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Abstract: In spiders, nutrients in a mother's diet are provided to her offspring through the 

eggs she produces, and consequently food quality may impact offspring life history traits. 

In this study, I tested the effect of maternal diet quality on egg sac production and 

offspring survival in Steatoda triangulosa, the triangulate cobweb spider. The nutritional 

quality of a female's diet was experimentally manipulated by feeding her fruit flies with a 

gradient of lipid and protein. I measured several life history traits both for the female and 

her offspring, including female body size at maturation, number of egg sacs produced, 

whether or not those egg sacs were viable, and offspring quality. I evaluated two main 

predictions. First, that females fed the high protein diet would produce more egg sacs 

than females fed the low protein (high lipid) diet. Second, that offspring whose mothers 

were reared on the high protein diet would have higher survival rates and would develop 

faster than those offspring whose mothers were reared on the low protein diet treatment.  

Results showed that the female spider’s diet had a large impact on her reproductive 

success. Of the 94 females in the study, 22 produced egg sacs, with 11 of these producing 

multiple egg sacs. Females in the protein treatments were more likely to produce an egg 

sac (viable or not) and a higher average number of egg sacs per female, than in other 

treatments. Only females fed a protein-enriched diet made viable egg sacs that ultimately 

produced surviving spiderlings. The high protein mother’s spiderlings had a higher 

survival rate through the first and final molt and also developed at a faster pace than the 

intermediate protein mother’s spiderlings.  
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CHAPTER I 
 

HOW FEMALE DIET IMPACTS LIFE HISTORY TRAITS IN THE TRIANGULATE 

COBWEB SPIDER: EFFECTS OF NUTRITION ON FEMALES AND THEIR 

OFFSPRING 

 

Introduction 

Maternal effects, including a mother's experience in the environment, can lead to 

variation in her development and condition that can be passed on to her offspring and 

influence their growth and survival (Mousseau & Dingle 1991; Mousseau & Fox 1998; 

Wilder 2013). Since most arthropods do not provide a lot of direct parental care, indirect 

maternal effects may be very important, way that parents influence offspring success in 

variable environments. Nutrition is one important factor that could influence maternal 

effects. It’s been shown that the nutrient content of the mother’s food is provided to her 

offspring through the eggs she produces and has shown to impact offspring life history 

traits (Tallamy & Wood 1986; Mousseau & Fox 1998). Differential provisioning of 

offspring can have significant consequences to offspring fitness (Benton et al., 2005).  In 

some species, the mother can determine the amount and quality of resources to allot to 

the eggs during egg laying, resources that have a large influence on such characteristics 

as survival, growth, and reproductive success of the offspring (Mousseau & Fox 1998).  

Those eggs provisioned with higher quality food usually have higher survival rates, 

growth rates, probability of developing into larger adults (Tallamy & Wood 1986; 
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Gonzaga & Leiner 2013). 

In addition to diet quantity, recent work has shown that the nutrient content of 

food (i.e., diet quality) can have important impacts on growth and reproduction. Previous 

studies of how nutrients impact life history traits of spiders have examined the outcomes 

of directly manipulating spider diets (Table 1). For example, Taylor & Pfannenstiel 

(2009) studied the importance of nectar as a food supplement for the spider 

Cheiracanthium inclusum. Spiderlings of this species were reared on eggs of Helicoverpa 

zea with treatments split into those with nectar added or nectar not added (Taylor & 

Pfannenstiel 2009). They found that adding nectar to prey increased spiderling lifespan 

and the number of molts, and almost all of the spiderlings became adults. In contrast, 

spiderlings reared without the nectar supplement never matured to adulthood (Taylor & 

Pfannenstiel 2009). Females reared on prey with added nectar also had higher fecundity 

(Taylor & Pfannenstiel 2009). Another study examined the effect of diet on instar 

duration and growth in two species of juvenile wolf spiders, Pardosa prativaga and 

Pardosa amentata by manipulating dietary nutrients for six treatments of Drosophila 

melanogaster that were given a range of protein and lipid content (Jensen et al. 2011b).  

Those spiders fed prey with higher protein content had both higher growth rates and 

larger carapaces, especially in P. amentata (Jensen et al. 2011). 

Bilde & Toft (2001) looked at the value of three different aphid species as prey 

for the linyphiid spider, Erigone atra. The spiders were split up into eight diets: three 

single-species aphid diets, a mixed diet of all three aphid species, three mixed diets with 

each aphid species grouped with Drosophila melanogaster, and a high quality 

comparison diet made up entirely of D. melanogaster (Bilde & Toft 2001). The media 



3 

 

that the fruit flies were raised on included a supplement of crushed dog food, which 

provides a high percentage of protein, fat, and many vitamins and minerals (Mayntz & 

Toft 2001). They found that spiders in the fruit fly diet groups produced significantly 

more eggs than those in the aphid-only diet groups (Bilde & Toft 2001). Also, compared 

to the fruit fly diet groups there was a fast decline in egg sac and egg production in the 

single-species and mixed-aphid diet groups (Bilde & Toft 2001).   

Few studies to date have explicitly examined the diet of the mother and how that 

affects the life history traits of her offspring. One such study of the subsocial spider, 

Stegodyphus lineatusone, found that those female spiders that were raised on a protein-

enriched diet had an increase in body size compared to mothers in other diets (Salomon et 

al. 2011). Despite the role of protein in egg production, no effect was found with regard 

to maternal diet on the number and mass of eggs produced while the mother was on the 

diet from maturation until oviposition (Salomon et al. 2011). Mothers on the protein-

enriched diet had higher offspring survival than mothers on either intermediate diet, but 

this occurred when the mother was placed on the diet after oviposition until matriphagy 

took place and she was eaten by her offspring (Salomon et al. 2011).   

Several studies above manipulated a diet in a broad way that included a high 

quality and low quality diet type but were unclear how these diets differed in quality. 

Recent work has started to focus more on the impacts of specific macronutrients in prey 

(i.e. lipid and protein) and how these diets can affect the growth and development in 

spiders (Jensen et al. 2011a,b; Wilder 2011; Wilder 2013).  Of those studies that have 

found that high quality prey affects the predator, the prey was rich in protein (Mayntz & 

Toft 2001; Jensen et al. 2011a; Salomon et al. 2011; Jensen et al. 2012). This suggests 
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that a predator’s high growth rates may be limited by protein intake as well as by energy 

(Mayntz & Toft 2001; Jensen et al. 2011a; Jensen et al. 2012). Spiders use protein for 

building protein-rich eggs, development, and for energy (Wilder 2011; Barry & Wilder 

2013).  Silk production also depends on protein. For example, female Argiope keyserlingi 

had longer silk decorations in their webs when they were provided prey with a high-

protein content compared to prey with a high-lipid content (Blamires et al. 2009; Wilder 

2011). Because amino acids are a key component of spider silk, prey protein content had 

a large effect on web building in this species (Foelix 1996; Wilder 2011). Nevertheless, 

high energy lipids can be used in egg production and investment, plus providing energy 

to fuel daily metabolic costs (Wilder 2011).   

