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Abstract: we alleviate the problem of semantic scene understanding by studies on
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frared (IR) targets. The problem is formulated in a probabilistic level set framework
where a shape constrained generative model is used to provide a multi-class and
multi-view shape prior and where the shape model involves a couplet of view and
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CHAPTER I

INTRODUCTION

Typical configurations of objects appearing in a scene has been studied over the past

years in both psychology and computer vision [16]. Many experiments has suggested

that precise and/or specifically detailed analysis of individual objects might be en-

hanced with scene information [17–19], and [20] established cognitive experiments to

demonstrate that scene information and meaningful context play an important role in

perceptual recognition because objects are almost always perceived in some setting or

context. Object recognition tasks are typically conducted by matching appearances

of interested objects with available feature libraries while eliminating the background

noises. However, background information and surrounding objects in a scene might

provide a richer source of knowledge and collection of contextual associations to assist

the detection and recognition [21]. In this dissertation, we will mitigate the problem

of fully understanding a given scene by studies on both typical object segmenta-

tion/recognition algorithms, and scene labeling methods respectively. In this chapter

we will briefly introduce the background of automatic target recognition and image

parsing techniques.

i. Automatic Target Recognition

Automatic target recognition (ATR) systems perform detection and recognition of

extended targets by processing a sequence of images acquired from a passive imaging

infrared (IR) sensor [22, 23]. Our interest is primarily in sensors operating in the

traditional 3–5 µm mid-wave IR (MWIR) or 8–12 µm long-wave IR (LWIR) bands,

although our results are also applicable to those operating in the near, short-wave

1



or far-IR bands, as well. The main functions typically performed by practical IR

ATR systems (Figure 1.1) of these types include detection, segmentation, feature

extraction, tracking and recognition [2, 24]. While these functions have historically

been implemented sequentially, there is a growing recent interest in performing them

jointly, so that tracking and recognition are not delayed by ambiguities in the detec-

tion process and so that inferences made by the track processor can be leveraged for

both recognition and detection.

Figure 1.1: Conceptual data flow in automatic target recognition (ATR) systems

[2]. Detection algorithms are applied to locate potential targets, and recognition

algorithms are implemented at the region of interest for classification.

The infrared ATR problem presents significant challenges. Growth and processing

techniques for IR detector materials, such as HgCdTe and InSb, are less mature than

those for silicon, and hence, imaging IR sensors are typically characterized by higher

noise and poor uniformity compared to their visible wavelength counterparts. The im-

agery acquired under practical field conditions often exhibits strong, structured clut-

ter, poor target-to-clutter ratios and poor SNR. In important surveillance, security

and military applications, the targets of interest may be non-cooperative, employing

camouflage, decoys, countermeasures and complex maneuvers in an effort to evade

detection and tracking. These difficulties are often exacerbated by the strong ego-

motion of the sensor platform relative to the target. Depending on the operational

waveband of the sensor, environmental conditions, such as smoke, haze, fog and rain,
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can result in degraded target signatures, as well as partial or full occlusions. All of

these factors contribute to substantial appearance variability of the target thermal sig-

nature observed by the sensor, thereby limiting the effectiveness of approaches based

on, e.g., stored libraries of static a priori signatures. A few examples of MWIR sig-

nature variability from the Military Sensing Information Analysis Center (SENSIAC)

ATR Algorithm Development Image Database [3] are shown in Figure 1.2. Moreover,

one would ideally like the ATR system to be capable of generalizing on the fly, so that

both unknown target types and previously unseen views of known target types can

be detected, tracked and recognized, at least to within an appropriate target class.

A very large number of ATR algorithms have been proposed in recent decades [2,

24–26]. Some have been based primarily on the computation of certain types of

features, such as PCA [27], edge and corner descriptors [28], wavelets [29] or de-

formable templates [30], while others have been driven more by a particular classi-

fication scheme, e.g., neural networks [31], support vector machines (SVM) [32] or

sparse representations [4].

On the other hand, in the closely-related fields of computer vision and visual

tracking, there have been significant developments in object detection and recognition

based on visual features, including the histogram of oriented gradients (HOG) [33,34],

the scale-invariant feature transform (SIFT) [35], spin images [36], patch features [37],

shape contexts [38], optical flow [39] and local binary patterns [40]. Several feature

point descriptors for long-wave IR data applications were evaluated in [41], including

SIFT, speeded up robust features (SURF), binary robust invariant scalable keypoints

(BRISK), binary robust independent elementary features (BRIEF), fast retina key-

point (FREAK), oriented features from accelerated segment test (FAST) and rotated

BRIEF (ORB) features. Certain geometric, topological and spectral descriptors have

been widely used, as well [42, 43]. Active contour methods [44,45] and level set algo-

rithms have also been widely used in shape-based segmentation algorithms [46–48].
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Figure 1.2: Examples of target signature variability from the Military Sensing In-

formation Analysis Center (SENSIAC) ATR database [3]. The first and second rows

show diurnal and nocturnal mid-wave IR (MWIR) images of a BTR70 personnel car-

rier, respectively. The third and fourth rows are diurnal and nocturnal images of a

T72 main battle tank. Targets in each column are under the same view.

Shape priors were incorporated into both active contours and level set methods to han-

dle cases of complicated background/foreground structure or objects in [49,50]. In [9],

a couplet of identity and view manifolds (CVIM) was proposed for shape modeling

by generalizing nonlinear tensor decomposition in [51]. CVIM explicitly defines view

and identity variables in a compact latent space and was used with particle filter-

ing for IR tracking and recognition in [9]. Gaussian process latent variable models

(GPLVMs) were also used to learn a shape prior in order to accomplish joint tracking

and segmentation in [7,52], and GPLVM was further extended for IR ATR application

4



in [53].

In this dissertation, we propose a new shape-constrained level set algorithm that

incorporates the parametric CVIM model in a probabilistic framework for integrated

target recognition, segmentation and pose estimation. Specifically, we augment the

level set framework proposed in [10] by incorporating the couplet of view and iden-

tity manifolds (CVIM) [9] which not only provides plausible shape priors, but also

eases the process of ATR inference due to the explicit definition of view and identity

variables in a compact latent space. The objective energy function of the level set

is defined by associating CVIM with observations via a graphical model. To cope

with the multi-modal property of CVIM for implicit shape matching, we first develop

a particle swarm optimization (PSO) strategy [54] to optimize the energy function

with respect to CVIM parameters, and then, we further propose a gradient-boosted

PSO (GB-PSO) inspired from [55] to improve the computational efficiency by taking

advantage of the analytical nature of the objective function. There are two main con-

tributions. The first one is a unified probabilistic level set framework that integrates

CVIM-based implicit shape modeling and naturally supports multiple ATR tasks

in one computational flow. The second one is an efficient GB-PSO algorithm that

combines both gradient-based and sampling-based optimization schemes for CVIM-

based implicit shape matching. Experimental results on the SENSIAC ATR database

demonstrate the performance and computational advantages of the proposed GB-

PSO [56] over other CVIM-based implementations [57], as well as recent ATR algo-

rithms.

ii. Image Parsing

Image parsing, or scene labeling is one of the most important problems of computer

vision that pave the path to a more comprehensive scene understanding, and several

systems have been developed during the past few years [58–63]. The goal of image

parsing is to fully assign semantic labels such as mountain, sea, sky, tree, person, etc.
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to each pixel in the observed images, resulting in the recognition and segmentation of

objects in both foreground and background in an image, so that every region in the

given image is tagged and profiled (Figure 1.3). This detailed and specific descrip-

tion of images gives not only the global understanding of the whole image, but also

the semantic location and relation of objects appearing in the scene. Generally we

can frame this problem as learning a mapping from 2D pixel grids to the semantic

labels, which consists of two parts, feature extraction and inference [64]. Usually we

Figure 1.3: Image parsing: fully assign semantic labels to each pixel in the observed

image. (a) and (c), input images; (b) and (d), semantic segmentation and labeling

maps.

consider descriptive information such as color, texture etc. that are extracted from

local patch under various conditions, and we aim to predict the labels of pixels using

extracted features during the inference by integrating contextual or spacial depen-

dencies. Since it is relatively hard to distinguish pixels using only low level features

(intensity, texture, etc.), so in general cases human tend to recognize regions by spa-

tial correlations and surrounding areas of objects [65]. For example, it is not easy to

tell the difference between mountain and forest purely by looking at the local image

patches without the global or spatial dependencies. And more interestingly, some

conclusive demonstration has shown that performances of human in labeling a small

region of an image is not as good as computers [66,67]. To address this challenge, both

Markov random fields (MRF) [68, 69] and conditional random fields (CRF) [70–74]
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have been used to find high level representation based on spatial dependencies us-

ing graphic models, which construct coherence of objects from neighboring regions.

However these graphical-model based methods usually suffer from higher computa-

tional cost at the prediction step [75]. In recent years the outstanding performances

of deep convolutional neural network (CNN) [76] has been incorporated into learn-

ing effective and discriminative high-level visual representations [12, 77, 78], which

successfully advanced CNNs into various applications, for example, object recogni-

tion [79], robotics [80], segmentation [81], detection [82, 83], scene labeling [13], and

so on. In [84] a convolution network based scene parsing system was proposed to

operate on large input window to produce pixel-wise label hypotheses, where raw

image pixels were passed into the convolution network and the supervised training

process were implemented from fully-labeled images. And a multi-scale structure was

incorporated to ensure contextual consistency. [75] designed a recurrent architecture

of CNN from a sequential sets of networks sharing the same set of parameters, where

each instance of network was fed with the input image and predictions of the previous

network, during which there is no engineered features required.

Non-parametric methods are an alternative to learning-based methods, which in-

volve image retrieval steps in order to semantically find relevant subset of images

from the training dataset by global contextual information, and then a graphical

model (e.g. MRF, CRF) could be applied to ensure global and neighboring consis-

tency of label transfers [85] from retrieved training images that are similar to the test

ones [86–92]. There are two motivations behind these non-parametric approaches [93],

the first one is that compared to a large number of labels contained in the training

set, usually each image has only limited number of objects appearing in the scene,

while the second one is that the large invariance of objects are hard to fit into unified

models.

Moreover, many hybrid and/or fusion techniques have been demonstrated to
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achieve state-of-the-art performances. [94] developed a framework with cascaded clas-

sifiers coupled by input and output variables to improve performances. A combination

model of motion and appearance features was proposed in [95] for road scenes seg-

mentation and labeling. In [96] a fusion framework was proposed using likelihood

from several probabilistic classifiers to achieve better overall accuracy. [13] developed

a hybrid framework which alleviated global ambiguity by incorporating a nonpara-

metric label transfer algorithm into a parametric deep CNN model, while learned

CNN features were adopted instead of human engineered features for image retrieval

and label transfer.

In this dissertation we aim to extend the framework presented in [13] to be more

focused on rare classes (e.g. person, boat, car, etc.) that have fewer appearance

frequency in the whole training dataset [15]. Specifically, an extension of rare class

patches were added to enlarge the retrieval sets for a more balanced exemplar sets

during the label transfer [93], but rather than random sampling rare classes over all

training images, we added a scene level regulation to constrain the sampling rate for

rare classes based on global image scene information, where not only feature simi-

larities and 2D locations were considered, but also sizes of objects were evaluated to

produce a more semantically meaningful quantization on the global class likelihood for

each pixel. Furthermore, we added another CNN structure which has more emphasis

on image patches from rare classes in the training data to enhance the final labeling

results. In order to produce a more perceptually meaningful object boundaries, we

adopted an efficient graph-based image segmentation [14] to refine the segmentation

by counting the majority of labels appearing in each superpixel.

The remainder of this dissertation is organized as follows. Related work includ-

ing model-based and data-based methods for object recognition, and scene labeling

are reviewed in Chapter II. In Chapter III we will first introduce some prelimi-

nary work on an probabilistic level-set framework, and the coupled view and iden-
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tity manifolds (CVIM) with an advanced discrete cosine transform (DCT) formu-

lation. Then we will present the proposed segmentation and recognition framework

including analytical formulation, MCMC-based interleaved optimization method, and

two PSO-based methods. Chapter IV explores some data-driven methods including

the original sparse representation classification (SRC), the multi-attribute Lass with

group constraint (MALGC), and also the proposed switchable sparse representation

classification (SSRC) method for an improved classification results using sparsity con-

centration index. In Chapter V we will give a brief introduction on deep learning,

convolutional neural network, and a scene labeling framework using integrated para-

metric and nonparametric model, and in the later part of this chapter we will present

the proposed rare class-oriented scene labeling framework (RCSL) with scene informa-

tion assisted rare classes retrieval method, and a further enhanced superpixels-based

re-segmentation method (RCSL-Seg) will be discussed as well. We will summarize

the conclusion and future work in Chapter VI.
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CHAPTER II

RELATED WORK

In this chapter we will briefly introduce past and recent research on object recognition,

segmentation and scene understanding, followed by the motivation and contribution

of our present work relative to the existing methods.

2.1 Automatic Target Recognition and Segmentation

We first categorize several recent ATR algorithms into two main groups, as shown in

Figure 2.1.

Model Driven 

Approaches

Data Driven 

Approaches

ATR

Techniques

Neural

Network
PCA,

LVQ,

LDA

...MNN CNN

Geometric

Models

Hybrid

Approaches

GPLVM

...
Our

Methods

Sparse

Representation

3D CAD

models

2D

Shapes

Sub-parts

Model

Manifold

Learning

CVIM

Spectral

Descriptors

Figure 2.1: A taxonomy of ATR methods. MNN (modular neural network); CNN

(convolutional neural network); LVQ (learning vector quantization); GPLVM (Gaus-

sian process latent variable model); CVIM (couplet of view and identity manifolds).
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i. Data-Driven Approaches

Data-driven approaches are typically based on learning from a set of labeled real-world

training data. Neural networks (NN) [97–101] are an important exemplar. With the

NN-based approach, the images acquired from the sensor are treated as points in

a high-dimensional vector space. The objective is then to train a large multi-layer

perceptron to perform the required mapping from this space to the space of labeled

training images [97]. Convolutional neural networks (CNNs) generalize the basic idea

by incorporating local receptive fields, weight sharing and spatial sub-sampling to

accommodate some degree of translation and local deformation [98]. Modular neural

Figure 2.2: Sparse representation classification for ATR. The input test data is repre-

sented as a linear combination of training data from a dictionary by a sparse coefficient

vector [4].

networks (MNNs) are another important generalization where a collection of several

independently trained networks each make a classification decision based on local

features extracted from a specific region of the image [99]. These individual decisions

are then combined to arrive at the overall final ATR classification decision. An-

other data-driven approach is the vector quantization (VQ)-based method developed

in [100, 101], where each target class is trained by the learning vector quantization

11



(LVQ) algorithm and multi-layer perceptrons (MLPs) are used for recognition. A re-

lated architecture combining several individual ATR classifiers was proposed in [31]. A

K-nearest-neighbor (KNN) data-driven approach for animal recognition using IR sen-

sors was proposed in [102].

Recently, sparse representation-based classification (SRC) methods have shown

great promise in face recognition [11, 103] and have also been applied to IR data for

target detection [104], tracking and recognition [4, 105]. In [4] SRC has been shown

to outperform other traditional ATR algorithms including CNN, MNN and LVQ, etc.

The basic idea is to create a dictionary of training data represented as column vectors

(Figure 2.2), and during this process different dimension reduction methods are used

to reduce the dimension of both training and testing data. Then given a testing

data, the rest is simply solving an l1 minimization problem in order to find a sparse

coefficient vector to represent the input data as a linear combination of the training

data from the dictionary.

