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Abstract:  

North America’s fluvial fish fauna are becoming increasingly imperiled, primarily by 
habitat degradation, non-native species invasions, and fragmentation.  The present study 
was conducted to understand how these conservation threats have affected native, fluvial-
specialist black bass (genus Micropterus) species that support popular sport fisheries and 
that can be used as umbrella species for the conservation of other aquatic organisms.  
Species distribution models illustrated that Shoal Bass (M. cataractae) were potentially 
distributed across up to 84% of the available stream length in their native basin, but that 
fragmentation by dams and large impoundments, as well as a potential asymmetric 
relationship with non-native congeners, has contributed to range loss.  A range-wide 
genetic survey demonstrated that although the Shoal Bass has been described as 
potamodromous, appreciable population structure exists.  Five distinct genetic clusters 
were recovered at the uppermost hierarchical level, each generally corresponding to 
natural isolating mechanisms (e.g., the Fall Line).  Some substructure was detected within 
these clusters, which was likely related to recent fragmentation (i.e., impoundments) and 
variable recruitment.  Finer-scale case studies of the conservation-genetic influences of 
impoundments and non-native congener fisheries revealed that impoundments generate 
propagule pressure that encourages invasion and introgression of non-native alleles into 
native black bass populations inhabiting upstream tributaries, but whether impoundments 
serve as barriers to gene flow for native populations was somewhat unclear.  Quantifying 
local-scale population dynamics of Shoal Bass inhabiting three isolated tributaries of the 
upper Chattahoochee River basin revealed that these populations grew slower, lived 
longer, and experienced lower annual mortality than other studied populations, which 
may be adaptations to variable recruitment or lower over-winter survival of age-0 fish.  
The Big Creek population appears at risk of extirpation because of its isolated nature, low 
numbers of adults, and greater variation in recruitment.  Overall, results provide novel 
insights into the factors influencing range loss, a framework for management units to 
conserve existing genetic diversity, a characterization of non-native invasion and 
hybridization in impoundment tributaries, and quantified population dynamics of several 
isolated Shoal Bass populations inhabiting the northern extent of the species’ range.
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CHAPTER I 
 

 

POTENTIAL AND RESTRICTED GEOGRAPHIC DISTRIBUTION ESTIMATES:  

EXAMINING FACTORS ASSOCIATED WITH RANGE LOSS OF A FLUVIAL-

SPECIALIST FISH SPECIES 

 

Abstract 

Fluvial fishes face increased imperilment from a number of anthropogenic 

activities, including land-use and water-use activities, introduction of non-native species, 

and fragmentation of fluvial habitats.  Species distribution models (SDMs) can help 

disentangle numerous biologically-relevant factors to discern those contributing to range 

declines.  The Shoal Bass (Micropterus cataractae) is a fluvial-specialist species 

suffering from continual range loss; however, the anthropogenic factors contributing 

most to range loss are unknown.  We estimated this species’ potential distribution with a 

presence-background modeling approach using program Maxent and produced a series of 

current restricted distributions based on a variety of fragmentation stressors (e.g., dams, 

impoundments), non-native species, and land-use activities thought to be influencing 

Shoal Bass range loss.  The potential model estimated environmental suitability for Shoal 

Bass throughout much of their native basin.  Restricted-range models suggested that  
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fragmentation and non-native congeners have contributed most to range declines.  Our 

results also revealed that as fragmentation intensity increased, the apparent relationship 

between Shoal Bass and non-native congener species changed from coexistence to 

asymmetry in favor of non-native congeners.  Land cover appeared to contribute less to 

range loss, but was most influential to Shoal Bass probability of suitability at segment-

specific stream buffers rather than at a watershed scale.  Results are relevant to Shoal 

Bass conservation by directing actions toward those stressors most influencing Shoal 

Bass probability of suitability.  For example, response curves and distribution estimates 

can be used as biological criteria for barrier removal prioritization.  Similar distribution 

modeling efforts may prove useful for prioritizing conservation efforts for other 

imperiled fluvial fishes throughout the globe. 

 

Introduction 

Freshwater fishes are a diverse group with an increasingly jeopardized future, 

particularly for fluvial species that require free-flowing fluvial habitats to persist.  Of 

approximately 700 freshwater and diadromous fishes in North America, 39% are 

considered imperiled (Jelks et al., 2008) and that rate is expected to steadily increase 

(Ricciardi & Rasmussen, 1999; Burkhead, 2012).  The imperilment of native freshwater 

fishes is particularly acute in areas of high endemism and biodiversity, like the 

southeastern U.S. (Warren Jr. & Burr, 1994).  Although a myriad of factors are involved 

in the widespread imperilment of native fluvial fishes, there are several major 

contributors:  anthropogenic land use, flow regime alterations, introductions of non-
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native species, and fragmentation of populations (Allendorf & Lundquist, 2003; Nilsson, 

2005; Jelks et al., 2008).   

Anthropogenic activities within the riverine landscape have cascading effects on 

aquatic ecosystems and fluvial fishes (Fausch et al., 2002).  Agricultural and urban land-

use practices lead to destabilization of stream banks, warmer water temperatures, and 

increases in channelization, sediment loads, and pollution (Allan, 2004).  Water 

withdrawals to support these land-use practices alter natural flow regimes that regulate 

ecological processes in streams (Poff et al., 2007).  Additionally, construction of dams 

and impoundments alter stream habitats and flow regimes.  Upstream of dams, stream 

habitats are converted into impoundments that further facilitate water removal and alter 

stream fish communities (Taylor et al., 2001; Guenther & Spacie, 2006).  Alterations 

downstream of dams include changes in the natural flow regime (Poff et al., 2007), 

increases in bank erosion and bed scour (Kondolf, 1997), and changes in the thermal 

regime (Olden & Naiman, 2010).  Native fluvial fishes that are sensitive to these 

alterations often experience local extirpations or extinction (Allan, 2004; Nilsson, 2005; 

Poff & Zimmerman, 2010).   

In altered stream ecosystems, non-native and invasive species have increased 

opportunity to expand their range and negatively affect native fluvial fishes.  Non-native 

fishes often use altered stream habitats and impoundments as invasion vectors within 

river systems (Bunn & Arthington, 2002; Johnson et al., 2008).  As non-native fishes 

invade, they threaten native fluvial fishes through predation, competition, hybridization, 

disease transmission, and habitat modification (Gozlan et al., 2010).  Habitat alteration 

and non-native invasions result in homogenized stream fish communities, as native 



4 
 

fluvial fishes are lost and replaced by a few, but relatively dominant, non-native tolerant 

species (Rahel, 2002; Freeman & Marcinek, 2006).    

Fluvial fish populations are fragmented by the severing or interruption of the 

longitudinal, upstream-downstream connectivity within stream networks, increasing their 

vulnerability to local extinctions.  Causes of fragmentation vary with location and 

species, but can include physical barriers like road crossings (Warren Jr. & Pardew, 

1998), stream desiccation (Perkin & Gido, 2011), dams (Porto et al., 1999; Nilsson, 

2005), and less obvious non-physical barriers like impounded waters, thermal gradients, 

and pollution (Pringle, 1997; Noatch & Suski, 2012).  Fragmented populations are more 

susceptible to anthropogenic disturbance, demographic stochasticity (Wilcox & Murphy, 

1985), inbreeding depression (Frankham, 1995), and interactions with non-native species 

(Sakai et al., 2001).  The effects of fragmentation in river systems can be characterized at 

multiple spatial scales and in both upstream and downstream directions (Cooper et al., 

2016).  Although effects of fragmentation vary across study areas and species, 

fragmentation is regularly identified as a driver of imperilment of fluvial fish faunas 

worldwide (Nilsson, 2005). 

Fluvial black bass species (Micropterus spp.) are facing threats emblematic of 

fluvial fishes worldwide (Birdsong et al., 2010; Tringali et al., 2015).  The Shoal Bass 

(M. cataractae) is one of these species, considered vulnerable to extinction because of 

habitat loss and introductions of non-native species (Jelks et al., 2008).  Shoal Bass are 

endemic fluvial specialists of the Apalachicola-Chattahoochee-Flint (ACF) Basin of 

Georgia, Florida, and Alabama (Williams & Burgess, 1999) that are typically 

encountered in shoal habitats, which are areas of increased flow velocity with exposed 
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bedrock and boulder substrates (Taylor & Peterson, 2014).  Adults often display 

migratory behavior during the spawning season (Sammons, 2015), and dense spawning 

aggregations appear to form at specific complexes of shoal habitat (Sammons, 2015; 

Taylor & Peterson, 2015), suggesting that shoal habitat connectivity is important for 

long-term population persistence.  The Shoal Bass occupies mainstem rivers and larger 

tributaries of the ACF Basin, however its exact distribution remains unknown because the 

species was cryptic among sympatric congeners until the late 1960s, not formally 

described until 1999, and inhabits areas that are inherently difficult to sample (Williams 

& Burgess, 1999; Taylor & Peterson, 2014).  At present, the species is thought to be in 

continual decline within its native range (Williams & Burgess, 1999; Taylor & Peterson, 

2014). Recent studies have documented functional extirpations of Shoal Bass populations 

in four tributary streams to the Chattahoochee River (Wacoochee, Halawakee, Osanippa, 

and Little Uchee creeks; (Stormer & Maceina, 2008) and in an 80-km reach of the 

Chattahoochee River below Lake Lanier, Georgia (Long & Martin, 2008).  Other 

declines and range losses have likely gone undocumented, as population assessment data 

are lacking (Taylor & Peterson, 2014). 

Researchers have suggested that anthropogenic land-use and water-use activities, 

non-native species invasions, and fragmentation are the main factors contributing to the 

imperilment of Shoal Bass.  Habitat alteration from land-use activities and extensive 

damming of the ACF Basin has been thought to contribute most to range loss (Williams 

& Burgess, 1999; Taylor & Peterson, 2014).  Where non-native congener species such as 

Alabama Bass (M. henshalli), Spotted Bass (M. punctulatus), and Smallmouth Bass (M. 

dolomieu) have been introduced, the long-term persistence and genetic integrity of Shoal 
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Bass populations are threatened by introgressive hybridization (Alvarez et al., 2015; 

Dakin et al., 2015; Sammons & Early, 2015) and, possibly, interspecific competition 

(Sammons, 2012).  Because Shoal Bass exhibit movements of up to 200 km in free-

flowing habitats during the spawning season (Sammons, 2015), fragmentation may 

further jeopardize long-term viability of isolated populations.  Despite the continual 

decline of Shoal Bass, no range-wide efforts have been made to quantify the factors 

contributing most to range losses and how they relate to species presence. 

Species distribution models (SDMs) provide a promising approach towards 

disentangling the most influential factors contributing to range losses of fluvial fishes like 

Shoal Bass.  SDMs produce a quantitative prediction of species distribution using 

biologically-relevant variables that can represent natural landscape features, 

anthropogenic activities, non-native species distributions, fragmentation measures, and 

climate change forecasts (Guisan & Thuiller, 2005; Elith et al., 2011).  Thoughtfully-

constructed SDMs can identify factors most influential to a species’ distribution from a 

list of potential factors by quantifying the relative contribution of predictor variables and 

their respective relationships with species suitability (Rodríguez et al., 2007; Elith et al., 

2011).  Furthermore, modeling results can provide baseline information necessary for 

prioritizing management and conservation efforts, as well as fostering predictive 

conservation efforts rather than typical reactive efforts (Worthington et al., 2014). 

To determine what factors have contributed to declines of Shoal Bass within 

fluvial habitats of their native range, we employed a presence-background species 

distribution modeling approach.  We built several SDMs to estimate two distinct 

distributions:  the potential distribution based solely on natural abiotic factors and the 
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current restricted distribution based on abiotic, biotic, and movement factors of both 

natural and anthropogenic origins.  By incorporating a number of biologically-relevant 

predictor variables, we explored how fragmentation, non-native species interactions, and 

land-use activities have contributed to potential range loss of Shoal Bass.   

Materials and methods 

Methods used to complete our SDMs included defining the study area, obtaining 

and preparing presence data and predictor variables, and data analyses.  A workflow 

diagram of the methods used to complete this research is detailed in Fig. 1.   

I. Study area 

Defining the study extent to areas accessible to the species and time period(s) of 

interest is fundamental to proper model construction (Barve et al., 2011).  We restricted 

our study extent to the native range of the Shoal Bass within the ACF Basin (Fig. 2a).  

The ACF Basin provides an interesting contrast in fragmentation between its two major 

river systems.  The Flint River flows unimpeded for over 320 km in the upstream portion 

before reaching the first of only two mainstem dams, and then flows to its confluence 

with the Chattahoochee River where it is impounded by Lake Seminole.  The 

Chattahoochee River, on the other hand, is riddled with 15 mainstem dams along its 

entire 702-km length.  The study area included only third-order and larger stream 

segments (modified Strahler classification; McKay et al., 2012).  We did not include off-

channel lentic habitats (e.g., ponds), as Shoal Bass are not known to inhabit such areas 

(Williams and Burgess 1999).  
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II. Data collection and preparation 

Presence records – We compiled a comprehensive dataset of presence records 

from several agencies and online databases.  We obtained museum and field collection 

records for Shoal Bass from the Georgia Museum of Natural History, Auburn Museum of 

Natural History, Florida Museum of Natural History, Georgia Department of Natural 

Resources (GADNR) Fisheries Management Section, and GADNR Nongame 

Conservation Section.  We also downloaded presence records for Shoal Bass from 

several online databases:  the Multistate Aquatic Resources Information System 

(http://www.marisdata.org), Biodiversity Information Serving our Nation 

(http://bison.usgs.ornl.gov), and the Global Biodiversity Information Facility 

(http://www.gbif.org).  Finally, we included several personal field collection records and 

two verifiable records in Sweetwater Creek, Georgia from detailed online angler reports 

(http://www.forum.gon.com).  

