuit is 1, 000 cells while the size of a stream is 500 cells. Within

each circuit, cells are scheduled in a First-In-First-Out (FIFO) fashion. There are

currently two scheduling algorithms that can be used within each relay to decide which

circuit’s cells get processed next. The original algorithm uses round-robin to select the

next cell to process. The round-robin is performed among all the circuits. The newer

algorithm uses an exponential weighted moving average (EWMA) to determine which

circuit to process the next cell from. Each cell is weighted exponentially based on

the number of cells in each circuit. Circuits with fewer cells thus have higher priority.

This scheduling algorithm is the recommended one from the consensus document.

2.2.2 Threat Model

The threat model in this research is the same as that used in the original Tor paper [14]

and in the current literature on Tor. The adversary is only local to each entity or

ISP in Tor, and is assumed to not have global capabilities. The adversary can be

either passive or active. Attackers can drop packets, relay packets, modify packets

(note that cells in Tor are encrypted), delay packets, and passively eavesdrop on all

packets. An adversary can listen on the communications at multiple relays, clients,

and/or servers, but not all of them. Moreover, the Tor relays, clients, and servers can

be malicious but the directory servers are honest and trusted.

2.2.3 Related Work

The current literature contains many publications describing attacks on Tor and other

anonymity-providing services [16, 18–23, 28]. Most of these attacks use some sort of

timing analysis to determine which relays, clients, servers, or paths are used. The

simplest attack in Tor, is for the adversary to be in control of both the entry and exit

11

nodes in a circuit. Using timing information, the adversary can correlate that the

two nodes are actually part of the same circuit, and from there, can deduce that a

particular client is communicating with a particular server. If the adversary controls

f relays out of n relays, then the probability that the entry and exit nodes selected

belong to the adversary is (f
n
)2. This probability is even lower with the introduction

of entry guards.

In 2005, Murdoch and Danezis [20] showed a low-cost traffic analysis attack on

Tor, which allowed them to identify the three relays used in a circuit. The attack

is a variant of the circuit clogging attack, where the adversary attempts to overload

the three relays used, which in turn, increases the network latency timing of these

three relays. Since all other relays are unaffected, an increase in timing of network

latency of three nodes, leads the attacker to conclude that these three nodes are the

three relays in the circuit. This attack assumes that the server or part of the content

being served is controlled by the adversary. From contacting the directory servers,

the adversary also knows all the Tor relays in the network. It can then monitor all the

Tor relays for timing information. The adversary runs a probe client and server. It

then constructs a one-hop (one-node) circuit to each Tor relay. The probe client uses

that circuit to connect to the probe server. The probe keeps each circuit alive and

periodically performs a measurement of the network latency of each circuit. Once the

malicious server receives a connection from Tor, it starts the circuit clogging attack.

The attack consists of a period of low traffic, followed by a period of high traffic,

followed by a period of low traffic, and so on. During the period of high traffic, the

three relays in the circuit become overloaded as they have to process more cells. This,

in turn, leads to an increase in network latency measured by the probe. As all other

relays are unaffected, the three relays, experiencing an increase in network latency,

are likely the three nodes in the circuit. Once the circuit is identified, the attack

can be further extended [16] to narrow down the list of possible clients which created

12

that circuit. The authors of [16] measured the network latency of the whole circuit to

calculate the network latency between the entry node and the server. From there, it

was trivial to calculate the network latency between the victim and the entry node.

The list of possible victims can then be narrowed down using that extra information

(network latency) obtained.

However, the investigation of this low-cost circuit clogging attack was originally

performed in 2005, when Tor consisted of only 50 relays and few users. The primary

use of Tor then, was for remote connections, web traffic, and anonymous chats. Ex-

periments were performed using 13 out of the 50 relays. Nowadays, Tor consists of

thousands of relays, with hundreds of thousands of users. Usage of Tor is also more

diverse, consisting of short and small web traffic and longer and more bandwidth-

intensive file downloads, such as BitTorrent [26]. It is widely believed that this attack

is no longer possible due to the changes in the Tor network mentioned above, such

as increased traffic and more diverse traffic. As far as we know, there was no specific

countermeasure implemented, other than a better scheduling algorithm for circuits.

Evans et al. [22] presented a variant of the clogging attack using long paths. In that

paper, they replicated the Murdoch and Danezis attack and showed that it was no

longer applicable in the Tor network of 2008, due to the noise in the Tor network and

the loss of the effects of the attack in the noise.

We show that a variant of the circuit clogging attack from the 2005 paper [20] is

still possible today. This allows an adversary to identify the three relays used in a

circuit, and can be a stepping stone to actually identify clients of the Tor network. We

note that in our proposed attack, only two out of the three relays are public Tor relays;

the third one is under the adversary’s control. Our attack is more comprehensive than

previous attacks [20,22] as the experiments include all the Tor relays, and the periods

of on/off attack are longer. The attack is also performed on the real Tor network.

The experiment setup is also slightly different, as shown in the next section.

13

2.3 Attack Design

We now describe our circuit clogging attack. It is very similar to the clogging attack

from Murdoch and Danezis [20]. The four entities are the client (victim), burst server,

probe, and Tor. The client refers to any user connecting to servers anonymously, using

the Tor network. Tor represents the three relays used in the circuit created by the

client. The three Tor relays are randomly selected from the real Tor network. The

burst server is a malicious server the client connects to, either directly or indirectly.

For example, the burst server can serve advertisement content when the client visits

a major popular website. The goal of the burst server is to introduce enough traffic in

the connection with the client to identify the three Tor relays used in the circuit. The

probe entity is controlled by the same adversary that controls the burst server; the

objective of the probe is to perform network measurements of all the Tor relays. The

probe measures the time to route a message through each Tor relay in the network.

For consistency, the measurement is performed by creating a one-hop circuit through

each Tor relay and measuring the network latency. The probe entity consists of three

components, all hosted on the same physical machine: a probe client, probe server,

and a public Tor exit node. Although the Tor exit node is a public exit relay, its exit

policies are restrictive to only allow exit traffic to the probe server. Moreover, this exit

node advertises low bandwidth and is regularly turned off to prevent it from gaining

the “fast” and “stable” flags in the consensus document, which in turn, decreases the

probability that it will be used by other circuits. Since actual one-hop circuits are not

allowed in Tor, this exit node is needed to simulate a one-hop circuit. Since the exit

node is hosted on the same physical machine as the probe client and server, and is

not used by other circuits, the overhead introduced is small and consistent among all

the network probe measurements. The burst server machine and the probe machine

are time synchronized so that the increase in network latency measurements can be

14

Figure 2.2: The layout of our proposed attack experiment. The burst server could be a
physical server or part of the content served by another server, for example an advertisement
server. The circuit created by the client consists of real Tor relays. The probe’s three
components are hosted on the same physical machine. The probe exit node is set up such
that it only accepts exit connections to the probe server.

correlated with the time of the burst traffic period. All the entities of our experiments

are shown in Figure 2.2.

The burst server introduces burst of traffic to the circuit, in an attempt to disrupt

the timing information measured by the probe. The burst server alternates between

a period of burst traffic and a period of low traffic. Ideally, the Tor network traffic is

constant enough that introducing noise or extra messages temporarily will increase

the network latency of the three Tor relays measured by the probe. If this experiment

is performed multiple times, the identity of the three Tor relays used in the circuit can

be identified, and the identity of the client can be leaked [16]. The burst server starts

by sending very few packets for a period TI , to obtain probe measurements during the

initial period. The burst server then sends a burst of packets for a period of TA, then

sends very few packets for a period of time TS, and so on. During the burst period, it

is expected that the probe will measure an increase in network latency for the three

Tor relays used in the circuit, but no increase in network latency in all other relays.

We next describe in more detail how the probe works.

15

Figure 2.3: The probe works by creating “one-hop” circuit to each Tor relay, with the exit
node being the probe exit node. In this example, the Tor network is shown to have only
two relays.

The probe client creates a circuit with each of the relays of the Tor network

as the entry node, and chooses the probe exit relay as the exit node. There is no

middle node. Since the exit node is controlled by the probe, essentially, a “one-

hop” circuit is created. Figure 2.3 illustrates how the probe works. Once a circuit is

created, at regular intervals, the probe client sends a timestamp t1 to the probe server

through the circuit. The server records the time t2 that it received the timestamp.

Since the probe client and probe server are located on the same physical machine,

no time synchronization is required. Also, since the probe exit node is not used for

other circuits, the latency through the exit node and the extra time for processing is

minimal. That small extra time is also consistent for all the probe measurements and

does not affect any of the timing information. The network latency of each circuit

(each relay node p) is tp = t2 − t1.

The adversary needs to control the probe’s Tor exit node. It is possible for the

probe’s Tor exit node not to appear in the public consensus document; an adversary

could be more stealthy that way. This requires setting up private directory servers,

16

which mirror the real Tor directory servers. This does not affect the results of the

experiments, just whether the probe’s exit relay is public or not. Our modification to

the original circuit clogging attack [20] also requires that the Tor exit node used in

the circuit, shown in Figure 2.2, be controlled by the adversary. We plan to relax that

requirement in future work. Although the Tor exit node advertises a low bandwidth

to the directory servers (10 KB/s), it is allowed to relay as much traffic as the network

bandwidth allows; this is to prevent our two Tor exit nodes (probe and client circuit)

to be used in other circuits.

2.4 Proposed Detection Scheme

We propose a scheme that can be used by all clients using Tor to detect when a

circuit clogging attack is happening. Recall that a circuit clogging attack, like the

one described in the previous section, can reduce the anonymity of all Tor users.

When a possible circuit clogging attack is detected, the client can disconnect from

the server and destroy the affected circuit. This detection scheme can also be used

by the Tor operators, such as the directory servers, to monitor the Tor network for

circuit clogging attacks.

The idea behind the proposed scheme is to use a probe to measure the network

latency of each circuit. This is similar to the adversary using a probe to build one-hop

circuits to each Tor relay. When the client creates a circuit, it also starts a client

probe through the same circuit. The client probe regularly sends a timestamp ts1

through the circuit to the victim probe server. The probe server replies with the

same message ts1. Once the client probe receives the reply from the probe server, it

calculates the current time ts2, and the RTT or network latency for that circuit is

ts = ts2 − ts1. Both the victim client and the victim probe are hosted on the same

physical machine. Both the burst server and the victim probe server are also hosted

17

Figure 2.4: The layout of the proposed detection scheme for circuit clogging attacks. The
two new entities are the victim probe and the victim probe server. The probe works similar
to the attack probe, except the whole circuit is monitored instead of individual relays.

on the same server. Figure 2.4 depicts the setup for the proposed detection scheme.