The main drawbacks of these data-driven approaches are that they require large

sets of training data, especially in the IR ATR applications considered here, and

that the profound appearance variability of the observed target thermal signatures

expected under practical field conditions tends to make dictionary selection extremely

difficult.

ii. Model-Driven Approaches

The model-driven approaches are based on computer-generated models (e.g., CAD

models) with or without real-world sensor data for model learning. CAD models

(Figure 2.3) have been widely used for object segmentation, tracking and recogni-

tion [5, 106, 107]. Modern model-based ATR approaches generate target hypotheses

and match the observed sensor data to the hypothesized signatures or appearance

models [2]. The main idea is that a better interpretation of the scene and target can

be achieved by applying intelligent reasoning while preserving as much target infor-
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Figure 2.3: Estimate the rigid transformation that produces the object contour in the

scene [5].

mation as possible [108]. For example, in [109], radar features were extracted from the

sensor data and used to construct a 3D model of the observed target that was com-

pared with known models of the objects of interest to find the best match. There are

also hybrid techniques [6, 110, 111] that combine both CAD models and data-driven

2D image features for model learning and inferencing (Figure 2.4). Indeed, 2D image

features play an important role in many IR ATR algorithms [112], and a variety of

such shape features were evaluated in [113]. One example of a hybrid technique is the

multi-view morphing algorithm that was used in [114] to construct a view morphing

database in an implicit way.

A number of manifold learning methods have also been proposed for shape mod-

eling and have been applied recently in object tracking and recognition [115]. Elliptic

Fourier descriptors were used in [7] to model shapes as sums of elliptic harmonics, and

the latent space of target shapes was learned through GPLVMs (Figure 2.5). In [10],

a level set framework was developed to optimize a pixel-wise posterior in the shape

latent space in order to achieve simultaneous segmentation and tracking. A similarity

space was added in [52] to handle multi-modal problems where an efficient discrete
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Figure 2.4: Recognition in videos by matching the shapes of object silhouettes ob-

tained using motion segmentation with silhouettes obtained from 3D models [6].

cosine transform (DCT)-based shape descriptor was used for manifold learning. A

shape model called the couplet of view and identity manifolds (CVIM) that represents

the target view and identity variables on a coupled pair of manifolds was proposed

in [9] for joint target tracking and recognition in IR imagery. In [53], a probabilistic

level set framework with shape modeling was proposed for target tracking and recog-

nition, where a motion model was used in a particle filter-based sequential inference

process. Sampling was performed in a local area predicted by the motion model,

thereby alleviating the multi-modal optimization problem.
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(a) (b) (c)

Figure 2.5: Minimization of the energy function in the latent space for segmentation.

(a) values of the function in the latent space; (b) optimization trajectory starting

from s to 5; (c) segmentation result in blue overlayed with initialization in gray

superimposed on the input image of a human [7].

2.2 Scene Understanding and Image Parsing

In recent years, more and more attractions have been focused on scene understanding

researches, which is one of the most important application to mimic human visual

systems on recognizing the world both comprehensively and accurately. One common

scene understanding work is to assign single labels to given test images [116], for

example suppose given a testing image the output of the algorithm is simply just an

image of forests, an image of streets, or an image of a dinning room. More advanced

recognition approaches are able to assign a group of labels to several objects appearing

in the image [117]. In [8] a hierarchical generative model was proposed to capture

not only the overall scene, but also the co-occurrences of objects and thus gives the

segmentation and recognition of each object component (Figure 2.6). An interesting

scene labeling system with a combination of different probabilistic classifiers with

incorporated semantic context was proposed in [96].

In a more specific perspective, scene labeling is a significant part of researches

on general image understanding for computer vision tasks, which tends to segment
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Figure 2.6: A hierarchical generative model proposed in [8] for classification, annota-

tion and segmentation.

images into semantically meaningful region blobs with correct labels corresponding

to relative classes. Traditionally, intensive studies have been focus on discriminative

feature extraction from objects, and a number of low-level or mid-level human de-

signed features are studied to statistically capture different objects in the images. But

lower-level features are not statistically sufficient enough to represent discriminative

feature of objects in the natural scenes, and they suffer from the problems of high

dimensionality as well. [84] alleviated those issues caused from human engineered fea-

tures by training a multi-scale convolutional neural network that is able to produce

powerful representation of texture, shape and also contextual information, and all

weights are shared to reduce the number of controllable parameters. [75] proposed a

recurrent CNN that allows large input context with limited model capacity that is

able to model complex spatial dependencies with relatively low inference cost, and

another intra-layer recurrent connections in the convolutional layers were proposed

in [118] where each convolutional layer becomes a 2D recurrent network to integrate

feature extraction and context modulation. A recursive context propagation neu-
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ral network was propose in [64] where a bottom-up aggregation of local information

to global representation and a top-down propagation of aggregated information ap-

proach is shown to enhance the contextual information of local features. And [119]

substitute conventional split nodes of classification trees with randomized multilayer

perceptrons that is capable of learning possibly non-linear data representations by

hidden layers.

On the other hand, graphical models have been developed to construct higher

level representations by probabilistic spatial dependencies of pixels/regions among

objects. For example [70] proposed a conditional random fields (CRF) based scene

labeling model training with aggregated whole image features on many unlabeled

nodes by marginalizing out the unknown labels. In [71] a second order sparse CRF is

formulated with both unary and pairwise features to learn the conditional distribution

over the class labeling, and a fully connected CRF was used in [72] which encodes

spatial relationships among different objects while preserving object contours. [120]

designed a CRF framework with higher order potential functions, while [74] integrated

multiple levels of features by a hierarchical CRF model. But the main drawbacks of

traditional learning based methods suffer from the imbalanced distribution of objects

appearing in both indoor and outdoor environment, since most areas of the images

are dominated by most common background classes, which makes traditional learning

methods not sufficiently robust to cover all labeling situations.

Moreover, nonparametric methods involving image retrieval and label transfer

have achieved promising performance on large-scale data, which try to build class

likelihood of pixels/superpixels by semantically transferring labels from training im-

ages that are similar to the query image by nearest neighbors, so that irrelevant

images from the training dataset might be skipped regarding to the global contextual

information semantically. The most important motivation of this group of work is

based on an interesting observation, which found that the scene layout of a single
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Figure 2.7: Label transfer method [1]. Top matches from the training data in (b) are

found for a testing image (a), and then the known annotation (c) of top matches are

transfered to label the given query image as shown in (d).

outdoor or indoor image contains only limited number of object/background cate-

gories [93]. [1] proposed a nonparametric Markov random field (MRF) framework to

transfer the annotation from the best matches retrieved from a large database with

annotated images to the input image (as shown in Figure 2.7) by using a combination

of GIST (global meaning/structure of the scene) matching and SIFT flow algorithm.

Later on the SIFT flow was extended into a hierarchical computational framework for

improved performances in [85]. In [91] dense overlapping patch correspondences were

constructed into a graph for mappings. [90] introduced a mid-level windows instead

of low-level superpixels to capture entire objects rather than fragments. Recently [13]
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integrated the non-parametric label transfer method into an parametric CNN frame-

work, which leveraged the global scene context to alleviate the local ambiguity by

using learned CNN features instead of human engineered ones.

Furthermore, additional context regulation has also been addressed to incorporate

global and/or neighboring information to improve semantic labeling. In [121] images

are grouped into clusters and a CRF model is learned for each cluster separately. [86]

initializes the labeling by pure appearance information for context extraction, and

then a context index is built in the neighborhood of each superpixel. [87] proposed

semantic label descriptor to refine the retrieval set obtained by global image features

(GIST, color histogram and spatial pyramid over SIFT). [93] not only refined the

image retrieval and superpixel matching by global semantic context on classification

likelihood maps, but also expanded the retrieval set by adding rare classes exemplars

for more a balanced frequency of rare classes in the retrieval set.

2.3 Research Motivation

Motivated by [9, 52, 53], our focus here is on developing a model-driven approach by

combining relatively simple CAD models with advanced manifold learning for robust

ATR to reliably segment and recognize target chips in the sequence of images acquired

from an imaging IR sensor. More specifically, our goal is to incorporate CVIM into a

probabilistic level set framework with shape-constrained latent space to achieve joint

and seamless target segmentation, recognition and pose estimation with an analytical

formulation that facilitates efficient sampling-based or gradient-based global solution

of the multi-modal optimization problem (as shown in Figure 2.8). This leads to a

new approach that does not require labeled training data and is free from the need of

any explicit feature extraction technique. Unlike many ATR algorithms, including [9],

it is also free from the need for auxiliary background rejection or pre-segmentation

processing; with our proposed methods, target segmentation instead becomes a useful
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byproduct of the joint ATR inference process.

But due to the limitation of shape features in IR data, we explore some sparse

representation based data-driven methods on a much challenging dataset as well. In

this approach we incorporates the original SRC method into the multi-attribute group

constraint method by an sparsity concentration index, which determines if the initial

sparse coefficient vector of the original SRC method is sparse enough.

Moreover, scene labeling builds a bridge towards better scene understanding in-

cluding object detection, segmentation and recognition. However, in common com-

puter vision applications, objects of interest typically occupy only small regions in the

natural scene image or FLIR data. Objects with insufficient appearing frequencies

and limited coverage of the whole image intensifies the difficulty of learning a robust

recognition system. We intend to build a rare class-oriented scene labeling framework

which fuses parametric CNN model for local labeling and non-parametric label trans-

fer process for global labeling [13], in which we selectively add rare class pixels to

expand the retrieved image exemplar subset assisted by the scene information, rather

than random sampling [93]. To further alleviate imbalanced training data problem,

a complementary low-cost rare classes balanced CNN structure is trained to improve

labeling performances in potential rare class regions.

In the next chapter, we will introduce a probabilistic formulation of the proposed

shape manifold aware level set framework for joint target segmentation and recog-

nition. Then we will present our MCMC-based method and two PSO methods for

joint ATR optimization on the SENSIAC dataset, where targets have more preferable

boundaries and less complex surrounding area/background. The first one involves a

three-stage multi-threaded inference algorithm, where the solution is achieved by

level set-based shape optimization and CVIM-based shape inference alternately. The

second one is the standard PSO that involves CVIM-based sampling for shape inter-

polation, while the third one is a gradient-boosted PSO (GB-PSO) that involves a
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Figure 2.8: The multi-modal nature of the proposed energy function f to be optimized

in latent space {α,Θ}.

gradient-based search in the CVIM latent space. Moreover in Chapter IV some data-

driven target recognition researches using sparse representation classification methods

are discussed on the Comanche dataset, where heavy background clutters and larger

variation of target signatures are encountered. We will apply our shape based algo-

rithms on the SENSIAC dataset and sparse representation based algorithms on the

Comanche dataset.
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CHAPTER III

JOINT TARGET RECOGNITION AND SEGMENTATION

In this chapter, we will first introduce some preliminary work on generative shape

modeling, and a probabilistic level set graphic model, and then we will present our

probabilistic formulation of the proposed shape manifold aware level set framework

for joint target segmentation and recognition, followed by three different methods for

joint optimization of target shape, identity and view on the SENSIAC dataset.

3.1 Preliminary Work

Two preliminary works are introduced in this section. The first one is the couplet

view-identity manifolds (CVIM) shape model, which define a latent space as the

constraint of the shape embedding function Φ, and the second one is the probabilistic

level set framework. We will add the CVIM latent space into the level set framework

in order to jointly estimate target pose and identity in the latent space defined by

CVIM.

3.1.1 DCT-Enhanced Generative Shape Modeling

In this section, we briefly review the CVIM [9] and then extend it to accommodate

DCT-based shape descriptors for learning and inference. The CVIM can be learned

from a set of 2D shape silhouettes [122] created by a series of 3D CAD models by a

nonlinear kernelized tensor decomposition, as shown in Figure 3.1. Here, we use six

models for each of six target classes, as shown in Figure 3.2. The CVIM consists of

a hemisphere-shaped view manifold and a closed-loop identity manifold in the tensor
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Figure 3.1: The couplet of view and identity manifolds (CVIM) shape generative

model [9].

coefficient space. Two practical considerations lead to this heuristic simplification of

the identity manifold. First, the SENSIAC targets of interest in this work are all man-

made vehicles that exhibit distinct inter-class appearance similarities. Second, these

similarities can be leveraged to judiciously order the classes along a 1D closed loop

manifold in order to support convenient identity inference, as shown in Figure 3.1.

In [9], a class-constrained shortest-closed-path method was proposed to deduce an

optimal topology ensuring that targets of the same class or of similar shapes remain

close along the identity manifold (i.e., armored personnel carriers (APCs) → tanks

→ pick-ups → sedans → minivans → SUVs → APCs).

The original CVIM is learned as follows: (1) given a set of silhouettes (represented

by the signed distance transform) from Nm target types under Nc views, a mapping

from a conceptual hemispherical view manifold Θ to the high dimensional data is

learned using radial basis functions (RBFs) Ψ(Θ) for each target shape. (2) by stack-

ing the collection of these mappings for all target shapes and applying the high-order
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Figure 3.2: All CVIM training CAD models.

singular value decomposition (HOSVD), we obtain a core tensor A and Nm identity

vectors for all training types in the tensor coefficient space im (m = 1, 2, ..., Nm);

(3) a mapping from the coefficient vector space to a 1D closed loop identity mani-

fold α is then constructed using the optimal identity manifold topology, where each

training target type im is represented by an identity vector i(αm) associated with a

point along the identity manifold. For any arbitrary α ∈ [0, 2π), we can then obtain

a corresponding identity vector i(α) from the two closest training identity vectors

i(αm) and i(αm+1) by applying cubic spline interpolation along the identity manifold.

The CVIM model was tested against the SENSIAC database [3] for target track-

ing and recognition in [9], where the experimental results validated its efficacy both

qualitatively and quantitatively.

Due to the continuous nature of two manifolds, CVIM can be used to represent

shapes S of unknown vehicles under arbitrary view point, which is especially desirable
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for tracking and recognition from image sequences:

S(α,Θ) = A×3 i(α)×2 Ψ(Θ), (3.1)

where A is a core tensor obtained by tensor decomposition, ×n is the mode-n tensor

multiplication, α and Θ are latent variables of the identity and view on the identity

and view manifold respectively, i(α) is the identity vector obtained by cubic spline

interpolation in the tensor coefficient space, and Ψ(Θ) is the Radial Basis Function

mapping along the view manifold. Through this CVIM shape modeling, target sil-

houettes can be interpolated given arbitrary view point and identity variable on the

1D closed loop identity manifold. The CVIM model was tested against the SENSIAC

database [3] for target tracking and recognition in [9], where the experimental results

validated its efficacy both qualitatively and quantitatively.

Here, we reduce the inference complexity of the original CVIM method [9] by

replacing the silhouettes used for training with the simple, but efficient DCT-based

shape descriptor proposed in [52]. Thus, each training shape (in the form of the signed

distance transform) is represented by a small set of 2D DCT coefficients reshaped into

a column vector, where, e.g., only the top 10% of the DCT coefficients that are largest

in magnitude are retained. The CVIM can then be learned using the same process

as before to represent the sparse DCT coefficient vectors SDCT of the training targets

by Λ = [ΘT , α]T according to:

SDCT(Λ) = SDCT(α,Θ) = A×3 i(α)×2 Ψ(Θ) (3.2)

where A is a core tensor obtained by tensor decomposition, ×n is the mode-n tensor

multiplication, α and Θ = [θ,φ]T are the identity and view latent variables on the

identity and view manifolds, respectively, and θ and φ are the azimuth and elevation

angles. For an arbitrary α, the associated 1 × Nm identity (row) vector i(α) in

Equation (3.2) can be interpolated as:

i(α) = am(α− αm)3 + bm(α− αm)2 + cm(α− αm) + dm, α ∈ [αm,αm+1) (3.3)
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where am, bm, cm and dm are the piecewise polynomial coefficient row vectors ob-

tained by applying cubic spline interpolation in the tensor coefficient space between

the closest two adjacent training target types i(αm) and i(αm+1), as depicted in Fig-

ure 3.3. Let Ψ(Θ) be the RBF mapping along the view manifold given by:

Ψ(Θ) = [κ(‖Θ− S1‖), ..., κ(‖Θ− SNc‖)] (3.4)

where κ(‖Θ−Si‖) = e−c(Θ−Si)
T (Θ−Si), c is the RBF kernel width, Si is a training view

on the view manifold and Nc is the number of training views. One major advantage

of this DCT-based shape representation over the original silhouette-based one is that

it naturally provides reconstruction of a shape at arbitrary magnification factors by

appropriately zero-padding the DCT coefficients prior to inverse DCT (IDCT). This

feature is desirable to deal with various IR targets at different ranges.