After obtaining this comprehensive presence dataset, we performed several 

quality assurance measures to create our final presence dataset for Shoal Bass.  First, we 

identified and removed duplicate records as well as any records that represented 

introductions outside the ACF Basin.  Duplicate records were considered those that 

shared a common sampling date and locality.  We georeferenced 51 Shoal Bass records 

that were lacking coordinates using the web-based GEOLocate client (Rios & Bart, 2010) 

and the estimated spatial uncertainty of these georeferenced locations averaged 1.5 km 

(SD 1.5 km).  Records with georeferenced uncertainty estimates > 8.6 km, or featuring 

exceedingly vague locality descriptions (e.g., “Flint River, Georgia”), were not used.  We 

removed 13 records of Shoal Bass in impoundments because our goal was to include 
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presence locations indicative of fluvial areas in which Shoal Bass may persist.  Shoal 

Bass do not persist in impoundments (Williams & Burgess, 1999; Sammons & Early, 

2015), and they quickly vacate impounded waters following translocation (Ingram et al., 

2013; Taylor & Peterson, 2015).  We also did not include seven Shoal Bass records from 

first- and second- order streams because they were outside the study area.  Afterwards, 

we plotted all remaining records in ArcMap 10.2 (ESRI, 2015) to visually inspect 

location of presence records.  Following these quality assurance measures, 355 unique 

Shoal Bass presence records from 1952-2013 were retained.  Where multiple presence 

records occurred within an individual stream segment, the stream segment was 

considered “present” in the modeling dataset one time, so that each unique stream 

segment was represented in the models without duplication.  

Modeling environments – To estimate Shoal Bass distributions, we built several 

species distribution model environments that incorporated different combinations of 

predictor variables and presence records.  First, the potential distribution model 

approximated the abiotically-suitable area for Shoal Bass given unlimited dispersal 

abilities and the absence of any negative biotic interactions (see Soberón & Nakamura, 

2009).  The potential distribution was estimated in one modeling environment that 

contained natural abiotic landscape and riverscape factors (Brewer et al., 2007).  Because 

the Shoal Bass was not formally described until 1999 (Williams & Burgess, 1999), 

presence records were sparse for Shoal Bass until recent decades, necessitating the use of 

all 355 records from 1952-2013 to estimate the potential distribution of the species (138 

unique stream segments represented as present).  This approach assumes that the current 

range of the species is restricted within its former range and the species’ niche has not 
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shifted appreciably during the timespan records.  The potential distribution conceptually 

aligns with the fundamental niche of Hutchinson (1957), as estimated using scenopoetic 

variables (Grinnell, 1917).  Because we used presence records that were influenced by 

anthropogenic alterations and interactions with non-native congeners, the fundamental 

niche produced may be an incomplete or under-representative estimate (sensu Peterson et 

al., 2011, pg. 139).   

Second, the restricted distribution models approximated the current (2000-2013) 

occupied distribution area for Shoal Bass by including abiotic, biotic, and movement-

related factors (Soberón & Nakamura, 2009).  For these models, we used presence 

records from 2000-2013 (202 unique records representing 78 unique stream segments as 

present) that approximate the current restricted distribution of the species following 

documented (Long & Martin, 2008; Stormer & Maceina, 2008) and suspected range 

losses.  We created three modeling environments that included a mix of natural abiotic 

landscape and riverscape factors, streamflow, land cover, fragmentation, and non-native 

congener suitability.  Each of the three modeling environments differed in the intensity of 

fragmentation:  1) no fragmentation, 2) fragmentation by dams only, and 3) 

fragmentation by dams and large impoundments.  These restricted distributions 

approximate the realized niche of Hutchinson (1957) using both scenopoetic (Grinnell, 

1917) and bionomic (Elton, 1927) variables. 

Modeling base layer – To create a modeling base layer, we modified the 

NHDPlusV2 flowline layer that features a unique common identifier number (COMID) 

for identification of individual stream segments (McKay et al., 2012).  To allow for 

comparison of results among models featuring differing levels of fragmentation in their 
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modeling environment, we modified the NHDPlusV2 stream segments and COMID 

system so that stream segment lengths and their common identifier numbers were 

consistent across all SDMs.  First, we created a dendritic network of stream segments in 

ESRI Arcmap using NHDPlusV2 attributes to retain segments ≥ 3rd order, exclude 

disjunct tidal channels, and remove side channels and bifurcations that would inhibit 

connectivity analyses.  Within this dendritic network, some stream segments were split 

by locations of both dams and large impoundments (the highest fragmentation intensity 

incorporated).  We then created a second common identifier (“COMID2”) attribute for 

the modified dendritic network, which we used to label individual segments split by 

fragmentation features.  The final COMID2 layer had 6,135 stream segments totaling 

8,005 km.  

 Predictor variables – We included only biologically-relevant predictor variables 

in our SDMs (Elith & Leathwick, 2009), and all variables were obtained or derived from 

publicly available datasets (Table 1).  Predictor variables encompassed five broad 

categories: landscape and riverscape context, streamflow, land cover, fragmentation, and 

non-native species.   

i. Landscape and riverscape – Coarse-scale factors influencing fish presence 

include natural abiotic landscape and riverscape characteristics (Hynes, 1975).  Total 

drainage area (km2), maximum elevation (m), slope (km/km), and mean annual 

precipitation (mm) were obtained from the National Hydrology Dataset Plus version 2 

(NHDPlusV2) for individual stream segments (McKay et al., 2012).  We used CONUS-

Soil polygon datasets (Miller & White, 1998) to characterize mean depth to bedrock 

(cm), mean permeability of topsoil layer (cm/hr), and mean percentage of rock volume in 
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the top 250 cm of soil for each stream segment.  Geology was characterized by the 

predominant type within each HUC-12 watershed (sensu Wuellner et al., 2013; Stewart et 

al., 2016) using U.S. Geological Survey state geological maps (Dicken et al., 2007) 

reclassified into five categories:  sand/alluvium, clay/mud, sandstone/shale, 

limestone/dolomite, and crystalline rock (igneous and mafic; sensu Olivero & Anderson, 

2008).  We also included a categorical variable accounting for the presence of natural 

lentic waterbodies (swamps and marshes within the NHDPlusV2 waterbody dataset) that 

intersected stream segments, as Shoal Bass do not persist in lentic habitats (Williams & 

Burgess, 1999). 

ii. Streamflow – We used mean annual discharge (m3/s) and mean annual flow 

velocity (m/s) to characterize streamflow conditions.  Values for both variables were 

calculated using the Extended Unit Runoff Method (EROM) and reported by stream 

segment in the NHDPlusV2 dataset.  We used reference gage regressions of both values 

to represent “natural” historic conditions (1952-2000), whereas we used gage-adjusted 

values to estimate “current” flow conditions (2000-2013) (McKay et al., 2012; 

Worthington et al., 2014).   

iii. Land cover – We used Landsat satellite based land cover from the 2001 

National Land Cover Database (NLCD; Homer et al., 2007) to derive several predictor 

variables.  We reclassified land cover types into five classes:  urban/suburban, 

agriculture, forested/herbaceous, barren, and water/wetlands.  Because land use affects 

species presence at multiple spatial scales (Allan, 2004), we calculated the proportion of 

urban/suburban, agriculture, and forested/herbaceous cover within two different spatial 

scales: HUC-12 watersheds and segment-specific 300-m stream buffers.  Although state 



13 
 

laws in our study area typically enforce minimum riparian buffer widths between 7 and 

15 m, stream buffer widths of up to 50 m are needed to ameliorate nutrient from 

agricultural practices entering streams (Osborne & Kovacic, 1993), and stream buffers of 

up to 300 m may be necessary to maintain natural microclimates near streams (Brosofske 

et al., 1997); overall, suggesting a 300-m buffer width could provide a relevant 

characterization of land cover.  We considered presence records from 2000-2013 to be 

contemporaneous with land cover obtained circa 2001, as reclassified land cover in the 

ACF Basin changed < 3% between the NLCD 2001 and 2011 datasets (Homer et al., 

2007, 2015).   

iv. Fragmentation – To better elucidate how fragmentation relates to changes in 

Shoal Bass probability of suitability, we incorporated different fragmentation intensities 

into our restricted SDMs based on different assumptions of what constitutes a barrier.  

The three fragmentation intensities included no fragmentation, fragmentation by dam 

locations only, and fragmentation by dam locations and large impoundments.  To 

calculate predictor variables relevant to each level of fragmentation intensity, we first 

created a comprehensive layer of dams from the National Inventory of Dams (NID; 

http://nid.usace.army.mil/), a dataset of small reservoirs in the ACF Basin (Ignatius & 

Stallins, 2011), and local knowledge of two of us (ATT and JML).  We used aerial 

imagery in Google Earth (https://www.google.com/earth/) to verify dam locations and 

remove off-stream dams.  As dam construction dates ranged from 1830 to 1996 in our 

dataset, we considered any fragmentation effects to be contemporaneous and relevant to 

presence data from 2000-2013.  Additionally, we retained two dams on the 

Chattahoochee River (Eagle and Phenix Dam and City Mills Dam) that were removed in 
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2012-13 because presence data near those locations were recorded prior to dam removal.  

To account for the potential effects of large impoundments as barriers, we included eight 

mainstem impoundments with surface areas > 5.5 km2.  The Barrier Analysis Tool (BAT; 

Martin & Apse, 2011) was used to build functional stream networks between barriers 

(Hoenke et al., 2014).  We calculated the following predictor variables to characterize the 

potential effects at each fragmentation intensity:  completion year of downstream dam, 

free-flowing fragment length (km), maximum accessible total drainage area (km2), 

number of tributary junctions within each fragment, and presence of large impoundments 

(> 5.5 km2).  

v. Non-native species – Presence of non-native congeners (Alabama Bass and 

Spotted Bass) is thought to negatively affect Shoal Bass presence.  We queried the same 

online databases as we did for Shoal Bass records to obtain Spotted Bass and Alabama 

Bass presence records.  Both species have been introduced into the ACF Basin and have 

subsequently expanded their ranges; however, the two species are difficult to distinguish, 

some specimens appear intermediate (Baker et al., 2008), and biologists have customarily 

referred to both species as “spotted bass”.  Because of these difficulties, we combined 

records for both species into one “non-native congener” presence dataset for use in our 

SDMs.  To clean these records, we retained only georeferenced records and removed any 

records > 100 m away from base layer flowlines.  Available presence data for non-native 

congeners from 2000-2013 did not appear to adequately depict their invaded range within 

individual stream segments; thus, we constructed SDMs to predict the probability of 

suitability for these species in all stream segments.  SDMs were constructed using the 

same variables, modeling environments, and methods as used to build the current 
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restricted Shoal Bass SDMs.  Three different predictions of non-native congener 

probability of suitability were created and used as predictor variables for Shoal Bass, one 

within each fragmentation intensity (no fragmentation, fragmentation by dam locations 

only, and fragmentation by dam locations plus large impoundments).  This approach 

represents asymmetric competition between Shoal Bass and non-native congeners, 

wherein Shoal Bass are assumed to have no effect on non-native congener distribution, 

but non-natives are assumed to be superior competitors and may influence Shoal Bass 

distribution (sensu Leathwick & Austin, 2001).  Results of the three non-native congener 

models are reported in Appendix I. 

Input data – We related presence records and predictor variables to stream 

segments in ESRI ArcMap and exported attribute tables containing predictor variables 

into a Microsoft Access database that related predictor variable values to each stream 

segment via the unique COMID and “COMID2” identifiers.  We queried this database to 

generate samples-with-data (SWD) input files for the modeling algorithm (Maxent, see 

below).  

III. Data analyses 

 We employed a presence-background approach to species distribution modeling 

with Maxent version 3.3.3k (Phillips et al., 2006), because the presence data used in this 

study were not collected in a systematic manner that would allow for inference about 

detectability of Shoal Bass (Pearce & Boyce, 2006).  Maxent is a machine-learning tool 

that seeks to minimize the relative entropy between predictor variable values associated 

with known presence locations and values associated with a random background sample 
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(Elith et al., 2011).  The Maxent algorithm minimizes relative entropy by applying a 

number of pre-defined transformations to the predictor variables (Phillips et al., 2006; 

Elith et al., 2011).  In a comprehensive comparison of predictive performance among 16 

distribution modeling methods, Maxent was consistently one of the best performing 

methods (Elith et al., 2006).   

Several considerations were made during model construction to ensure model 

performance.  To account for issues arising from multicollinearity amongst continuous 

predictor variables, we selected a suite of variables for each model that had Pearson’s 

product-moment correlation coefficients of |r| ≤ 0.7 (Dormann et al., 2013).  To avoid 

model over-fitting, we removed any predictor variable contributing < 2.0 % gain in 

model fit to a preliminary model run for each distribution model.  Predictive errors 

resulting from geographic sampling biases are presumed to be negligible in our models 

because multiple presence records situated within one stream segment are represented as 

one stream segment denoted “present” in our model, instead of multiple (see Boria et al., 

2014).  Unless otherwise specified, we used the default settings in Maxent, which have 

been tuned and validated to perform well on diverse datasets (Phillips & Dudík, 2008).  

Several predictor variables had missing data (denoted -9999), so we enabled the option in 

Maxent to use samples with some missing data.  We employed a 10-fold cross validation, 

which uses held-out presences to estimate errors around model predictive performance 

and fitted functions (Elith et al., 2011).  We also used the jackknife option to assess 

variable importance and chose to create response curves for predictor variables.  