The goal of this study was to test the effect of maternal diet quality on egg sac 

production and offspring survival and development in Steatoda triangulosa (the 

triangulate cobweb spider) (Walckenaer 1802). Based on previous studies, I predicted 

that females fed a high protein diet will produce more egg sacs with more of them being 

viable than females fed a low protein (high lipid) diet. I also predicted that offspring 

whose mother is reared on the higher protein diets will have higher survival and will 

develop faster than those offspring whose mother is reared on the lower protein (higher 

lipid) diet.  

An important component of this study was teasing apart the impact of specific 

macronutrients within the prey and their effects on spider life history traits. By examining 

the role of nutritional quality on reproductive success of adult females and offspring life 

history traits in this species, I hope to provide insight into how nutritional deficiencies 
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can affect both mothers and their offspring and have consequences on ecologically 

relevant scales. 

METHODS 

Study species: The triangulate cobweb spider (Steatoda triangulosa) is a common house 

spider in the family Theridiidae. Adult spiders are approximately 3.5 to 5.5 mm long 

(females 4–5.2 mm, males 3.5–4 mm) (Kaston 1948). Found in many parts of the world, 

S. triangulosa originated in Eurasia, was introduced to North America during European 

colonization and is now widespread (Levi 1962; Draney 2001). Triangulate cobweb 

spiders are comb-footed spiders that construct irregular tangle webs (Benjamin & 

Zschokke 2002) in which they catch an array of prey, including a variety of insects and 

arachnids as well as isopods (Levy & Amitai 1982). In preliminary work raising these 

spiders in the lab, the number of spiderlings in an egg sac ranged from 3-150 and 

maturity was reached after three molts for males and four molts for females. Time 

between producing egg sacs can range from 3-50 days. Mating occurs between May and 

October and females can produce anywhere from 1-10 egg sacs during a season (Kaston 

1948).  

All experimental spiders were raised in the lab from the egg sacs of wild-caught 

females collected in April-June 2015 from garages, basements, and outbuildings in 

various locations around Stillwater, Oklahoma. Individuals were housed in separate, 

translucent, 16-oz plastic containers at a temperature of 21.2-23.2oC and a diurnal period 

of 12 light hours per day. Wild-caught females were fed mealworms once a week and 

allowed to produce egg sacs, with eggs fertilized by sperm stored prior to capture. Ten 
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spiderlings per egg sac were selected at random and housed individually in 1-oz 

containers (n=41 egg sacs, n=410 spiderlings). Developing spiderlings were fed 

Drosophila melanogaster once a week until assigned to a diet treatment sixty days after 

their fourth molt.  

The prey species, Drosophila melanogaster, is commonly used for diet 

manipulations. I manipulated D. melanogaster body nutrient content by supplementing 

fly media with either casein powder or sugar in various amounts (Mayntz et al. 2005; 

Jensen et al. 2010). Flies were fed one of five diets with varying ratios of lipid and 

protein content (Table 2): Lipid-rich flies were raised on a 1:2 ratio of sucrose and basic 

medium; intermediate lipid flies were raised on a 1:4 ratio of sucrose and basic medium; 

standard flies were raised on basic medium; intermediate protein flies were raised on a 

1:4 ratio of casein and basic medium; and protein-rich flies were raised on a 3:2 ratio of 

casein and basic medium (Jensen 2010; Jensen 2011a; Wilder 2011). Fruit fly diet was 

found to impact their body composition (see results). From this initial population of lab-

raised spiderlings, 100 females were randomly assigned to one of five feeding treatments. 

By the end of the study, there was a small decrease in the total sample sizes: high lipid 

(n=17), intermediate-lipid (n=19), no supplement (n=19), intermediate-protein (n=19), 

and high-protein (n=20). The six females that died during the study were fairly evenly 

distributed across treatment groups and not included in analyses. To give the female 

cobweb spiders ample time to incorporate the nutrients from the flies and pass those 

nutrients to their offspring, treatments lasted for 150 days.   

Two weeks after starting the diet treatment, each female was paired with a lab-

raised, unrelated male and was observed to mate at least one time before being separated 
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(n=94 males). Although I expected females to initiate egg sac production shortly after 

mating, only a few females did so. Therefore, I decided to move each female to a larger 

container (2-oz) with a bent piece of cardboard added to provide cover for the female. 

This was done for all study females ninety days after beginning the treatment.  

Each female was observed daily to record egg sac production, total number of egg 

sacs and egg sac viability. Once spiderlings hatched from an egg sac, I counted the total 

number of offspring per egg sac, and measured the survival rate, sex, and development of 

each spiderling. I used carapace width and the combined length of the tibia and patella, to 

the nearest 0.01 mm, as a measure of spider size (Jakob et al. 1996; Wilder 2013). 

Infinity Analyze software was used for image capture and measurement.  

Body content analysis of female spiders and fruit flies 

At the end of the experiment, all female spiders and thirty female flies (as one 

sample) from each treatment were sacrificed by freezing. The protein and lipid content 

analysis for the flies was performed three separate times and the average of the three 

results was taken. To assess both the nutrient content of the fruit flies as well as the 

nutrient content of the female bodies at the end of the study, I used a chloroform 

extraction to measure the lipid content and a Bradford Assay for the protein content 

(Wilder & Rypstra 2010; Jensen et al. 2011; Schmidt et al. 2012). For the lipid analysis, 

each sample was dried at 60˚C for 24-h and then weighed. Lipids were extracted in two 

24-h washes of chloroform, and samples were again dried and weighed (Wilder & 

Rypstra 2010; Jensen et al. 2011; Schmidt et al. 2012). The mass of lipid present in the 

spider and diet flies was calculated as the difference in mass before and after chloroform 
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extraction (Wilder & Rypstra 2010; Jensen et al. 2011). Protein was measured using 3-6 

mg of ground lean tissue from each sample. A combination of NaOH, sonication, and 

heat (90˚C) was used to extract soluble protein from the tissue (Barry & Wilder 2012; 

Schmidt et al. 2012). The samples were centrifuged and undigested tissue was formed 

into a pellet, which was then removed and analysis was conducted on the supernatant 

(Barry & Wilder 2012; Schmidt et al. 2012). This colorimetric protein assay is based on 

an absorbance shift of dye Coomassie Brilliant Blue G-250. Samples were read at 595 nm 

using a spectrophotometer (Schmidt et al. 2012).  The elevated absorbance at this 

wavelength reflects increased binding of protein bonds to Coomassie dye, therefore the 

higher the value at this wavelength, the higher the amino acid content in the sample. I 

analyzed each sample in triplicate and each plate had its own standard curve, using IgG 

as a protein standard (Barry & Wilder 2012; Schmidt et al. 2012). The weights of each 

were used to calculate the percent lipid, percent protein and the ratio of lipid to protein 

for each sample (Schmidt et al. 2012). 