Tensor Coefficients Space

)

)

)

)

)

Figure 3.3: Cubic spline interpolation along the identity manifold in CVIM.

We represent the shape embedding function Φ (referred to in Figure 3.5c and

Equation (3.15)) in terms of the CVIM parameter Λ by:

Φ(Λ) = IDCT(SDCT(Λ)) (3.5)

where IDCT(·) is the IDCT with two reshape operations. The first is for the input

(from 1D to 2D) prior to IDCT, and the second is for the output (from 2D to 1D)
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after IDCT. Note that the derivative of the IDCT of a matrix may be computed as the

IDCT of the derivative of that matrix [52]. Therefore, the DCT-shape presentation

can easily be incorporated into the above optimization framework without major

modifications. Through this CVIM model, target shapes corresponding to arbitrary

α can readily be interpolated along the view and identity manifolds.

3.1.2 Pixel-Wise Posterior Level Set Segmentation

Figure 3.4: Left: Representation of a object: the contour C, foreground Ωf and

background Ωb, foreground/background models M , and the warp W (x,p). Right:

graphical representation of a probabilistic level-set framework, where p is the param-

eter of a warp function W , x is a pixel location, y is a pixel value. [10]

The robustness of using an implicit contour or level-set to represent boundary of

an object has been proved in recent years. In [10] a probabilistic level-set framework

(Figure 3.4) was proposed, which gives a probabilistic interpretation of most region

based level-set methods, and by introducing a pixel-wise posterior term as a energy

function, model parameters are marginalised out at a pixel level, then segmentation

can be easily achieved through variational level set evolution.
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From the graphical model in Figure3.4, a joint distribution is:

P (x,y,Φ,p,M) = P (x|Φ,p,M)P (y|M)P (Φ)P (p)P (M), (3.6)

divide (3.6) by P (y), then marginalising over the model M, and by using a logarithmic

opinion pool (LogOP), a pixel-wise posterior was derived:

P (Φ,p|Ω) =
N∏
i=1

{(
P (xi|Φ,p,yi)

)}
P (Φ)P (p), (3.7)

where N is number of pixels, and i is pixel index. P (xi|Φ,p,yi) is defined as:

P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1−Hε(Φ(xi)))Pb, (3.8)

where

Pf =
P (yi|Mf )

ηfP (yi|Mf ) + ηbP (yi|Mb)
, (3.9)

Pb =
P (yi|Mb)

ηfP (yi|Mf ) + ηbP (yi|Mb)
, (3.10)

where ηf and ηb are number of pixels belong to the foreground and background region

respectively, P (yi|Mf ) and P (yi|Mb) are foreground and background models repre-

sented by histograms, and Hε(·) is the smoothed Heaviside step function. Here the

prior of the shape embedding function P (Φ) that encourages Φ to resemble a signed

distance function as:

P (Φ) =
N∏
i=1

[ 1

σ
√

2π
exp

(
− (|∇Φ(xi)| − 1)2

2σ2

)]
, (3.11)

where σ gives the relative weight of the prior. Substitute (3.8) and (3.11) into (3.7)

and take log gives the final expression of the log posterior:

log(P (Φ,p|Ω)) ∝
N∑
i=1

{(
log(P (xi|Φ,p,yi))−

(|∇Φ(xi)| − 1)2

2σ2

)}
+N log(

1

σ
√

2π
) + log(P (p)). (3.12)

For segmentation purposes, the registration p is assumed to be known, then by

taking the derivative of (3.12) with respect to Φ, and then by gradient flow [10] a shape
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embedding function Φ that maximize the final log posterior (3.12) will be found. This

probabilistic level set framework define us an energy function as pixel-wise posterior,

and as mentioned in Chapter II, if a shape model was trained through dimension

reduction methods by which the level set embedding function can be constrained in a

latent space, a so-called model-based target recognition framework can be extended

from this basic level set energy function.

3.2 Problem Formulation

Implicit contour and level set methods have been proven effective for image segmen-

tation by optimizing an energy function, which represents the contour of an object

appearing in the scene. A common approach is to compute the segmentation by opti-

mizing the shape embedding function Φ [123]. The basic idea is to initialize a shape

contour and then minimize the energy function related to Φ along the gradient direc-

tion. A probabilistic level set segmentation framework was proposed in [10], where,

as illustrated in Figure 3.5a, an energy function called the pixel-wise posterior was

defined to represent the image as a bag of pixels with the background and foreground

models obtained from Φ [124].

Here, we extend the model from [10] to obtain a new shape-constrained level

set segmentation method by incorporating the CVIM shape model parameterized

by Λ = [ΘT ,α]T , which explicitly represents the target identity variable α and az-

imuth/elevation view angles Θ = [θ,φ]T , thus inherently supporting joint target

recognition, segmentation and pose estimation. We derive a new joint probability

density function:

P (x,y,Λ,p,M) = P (x|Λ,p,M)P (y|M)P (M)P (Λ)P (p) (3.13)

where M is the foreground/background model, p is the location of the target centroid

in image coordinates, P (p) is the prior probability of the target centroid location,

29



Figure 3.5: (a) Representation of an IR target by a hypothesized shape contour that

separates the foreground and background regions; (b) shape embedding function Φ

represented by the signed distance transform. Φ is generated by CVIM given the

parameter vector Λ, which contains the view angles Θ and identity variable α. (c)

The proposed probabilistic level set framework, where p is the target centroid in

image coordinates, M is the foreground/background model, x is a pixel location in

image coordinates and y is a pixel intensity value. The dashed line represents the

CVIM-based mapping from the latent shape space Λ to the shape embedding function

Φ.

which is assumed uniform. x is a pixel location in image coordinates and y is the pixel

intensity. The intensity is usually scalar-valued for the case of an imaging MWIR or

LWIR sensor, but may generally be vector-valued in our framework and formulation.

By marginalizing over the foreground/background model M [10] and using the

logarithmic opinion pool [125], we formulate a new pixel-wise posterior:

P (Λ,p|Ω) =
N∏
i=1

{
P (xi|Λ,p,yi)

}
· P (Λ)P (p) (3.14)

where Ω = {x,y} is a small IR chip cropped from the IR frame acquired by the

sensor, N is the number of pixels in the chip and i is the pixel index. Because we

are focused on small IR chips that contain a target, we localize the target centroid
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p after segmentation and recognition. Therefore, p is omitted in the following. As

in [10], P (xi|Λ,yi) in Equation (3.14) may be expressed according to:

P (xi|Λ,yi) = Hε(Φxi)Pf + (1−Hε(Φxi))Pb (3.15)

where Φ is the shape embedding function generated from CVIM given Λ (in the form

of a signed distance function, as shown in Figure 3.5b), Hε(·) is the smoothed Heavi-

side step function and Φxi is the value of Φ at pixel location xi. In Equation (3.15),

Pf =
P (yi|Mf )

ηfP (yi|Mf ) + ηbP (yi|Mb)
(3.16)

and

Pb =
P (yi|Mb)

ηfP (yi|Mf ) + ηbP (yi|Mb)
(3.17)

where ηf and ηb are the number of pixels belonging to the foreground and back-

ground regions respectively and where P (y|Mf ) and P (y|Mb) are the foreground and

background appearance models, which are represented by histograms.

The goal of the shape-constrained level set optimization is then to maximize Equa-

tion (3.14) with respect to Λ according to:

Λ∗ = arg max
Λ

P (Λ|Ω) (3.18)

The calculus of variations could be applied to compute the derivative of Equa-

tion (3.14) with respect to Λ. However, due to the multi-modal nature of the CVIM-

based shape modeling, we develop a PSO-based optimization framework to search for

the optimal latent variable Λ∗ that maximizes Equation (3.14). To further enhance the

efficiency, we then develop a gradient-boosted PSO (GB-PSO) method that provides

faster optimization by taking advantage of the parametric nature of CVIM.

Optimizing the posterior Equation (3.14) may be thought of as finding a contour

that maximizes the histogram difference between the foreground and background in

the region of interest. This consideration is based on the assumption that the target-

of-interest has different intensity values compared with the background. Intuitively,

31



0 50 100 150 200 250 300 350

1.55

1.6

1.65

1.7

1.75

2

1

3

4

6

5

7

8

10

9

11

12

2

1

3

4
6

5

7 8

10

9

11
12

E
n
er
g
y
F
u
n
ct
io
n
V
a
lu
e

Latent Variable on the Identity Manifold

Figure 3.6: Effectiveness of the energy function. (Top) Plot of the energy function

with respect to the identity latent variable; (Bottom) a group of CVIM-generated

shapes corresponding to the latent variables labeled in the plot on the top are super-

imposed onto the original IR data chips.
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if the shape contour of the target is correctly hypothesized in terms of the target

type (recognition), view angle (pose estimation) and location (segmentation), then

the foreground and background defined by this contour will have maximum histogram

divergence and, therefore, maximize the energy function Equation (3.14) as illustrated

in Figure 3.6. For a given observation, in Figure 3.6, we calculate the value of the

energy function with respect to almost all possible values along the circularly-shaped

identity manifold α = 1, 2, 3, ..., 360◦ with the view angle Θ known for simplicity.

The figure shows several CVIM interpolated shapes superimposed on the original

mid-wave IR image data. As seen in the left part of the figure, the maximum value

of the energy function is attained by the contour (numbered 4) that is best in the

sense of being closest to the actual boundary of the target in the right part of the

figure. However, the multi-model nature of the energy function as shown in Figure 3.6

(left part), which is typical, represents significant challenges for CVIM-based shape

optimization and motivates the PSO and GB-PSO algorithms that we develop below

in Sections 3.4 and 3.5.

3.3 Markov Chain Monte Carlo Optimization Method

Due to the co-existence of Φ and Λ as well as the nonlinear and multi-modal na-

ture of the CVIM, we develop a multi-threaded optimization framework so that the

energy function can be solved in parallel for each thread. Our first approach is to

interleave the optimization of the target shape Φ and latent variable Λ by a MCMC-

based method where the CVIM is used for shape interpolation/matching (Figure 3.7).

In the later chapter as better alternatives, a Particle Swarm Optimization (PSO)

method and a gradient-boosted PSO method (GB-PSO) are implemented to alleviate

the computational cost for interleaved multi-modal optimization and explicit shape

interpolation and matching.

(i) Multi-Threaded Optimization: Initialization
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Figure 3.7: Interleaved optimization. (a) Shape inference. (b) latent space inference.

In this work, we propose a multi-threaded optimization algorithm to solve (3.18),

as shown in Figure 3.8. The initialization stage has three steps to initialize a multi-

threaded optimization that is needed to endure efficient and accurate inference results.

First, given a bounding box (Φ0), a traditional level set (without shape prior) is used

for initial segmentation (Φ1). Then, by using the height/width ratio, we can find a

small set of the best matched training shapes with known view and identity values in

the CVIM. Third, via template matching between the segmented shape and selected

training shapes, L most potential candidates (Λ
(1:L)
1 ) are selected as the seeds to start

the multi-threaded optimization to estimate Φ and Λ iteratively.

(ii) MCMC-Based Method

As mentioned earlier, we designed an interleaved optimization framework to op-

timize the latent variable Λ and the shape Φ iteratively, so in this section we will

introduce the shape inference and latent space inference respectively as shown in

Figure 3.8.

Shape Inference: at this stage (Figure 3.7a), we are only looking for a shape contour

that maximize the energy function (3.14) under a shape prior as

Φ
(l)
k = arg max

Φ
P (Φ

(l)
k−1|Ω), (3.19)

where k is the iteration index and l = 1...L is the thread index. Λ
(l)
k−1 corresponds a

shape prior specified by the CVIM that is used to initialize the level set optimization.
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Figure 3.8: (1)Shape initialization Φ0; (2)obtain Φ1 by level set segmentation;

(3)training data (Λ0) selection based on Φ1, followed by the optimization of the

latent variable Λ
(1:L)
1 , (4) start the multi-threaded optimization; (5)shape inference

-for each thread 1toL, optimize shape Φ
(1:L)
k ; (6) after sample selection in the latent

space, optimize Λ
(1:L)
k ; (7) Pick up local maximum in each thread for next step op-

timization; (8) when the optimization converge, pick up the one that has the largest

energy value from step (7) as final estimation result.
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Since the latent space Λ is not considered here, we can define

P (Φ) =
N∏
i=1

[ 1

σ
√

2π
exp

(
− (|∇Φ(xi)| − 1)2

2σ2

)]
, (3.20)

where σ gives the relative weight of the prior. Here it encourages Φ to resemble

a signed distance function [10]. Substitute Equations (3.15) and (3.20) into Equa-

tion (3.14) and hence into Equation (3.19), take the log and then take the first vari-

ation with respect to Φ, the term P (Λ) will be dropped, and here we get:

∂f

∂Φ
=
δε(Φ)(Pf − Pb)
P (x|Φ,y)

− 1

σ2
[∇2Φ− div(

∇Φ

|∇Φ|
)], (3.21)

where σ2 = 50, f = logP (Λ|Ω), ∇2 is the Laplacian operator and δε(Φ) is derivative

of a blurred Heaviside step function, and div(·) is the divergence operator [122]. This

is similar to the level set shape optimization in [10], and can be optimized by steepest-

ascent by gradient flow ∂f
∂Φ

= ∂f
∂t

, for stability τ
σ2 < 0.25 must be satisfied, where τ is

the time step [10].

q
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Figure 3.9: (a) The seeds in the latent space for multi-threaded shape estimation. (b)

MCMC sampling for each thread. (c) Sample screening based on the height/width

ratio. (d) Sample weighting by shape matching and multi-thread reset.
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Algorithm 1 MCMC-based multi-threaded optimization
1: Initialization

2: • Initialize a bounding box Φ0 around the object

3: • Optimize Equation (3.19) to get Φ1 and its height/width ratio (HWR) (γ(Φ1))

4: • Select training shapes with HWR similar to γ(Φ1) for template matching

5: • Initialize CVIM with top L best matched training shapes, Λ
(1:L)
0

6: (Figure 3.9a)

7: for each MCMC iteration (k = 2 : K) do

8: for each thread (l = 1 : L) do

9: Shape Inference

10: • Initialize a shape prior from previous CVIM inference, S(Λ
(l)
k−1)

11: • Optimize Equation (3.19) to get Φ
(l)
k

12: CVIM Inference

13: • Optimize Equation (3.22) by MCMC

14: • Draw samples around Λ
(l)
k−1 in the shape space (Figure 3.9b)

15: • Discard samples according to γ(Φ
(l)
k ) (Figure 3.9c)

16: • Evaluate the left samples by template matching Equation (3.23) (Figure 3.9d)

17: • Find the local maximum to be new Λ
(l)
k

18: end for

19: end for

20: Obtain the final reconition/pose estimation result, Λ∗, which is selected from Λ
(l:L)
K by finding

which one yields the largest level set energy function defined in (3.14) and Φ∗ = S(Λ∗) is the

final segmentation result.

Latent Space Inference: given the shape embedding function Φk (where we have

dropped the thread index for simplicity), we will optimize Λk (Figure 3.7b) by per-

forming CVIM inference as

Λk = arg max
Λ
{P (Φk|Λk−1)P (Λk−1)}, (3.22)

where the likelihood P (Φ|Λ) is defined as a template matching:

P (Φk|Λk−1) ∝ exp
(
− ‖C(Φk)− S(Λk−1)‖2

2ξ2
)
, (3.23)
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where C(Φk) is a shape silhouette obtained by thresholding Φk, S(Λk−1) is the CVIM-

based shape interpolation given Λk−1, ‖ · ‖ represents the shape matching error, and

ξ control the sensitivity of shape matching. P (Λk−1) is the prior probability from

previous CVIM inference. Furthermore, we developed a Markov chain Monte Carlo

(MCMC)-based inference algorithm for multi-threaded CVIM inference to optimize

Equation (3.22), which is interleaved with the level set shape optimization defined in

Equation (3.19) iteratively. Figure 3.9 illustrates the major steps in the MCMC-based

CVIM inference. We summarize the multi-threaded optimization in Algorithm 1 that

combines the three stages together.