In our experiments, we set up both a victim probe and a victim probe server. In a

real attack, the victim probe server is not needed. The network latency of the whole

circuit can be obtained through the lower layers. For example, the TCP sequence

numbers and corresponding timestamps can be examined to determine the network

latency for each circuit. Also, a public trusted server, similar to the Tor directory

servers, can be hosted to reply to victim probes. As the next section shows, the costs

required to run such a server are not very big. The challenges in setting up a public

probe server is outside the scope of this research. All the clients need to run is an

extra process or thread for the victim probe, which sends a probe at regular intervals

through all the created circuits.

It can be argued that clients can also set-up one-hop circuit for each of the relays

used. However, since Tor, by default, blocks one-hop exits, the client will have to also

host a Tor exit node, which might not be feasible nor practical.

18

2.5 Evaluation

2.5.1 Experimental Setup

All our experiments were performed during February 2013 using Tor version 0.2.3.25.

The client, burst server, and probe were hosted on different machines, and were time

synchronized. In a real attack, only the burst server and the probe are controlled by

an adversary. Before each experiment, the latest consensus document was downloaded

from the Tor directory servers. Only the Tor relays with the “fast” and “stable” flags

were chosen. The Tor node selection uses these criteria as well, so our experiment is

close to what would happen in a real attack. Two Tor relays were randomly chosen

to be the entry and middle relay in the circuit used by the client to connect to the

burst server. The exit relay is hosted on our server; we plan to relax this constraint

later. Two other Tor relays were also chosen, as a control case. In our experiments,

we are only probing four Tor relays, not the whole Tor network – an actual attack

would have to probe the whole Tor network. The entry and middle relays are referred

as TorC , while the two other Tor relays are referred as TorR. The probe creates a

“one”-hop circuit to each of the four relays and sends a network measurement every

5 seconds. The initial time period TI was set to 15 minutes, while the burst attack

period TA was set to 5 minutes, and the sleep period TS was set to 5 minutes. Each

experiment was run for 60 minutes. Instead of creating one single connection, the

client is multi-threaded and sets up 5 threads to connect to the server. All the 5

threads use the same circuit. In a real setting, a server can redirect a client to 5

different content servers; many web browsers download multiple parts of a server in

parallel. For each experiment, the four Tor relays are randomly selected from the list

of Tor nodes.

Figure 2.5 shows a probe’s network measurement of a Tor relay used in the circuit.

Each probe was sent at intervals of 5 seconds. It can be seen in the figure that during

19

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60
L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
s
)

Time (minutes)

Figure 2.5: Probe network measurement for a Tor relay used in the client circuit. The
burst attack period starts at the red (solid) vertical line and stops at the green (dashed)
vertical line. The pattern of burst/sleep periods can be clearly seen.

the burst period (the beginning of which is indicated by the red darker solid vertical

line), the latency measured increases, and during the sleep period (the beginning of

which is indicated by the green lighter dashed vertical line), the latency decreases to

that of the initial period. The initial period is used to set the baseline for the average

network latency for each relay.

The victim probe also is set to measure the latency of the circuit every 5 seconds.

2.5.2 Results of Attack

Figure 2.6 shows an example of an experiment run. The figure shows the probe’s

network latency measurement for the four Tor relays used in that experiment: two

of them were part of the circuit, and the other two were not part of the circuit.

Figure 2.6(a) and (b) refer to the entry and middle node in the circuit, respectively,

while Figure 2.6(c) and (d) refer to the other two Tor relays. These two Tor relays

((c) and (d)) act as a control case, representing all the relays in the Tor network.

The probings of these two relays should show no difference during the burst attack

period and during the sleep period. However, the entry and middle node should show

20

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Time (minutes)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Time (minutes)

(a) Entry relay (b) Middle relay

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Time (minutes)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Time (minutes)

(c) Other relay (d) Other relay

Figure 2.6: The probe’s network latency measurement over time for (a) the entry relay,
(b) the middle relay, (c) and (d) the other two Tor relays not part of the circuit.

a distinct pattern, which is seen in Figure 2.6.

The probe machine is time-synchronized with the burst server and knows when

the different periods (initial/burst/sleep) happen. The initial time period TI is used

as a baseline. The baseline time tb is calculated as the average of all the network

latency times during the initial period TI . The average time for each period is also

calculated. For the entry and middle relays’ measurements, it is expected that the

average time during the burst periods will be higher than tb, and the average time

during the sleep periods will be about the same as tb. For the two other Tor relays

TorR, it is expected that the average time for all the periods will be similar to the

average initial time tb. Due to noise and variations in probe measurements, such

21

as a Tor relay being used in a bandwidth-intensive circuit, the average time for the

sleep periods for TorC and for all periods for TorR might be higher than the average

initial time tb. If this happens, this is called a false positive. These regular variations

in the network latencies measured lead to using a threshold value α to determine

whether the average time ta for a period indicates a burst period or a sleep period. If

ta ≥ α×tb, then this indicates that the network latency measured is high enough that

it indicates a burst period. Relays experiencing such high network latencies during

actual burst periods are marked as possible entry or middle relays used in the circuit.

The value of the threshold α is varied from 1.0 − 5.0.

The varying threshold produces different numbers of false positives (a random

Tor relay accidentally marked as being part of the circuit used to connect to the

burst server) and different numbers of correct predictions or numbers of true positives

(correct Tor relay identified as being either entry or middle relay in the circuit used

to connect to the burst server). The Receiver Operator Characteristic (ROC) [29]

curve shows the trade-off between the false positive rate and the true positive rate.

Figure 2.7 illustrates the ROC curve for our experiments, when varying the threshold

α. The line y = x (green line in the figure) shows the true positive rate and the false

positive rate when randomly determining whether a Tor relay is part of the circuit or

not (50% probability of being correct). The vertical line from (0, 0) to (1, 1) shows

a perfect classifier where all the Tor relays part of the circuit are correctly identified

and there are no false positives. Figure 2.7 shows that our experiments fall between

the perfect classifier and random classifier. This means that our attack is better than

random but not perfect. The area under the curve (AUC) shows the trade-off between

the true and false positive rate. The perfect classifier has an area under the curve

of 1.0 and the completely random classifier has an AUC of 0.5. The area under the

curve for our attack is 0.78. The area under the curve when using one thread for

the attack, instead of five threads, is 0.68 (ROC curve not shown). This means that

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
T

ru
e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Figure 2.7: The Receiver Operator Characteristic (ROC) curve for the probe measure-
ments. The area under the curve (AUC) is 0.78 and the equal error rate is 28%. The y = x
line indicates the random classifier.

using more threads is more effective at performing the circuit clogging attacks than

using just one thread. The equal error rate indicates when the false positive rate is

equal to the true positive rate. The lower the equal error rate, the more accurate is

the system. Our attack achieved an equal error rate of 28%, which means that our

attack is accurate.

The results indicate that the circuit clogging attack is still possible in the current

Tor network. The probings of Tor relays for measuring the network latency is effective

at determining when a burst attack period occurs and at identifying whether a relay

is used in the circuit by the client to connect to the malicious burst server. We

note that our attack is conservative: more server threads, a higher burst of messages,

and a longer running time with more burst/sleep periods will make the attack more

accurate. However, since our experiments were performed on the real Tor network,

we did not want to affect the load on the Tor relays unnecessarily.

2.5.3 Detection Scheme

The proposed detection scheme was run at the same time as the attack. Each probe

measurement is per circuit created by the client. In a real setting, the client does

23

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60
L
a
te

n
c
y
 (

m
ill

is
e
c
o
n
d
s
)

Time (minutes)

Figure 2.8: One experiment showing the client’s probe of a circuit used for connecting to
the burst server. The periods of burst/sleep can be clearly seen in the figure.

not know when the burst periods are, which is different for the attacker’s probe.

For experimental simplicity, the victim machine and the burst server are also time-

synchronized. This allows us to determine the baseline and calculate the number

of correct predictions of circuit clogging attack happening. Figure 2.8 shows a time

versus network latency measured graph for the victim probe in a circuit that is used

to communicate with the busrt server. It can be clearly seen in the figure that during

the burst period, the network latency measured increases and gradually goes back

to normal when the burst period ends. The increase in network latency is also more

pronounced than for the attack probes, as seen in Figure 2.6; the y-axis scales are

different. For the one-hop attacker probe circuits, only one relay is affected, whereas

for the client’s three-hop circuits, three relays are affected.

Similar to the attack probe measurement, an initial time period TI is needed to

set the baseline average time tc. The baseline time can be obtained by the client

probe connecting to the client probe server some time before connecting to the burst

server, or through the average of all other circuit times, or through a network-wide

latency average in the consensus document. When the measured circuit network

latency exceeds the baseline initial time tc, this circuit is marked as suspicious. If the

24

burst period was active at that time, then this counts as a correct prediction. Our

proposed detection scheme is able to accurately detect 87.5% of all burst periods;

that is, it can predict when a circuit clogging attack is happening 87.5% of the time.

The proposed detection scheme is thus accurate. Although the scheme is not

perfect, once a possible attack is detected, all the connections streamed over that

circuit can be reported to the user, with a list of all the servers. After the detection

scheme is run for some time, the repeated servers on the reported list are suspicious

and can be further investigated. This whole detection and reporting mechanism

can be performed transparently to the user. The challenges in authenticating this

list and preventing “bad-mouthing” of honest servers are outside the scope of this

research. The proposed detection scheme allows the client to destroy a suspicious

circuit, to preserve the user’s anonymity. The proposed detection mechanism has

some limitations, such as false positives and the overhead/cost in creating a new

circuit. The user has control when to destroy a suspicious circuit. The user can

disconnect as soon as the circuit is flagged as suspicious, or it can wait until k “bursts”

are detected.

2.5.4 Costs

The total costs and overhead for performing the burst attack (hosting the malicious

content) and the probe machine are small, as will be shown in this section.

The bandwidth used in our burst server during the burst attack period is less than

30 KB/second, on average. If the malicious content is hosted on Amazon EC2 [30],

the cost to run one server for one circuit is $11.38 per month. The storage and

processing needed to maintain the burst server are minimal, and the costs for storage

and processing are assumed to be minimal.

The bandwidth required to probe one Tor relay is 130.4 bytes/second. Probings

25

are performed every 5 seconds. If a more fine-grained measurement is required, the

interval between measurement can be decreased, which will increase the costs to run

the probe machine. With 3, 000 relays, this is 3000 ∗ 130.40 = 391, 200 bytes/second,

which is a bandwidth of about 391 KB/second. The cost to run the probe on Ama-

zon EC2 is $121.91 per month. The processing needed for each network latency

measurement is minimal. The storage required is to record all the network latency

measurements, which consist of timestamps. Each timestamp is only 13 bytes. For a

60 minute experiment, this is 9.36KB for probing one relay, or 28MB storage for all

the relays.