We followed existing conventions in interpreting model results.  Maxent’s logistic 

output provided estimates of the probability of suitability for Shoal Bass based on 
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similarity of environmental conditions (i.e., predictor variable values) with known 

presence locations (Elith et al., 2011).  To assess relative importance of predictor 

variables, we used the percent contribution of each variable to the gain in model fit of a 

given distribution model.  Possible collinearity of predictor variables can confound the 

interpretation of ‘marginal’ response curves created in Maxent, whereas ‘single variable’ 

response curves are created with all other variables excluded (Phillips, 2005).  As several 

predictor variable combinations had high correlation (0.50<|r|<0.70), we used ‘single 

variable’ response curves to infer relationships between predictor variables and Shoal 

Bass probability of suitability. 

To assess model predictive performance, we used the threshold-independent 

receiver operating characteristic (ROC) area under the curve (AUC) and threshold-

dependent omission rates of testing data within the 10-fold cross validation.  ROC AUC 

values of 0.5 indicate model prediction no better than random chance, whereas values of 

1.0 indicate perfect prediction (Fielding & Bell, 1997).  However, AUC may not 

appropriately measure changes in the discriminatory power of models (Jiménez-

Valverde, 2014). Binary (i.e., suitable/unsuitable) distributions are beneficial because 

they provide a measure of discrimination through the calculation of omission rates 

(Jiménez-Valverde, 2014).  We applied two thresholds to convert continuous Maxent 

logistic output into a binary, suitable/unsuitable format:  one at 0% omission of training 

location data and another at 10% omission of training data.  The 0% omission threshold 

(“minimum training presence” in Maxent) is reasonable because we carefully vetted 

presence data within the narrow distribution of Shoal Bass (Pearson et al., 2007; 

Anderson & Gonzalez Jr., 2011).  The 10% omission threshold provides a more 
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conservative estimate of environmental suitability by retaining the top 90% of training 

presence locations and excluding some potentially erroneous locations (Anderson & 

Gonzalez Jr., 2011).  Mean omission rates of testing data at each threshold were 

calculated from the 10-fold cross validation replicates, providing a threshold-dependent 

measure of model predictive accuracy.  

We performed an outside validation by comparing results of our SDMs to an 

independent dataset of directed Shoal Bass surveys in 17 tributaries of the middle 

Chattahoochee River basin (Katechis, 2015).  These surveys targeted streams in which 

Shoal Bass were thought to occur and were repeated over two summers (2013-14), 

wherein Shoal Bass were absent (or not detected) at 8 sites and present at 9 sites 

(Katechis, 2015).  We compared the mean (weighted by stream segment length) and 

standard error (SE) of probability of suitability estimated by each distribution model for 

sites considered absent (or not detected) to those considered present.   

To visualize estimated distributions, we created distribution maps in ESRI 

ArcMap that combined both binary, suitable/unsuitable omission thresholds.  To compare 

estimated range loss, we calculated differences in stream segment length (km) predicted 

present by each distribution model. 

 

Results 

 The potential species distribution model included six predictor variables (Table 1, 

Fig. 2b), and was influenced mostly by natural mean annual flow velocity (30.6% model 

contribution), natural mean annual discharge (29.4%), mean percentage of rock volume 
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in soil (19.1%), and predominate geology type in HUC-12 watershed (13.0%; Table 1).  

At the 0% omission threshold, much of the ACF Basin was predicted suitable (6,533 km 

or 84.5% of total available segment length, Table 2), whereas the 10% omission threshold 

depicted suitability only in mainstem rivers and lower portions of select tributary streams 

(Fig. 3a; 2,415 km or 31.2%, Table 2).  The potential model had good predictive 

performance, with a mean (SD) ROC AUC of 0.87 (0.05) among cross-validation 

replicates.  Cross-validation also suggested strong discriminatory power, with mean (SD) 

omission rates of the testing data at 0% omission and 10% omission thresholds of 0.02 

(0.03) and 0.15 (0.12), respectively (Table 2).   

The three restricted SDMs included 7-8 predictor variables (Fig. 2b, c, d).  The 

restricted distribution model for Shoal Bass with no fragmentation was influenced mostly 

by probability of suitability of non-native congeners (33.6% model contribution), current 

mean annual discharge (27.8%), mean percentage of rock volume in soil (16.3%), and 

predominate geology type in HUC-12 watershed (12.2%; Table 1).  With no riverscape 

fragmentation, Shoal Bass suitability was related in a positive linear fashion with non-

native congener suitability (Fig. 4).  Proportion of forested/herbaceous cover in the 300-

m buffer was the only land cover variable that influenced the models (3.4% contribution), 

and this variable had a positive linear relationship with Shoal Bass probability of 

suitability (Fig. 5).  The estimated distribution was more conservative than the potential 

distribution model, with fewer tributary streams predicted suitable and much of the lower 

Chattahoochee River drainage predicted unsuitable (Fig. 3b).  At the 0% omission 

threshold, 5,574 km were predicted suitable (72.1% of total available segment length), 

whereas only 1,526 km (19.7%) were predicted suitable at the 10% omission threshold 
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(Table 2).  This model had improved predictive performance, with a mean (SD) ROC 

AUC of 0.92 (0.06) among cross-validation replicates.  Cross-validation also suggested 

improved discriminatory power over the potential model, with mean (SD) omission rates 

of the cross-validation testing data at 0% and 10% omission thresholds at 0.01 (0.04) and 

0.15 (0.15), respectively (Table 2).  

The restricted distribution model for Shoal Bass with fragmentation by dams was 

influenced mostly by current mean annual discharge (31.2% model contribution), mean 

percentage of rock volume in soil (18.5%), probability of suitability of non-native 

congeners (15.5%), and predominate geology type in HUC-12 watershed (12.3%; Table 

1).  Response curves suggested that Shoal Bass suitability increased with non-native 

congener suitability at low probabilities of suitability for both species; however, as non-

native congener probability of suitability increased beyond 0.70, Shoal Bass probability 

of suitability began to plateau (Fig. 4).  The fragmentation metric of free-flowing 

fragment length contributed 8.2% and its response curve revealed that fragment lengths 

less than approximately 100 km were not suitable for Shoal Bass (Fig. 6).  Proportion of 

forested/herbaceous cover in the 300-m buffer contributed 7.3% and had the same 

positive linear relationship with Shoal Bass probability of suitability as seen in the model 

with no fragmentation (Fig. 5).  Estimated distributions illustrated an increasingly 

restricted Shoal Bass distribution with further range loss in tributary streams, particularly 

in several of the larger tributaries of the Flint River (Fig. 3c).  At the 0% omission 

threshold, 4,184 km were predicted suitable (54.1% of total available segment length), 

whereas only 1,474 km (19.1%) were predicted suitable at the 10% omission threshold 

(Table 2).  Predictive and discriminatory abilities were similar to the restricted model 
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with no fragmentation, as mean (SD) ROC AUC was 0.92 (0.05) among cross-validation 

replicates, and mean (SD) omission rates of the cross-validation testing data at 0% and 

10% omission thresholds were 0.03 (0.08) and 0.19 (0.18), respectively (Table 2).   

The restricted distribution model for Shoal Bass with fragmentation by dams and 

impoundments was influenced mostly by current mean annual discharge (28.1% model 

contribution), probability of suitability of non-native congeners (18.2%), mean 

percentage of rock volume in soil (14.1%), and predominate geology type in HUC-12 

watershed (12.7%; Table 1).  Response curves relating Shoal Bass suitability to non-

native congener suitability suggested that Shoal Bass probability of suitability is 

negatively affected when probability of suitability of non-native congeners is 

approximately ≥ 0.75 (Fig. 4).  Free-flowing fragment length contributed 10.5% and the 

response curve again suggested a minimum threshold of approximately 100 km for Shoal 

Bass suitability and fragment lengths > 600 km had a positive relationship with Shoal 

Bass suitability (Fig. 6).  Presence/absence of large impoundments contributed 7.3%, 

with impounded segments having a mean probability of suitability of approximately 0.05, 

compared to 0.50 in unimpounded segments.  Proportion of forested/herbaceous cover in 

the 300-m buffer contributed 4.6% and had a positive linear relationship Shoal Bass 

probability of suitability (Fig. 5).  Mapped predictions illustrated the most extensive 

range loss, with further reductions in range in impounded mainstem rivers and in 

tributaries to large impoundments (Fig. 3d).  At the 0% omission threshold, 4,146 km 

were predicted suitable (53.6% of total available segment length), whereas only 1,272 km 

(16.4%) were predicted suitable at the 10% omission threshold (Table 2).  Predictive and 

discriminatory abilities were similar to other restricted SDMs, as mean (SD) ROC AUC 
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was 0.94 (0.04) among cross-validation replicates, and mean (SD) omission rates of the 

cross-validation testing data at 0% and 10% omission thresholds were 0.01 (0.04) and 

0.16 (0.17), respectively (Table 2).  

Outside validation of species distribution modeling results with Katechis (2015) 

surveys indicated that mean probability of suitability was higher at sites where Shoal 

Bass were present compared to sites where Shoal Bass were absent or not detected for all 

SDMs (Fig. 7).  Mean probability of suitability was consistently 0.12-0.15 higher at sites 

where Shoal Bass were considered present by Katechis (2015), and SE of means ranged 

from 0.03-0.06.    

 

Discussion 

Mean annual discharge was one of the two highest-contributing variables in all 

SDMs considered, and although the “natural” and “current” datasets used herein did not 

represent a change substantial enough to affect Shoal Bass probability of suitability, 

future alteration could greatly affect population size and stability.  Migratory and 

potamodromous fishes like Shoal Bass are especially vulnerable to declines in 

streamflow (Beatty et al., 2014; Sammons, 2015).  Concerns over streamflow allocations 

and stream drying are particularly acute given the potential effects of increasing 

anthropogenic water consumption demands and global climate change projections of 

longer and more severe droughts in some regions (Knapp et al., 2008; Lynch et al., 

2016).  Within the native range of the Shoal Bass, for example, growing water demands 

of Atlanta, GA – one of the top ten most-populated, and second fastest-growing, 
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metropolitan areas in the U.S. from 2000 to 2010 (Mackun & Wilson, 2011) – have 

resulted in an ongoing “tri-state water war” concerning water allocation (Stephenson, 

2000; Ruhl, 2005).  Balancing anthropogenic water demands with ecological needs of 

stream ecosystems will be a key challenge for conservation of fluvial fishes (Poff et al., 

1997; Baron et al., 2002; Richter et al., 2003). 

Coarse-scale geology and soil characteristics also contributed highly to model 

predictions.  In our models of a shoal-habitat specialist (Wheeler & Allen, 2003; Stormer 

& Maceina, 2009; Sammons & Early, 2015), mean percent rock volume in the soil and 

predominate geology type provided adequate coarse-scale surrogates for shoal habitat.  

However, some shoal habitats have been altered at finer-scale resolutions than these 

variables represent, like the destruction of shoals in lower portions of the ACF Basin for 

navigational purposes (Williams & Burgess, 1999).  Because in-stream habitat alteration 

and loss is one of the leading contributors to fluvial fish imperilment (Allan & Flecker, 

1993; Ricciardi & Rasmussen, 1999), incorporating finer-scale habitat and substrate data 

(e.g., from side-scan sonar; Kaeser & Litts, 2010) into SDMs could improve model 

results as well as provide additional information for management.   

The relationship between Shoal Bass and non-native congener probabilities of 

suitability changed as fragmentation intensified, suggesting an asymmetric interspecific 

relationship that favored non-native congeners at the highest fragmentation intensity.  

The introduction of non-native black bass species has often been implicated in the loss of 

native forms (Barwick et al., 2006; Stormer & Maceina, 2008).  Although non-native 

species are considered a major threat to fluvial fish conservation in general (Allan & 

Flecker, 1993; Gozlan et al., 2010), habitat alteration is often identified as an underlying 
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driver of the competitive replacement of native fluvial fishes with non-native species 

(Bunn & Arthington, 2002; Johnson et al., 2008).  The potential for competitive 

exclusion by non-natives is particularly acute in our example, as the large impoundments 

that fragment fluvial-specialist Shoal Bass also function as ‘stepping stone’ vectors that 

allow non-native congeners to invade nearby streams (Johnson et al., 2008).  As such, 

efforts to curb introductions and subsequent invasions of non-native fishes may provide 

greater conservation benefits to native fluvial fishes if paired with efforts to maintain 

intact habitats and restore altered habitats.  

Although the invasion of non-native congeners appears to have played an 

important role in restricting the range of the Shoal Bass, there are several difficulties 

preventing a better understanding of interspecies relationships.  Being able to properly 

identify cryptic, non-native species and understand particular biological and ecological 

differences among them is a recurring challenge in conserving native fluvial fishes (Cook 

et al., 1992; Moyer et al., 2005; Haynes et al., 2012).  In such scenarios, genetic 

identification surveys can provide range data for cryptic non-natives, as well as the ability 

to quantify hybridization rates with natives (see, for examples Moyer et al., 2005; 

Alvarez et al., 2015).  Furthermore, finer-scale studies with more directed and intensive 

sampling efforts, like two-species occupancy modeling (Wagner et al., 2013), could help 

account for potential differences in detection among species and better separate the 

potential effects of non-native species from influences of habitat fragmentation and 

alteration. 

Habitat loss and subdivision through dam construction and impounding free-

flowing water are independent, yet synergistic in their effects in restricting fluvial fishes 
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(Hoagstrom, 2015).  Longer free-flowing fragments generally support larger fluvial fish 

populations, larger effective population sizes (i.e., greater allelic diversity), longer 

population persistence, and more diverse fluvial fish communities (Hilderbrand & 

Kershner, 2000; Perkin et al., 2015).  Although the biological mechanisms behind the 

benefits of longer fragments are often unknown (Hoagstrom, 2015), we hypothesize that 

longer fragments may be imperative for multiple life stages of habitat specialists, like 

Shoal Bass, because these areas confer access to critical habitats that are unevenly 

distributed within river systems.  Distribution estimates and response curves generated by 

SDMs can help prioritize barrier removal. 