3.4 Particle Swarm Optimization Method

Particle swarm optimization was introduced by J. Kennedy et al. [54] for optimization

of continuous nonlinear functions. The PSO algorithms were originally inspired by

the observation of bird blocking and fish schooling. Unlike other genetic algorithms

which are motivated by the survival of fittest - natural selection rule, the PSO is

generally a simulation of social behaviors. So far, the PSO has been widely used not

only in scientific researches [126–128], but also in many engineering applications [129],

such as antennas [130–132], biomedical [133,134], transportation network design [135],

classification [136, 137], control [138, 139], financial [140], neural networks [141–143],

power systems [144], robotics [145], and signal processing [146,147], etc.

We first implement a standard PSO algorithm due to its simplicity and effective-

ness in dealing with multi-modal optimization problems. PSO optimizes a problem

by moving solution hypotheses around in the search-space according to the current

hypothesis and velocity computed to the present local and global optima. Our energy

function is defined in Equation (3.14). Since we assume Λ = [θ,φ,α]T (CVIM pa-

rameters) to be uniformly distributed (i.e. no prior knowledge) with the registration
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Figure 3.10: PSO update process for particle j. Λj(k) is the latent variable estimated

at step k, Lbest
j (k) and Gbest(k) are local best position of particle j and global best

estimation in the latent space at step k. While Vj(k) is the velocity estimated at step

k, and Vj(k+1) is the current updated velocity computed from Equation (3.26), and

then Λj(k + 1) is the step k + 1 estimation of particle j by Equation (3.25).

of the object frame p omitted, the energy function Equation (3.14) is rewritten as:

f(Λ) = P (Λ|Ω) ∝
N∏
i=1

{
Hε(Φxi(Λ))Pf + (1−Hε(Φxi(Λ)))Pb

}
(3.24)

where Φxi(Λ) is defined as the value of shape embedding (in the form of the signed

distance transform) in Equation (3.5) at pixel location xi. During the PSO optimiza-

tion process, particles are updated as flying in the latent space of CVIM, Λ, based

on the velocity V:

Λj(k + 1) = Λj(k) + Vj(k + 1) (3.25)

where j and k are the particle and iteration indexes, respectively. Velocity V is a

randomly-weighted average of the best position evaluated by that particle so far and
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the global best position among all particles:

Vj(k + 1) = Vj(k) + Υ1 · (Lbest
j (k)−Λj(k) + Υ2 · (Gbest(k)−Λj(k)) (3.26)

where Vj(k) is the velocity for particle j = 1 : ps at optimization step k = 1 : K

and ps is the population size. Υ1 and Υ2 are random vectors, where each entry is

uniformly distributed between [0, 1]. Lbest
j (k) is the best position in the latent space

found by particle j evaluated by Equation (3.24), while Gbest(k) is the global best

position found among all particles.

Algorithm 2 PSO method.
1: Initialization

2: • do level-set segmentation to initialize the target location p

3: • draw particles Λj(0), j = 1 : ps randomly distributed in the latent space Λ, where ps is the

population size

4: • evaluate Λj(0) by Equation (3.24) to get f(Λj(0)), set Gbest(0) = arg maxΛj(0) f(Λj(0)) and

Lbest
j (0) = Λj(0), (j = 1 : ps)

5: PSO algorithm

6: for each iteration (k = 0 : K − 1) do

7: for each particle (j = 1 : ps) do

8: • calculate velocity Vj(k + 1) and new particle Λj(k + 1) by Equations (3.26) and (3.25)

9: • compute f(Λj(k + 1)) by Equation (3.24)

10: if f(Λj(k + 1)) > f(Lbest
j (k)) then

11: • set Lbest
j (k + 1) = Λj(k + 1))

12: if f(Λj(k + 1)) > f(Gbest(k)) then

13: • set Gbest(k + 1) = Λj(k + 1))

14: end if

15: end if

16: end for

17: end for

18: • obtain the final result, Λ∗, by selecting from Gbest(K).

It is worth mentioning that the direction of each particle move is determined

by comparing the current energy with the present local/global optima. Thus, while
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the magnitude of the move is chosen randomly, the direction is not. By doing so,

PSO discourages the solution from becoming trapped in local optima by moving each

particle in a way that considers both the local and global best solutions from among

all current particles. All particle hypotheses are clipped to be within the range of the

CVIM latent space, and the maximum velocity is restricted within ±10% of the range

of the latent space [148]. We summarize the PSO algorithm in Algorithm 2.

3.5 Gradient-boosted Particle Swarm Optimization

The PSO algorithm is simple, straightforward and robust, but it suffers high com-

putational load due to CVIM-based shape interpolation, as well as the large number

of iterations that are typically needed to obtain convergence. In some applications,

the gradient is incorporated in sampling optimization to achieve a higher conver-

gence rate [55]. In this section, we take advantage of the parametric nature of CVIM

and incorporate a gradient-ascent step in the PSO to obtain a gradient-boosted PSO

(GB-PSO) that overcomes these limitations by balancing between exploration and

convergence with a deterministic and fast local search. Thus, GB-PSO is expected to

be both more efficient and effective than the basic PSO in Algorithm 2.

A classical gradient ascent method starts from an initial hypothesis in the search

space, i.e., the parameter space of CVIM denoted by Λ; then, by computing the

local gradient direction, small steps are made toward the maximum iteratively. Due

to the smooth and continuous nature of CVIM, which generates the shape embed-

ding function Φ, f = P (Λ|Ω) can be differentiated with respect to Λ. Beginning

from some initial guesses Λ0, we will then update our guess iteratively along the

gradient direction:

Λ(k+1) = Λ(k) − r · (−∇f |Λ=Λ(k)),= Λ(k) + r · ∇f |Λ=Λ(k) (3.27)

where r is the learning rate that determines the step size and ∇f |Λ=Λk
is the gradient
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of f evaluated at the old guess. To compute ∇f |Λ=Λk
, we take the derivative of f

with respect to Λ by the chain rule as:

∂f

∂Λ
=

((
∂f

∂Φ

)T
· ∂Φ

∂Λ

)T

=

(
∂Φ

∂Λ

)T
∂f

∂Φ
(3.28)

Similar to [10], the first term in Equation (3.28) can be written as:

∂f

∂Φ
=

δε(Φ)(Pf − Pb)
Hε(Φ)Pf + (1−Hε(Φ))Pb

(3.29)

where δε(·) is the derivative of the Heaviside step function and Pf and Pb are defined

in Equations (3.16) and (3.17). Since the latent variable Λ = [ΘT ,α]T , so the second

term in Equation (3.28) may be written as:

∂Φ

∂Λ
=

IDCT(∂SDCT

∂Θ
)T

IDCT(∂SDCT

∂α
)T


T

(3.30)

The CVIM-based DCT generation of SDCT is defined in Equation (3.2). From the

properties of the tensor multiplication [149], we can rewrite Equation (3.2) as:

SDCT(α,Θ) = A×3 i(α)×2 Ψ(Θ) = A×2 Ψ(Θ)×3 i(α) (3.31)

where both i(α) and Ψ(Θ) are row vectors. The steepest ascent optimization may

then be performed based on the gradients along the view and identity manifolds.

(I) Gradient along the view manifold

Let B = A×3 i(α). From the tensor multiplication and flattening properties [149],

it then follows that:

SDCT(α,Θ) = B×2 Ψ(Θ) = BT
(2) ·ΨT (Θ) (3.32)

where B(2) is the mode-two flattened matrix of B. Hence,

∂SDCT

∂Θ
= BT

(2) ·
∂ΨT (Θ)

∂Θ
(3.33)
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It then follows from Equation (3.4) that:

∂ΨT (Θ)

∂Θ
= −2c[κ(‖Θ− S1‖)(Θ− S1), · · · , κ(‖Θ− SNc‖)(Θ− SNc)]

T (3.34)

where κ(‖Θ−Si‖) is defined in Equation (3.4). For the first term in Equation (3.30),

we then have:

∂SDCT

∂Θ
= −2c ·BT

(2) · [κ(‖Θ− S1‖)(Θ− S1), · · · , κ(‖Θ− SNc‖)(Θ− SNc)]
T (3.35)

(II) Gradient along the identity manifold

Let C = A×2 Ψ(Θ). From Equation (3.31), we have then that:

SDCT(α,Θ) = C×3 i(α) = CT
(3) · iT (α) (3.36)

so:

∂SDCT

∂α
= CT

(3) ·
∂iT (α)

∂α
(3.37)

Since i(α) is the piecewise polynomial interpolation function, which is differen-

tiable between any two given data points, it follows from Equation (3.3) that:

∂iT (α)

∂α
= 3aTm(α− αm)2 + 2bTm(α− αm) + cTm, α ∈ [αm,αm+1) (3.38)

Thus, we obtain finally:

∂SDCT

∂α
= CT

(3) · [3aTm(α− αm)2 + 2bTm(α− αm) + cTm], α ∈ [αm,αm+1) (3.39)

which together with Equation (3.35) provides the explicit formulation for both terms

in Equation (3.30).

(III) Gradient in the latent space

From Equations (3.29) and (3.30), ∇f |Λ=Λk
may be rewritten as:

∇f |Λ=Λk
=


IDCT(∂SDCT

∂Θk
)T

IDCT(∂SDCT

∂αk
)T

 δε(Φk)(Pf − Pb)
Hε(Φk)Pf + (1−Hε(Φk))Pb

(3.40)
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where α ∈ [αm,αm+1), Φk = Φ(Λk) and P (x|Λk,y) are defined in Equations (3.15)

and (3.5), while ∂SDCT

∂Θk
and ∂SDCT

∂αk
are defined in Equations (3.35) and (3.39).

Algorithm 3 The gradient-boosted (GB)-PSO method.
1: Initialization

2: • refer to Algorithm 2 Lines 1 ∼ 4

3: GB-PSO step

4: for each iteration step (k = 0 : K − 1) do

5: for each particle (j = 1 : ps) do

6: • refer to Algorithm 2 Lines 8 ∼ 15

7: end for

8: Gradient Ascent Local Search

9: • set Λ0 = Gbest(k + 1) for gradient ascent local search;

10: for each gradient ascent step (l = 1 : pl) do

11: • calculate ∇f |Λ=Λl−1

12: if the gradient is not significant then

13: break

14: end if

15: • draw a sample for step size r

16: • update Λl = Λl−1 + r · ∇f |Λ=Λl−1 according to Equation (3.40)

17: end for

18: • set Gbest(k + 1) = Λl;

19: end for

20: • obtain the final result, Λ∗, by selecting from Gbest(K).

As suggested in [150], a uniformly-distributed random step size (r) could be used

for the steepest ascent method, which turned out to be effective in practice. In prac-

tice, r is uniformly distributed between [ π
90
, π
15

]. In the GB-PSO method, the standard

PSO is involved as the first step, then the global optimum (Gbest(k+1)) is updated by

the gradient ascent method, which helps the next round PSO converge fast by improv-

ing velocity estimation. Thus, in the GB-PSO method, the total number of iterations

required could be dramatically reduced compared with PSO. The computational load
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of the additional steps in GB-PSO is negligible due to two reasons: (1) the analytical

nature of the energy function makes the gradient computation very efficient for the

present global solution Gbest(k + 1) that is to be shared by all particles in the next

iteration; (2) the update along the gradient direction is done analytically according

to Equation (3.40), and there is a maximum number of gradient ascent iterations

(i.e., pl = 20 in this work) and a check of the current gradient value to determine if

additional moves are necessary. In our experiment, we found that the actual num-

ber of the steps along the gradient direction is often much less than pl (around 10),

which confirms that the solution of gradient-based search is in the proximity of a local

optimum. We summarize the GB-PSO method in Algorithm 3.

3.6 Experimental Results

In this work, our interest is to develop a general model-driven ATR algorithm where

no IR data are used for training and no prior feature extraction is needed from the IR

data, unlike most traditional methods that heavily rely on the quality of the training

data, as well as feature extraction. We have conducted two comparative studies to

evaluate the performance of the proposed algorithms. First, we have involved five

comparable algorithms, including the proposed PSO and GB-PSO algorithms, all of

which apply CVIM for shape modeling. Second, we also compared our algorithms

with several recent ATR algorithms, including two SRC-based approaches [11, 103]

and our previously-proposed ATR algorithm, which involves a joint view-identity

manifold (JVIM) for target tracking and recognition [53]. The purpose of the first

study is to validate the advantages of “implicit shape matching” over “explicit shape

matching”, as well as the efficiency of GB-PSO over PSO. That of the second study is

to demonstrate the effectiveness of our new ATR algorithms compared with the recent

ones in a similar experimental setting. It was reported in [4] that SRC-based methods

can achieve state-of-the-art performance. In the following, we will first discuss the
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experimental setup shared by two comparative studies along with the metrics used for

performance evaluation. Then, we present the two comparative studies one-by-one in

detail.

3.6.1 SENSIAC Data and Experimental Setup

Similar to [9], we selected six 3D CAD models for each of the six target classes for

CVIM training (36 models in total; Figure 3.2): APCs (armored personnel carriers),

tanks, pick-ups, sedans, vans and SUVs. We considered elevation angles in 0◦ ∼ 40◦

and azimuth angles in 0◦ ∼ 360◦, with 10◦ and 12◦ intervals along the elevation and

azimuth angles, respectively, on the view manifold, giving 150 multi-view shapes for

each target. We also adopted a DCT-based shape descriptor [52], which facilitates

CVIM learning and shape inference.

Figure 3.11: All eight targets we used for algorithm evaluation were from the SEN-

SIAC database.

All experiments were performed against the SENSIAC database [3], which provides

a large collection of mid-wave IR and visible data depicting seven military targets

and two civilian vehicles. We used 24 mid-wave (23 night-time and 1 day-time) IR

sequences captured from 8 targets (Figure 3.11) at 1 km, 2 km and 3 km. In each

sequence, there is a civilian or military vehicle traversing a closed-circular path with
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a diameter of 100 m.

Figure 3.12: Definition of 3D coordinate system and the spatial geometry of the

sensor, and also the target in the SENSIAC database.(a) The aspect of the target

relative to the sensor, and the azimuth angle of target relative to the true north,

and the elevation angle of the sensor; (b) side view of the ground and slant distances

between the target and sensor; (c) top-down view of the aspect direction and the

heading orientation; (d) a sensor-centroid 3D coordinate system.

We selected 100 frames from each sequence by down-sampling each sequence that

has 1800 frames originally, where the aspect angle ranges from 0◦ to 360◦ with around

a 5◦ − 10◦ interval; so in total, there are 2400 frames used for evaluation. The

SENSIAC database also provides a rich amount of metadata (Figure 3.12), which can

be used for performance evaluation, such as the aspect angle of the target, the field

of view and the 2D bounding box of the target in each frame. Since we mainly focus

on the recognition rather than detection, we also generated our target chips with the

help of target 2D locations from this metadata (averaging around 50 × 30 = 1500

pixels at 1 km, 25 × 14 = 350 pixels at 2 km and 15 × 10 = 150 pixels at 3 km) in
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our experiments.

3.6.2 Comparative Study on Shape Modeling-based Approaches

This study compares five CVIM-based algorithms, which involve different segmen-

tation and optimization techniques. Specifically, Method I uses background subtrac-

tion [151] to pre-segment a target-of-interest. This method is only suitable for a

stationary sensor platform. Method II applies level set segmentation without a shape

prior [10]. Both Method I and Method II need explicit shape matching, which involves

Markov Chain Monte Carlo (MCMC)-based CVIM inference after segmentation to

accomplish ATR [57]. Method III applies a multi-threaded MCMC-based inference

technique to jointly optimize over CVIM in a level set by involving implicit shape

matching without target pre-segmentation. It was shown in [57] that Method III

significantly outperforms the first two, but it suffers from high computational com-

plexity due to the MCMC-based shape inference. PSO and GB-PSO are referred

to as Methods IV and V, respectively. The computational time for each ATR chip

(50×30 pixels) for five algorithms is around 10, 14, 22, 15 and 6 s, respectively, using

an un-optimized MATLAB code on a PC with a Quad-core CPU (2.5 GHZ).