Spiderling development 

 All spiderlings that emerged from the egg sacs were fed twice weekly on D. 

melanogaster reared on fly media with no supplement added. Developmental data 

included survival through the first and final molt, sex of each spiderling, and the date 

each spiderling molted to track its development. 

Statistical Analysis of egg sac production  

The overarching approach I used to analyze my data was model comparison 

(Anderson 2008; Burnham & Anderson 2013). This approach was used to evaluate the 
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plausibility of competing models or hypotheses (Franklin et al. 2001; Symonds & 

Moussalli 2011; Burnham & Anderson 2013).  As an alternative to null hypothesis 

testing, this method is used widely by ecologists, behavioral biologists, and 

conservationists (Burnham et al. 2011; Richards et al. 2011; Symonds & Moussalli 2011). 

Although not as common, a number of empirical studies on spiders are now also 

employing this approach (Buzatto et al. 2007; Pruitt & Reichert 2011; Unglaub et al. 

2013; Chiavazzo et al. 2015; Stoffer & Uetz 2015).  

All data analysis were conducted using the R statistical package (R Core Team 

2015, version 3.2.3). For data visualization, boxplots were used. A boxplot is a 

standardized way of displaying the distribution of data and includes values for the data 

minimum, first quartile, median, third quartile, and maximum. To analyze egg sac 

production, I used generalized linear models (GLMs) with a binomial and Poisson link. 

The link function is used within GLMs to indicate that the response variable is modeled 

by a probability distribution from the exponential family (e.g., binomial and Poisson). 

GLMs use maximum likelihood to estimate parameters of statistical models. To measure 

the relative performance of the models according to information criteria (specifically 

AICc), I used the R package MuMIn (Wagenmakers & Farrell 2004; Symonds & 

Moussalli 2011; Burnham & Anderson 2013; Barton 2016). AICc is a numerical value 

assigned to rank competing models in terms of information loss and how well the model 

fits the data. The model with the lowest AICc is the ‘best approximating model’ 

(Symonds & Moussalli 2011) of the response variable. 

Sixty-four models were constructed that included combinations of morphological 

measurements, whether or not a female produced an egg sac, total egg sac number per 
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female, viable egg sac production, and treatment. The female’s morphological variables 

(body weight & tibia length) were included in the full model as potential predictors, with 

the model comparison approach used to determine their relative importance. Tibia length 

is typically used as a measure of body size for web-building spiders, therefore, carapace 

width was excluded from the analysis (Jakob et al. 1996; Wilder 2013). Carapace width 

and tibia length are highly correlated (0.827). Tibia length is a more accurate 

measurement of body size for web-building spiders so we chose this variable over 

carapace width. These models were analyzed using model selection based on Akaike 

information criterion (AIC) model selection approach to determine which treatment type 

best explained the production of egg sacs and performance in spiderlings (Burnham & 

Anderson 2011; Symonds & Moussalli 2011; Burnham & Anderson 2013). Using the 

ΔAICc scores and AICc weights, I identified the top candidate models by removing 

models with ∆AICc scores greater than 6. I used general linearized models and compared 

a set number of models to a data set and measured the relative support the data gave to 

each model (Burnham & Anderson 2011; Symonds & Moussalli 2011; Burnham & 

Anderson 2013). Among a set of alternative models, the Akaike weight is the relative 

likelihood that a given model is the best model describing the data (Symonds & 

Moussalli 2011). The relative variable importance is the sum of ‘Akaike weights’ over all 

models including the explanatory variable (Barton 2016).  

Statistical Analysis of spiderling development and size  

Using generalized linear models I produced similar models containing the 

morphological traits of the spiderlings. I then performed the same AIC models selection 

approach previously mentioned. Again removing models with ΔAICc scores greater than 
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6. I used the lme4 package (Bates et al. 2015) in R to build mixed-effects models to 

examine the random effect of the egg sac along with treatment on offspring survival and 

development. Mixed-effects are useful when the data contain correlated structures (Zuur 

et al. 2009). Correlations arise from grouped data, which occurs when data are collected 

in a hierarchical structure, such as when observational units are related (Zuur et al. 2009). 

Spiderlings from the same egg sac have both a shared environment and are related, such 

that each spiderling is not truly independent, so egg sac was added to the model as a 

random effect.  

RESULTS 

Fruit fly body content 

Flies raised on sugar-rich media contained more lipids and less protein compared 

to female flies raised on protein supplemented media (Figure 1), confirmation that our 

dietary treatment groups were correctly implemented and represented a gradient in lipid: 

protein content of prey provided to females.    

Whether or not a female produced an egg sac 

 Of the 94 total female spiders pooled among diet treatments, 22 females (23.4%) 

produced egg sacs. The best supported model for whether or not a female produced an 

egg sac included treatment, tibia length, and the age of the female (GLM with a binomial 

link; Tables 3 and 4). Treatment had a negative impact on whether or not a female 

produced an egg sac, meaning that those female spiders with the lowest treatment ratio 

(the protein treatments) were more likely to produce an egg sac compared to those spiders 

with the highest treatment ratio (the lipid treatments) (Figure 2). Treatment was included 
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in 8 out of the 15 candidate models and had the highest relative importance (0.95) out of 

any variable (Table 4).  

Time to first egg sac  

 Figure 3 shows survival curves for number of days to first egg sac by treatment.  

Across time, a higher proportion of females in the lipid treatments remained without an 

egg sac, while more females in the protein treatments made their first egg sac. In all five 

treatments, there were female spiders that had yet to produce an egg sac by 150 days (the 

end of treatment) (Figure 3). In survival models of days to first egg sac production, 

treatment was included in 8 out of the 8 candidate models and had the highest relative 

importance out of any variable (0.93) (Table 5). 