The effects of fragmentation inferred from our SDMs have population and 

population-genetic level implications.  Our results suggest that Shoal Bass populations 

could have potentially been interconnected throughout much of the ACF Basin, but 

suitable areas now appear confined to smaller, disjunct areas within their native range.  In 

a metapopulation context, fragmentation severs connectivity among subpopulations and 

local extinctions are more likely to occur (Jager et al., 2001).  Fluvial fishes typically 

experience reduced gene flow and lower genetic diversity when fragmented by dams 

(Neraas & Spruell, 2001; Laroche & Durand, 2004) and impounded waters (Fluker et al., 

2014).  Quantifying demographic and genetic connectivity (see Lowe & Allendorf, 2010) 

among Shoal Bass populations is warranted to better understand the extent that 

fragmentation affects their gene flow and long-term viability.  

By incorporating predictor variables characterizing land cover at multiple spatial 

scales, we were able to discern which land cover types contributed most to segment-scale 

suitability and at what spatial scale land cover was most influential.  The proportion of 
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forested/herbaceous cover in the 300-m stream buffer was the only land cover variable to 

contribute ≥ 2.0% to the restricted SDMs for Shoal Bass, and the response curve 

suggested that forested buffers confer increases in suitability.  Forested buffer zones 

minimize sediment runoff, create stream shading that regulates temperature, and 

contribute large woody debris into streams (Osborne & Kovacic, 1993).  Local-scale 

buffers are also more feasible to implement than catchment-wide management and can 

provide significant benefits (Saunders et al., 2002; Allan, 2004).  Regardless of spatial 

scale, land cover variables contributed relatively little to model predictive ability 

compared to other factors.  However, inherent difficulties with relating land cover 

variables to in-stream biotic changes (see Allan, 2004) may have underestimated the 

importance of land cover-related effects at both catchment and buffer scales in our study. 

Although estimated distributions have some degree of omission and commission 

error, model validation can provide context for the applicability of model results to 

management and conservation.  Decisions made during model construction likely 

influence the degree of omission and commission in model results (Barry & Elith, 2006).  

In our modeling exercise, excluding 13 presence records (4% of total records) from 

impoundments may have led to underestimation of suitability in impoundments, 

increasing the potential of omission error despite a preponderance of evidence that Shoal 

Bass do not persist in or naturally inhabit impoundments (Williams & Burgess, 1999; 

Ingram et al., 2013; Sammons & Early, 2015; Taylor & Peterson, 2015).  Similarly, we 

did not include first- and second- order streams in our models, but seven presence records 

(2% of total records) associated with these areas suggest that our distribution estimates 

may be somewhat conservative.  Omission and commission error could also have been 
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introduced if the two subsets of presence records used to build the potential (1952-2013 

records) and restricted (2000-2013) distributions did not accurately represent the desired 

distributions.  Despite these possible sources of model error, suitability estimates aligned 

well with targeted sampling used for outside validation (Katechis, 2015), suggesting real-

world applicability for management and conservation.  To better characterize extant 

ranges, elucidate causes of prediction errors, and refine model construction, systematic 

range-wide surveys are indispensable.  In particular, intensive surveys that incorporate 

standardized efforts to account for imperfect detection, like occupancy modeling, could 

improve understanding of factors driving both species presence and absence (MacKenzie, 

2006; see Albanese et al., 2013).   

Imperilment rates of fluvial fishes across the globe are high and only expected to 

increase in the coming decades (Ricciardi & Rasmussen, 1999; Dudgeon et al., 2006).  

Unfortunately, a lack of understanding of biological requirements and responses to 

disturbances has hindered conservation of black basses and many other fluvial fishes in 

the U.S. (Jelks et al., 2008; Birdsong et al., 2010), as well as freshwater biota across the 

world (Abell, 2002; Dudgeon et al., 2006).  Species distribution modeling approaches, 

like the one employed herein (see, for other examples Albanese et al., 2013; Breece et al., 

2013; Liang et al., 2013; Worthington et al., 2014), can help disentangle the factors 

driving range loss of fluvial fishes and deliver imperative insights into their biology and 

conservation needs.  
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Table 1.  Summary of predictor variables used to generate Shoal Bass (Micropterus cataractae) species distribution models (SDMs), 
including the mean, standard deviation, and percent contribution of variables to each SDM environment.  Key:  “c” – variable 
removed because Pearson correlation coefficient |r| ≥ 0.70 with another variable; “x” – variable removed because it contributed < 
2.0% to a preliminary model run; * - variable with incomplete data coverage.  Continued on next page. 

        

Predictor variables (units) 

    SDM environment   

mean SD 
Pote-
ntial 

Restr. 
no frag 

Restr. 
dams 
only 

Restr. 
dams 

and 
impnds. data source 

        Natural Abiotic Variables 
            Total drainage area (km2) 2598.86 7914.51 c c c C NHDplusV2; Attributes TotDASqKm 

     Maximum elevation (m) 132.42 94.60 5.4 x x X NHDplusV2; ElevSlope MaxElevSmo 

     Slope (km/km)* 0.00 0.01 x 4.2 4.9 4.4 NHDplusV2; ElevSlope SLOPE 

     Mean annual precipitation (mm)* 1342.88 102.99 x x x X NHDplusV2; EROM PPT0001 

     Mean depth to bedrock (cm) 131.34 42.71 2.4 x x X Derived from CONUS-Soil polygons 

     Mean permeability of topsoil (cm/hr) 12.76 7.70 x x x X Derived from CONUS-Soil polygons 

     Mean percentage of rock volume in soil 31.09 12.01 19.1 16.3 18.5 14.1 Derived from CONUS-Soil polygons 

     Predominant geology of HUC-12 watershed (5 classes) N/A N/A 13.0 12.2 12.3 12.7 Derived from reclassified USGS Geologic map  

     Natural lentic waterbodies (0/1) N/A N/A x x x X Derived from NHDplusV2 Waterbody polygons 

        Streamflow Variables 
            "Natural" mean annual discharge (m3/s) 29.98 81.15 29.4 

   
NHDplusV2; EROM Q0001C 

      "Natural" mean annual flow velocity (m/s) 0.35 0.12 30.6 
   

NHDplusV2; EROM V0001C 

      "Current" mean annual discharge (m3/s) 31.55 92.03 
 

27.8 31.2 28.1 NHDplusV2; EROM Q0001E 

      "Current" mean annual flow velocity (m/s) 0.35 0.12 
 

2.5 2 x NHDplusV2; EROM V0001E 



39 
 

Table 1.  Continued from previous page. 
Land Cover Variables (proportions) 

             Agricultural cover in HUC-12 watershed 0.18 0.14 
 

x x x Derived from reclassified NLCD 2001 

      Urban/suburban cover in HUC-12 watershed 0.08 0.12 
 

c c c Derived from reclassified NLCD 2001 

      Forested/herbaceous cover in HUC-12 watershed 0.62 0.19 
 

x x x Derived from reclassified NLCD 2001 

      Agricultural cover in 300m segment buffers  0.07 0.10 
 

x x x Derived from reclassified NLCD 2001 

      Urban/suburban cover in 300m segment buffers  0.04 0.10 
 

x x x Derived from reclassified NLCD 2001 

      Forested/herbaceous cover in 300m segment buffers  0.46 0.26 
 

3.4 7.3 4.6 Derived from reclassified NLCD 2001 

        Fragmentation Variables 
            Completion date of downstream dam (year)* 1946.25 22.86 

  
x x Derived from functional network analyses 

Dams Only 
       

     Free-flowing fragment length (km) 701.22 540.95 
  

8.2 
 

Derived from functional network analyses 

     Maximum accessible total drainage area (km2) 14164.60 14023.93 
  

x 
 

Derived from functional network analyses 

     Number of tributary junctions within fragment  143.30 125.26 
  

c 
 

Derived from functional network analyses 

Dams and Impoundments 
            Free-flowing fragment length (km) 379.55 437.57 

   
10.5 Derived from functional network analyses 

     Maximum accessible drainage area (km2) 9814.07 13207.89 
   

x Derived from functional network analyses 

     Number of tributary junctions within fragment  72.78 83.02 
   

c Derived from functional network analyses 

     Large impoundment waterbodies (0/1) N/A N/A 
   

7.3 Derived from NHDplusV2 Waterbody polygons 

        Non-native Species Variables 
            Non-native congener probability of suitability 1* 0.15 0.19 

 
33.6 

  
Maxent results within given SDM environment 

     Non-native congener probability of suitability 2* 0.15 0.18 
  

15.5 
 

Maxent results within given SDM environment 

     Non-native congener probability of suitability 3* 0.14 0.18 
   

18.2 Maxent results within given SDM environment 

        
Total Number of Variables in Each SDM      6 7 8 8   
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Table 2.  Predictive performance, accuracy measures, and summary data for species 
distribution models (SDMs).  Test sample omission rates calculated by 10-fold cross 
validation (CV), and outside validation with 17 directed tributary surveys (Katechis 
2015).  The receiver operating characteristic area under the curve (ROC AUC) is a 
threshold-independent metric of model predictive performance. 

     
  SDM environment 

Model prediction and performance data Potential  
Restricted: 

no frag 
Restricted: 
dams only 

Restricted: 
dams and 

impoundments 

Mean (SD) of ROC AUC 0.87 (0.05) 0.92 (0.06) 0.92 (0.05) 0.94 (0.04) 

     10-fold Cross Validation (CV) settings 
         CV training samples mean count 124.20 70.20 70.20 70.20 

     CV test samples mean count 13.80 7.80 7.80 7.70 

     0% Omission of Training Samples Threshold 
         CV test sample omission rate mean (SD) 0.02 (0.03) 0.01 (0.04) 0.03 (0.08) 0.01 (0.04) 

     Logistic threshold mean (SD)  0.02 (0.01) 0.01 (0.00) 0.03 (0.01) 0.02 (0.01) 

     Length of segments (km) predicted present 6533.39 5574.49 4184.02 4145.82 

     % of total segment length present in base layer 84.46 72.07 54.09 53.60 

     10% Omission of Training Samples Threshold 
         CV test sample omission rate mean (SD) 0.15 (0.12) 0.15 (0.15) 0.19 (0.18) 0.16 (0.17) 

     Logistic threshold mean (SD)  0.21 (0.02) 0.15 (0.02) 0.17 (0.01) 0.19 (0.02) 

     Length of segments (km) predicted present 2414.58 1526.43 1474.32 1271.88 

     % of total segment length present in base layer 31.21 19.73 19.06 16.44 
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Figure 1.  Workflow of species distribution model (SDM) construction.  The Venn 
diagrams illustrate the Abiotic (A), Biotic (B), and Movement (M) elements that 
influence species distributions (Soberón & Nakamura, 2009), wherein shaded circles 
illustrate elements that were characterized by predictor variables for a given SDM 
environment.  Three restricted SDM environments were created, one for each 
fragmentation intensity used to characterize the Movement element.  Presence records 
and predictor variables of each SDM environment were related to individual stream 
segments to create input files for Maxent.  Maxent results were then used to create 
distribution maps for each SDM environment. 
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Figure 2.  Maps depicting the Apalachicola-Chattahoochee-Flint Basin model base layer 
(a); 355 unique Shoal Bass (Micropterus cataractae) presence locations used to build 
species distribution models (SDMs; b); dam locations used to build the restricted SDM 
fragmented by dams only (c); dam locations and large impoundments used to build the 
restricted SDM with fragmentation by dams and large impoundments (d).  
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Figure 3.  Estimated distributions of Shoal Bass (Micropterus cataractae) from species 
distribution models (SDMs) estimating the potential distribution (a), current restricted 
distribution with no fragmentation (b), restricted distribution with fragmentation by dams 
only (c), and restricted distribution with fragmentation by dams and large impoundments 
(d).  Predicted Maxent probability of suitability values were reclassified to binary, 
suitable/unsuitable predictions using thresholds of 0% omission and 10% omission of the 
training data.   
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Figure 4.  Response curves from three restricted species distribution models (SDMs) 
relating Shoal Bass (Micropterus cataractae) probability of suitability to probability of 
suitability of two non-native congener species, Spotted Bass (M. punctulatus) and 
Alabama Bass (M. henshalli).  As fragmentation intensity increased within the restricted 
SDMs, the apparent relationship between Shoal Bass and the non-native congeners 
changed. Solid lines represent the average model response curve across the cross-
validation SDM replicates ± 1 SD (dashed lines). 
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Figure 5.  Response curve relating Shoal Bass (Micropterus cataractae) probability of 
suitability to the proportion of forested/herbaceous cover in segment-specific 300 m 
stream buffers.  Similar response curves were produced in each of three restricted species 
distribution models (SDMs) that contained different fragmentation intensities (not 
shown). The solid line represents the average model response curve across the cross-
validation SDM replicates ± 1 SD (dashed lines). 
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Figure 6. Response curves relating Shoal Bass (Micropterus cataractae) probability of 
suitability to free-flowing fragment length (km) of functional networks between 
fragmentation features.  As fragmentation intensified in the restricted species distribution 
models (SDMs), probability of suitability of Shoal Bass increased in longer free-flowing 
fragment lengths. Solid lines represent the average model response curve across the 
cross-validation SDM replicates ± 1 SD (dashed lines). 
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Figure 7.  Outside validation of species distribution model estimates of probability of 
suitability for Shoal Bass (Micropterus cataractae) compared to directed tributary 
surveys by Katechis (2015), wherein 8 sites were considered absent (or not detected) and 
9 sites were considered present.  Mean and standard error (SE) of probability of 
suitability were compared among sites considered absent (or not detected) to sites 
considered present for each model: (a) potential distribution, (b) restricted distribution 
with no fragmentation, (c) restricted distribution with fragmentation by dams only, and 
(d) restricted distribution with fragmentation by dams and large impoundments.   
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Appendix I.  Non-native congener (Spotted Bass Micropterus punctulatus and Alabama 
Bass M. henshalli) species distribution model results. 