The bandwidth required for a client to run the proposed detection mechanism

is 130.4 bytes/second, for each circuit the client creates. With possibly 20 circuits

created, this is an extra bandwidth of 2, 608 bytes/second or 2.6 KB/second which is

minimal. The interval for each probe is 5 seconds; this interval can be decreased for

an increase in extra bandwidth needed but faster detection. If the victim probe server

is a public server, the bandwidth required to reply to 5-minutes probe from 500, 000

clients using 20 circuits is 21.7MB/second or 1.9TB/day, which is $5, 870 on Amazon

EC2. In general, the overall costs of running a victim probe, including processing,

storage, and network, are minimal. The benefit of running a probe, however, is real,

and allows a client to detect the occurrence of a circuit clogging attack. This helps

to preserve the client’s anonymity.

2.6 Discussion and Conclusion

We showed that a circuit clogging attack is still possible in the current Tor network,

contrary to previous claims. The goal of a circuit clogging attack is to identify all the

Tor relays used in a circuit. A client uses the circuit to connect to a malicious server

(or malicious content hosted on a honest server). The malicious server periodically

26

switches between burst mode and sleep mode. During burst modes, the server sends

a burst of messages, while during the sleep modes, the server sends a few messages

only. Since all the relays in the Tor network are monitored through probe network

latency measurements, a spike in network latency is observed for the three Tor relays

used in the circuit during the burst periods. The costs to perform a circuit clogging

attack are also very low, making it a practical attack. We showed that the Tor relays

used in a circuit can be accurately identified. Moreover, the false positive rate is low

as only some other Tor relays not used in the circuit are accidentally identified as

being part of the circuit.

A circuit clogging attack detection mechanism is also proposed. The scheme uses a

probe to monitor all the circuits created by the client, instead of each Tor relay. Once

an increase in network latency from a previously recorded baseline time is measured,

the server is flagged as suspicious. The client can then disconnect from the server

and destroy the affected circuit. Through experiments on the real Tor network, the

proposed detection scheme has an accuracy of over 85%.

This research showed that the anonymity of a person using Tor is reduced since

the Tor relays used can be identified. This can be a stepping stone towards narrowing

down the possible users behind these relays. The detection scheme proposed allows

a user to detect possible occurrences of circuit clogging attacks. With over 500, 000

users daily, the attack has huge potential consequences. The proposed detection

scheme can help hundreds of thousands of people stay anonymous on the Internet.

Although a detection mechanism is better than nothing, a prevention algorithm

would be best. We leave as future work designing a scheduling algorithm that can

prevent circuit clogging attacks, such as [28]. The current experimental set-up re-

quires that the Tor exit node in the circuit be under the control of the attacker. We

performed 15 experiments where all the nodes in the circuit are public Tor relays and

with one server thread. Figure 2.9 shows the ROC curve. The area under the curve

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
T

ru
e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Figure 2.9: The Receiver Operator Characteristic (ROC) curve for the probe measure-
ments, where all the relays in the client circuit are public Tor relays. The area under the
curve (AUC) is 0.72. The y = x line indicates the random classifier.

(AUC) was 0.72, which is close to an AUC of 0.78 when the exit relay belonged to

the adversary. Based on this promising preliminary result, we plan on extending our

attack such that the exit node used in the circuit is a regular Tor exit node. We

will explore ways to improve the accuracy of the attack, such as using multiple server

threads, varying the time of the burst/sleep periods, and modifying the amount of

data sent during the burst periods.

The current attack identifies the Tor relays in the circuit; future work will identify

which of the relays are the entry, middle, and exit relays. This would require more

fine-grained probe measurements. One of the anonymity improvements in Tor is to

use entry guards, a fixed set of three relays used as entry relay in any circuit. We

will also analyze whether using entry guards leaks any information, as the user could

be more easily identified. If the same entry relay is found in circuits, this can leak

information about the user. The possible impact of the attack on bridges and hidden

servers is left as future work.

28

CHAPTER 3

Website Fingerprinting

3.1 Introduction

Website fingerprinting violates the privacy expected from a user when she is using an

anonymizing service such as a proxy or Tor [13]. The goal of website fingerprinting

attacks [31] is to determine the website visited by a victim. The adversary, in this case,

is usually local, for example on the same network or the Internet Service Provider,

and can observe all the network traffic sent by the victim. These attacks are effective

and are very accurate in successfully identifying the websites. The accuracy is over

90% even when the network traffic is encrypted or anonymized through a proxy. Since

the adversary knows who the user is and can accurately guess what websites she is

visiting, the user has no privacy.

Various defenses against website fingerprinting attacks [32–36] have been pro-

posed. The defenses include padding so that every packet has the same size, cover

traffic to generate enough noise to fool the adversary, or introducing network delays

between network packets. Although they have been shown to be effective, the over-

head introduced by these defenses is very high. The latency overhead is above 100%

and the bandwidth overhead is from 50% to over 100%.

Our contribution is a new cover traffic algorithm that generates just enough

noise to mitigate website fingerprinting attacks. Our algorithm also has zero latency

29

Mitigation Accuracy (%) Latency Overhead (%) Bandwidth Overhead(%)

No Defense 91% 0% 0%

CS-BuFLO [36] 22% 173% 130%

Tamaraw [33] 10% 200% 38%

WTF-PAD [1] 15% 0% 54%

Our Algorithm 14% 0% 20%

Table 3.1: Comparison of our algorithm’s accuracy and overhead with previous mit-
igation schemes. We showed the lowest accuracy numbers for the other schemes,
regardless of algorithms used. The table is based from [1].

overhead and lower bandwidth overhead than current schemes. Our algorithm gen-

erates “realistic” cover traffic; it collects the network traffic from a user, then uses

that historical network traffic data as training set to feed the cover traffic generation

algorithm. The generated noise thus will look exactly like a website that a user has

previously visited. This prevents website fingerprinting attacks and introduces little

bandwidth overhead.

Table 3.1 shows a comparison of our proposed algorithm with existing mitigation

techniques. Our algorithm has comparable accuracy with the other schemes, zero

latency overhead, and lower bandwidth overhead. The table shows the lowest accu-

racy (best-case for the mitigation) regardless of the classification algorithm used. Our

algorithm has zero latency overhead since we are only introducing cover traffic. No

padding or delays are introduced.

Section 3.2 describes website fingerprinting attacks and our threat model. The

design of our proposed cover traffic algorithm is provided in Section 3.3. The setup

for our experiments is outlined in Section 3.4 and Section 3.5 shows the effectiveness

of our proposed algorithm. A survey of related work is given in Section 3.6 while

future work is discussed in Section 3.7.

30

3.2 Background

3.2.1 Website Fingerprinting

Website fingerprinting aims to determine the website visited by examining the network

trace sent by a victim’s webbrowser. That trace is usually encrypted and sent over

a proxy or an anonymous network like Tor [13, 14] so that the network contents

cannot be analyzed. The only information that can be observed are the packet sizes,

the direction of the packets, the time interval between packets, and the number of

packets sent and received.

A packet trace PT consists of n network packets. PT also consists of the tuple

< Σn
i=0Ni, Ns, Nc >, where Ni is each individual network packet, Ns is the total

number of packets from server to client, Nc is the total number of packets sent from

the client to the server. Each network packet Ni forms the tuple < Si, Ti, D,Ms,Mc >,

where Si is the size of the packet, Ti is the time interval until the next packet, D is

the direction of the network packet (from client to server or from server to client),

Ms is the number of packets from the server to the client, and Mc is the number of

packets from the client to the server. Ms and Mc denotes each “train” of packets,

that is, there are usually a few packets from client to the server, followed by several

packets from server to client. On the other hand, Nc and Ns denotes the total number

of packets for the whole packet trace.

3.2.2 Classification

Previous work [2,31–33,37–47] have achieved a classification accuracy of around 90%

in both the open and closed world settings. A closed world is where the set of training

packet traces are the same as the testing set. An open world setting is where there

is a small set of monitored/sensitive packet traces among a larger set; the goal is to

31

detect if a packet trace belongs to one of these monitored websites.

To perform classification, various features have been used such as number of out-

going and incoming packets, total size of incoming and outgoing packets, and cumu-

lative size of packets. If the Tor network is used, some features that have also been

considered include the Tor cells before and after. Various algorithms have also been

used such as k-nearest neighbors (K-NN), support vector machine (SVM), random

decision forests, edit distances, Jacard index, and Naive Bayes.

In this work, we used the same features as those mentioned in [2]: cumulative

size of packets sampled at regular intervals over the whole packet trace, number of

incoming packets, total size of incoming packets, number of outgoing packets, and

total size of outgoing packets. We also used the random decision forests as this was

used by the most recent paper [47].

3.2.3 Mitigations

Various defenses against website fingerprinting attacks have been proposed such as

padding of packets to a fixed size and cover traffic (noise) to mask the real packet

trace. They have all been shown to be somewhat effective reducing the accuracy of

website fingerprinting to about 10% to 30%. However, all of these defenses incur high

latency overhead or high bandwidth overhead or both.

Our proposed algorithm achieves a similar reduction in accuracy while keeping

the overhead manageable. Our cover traffic generated is realistic instead of random

as it depends on what the user has done previously. A threshold value for the amount

of cover traffic generated can also be chosen by the user. Our algorithm experiences

zero latency overhead.

32

3.2.4 Threat Model

The threat model is a local adversary that can see all the network traffic from a user.

The adversary cannot decrypt the contents of the network packets but can observe

the metadata such as packet sizes, direction of the packets, and the timings of packets.

The adversary can also look at the IP headers to determine the source and destination

IP addresses and port numbers. The goal for the adversary is to guess the website or

webpage from only the encrypted network packet trace.

3.3 Proposed Noise Algorithm

Our proposed algorithm to generate cover traffic is novel since it generates real-

istic noise rather than random noise or random padding. The noise generated is

learned from the network traffic generated by the user’s webbrowser. The informa-

tion recorded is the network traffic trace without the payload contents: each incoming

and outgoing packet’s size, and the time interval between packets and “train” of pack-

ets. A train is a set of incoming packets with size of MTU (Maximum Transmission

Unit) with the last packet size less than MTU. Usually an outgoing web request is

following by one or more trains of incoming packets. Replaying this recorded network

traffic will simulate that user’s browsing habit. Our hypothesis is that if the cover

traffic generated is similar to what the user usually does, this will provide a better

noise in preventing website fingerprinting and also reduce the bandwidth overhead

since this would be traffic that the user usually generates anyway. It has already been

shown that if a client visits several webpages at the same time [45], then it is hard

for an adversary to identify the webpage visited.

Instead of replaying the web requests to the actual servers which would use up

resources on these servers, we set up our own simple webserver. Our algorithm can

33

Figure 3.1: Sample of recorded network traffic. The format is <timestamp>:<packet
size>. Red indicates outgoing packets.

be implemented as a plugin for Firefox (Tor Browser Bundle). It will send a web

request padded to a certain packet size to our webserver through the Tor network.

The request will contain the total size of data that the server has to send back and the

time that the data should be sent. Both the client plugin and webserver do not have

to send any content; only pad the packets to the specified packet size. The generated

network traffic will be transferred over the Tor network; a local adversary will not be

able to determine which packet is noise.