Egg sac production 

A boxplot shows that females tended to produce more egg sacs in the protein 

treatments compared to the lipid treatments (Figure 4). The best supported model for 

analyzing egg sac production included treatment, tibia length, and age of the mother 

(GLM with a Poisson link; Table 6).  Treatment had a negative impact on egg sac 

production—in other words, those female spiders with the lowest treatment ratio (the 

protein treatments) were more likely to produce egg sacs compared to those spiders with 

the highest treatment ratio (the lipid treatments). Treatment had the highest importance 

(1.00) and was included in 8 out of the top 15 candidate models (Table 6). As a group, 

female spiders on the protein treatment produced 38 egg sacs, while the lipid treatment 

females produced only 9 egg sacs.  

Viable egg sac production 
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The best supported model for whether or not a female produced a viable egg sac 

included treatment, age, and initial weight of the female (GLM with a binomial link; 

Table 7).  Again, treatment had a high relative importance (0.87) and was included in 8 

out of the 15 candidate models (Table 7). In addition, females that were in the treatments 

with the lowest lipid: protein ratios (the protein treatments) on average produced a higher 

number of viable egg sacs than any other treatment (treatment again had a negative 

impact). There were no viable egg sacs produced in the lipid treatments. Six females 

produced fifteen viable egg sacs in protein treatments and one female from the standard 

media treatment produced one viable egg sac. 

Number of spiderlings hatched  

 The best supported model for number of spiderlings hatched from each viable egg 

sac included treatment, age, and size of the female (GLM with a Poisson link; Table 8). 

Treatment had a high relative importance (1.00) and was included in 8 out of the 15 

candidate models (Table 8). There were more spiderlings produced per female in the high 

protein treatment compared to the intermediate protein treatment and standard treatment 

(Figure 5). The total number of hatched spiderlings was greatest in the high protein 

treatment (n=102), with the smallest number of hatched spiderlings coming from the one 

viable egg sac produced in the standard treatment (n=6). There were no viable egg sacs, 

and thus no spiderlings, produced by female spiders in the lipid treatments.  

Protein & Lipid content of females 

If female spiders simply retained the nutrients in the same ratio that they were fed, 

one would predict a positive correlation of treatment ratio with post-trial lipid mass, and a 
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negative correlation of treatment ratio with post-trial protein mass. Looking at the post-

trial lipid and protein mass of each spider, I found that female spiders in the lipid 

treatments finished with a higher post-trial lipid mass than those females in the protein 

treatments (correlation coefficient =0.559) (Figure 6a).  However, females in the protein 

treatments finished with a lower post-trial protein mass than females in the lipid 

treatments (correlation coefficient = 0.190) (Figure 6b). In other words, a positive 

correlation, not negative, was found between treatment ratio and post-trial protein mass. 

This suggests that protein-enriched females lost or used the protein from their food 

source, quite plausibly in the production of egg sacs. Figure 7 shows the distribution of 

females’ post-trial protein mass across treatments. The median of the post-trial protein 

mass of females who produced two or more egg sacs was lower than the median for the 

post-trial protein mass of females who produced 0-1 egg sac (Figure 7).  

Long-term impacts on offspring 

 For spiderling results, the analysis focused on intermediate and high protein 

treatments and excluded the standard treatment mother’s spiderlings due to the small 

sample size and low survival rate. (Of the six spiderlings that hatched from the standard 

treatment’s egg sac, only one survived through the first molt, and no spiderlings survived 

through the second molt.)  Lipid treatments are also excluded because there were no 

spiderlings produced in these treatments. 

Of the spiderlings produced by mothers in the intermediate protein treatment, 

75% survived through their 1st molt (n=68 of 90) compared to 89% in the high protein 

treatment (n=91 of 102). Looking at individual mothers, a higher number of spiderlings 
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survived in the high protein treatment compared to the intermediate protein treatment 

(Figure 8a and b). In the mixed-effects model, treatment was not a significant coefficient 

when egg sac was treated as a random effect (z = 1.706, P = 0.09), although the trend is 

in the same direction (Table 9). Of those spiderlings that survived through the 1st molt, 

the number of days it took them to go through their 1st molt differed between treatments, 

with spiderlings from high protein mothers reaching the 1st molt in fewer days than the 

spiderlings from intermediate protein mothers (Figure 9). However, mother's diet 

treatment was not a significant coefficient when egg sac was treated as a random effect in 

survival analysis (z = 0.63, P = 0.53) (Table 10).  

Of the spiderlings produced by mothers in the intermediate protein treatment, 

49% survived through their 3rd molt (n=46 of 90) compared to 81% in the high protein 

treatment (n=19 of 102). In this case, treatment was a significant coefficient when egg sac 

was treated as a random effect in the mixed-effects models (z = 2.824, P < 0.005) (Table 

11). Of those who survived, spiderlings of high protein mothers reached their 3rd molt in 

fewer days than spiderlings of intermediate protein mothers (Figure 10) (intermediate 

protein: x̅ = 73.3, SD = 31.5, n = 44; high protein: x̅ = 56.7, SD = 9.76, n = 83). Mother's 

diet treatment was a significant coefficient when egg sac was treated as a random effect 

in survival analysis (z = 2.41, P = 0.016), with greater variation in the number of days it 

took the intermediate protein mother’s spiderlings to reach both the 1st and 3rd molt 

(Table 12). However, since only six females produced spiderlings, it is difficult to 

determine the amount of influence from mother's dietary treatment versus the random 

effect of the egg sac on the development of offspring.  
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DISCUSSION  

 My data support the hypothesis that diet has large effects on life history, 

specifically reproductive outcomes and consequences for offspring, in the female 

triangulate cobweb spider. Of the 94 females in the study, 22 produced egg sacs, with 11 

of these producing multiple egg sacs. However, only females fed a protein-enriched diet 

made viable egg sacs that ultimately produced surviving spiderlings. In addition, the 

analysis of a variety of dependent variables paints a consistent picture, with protein-

enriched diets resulting in the best reproductive output for females, and increased 

survival and developmental rates for spiderlings. In models of female reproductive 

outcomes, the best performing models all included the female's diet treatment. In sum, 

this study provides strong evidence of the link between maternal diet and egg sac 

production in the triangulate cobweb spider.  

Before discussing diet treatment, I will briefly consider the control variables (age 

and morphological measurements) that were related to female reproduction. Some 

females went through their molts at a faster pace than the other females leading to them 

being older at the beginning of the study. Each model showed that older females were 

more likely to produce egg sacs. However, faster pace of molting may have led to smaller 

increases in size between molts, resulting in smaller adult females. The size of the female 

had a negative impact on egg sac production, with smaller females having higher success, 

suggesting a possible trade-off between optimal molting rate and size. The initial weight 

of each female was positively correlated with whether or not females produced viable egg 

sacs, and also had a higher impact than female size. However, weight was not an 

important independent variable in other models. In other words, heavier females were 
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more likely to produce a viable egg sac, but smaller females were more likely to produce 

an egg sac and produced a higher number of egg sacs (viable and non-viable), suggesting 

a trade-off between the initial weight of the female and her size.   