We evaluate these five algorithms with respect to: (1) the accuracy of pose estima-

tion (i.e., the aspect angle); (2) the 2D pixel location errors between the segmented

shape and the ground truth bounding box; (3) the recognition accuracy in terms of

six major target classes; and (4) the sensor-target distance (i.e., range, computed by

scaling factors) errors in meters. To examine the robustness of our algorithms, we

analyze (5) the recognition accuracy versus three related factors, i.e., the contrast of

image chips [152], the foreground/background χ2 histogram distance [153] based on

the segmentation results and the aspect angle. The chip contrast and χ2 histogram

distance indicate the IR image quality and the target visibility, respectively. Similar

to [154–157], we also evaluate the overlap ratio between the estimated bounding box
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(derived from the segmentation result) and the ground truth bounding box (avail-

able from ground-truth data) (6), which is a simple, yet effective and widely-accepted

way to quantify the segmentation performance. Furthermore, we manually created

the ground truth segmentation masks from five randomly-selected frames per IR se-

quence, so that we can compute the overlap ratio between the segmentation results

with the ground-truth masks (7). Moreover we will show the capability of the pro-

posed algorithm (GB-PSO) for sub-class recognition, i.e., the specific target type

within a class, even if the exact target type is not in the training data.

(i) Pose Estimation Results

Table 3.1 reports aspect angle error (pose estimation) results for all five tested

methods along with the 2D pixel error and 3D range error in the predefined 3D

camera coordinate system (given in the metadata).

Table 3.1: Pose and location estimation errors for all five tested methods averaged

over SENSIAC mid-wave IR sequences for each target to sensor distances depicting

eight difference targets (Method I/Method II/Method III/Method IV/Method V).

2D Pixel Error (pixels) Aspect Angle Error (◦) Range Error (m)

1 km 2.8/3.1/1.9/2.1/1.9 17.2/17.9/15.1/14.8/15.1 25.1/27.8/24.2/24.1/24.5

2 km 2.9/3.4/2.3/2.4/2.1 21.2/25.2/18.7/18.2/17.1 39.1/38.2/33.8/32.8/32.6

3 km 2.5/3.8/2.2/1.8/2.0 26.1/27.5/21.7/21.9/20.5 43.5/48.3/40.2/40.1/41.1

We can see clearly that both Methods IV and V can achieve moderate, significant

and slight improvements over Method I (background subtraction for segmentation),

Method II (level set segmentation without shape prior) and Method III (MCMC-

based CVIM inference), respectively. Although Methods IV and V do not provide

a significant improvement in pose and location estimation performance compared to

Method III, they provide similar performance at a greatly reduced computational
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Figure 3.13: Convergence plots for PSO and GB-PSO in one example.

complexity. Numerical results from PSO and GB-PSO are comparable to each other.

However, Figure 3.13 shows that GB-PSO converges nearly three-times faster than

the PSO, demonstrating the value of gradient boosting in the CVIM latent space.

(ii) Target Recognition Results

The recognition results are computed based on the percentage of frames where

the target class is correctly classified. As shown in Table 3.2, both PSO (Method IV)

and GB-PSO (Method V) generally achieve modest performance gains over Method

I–III, while GB-PSO does so with a significantly reduced computational complexity

compared to all four of the other methods. Furthermore, Figure 3.14 shows some sub-

class recognition results for eight 1-km IR images. The sub-class recognition can be
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Table 3.2: Overall recognition and segmentation results of five methods (I /II /III

/IV /V).

Average Recognition Bounding Box

Accuracy (%) Overlap (%)

1 km 81/78/85/86/85 85.2/82.9/88.1/88.6/88.9

2 km 71/64/73/75/76 75.6/74.1/79.5/79.8/79.2

3 km 69/62/70/72/73 67.7/65.5/70.1/70.9/71.6

Segmentation Mask Fore/Background

Overlap (%) χ2 Histogram Distance

1 km 79.3/83.2/83.5/83.8/83.6 0.30/0.32/0.34/0.34/0.35

2 km 72.3/73.9/79.8/79.6/80.1 0.26/0.25/0.29/0.28/0.31

3 km 63.8/67.2/68.8/69.3/69.1 0.20/0.23/0.25/0.26/0.25

Crewcab

Chevy

GMC Jimmy

Ford Explore

SA-9 GASKINBTR70 Ratel

BMP1

M1-Abrams

T62

T62

T80

AS90

M1-Abrams

Ford F150 ISUZU SUV BTR70 BRDM2 BMP2 T72 ZSU23 2S3

BRDM1Ratel

Figure 3.14: Some sub-class recognition results under 1000 m. The first row and third

row show the closest training vehicles along the identity manifold in the CVIM, and

the middle row presents the original IR chips.
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achieved via CVIM by finding the two closest training target types along the identity

manifold. Since the training data only have the BTR70 model, we find that we can

recognize the BTR70 at the sub-class level most of the time. Interestingly, we can see

that T72, BMP2 and 2S3 are also recognized as T62, BMP1 and AS90, respectively,

which are the closest sub-class target types available in our training data.

We also summarize the recognition performance with respect to image contrast

and fore/background histogram distance in Figure 3.15a and b. Our algorithm tends

to perform worse when encountering frames with a lower contrast ratio and a smaller

fore/background histogram distance. Furthermore, we demonstrate the effect of view

variations on the recognition performances we well, as shown shown in Figure 3.15c

and d. Most failure cases (red dots) occur at around 0◦ (or 360◦) and 180◦ (front/rear

views). Since we only use the shape information here, a more advanced target ap-

pearance representation that involves intensity and other features could make ATR

performance more robust to view variation.

To make further demonstrations, we summarize recognition results from GB-PSO

vs. the chip contrast, foreground/background histogram distance and aspect angle in

Figure 3.16. It is shown in Figure 3.16a that our algorithm performs well for most chips

with reasonable contrast and tends to deteriorate for chips with a very low contrast,

which is usually associated with poor image quality (e.g., day-time IR imagery).

As illustrated in Figure 3.16b, the foreground/background χ2 histogram distance

is strongly related to the recognition accuracy. This is because the χ2 distance is

related to the target visibility and can also quantify the segmentation quality. When

segmentation results are good with large background/foreground separation (large

χ2 distance values), the recognition accuracies are usually high, which also imply

good target segmentations. Furthermore, the aspect angle is a key factor that affects

the recognition performance. As shown in Figure 3.16c, the highest accuracy occurs

around the side views (90◦ and 270◦) when the targets are most recognizable. Most
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Figure 3.15: The experimental analysis of GB-PSO. (a) and (b): The image contrast

ratio and fore/background histogram distance versus overall 2400 frames. (c) and (d)

The image contrast ratio and fore/background histogram distance versus the aspect

angle for overall 2400 frames. Blue dots are correctly recognized frames while red

dots are mis-recognized frames. (This figure is better viewed in color.)
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Figure 3.16: Robustness analysis of GB-PSO over all 2400 chips. (a) Recognition

accuracy versus the chip contrast; (b) recognition accuracy versus fore/background

histogram distances; (c) recognition accuracy versus the aspect angles.

failed cases are around 0◦ (or 360◦) (frontal views) and 180◦ (rear views), when it is

hard to differentiate different targets due to the high shape ambiguity. Since we only

use the shape information here, a more advanced and informative target appearance

representation that involves intensity and other features could make ATR performance

more robust to aspect angles.

(iii) Target Segmentation Results

Table 3.2 shows the target segmentation results in terms of the bounding box

overlap, the segmentation mask overlap and the foreground/background χ2 histogram

distance. Both PSO and GB-PSO outperform Methods I and II, while performing

comparably to Method III at a lower computational complexity. Figure 3.17 shows

some snapshots of the original IR imagery of eight targets under the 1-km range,

along with the manually-cropped segmentation masks, the results of the background

subtraction segmentation, the level set segmentation without a shape prior and the

PSO method, respectively. It may be seen that the CVIM shape prior drives the

segmentation to a semantically more meaningful shape compared to Methods I and

II, where a shape prior is not involved.

54



Original IR

data sequence

GMM

Background

subtraction

Level-set

segmentation

Ford F150

Pickup
ISUZU SUV BTR70 APCBRDM2 APC BMP2 APCT72 Tank ZSU23 anti-

aircraft
2S3 Tank

Manually Cropped

Ground Truth

Proposed

segmentation and

recognition

Figure 3.17: Snapshot of the segmentation results. From the first row to the last:

original IR frame, manually-cropped segmentation masks, results of background sub-

traction segmentation, level set segmentation without shape prior and the final seg-

mentation and recognition results with CVIM shape prior (Method IV) interpolated

from the CVIM.

Some snapshots of segmentation results along with pose estimation and recog-

nition results of Method V (GB-PSO) are shown in Figure 3.18. It is found that

GB-PSO is robust to background clutter and engine smoke, and the frontal/rear

views may pose some challenge. For BRDM2 APC, we see a heat spot near the tail,

which changes the target appearance significantly, but we can still recognize it as an

APC. However, for targets of near front/rear views, although the segmentation results

are still acceptable, the recognition results are often wrong. For example, the BMP2

APC was misrecognized as the M60 tank in the front view. By closely observing the

IR appearances of BMP2 APC, we find that this particular APC does indeed look

similar to a tank when viewed frontally. This can also be explained by our iden-

tity manifold topology learned by class-constrained shortest-closed-path, where the

BMP2 stays closest to tanks along the identity manifold among all APCs, as shown

in Figure 3.2.

A similar case happens to BTR70 APC. Moreover, the proposed algorithm as
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Figure 3.18: Some GB-PSO results for pose estimation and recognition results of

eight targets under a 1-km target-sensor range from the SENSIAC database. For

each target, from the first row to the third: original IR frame, level set segmentation-

based initialization and the final pose estimation and recognition results from GB-

PSO. Recognition results are denoted in blue if correct and red if wrong below each

chip.
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Figure 3.19: Some failed cases of the 2S3 tank in a day-time sequence at 3 km.
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realized in Methods IV and V performs poorly against long-range day-time IR data

(3 km), where the foreground/background contrast is low and the target is small.

This is illustrated in Figure 3.19, where the 2S3 tank is misclassified as an APC in

several frames. As we already mentioned, a more powerful appearance representation

is needed to handle challenging cases of this type.

3.6.3 Comparative Study: Recent ATR Methods

This comparative study includes three recent ATR algorithms that are compared

against PSO and GB-PSO. Specifically, we applied the gradient-based optimization

technique discussed in [53] to apply JVIM (learned from the same set of training

shapes as CVIM) for image-based ATR where level set segmentation without a shape

prior is used for initialization. In addition, we have also implemented the SRC-based

algorithm [4] and the multi-attribute Lasso with group constraint (MALGC) [11],

which is an extended SRC approach by taking advantage of the attribute information

(i.e., angles) during sparse optimization. Both SRC algorithms require a dictionary

that includes training shapes also used for CVIM learning. The input is the level

set segmentation output from an IR chip. We also use the segmentation results

from GB-PSO for SRC-based ATR (namely SRC-GB-PSO) to see the effect of good

target segmentation. The computational time (in the same computational setting as

before) for four implementations is around 4 (JVIM), 16 (SRC), 20 (MALGC) and

18 (SRC-GB-PSO) s, compared with 15 and 6 s for PSO and GB-PSO, respectively.

We compare six ATR algorithms in Table 3.3, and we have the following observations

and discussion according to Table 3.3.

• The JVIM model unifies the view and identity manifolds in one latent space

for more accurate shape modeling than CVIM, which involves separate view

and identity manifolds [158], and it is especially suitable for target tracking

due to the unified and smooth shape manifold [53]. However, JVIM has a simi-
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Table 3.3: The performance comparison with recent ATR methods in terms of

the recognition accuracy and the aspect angle error (joint view-identity manifold

(JVIM)/sparse representation-based classification (SRC)/multi-attribute Lasso with

group constraint (MALGC)/ SRC-GB-PSO/ PSO/ GB-PSO).

Ranges Average Recognition Accuracy (%) Aspect Angle Error (◦)

1 km 82/83/83/85/86/85 16.9/15.6/15.4/15.3/14.8/15.1

2 km 69/72/73/75/75/76 22.3/20.1/19.9/17.8/18.2/17.1

3 km 65/69/70/72/72/73 26.8/24.5/23.9/21.1/21.9/20.5

lar multi-modal problem as CVIM that makes the gradient-based optimization

often trapped in local minima, as reflected by relatively poor results in Ta-

ble 3.3. It may not be efficient to apply sample-based approaches (e.g., PSO or

MCMC) to JVIM optimization due to the fact that its joint manifold structure

will require a large number of samples to ensure effective sampling. The reason

that JVIM shows promising results in target tracking is because the dynamic

modeling involved greatly facilitates sequential state estimation. In the case of

image-based ATR, CVIM shows some advantages over JVIM due to its simpler

structure.

• Both SRC and MALGC methods show reasonable performance by only using

shapes segmented by level set for ATR. Especially for the range of 1 km when

target segmentation is likely more accurate, all algorithms are very comparable.

It is observed that MALGC is slightly better than SRC by utilizing the angle

information in sparse optimization. More interestingly, we can see that better

target segmentation results via GB-PSO moderately improve the SRC’s perfor-

mance (the fourth algorithm, GB-PSO-SRC). The computational complexity

of SRC and MALGC is comparable with PSO and much higher than that of

GB-PSO.
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• It is shown that the proposed PSO and GB-PSO algorithms are comparable,

both of which are better than the others in all cases. Although the improve-

ment of GB-PSO over the other two SRC approaches is moderate, it does offer

several advantages: (1) it is computationally efficient with only a 30%–40%

computational load; (2) target segmentation is not required and can be con-

sidered as a byproduct of ATR; and (3) the proposed GB-PSO algorithm is

a model-driven approach that does not require real-world training data, and

it has potential to be combined with other data-driven approaches to further

improve ATR performance.

3.7 Discussion

In this chapter we presented an a probabilistic level set framework with shape gen-

erative modeling for joint target recognition, segmentation and pose estimation for

IR imagery. Due to the multi-mode nature of the energy function, we propose a

multi-threaded Monte Carlo Markov Chain (MCMC)-based strategy, and we also

adopted the particle swarm optimization (PSO) algorithm and a gradient-boosted

PSO (GB-PSO) for faster optimization. Experimental results on the SENSIAC ATR

dataset demonstrate the effectiveness of the proposed framework. Both PSO algo-

rithms (especially GB-PSO) reduce the cost of shape matching during CVIM-based

shape inference, and they are more efficient and effective than other traditional im-

plementations which require intensive shape matching either explicitly (with pre-

segmentation) or implicitly (without pre-segmentation). The proposed framework

could be further extended to incorporate advanced appearance representations when

target shape observations are not preferably detected. In the future we aim to build

more comprehensive ATR systems assisted by global contextual information.
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CHAPTER IV

SPARSE REPRESENTATION-BASED ATR

In the previous chapter we integrated a shape generative model (CVIM) into a prob-

abilistic level set framework to implement joint target recognition, segmentation and

pose estimation, and our algorithms perform well when target boundaries are recog-

nizable with ease. But most failure cases occur when encountering highly clutters

in the surrounding area or much complicated background conditions caused by dust

or weather especially in the day time IR sequences, where even human eyes could

spend hard time to recognize the target signature. In this chapter, we further explore

some data-driven approaches on a more challenging dataset, where target boundaries

are not preferably detected and insufficient shape features could be applied for shape

modeling-based optimization approaches. Specifically, we will first introduce two re-

cent sparse representation classification methods for recognition tasks, followed by

our combination framework for an improved recognition performance.

4.1 Preliminary Work

As mentioned in Chapter II, sparse representation classification methods (SRC) has

been successfully applied in human face recognition [103] and also ATR [4]. Some

more advanced applications such as multi-attribute sparse representation based method

(MALGC) was introduced in [11], which encourages group constraints on different at-

tribute of data for the sparsity solution, such as lighting condition, facial expression,

etc. In this and following sections we will briefly introduce some SRC methods and

present some in-depth analysis on performances of sparse representation based recog-
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nition on the Comanche dataset.