 

Maxent models estimating non-native congener probability of suitability had good 

predictive performance, with overall ROC AUC averages between 0.86 and 0.87 for all 

three models (SD 0.03 – 0.04) and similar predicted ranges among all three fragmentation 

intensities (Fig. Aa, b, c, d).  Percent contribution of predictor variables to the non-native 

congener SDMs was similar among the four highest-contributing variables regardless of 

fragmentation intensity (Table A): “current” mean annual discharge contributed 21.9-

26.5%, proportion urban/suburban land cover in 300 m buffer contributed 17.5-18.6%, 

mean depth to bedrock contributed 9.2-11.3%, and mean permeability of topsoil 

contributed 8.2-9.0%.  Interestingly, non-native congener probability of suitability had a 

curvilinear response to proportion of urban/suburban land cover in the 300 m stream 

buffer that indicated a positive relationship until the proportion exceeded approximately 

0.50, wherein the relationship became negative. 
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Table A.  Percent contribution of predictor variables to each species distribution model 
(SDM). * – indicates that variable values differed among SDM environments. 

    
 % Contribution by SDM environment 

Predictor variable (units) Restricted: 
no frag 

Restricted: 
dams only 

Restricted: 
dams and 

impoundments 
"Current" mean annual discharge (m3/s) 26.5 24.7 21.9 
Proportion urban/suburban cover in 300m buffer 18.6 18.2 17.5 
Mean depth to bedrock (cm) 11.3 10.6 9.2 
Mean permeability of topsoil (cm/hr) 9.0 8.3 8.2 
"Current" mean annual flow velocity (m/s) 6.9 6.5 6.4 
Maximum elevation (m) 6.3 5.6 3.8 
Mean annual precipitation (mm) 5.0 4.6 4.0 
Natural lentic waterbodies (0/1) 4.6 4.4 4.0 
Proportion agricultural cover in 300m buffer 3.3 3.2 2.8 
Proportion agricultural cover in HUC-12 watershed 3.2 2.7 2.9 
Proportion forested/herbaceous cover in 300m buffer 3.0 3.2 3.0 
Predominate geology of HUC-12 watershed 2.3 2.6 2.4 
Free-flowing fragment length (km)*  3.5 5.8 
Maximum accessible total drainage area (km2)* 1.9 8.1 

Total number of variables: 12 14 14 
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Figure A.  Presence locations of Spotted Bass (Micropterus punctulatus; “SPB”) and 
Alabama Bass (M. henshalli; “ALB”; a) used in species distribution models (SDMs), and 
estimations of their current distribution with no fragmentation (b), with fragmentation by 
dams only (c), and with fragmentation by dams and large impoundments (d).  
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CHAPTER II 
 

 

POPULATION STRUCTURE OF THE SHOAL BASS:  INFORMING RANGE-WIDE 

MANAGEMENT AND CONSERVATION OF A FLUVIAL SPORTFISH 

 

Abstract 

 The Shoal Bass Micropterus cataractae is a fluvial-specialist sportfish considered 

vulnerable to extinction because of continued habitat alteration and loss within its native 

range.  The species has been described as potamodromous in free-flowing stream reaches, 

but differences in movement patterns and life-history characteristics have been 

documented across the species’ range.  Because of continued population declines, 

restorative stocking efforts are becoming an increasingly relevant management strategy; 

however, whether population-genetic structure exists within the species is currently 

unknown.  Leveraging a range-wide collaborative effort to collect and genotype samples 

with 16 microsatellite loci, our objective was to characterize hierarchical population 

structure and genetic differentiation of Shoal Bass, including an examination of 

structuring mechanisms such as relatedness and inbreeding levels.  Our results revealed 

appreciable population structure, with five distinct Shoal Bass populations identifiable at 

the uppermost hierarchical level.  Additional substructure was recovered within several of  



52 
 

these populations, wherein differences in relatedness and inbreeding levels contributed to 

structure and appeared related to spatial isolation and temporal variation in recruitment 

strength.  An analysis of molecular variance revealed that 4% of the variation in our 

dataset was accounted for among larger river drainages, whereas 87% was within sample 

sites.  Results provide a population-genetic framework that can inform future 

management and stocking activities so that genetic diversity within- and among- 

populations is conserved and overall adaptability of the species is maintained.   

 

Introduction 

 The Shoal Bass Micropterus cataractae is a fluvial-specialist black bass species 

endemic to the Apalachicola-Chattahoochee-Flint (ACF) Basin of the southeastern US 

(Williams and Burgess 1999; Sammons et al. 2015).  In contrast to congener species like 

Largemouth Bass M. salmoides and Spotted Bass M. punctulatus, Shoal Bass are rarely 

encountered in lentic habitats and do not support impoundment fisheries (Williams and 

Burgess 1999; Sammons et al. 2015).  Shoal Bass occur in larger rivers and streams, and 

are typically encountered near shoal habitats – areas characterized by high flow 

velocities, bedrock outcrops, and boulder substrates (Williams and Burgess 1999; 

Johnston and Kennon 2007; Taylor and Peterson 2014).  Populations inhabiting these 

fluvial habitats support popular sport fisheries that have gained national attention among 

angling groups (Taylor and Peterson 2014).  However, Shoal Bass have been eliminated 

from many formerly-suitable areas, spurring the American Fisheries Society Endangered 

Species Committee to list the Shoal Bass as “vulnerable” to extinction (Jelks et al. 2008).  
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A growing interest in Shoal Bass has spurred research and management during the past 

decade (Birdsong et al. 2010; Tringali et al. 2015b), yet the long-term conservation of the 

species appears uncertain (Taylor and Peterson 2014).  

Throughout their historic native range in the ACF Basin, Shoal Bass populations 

are presumed to have suffered dramatic losses (Williams and Burgess 1999).  Recent 

documented examples include the virtual elimination of Shoal Bass from a 58-km reach 

of the upper Chattahoochee River after completion of Buford Dam in 1956 (Long and 

Martin 2008) and the functional elimination of populations in several western tributaries 

to the middle Chattahoochee River in Alabama (Halawakee, Osanippa, and Wacoochee 

creeks; Stormer and Maceina 2008; Sammons and Maceina 2009).  Habitat alteration, 

particularly from the serial impoundment of rivers (Williams and Burgess 1999), has 

fragmented populations (Dakin et al. 2015; Sammons and Early 2015) and facilitated the 

invasion of previously allopatric congeners following authorized and unauthorized fish 

stockings.  These non-native congeners have negatively affected Shoal Bass populations 

through introgressive hybridization (Alvarez et al. 2015; Dakin et al. 2015; Tringali et al. 

2015c) and possible interspecific competition (Sammons 2012; Goclowski et al. 2013).    

To reverse declining trends, agencies have been actively managing and restoring 

Shoal Bass populations.  Where Shoal Bass populations are robust enough to support 

sport fisheries, management tools such as daily creel and size limits have generally been 

effective at conserving stocks (e.g., lower Flint River, Georgia [Ingram and Kilpatrick 

2015] and Chipola River, Florida [Woodside et al. 2015]).  In other areas, stocking has 

been used to restore or supplement Shoal Bass populations.  For example, from 1972 to 

present, the Georgia Department of Natural Resources (GADNR) has stocked Shoal Bass 
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fingerlings in the lower Flint River between lakes Blackshear and Worth to supplement 

natural recruitment, which may be hindered by hydropeaking operations below Lake 

Blackshear.  Broodstock for these fingerlings came from farther downstream within the 

same river basin, and year class contribution of stocked fish has varied in recent years 

from 14-51% (T. Ingram, GADNR, personal communication).  From 2003 to 2008, the 

National Park Service (NPS) and GADNR stocked Shoal Bass fingerlings in a 19-km 

reach of the upper Chattahoochee River below Morgan Falls Dam to re-establish a 

population depleted by the cold water releases of an upstream dam (Long and Martin 

2008; Porta and Long 2015).  Similar to the Flint River stocking, broodstock came from 

farther downstream within the same river basin (the middle Chattahoochee River below 

North Highlands Reservoir), and stocked individuals contributed up to 62% to the adult 

population (Porta and Long 2015).  Broodstock from the Chattahoochee River below 

North Highlands Reservoir was also employed in 2008 for a restorative stocking of 

fingerlings in tributaries to the Chattahoochee River situated in eastern Alabama 

(Halawakee, Osanippa, and Wacoochee creeks), with recovery rates varying from 4-8% 

(Sammons and Maceina 2009).  More recently, restorative stockings in the 

Chattahoochee River below Morgan Falls Dam (2011-present), as well as in eastern 

Alabama tributaries (2009-2010), were conducted with broodstock from a different river 

drainage, the lower Flint River (P. O’Rouke, GADNR, personal communication; S. 

Rider, Alabama Department of Conservation and Natural Resources, personal 

communication).  Despite the varied success of these efforts, stocking to sustain and 

restore Shoal Bass populations remains a relevant management tool, highlighting the 

need to evaluate genetic structure that might exist across the species’ range. 
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Whether Shoal Bass should be managed at the species-, drainage-, or population- 

level remains to be addressed, affecting decisions regarding stocking protocols like 

broodstock source location.  Within the confines of natural metapopulation structure, it 

remains unclear whether Shoal Bass populations were historically panmictic with little 

population structure across their range or relatively sedentary, accruing appreciable local 

population genetic structure.  Recent movement studies suggest that Shoal Bass in the 

Chattahoochee River basin are relatively sedentary (Stormer and Maceina 2009; 

Sammons and Early 2015), whereas Shoal Bass in the Flint River basin have been 

described as potamodromous, moving long distances (≤ 200 km; Sammons 2015) to 

spawn in large aggregations at a few particular locations (Ingram et al. 2013; Taylor and 

Peterson 2015).  Additional evidence suggests that marked differences in population 

demographics exist among populations across their native range.  In the Chattahoochee 

River basin, Shoal Bass are long-lived (up to 14 years), slow-growing, and experience 

low annual mortality (20%; Porta and Long 2015; see Chapter 4).  Conversely, Shoal 

Bass in the Flint River basin grow rapidly and exhibit higher total annual mortality (49%; 

Ingram and Kilpatrick 2015).  In the Chipola River, Florida, Shoal Bass have shorter 

lifespans (up to 10 years) and also experience higher annual mortality (57%; Woodside et 

al. 2015).  Because these basins differ in their natural habitats and their degree of 

anthropogenic alteration, it is unclear if these observed differences in movement and 

demographics represent natural adaptions, clinal variation, or responses to recent habitat 

alteration.  A better understanding of existing population structure and genetic variation 

is imperative for guiding future management efforts to ensure existing genetic diversity 

and evolutionary potential is conserved.   
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A growing paradigm in fisheries management is conservation of genetically 

distinct populations to maintain genetic variation in a species (Hallerman 2003).  

Maintaining genetic variation requires the conservation of the genetic diversity both 

within and among populations (Meffe 1986).  Such measures safeguard against the loss 

of advantageous local adaptations and also maintain a species’ capacity to evolve in 

response a changing environment (Reisenbichler 1997).  Maintaining genetic diversity 

and adaptive fitness is an especially acute issue for threatened or imperiled species that 

may already be experiencing a loss of genetic diversity because of small population sizes, 

inbreeding depression, and genetic drift (Meffe 1986).  When gene flow between 

genetically dissimilar populations is artificially increased to ameliorate inbreeding 

depression, such as through stocking, outbreeding depression may result.  This 

phenomenon is caused by the introgression of maladapted genes or the disruption of 

coadapted genomes (Lynch 1991) and results in a loss of fitness and increased 

susceptibility to disease (Hallerman 2003; Goldberg et al. 2005).  Because stocking 

practices for Shoal Bass are still in their early stages, consideration of existing population 

structure in future stocking efforts can inform management to prevent inbreeding and 

outbreeding depression and further conservation of the species.   

With these concerns in mind, our objective was to characterize hierarchical 

population structure of Shoal Bass within their native range.  For each population 

identified, we investigated potential population structuring mechanisms by summarizing 

genetic diversity measures and examining relatedness and inbreeding levels, which also 

provided insights into conservation-genetic status.  We also quantified hierarchical 

genetic variation and differentiation of Shoal Bass among all sample sites.  Results can 
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inform range-wide management and conservation strategies for Shoal Bass by providing 

a population-genetic framework for management units, which could help inform 

management efforts (e.g., stocking and reintroduction efforts) towards conserving 

existing genetic diversity within the species.   

 

Methods 

 Study area and sampling.–– A collaborative sampling effort was undertaken by a 

group of resource managers and research scientists affiliated with GADNR, Auburn 

University, University of Georgia, Oklahoma State University, and the Florida Fish and 

Wildlife Conservation Commission’s Fish and Wildlife Research Institute (FWRI).  To 

encompass potential genetic variation within Shoal Bass, samples from a subset of rivers 

and streams that spanned the species’ extant native range were obtained.  Shoal Bass 

were targeted using a variety of methods (e.g., electrofishing and hook-and-line angling), 

and fin-clips were stored in individually labeled vials of 95% non-denatured ethanol.  

Samples were collected at individual localities that spanned approximately 100 m to 5 km 

in stream length, and geographic coordinates were taken near the center of each.  