As protein is needed for egg sac production (Wilder & Rypstra 2010; Barry & 

Wilder 2013), I hypothesized that the protein-enriched diets would enable females to 

produce more egg sacs compared to the lipid-enriched diets. My data support this 

hypothesis with results showing that females in the protein treatments were more likely to 

produce an egg sac (viable or not) and a higher average number of egg sacs per female, 

than in other treatments. Studies of the effects of diet on egg sac production have 

produced mixed results. For example, similar to my study, Barry & Wilder (2012) found 

that female praying mantids on high-protein diets produced over twice as many egg sacs 

as females on high-lipid diet.  However, Salomon et al. (2011) found no significant effect 

of diet on brood size and egg mass produced by female Stegodyphus lineatus, a subsocial 

spider. In this study the mass consumed from prey items (crickets) and the resulting body 

mass of females did not differ among diet treatments, which could explain the lack of an 

effect on brood size and mass. Previous studies performed on S. lineatus found that heavy 

females produced more eggs than lighter females (Salomon et al. 2005).  

I also found that at the completion of the study trials, the lipid and protein content 

of the female spiders varied across diet treatments. Female spiders in the lipid treatments 

had a higher post-trial lipid content than females in the protein treatments.  However, 

those females in the protein treatments had a lower post-trial protein content than females 

in the lipid treatments (Figure 6b). Females that had a lower post-trial content produced 

more egg sacs on average than those females with a higher post-trial protein content. 
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These results suggest that the females used the protein from their food source to produce 

egg sacs and there is a cost associated with egg sac production that has a potential effect 

on protein content of the females. The lipid content of the females on the lipid diet was 

very high at the end of the trial, which implies that they did not use the lipids they got 

from their diet. Other studies have suggested that opportunistic feeders may store lipids to 

buffer against periods of food deprivation by maintaining sufficient stores of energy to 

fuel metabolic needs between prey captures (Jensen et al. 2010). This is a common result 

due to their opportunistic feeding strategy (Jensen et al. 2010). Jensen et al. (2010) 

observed similar results in the wolf spider Pardosa prativaga. Their results show that 

wolf spiders did not adjust their metabolism to help maintain a constant body 

composition when prey nutrient composition varied (Jensen et al. 2010). Instead, the wolf 

spiders stored the extra lipids. This lack of metabolic adjustments may be adaptive in 

spiders that are occasionally exposed to unpredictable food availability (Jensen et al. 

2010; Riechert & Harp 1987; Wise 1993).  

In addition to fluctuations in food availability, activity levels of different spider 

species can affect what macronutrients are required in their diet. The triangulate cobweb 

spider is not a very active species compared to wandering spiders due to its sit-and-wait 

strategy of capturing prey. Web-building species might have higher requirements for 

protein, which is used for web building and tissue development during periods of growth 

(Wilder 2011). Since lipid is a much more effective source of energy due to its high 

energy density, those spiders that have more active lifestyles (wandering spiders) would 

be expected to have higher energy requirements (Wilder 2011). 
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Plant nectar is high in energy and nectar feeding occurs among all ages of spiders 

and among several different families (Pollard et al. 1995; Jackson et al. 2001; Taylor & 

Bradley 2009). Taylor & Bradley (2009) studied whether plant nectar could repay the 

energetic costs of wandering in two foliage wandering spiders. Their results showed that 

plant nectar increases survival, molting, and foraging in both species of spiders and 

concluded that non-web-building spiders that feed on nectar may utilize its energy for 

foraging and allocate the nutrients they gain from prey to maintenance and growth 

(Taylor & Bradley 2009).  

Not only did female diet have an impact on her own reproductive output, but I 

found preliminary evidence that spiderling life history traits were also affected. There 

were differences found across mothers when her effect was included in the models, and 

although samples were small, the data show that the spiderlings produced by the mothers 

in the protein treatments differed in both their survival and development. The high 

protein mother’s spiderlings had a higher survival rate through the first and final molt and 

also developed at a faster pace (reached their third molt in fewer days) than the 

intermediate protein mother’s spiderlings. Several studies have found that spiderlings 

who are themselves fed higher protein content have faster growth and higher survival 

(Mayntz & Toft 2001; Jensen et al. 2011b; Salomon et al. 2011). Here, I have shown that 

even when spiderling diet is held constant, their life history may be directly impacted by 

the diet their mothers ingested before and during egg production. In nature, prey items 

available in different habitats lead to adult female spiders differing in their nutritional 

histories, which in turn may influence offspring fitness (Wilder 2011).  
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Little is currently known about spider nutritional requirements, despite the 

important role spiders play in community dynamics (Wilder 2011). The nutritional 

ecology of spiders includes which nutrients are required in a spider’s diet and how these 

requirements are met in nature with the prey items that are available in different habitats 

(Mayntz et al. 2005; Wilder & Eubanks 2010; Wilder 2011). Within an ecosystem, the 

nutritional requirements of spiders may influence the species of prey that are consumed 

and will, therefore, affect arthropod communities (Wilder & Eubanks 2010; Wilder 

2011). Clearly, triangulate cobweb spiders are quite successful at reproducing indoors in 

human households. In such environments, they consume a wider variety of prey taxa and 

are also utilize a range of habitat types in which to find a mate and lay egg sacs. To 

further investigate the role of protein in spider reproduction, future studies could expand 

the range of protein supplemented or examine particular micronutrients to study their 

effect on life history. I have demonstrated the potential for this species to be used in 

further studies of maternal effects. By studying life history strategies, I hope to help in 

understanding the finer details of nutritional ecology, for example, how maternal 

nutrition affects egg production and life history of offspring.
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TABLES AND FIGURES 

 

Table 1: Literature review of diet manipulations in spiders.  

Paper Nutrient treatment Traits Findings 

Taylor & 
Pfannenstiel 

2009 

Nectar 
supplemented to 

prey (eggs 
of Helicoverpa zea) 

Spiderling development 
(Cheiracanthium 

inclusum) 

• Spiderlings survived longer, molted 
more times, and almost all of the 
spiderlings became small adults when 
nectar was supplemented 

• Females reared on prey with added 
nectar also had higher fecundity 

Jensen et al. 
2011a 

D. melanogaster 

varying in 
lipid:protein 
composition 

Regulations of nutrients 
in juvenile Pardosa 

prativaga wolf spiders 

• Spiders fed prey with high 
proportions of protein increased 
consumption compared to spiders fed 
on other prey types 

• When prey was protein rich, ingested 
protein was incorporated less 
efficiently into body tissue 

Jensen et al. 
2011b 

Drosophila 

melanogaster 

raised on range of 
protein and lipid 

supplements 

Instar duration and 
growth in two species 

of juvenile wolf spiders 

• Those spiders fed prey with higher 
protein content had both a higher 
growth rate and a larger carapace 

Mayntz & 
Toft 2001 

D. melanogaster 

raised on 6 
different diets:  
• Control 
• Dogfood 
• Vitamin mixture  
• Amino acid 
• Methionine  
• Fat  

Wolf spider (Pardosa 

amentata) spiderlings 
• Growth rates increased on diet 

including 19 different amino acids or 
fatty acids+cholesterol or commercial 
dogfood.  