The algorithm will first record traffic of a web page, then parses the recorded traffic

trace. Packets are put into two sets based on whether they are incoming packets or

outgoing packets. For each set, packets are organized by trains of packets. For each

train, the size and timestamp of each packet is recorded. Trains of packets are listed

in order by the timestamp of the first packet in the train.

Figure 3.1 shows an example sample of a recorded network traffic. The only

information recorded is the relative time between packets and the packet sizes. Both

incoming and outgoing packets are recorded. The format of the sample shown in the

figure is as follows: <timestamp>:<packet size>. The actual time is not relevant;

only the time difference between two packets is used. This is the time difference

between the current packet’s timestamp and the next packet’s timestamp. The packet

size is the TCP-level packet size. A red packet size indicates an outgoing packet.

34

Taking the packet traces from Figure 3.1 as the example, the following two ta-

bles are built. Table 3.2 shows the parsed outgoing packets set, denoted as TS out.

Table 3.3 shows the parsed incoming packets set, denoted as TS in. Most webbrows-

ing network traces have a higher number of incoming packets than outgoing packets.

Moreover, the size of the incoming packets is higher than outgoing packets, which are

usually web requests for a URL resource (such as jpg, html, etc...). This is typical

of web traffic and is reflected in the tables. Generating noisy cover traffic works as

follows.

I. Randomly select one traffic train from TSout and TSin each, denoted as Tout

and Tin respectively. The total size of Tout is Sout and the total size of Tin is

Sin.

II. Construct a cover traffic request with size Sout.

III. Send this request to the noise server.

IV. The server will reply back with data of size Sin in WTin milliseconds. WTin is

the time difference between the first packet of Tin and the first packet of the

next traffic train after Tin in the incoming traffic train set.

V. Wait for some time WTout, where WTout is the time difference between the first

packet of the chosen outgoing traffic train Tout and the first packet of the next

outgoing traffic train.

VI. Repeat steps 1 to 5 until the total incoming traffic from the noise server is equal

to the size of all the incoming packets of the recorded traffic trace.

As an example, let’s suppose outgoing traffic train 3 is selected from TSout and

incoming traffic train 8 is selected from TSin. Our algorithm will create a new cover

traffic request to send to the noise server. The request will ask the server to send back

35

Traffic Train ID Time and Packets

1 83:565

2 116:565

3 5025:565

4 5075:565

5 5130:1130

6 5560:565

Table 3.2: The parsed outgoing traffic train set.

Traffic Train ID Time and Packets

1 516:565

2 4904:565 4905:1448 4905:1448 4907:1448 4907:1448 4908:1448

4931:705

3 4956:565

4 4981:1130

5 5017:565 5018:1448 5018:1448 5019:1448 5020:1448 5022:1448

5022:1448 5024:1448 5024:1448

6 5042:1448 5044:651

7 5073:1448 5073:1448 5074:1448 5075:1448 5075:1448 5079:1448

5079:1448 5098:422

8 5130:1448 5130:1448 5133:1448 5155:476

9 5367:565

10 5388:1448 5388:1448 5391:1448 5395:988

11 5479:565

12 5505:1130

Table 3.3: The parsed incoming traffic train set.

36

data of size 1448 + 1448 + 1448 + 476 = 4820 bytes with a time of 5367− 5130 = 237

milliseconds. The request contains only total size of data to be sent and the time.

For example, the server only needs to send padded data with size 4820. The lower

level network interface will determine how to send each packet – if the MTU is 1448,

packet size will be 1448 + 1448 + 1448 + 476. The outgoing packet will be of size

565 bytes. Since the actual contents of the packet is small, the rest of the packet is

padded. To simplify the example, we ignore packet headers. When the noise server

receive this cover traffic request, it will send back data of size 4820 bytes and sleep

for 237 milliseconds before responding to next request. At the same time, the client

side waits for 55 milliseconds, which is the time difference between the first packets of

the outgoing traffic train 4 and outgoing traffic train 5 from Table 3.2. This process

is repeated until the sum of all the incoming packet sizes from the server is equal to

the recorded traffic trace. The reason for waiting on both client and server sides is

to ensure that the generated noise traffic is well distributed to look more realistic.

This generated cover traffic can achieve better performance in terms of obfuscating

the overall traffic collected by a website fingerprinting attacker.

The user can choose as a parameter, the size of the cover traffic s. Since the

cover traffic mimicks the websites that the user has previously visited, the bandwidth

used will be doubled. To minimize the bandwidth overhead, each train size could be

reduced by a factor of s. The incoming train will thus have a total packet size of

0.5 × Sin in time WTin. This reduces the bandwidth overhead and generates fewer

packets.

We emphasize that the cover traffic is only between the client’s webbrowser and

the cover traffic webserver through Tor. The only data sent are padded data so that

the packets are of a certain pre-determined size. The cover traffic generated will look

realistic as it is traffic that was generated by the user. This recorded network traffic

is only stored locally on the browser.

37

We expect our algorithm to effectively mitigate website fingerprinting attack since

it has already been shown that cover traffic is effective. We expect that our algorithm

will have lower bandwidth overhead since the amount of noise generated can be mod-

ified. Moreover, there is no extra latency added as no padding or network delay is

introduced. Our algorithm only generates cover traffic to another website.

3.4 Experimental Setup

We utilized the dataset provided by [2], which consists of 1, 125 webpages and 40

instances of each webpage. Each instance contains the timestamp of each packet

along with the packet sizes (negative packet sizes indicate outgoing packet). We

implemented the noise generation algorithm described in Section 3.3.

Due to the new data generated by our noise generation algorithm, we could not

re-use the authors [2] SVM algorithm. Instead we use the standard Weka [48] tool

and experimented with different classification algorithms: Support Vector Machine

(SVM), decision tree (REPTree in Weka), neural network (Multi-layer perceptron),

linear regression, and random forest.

The six classification features used in our experiments are similar to thoseused

in [2]. The first four features are: total size of outgoing packets, total size of incoming

packets, total number of outgoing packets, and total number of incoming packets.

The remaining two features are the sampled cumulative representation of packet size.

There are two ways to calculate the cumulative packet size: c is the cumulative size

of packets size where an outgoing packet has a negative packet size and a is the

cumulative size of packets size where both outgoing and incoming packet sizes are

denoted as positive numbers. The number of samples used n can be varied and will

be taken at equidistant points in the packet trace. For example, if there are 75 packets

and n = 100, a sample is taken every 0.75 packet. To determine the packet size of

38

the 0.75th packet, the linear interpolation is calculated. If the 0th packet size was 10

and the 1st packet size was 20, the 0.75th packet size is (0.75∗ (20−10)) + 10 = 17.5.

We compared our proposed cover traffic algorithm with the basic cover traffic

scheme. The latter works as follows. When a user visits a website, the basic scheme

will randomly pick another website to also visit. As shown by [45], having two simul-

taneous website visits significantly lowers website fingerprinting accuracy.

The original dataset contained 1, 125 webpages, many from the same website. We

filtered out webpages of the same website and used 91 websites as our base training

dataset 1. The dataset [2] contained timestamps and packet sizes. Merging the

original website packet trace with the noise packet trace is relative straightforward.

Since there are 40 instances of each website, we randomly picked one instance as the

noise data to merge with the original packet trace.

We considered two different basic cover traffic algorithms. The first one always

picks the same webpage (but possibly different instances). The second one randomly

picks from a set of 10 webpages different from the 91 previously selected. The second

case provides a more diverse set of webpages and noise to be added.

Our noise generation algorithm “learning” dataset consists of a further 10 web-

pages where the packet traces are recorded. For each of the original 91 webpages, we

ran our algorithm to generate one packet trace of noise and merge that trace with

the original webpage packet trace.

3.5 Evaluation

Table 3.4 shows the accuracy of different classification algorithms including either only

feature c or both features a and c. The first four features are always included. As

1Note that since each webpage is a unique website, we used webpage and website interchangeably

from now on.

39

Algorithm/Attributes considered c a and c

DecisionTree 57.34% 58.86%

SVM 29.25% 28.70%

NeuralNetwork 11% 25%

Regression 71.13% 70.30%

RandomForest 81.99% 81.77%

Table 3.4: Accuracy of five statistical and machine learning algorithms considering
the two sets of attributes a and c mentioned in [2]. The sample size n used is 100.

shown in the table, adding feature a, the cumulative total of the absolute value of all

packet sizes, does not improve the accuracy of website fingerprinting attacks by much.

Unlike previous work, the SVM algorithm had a very low accuracy. The reason for

this is due to the parameters used for the machine learning algorith. When changing

some parameters, SVM achieved an accuracy of 68%. We plan on exploring SVM

further. The table shows that Random Forest, which is a collection of decision trees,

performs the best at 82% accuracy. The sample size n was set to the recommended

100 from [2]. We considered only the Random Forest classification algorithm in the

rest of this research.

We varied the sample size n from 10 to 200. Figure 3.2 shows the accuracy when

considering including either only feature c or both features (a and c). As observed,

the accuracy is stable at 82% when the sample size is greater than 50. Thus we pick

sample size n = 100 and without feature a in future experiments.

Figure 3.3 shows the classification accuracy for varying amount of noise added to

original traces. Figure 3.4 shows the bandwidth overhead in % of the extra netwok

traffic generated. The two basic cover traffic algorithms are indicated by k = 1 for

adding the same one website as noise each time and by k = 10 for randomly adding

one of ten websites as noise. The x-axis indicates the amount of noise s added. When

40

Figure 3.2: The accuracy using the Random Forest algorithm when varying the sample
size. Note the y-axis does not start at 0.

s = 1.0, this means the whole packet trace is added as noise. When s = 0.5, only

half of the packet trace is added as noise, that is, every other packet is added as

noise to preserve the time intervals. For the basic cover traffic cases (k = 1 and

k = 10), we are “simulating” the noise generated; in a real-world setting, this would

be hard to achieve without controlling the server – in this case, the browser could

send random packets. We show different values of s to compare with our algorithm.

As more noise is added (s increases), the accuracy decreases, as expected. Similarly,

the bandwidth overhead also increases as more noise is added. Our proposed noise

generation algorithm achieves the same accuracy regardless of the amount of noise;

this is because we are generating realistic noise that can more effectively hide a user’s

real traffic rather than generating random noise. Our algorithm’s bandwidth overhead

is the same as the basic cases. However, even with s = 0.25, the overhead is 20% and

the accuracy is 14%. Since our proposed algorithm generates random packet traces

based on real recorded network traffic, we ran our experiments five times; the graphs

show the average of the five experiments. For these experiments, the training dataset

used in the Random Forest classification algorithm is the original 91 webpages and

the testing dataset is the new webpages with noise added.

41

Figure 3.3: The accuracy using the Random Forest algorithm when introducing dif-
ferent kinds of cover traffic.