Localities were grouped into a number of “sites” based on their geographic proximity to 

other localities and potential barriers to gene flow (e.g., dams) between localities.  Within 

each site, samples were ordered from upstream-to-downstream based on their sampling 

locality and, within a given locality, samples were also sorted by sampling year (oldest-

to-newest). 
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Molecular analyses.–– We used 16 di-nucleotide microsatellite DNA markers 

developed to amplify Micropterus (Msaf 05, 06, 08, 09, 10, 12, 13, 17, 22, 24, 25, 27, 28, 

29, 31, and 32; Seyoum et al. 2013) to discern species composition, explore population 

structure, and quantify genetic differentiation.  We isolated genomic DNA from fin-clip 

tissue samples using the Puregene DNA Purification Kit (Gentra Systems).  Six multiplex 

polymerase chain reactions (PCR) were used to amplify microsatellites, with the 

following parameters used for all loci: 94°C for 2 min, 35 denaturation cycles of 94°C for 

30 s, annealing at 58°C for 30 s, extension at 72°C for 30 s, and final extension at 72°C 

for 10 min.  Capillary electrophoresis was performed using a 3130 XL Genetic Analyzer 

on PCR products containing 13 µL of formamide (denaturation for 4 min at 95°C) and 

Genescan ROX 500 size standard (Applied Biosystems).  Determination of allele length 

variants was performed in GeneMapper v. 4 (Applied Biosystems).  Some putative Shoal 

Bass genotypes contained ≥ 1 locus that was not scored (~24 %), but all were retained for 

analysis because removing genotypes could reduce ability to discern population signals. 

Reference samples.––  Reference genotypes for congener taxa existed, but 

reference genotypes for Shoal Bass had to be determined from our sample dataset using a 

genetic clustering analysis.  Reference genotypes for the following six congener taxa 

relevant to the ACF Basin were obtained from established sources and provided by the 

FWRI:  Largemouth Bass x Florida Bass M. floridanus intergrades, Alabama Bass M. 

henshalli, Spotted Bass, Choctaw Bass M. sp. cf. punctulatus, Smallmouth Bass M. 

dolomieu, and Bartram’s Bass M. sp. cf. cataractae (Taylor and Peterson 2014; Freeman 

et al. 2015; Tringali et al. 2015a).  By including all reference congener genotypes and all 

putative Shoal Bass genotypes in this preliminary clustering analysis, we determined how 
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reference congener taxa and genetic clusters aligned and which Shoal Bass genotypes 

would provide suitable references for range-wide comparisons.  Briefly, we used 

Program STRUCTURE (Pritchard et al. 2000) and the approaches detailed in the following 

sections to identify the optimal number of genetic clusters (K) within this combined 

dataset.  We performed five independent Program STRUCTURE runs that did not 

incorporate any a priori grouping information for each K ranging 1-15.  We then 

estimated the optimal K value using the maximum value obtained from a suite of four 

supervised estimators (MedMeaK, MaxMeaK, MedMedK, and MaxMedK) that disregard 

‘spurious clusters’ that fail to obtain a mean or median membership coefficient threshold 

of ≥ 0.50 within at least one given site or population (Puechmaille 2016).  From the 

optimal K clustering assignment, we selected a number of Shoal Bass reference 

genotypes representative of the entire sampled range that had individual genomic 

proportion (q-value) assignments of q ≥ 0.98 to Shoal Bass-affiliated clusters.  Studies 

that employed similar markers and methodologies to assess hybridization reported 

thresholds for pure Shoal bass at q ≥ 0.980 in the Chipola River (Tringali et al. 2015c) 

and q > 0.982 in the lower Flint River (Alvarez et al. 2015).   

Taxonomic screening.–– The reference genotypes for Shoal Bass and six 

congener taxa were used to perform a formal taxonomic assignment to identify ‘pure’ 

Shoal Bass genotypes, wherein each putative Shoal Bass genotype was proportionally 

assigned (i.e., q-values) to each taxa based on the allelic frequencies of reference 

genotypes.  To complete the taxonomic assignment, we employed a Bayesian clustering 

approach in Program STRUCTURE v. 2.3.4 (Pritchard et al. 2000) and accessory programs.  

Program STRUCTURE proportionally assigns individual genotypes to a given number of 
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genetic clusters (K) based on linkage equilibrium and conformance to Hardy-Weinberg 

equilibrium (Pritchard et al. 2000). 

In Program STRUCTURE, we assumed the admixture ancestry model and 

independent allele frequencies, and we used a burn-in of 20,000 and 200,000 Markov 

chain Monte Carlo (MCMC) repetitions for each run.  The ‘PopFlag’ option was 

employed so that genomic proportions for putative Shoal Bass genotypes were estimated 

using the allele frequencies from the reference genotypes of each taxon.  We ran 20 

independent runs at the optimal K value identified in the previous analysis used to 

identify Shoal Bass reference samples.  We input those 20 runs into Program STRUCTURE 

HARVESTER web v. 0.6.94 (Earl and vonHoldt 2012) to obtain input files for Program 

CLUMPP v. 1.1.2, which provided optimal alignment of independent STRUCTURE runs 

with cluster matching and permutation (Jakobsson and Rosenberg 2007).  Final q-value 

assignment in Program CLUMPP was obtained using the G’ pairwise matrix similarity 

statistic and the ‘LargeKGreedy’ algorithm for 1,000 randomly sequenced runs.  Program 

CLUMPP was used to obtain optimal alignment of independent runs with the settings used 

previously.  To determine the threshold for ‘pure’ Shoal Bass individuals, we arcsine 

transformed (for normality) the q-values for assignment of reference Shoal Bass 

genotypes to the Shoal Bass cluster, calculated 95% confidence intervals for the 

transformed probabilities, and used the resulting back-transformed lower tail as a 

classification threshold for ‘pure’ Shoal Bass within our taxonomic assignment (Littrell et 

al. 2007). 

 Population structure.–– After choosing reference genotypes and screening all 

samples to identify ‘pure’ Shoal Bass, we assessed hierarchical genetic structure using a 
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similar Bayesian clustering approach implemented in Program STRUCTURE (Pritchard et 

al. 2000).  For all STRUCTURE runs, we assumed the admixture ancestry model and 

correlated allele frequencies, and we used a burn-in of 20,000 and 200,000 MCMC 

repetitions for each run.  We estimated K within each hierarchical level of genetic 

structure using the maximum value of four supervised estimators (MedMeaK, MaxMeaK, 

MedMedK, and MaxMedK) that disregard ‘spurious clusters’ that fail to obtain a mean or 

median membership coefficient threshold of ≥ 0.50 for at least one site (Puechmaille 

2016).  

We proceeded in a hierarchical fashion, first estimating the optimal K value at the 

uppermost hierarchical level across all sites.  At this level, uneven sampling across sites 

could reduce power to detect structure at sites with smaller sample sizes and emphasize 

differences within sites that have larger sample sizes (Puechmaille 2016), potentially 

underestimating K.  To reduce the effect of uneven sampling, we used supervised 

estimators that accurately identified hierarchical structure in unevenly sampled datasets 

(Puechmaille 2016).  Additionally, we analyzed a dataset of approximately equal 

numbers of individuals that contained a maximum of 20 randomly selected genotypes per 

site.  For each dataset, we ran 10 independent runs of K = 1-15 without any a priori 

sample site information.  The dataset producing the largest K value was then adopted to 

explore the secondary level of hierarchical genetic structure among sites that had a mean 

membership coefficient ≥ 0.50 to a given cluster.  Other sites were considered mixtures 

of the clusters identified at the uppermost level and were not explored further.  To 

explore the secondary level of hierarchical genetic structure, we conducted 10 

independent runs of K = 1-5 for each combination of sites dominated by a given genetic 



62 
 

cluster.  If no structure was detected, we also performed the analysis using sample site as 

prior information (‘LocPrior’ option), which allows STRUCTURE models to more easily 

detect existing structure among sites despite weak population signals that may not be 

detected using standard models (Pritchard et al. 2000).  Final q-value assignments were 

obtained in Program CLUMPP using settings detailed previously.  For each hierarchical 

level’s optimal K, we recorded the mean and SD of the log probability L(K), which is a 

measure of model fit.   

Structuring mechanisms.– Because STRUCTURE models assume linkage 

equilibrium and Hardy-Weinberg equilibrium within populations (Pritchard et al. 2000), 

differences in homozygosity, allelic diversity, private alleles, and mating patterns (i.e., 

relatedness and inbreeding levels) can provide insights into structuring mechanisms.  In 

each population or subpopulation identified, we reported the number of private alleles 

and the mean number of alleles (A), effective number of alleles (Ae), expected 

heterozygosity (He), and observed heterozygosity (Ho) as calculated in Program 

GENALEX v. 6.502 (Peakall and Smouse 2006).  We also calculated the mean pairwise 

relatedness (r) and mean inbreeding coefficient (F) within each population and 

subpopulation.  These metrics were calculated in Program COANCESTRY (Wang 2011) 

using 1,000 bootstraps and 100 control samples to estimate r with the TrioML estimator 

(Wang 2007) and F with the Ritland estimator (Ritland 1996).  We also tested for 

differences in mean r and F between subpopulations contained within a higher-level 

population using 1,000 bootstraps to generate 95% C.I.’s used to determine significance 

at P ≤ 0.05 (Wang 2011).  We visualized proportional structure of relatedness in all 

identified populations using the following general kinship categories:  0.0% = unrelated; 
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0.1-6.2% = second (or greater) cousins; 6.3-12.5% = first cousins or half-niece/nephew; 

12.6-25.0% = grandchild or niece/nephew; 25.1-50.0% = approaching child or sibling; 

and 50.1-100.0% = inbred. 

Genetic differentiation.–– We performed an analysis of molecular variance 

(AMOVA; Excoffier et al. 1992) in Program ARLEQUIN v. 3.5.1.3 (Excoffier and Lischer 

2010) to estimate the amount of genetic variation present at the following hierarchical 

levels:  within sites, among sites within major river drainages, and among major river 

drainages.  We used the locus-by-locus AMOVA methodology to produce a global 

AMOVA from a weighted average over all loci.  We also computed pairwise fixation 

index values (FST; Wright 1951; Weir and Cockerham 1984), which provide a commonly 

used measure of genetic differentiation between sites.  Negative FST values were 

interpreted as no differentiation (FST = 0).  Tests of significance for the global AMOVA 

and pairwise FST values were calculated based on 10,000 permutations at P ≤ 0.05.   

 

Results 

 From 2005 to 2015, our collaborative efforts produced 829 putative Shoal Bass 

genotypes from 13 sites that spanned the extant range of the species (Table 1; Fig. 1).  

Two sites contained ≥ 150 individuals: the lower Flint River below Lake Blackshear (site 

9) and the Chipola River (site 13).  All other sites were represented by 17-77 individuals 

each.  

Reference samples.–– The six congener taxa included in our analyses were 

represented by approximately 40-60 reference genotypes each, although Bartram’s Bass 
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was represented by only 15 samples (Table 2).  Among the six congener reference taxa 

and all putative Shoal Bass genotypes, the optimal number of clusters was K = 10, 

wherein the six congener taxa were each represented by distinct genetic clusters and 

putative Shoal Bass genotypes contained four additional, unique genetic clusters.  The 

four Shoal Bass-affiliated clusters identified were likely an artifact of the large sample 

size of putative Shoal Bass genotypes rather than taxon-level differences (Puechmaille 

2016); thus, we grouped the four Shoal Bass clusters into one, from which the q ≥ 0.98 

selection criteria was applied to attain 60 reference Shoal Bass genotypes (mean q = 

0.992; range: 0.980-0.994). 

Taxonomic screening.–– The formal taxonomic assignment using the six congener 

reference taxa plus the Shoal Bass references was conducted at K = 7 (we considered the 

four Shoal Bass-affiliated clusters to represent one taxa, plus six other distinct clusters 

that aligned with congener taxa).  The resulting classification threshold for pure Shoal 

Bass was at q ≥ 0.988.  At this threshold, 644 pure Shoal Bass genotypes were used to 

explore hierarchical population structure and genetic variation, with individual sites 

containing a range of 13-183 fish (Fig. 2). 

Population structure.–– At the uppermost hierarchical level, the complete dataset 

of pure Shoal Bass genotypes (N = 644) was estimated to contain K = 5 clusters, whereas 

the subsampled dataset of evenly-represented genotypes was estimated to contain K = 4 

clusters.  The complete dataset at K = 5 provided an assignment with clusters 

representing the Chattahoochee and Chestatee rivers above Lake Lanier (sites 1 and 2); 

Little Uchee Creek (site 5); the upper Flint River and Big Lazer Creek (sites 6-8); the 

lower Flint River (sites 9 and 10); and the Chipola River (site 13; Fig. 3a).  Sites 3, 4, 11, 
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and 12 were areas of mixture with no clear assignment to any cluster (mean membership 

coefficients < 0.50).  The subsampled dataset at K = 4 revealed a distinct cluster in Little 

Uchee Creek (site 5), another among upper Flint River sites and Big Lazer Creek (sites 6-

8), and all other sites were a mixture of two other clusters.  Because the complete dataset 

produced the largest K value, it was adopted to explore the secondary level of 

hierarchical genetic structure. 

At the secondary hierarchical level, substructure was evident in three groups (Fig. 

3b).  Substructure was detected (K = 2) within the Chipola River (site 13) without prior 

information; however, the substructure recovered did not correspond with spatial position 

within the river, but rather sampling year (2007-09 vs. 2010).  Additional substructure (K 

= 2) was also recovered between the upper Chattahoochee River (site 1) and Chestatee 

River (site 2), as well as between Big Lazer Creek (site 7) and mainstem upper Flint 

River sites (sites 6 and 8), although only when site information was used as prior 

information during model runs.  No additional structure (K = 1) was recovered in Little 

Uchee Creek (site 5) or in the lower Flint River sites (sites 9 and 10), regardless of 

whether site information was used as prior information.  We did not investigate genetic 

structure beyond the second hierarchical level, as population signals were much weaker 

at the secondary level and, in many instances, subpopulation boundaries corresponded 

with sampling sites (i.e., smallest spatial grain).  Mean estimates of L(K) indicated best fit 

at the uppermost hierarchical level (K = 5) and less fit in groupings among the secondary 

hierarchical level (Table 3).   