• Survival increased when reared on 
fruit flies from cultures containing 19 
amino acids or methionine or 
dogfood.  

• Adding dogfood increased spider 
growth and survival more 
significantly than the addition of any 
other single nutrient.  

• Adult female flies from the dogfood 
culture were significantly heavier 
than females from the basic culture 



29 

 

Bilde & 
Toft 2001 

Combinations of: three 
different aphid species 
and D. melanogaster 
reared on a supplement 
of crushed dog food  

 

Adult linyphiid spider 
reproductive success 

• Spiders fed the fruit fly diet produced 
significantly more eggs than those in 
the aphid-only diet groups.  

• Compared to the fruit fly diet groups 
there was a fast decline in egg sac and 
egg production in the single-species 
and mixed-aphid diet groups 

Salomon 
et al. 
2011 

Range of protein and 
lipid supplements 

Mother growth and 
development, and 

fecundity;  
Spiderling survival  

(Stegodyphus 

lineatusone) 

• Female spiders that were raised on 
the protein-enriched diet had an 
increase in body size compared to the 
mothers in the other diets 

• Mothers on the protein-enriched diet 
had higher offspring survival than 
mothers on the intermediate diet 
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Table 2.  Diet table including nutrient content of Drosophila melanogaster for each treatment. 

Treatment High protein Intermediate 

protein 

Standard Intermediate 

Lipid 

High Lipid 

Growth 

medium 

3:2 

Casein: Basic  

1:4 

Casein: Basic 

 

Basic 

1:4 

Sucrose: Basic 

1:2 

Sucrose: Basic 

L:P ratio 

 

0.03 0.14 0.20 0.26 0.38 
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Table 3.  Alternative models for whether or not a female produced an egg sac during treatment. 

Models shown are those supported by the data (ΔAICc score less than 4). 

 

 

 

  

Model Intercept Age Tibia 

Length 

Treatment Initial 

weight 

K AICc ∆ Model 

Weight 

1 5.11 0.045 -3.81 -7.16  4 99.5 0.00 0.240 

2 6.94  -3.07 -6.61  3 100.0 0.45 0.191 

3 -1.11 0.053  -6.63 -276.2 4 100.5 1.01 0.145 

4 3.88 0.053 -2.81 -7.47 -143.8 5 101.1 1.61 0.107 

5 -0.28   -5.09  2 101.2 1.65 0.105 

6 1.72   -5.90 -163.8 3 101.6 2.10 0.084 

7 6.75  -2.83 -6.64 -29.7 4 102.1 2.60 0.065 

8 -2.51 0.028  -5.04  3 102.2 2.66 0.064 
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Table 4.  Predictors of whether or not a female produced an egg sac. 

  

Variable Sign Relative  

importance 

∆<6 

Top 15 models 

Treatment1 - 0.95 8 

Tibia length1 - 0.59 7 

Age1 + 0.54 7 

Initial Weight - 0.38 7 

1 These variables were in the top model 
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Table 5. Predictors of timing of first egg sac production. 

  

Variable Sign Relative  

importance 

∆<6 

Top 8 models 

Treatment1 - 0.93 8 

Tibia length1 - 0.58 4 

Age1 + 0.57 4 

Initial Weight - 0.44 4 

1 These variables were in the top model 
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Table 6.  Total egg sacs produced per female spider. 

 
Variable Sign Relative  

importance 

∆<6 

Top 15 models 

Treatment1 - 1.00 8 

Age1 + 1.00 8 

Tibia length1 - 0.72 7 

Initial Weight - 0.41 7 

1 These variables were in the top model 
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Table 7. Predictors of whether or not a female spider produced a viable egg sac. 

  

Variable Sign Relative  

importance 

∆<6 

Top 15 models 

Treatment1 - 0.87 8 

Age1 - 0.91 8 

Initial weight1 + 0.72 7 

Tibia length - 0.26 7 

1 These variables were in the top model 
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Table 8. Predictors of number of spiderlings hatched per female spider. 

  

Variable Sign Relative  

importance  

∆<6 

Top 15 models 

Treatment1 - 1.00 8 

Age1 + 1.00 8 

Tibia length1 - 0.68 8 

Initial weight - 0.31 8 

1 These variables were in the top model 

 



37 

 

Table 9. Generalized linear mixed model output table displaying whether or not spiderlings 

lived through their 1st molt, and includes treatment and egg sac (random effect).  

 

 

  

Fixed Estimate SE z-value p-value 

(Intercept) -1.32 0.56 -2.36 0.018 

Treatment -1.50 0.88 -1.71 0.088 

Random Variance SD   

Egg sac 1.68 1.30   

Number of 
observations  

192 (spiderlings) 15 (egg sacs)   
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Table 10. Cox mixed-effects model output table displaying days to 1st molt, and includes 

treatment and egg sac (random effect). 

 

  

Fixed Coefficient SE(coef) z-value p-value 

Treatment 0.58 0.92 0.63 0.53 

Random Variance SD   

Egg sac 3.02 1.74   

Number of 
observations  

192 (spiderlings) 15 (egg sacs)   
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Table 11. Generalized linear mixed model output table displaying whether or not spiderlings 

lived through their 3rd molt, and includes treatment and egg sac (random effect). 

 

  

Fixed Estimate SE z-value p-value 

(Intercept) -0.20 0.49 -0.42 0.675 

Treatment 2.14 0.76 2.82 0.004 

Random Variance SD   

Egg sac 1.38 1.18   

Number of 
observations  

192 (spiderlings) 15 (egg sacs)   
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Table 12. Cox mixed-effects model output table displaying days to 3rd molt, and includes 

treatment and egg sac (random effect). 