4.1.1 Sparse Representation-based Classification

Suppose there are L target classes, and each class has n training images, while each

image is w × h, and we vectorize them as N -dimensional vectors, where N = w × h.

Let Ak = [Dk1, ...,Dkn] be an N × n matrix of training images from the kth class as

the library representing the kth class, then an library that consists of all sub-libraries

from all classes can be defined as

A = [A1, ...,AL] ∈ RN×(n·L)

= [D11, ...,D1n|D21, ...,D2n|......|DL1, ...,DLn], (4.1)

Then, we can consider an observation vector Y ∈ RN as a linear combination of all

training data as

Y =
L∑
i=1

N∑
j=1

αijDij, (4.2)

where αij ∈ R. The equation above can be written in matrix form as

Y = Aα, (4.3)

where α = [α11, ..., α1n|α21, ..., α2n|......|αL1, ..., αLn]T . The assumption behind the

sparse representation based classification method is that, suppose we are given suffi-

cient training data, any observation that belong to the same class will approximately

stay in the linear span of the training library from the same class - coefficients in

α that are not associated to the same class will be close to zero, which makes the

α a sparse vector. Researches have shown that if α is sparse enough and certain

properties applies, the sparsest α can be found by solving the following optimization

problems,

α̂ = arg min
α′
‖α′‖1, subject to Y = Aα′, (4.4)
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where ‖ · ‖1 is the norm 1 operation. After this optimization, the idea case is that

values of the coefficients α̂ are mainly associated to columns of the library A from

one single class, so based on this fact we are able to do a classification by comparing

the reconstruction errors from different parts of the estimated α̂ that merely belong

to each class, and the minimum reconstruction errors is used to recognize the class

of the observation. A function χk was introduced that can be used to select values of

the coefficients associated with class k

rk(Y) = ‖Y −Aχk(α̂)‖2, (4.5)

then the class d can be estimated as the one that produces smallest reconstruction

error,

d = arg min
k

rk(Y), (4.6)

where d ∈ {1, 2, ..., L} is the classification result.

4.1.2 Multi-Attribute Sparse Representation

A simple and efficient multi-attribute Lasso with group constraint (MALGC), or

multi-attribute sparse representation is proposed in [11] for improved classification

accuracy on face recognition with jointly considering group constraints, reconstruction

error and sparsity property. Consider that the training dataset may have different

attributes, and each attribute can be represented as a binary matrix Ab ∈ Rmb×(n·L),

each of which has mb types, where b is the index of attributes b = 1, ..., B. Take the

Comanche data for example, it might contains three attributes: target types, view

angles, illumination, and each attribute has may types, for example the target types

contains ten different types of vehicles, and the view angles have 72 different degrees

of view, while the illumination may contain day time and night time data. So each

attribute is defined as
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Figure 4.1: Multi-attribute sparse representation applied to human face recognition

with face expression, pose and lighting attributes [11].

Ab =



a1,1 a1,2 · · · a1,p

a2,1 a2,2 · · · a2,p
...

...
. . .

...

amb,1 amb,2 · · · amb,p


,

(4.7)

where ai,p =

 1, if Dp ∈ type i

0, otherwise
(4.8)

and i = 1, ...,mb is the type index for attribute b, and each column in Ab associate

to the data Dp, where p = 1, ..., nL. By adding all attribute as group constraints in
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Equation (4.4), a new formulation of optimization problem is given,

min
α′,αA1

′,...,αAb
′
‖α′‖1 + ‖α′

A1‖1 + ‖α′
A2‖1 + ...+ ‖α′

AB
‖1,

subject to Y = Aα′,α′
A1 = A1α

′,α′
A2 = A2α

′, ...α′
AB

= ABα
′, (4.9)

obviously it is hard to solve such an optimization problem with many group con-

straints, but it can be reformulated to a typical l1 optimization problem by simply

reformulating it,

min
α̃
‖α̃‖1, subject to Ỹ = Ãα̃, (4.10)

where

Ã =



A 0N×m1 0N×m2 · · · 0N×mB

A1 −Im1×m1 0m1×m2 · · · 0m1×mB

A2 0m2×m1 −Im2×m2 · · · 0m2×mB
...

...
...

. . .
...

AB 0mB×m1 0mB×m2 · · · −ImB×mB


, (4.11)

where I is the identity matrix, and

α̃ = [αT ,αTA1
,αTA2

, · · · ,αTAB
]T ,

Ỹ = [YT ,0Tm1×1,0
T
m2×1, · · · ,0

T
mB×1]

T , (4.12)

therefore, Equation (4.10) can be easily solved by any l1 optimization methods. The

advantage here is that the multi-attribute sparse representation is able to offer more

data concentration from various attributes as group constraints during optimization,

and it can be reformulated as typical l1 optimization problems as well.

Similar to most sparse representation classification problems, the final classifi-

cation results are determined by the reconstruction error by the sparse coefficients

vectors. The vector αAb
has a dimension of mb, which is the number of types in the

bth attribute, and each element in αAb
would represent the sparse coefficients sum for
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each type in this attribute. a concept of basic group was introduced so that, for clas-

sification purposes, the target type is the basic attribute, while for view estimation

purpose, the view angle is the basic attribute. In our work, the target ID is the basic

attribute, as denoted by Ac, and αAc,q is the qth element of vector αAc associated

to the basic attribute matrix Ac. Then the decision is based on the combination of

reconstruction error of the observation and the group constraint,

d = arg max
q

(
e−
‖Y−Aχq(α)‖2

σ + γ
|αAc,q|∑
q |αAc,q|

)
, (4.13)

where the χq(α) select the coefficients in α associated to the qth class. First term and

second terms account for minimal reconstruction error and sparsest group constraint,

respectively, and γ is used here to control the balance between them.

4.2 The Comanche Dataset

As shown in Figure 4.2, we tested our Shape Manifold Aware level set method

(Method V) on the Comanche dataset, which consists of ten targets, and there are 72

orientations for each target. We can see that only the first row the target signature

is very clear, but from the 2nd to the last row, target signatures are much weaker

comparing to the M60 tank. But our algorithm is robust enough as long as tar-

get boundaries are visually recognizable, such as the BMP APC, and the M60 tank.

But in most cases we can achieve a fairly good recognition for main vehicle classes

(Tanks, APCs, SUVs, Trucks). The recognition accuracy based on main classes is

78%, while subclass recognition drop down to 65%. But notice that there is no input

data required for training.

Regarding to such challenging data where target signatures vary significantly, pure

model-drive approaches might not be preferable in order to achieve higher recogni-

tion accuracy suppose enough training data are given. As reported in [4] a sparse

representation method was applied to this Comanche data for target recognition, and
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Figure 4.2: Segmentation and recognition results from Method-V. For each row, the

first image is the image clip from the Comanche dataset with ground truth bounding

box (red), and from the 2nd to the 4th we give the top three segmentation and

recognition results respectively from left to right.
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results outperform other traditional methods. In following sections we will explore

our research on the sparse representation classification (SRC).

4.3 Switchable Sparse Representation Classification (SSRC)

Figure 4.3: Flowchart of the swithable sparse representation classification (SSRC)

method.

The coefficient vector α is expected to be sparse enough so that training data

associated to one class out of others would stand out for final recognition decision

making. A sparsity concentration index (SCI) [103] was introduced to evaluate the

quality of the optimization solution,

SCI(α) =

L·max ‖χi(α)‖1
‖α‖1 − 1

L− 1
(4.14)
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where L is the number of class. SCI is between 0 and 1. The closer to 1, the

sparser optimization result is achieved, and the test image could be approximated

reconstructed by one single class of the training data.

Based on our experiments, although the multi-attribute method is approved to

be effective on human face data [11], performances are very similar to the original

SRC method on our Comanche dataset. One possible reason is that although the

multi-attribute group constraint might encourage the optimization to be sparser,

wrong classes which is similar to the correct one would stand out due to the group

constraint. And also we found that most failure cases of the original SRC method

occurs when the coefficient vector α is not sparse enough. We also developed a third

method which combines both of the original SRC and the multi-attribute SRC into

a switchable sparse representation classification framework (SSRC) controlled by the

SCI index. That is, if the SRC does not return a sparse enough solution - if the SCI

index is lower than a threshold ζ, the MALGC would get involved (Figure 4.3).

4.4 Experiments

In this section we will focus on a more challenging data - Comanche dataset, where

target boundaries are less obvious and surrounding backgrounds are much more com-

plex.

(i) Comanche Data

We will briefly introduce a much more challenging dataset for the ATR research

- the Comanche dataset, as shown in Figure 4.4. This dataset contains ten targets

(2S1 tank, M60 tank, M113 APC, M3 tank, M1 tank, Hummer SUV, BMP APC, T72

tank, M35 military truck and ZSU23 anti-aircraft tank), and there are 72 orientations

for each target (0◦,5◦,10◦, ... , 355◦), and all targets are analyzed at 2000 meters in

both day time and night time under various conditions such as different background,

weather, in and around clutter. The data consists of SIG and ROI data, but we only
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Figure 4.4: All ten targets in the Comanche dataset.

have the SIG data available, which has totally 13560 small image chips where targets

are roughly located at the center of the image. We randomly select different groups

of data for training, and we reduce the number of training data from 90% to 10% of

the dataset each time, and the rest of the data are used for testing.

(ii) Recognition Performances of SRC Methods

Some data-driven methods - sparse representation based classification methods

are applied in following experiments on the Comanche dataset. we will show some

performances of both original sparse representation classification method from section

4.1.1 and the multi-attribute based method from section 4.1.2, and moreover, the

results of the switchable sparse representation classification (SSRC) method.

With the SSRC method, the overall recognition accuracy could be much enhanced

as shown in Table 4.1. In our experiments we found that the threshold of the SCI

index is not sensitive, a better solution is setting it around 0.1 to 0.2 since we have

10 classes.

Table 4.1: Sparse representation-based target recognition accuracy (%) on Comanche

dataset using different portion of data for training.

Training Data 90% 80% 70% 60% 50% 40% 30% 20% 10%

SRC 95.68 94.96 94.35 93.12 92.15 91.32 87.63 82.14 74.12

MALGC 95.71 95.12 94.31 93.22 92.82 91.56 88.12 81.93 73.46

SSRC 95.92 95.31 94.75 93.92 93.76 93.13 89.83 83.92 75.42

69



4.5 Discussion

In this chapter we present a fusion technique for ATR tasks, where sparsity concen-

tration index is used to combine two sparse representation classification methods,

one is SRC and the other one is MALGC, during which we are able to add more

group constraints from different attributes as simply solving a typical l1 solution by

reformulating the optimization problem into the matrix form. Experimental results

shows promising benefit of the fusion framework than using only single sparse repre-

sentation method. However, with the multi-attribute constraint, many testing data

that were correctly classified by the original SRC could be mis-classified by adding

group constraints, even the final results are slightly better. So in our future work

we might try to find a more effective design of the SRC method that keep the group

constraint in the optimization problem to encourage a more sparse solution of the co-

efficient vectors without sacrificing those correctly classified ones by the original SRC.

Moreover, in recent years deep learning methods [159–161] become very popular for

pattern recognition and machine learning researches, which is a next generation of

computer vision research and are demonstrated to be very effective. So in the future

we might explore deep learning techniques on ATR applications especially on FLIR

data, to further develop an ATR system with improved efficiency and robustness.
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CHAPTER V

RARE CLASSES ORIENTED IMAGE PARSING

Deep learning has been demonstrated to produce efficient and discriminative higher

level features in image parsing problems in [75,84], where both features and classifiers

are parameterized to model class based likelihood of pixels or superpixels so that

different pixels in a given query image could be discriminated satisfactorily. But since

CNN itself only captures object features in a local manner which does not contain any

contextual information from the global scene, pure CNN methods may not work well

in those pixels that look similar in a close and local view. For example the upper part

of a cruise ship might look like a building, and sometimes road pixels might seems like

sand or field without knowing the global scene information (road pixels appear more

likely in the street scene rather than an image taken in the coast scene). To address

this issue, an integrated non-parametric label transfer method was proposed in [13]

into a parametric CNN framework, which utilize the global contextual information

to alleviate the local ambiguity by using learned CNN features instead of human

engineered ones.

However, in common computer vision applications, objects of interest typically

occupy only small regions in the natural scene image or FLIR data, for example most

ATR systems focus on humman, man made vehicles or structures in the observa-

tion rather than the background area. Compared to large background areas in the

natural scene, objects with insufficient appearing frequencies and limited coverage of

the whole image are considered rare class objects, which intensifies the difficulty of

learning a robust recognition system. Although image parsing is able to assist spe-
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cific object detection and recognition by fully using the surrounding background and

contextual information, it is of great interests to extend the capability of a system

to recognize rare class objects, such as human, birds, boats, fences, etc. With the

idea of expanding the rare class subset [93] during image retrieval, we mitigate the

work proposed in [13] for a better classification on rare classes without losing global

understanding of query images, and an additional structure of rare class balanced

CNN may further extend the ability of recognizing rare class objects. Specifically,

our work makes following contributions,

• We selectively add rare class pixels to expand the retrieved image exemplar

subset by using scene information, rather than equally selecting all rare classes.

Through this we are able to add sufficient rare class objects into the feature space

for label-transfer with lower computational cost and less class ambiguities.

• A complementary rare classes balanced CNN structure is trained to mitigate

the negative effect caused by imbalanced training data problems. This extra

CNN is implemented near the region of rare classes upon the combination of

the original CNN local belief and the global class likelihood by label transfer.

Reduced effect on frequent classes and less computational complexity can be

achieved through this additional CNN structure for better labeling results.

• A superpixels-based re-segmentation is adopted to enhance perceptually mean-

ingful object boundaries by taking advantage of CNN-based pixel labeling.

5.1 Preliminary Work

In this section, we will first introduce some background on deep learning and convo-

lutional neural networks, followed by a brief introduction on a hybrid scene labeling

framework which integrates a parametric CNN structure for local labeling and a non-

parametric label transfer process for global labeling.
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5.1.1 Deep Learning and Convolutional Neural Networks (CNNs)

For decades, great efforts have been made to duplicate the functioning procedures of

human brains at least partially in artificial intelligence research [162]. Deep learning

is intuitively motivated by studies on biological nature of human brains which showed

that the neocortex in our brain process data through a propagation of some complex

hierarchy modules to learn observations [163]. Such hierarchical networks make it

possible to train deep artificial networks on a large-scale dataset with simple classifier

for robust pattern recognition tasks.

Deep learning [159–161] has been widely used in the field of pattern recognition

and machine learning in recent years. It is a group of methods that build a deep ar-

chitecture with many layers of adaptive non-linear components, which are cascades of

parameterized non-linear modules that contain trainable parameters at all levels [164].

With deep learning algorithms, not only can we find a way to specify prior knowledge

in a flexible way using deep architectures that can handle large families of functions

for training, but also use this concept for multi-task learning and semi-supervised

learning [159]. The most popular deep architectures are convolutional neural net-

works (CNNs) [77] and deep belief network (DBN) [165], stacked autoencoders [166],

restricted Boltzmann machine (RBM) [167], etc. And furthermore, unsupervised fea-

ture pre-training is suggested in [168] before the supervised learning process for better

learning results.

CNNs have played significantly important roles in many computer vision applica-

tions, such as hand-written digit classification [76], object recognition [169], robotic

vision [80], segmentation [81], detection [82], scene labeling [13], and so on. CNNs

have the capability of building translational invariant features through pooling, and

also have significant advantages of fewer parameters [170]. As the on-going advance-

ment of computational hardware power, collecting a large-scale labeled dataset be-

comes much easier and models with large learning capability with sufficient prior
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knowledge incorporated are highly encouraged, and CNNs have been demonstrated

to be extremely useful [77, 171].

CNNs involve discrete convolution on spatial information between pixels of images

or videos [78], and they are among the first truly successful deep learning approach

where many layers of a hierarchy were successfully trained in a robust manner. A

CNN is simply a framework of topology or architecture that provides locally connected

(spatially and temporally) structure which is capable of reducing the model complex-

ity, and optimization process is simplified by minimizing the number of controllable

parameters. Usually such parameters must be learned upon general feed-forward back

propagation. One important motivation that triggers the development of CNNs was

to build a deep learning framework with less pre-processing. Thus, only small por-

tions of the input are involved in the local receptive fields into the lowest layer of the

hierarchical structure [162].