Figure 3.4: The bandwidth overhead when introducing different kinds of cover traffic.

42

Intuitively, accuracy should decrease as more noise is added. However, in Fig-

ure 3.3, we found that in our algorithm, s = 0.25 has a lower accuracy than s = 0.5.

We hypothesized that this could be due to the features being considered. Recall that

two of the five features are the total number of incoming packets and the total size

of incoming packets. When s is lower, the number of incoming packets is lower. To

verify our hypothesis, we re-ran our algorithms without considering these two fea-

tures of incoming packets. Figure 3.5 shows the result. It can be seen that without

these two features, accuracy decreases as noise generated increases, which is expected.

This shows that the attributes for total size of incoming packets and total number of

incoming packets help the website fingerprinting adversary in successfully identifying

the correct website (increase in accuracy). Without these two features, our proposed

algorithm performs even better as the accuracy is reduced to under 10% when s = 1.0.

Previous work [45] has shown that the number of incoming packets is one of the most

useful attributes in classification for website fingerprinting. We also considered not

including the incoming packet features; the results are shown in Figure 3.6. The re-

sults are expected as well but the change in accuracy is not as obvious as Figure 3.5

since the number of outgoing packets is about the same regardless of the value of s.

Figure 3.5: The accuracy using the Random Forest algorithm when considering the
incoming packet features or not.

Table comparing our results vs others (CS-BUFLO, Tamaraw, WTF-PAD, etc...)

43

Figure 3.6: The accuracy using the Random Forest algorithm when considering the
outgoing packet features or not.

3.6 Related Work

It has been shown that analyzing encrypted network traffic can reveal the websites

and webpages visited [2, 31–35, 37–47, 49]. Since the payload is encrypted, only the

metadata is available such as packet sizes, number of packets, direction of packets,

and time interval between packets. A training dataset is built. Then, given a network

traffic trace, machine learning techniques are used to predict the website visited. Pre-

vious results have shown that websites can be recognized with a high accuracy. More

recent research results have looked at anonymized network traces such as using Tor

instead of a simple HTTPS proxy. Although initial results showed that Tor provided

adequate protection against website fingerprinting, more advanced data parsing tech-

niques show that websites can be recognized with a fairly high accuracy even when

the website trace is over Tor. The consequences of website fingerprinting is censorship

or prosecution by the government if the user visits a forbidden website. It has been

argued [50] that website fingerprinting is not a practical attack due to the large num-

ber of webpages and the false positive would be high. Website fingerprinting attacks

have also been extended to identify the webbrowser used [4], which could lead to user

identification and linking as most users utilize a unique webbrowser (based on fonts

44

installed, languages, plugins, etc...) [51,52].

Website fingerprinting is one type of network traffic analysis. There has been other

work on network traffic analysis [53] and traffic analysis resistant protocols [24,54,55].

Network traffic analysis is usually performed for censorship [56]. Various techniques

to avoid censorship have been proposed, using traffic morphing [57] to disguise the

network traffic as VoIP [58,59] or using other covert channels [60–62]. It has, however,

been shown that it is still possible to see through this obfuscation [63–65].

Using cover/dummy/fake traffic to mask a user’s activities has been proposed be-

fore [66]. It has been shown that this mechanism can be countered or the cover traffic

removed [67,68] to reveal the user’s activities. Cover traffic is useful to mask real web

search queries by performing many other unrelated and random search queries. Cover

traffic can also be used to make network traffic analysis harder by adding unrelated

network-level packets. Our algorithm generates realistic cover traffic making it harder

for website fingerprinting attacks to accurately guess the website from the observed

packet trace. Another scheme, Track Me Not [69], focused on web search queries and

generating fake web searches, but [70] has shown that web search queries obfuscation

can still be analyzed.

Various website fingerprinting defenses have been proposed [1, 32–36, 42]. They

all make use of some sort of padding, delaying sending of packets, or adding cover

traffic. Many of these defenses have high latency and/or bandwidth overhead and

have been shown to be somewhat effective in mitigating website fingerprinting attacks.

Our proposed cover traffic defense has zero latency overhead and lower bandwidth

overhead while maintaining a high level of effectiveness.

Traffic morphing [57] is another possible defense against website fingerprinting

attacks. It attempts to modify the shape and patterns of network traffic such that

it looks different. For example, Stegotorus [71] attemps to make Tor network traffic

45

look like HTTPS. Similarly, [58, 59] attempt to morph Tor traffic to look like VoIP

traffic so that network traffic analysis or deep packet inspection will not allow Tor

traffic to be blocked or identified; VoIP traffic is usually allowed. However, [64, 65]

have shown that these traffic morphing schemes can be circumvented. We are not

proposing to modify network traffic patterns. Our algorithm generates realistic cover

traffic to mask the original packet trace.

3.7 Conclusion

We showed that our proposed cover traffic (noise generation) algorithm mitigates

website fingerprinting attacks as effectively as current existing schemes. However,

the bandwidth overhead is only 20%, much lower than existing schemes. The latency

overhead is also 0%.

We plan to expand this work in considering more webpages for both the training

dataset and our learning algorithm. A more detailed study on the different classi-

fication algorithms and parameters used will also be performed. For this research,

we used an existing dataset; we plan on implementing the webbrowser plug-in and

deploy on the Tor browser bundle. Since our algorithm records the packet traces of

the user, even though the storage is local only for packet size and timestamp, with no

identifiable information such as IP address, it has to be determined if the algorithm

could leak any information by generating the cover traffic. Further improvements to

our algorithm can be made, such as, if a user has multiple tabs open at the same

time, no noise is needed. This would reduce the bandwidth overhead.

46

CHAPTER 4

Webbrowser Fingerprinting

4.1 Introduction

Webbrowser fingerprinting is widely used in nowadays Internet environment. Many

Web services employ webbrowser fingerprinting techniques to track end users. The

identification of an end user can import great benefits to web services providers.

For example, an advertisement service provider can export new car ad to a user

if the user once access auto-vender websites and his/her browser’s fingerprinting is

recorded by the website. Among these webbrowser fingerprinting techniques, browser

plugins, cookies and Javascripts codes are used to collect fingerprinting charactics.

These tools can collect webbrowser specific information such as webbrowser’ producer,

minor version, plug-in usages and font usages etc. Combining these information, an

end user can be accurately identified.

The goal of this research is to determine whether the webbrowser fingerprinting

characteristics can be obtained based solely on network traffic. The adversary is not

the server, but any entity between the client and the server. The adversary thus

can only eavesdrop on the network traffic. Relying only on the network traffic, the

goal is then to identify the webbrowser being used. The effects of identifying the

webbrowser are tracking users across different sessions and multiple connections to

different servers, or injecting malware specific to a webbrowser. As shown in [51,52],

47

users can be almost uniquely identified from their webbrowser information.

All the work on webbrowser identification such as [51, 72] have assumed that the

identifier entity is located at the server’s side. That entity has the ability to set

cookies, look at user agent strings, and so on. Using this method, a lot of information

can be collected about the webbrowser such as the type of browser (Firefox, Internet

Explorer), the major and minor version of the software, the fonts installed, plugins

installed/enabled, and the web history of that user. All this information can be used

to uniquely identify and track users across different sessions over time and across

different website visits.

For network traffic identification, the closest work is website fingerprinting [43,44].

Looking at anonymized and encrypted network traffic, an adversary can identify the

website being visited. This is useful for censoring particular websites. Our work

focuses on network traffic analysis and uses similar techniques to identify webbrowsers.

Threat Model: The threat model considered in this research is that the client

machine, the webbrowser used, and the server are all honest and free of any malware

or bugs. The adversary can see the traffic between the client and the server. The

adversary could be the client’s ISP or any router on the path from the client to

the server. The network traffic could be encrypted or in plain-text or through an

anonymizing network such as Tor [13]. The adversary can only eavesdrop on the

network traffic; it cannot modify, drop, or inject any network packet.

Previous works [32, 41] have proved that websites can be accurately identified

by checking traffic data transfered between webbrowser and web server. In their

paper, one important assumption is that the attacker knows victim’s browser and

its configuration. In this research, our research shows that when accessing a specific

website, the traffic data between webbrowser and web server is seriously affected by

the webbrowser specific characteristics. These webbrowser specific characteristics, like

48

browser type and plug-in usages, can be accurately identified based on traffic data.

For the websites used in our experiments, the identification accuracy rate ranges from

72% to 85%. Popular webbrowser plug-ins like JavaScript and flash usage status can

be also be accurately identified.

The research is organized as follows. Section 4.2 provides an overview of previous

work on webbrowser and website fingerprinting and identification. Our experimental

setup is described in more details in Section 4.3 and the results shown in Section 4.4.

Finally, a discussion of what the results imply for the future of webbrowsers is given

in Section 4.5.

4.2 Related Work

It has been shown [31,32,41–44] that analyzing network traffic can reveal the websites

and webpages being visited. The authors looked mostly at packet sizes and packet

direction. They collected a training dataset from specific websites and clustered the

dataset. Given a network traffic trace, the authors used machine learning techniques

to predict the website visited. Website fingerprinting can be used when users want to

hide who they are communicating with, for example, by using Tor [13]. These users

might want to bypass any censorship mechanism blocking certain websites. Using

website fingerprinting, the censor can identify users accessing censored web content.

The latest paper [44] showed that specific websites can be accurately identified, only

by examining the network trace. Our work differs in that although we are analyzing

network traffic, the traffic analysis is used to identify and track webbrowsers, not to

fingerprint websites visited.

Panopticlick [51, 52] showed how browser information, such as user agent string,

fonts installed, languages supported, and plugins enabled, can be used to uniquely

identify users. Every user has an almost unique fingerprint and this can be used to

49

track users visiting different websites or across different visits to the same website.

The main goal of identifying users is to track them. This is especially useful for

advertising. The EverCookie [73] is a persistent storage that is not cleared when

the browsers cleans its cache and cookies. This permanent cookie can be used to

track users. [72] showed how users can still be tracked without setting any cookies.

FPDetective [74] did a wide survey of popular Internet websites and determined which

website was performining browser fingerprinting. Our work is different because the

fingerprinting is not at the server side; we assume the server is honest. Instead, the

adversary can only eavesdrop on network traffic between the client and the server.

In an attempt to hide their Internet activities, remain anonymous, or bypass

censors, anonymity-providing schemes such as Tor [13,14] and Anonymizer [75] have

been deployed. These schemes only hide who is communicating with whom. Network

traffic analysis can still be performed to identify any website visited. Server-side

fingerprinting can still be performed to identify users and webbrowsers. There are

tools [76, 77] that attempt to remove identifying or sensitive information from web

headers. However, they don’t provide complete protection as shown in [44,72].

Network traffic analysis have been around for some time [20, 55]. They can be

used to detect the application being used (such as Skype), or more commonly, to

deanonymize users. Various countermeasures such as traffic morphing [57] have been

proposed. A survey of network traffic analysis attacks and countermeasures is given

in [54]. In our work, we leverage network traffic analysis to identify and track users

from their webbrowser information.