 

 

  

Fixed Coefficient SE(coef) z-value p-value 

Treatment 1.87 0.78 2.41 0.016 

Random Variance SD   

Egg sac 1.96 1.40   

Number of 
observations  

192 (spiderlings) 15 (egg sacs)   
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Figure 1. Lipid: protein ratio of flies from each treatment. The y axis displays the 

lipid: protein ratio and the x axis lists the five treatments.  
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Figure 2. Whether female produced an egg sac by treatment. The treatment ratios are 

listed on the x axis and range from 0.036 (high protein) on left to 0.385 (high lipid) on 

the right. The dark grey shading represents the number of females that produced an egg 

sac in each treatment while the light grey shading represents the number of females that 

did not produce an egg sac.   
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Figure 3. Kaplan-Meier survival curve for cumulative risk of not producing an egg sac by 

end of treatment. Crosses (+) at end of each treatment show right-censoring of females that 

had not produced their first egg sac by 150 days.  
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Figure 4. Total number of egg sacs produced per female. The treatment ratios are 

listed on the x axis and range from 0.036 (high protein) on the left to 0.385 (high 

lipid) on the right. 
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Figure 5. Total number of spiderlings hatched per female across treatments. The x 

axis displays the treatment ratios, ranging from 0.036 (high protein) to 0.201 

(standard).   
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Figure 6. Lipid content (A) and protein content (B) of female spiders at the end of the 

study across treatments. Treatment ratios range from 0.036 (high protein) on left to 

0.385 (high lipid) on the right.  
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Figure 7. Relationship between egg sac production and the protein content of female 

spiders. The egg sacs produced are grouped into two groups: 0-1 and 2 or more. 
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Figure 8. Number of surviving spiderlings per female through 1st molt (A) and 3rd molt 

(B) for intermediate and high protein treatments. 
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Figure 9. (A) Kaplan-Meier survival curve for total number of days from hatching to 

1st molt. Crosses (+) indicate deaths.  
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Figure 10. (A) Kaplan-Meier survival curve for total number of days from hatching to 

3rd molt. Crosses (+) indicate deaths.  
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APPENDICES 
 

  

Spider Age  
weight 
(g) 

T. 
length 

C. 
width 

L.mass 
(mg) 

P. mass 
(mg) Trt 

Yes/No 
Egg sac 

Total 
Egg sacs 

Yes/No 
Viable 
Egg sacs 

Number 
of 
Viable 
Egg sacs 

Number of 
spiderlings 
hatched 

Number of 
male 
spiderlings 

Number of 
female 
spiderlings 

A008d10 146 0.011 2.3 1.26 0.011 0.257 4 0 0 0 0 0 0 0 

A008d8 146 0.008 2.02 1.15 0.014 0.163 5 1 4 1 2 23 14 5 

A012b2 123 0.007 2.2 1.13 0.020 0.352 4 1 1 0 0 0 0 0 

A005g2 152 0.011 2.44 1.38 0.027 0.218 4 0 0 0 0 0 0 0 

A009d8 137 0.011 2.03 1.12  0.028 0.178 5 1 3 0 0 0 0 0 

A033e4 155 0.017 2.65 1.46 0.029 0.166 5 1 5 1 5 79 31 30 
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A005f3 134 0.016 2.6 1.35 0.034 0.353 3 0 0 0 0 0 0 0 

A008b2 138 0.011 2.25 1.3 0.035 0.436 5 1 1 0 0 0 0 0 

A006c8 130 0.012 2.13 1.3 0.040 0.157 5 0 0 0 0 0 0 0 

A006c9 130 0.009 2.25 1.19 0.040 0.215 2 0 0 0 0 0 0 0 

A006c6 130 0.009 2.1 1.16 0.043 0.606 4 0 0 0 0 0 0 0 

A010b8 126 0.011 2.39 1.32 0.045 0.620 5 0 0 0 0 0 0 0 

A012b3 123 0.01 2.27 1.18 0.046 0.154 4 0 0 0 0 0 0 0 

A012b10 131 0.009 2.31 1.27 0.050 0.199 4 1 3 1 2 20 5 1 

A009d7 131 0.010 2.1 1.16 0.050 0.420 4 1 5 1 2 24 5 3 

A002f2 165 0.012 2.4 1.34 0.052 0.152 4 1 7 1 3 28 8 7 

A007a10 140 0.011 2.06 1.18 0.052 0.183 4 1 3 0 0 0 0 0 
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A011a2 144 0.015 2.46 1.31 0.052 0.301 5 0 0 0 0 0 0 0 

A029a4 150 0.013 2.35 1.26 0.054 0.177 5 1 1 0 0 0 0 0 

A010b3 139 0.013 2.37 1.21 0.054 0.477 5 0 0 0 0 0 0 0 

A003b1 138 0.013 2.35 1.28 0.055 0.352 2 0 0 0 0 0 0 0 

A001b4 126 0.008 2.35 1.28 0.056 0.305 5 1 1 0 0 0 0 0 

A009c3 145 0.014 2.3 1.29 0.060 0.189 5 1 1 0 0 0 0 0 

A009a6 143 0.011 2.03 1.09 0.061 0.294 3 0 0 0 0 0 0 0 

A003b7 138 0.015 2.58 1.35 0.061 0.411 2 0 0 0 0 0 0 0 

A009a7 143 0.012 2.09 1.2 0.068 0.435 3 1 1 0 0 0 0 0 

A011a6 138 0.012 2.38 1.31 0.072 0.209 5 0 0 0 0 0 0 0 

A029a6 150 0.012 2.32 1.31 0.072 0.266 4 1 3 0 0 0 0 0 
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A003e3 144 0.012 2.28 1.29 0.074 0.243 3 0 0 0 0 0 0 0 

A003c6 137 0.014 2.52 1.28 0.075 0.204 5 0 0 0 0 0 0 0 

A008d4 139 0.008 1.93 1.08 0.075 0.478 1 0 0 0 0 0 0 0 

A005f4 164 0.013 2.44 1.29 0.076 0.182 5 0 0 0 0 0 0 0 

A003b4 145 0.014 2.33 1.29 0.079 0.161 5 0 0 0 0 0 0 0 

A003a10 139 0.011 2.28 1.23 0.08 0.585 3 0 0 0 0 0 0 0 

A002c8 146 0.010 2.04 1.16 0.083 0.334 2 0 0 0 0 0 0 0 

A005f7 160 0.014 2.58 1.25 0.085 0.280 5 0 0 0 0 0 0 0 

A010c4 123 0.010 2.23 1.26 0.086 0.251 4 0 0 0 0 0 0 0 

A005f2 155 0.018 2.61 1.46 0.087 0.161 4 0 0 0 0 0 0 0 

A003a5 147 0.011 2.26 1.23 0.087 0.227 2 0 0 0 0 0 0 0 
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A011b6 152 0.008 2.14 1.16 0.087 0.488 1 0 0 0 0 0 0 0 