Structuring mechanisms.– No large deviations from Hardy-Weinberg equilibrium 

occurred, as cluster-specific Ho did not deviate ≥ |0.031| from He  (Table 4).  At the 
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uppermost hierarchical level, allelic diversity was relatively low in the Little Uchee 

Creek (Ae = 1.378) and Chipola River (Ae = 1.958) clusters.  At the secondary level, the 

Chestatee River cluster also had relatively low allelic diversity (Ae = 1.995).  

Heterozygosity was markedly low (Ho = 0.199) in the Little Uchee Creek cluster.  In 

contrast, the upper Flint River cluster had some of the highest measures of allelic 

diversity (Ae = 2.396) and heterozygosity (Ho = 0.370).  The Chipola River population 

had the highest number of private alleles, with 4 in the 2007-09 sample years and an 

additional 4 in the 2010 sample.  Mean pairwise relatedness was highest in Little Uchee 

Creek (r  = 0.162), followed by the 2010 sub-grouping in the Chipola River (r  = 0.138), 

which also had the highest mean inbreeding coefficient (F = 0.131; Table 5).  Tests for 

significant differences in mean r and F between subpopulations nested within an upper-

level population revealed one significant difference – pairwise relatedness between the 

upper Chattahoochee River and the Chestatee River (r = 0.082 vs. 0.107, respectively).  

Proportional structure of pairwise relatedness was generally similar across all sites, with a 

few notable exceptions:  Little Uchee Creek had a relatively high percentage of pairwise 

relationships indicative of inbreeding (18%, compared to approximately 1% elsewhere), 

Big Lazer Creek had a relatively high percentage of pairwise relationships approximating 

first cousins (23%, compared to 10-15% elsewhere), and the 2010 grouping in the 

Chipola River had a relatively low percentage of pairwise relationships that were 

unrelated (31%, compared to approximately 50% elsewhere; Fig. 4). 

Genetic differentiation.–– The global AMOVA indicated that a significant 

majority (87.4%; P < 0.0001) of genetic variation was located within sites (Table 6).  

Significant variation was also attributable to differences among sites within river 
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drainages (8.9%; P < 0.0001), and a small, but significant, remainder of variation was 

attributable to differences among river drainages (3.6%; P = 0.021).  Pairwise FST values 

indicated that the following sites were significantly (P ≤ 0.05) differentiated from all 

other sites:  upper Chattahoochee River (site 1), Chestatee River (2), Big Creek (3), Little 

Uchee Creek (5), Big Lazer Creek (7), and Chipola River (13; Table 7).  The Little Uchee 

Creek (5) population consistently had the highest pairwise FST  values, ranging from 0.20 

to 0.36.  The Chipola River (13) population also had high pairwise FST  values, ranging 

from 0.07 to 0.19. 

 

Discussion 

 Recent efforts to manage and conserve black basses have increasingly focused on 

understanding genetic diversity within species (Shaw 2015).  Our results demonstrate that 

considerable, and previously undocumented, genetic structure and diversity exists within 

the Shoal Bass across its native range.  These results not only provide insight into the 

ecology of the species and the conservation-genetic status of populations, but also 

identify population boundaries that can be used to inform future management and 

restoration efforts for Shoal Bass.   

 The population structure uncovered at the uppermost hierarchical level provides 

insight into broad-scale Shoal Bass metapopulation structure, although results are likely 

influenced by natural landscape features and recent anthropogenic alterations.  Population 

structure at this level generally coincided with at physical barriers to movement (e.g., 

waterfalls or dams) or areas of suboptimal habitat (e.g., impoundments or riverine areas 
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devoid of shoals) that have restricted dispersal to a degree in which population 

boundaries are maintained.  For example, the population above Lake Lanier within the 

upper Chattahoochee and Chestatee rivers appears to be isolated from downstream 

populations by Lake Lanier (see also Dakin et al. 2015).  The Little Uchee Creek 

population is likely isolated by at least one 4-m tall waterfall (Stormer and Maceina 

2009) and presumably suboptimal, slow-moving habitats that occur in Little Uchee Creek 

as it flows south of the Fall Line and meets the mainstem Chattahoochee River.  

Similarly, the Fall Line, a high-gradient transition zone between the Piedmont and 

Southeastern Plains ecoregions, appears to serve as a natural structuring mechanism 

between the upper and lower Flint River populations, although Lake Blackshear and 

stocking activities downstream could have confounded the observed differences in 

genetic structure.  The Chipola River population appears to be isolated from other 

populations by Dead Lake, a swampy natural lake situated between shoal habitats in the 

Chipola River and the larger Apalachicola River (Tanner 1966).  Despite the appreciable 

population structure, individual proportional assignments suggest there has been some 

degree of genetic connectivity among most mainstem populations, which attests to the 

dispersal capability of the species (see Sammons 2015).  However, our results may not 

accurately reflect present-day connectivity because of time lags associated with genetic 

approaches (Epps and Keyghobadi 2015); thus, populations with recently-imposed 

barriers to connectivity may become increasingly differentiated in the future.   

At the secondary level of population structure, finer-scale structuring mechanisms 

were evident that also provided insight into the conservation status of these populations.  

For example, the Little Uchee Creek population had relatively high measures of genetic 
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differentiation, low measures of genetic diversity, and a high proportion of inbred 

individuals.  Lack of genetic connectivity, along with the effects of genetic drift in a 

small population, could explain these results.  In fact, since our sampling of Little Uchee 

Creek in 2007, the Shoal Bass population now appears to be functionally eliminated 

(Sammons and Maceina 2009).  In the naturally-isolated Chipola River population, we 

discovered temporal population structure that was likely caused by familial influences 

linked to recruitment variation.  The 2010 Chipola River sample displayed increased 

relatedness measures and approximately double the amount of inbreeding from previous 

years’ samples.  Poor recruitment and year-class failures have been documented in the 

Chipola River population in association with increased spring and summer discharge 

(Woodside et al. 2015).  The 2010 sample was dominated by the 2008 year-class, one of 

the first year-classes following a prolonged span of unfavorable discharge conditions 

from 2000-2006 (Woodside et al. 2015).  Overall, these results suggest that increased 

inbreeding may result from extreme recruitment variability in isolated Shoal Bass 

populations (e.g., Big Creek; see Chapter 4), although further investigation of this 

hypothesis is warranted. 

 Our study has obvious implications for the scale at which management could 

affect conservation genetics within and among Shoal Bass populations.  Population-

genetic diversity serves as a “diversified portfolio” to maintain overall stability and 

adaptability of a species (Hallerman 2003; Schindler et al. 2010), which is particularly 

pertinent for species of conservation concern like Shoal Bass (Meffe 1986).  The large 

amount of within-site genetic variation obtained in our study mirrors that observed in 

similar species, such as riverine and lacustrine populations of Smallmouth Bass (Borden 
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and Stepien 2006; Hallerman et al. 2015), but management at such a fine spatial scale is 

typically impractical.  Conversely, conducting supplemental stocking and other 

management activities at a scale that only considers three main river drainages 

(Chattahoochee, Flint, and Apalachicola) would potentially only maintain 3.6% of 

existing variation.  We identified five distinct genetic populations of Shoal Bass at the 

uppermost hierarchical level, and some appreciable substructure below that level, which 

could be used to define relevant management units (Barthel et al. 2010; Hallerman et al. 

2015), both among populations (i.e., upper-level hierarchical structure) and within 

populations (i.e., secondary-level structure). Similarly, measures of genetic 

differentiation identified populations harboring unique diversity.  For example, the 

Chipola River population had high levels of genetic differentiation when compared to 

other populations in the Chattahoochee and Flint Rivers, highlighting the relative 

distinctiveness of that population.  A more thorough sampling of genotypes across the 

native range of the species, especially in isolated tributaries, could identify additional 

population boundaries relevant to management.  

 Because stocking efforts are ongoing and likely to continue to supplement and 

restore Shoal Bass populations, our results could be useful in refining those strategies.  

Some Shoal Bass populations are fragmented and vulnerable to the effects of low genetic 

diversity and inbreeding depression (e.g., Big Creek; Dakin et al. 2015).  Other 

populations have seemingly suffered functional extirpations, including the Little Uchee 

Creek population in the years following our genetic sampling (Stormer and Maceina 

2008; Sammons and Maceina 2009).  Introgressive hybridization with non-native 

congener species like Spotted Bass, Smallmouth Bass, and Alabama Bass appears to be a 
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widespread threat to the genetic integrity of the Shoal Bass throughout its native range 

(Alvarez et al. 2015; Dakin et al. 2015; Tringali et al. 2015c).  Stocking efforts could 

serve to supplement dwindling populations, restore extirpated areas of the species’ range, 

and swamp gene pools with native alleles to combat introgression of non-native alleles.  

For example, supplemental stocking to restore native Guadalupe Bass M. treculii in 

Texas streams reduced introgression with non-native Smallmouth Bass without severely 

depressing existing genetic diversity (Bean et al. 2013; Fleming et al. 2015; but see 

Littrell et al. 2007).  Similar efforts to restore or supplement Shoal Bass populations may 

be warranted and hold promise as management and conservation tool, but the source of 

broodstock would be important given the results of this study.   

Despite the potential utility of stocking, stocking-related activities that disregard 

existing population boundaries could result in loss of genetic diversity and 

distinctiveness.  For example, non-significant pairwise FST values typically occurred 

between sites situated in close geographic proximity; however, comparisons between the 

Chattahoochee River below Morgan Falls Dam (site 4) and some upper Flint River (sites 

6 and 8) and lower Flint River sites (9-12) represented disparate regions of the range with 

no significant genetic differentiation – a result that may be related to past stocking 

activities.  In 2005, stocking below Morgan Falls Dam used broodstock from within the 

river basin, and these fish had q-value assignments similar to other upper Chattahoochee 

River sites.  However, the majority of fish in the 2015 sample had q-value assignments 

resembling lower Flint River fish, which had recently been used as a broodstock source 

below Morgan Falls Dam.  Using broodstock from a different population to supplement a 

target population can result in a loss of genetic diversity and local adaptations (Rhymer 



72 
 

and Simberloff 1996).  Furthermore, the effects of artificially mixing genetically distinct 

populations can lead to outbreeding depression and loss of fitness (Hallerman 2003).  For 

example, Largemouth Bass crossed from two distinct populations exhibited increased 

susceptibility to disease than either non-outcrossed native population (Goldberg et al. 

2005).  Planning broodstock collections, translocations, and stocking efforts within 

genetic management units could better safeguard the existing genetic diversity within and 

among populations while also avoiding potential outbreeding depression.  

At present, management agencies and stakeholders are devising a range-wide 

management plan for Shoal Bass, complete with benchmark goals for conservation.  

Results of this study could be incorporated into that plan similar to what was done for 

Florida Bass (Barthel et al. 2010; Porak et al. 2015) and Neosho Smallmouth Bass M. 

dolomieu velox (Taylor et al. 2016).  General guidelines, such as identifying potential 

broodstock sources, screening brood fish for non-native alleles, hatchery propagation, 

and similar stocking-related protocols that have the potential to affect populations across 

jurisdictional boundaries could all be considered, as well as potential trade-offs 

associated with inbreeding depression and outbreeding depression.  Expanded sampling 

and population-genetic research would provide more detailed delineations relevant to 

future management efforts, and could also allow for landscape-genetic approaches to 

quantify the effects of anthropogenic barriers on gene flow.  Until such research is 

completed, the results presented herein provide novel insights into the population 

structure of the Shoal Bass that could help serve as a blueprint for management within a 

population-genetic framework.   
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Table 1.  Sample collection data for analysis of Shoal Bass genetic structure across their native range, including site number (see Fig. 
1), location description, major river drainage (“CHA” = Chattahoochee River, “FLI” = Flint River, “APA” = Apalachicola River), 
collection years, number (N) of putative Shoal Bass Micropterus cataractae collected, and number (N) of genetically ‘pure’ Shoal 
Bass following taxonomic screening. 
 

Site location drainage collection years putative N pure N 

1 Upper Chattahoochee River CHA 2005, 2013 69 59 
2 Chestatee River CHA 2013 42 32 
3 Big Creek CHA 2005, 2015 77 23 
4 Chattahoochee River below Morgan Falls Dam CHA 2005, 2015 42 19 
5 Little Uchee Creek CHA 2008 22 22 
6 Upper Flint River above Fall Line FLI 2009, 2011 32 24 
7 Big Lazer Creek FLI 2013 18 16 
8 Upper Flint River below Fall Line FLI 2011 17 13 
9 Lower Flint River below Lake Blackshear FLI 2009 - 2011 159 137 

10 Lower Flint River below Lake Worth FLI 2009 - 2011 28 24 
11 Lower Flint River FLI 2009, 2011 50 35 
12 Ichawaynochaway Creek FLI 2010 - 2011 64 57 
13 Chipola River APA 2007 - 2010 209 183 

    Totals: 2005 - 2015 829 644 
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Table 2.  Common name, scientific name, and number of individuals included as 
reference genotypes for the taxonomic screening of microsatellite DNA genotypes for 
analysis of Shoal Bass genetic structure across their native range. 
 

Common name scientific name N 

Largemouth Bass x 
Florida Bass intergrades 

Micropterus salmoides x                    
M. floridanus 
 

62 

Alabama Bass M. henshalli 63 
Spotted Bass M. punctulatus 69 
Choctaw Bass* M. haiaka 56 
Smallmouth Bass M. dolomieu 41 
Bartram's Bass** M. sp. cf. cataractae 15 
Shoal Bass M. cataractae 60 

  
 

Total:  366 
*Choctaw Bass has been recommended for species recognition (Tringali et al. 2015a) 
**Bartram’s Bass has been recommended for species recognition (Freeman et al. 2015) 
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Table 3.  Bayesian clustering model specifications and fit statistics used to investigate 
hierarchical Shoal Bass genetic structure across their native range, including hierarchical 
level of genetic structure (level), genetic cluster (site numbers from Table 1), estimated 
number of clusters (K), whether or not site locations were used as model priors 
(LocPrior), mean estimated log probability of the data (L(K)), and standard deviation of 
each mean estimate (SD).   
 