50

Software Version

Client Operating System Windows 7

Web Browser 1 Google Chrome 29.0

Web Browser 2 Mozilla Firefox 24.0

Web Browser 3 Internet Explorer 10.0

Web Browser 4 Tor Browser Bundle 3.6.1

Network Protocol Analyzer Wireshark 1.10.1

Data Mining Tool Weka 3.6.10

Table 4.1: Software used during experiments and classification.

4.3 Experimental Setup

4.3.1 Collecting Data

Our assumption is that we know which web site the user is visiting, and we need to

identify who is visiting the web site, that is, to get the fingerprinting information of

the webbrowser which the user is using. The information we can use to reach this

goal is only the network traffic generated when browsing a web page. In this research,

network traffic data are collected for four types of webbrowsers and homepages of 9

top Alexa [78] websites. Our experiments are done on Windows 7 platform. The

browsers we run experiments upon are Google Chrome, Internet Explorer, Firefox

and Tor Browser Bundle. The first three are widely used web browsers. Tor Browser

Bundle [76] is a pre-configured Firefox browser, it integrates Tor software to the

webbrowser and takes advantage of Tor to protect users’ anonymity. Wireshark is

used to record TCP/IP traffic data. Table 4.1 shows the detail of softwares we used.

We use top 9 most popular web sites (downloaded from Alexa web site [78]),

51

Number Website

1 www.google.com

2 www.yahoo.com

3 www.facebook.com

4 www.amazon.com

5 www.qq.com

6 www.taobao.com

7 www.live.com

8 www.ebay.com

9 www.youtube.com

Table 4.2: Websites used for experiments.

open them in web browsers and record TCP/IP traffic data. Some web sites sup-

port localization, they will automatically switch to different versions of web pages

according to the region where we launch the browser. When using Tor Browser

bundle, the region of our browser is determined by the exit node of the Tor cir-

cuit. In our experiments, we specify the region for google.com and yahoo.com as

https://www.google.com/ncr and https://us.yahoo.com/?p=us respectively. In

this way, we can ensure that each time we are visiting the same website. Table 4.2

lists the detail of web sites we used.

To run experiments automatically, we wrote a Java program. This program will

iterate all these 9 websites and 4 browsers. For each iteration, the following 5 steps

are taken:

I. Launch Wireshark to record traffic data.

II. Wait 30 seconds then launch one web browser and connect to a website.

III. Wait 300 seconds then kill web browser.

52

Browser plugin status

flash enable enable disable disable

JavaScript disable enable enable disable

Table 4.3: plugin usage status of browser.

IV. Save traffic data to file and wait 30 seconds then Quit Wireshark.

V. Wait 300 seconds then go to step 1 and start another experiment.

For each experiment, we open a website with a specific web browser and then

record all the TCP/IP packets between the web browser and the web server. In step

1, we launch Wireshark first. In step 2, we wait 30 seconds. The 30 seconds delay is

to ensure we dont miss any packets. in step 3, we keep the browser running for 600

seconds so that all the contents of the web page have been downloaded. In step 4, the

traffic data is recorded to a file like windows chrome exp1 amazon 20130915. We use

file name to record information like OS platform, browser type, web site name and

experiment number. To avoid experiments influencing each other, for example, web

clients receive packets comes from web servers we visited in the previous experiment,

in step 5, we wait another 300 seconds.

Javascript and flash are two popular plug-ins. With JavaScript, web pages are

more user friendly. With flash, we can watch videos on web pages. However,

JavaScript and flash can also put users at risk. To avoid this, some users tend to

disable them. Taking the plug-ins usage into consideration, we define a browser to be

in four different status, Table 4.3 shows the detail of these four status.

Except for Tor Browser Bundle [76], we perform 10 experiments for each browser,

web page and plugin usages status combination. In total we have 1440 experiments

(4 × 9 × 40). Our experiments were performed from February 2, 2014 to April 18,

2014.

53

4.3.2 Processing Data

To analysis these traffic data, for each experiment, we transfer the packets information

to a data series based on the direction of packets (outgoing and incoming) and time

series they are recorded. We sum up the packet size for a specific time frame interval

based on the direction of packets. For outgoing packets, we use negative numbers to

represent them by multiplying the sum of packets size with −1. We put the browser

type at the end of the data series as class attribute. For each web site, we have 160

(10 × 4 × 4) experiments. Correspondingly we have 160 data series.

Weka [48] is a popular open source data mining tool, it provides lots of powerful

classification algorithms. In this research, Weka [48] is used as the classification tool.

To use Weka [48], we put all the 160 data series to a file with .arff file format (the

standard Weka dataset file format). To get the best classification model, we tried Ze-

roR, OneR, C4.5, NaiveBayes and SVM (support vector machine) algorithms. These

algorithms are all implemented in Weka [48]. ZeroR is the base line of classification,

basically, it is randomly guessing based on probability. oneR is trying to find one

attribute to classify instances. The test model we used is 10-fold cross-validation.

In this test model, the dataset is randomly reordered and then split into 10 folds of

equal size. In each iteration, one fold is used for testing and the other 9 folds are

used for training the classifier. The test results are collected and averaged over all

folds. Cross validation is quite useful in dealing with small datasets since it utilizes

the greatest amount of training data from the dataset [79].

54

Figure 4.1: Average identification accuracy for different type of browsers when analysis
time frame is 2 seconds.

4.4 Results

4.4.1 Webbrowser type identification

The type of the webbrowser is one of the most common webbrowser fingerprinting

characteristics. Webbrowser type and version information usually can be obtained by

checking the http user-agent header. Our assumption is that we can not see the plain-

text of the packets content. All we have is the time series of packet size. Classification

models are built upon these time series and the type of classification algorithm.

Figure 4.1 shows the average accuracy rate of identifying browser type for all

nine web sites with C4.5 classification algorithm. In this research, we use accuracy

rate to represent the performance of a classification model. Suppose 40 experiments

with 10 experiments for each one of the four type of browsers, 8 experiments are

correctly classified as using Chrome, 7 experiments are correctly classified as using

Firefox, then the accuracy rate of identifying Chrome and Firefox is 80% and 70%

correspondingly.

The accuracy rate of identifying browser type is slightly different for specific

55

browsers. We can see that the best one is for Google Chrome which is identified

with 87.27% average accuracy rate. That means that for all 360 experiments which

use Chrome, 317 (360 × 0.88) of them are correctly identified, and 43 of them are

identified as others. Tor browser bundle has lowest identification average accuracy

which is around 69.99%. In our dataset, we have 4 different types of browsers, so

the base line probability of identifying the correct browser type is 25%. Our worst

accuracy rate, which is 70% for Tor bundler, is still 2.8 times of the base line accuracy.

For different websites, the accuracy rate of identifying browser type also changes.

Table 4.4 shows the exact accuracy rate for nine websites. Though the accuracy

rate changes for different websites, we can see that for each specific website, when

browsing with different browsers, their traffic data series have significant difference.

Among these 9 websites, www.facebook.com has the best average accuracy which is

about 85% and www.qq.com has the worst average accuracy which is about 73%.

Though 70% accuracy rate is pretty good comparing to the 25% base line accuracy,

there are still some improvements we can make to enhance it. Like Cai’s work [32],

we can round packets size to a multiple of 600 and remove noises of traffic data. In

future works, we will try these kinds of data refine to get higher accuracy.

4.4.2 Webbrowser plug-ins identification

Besides the browser type, plug-in usage status is also important characteristic to fin-

gerprint a browser. In this research, our assumption is that we have 13 combinations

of browser type and plug-in usages. For browser Chrome, IE and Firefox, each of

them can have 4 possible plug-in usage combination regarding the enabling or dis-

abling of flash and JavaScript plug-in. For Tor bundle, we use the default plug-in

setting.

We run C4.5 classification algorithm against the packet size series, the test model

56

Identification accuracy (%)

Websites Chrome Firefox IE Tor bundle Average

Accu-

racy for 4

browsers

www.amazon.com 89.74 82.05 64.10 75.68 77.89

www.ebay.com 84.62 87.18 82.05 70.15 81.00

www.facebook.com 92.50 80.00 87.50 81.08 85.27

www.google.com 95.00 70.00 77.50 64.86 76.84

www.live.com 84.62 82.05 89.74 63.64 80.01

www.qq.com 89.74 61.54 74.36 64.86 72.63

www.taobao.com 76.92 76.92 84.62 69.35 76.95

www.yahoo.com 85.00 72.50 75.00 70.27 75.69

www.youtube.com 90.00 67.50 85.00 73.30 78.95

Average 87.27 76.53 79.36 69.99 78.29

Table 4.4: Idenfification accuracy for specific website.

57

Figure 4.2: Average identification accuracy for different combination of browser and plug-
ins when analysis time frame is 2 seconds. See table 4.5 for the detail of the combination.

we used is 10 fold cross verification, similar for identifying browser type. Figure 4.2

shows that for all 9 websites, the average identification accuracy of combinations of

browser type and plug-ins. Besides Tor bundle, which we use default plug-in setting,

the highest identification accuracy is for combination number 4 which is about 70.62%

and the lowest one is for combination number 11, which is about 31.11%. Since there

are 13 classes of browser type and plug-ins usage combination, the baseline probability

of identifying one combination is less then 7.7% (1/13 = 0.0769) . Our worst case of

accuracy, which is 31.11% is more then 4 times of the baseline probability. When the

time frame of the packets size is 2 seconds, the average accuracy of all 13 combination

is about 52.0%, which is 6.7 times higher than the baseline probability.

Table 4.5 shows the detail of combination of browser type and plug-in usage.

For a specific website, the average identification accuracy of all 13 combination

changes slightly. For websites like YouTube, eBay and Amazon, they have relatively

higher average identification accuracy. The reason is that their web pages contains

more videos/images, and they use JavaScript to control how these videos/images are

displayed on web pages. Enabling or disabling JavaScript and flash have much more

influence to the network traffic than other websites.

58

No. Browser type Flash plug-in JavaScript plug-in

1 Chrome disable enable

2 Chrome disable disable

3 Chrome enable enable

4 Chrome enable disable

5 Firefox disable enable

6 Firefox disable disable

7 Firefox enable enable

8 Firefox enable disable

9 IE disable enable

10 IE disable disable

11 IE enable enable

12 IE enable disable

13 Tor bundle N.A. N.A.

Table 4.5: Different combinations of browser type and plug-ins usage status.

Figure 4.3: Average identification accuracy of each website for different combination of
browser and plug-ins when analysis time frame is 2 seconds.

59

Figure 4.4: Average identification accuracy of C4.5 algorithm for different type of browsers
and different time frames.