A012b6 137 0.008 2.03 1.08 0.088 0.345 1 0 0 0 0 0 0 0 

A005f6 152 0.014 2.57 1.43 0.088 0.381 4 0 0 0 0 0 0 0 

A012b5 131 0.011 2.2 1.22 0.089 0.312 3 0 0 0 0 0 0 0 

A007a5 154 0.009 1.99 1.12 0.089 0.473 2 0 0 0 0 0 0 0 

A010b1 139 0.013 2.46 1.31 0.090 0.318 5 0 0 0 0 0 0 0 

A003c7 138 0.013 2.3 1.39 0.091 0.249 4 0 0 0 0 0 0 0 

A004a9 145 0.011 2.3 1.29 0.092 0.257 2 0 0 0 0 0 0 0 

A007a4 140 0.012 2.14 1.21 0.094 0.371 2 0 0 0 0 0 0 0 

A010b4 132 0.011 2.15 1.24 0.094 0.499 3 0 0 0 0 0 0 0 

A008a2 148 0.007 2.12 1.15 0.096 0.161 3 1 1 1 1 6 0 0 
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A007b7 134 0.015 2.44 1.34 0.096 0.436 5 0 0 0 0 0 0 0 

A002c1 138 0.010 2.36 1.29 0.100 0.292 3 0 0 0 0 0 0 0 

A006b8 140 0.011 2.24 1.26 0.101 0.425 1 0 0 0 0 0 0 0 

A011b9 138 0.012 2.03 1.22 0.104 0.378 3 0 0 0 0 0 0 0 

A006c3 138 0.011 2.4 1.25 0.104 0.459 4 0 0 0 0 0 0 0 

A002c10 138 0.010 2.13 1.21 0.106 0.221 4 0 0 0 0 0 0 0 

A004a10 137 0.011 2.44 1.3 0.106 0.450 5 0 0 0 0 0 0 0 

A033e7 131 0.010 2.41 1.3 0.109 0.331 3 0 0 0 0 0 0 0 

A006c10 124 0.010 2.1 1.16 0.110 0.158 1 0 0 0 0 0 0 0 

A010b2 126 0.011 2.3 1.17 0.110 0.371 5 0 0 0 0 0 0 0 

A010c9 147 0.011 2.27 1.21 0.111 0.176 3 0 0 0 0 0 0 0 
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A009c5 131 0.013 2.33 1.3 0.114 0.691 3 0 0 0 0 0 0 0 

A010c2 131 0.009 2.12 1.18 0.116 0.430 2 0 0 0 0 0 0 0 

A009c6 138 0.013 2.48 1.36 0.117 0.165 2 0 0 0 0 0 0 0 

A007a8 140 0.009 2.11 1.22 0.117 0.209 3 0 0 0 0 0 0 0 

A011c2 131 0.012 2.28 1.24 0.121 0.223 2 0 0 0 0 0 0 0 

A003e5 150 0.012 2.32 1.29 0.121 0.348 1 1 1 0 0 0 0 0 

A033e2 152 0.014 2.5 1.44 0.125 0.900 4 1 1 1 1 18 7 7 

A009d3 131 0.010 2.26 1.23 0.127 0.255 4 0 0 0 0 0 0 0 

A010c3 152 0.015 2.66 1.43 0.128 0.364 3 0 0 0 0 0 0 0 

A010a8 139 0.013 2.29 1.2 0.128 0.433 1 0 0 0 0 0 0 0 

A001a2 139 0.010 2.15 1.17 0.128 0.5449 1 0 0 0 0 0 0 0 
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A002a10 140 0.011 2.37 1.31 0.129 0.1750 2 0 0 0 0 0 0 0 

A003e10 150 0.013 2.33 1.26 0.129 0.224 2 0 0 0 0 0 0 0 

A002a5 140 0.011 2.16 1.3 0.133 0.608 2 0 0 0 0 0 0 0 

A029a10 143 0.010 2.29 1.15 0.134 0.424 1 0 0 0 0 0 0 0 

A011b3 139 0.011 2.31 1.24 0.137 0.263 1 0 0 0 0 0 0 0 

A010b9 126 0.012 2.38 1.32 0.138 0.402 1 0 0 0 0 0 0 0 

A011c10 139 0.011 2.31 1.2 0.148 0.275 2 0 0 0 0 0 0 0 

A006c7 130 0.010 2.15 1.17 0.149 0.208 3 0 0 0 0 0 0 0 

A011c9 145 0.011 2.33 1.24 0.149 0.297 1 0 0 0 0 0 0 0 

A001c6 133 0.010 2.24 1.22 0.151 0.476 3 1 2 0 0 0 0 0 

A005a1 160 0.012 2.07 1.16 0.152 0.643 2 0 0 0 0 0 0 0 
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A011b8 146 0.013 2.14 1.26 0.161 0.230 1 0 0 0 0 0 0 0 

A012b4 131 0.011 2.3 1.23 0.161 0.412 3 0 0 0 0 0 0 0 

A029a5 130 0.010 2.14 1.15 0.165 0.818 4 0 0 0 0 0 0 0 

A011c8 125 0.011 2.32 1.31 0.180 0.316 1 0 0 0 0 0 0 0 

A008d9 139 0.013 2.28 1.21 0.185 0.521 1 0 0 0 0 0 0 0 

A001c3 133 0.012 2.11 1.22 0.188 0.297 3 1 3 0 0 0 0 0 

A005a6 146 0.011 2.17 1.24 0.199 0.707 1 0 0 0 0 0 0 0 

A008d7 139 0.011 2.31 1.26 0.215 0.376 2 0 0 0 0 0 0 0 

A008a6 140 0.009 2.09 1.16 0.219 0.247 2 1 1 0 0 0 0 0 

A005b1 145 0.013 2.21 1.24 0.219 0.309 1 1 1 0 0 0 0 0 

A033e9 
(ate male) 137 0.013 2.41 1.35 0.245 0.297 2 1 6 0 0 0 0 0 

Appendix 1. Data from all females used in this study. The age column is the age (in days) the female was at the beginning of the trial. 

The weight column is her initial weight at beginning of trial. T. length and c. width are the tibia lengths and carapace widths of each 
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female as a measure of size. Lipid and protein mass are the lipid and protein content of each female at the end of the study. The trt 

column is the treatment each female was assigned to, ranging from high lipid (1) to high protein (5). Yes/no egg sac is whether or not 

(1/0) each female produced an egg sac. Total egg sacs is the total number of egg sacs each female produced. Yes/no viable egg sac is 

whether or not a female produced a viable egg sac and number of viable egg sacs is the total number of viable egg sacs produced per 

female. The number of spiderlings hatched is the total number of spiderlings produced per female. Number of male and female 

spiderlings columns show the number of males and female spiderlings produced by each female. 
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