Figure 5.1: LeNet-5 deep convulitional neural network architecture for digit recogni-

tion [12].

CNN is designed to benefit from the 2D structure of observations, which is achieved

by locally connected neurons tied with weights and biases followed by pooling layers

in the purpose of translation invariance. A typical CNN consists of convolutional

layers, spatial pooling layers and full-connected layers. Suppose the input to the first

convolution layer have the dimensionality of n × n × r, where n is the height and
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width of the input image and r is the number of channels. For example as shown in

Figure 5.1, the input is simply a 32×32 gray scale image with r = 1. The convolution

layers consist of q filters of m×m× k, where 0 < k <= r, m is the size of filters, and

m is smaller than n which results in the locally connected architectures in purposes

of the convolution, with the output of q features with the size of n −m + 1. After

the convolution layer, typically each feature map is subsampled with selected pooling

methods, such as mean or max pooling [172].

One could use all features produced from convolution layers for classification, but

there are two advantages by incorporating the pooling layers into the deep architec-

ture. The first one is dimension reduction, since the convolution usually results in

features with a large size of feature maps, and it is difficult to use all of these features

for future convolution and classification. The second advantage is that pooling could

result in statistical aggregation in the 2D input. More specifically, since 2D images

stay stationary and features that are able to describe one region of the image might

be applied to some other regions as well, and such benefit could be desirable for us

to build hierarchical networks that are robust to translation invariance [173].

Then, we might have some fully connected layers which are similar to the one

in standard multilayer neural networks. In classification problems for example, one

might need to add some type of classifier to output a posterior probability. Here

we will briefly introduce one typically used model named softmax regression [174].

Suppose we are given a labeled training dataset {(x1, y1), · · · , (xm, ym)} , where xi is

the ith training image with label yi ∈ {1, 2, · · · , L}. Thus, we try to give a hypothesis

or belief of an input image with a probability that P (y = l|x), where l = 1, · · · , L

are labels of different classes. Hence we want to obtain a L × 1 vector where each

element gives a probability of the input for each different classes, and the hypothesis

is in the form of
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pθ(x) =



P (y = 1|x; θ)

P (y = 2|x; θ)

...

P (y = L|x; θ)


=

1∑L
j=1 exp(θTj x)



exp(θT1 x)

exp(θT2 x)

...

exp(θTLx)


, (5.1)

where θs are the parameters of our model. And a typical cost function for the softmax

regression can be described below,

J(θ) = −

[
m∑
i=1

L∑
k=1

δ(yi = k) log
exp(θTk x

i)∑L
j=1 exp(θTj x

i)

]
, (5.2)

where δ(·) is a indicator function (δ(true) = 1, δ(false) = 0). This softmax cost

function is usually hard to be minimized analytically, and iterative optimization al-

gorithms can be used [172].

5.1.2 Integrated Parametric and Non-parametric Models

CNNs have been effectively used in scene labeling problems in [75, 84], where pa-

rameterized CNN models were proposed to learn pixel-wise class likelihood in a local

context-based manner. But pure CNN models are not able to handle global contex-

tual information as various features in different classes might be similar in a close and

local view at the pixel level, and some objects have less possibility to appear under

certain circumstances as well. For example, pixels of the sand may look very similar

to those of the road; it is less likely to observe a car running in the ocean; and the

sky will most probably appear above the land or the sea in the upper part of an im-

age. In [13] an integration of parametric and non-parametric models was proposed to

address this issue, where not only CNN models were adopted for feature learning and

local classification, but also a non-parametric label transfer method was incorporated

to achieve enhanced classification robustness for locally indistinguishable pixels.

This integration have three advantages. First, the global semantics helps to re-

move pixel level ambiguities by providing class dependencies globally from nearest
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exemplars in the training dataset. Second, discriminative features learned from CNN

were used for global feature learning instead of human engineered low-level features.

Third, a relatively small retrieval sets are sufficient due to the global scene constraint.

Specifically, the overall objective function is defined as follows,

E(X,Y) = −
∑
i∈X

(PL(Xi, Yi) + PG(Xi, Yj)) (5.3)

where X is the observation image, Xi is the ith pixel and Yj is the label correspond-

ing to Xi, and j = 1, 2, · · · , L and L is the number of classes associated to pixels.

PL(Xi, Yi) is the local belief for each pixel obtained by training a parametric CNN

model on small image patches as shown in Figure 5.2, and PG(Xi, Yi) is the non-

parametric global belief achieved by a weighted K-nearest neighbor (KNN) in a global

features space obtained by the trained CNN.

Figure 5.2: Parametric and non-parametric integrated scene labeling framework [13].

Specifically, after the training process of the CNN, the corresponding CNN feature

tensors F ∈ RH×W×T could be obtained by passing the input images to the truncated

CNN (i.e. the CNN without the softmax layer), where H and W are the height
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and width of the image, and T is defined by the last layer output of the truncated

CNN. For simplicity an image could be decomposed into several region blobs B =

{B1,B2, ...,Bn}, thus the region feature is defined as H(Bi) = pool(Fi),∀i ∈ Bi by

average pooling [77] from the constituent features. Moreover, a global feature space

H is defined by including all feature tensors H(Bi) in the training dataset. The

pixel-wise global belief is defined as

PG(Xi, Yj) =

∑
k Φ(Xi, Xk)δ(Y (Xk) = Yj)∑

kD(Xi, Xk)
, ∀Xk ∈ S(X) (5.4)

where Xk is the kth nearest neighbor of pixel Xi within the nearest exemplars S(X)

defined in the global feature space H from all the training data, and Y (Xk) is the

ground truth label of the pixel Xk, and δ(·) is equal to 1 if Y (Xk) = Yj,∀j = 1, 2, ..., L,

and L is the number of classes. D(·) gives the distance or similarity between the query

pixel and the training pixel from nearest exemplars in the CNN feature space,

D(Xi, Xj) = exp(−α‖xi − xj‖) exp(−γ‖zi − zj‖) (5.5)

where xi is the CNN feature corresponding to pixel Xi. zi is the coordinate along the

vertical direction of the image. α and γ control the trade-off between the feature and

spatial distances.

5.2 Scene Assisted Rare Classes Retrieval

As shown in Figure 5.3, usually objects in natural scene images are not equally dis-

tributed, because pixels of rare classes (human, boats, windows, cars, etc.) have

low appearing frequency and small spatial coverage compared to common classes

(sky, buildings, trees, etc.). A hybrid sampling method was introduced during CNN

training in [13], where pixels in rare classes were manually given higher frequency to

appear in the sampled training patches. Yang et al. mitigated the imbalanced data

distribution problem by simply adding superpixels from rare classes to the retrieval
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Figure 5.3: Unbalanced class distribution in the SIFTflow dataset [1].

set, which expands the retrieved subset to have more balanced frequency distribution

among all classes [93]. This method is able to increase the number of rare classe

superpixels in the retrieval set, leading to a more balanced label transfer. But for

each query image, the expanded subset is obtained by random sampling among all

rare classes, which does not encourage global contextual information. Hence, we fuse

a scene assisted rare classes retrieval method into the non-parametric model [13] for

global label transfer, where scene information is incorporated into the expansion of

the rare class subset from the training dataset for enhanced labeling performances on

rare class objects.

To demonstrate the importance of scene information during rare class retrieval,

Table 5.1 summarizes some frequencies of selected classes in the SIFTFlow dataset [1]

according to the scene layouts (coast, forest, highway, city, mountain, country, street,

and tall buildings as shown in Figure 5.4). As shown in the table, frequencies are

closely related to the image scene information, for example humans appear most

probably in the street scene, sidewalk has the largest frequency in the street scene,
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Figure 5.4: Natural scenes in the SIFTflow dataset [1].

Table 5.1: Selected class frequency (%) of scene categories in the SIFTflow dataset [1].

(Hwy=highway, Mnt=mountain, St=street, Bldg=building).

Coast Forest Hwy City Mnt Country St Tall Bldg

Bldg 0.38 0.17 2.32 58.17 0.18 0.52 40.91 60.03

Car < 0.01 0.02 2.37 2.44 < 0.01 < 0.01 6.26 0.28

Person 0.04 0.08 0.01 0.31 0.09 0.02 0.94 0.06

Boat 0.13 < 0.01 0 0.03 0 0.02 0.04 0.06

Window 0 0 < 0.01 6.77 < 0.01 < 0.01 0.45 0.15

Sidewalk 0 0 0.44 3.24 0 0 4.32 0.25

Road 0.04 0.19 36.08 8.56 0.23 0.51 24.52 0.76

Field 0 0.07 1.42 0 0.16 19.05 0 0

Balcony 0 0 0 0.8593 0 0 0.0298 0
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and cars are more likely to appear in the street scene rather than in the forest scene,

while field pixels have higher chance to appear in the countryside rather than in the

city. And also we can see clearly that, it is almost zero or less than 0.01% for boats to

appear in the mountain, forest or highway (some trucks might be towing a boat on the

highway though), and balcony appears only in the city and street scenes. Encouraging

the image scene information during the retrieval process may help to preserve rare

classes more accurately with lower ambiguities among rare class objects.

The purpose of image retrieval is to find image exemplars from the training dataset

with similar scene layout to the input, so that label transfer can be achieved by

scene constrained object labels. But rare class objects in the test image may not

appear in the retrieved image set, since only global scene layout is preserved. In this

case, misclassification may occur due to the fact that rare class objects are possibly

missing, So it is important to enrich the retrieval set with rare classes. However,

random selection [93] brings all rare classes to the retrieval set, which may not be

relevant to the scene category. For example, in a highway scene, it is not necessary

to consider adding boat pixels, as shown in Table 5.1, frequency of boat in a highway

scene is almost close to zero. Although random selection seems effective when the

retrieval fails (i.e. retrieved images are from different scene categories compared with

the input), it is important to note that retrieval is a significant guarantee for accurate

label transfer, and failed retrieval may result in misclassification for all classes. In

order to incorporate the scene information into the retrieval process, we consider a

Lr × 1 frequency vector fc for each scene category c ∈ {1, 2, · · · , C}, where C is the

number of scene categories ( C = 8 in the SIFTflow dataset). Each element of fc is

the frequency of each rare class in the scene category c, and Lr is the number of rare

classes. This frequency vector will encourage sampling of rare classes constrained by

scene information. For scene assisted sampling, we obtain the sampling ratio vector
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sc as follows,

sc =
fc∑
fc

(5.6)

where sc provides the proportion of each rare class in the resulting retrieval set of

rare classes under the scene category c.

During the retrieval step, suppose we have a trained CNN model M from the

training dataset X = [X1, X2, · · · , XN ] with labels Y = [Y1,Y2, · · · ,YN ], Y ∈

{1, 2, · · · , L}N , where N is the number of training images and L is the number of

classes, we could obtain feature tensors F ∈ RH×W×T from each images by applying

the CNN model to each image, where H and W are the height and width of the

image, and T is defined by the last layer output of the truncated CNN.

Given a query image Xq, similarly we can obtain a retrieval set Sq(X) with m

exemplars from the training dataset by CNN feature matching, and hence the scene

category c could be obtained based on the dominant scene in Sq(X). We introduce

a scene assisted retrieval set Bq(X) for rare class objects, and the proportion of each

rare class in Bq(X) follows sc. The number of samples Sl needed for each rare class l

is given by

Sl =


MSq(X) · slc

Nl if Nl < MSq(X) · slc
(5.7)

where MSq(X) is the average number of pixels among dominant classes (such as sky,

sea) in Sq(X), which ensure a balanced distribution of all classes (both frequent classes

and scene-relevant rare classes). Nl is the total number of pixels belong to rare class

l all over the training dataset. By sampling Sl number of pixels for each rare class l

from the training dataset, we are able to obtain an expanded retrieval exemplar set

Zq(X) = Sq(X) ∪ Bq(X). This scene assisted rare classes retrieval is summarized in

Algorithm 4.

The global belief for a given query image could be obtained by transferring labels
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Algorithm 4 Scene Assisted Rare Classes Retrieval
1: CNN model M learned from data with natural distribution,

training images [X1,X2, · · · ,XN ]. Ground Truth Labels [Y1,Y2, · · · ,YN ].

2: Input all Images X1:N to M, acquire feature tensors [F1,F2, · · · ,FN ].

3: Obtain global features [H1,H2, · · · ,HN ] by average pooling.

4: Based on the global image category c ∈ {1, 2, · · · , C} for all training images, compute C × Lr

frequency matrix f for Lr rare classes, Lr < L of each image category c.

5: Given a query Image Xq, similarly obtain Hq, retrieve nearest exemplars Sq(X) from training

images by matching Hq and H.

6: Assign the image category label c for the query image based on Sq(X), and then Obtain fc of

rare classes from f , and compute sc by Equation (5.6).

7: Sample rare class image patches according to Equation (5.7) to obtain Bq(X).

8: Final retrieval set for query image Xq is Zq(X) = Sq(X) ∪ Bq(X)

of the retrieval set Zq(X) by the weighted KNN equation as,

PG(Xi, Yj) =

∑
kD(Xi, Xk)δ(Y (Xk) = Yj)∑

kD(Xi, Xk)
, ∀Xk ∈ Zq(X) (5.8)

where, Xk is the kth nearest neighbor of the pixel Xi within the expanded nearest

exemplars Zq(X) defined in the global feature space from all training data, and Y (Xk)

is the ground truth label of pixel Xk, and δ(·) is equal to 1 if Y (Xk) = Yj,∀j =

1, 2, ..., L, and L is the number of classes. D(·) gives the distance or similarity between

the query pixel and the training pixel in the nearest exemplars in the feature space

constrained by spatial information,

D(Xi, Xj) = exp(−α‖xi − xj‖) exp(−γ‖zi − zj‖) exp(−β‖bi − bj‖) (5.9)

where xi is the CNN feature corresponding to pixel Xi; zi is the coordinate along the

vertical direction of the image; bi is the object size of the image blob where the pixel

Xi belong to, which ensure that we evaluate the distance of two features not only by

feature similarities, but also by the pixel location and the object size. This distance

function encourage a larger dissimilarity between rare classes and frequent classes.
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For example in outdoor scenes, the sky may appear above the sea, and a person is

likely to appear in the lower part of an image, while the region that is occupied by

a human or a boat is usually smaller compared to the sky or the sea. α, γ and β

control trade-off between the CNN feature, the spatial distance and the object size.

5.3 Rare Classes Balanced CNN

Since the local belief was estimated by training a CNN using small image patches

around each pixel, it is hard to be adapted to all classes when pixel distributions

are not well balanced, and objects with smaller areas covered in the image are tend

to be dominated by frequent class objects. In other words, sufficient training may

be processed for frequent classes, such as sky, sea, sand, but training image patches

available for rare classes are insufficient, such as person, boat, car, etc. So in this

work we propose a rare classes-oriented scene labeling framework (RCSL), which

adds an extra structure of CNN trained with a subset of the training data with

balanced distribution among all classes, during which enough learning process could

be implemented for better feature learning. Specifically, we develop an energy function

Er(Xi, Yj) that evaluates the class likelihood of the label Yj, j = {1, · · · , L} only for

rare classes pixels Xi in an image X,

Er(Xi, Yj) = −PLr(Xi, Yj) · δ(Y (Xi) ∈ Yr), (5.10)

where Yr is a subset of labels Y = {1, 2, · · · , L} which only contains rare class labels.

δ(·) is an indicator function and δ(Y (Xi) ∈ Yr) = 1 if Y (Xi) ∈ Yr, and

Y (Xi) = arg min
1,··· ,|L|

E(Xi, Yj), (5.11)

where

E(Xi, Yj) = −(PL(Xi, Yi) + PG(Xi, Yj)), (5.12)
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where E(Xi, Yj) is the class likelihood obtained by the local belief PL(Xi, Yi) achieved

by a CNN model M [13], and the global belief PG(Xi, Yi) from Equation (5.8). PLr

is computed by training a separate CNN modelMr based on a more balanced train-

ing data over all classes, especially determined by the frequency distribution of rare

classes. Since the training data contains significantly large training image patches,

Algorithm 5 Rare Class-oriented Scene Labeling (RCSL)
1: training images [X1,X2, · · · ,XN ]. Ground Truth Labels [Y1,Y2, · · · ,YN ].