4.4.3 Varying time frames and classification algorithms

To get the best result, we tried time frames from 1 second to 10 seconds to generate

the different data series. The basic idea is that when time frame is smaller, the data

series we get contains finer information about the traffic. On the other hand, when

time frame is smaller, it will take more time to run the classifier and model is also

easier to suffer over-fitting. Besides the better accuracy rate of classification, we also

need some kind of trade-off between the accuracy rate and model complexity. Figure

4.4 shows that for algorithm C4.5, the time frames we take has slight influence to the

accuracy rate of identifying browser type.

When classifying a dataset, what kind of classification algorithm we choose usu-

ally have great influence to the performance of the final classification model. In this

research, to find the best classification model, we tried zeroR, oneR, C4.5, Naive-

Bayes and SVM algorithms. Table 4.6 shows the average browser type identification

accuracy rate of all four type of browsers and nine websites when using different

classification algorithms.

Among all these 5 algorithms, the C4.5 algorithm has best performance. It has

60

seconds zeroR oneR C4.5 NaiveBayes SVM

1 24.29 67.51 80.81 72.47 24.50

2 24.29 68.52 80.56 65.74 24.78

3 24.29 67.53 81.89 63.25 24.29

4 24.29 66.34 81.09 62.92 24.29

5 24.29 65.97 79.94 61.15 24.29

6 24.29 66.59 80.65 62.97 24.29

7 24.29 66.57 79.29 62.70 24.29

8 24.29 66.61 80.90 62.39 24.29

9 24.29 66.79 80.24 63.32 24.29

10 24.29 66.79 80.41 60.28 24.29

Table 4.6: Identification accuracy for different time frame and classification algorithm.

around 80% accuracy and the accuracy is relatively stable for different time frames.

Accuracy of NaiveBayes algorithm seems to increase as time frames become smaller.

But as we take smaller time frames, say 0.5, its accuracy did not increase.

SVM works badly in our case, there are two reasons: 1, data series used in this

research are all based on raw data, we have no data rounding or normalization. 2,

to ensure all traffic data are recorded, for each experiment, we collect all traffic data

in 5 minutes starting from the launch of accessing a web page. This results that we

have lots of zeros and small random numbers in the data series because a web page

usually can be loaded in less then 1 minute. These zeros and small random numbers

in data series decrease the classification accuracy of SVM greatly.

61

4.4.4 Summary

Our research has shown that we can identify the webbrowser type with a high accuracy

rate by solely checking the time series of network packets size. Popular plug-ins usage

status can also be identified with a good accuracy rate as well. The methodology used

in this research is straightforward and can be easily reused for different webbrowser

fingerprinting purpose.

4.5 Discussion and Conclusion

We have shown that it is possible to identify webbrowsers characteristics through

network traffic analysis only, even if the network traffic is encrypted and through an

anonymized service such as Tor. The consequences of this research are numerous.

The webbrowsers and plugins used can be identified through network traffic analysis

only. Users can potentially be identified and tracked across sessions and visits to

different websites. The identification entity does not have to be part of the server. It

can be any router along the path from the user to the server, for example, the ISP of

the server or the user.

Our research also shows that the traffic data is seriously affected by webbrowser

specific characteristics. This suggests that when we perform website fingerprinting

based on traffic data, the webbrowser plays an important role and need to be consid-

ered in future work.

There remains more work to be done in this research area. More experiments

need to be performed. The number of experiments per website need to be increased.

The number of websites tested need to be increased. The reason why the difference

of traffic data exists is also an interesting topic.

62

CHAPTER 5

Conclusion and Future Work

In this dissertation, we use data analytics to learn from and improve existing sys-

tems. We focus on privacy-aware systems and three data analytics case studies are

conducted.

In the first case study, we showed that a circuit clogging attack is still possible

in the current Tor network. The costs to perform a circuit clogging attack are also

very low, making it a practical attack. We showed that the Tor relays used in a

circuit can be accurately identified. Moreover, the false positive rate is low as only

some other Tor relays not used in the circuit are accidentally identified as being

part of the circuit. A circuit clogging attack detection mechanism is also proposed.

The scheme uses a probe to monitor all the circuits created by the client. Once an

increase in network latency from a previously recorded baseline time is measured,

the server is flagged as suspicious. The client can then disconnect from the server

and destroy the affected circuit. Through experiments on the real Tor network, the

proposed detection scheme has an accuracy of over 85%. This research showed that

the anonymity of a person using Tor is reduced since the Tor relays used can be

identified. This can be a stepping stone towards narrowing down the possible users

behind these relays. The detection scheme proposed allows a user to detect possible

occurrences of circuit clogging attacks. With over 500, 000 users daily, the attack has

huge potential consequences. The proposed detection scheme can help hundreds of

63

thousands of people stay anonymous on the Internet. The current attack identifies

the Tor relays in the circuit; future work will identify which of the relays are the entry,

middle, and exit relays. This would require more fine-grained probe measurements.

One of the anonymity improvements in Tor is to use entry guards, a fixed set of three

relays used as entry relay in any circuit. We will also analyze whether using entry

guards leaks any information, as the user could be more easily identified. If the same

entry relay is found in circuits, this can leak information about the user. The possible

impact of the attack on bridges and hidden servers is left as future work.

In the second case study, we showed that our proposed cover traffic (noise gen-

eration) algorithm mitigates website fingerprinting attacks as effectively as current

existing schemes. However, the bandwidth overhead is only 20%, much lower than

existing schemes. The latency overhead is also 0%. We plan to expand this work in

considering more webpages for both the training dataset and our learning algorithm.

A more detailed study on the different classification algorithms and parameters used

will also be performed. For this research, we used an existing dataset; we plan on im-

plementing the webbrowser plug-in and deploy on the Tor browser bundle. Since our

algorithm records the packet traces of the user, even though the storage is local only

for packet size and timestamp, with no identifiable information such as IP address, it

has to be determined if the algorithm could leak any information by generating the

cover traffic. Further improvements to our algorithm can be made, such as, if a user

has multiple tabs open at the same time, no noise is needed. This would reduce the

bandwidth overhead.

In the third case study, we have shown that it is possible to identify webbrowsers

characteristics through network traffic analysis only, even if the network traffic is

encrypted and through an anonymized service such as Tor. The consequences of this

research are numerous. The webbrowsers and plugins used can be identified through

network traffic analysis only. Users can potentially be identified and tracked across

64

sessions and visits to different websites. The identification entity does not have to be

part of the server. It can be any router along the path from the user to the server, for

example, the ISP of the server or the user. Our research also shows that the traffic

data is seriously affected by webbrowser specific characteristics. This suggests that

when we perform website fingerprinting based on traffic data, the webbrowser plays

an important role and need to be considered in future work. There remains more

work to be done in this research area. More experiments need to be performed. The

number of experiments per website need to be increased. The number of websites

tested need to be increased. The reason why the difference of traffic data exists is

also an interesting topic.

65

Bibliography

[1] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an efficient

website fingerprinting defense,” in ESORICS, 2016.

[2] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and

T. Engel, “Website fingerprinting at internet scale,” in Proceedings of the 23rd

Internet Society (ISOC) Network and Distributed System Security Symposium

(NDSS 2016), 2016.

[3] E. Chan-Tin, J. Shin, and J. Yu, “Revisiting circuit clogging attacks on tor,” in

Availability, Reliability and Security (ARES), 2013 Eighth International Confer-

ence on, pp. 131–140, IEEE, 2013.

[4] J. Yu and E. Chan-Tin, “Identifying webbrowsers in encrypted communica-

tions,” in Proceedings of the 13th Workshop on Privacy in the Electronic Society,

pp. 135–138, ACM, 2014.

[5] J. Cowie, “Egypt leaves the internet.” http://www.renesys.com/blog/2011/01/egypt-

leaves-the-internet.shtml.

[6] J. Vargas, “How an egyptian revolution began on facebook.”

http://www.nytimes.com/2012/02/19/books/review/how-an-egyptian-

revolution-began-on-facebook.html.

[7] J. Brodkin, “Iran reportedly blocking encrypted internet traffic.”

http://arstechnica.com/tech-policy/2012/02/iran-reportedly-blocking-

encrypted-internet-traffic/.

66

[8] “I2P anonymous network.” http://www.i2p2.de/.

[9] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a Type

III Anonymous Remailer Protocol,” in Proceedings of the 2003 IEEE Symposium

on Security and Privacy, pp. 2–15, May 2003.

[10] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster Protocol —

Version 2.” IETF Internet Draft, July 2003.

[11] M. Rennhard and B. Plattner, “Introducing MorphMix: Peer-to-Peer based

Anonymous Internet Usage with Collusion Detection,” in Proceedings of the

Workshop on Privacy in the Electronic Society (WPES 2002), (Washington, DC,

USA), November 2002.

[12] M. Rennhard and B. Plattner, “Practical anonymity for the masses with mor-

phmix,” in Proceedings of Financial Cryptography (FC ’04) (A. Juels, ed.),

pp. 233–250, Springer-Verlag, LNCS 3110, February 2004.

[13] “Tor.” https://www.torproject.org/.

[14] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation

onion router,” in Proceedings of the 13th USENIX Security Symposium, August

2004.

[15] “Tor metrics portal.” https://metrics.torproject.org/.

[16] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity does

network latency leak?,” in Proceedings of the 14th ACM conference on Computer

and communications security (CCS), pp. 82–91, 2007.

[17] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-offs in

anonymity providing systems,” in Proceedings of Information Hiding Workshop

67

(IH 2001) (I. S. Moskowitz, ed.), pp. 245–257, Springer-Verlag, LNCS 2137, April

2001.

[18] G. Danezis and A. Serjantov, “Statistical disclosure or intersection attacks on

anonymity systems,” in Proceedings of 6th Information Hiding Workshop (IH

2004), LNCS, (Toronto), May 2004.

[19] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix networks:

Attacks and defenses,” in Proceedings of ESORICS 2006, September 2006.

[20] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in Proceedings

of the 2005 IEEE Symposium on Security and Privacy, IEEE CS, May 2005.

[21] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-resource

routing attacks against Tor,” in Proceedings of the Workshop on Privacy in the

Electronic Society (WPES 2007), (Washington, DC, USA), October 2007.

[22] N. Evans, R. Dingledine, and C. Grothoff, “A practical congestion attack on

tor using long paths,” in Proceedings of the 18th USENIX Security Symposium,

August 2009.

[23] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on low-

latency anonymous communication systems,” in IEEE Symposium on Security

and Privacy, pp. 116 –130, may 2007.

[24] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traffic anal-

ysis of low-latency anonymous communication using throughput fingerprinting,”

in Proceedings of the 18th ACM conference on Computer and Communications

Security (CCS 2011), October 2011.

68

[25] Y. Gilad and A. Herzberg, “Spying in the Dark: TCP and Tor Traffic Analysis,”

in Proceedings of the 12th Privacy Enhancing Technologies Symposium (PETS

2012), Springer, July 2012.

[26] “BitTorrent.” http://www.bittorrent.com/.

[27] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding Routing Infor-

mation,” in Proceedings of Information Hiding: First International Workshop

(R. Anderson, ed.), pp. 137–150, Springer-Verlag, LNCS 1174, May 1996.

[28] J. McLachlan and N. Hopper, “Don’t clog the queue: Circuit clogging and mit-

igation in P2P anonymity schemes,” in Proceedings of Financial Cryptography

(FC ’08), January 2008.

[29] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn. Lett., vol. 27,

pp. 861–874, June 2006.

[30] “Amazon EC2.” http://aws.amazon.com/ec2/.

[31] A. Hintz, “Fingerprinting websites using traffic analysis,” in Proceedings of Pri-

vacy Enhancing Technologies workshop (PET 2002) (R. Dingledine and P. Syver-

son, eds.), Springer-Verlag, LNCS 2482, April 2002.

[32] X. Cai, X. Zhang, B. Joshi, and R. Johnson, “Touching from a distance: Website

fingerprinting attacks and defenses,” in Proceedings of the 19th ACM conference

on Computer and Communications Security (CCS 2012), October 2012.

[33] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective at-

tacks and provable defenses for website fingerprinting,” in Proceedings of the 23rd

USENIX Conference on Security Symposium, SEC’14, (Berkeley, CA, USA),

pp. 143–157, USENIX Association, 2014.

69

[34] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website fingerprint-

ing defense,” in Proceedings of the 13th Workshop on Privacy in the Electronic

Society, WPES ’14, (New York, NY, USA), pp. 131–134, ACM, 2014.

[35] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A system-

atic approach to developing and evaluating website fingerprinting defenses,” in

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’14, (New York, NY, USA), pp. 227–238, ACM, 2014.

[36] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion sensitive web-

site fingerprinting defense,” in Proceedings of the 13th Workshop on Privacy in

the Electronic Society, WPES ’14, (New York, NY, USA), pp. 121–130, ACM,

2014.

[37] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu,

“Statistical identification of encrypted web browsing traffic,” in Proceedings of

the 2002 IEEE Symposium on Security and Privacy, (Berkeley, California), May

2002.

[38] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy vulnerabil-

ities in encrypted http streams,” in Proceedings of the 5th International Confer-

ence on Privacy Enhancing Technologies, PET’05, (Berlin, Heidelberg), pp. 1–11,

Springer-Verlag, 2006.

[39] M. Liberatore and B. N. Levine, “Inferring the Source of Encrypted HTTP Con-

nections,” in Proceedings of the 13th ACM conference on Computer and Com-

munications Security (CCS 2006), pp. 255–263, October 2006.

[40] L. Lu, E.-C. Chang, and M. C. Chan, Website Fingerprinting and Identification

Using Ordered Feature Sequences, pp. 199–214. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010.

70

[41] R. W. Dominik Herrmann and H. Federrath, “Website fingerprinting: attacking

popular privacy enhancing technologies with the multinomial nave-bayes classi-

fier,” in Proceedings of the 2009 ACM workshop on Cloud computing security,

CCSW ’09, (New York, NY, USA), pp. 31–42, ACM, 2009.

[42] A. Z. Andriy Panchenko, Lukas Niessen and T. Engel, “Website fingerprinting in

onion routing based anonymization networks,” in Proceedings of the 10th annual

ACM workshop on Privacy in the electronic society, WPES ’11, (New York, NY,

USA), p. 103114, ACM, 2011.

[43] X. Gong, N. Borisov, N. Kiyavash, and N. Schear, “Website detection using re-

mote traffic analysis,” in Proceedings of the 12th Privacy Enhancing Technologies

Symposium (PETS 2012), Springer, July 2012.

[44] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in Pro-

ceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic

Society, WPES ’13, (New York, NY, USA), pp. 201–212, ACM, 2013.

[45] T. Wang and I. Goldberg, “On realistically attacking tor with website finger-

printing,” in Privacy Enhancing Technologies Symposium (PETS), 2016.

[46] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting data-usage

statistics for website fingerprinting attacks on android,” in Proceedings of the 9th

ACM Conference on Security & Privacy in Wireless and Mobile Networks,

WiSec ’16, (New York, NY, USA), pp. 49–60, ACM, 2016.

[47] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website finger-

printing technique,” in 25th USENIX Security Symposium (USENIX Security

16), (Austin, TX), pp. 1187–1203, USENIX Association, Aug. 2016.

[48] “Weka.” http://www.cs.waikato.ac.nz/ml/weka/.

71

[49] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical evaluation

of website fingerprinting attacks,” in Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’14, (New York,

NY, USA), pp. 263–274, ACM, 2014.

[50] “Experimental defense for website traffic fingerprinting.”

https://blog.torproject.org/blog/experimental-defense-website-traffic-

fingerprinting.

[51] P. Eckersley, “How unique is your web browser?,” in Proceedings of the 10th

International Conference on Privacy Enhancing Technologies, PETS’10, (Berlin,

Heidelberg), pp. 1–18, Springer-Verlag, 2010.

[52] “Panopticlick.” https://panopticlick.eff.org/.

[53] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, I Know Why You Went

to the Clinic: Risks and Realization of HTTPS Traffic Analysis, pp. 143–163.

Cham: Springer International Publishing, 2014.

[54] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and P. Francis,

“Towards efficient traffic-analysis resistant anonymity networks,” in Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, (New

York, NY, USA), pp. 303–314, ACM, 2013.

[55] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, I still

see you: Why efficient traffic analysis countermeasures fail,” in Proceedings of

the 2012 IEEE Symposium on Security and Privacy, May 2012.

[56] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson, “SoK: Towards Ground-

ing Censorship Circumvention in Empiricism,” IEEE Symposium on Security

and Privacy, 2016.

72

[57] C. Wright, S. Coull, and F. Monrose, “Traffic morphing: An efficient defense

against statistical traffic analysis,” in Proceedings of the Network and Distributed

Security Symposium - NDSS ’09, IEEE, February 2009.

[58] A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer, “I want my voice to

be heard: Ip over voice-over-ip for unobservable censorship circumvention.,” in

NDSS, 2013.

[59] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg, “Skypemorph:

Protocol obfuscation for tor bridges,” in Proceedings of the 19th ACM conference

on Computer and Communications Security (CCS 2012), October 2012.

[60] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh, R. Dingledine, and

P. Porras, “Evading censorship with browser-based proxies,” in Proceedings of

the 12th International Conference on Privacy Enhancing Technologies, PETS’12,

(Berlin, Heidelberg), pp. 239–258, Springer-Verlag, 2012.

[61] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and N. Borisov, “Censor-

spoofer: Asymmetric communication using ip spoofing for censorship-resistant

web browsing,” in Proceedings of the 2012 ACM Conference on Computer and

Communications Security, CCS ’12, (New York, NY, USA), pp. 121–132, ACM,

2012.

[62] J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese censorship

without proxies using cached content,” in Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, (New York,

NY, USA), pp. 70–83, ACM, 2015.

[63] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “See-

ing through network-protocol obfuscation,” in Proceedings of the 22Nd ACM

73

SIGSAC Conference on Computer and Communications Security, CCS ’15, (New

York, NY, USA), pp. 57–69, ACM, 2015.

[64] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead: Observing

unobservable network communications,” in Proceedings of the 2013 IEEE Sym-

posium on Security and Privacy, SP ’13, (Washington, DC, USA), pp. 65–79,

IEEE Computer Society, 2013.

[65] J. Geddes, M. Schuchard, and N. Hopper, “Cover your acks: Pitfalls of covert

channel censorship circumvention,” in Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, CCS ’13, (New York,

NY, USA), pp. 361–372, ACM, 2013.

[66] C. Diaz and B. Preneel, “Taxonomy of mixes and dummy traffic,” in Proceedings

of I-NetSec04: 3rd Working Conference on Privacy and Anonymity in Networked

and Distributed Systems, August 2004.

[67] N. Mallesh and M. Wright, “Countering statistical disclosure with receiver-bound

cover traffic,” in Proceedings of 12th European Symposium On Research In Com-

puter Security (ESORICS 2007) (J. Biskup and J. Lopez, eds.), vol. 4734 of

Lecture Notes in Computer Science, pp. 547–562, Springer, September 2007.

[68] C. T. Simon Oya and F. Pérez-González, “Do dummies pay off? limits of dummy

traffic protection in anonymous communications,” in Proceedings of the 14th

Privacy Enhancing Technologies Symposium (PETS 2014), July 2014.

[69] D. Howe and H. Nissenbaum, “Trackmenot: Resisting surveillance in web

search,” On the Identity Trail: Privacy, Anonymity and Identify in a Networked

Society, 2008.

[70] S. Peddinti and N. Saxena, “On the privacy of web search based on query obfusca-

tion: A case study of trackmenot,” in Privacy Enhancing Technologies (M. Atal-

74

lah and N. Hopper, eds.), vol. 6205 of Lecture Notes in Computer Science, pp. 19–

37, Springer Berlin Heidelberg, 2010.

[71] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang,

and D. Boneh, “StegoTorus: A camouflage proxy for the Tor anonymity system,”

in Proceedings of the 19th ACM conference on Computer and Communications

Security (CCS 2012), October 2012.

[72] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna,

“Cookieless monster: Exploring the ecosystem of web-based device fingerprint-

ing,” in Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP

’13, (Washington, DC, USA), pp. 541–555, IEEE Computer Society, 2013.

[73] “Evercookie.” http://samy.pl/evercookie/.

[74] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and B. Pre-

neel, “Fpdetective: Dusting the web for fingerprinters,” in Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security,

CCS ’13, (New York, NY, USA), pp. 1129–1140, ACM, 2013.

[75] “Anonymizer.” https://www.anonymizer.com/.

[76] “Tor browser bundle.” https://www.torproject.org/projects/torbrowser.

html.en.

[77] “Privoxy.” http://www.privoxy.org/.

[78] “Alexa.” http://www.alexa.com/topsites.

[79] “Weka manual.” http://www.cs.waikato.ac.nz/ml/weka/documentation.

html.

75

VITA

Jiangmin Yu

Candidate for the Degree of

Doctor of Philosophy

Thesis: APPLICATION OF DATA ANALYTICS — CASE STUDIES

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Computer Science

at Oklahoma State University, Stillwater, Oklahoma in May, 2017.

Completed the requirements for the Master of Science in Computer Science at

Wuhan University of Technology, Wuhan, China in 2006.

Completed the requirements for the Bachelor of Science in Material Science and

Engineering at Wuhan University of Technology, Wuhan, China in 2004.

Experience: I graduated from Wuhan University of Technology in 2006. After

that, I worked as a software engineer in Shanghai China for about 6

years. In 2012, I joined the Ph.D. program at Oklahoma State

University.

Professional Memberships:

	JiangminDissertation_04042017.pdf
	Dissertation_Vita.pdf