2: Train a CNN-Softmax M (natural distribution) and Mr (rare class balanced distribution),

3: for each testing image Xq, q = 1, · · · , Q do

4: Find image retrieval set Zq(X) as Algorithm 4,

5: for pixel i = 1, · · · , H ×W do

6: compute local belief PL(Xi, Yj) using M, global belief PL(Xi, Yj) as Equation (5.8),

7: obtain Y (Xi) as Equation (5.11),

8: calculate Er(Xi, Yj) as Equation (5.10),

9: end for

10: obtain the labeling map Yq of the input image Xq by Equation (5.13).

11: end for

we are sampling [175] the whole training dataset so that only part of them is used

to train Mr. In this manner, we first randomly sample image patches of rare classes

until they are equally distributed in the training patches set, and then based on the

average occurrence rate of the rare class in the training subset, all frequent classes are

sampled in order to reach the same occurrence rate in the final training set. specif-

ically, suppose we are sampling Ns pixels for each rare class, in which case, patches

from the rare class whose total number of pixels is less than Ns may appear multiple

times, and only Ns Pixels from frequent classes are sampled to keep the training data

balanced over all classes.

Hence, the final RCSL labeling Y can be accomplished in a pixel-wise manner
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since pixels are independent within each other,

Y = ∪i=1:NYi (5.13)

where

Yi = arg min
1,··· ,|L|

(E(Xi, Yj) + Er(Xi, Yj)) (5.14)

We summarize the final RCSL labeling with scene assisted rare class retrieval in

Algorithm 5.

5.4 Superpixels-based Re-segmentation

Figure 5.5: Graph-based image segmentation capturing perceptually important

groupings or regions [14].

Image segmentation and grouping have been widely used in scene labeling prob-

lems, for example in [93], pre-segmentation of finding superpixels offers perceptually

important neighboring regions or groupings which captures object boundaries effec-

tively. Felzenszwalb et al. proposed an efficient graph-based image segmentation

algorithm [14] (as shown in Figure 5.5) based on two important perceptual aspects:

first, widely varying intensities are not supposed to be judged as the evidence to sepa-

rate different regions; second, meaningful regions cannot be obtained using only local

decision criteria. These two aspects lead to a segmentation algorithm that compares
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Figure 5.6: Proposed RCSL and RCSL-Seg framework [15]. (1) Pass the input image

to obtain CNN features for each pixel; (2) Local belief computed by the original

CNN [13]; (3) retrieve exemplars from the training dataset; (4) Scene assisted rare

class retrieval by Algorithm 4; (5) compute the global belief as Equation (5.8); (6) find

rare class objects by combining global and local belief; (7) obtain complementary local

belief according to Equation (5.13); (8)superpixels-based post-processing according

to Equation (5.15).

difference not only across boundaries, but also between neighboring pixels within each

region.

Since the resulting segmentation from the proposed RCSL tends to be smeared

and rough, where only image patches are used during CNN training without consid-

eration of any boundary information. In order to alleviate this problem, we develop a

superpixels-based re-segmentation method that is integrated into our RCSL (RCSL-

Seg) for better segmentation and labeling accuracy.

Given an input image X, we are able to obtain a group of superpixels Rp, p =
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1, 2, · · · , P obtained by the graph-based segmentation [14], and these superpixels

divide the image X into P regions. Suppose each pixel Xi ∈ Rp is labeled as Yi

(Yi ∈ {1, 2, · · · , L} and L is the number of classes) based on the RCSL framework

with scene assisted rare class retrieval, we further refine the final segmentation by

evaluating the majority of labels in each superpixel Rp. The final label Y ′p for each

superpixel is given by

Y ′p = arg max
j=1,··· ,L

Nj (5.15)

where Nj is the number of pixels labeled as j in the superpixel Rp. Thus, each

superpixel could be labeled based on the RCSL framework for refined segmentation.

The overall RCSL and RCSL-Seg system with scene assisted rare classes retrieval is

shown in Figure 5.6.

5.5 Experiments

The SIFTflow dataset [1] has been widely evaluated in may scene labeling work

[13,93,96], which consists of 2688 images of size 256× 256 from eight scenes contain-

ing 33 semantic class objects captured under eight typical natural scenes, including

coast, forest, highway, city, mountain, street, country and tall buildings (Figure 5.4).

All class labels and frequencies in the whole dataset are shown in Figure 5.3. The

dataset has been separated into 2488 training images and 200 testing images equally

distributed in each natural scene. In the dataset, each image is associated with

ground truth segmentation with corresponding labeling to each pixel, as shown in

Figure 5.7. In this section we conduct three studies to show the advantages of pro-

posed rare-class enhanced scene labeling framework with refined segmentation results

using superpixels. In the first study we will show the visual effectiveness of using

superpixels to refine the final labling segmentation regions, which lead to more de-

tailed object boundaries that are closer to those of real world objects. In the second

study, we report the overall labeling accuracies of proposed methods and several re-
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Figure 5.7: Examples from the SIFTflow dataset [1]. The 1st and 3rd columns are

the color images from natural scenes, the 2nd and 4th columns are the corresponding

ground truth segmentations and pixel-wise semantic labels.

cent research. Three versions of RCSL are evaluated, including RCSL-I(RCSL with

random sampling among rare classes), RCSL-II (RCSL with scene assisted rare class

retrieval), and RCSL-Seg (RCSL with superpixels-based re-segmentation) [14]. And

finally, we evaluate both pixel and class accuracy for rare classes to demonstrate the

promising performances of proposed methods quantitatively.

5.5.1 Superpixels-based Re-segmentation

The proposed RCSL method is basically using the combination of CNN for local

labeling and nonparametric label transfer model for global labeling [13], where small

image patches are used to train the CNN model. Our CNN models are trained

on Nvidia Geforce GTX 660 using MatConvNet toolbox [176], which takes about 5

hours for training the local CNN and 3 hours for the rare classes enhanced CNN.
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Figure 5.8: Demonstration of the re-segmentation using superpixels [14]. (a) The

original image, (b) RCSL, (c) RCSL with superpixels-based re-segmentation, and (d)

the ground truth.

Although the final labeling results tend to preserve the global semantic layouts, the

resulting segmentation is found to be smeared since object boundaries or shapes are

not considered. In order to obtain better segmentation and higher labeling accuracy,

we implemented a simple yet efficient graph-based image segmentation [14] to refine

the final labeling results obtained from the RCSL algorithm, where object boundaries

are demonstrated to be close to real-world objects. As demonstrated in Figure 5.8, we

can see clearly that boundaries of the building are well recovered after the superpixels

refinement, and especially those trees tend to be more detailed and accurate. This

refinement will not only refine the final segmentation masks but also contribute to

better labeling accuracy.

5.5.2 Overall Labeling Accuracy

We report the quantitative results of proposed methods on the SIFTflow dataset in Ta-

ble 5.2, including RCSL-I (rare class random sampling), RCSL-II (scene assisted rare

class retrieval), RCSL-Seg (RCSL with superpixels-based re-segmentation). Quanti-
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tative results of several recent methods on SIFTflow dataset for scene labeling are

also shown in Table 5.2, including parametric and non-parametric methods, where

non-parametric methods typically involve image retrieval process for label transfer.

We evaluate the pixel accuracy (percentage of correctly classified pixels) and the class

accuracy (average pixel accuracies per class) over all classes in this section.

Table 5.2: Quantitative comparison on the SIFTflow dataset.

Pixel (%) Class (%)

Multiscale ConvNet, Farabet et al. 2013 [84] 67.9 45.9

[84] + cover (balanced frequencies) 72.3 50.8

[84] + cover (natural frequencies) 78.5 29.6

CNN, Pinheiro et al. 2014 [75] 76.5 30.0

Recurrent CNN, Pinheiro et al. 2014 [75] 77.7 29.8

Superparsing, Tighe et al. 2010 [88] 76.9 29.4

Tighe et al. 2013 [89] 78.6 39.2

Singh et al. 2013 [87] 79.2 33.8

Gatta et al. 2014 [177] 78.7 32.1

Gould et al. 2014 [92] 78.4 25.7

Yang et al. 2014 [93] 79.8 48.7

Integration Model, Shuai et al. 2015 [13] 79.8 39.1

[13] + metric learning 80.1 39.7

Shuai et al. 2016 [175] 81.0 44.6

[175] + metric learning 81.2 45.5

RCSL-I (random sampling) 79.9 40.1

RCSL-II (scene assisted retrieval) 80.8 41.2

RCSL-Seg 81.6 47.5

As we can see that our baseline method [13] is able to achieve competitive perfor-
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mance except the class accuracy from [93]. Numerical results show effectiveness of the

integration framework for scene labeling. Our proposed RCSL-II is able to achieve

higher pixel and class accuracy compared to [13] and RCSL-I, which demonstrates

that our scene assisted retrieval method and the rare class balanced complementary

CNN structure is able to improve the baseline method regarding to unbalanced train-

ing data problems for rare class objects.

Since pre-segmentation has been used in [93] for superpixel extraction, better

class accuracy may be achieved compared to [13] where only small image patches are

used for learning process, and no object boundaries have been considered during the

training. Consequently, with the simple superpixels-based re-segmentation (RCSL-

Seg), we are able to achieve higher overall pixel accuracy compared with [93], and

reasonably better per-class accuracy.

5.5.3 Comparative Study on Rare Classes

To further demonstrate the effectiveness of proposed methods, we summarize pixel

and class accuracy in Table 5.3 only for rare classes in the SIFTflow dataset. It has

been shown that with the global scene assisted retrieval, we can improve the classifica-

tion accuracy compared to [13]. Instead of randomly selecting rare classes to acquire

the retrieval subset, selection of rare class is constrained by scene level information,

so that related rare classes image patches have a higher chance to appear while ir-

relevant rare classes might be filtered. Moreover, with the help of superpixels-based

re-segmentation, we can make a fair comparison with [93], which further demonstrate

the robustness of our proposed RCSL framework for correctly labeling and segmenta-

tion, especially for rare classes. Moreover, per-class labeling accuracies are shown in

Fig. 5.9, where the RCSL-Seg achieves significant improvement for rare classes com-

pared to the baseline method. But performance on common classes, mainly in the

background (sky, mountain, etc.), slightly drops, which occurs due to the fact that
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the additional rare class balanced CNN may have some over-fitting problem due to

more rare class training data.

Table 5.3: Quantitative comparison on rare classes of the SIFTflow dataset.

Pixel (%) Class (%)

Tighe et al. 2013 [89] 48.8 29.9

Yang et al. 2014 [93] 59.4 41.9

Shuai et al. 2015 [13] - 30.7

Shuai et al. 2016 [175] - 37.6

RCSL-II 61.3 39.2

RCSL-Seg 62.6 42.3

Figure 5.9: Per-class accuracy of the integration model [13] and RCSL-Seg [15].

Some qualitative examples of our proposed labeling results are shown in Fig-

ure 5.10. We can see clearly that the RCSL is more robust in finding rare classes

objects, and the superpixels refinement in RCSL-Seg can further encourage the final

segmentation results to be much more closer to the real world objects, and hence a

higher visualizability could be reached for visual distinctions between objects. For

example in the first image, we can separate the two persons instead of a rough region
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Figure 5.10: Some examples of our labeling results. The 1st column is the input

images, the 2nd column is the labeling results from [13], the 3rd and the 4th columns

are our proposed RCSL and RCSL-Seg labeling results respectively, while the 5th

column is the ground truth labeling map.
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of segmentation, and human silhouettes can be well recognized. In the third image,

vehicles on the high way tend to have more detailed boundaries, and in the sixth im-

age, we are able to recognized almost all windows of the building. Take a closer look

at the second image, we are able to find the person behind the right-most car, even

it is not labeled in the ground truth labeling map. Same situation happens to the

streetlight appears right next to the building on the left part of the fifth image. Failed

cases occasionally happen when wrong scene semantic has been discovered during the

retrieval step.

5.6 Discussion

In this chapter, we presented a compact rare class-oriented scene labeling frame-

work (RCSL) with global scene assisted rare classes retrieval process. Specifically we

expand the retrieved image exemplar subset by choosing scene information assisted

rare class image patches with less ambiguities from similar class features. And also an

extra rare class balanced CNN structure is trained to mitigate imbalanced data prob-

lem, which is implemented near potential rare class pixel regions for reduced effect

on frequent classes at lower computation cost. Furthermore, RCSL with superpixels-

based re-segmentation (RCSL-Seg) was implemented to produce more perceptually

important object boundaries. Experimental results demonstrate the effectiveness of

proposed framework on both pixel and class accuracy for scene labeling tasks on the

SIFTflow dataset. In the future we aim to include scene-level information rather than

only CNN features to encourage more precise image retrieval, which is a very impor-

tant step for the non-parametric label transfer. And moreover, since CNN is trained

using image patches without considering perceptually meaningful object boundaries,

further consideration of superpixels during the non-parametric labeling process will

be studied.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this dissertation, we explore the problem of perceptually understanding a given

scene by studying on object segmentation/recognition algorithms, and scene labeling

methods respectively. First, we have integrated a shape generative model (CVIM)

into a probabilistic level set framework to implement joint target recognition, seg-

mentation and pose estimation in IR imagery. Due to the multi-modal nature of the

optimization problem, we first implemented a PSO-based method to jointly optimize

CVIM-based implicit shape matching and level set segmentation and then developed

the gradient-boosted PSO (GB-PSO) algorithm to further improve the efficiency by

taking advantage of the analytical and differentiable nature of CVIM. We have con-

ducted two comparative studies on the recent SENSIAC ATR database to demon-

strate the advantages of the two PSO-based algorithms. The first study involves five

methods where CVIM is optimized by either explicit shape matching or MCMC-based

implicit shape matching. GB-PSO and PSO are shown to be more effective than other

methods. Moreover, GB-PSO was also shown to be more efficient than PSO with a

much improved convergence rate due to the gradient-driven technique. The second

study includes a few recent ATR algorithms for performance evaluation. It is shown

that the proposed GB-PSO algorithm moderately outperforms other recent ATR al-

gorithms at a much lower computational load. The proposed framework could be

further extended to incorporate new appearance features or effective optimization to

deal with more challenging ATR problems.

On the other hand, we implemented some sparse representation classification
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methods on a more challenging dataset, and in order to achieve higher recognition ac-

curacy, we designed a switchable sparse representation classification method (SSRC)

which fuses the traditional sparse representation classification method and a multi-

attribute sparse representation classification method (MALGC) involving an sparsity

concentration index regulation. Quantitative results on the Comanche dataset show

promising performances of proposed fusion framework. Currently group constraints

from different attributes could be incorporated into the optimization problem as a

typical l1 solution, but with such constraint many correctly classified testing data by

the original SRC are mis-classified here though. So in the future we may explore deep

learning techniques on ATR applications especially on FLIR data, to further develop

an ATR system with improved efficiency and robustness.

Furthermore, we presented a compact rare classes-oriented scene labeling frame-

work (RCSL) with a global scene assisted rare classes retrieval process, where the

retrieval subset was expanded by choosing scene regulated rare class patches. A com-

plementary rare classes focused CNN structure is trained to alleviate imbalanced data

distribution problem at lower cost. moreover, a superpixels-based re-segmentation

was implemented to produce more perceptually important object boundaries. Quan-

titative results demonstrate the promising performances of proposed framework on

both pixel and class accuracy for scene labeling on the SIFTflow dataset, and im-

provements on rare classes labeling accuracy could be observed. In the future we are

going to include not only CNN features but also scene-level information to encourage

precise image retrieval, which is a very important step towards the non-parametric

label transfer. Since CNN is trained using image patches without considering percep-

tually meaningful object boundaries, further consideration of superpixels during the

non-parametric labeling process will be studied to preserve better perceptually and

semantically meaning object segmentation.
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