Level 
genetic cluster 
(site numbers) K runs LocPrior 

mean 
estimated 

L(K) SD 

1 All 5 10 No -13617.26 911.89 
2 1 and 2 2 10 Yes -1853.21 4.05 
2 5 1 10 No -211.03 0.29 
2 6, 7, and 8 2 10 Yes -1286.00 26.89 
2 9 and 10 1 10 No -3237.38 0.24 
2 13 (by year) 2 10 No -3238.13 39.65 
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Table 4.  Measures of genetic diversity within Shoal Bass populations identified based on 
analysis of 16 microsatellite DNA loci.  Levels indicate the hierarchy of genetic 
population structure, wherein level 1 is the uppermost hierarchical level and level 2 is 
secondary structure nested within level 1.  Site numbers corresponding to locations in the 
study map (Fig. 1) are given in parentheses after site names.  Measures of genetic 
diversity include the mean across all loci for expected heterozygosity (He), observed 
heterozygosity (Ho), number of alleles (A), and effective number of alleles (Ae).  We also 
reported the number of private alleles (Aprivate) and sample size of genotypes (N).   
 

[Level] cluster name (site number) He Ho A Ae Aprivate N 
[1] Above Lake Lanier (1 and 2) 0.324 0.320 3.625 2.223 3 91 
     [2] Upper Chattahoochee River (1) 0.316 0.319 3.500 2.206 2 59 
     [2] Chestatee River (2) 0.324 0.324 2.875 1.995 1 32 
[1] Little Uchee Creek (5) 0.189 0.199 1.625 1.378 1 22 
[1] Upper Flint (6, 7, and 8) 0.364 0.334 4.313 2.419 3 53 
     [2] Upper Flint Mainstem (6 and 8) 0.370 0.345 3.938 2.396 2 37 
     [2] Big Lazer Creek (7) 0.332 0.309 3.063 2.165 1 16 
[1] Lower Flint (9 and 10) 0.309 0.313 4.375 2.308 3 161 
[1] Chipola River (13) 0.327 0.310 3.313 1.958 8 183 
     [2] Chipola River, years 2007-09 0.322 0.309 2.875 1.844 4 123 
     [2] Chipola River, year 2010 0.326 0.319 2.813 1.861 4 41 
     [2] Chipola River, year unknown 0.311 0.292 2.188 1.804 0 19 
[1] Mixed (3, 4, 11, and 12) 0.324 0.323 4.500 2.345 1 134 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



83 
 

Table 5.  Mean pairwise relatedness (r) and mean inbreeding coefficient (F) measures 
within Shoal Bass populations identified based on analysis of 16 microsatellite DNA loci.  
Levels indicate the hierarchy of genetic population structure, wherein level 1 is the 
uppermost hierarchical level and level 2 is secondary structure nested within level 1.  Site 
numbers corresponding to locations in the study map (Fig. 1) are given in parentheses 
after site names. Sample sizes (N) differed because r is calculated with pairwise 
groupings of individuals, whereas F is calculated using the number of individuals.  We 
also tested for significant differences (P ≤ 0.05) in mean r and F between subpopulations 
[Level 2] contained within a higher-level population [Level 1].  Significant comparisons 
are in bold.  
 
  r F 
[Level] cluster name (site number) est. SD N est. SD N 
[1] Above Lake Lanier (1 and 2) 0.078 0.129 4095 0.000 0.141 91 
     [2] Upper Chattahoochee River (1) 0.082 0.127 1711 -0.007 0.151 59 
     [2] Chestatee River (2) 0.107 0.163 496 0.013 0.118 32 
[1] Little Uchee Creek (5) 0.162 0.220 231 -0.068 0.266 22 
[1] Upper Flint (6, 7, and 8) 0.060 0.103 1378 0.030 0.109 53 
     [2] Upper Flint Mainstem (6 and 8) 0.071 0.111 666 0.027 0.113 37 
     [2] Big Lazer Creek (7) 0.087 0.120 120 0.038 0.100 16 
[1] Lower Flint (9 and 10) 0.078 0.130 12880 -0.010 0.101 161 
[1] Chipola River (13) 0.115 0.164 13366 0.078 0.459 164 
     [2] Chipola River, years 2007-09 0.137 0.179 7503 0.061 0.361 123 
     [2] Chipola River, year 2010 0.138 0.170 820 0.131 0.668 41 
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Table 6.  Hierarchical analysis of molecular variation (AMOVA) for Shoal Bass 
genotyped with 16 microsatellite DNA loci.  Thirteen sample sites spanned the native 
range of the species and were grouped into three major river drainages – the 
Chattahoochee, Flint, and Apalachicola drainages (Table 1).  The variation (%) describes 
the amount of genetic variation contained within each hierarchical level, and P-values ≤ 
0.05 were considered significant.   
 

Source of variation 
sums of 
squares 

variation 
(%) P-value 

Among major river drainages 191.53 3.6 0.02 
Among sites within major river drainages 200.56 8.9 < 0.01 
Within sites 3177.47 87.4 < 0.01 
Total 3569.56 100.0   
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Table 7.  Shoal Bass were sampled at 13 sites (see Table 1 for site names) that spanned the species’ native range, and samples were 
genotyped with 16 microsatellite DNA loci.  Pairwise fixation index (FST; Wright 1951) values as calculated by Weir and Cockerham 
(1984) are reported below, which quantify genetic differentiation between Shoal Bass sampled at each site.  Values in bold were 
considered significant at P ≤ 0.05.  Negative values are artifacts of calculation methods and were interpreted as FST = 0. 

 
 Site  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 - 
            2 0.03384 - 

           3 0.02320 0.06987 - 
          4 0.02192 0.01638 0.03870 - 

         5 0.30018 0.31559 0.35637 0.29983 - 
        6 0.03198 0.05069 0.03631 0.01246 0.30621 - 

       7 0.04290 0.03967 0.06998 0.02994 0.28072 0.04112 - 
      8 0.03024 0.02511 0.04092 -0.00627 0.28492 0.00278 0.02918 - 

     9 0.04094 0.05044 0.03205 0.00798 0.26841 0.02312 0.05114 0.00447 - 
    10 0.03925 0.06033 0.02136 0.01147 0.31081 0.02619 0.06781 0.01653 0.00359 - 

   11 0.05256 0.06244 0.06678 0.01213 0.27974 0.01536 0.04756 0.01207 0.01778 0.01960 - 
  12 0.03618 0.04757 0.04677 0.00143 0.28500 0.01513 0.04821 0.00488 0.01072 0.00814 0.00672 - 

 13 0.12232 0.12416 0.13356 0.10779 0.19874 0.12395 0.07330 0.08866 0.13851 0.14254 0.12035 0.13370 - 
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Figure 1.  Collection localities for Shoal Bass Micropterus cataractae genetic samples 
genotyped with 16 microsatellite DNA loci.  Samples were used to characterize genetic 
population structure across the species’ native range of the Apalachicola-Chattahoochee-
Flint Basin.  Site numbers correspond to locality data in Table 1.
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Figure 2.  Taxonomic assignment of 829 putative Shoal Bass collected from 13 sites (see Table 1) and genotyped with 16 
microsatellite DNA loci.  Assignments were made using the allele frequencies of reference genotypes for seven Micropterus taxa 
(“LMB” = Largemouth Bass x Florida Bass intergrades; “ALB” = Alabama Bass; “SPB” = Spotted Bass; “CTB” = Choctaw Bass; 
“SMB” = Smallmouth Bass; “BAR” = Bartram’s Bass; “SHB” = Shoal Bass).  Colors represent distinct genetic clusters, and each 
individual’s proportional assignment to those clusters is represented within a single vertical bar.   
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Figure 3.  Hierarchical population structure within 644 pure Shoal Bass collected from 13 sites across the species’ range (see Table 1) 
and genotyped with 16 microsatellite DNA loci.  The uppermost level of hierarchical structure contained five genetic clusters (a).  
Structure at the secondary level was also apparent in some populations (b).  Sites at the uppermost level that did not have a mean 
membership coefficient ≥ 0.50 to a given cluster (*) were considered mixtures of multiple clusters and not investigated for lower-level 
structure.  Colors represent distinct genetic clusters, and each individual’s proportional assignment to those clusters is represented 
within a single vertical bar.
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Figure 4.  Proportional structure of pairwise relatedness (r) in identified genetic clusters 
(site #’s in parentheses correspond to Table 1) of Shoal Bass across their native range at 
(a) the uppermost hierarchical level of genetic structure and (b) the secondary level of 
genetic structure.  General kinship categories that correspond to the following ranges in r 
values:  50.1-100.0% = inbred; 25.1-50.0% = approaching child or sibling; 12.6-25.0% = 
grandchild or niece/nephew; 6.3-12.5% = first cousins or half-niece/nephew; 0.1-6.2% = 
second (or greater) cousins; and 0.0% = unrelated.
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CHAPTER III 
 

 

CONSERVATION-GENETIC INFLUENCES OF IMPOUNDMENTS ON NATIVE 

FLUVIAL BLACK BASSES INHABITING UPSTREAM TRIBUTARIES 

 

Abstract 

 The widespread construction of impoundments within fluvial systems has resulted 

in alteration and loss of fluvial habitats, posing a significant conservation threat to native 

fluvial fishes.  In contrast, non-native black bass (genus Micropterus) species are often 

introduced into impoundments to increase sportfishing opportunities.  Impoundments and 

non-native black bass fisheries may pose conservation threats to native, fluvial black bass 

species inhabiting upstream tributaries.  We tested conservation-genetic hypotheses 

regarding the role of impoundments in facilitating non-native invasion and introgression, 

as well as fragmenting native populations, in two impounded systems of the southeastern 

U.S.  Each impounded system – Lake Sidney Lanier, Georgia, and Tenkiller Ferry Lake, 

Oklahoma –featured a native, fluvial black bass and an introduced non-native congener.  

Results from both case studies revealed that non-native invasion and introgression into 

upstream native populations generally increased with proximity to impoundment, likely 

because impoundments produce non-native propagule pressure.  Whether impoundments
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fragmented native populations was somewhat unclear, and time lags in the responses of 

the genetic measures could have influenced our ability to detect the effects of 

fragmentation if it was occurring.  Overall, this study provides insights into the dynamics 

of non-native invasion and introgression, as well as the status of native populations in 

each tributary.  These results can help inform management practices that best conserve 

existing genetic diversity within and among native populations in impounded systems. 

 

Introduction 

 Freshwater fishes are experiencing unprecedented imperilment across North 

America.  Approximately 39% of described species are considered imperiled or extinct, 

and extinction rates are approximately 877 times greater than natural background rates 

(Jelks et al. 2008; Burkhead 2012).  Anthropogenic activities have acutely altered fluvial 

habitats, resulting in the widespread imperilment of fish species inhabiting North 

America’s rivers and streams (Allan and Flecker 1993).  Among the most pertinent 

threats to fluvial fishes are widespread alteration and loss of habitat, fragmentation of 

populations, and negative interactions with non-native species (Allan and Flecker 1993; 

Jelks et al. 2008).  Addressing how fluvial species respond to these threats can help 

inform natural resource management and conservation of biodiversity.   

The construction of dams and impoundments is one of the most profound 

alterations to fluvial habitats, not only causing localized loss of fluvial habitats, but also 

affecting fishes in downstream and upstream reaches.  About half of the world’s large 

river systems are affected by damming (Nilsson 2005), and the downstream effects of 
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dams are well documented.  Dams interrupt downstream movement of nutrients and 

sediment, alter natural temperature and flow regimes, and create physical barriers to fish 

movement (Ward and Stanford 1995; Porto et al. 1999; Poff et al. 2007).  In response to 

these alterations, fluvial fish assemblages downstream of dams often suffer loss of 

sensitive species and become dominated by tolerant species (Poff and Zimmerman 2010).  

Impoundments in lower reaches of fluvial systems can also affect fishes inhabiting 

upstream tributaries (Pringle 1997).  For species that do not typically inhabit lentic 

habitats, impoundments can restrict gene flow among populations inhabiting 

impoundment tributaries, resulting in increased risk of inbreeding and local extinction 

(Hudman and Gido 2013; Fluker et al. 2014).  Impoundments can also serve as sources 

for upstream invasion of facultative species that can dwell in impoundments and fluvial 

systems (Pringle 1997); for example, impoundments serve as ‘stepping-stones’ for the 

invasion of non-natives into interconnected fluvial systems (Johnson et al. 2008).  The 

widespread dispersal of species originating from downstream impoundment (Ruhr 1957), 

coupled with losses of native fluvial species upstream of impoundments (Winston et al. 

1991), can result in homogenized or otherwise altered fish communities in upstream 

tributaries (Taylor et al. 2001; Herbert et al. 2003; Guenther and Spacie 2006).   

To increase sportfishing opportunities in impoundments, natural resource 

managers have historically stocked non-native sportfish species like black bass (genus 

Micropterus) that can persist in lentic habitats.  In the U.S., black bass species typically 

stocked to create impoundment fisheries include the Largemouth Bass (M. salmoides), 

Florida Bass (M. floridanus), Spotted Bass (M. punctulatus), Alabama Bass (M. 

henshalli), and Northern Smallmouth Bass (M. dolomieu dolomieu).  Black bass are 
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among the most popular sportfish in the U.S., and anglers pursuing these species 

contribute significantly to a multi-billion dollar sportfishing industry (Long et al. 2015).  

Despite the many perceived benefits these non-native impoundment fisheries create, the 

introduction of species outside of their native ranges poses potential harm to fish species 

native to recipient drainages – a consequence not typically considered during the 

extensive stocking of black bass that began as early as the mid-1800’s (Jackson 2002; 

Long et al. 2015).  Non-native black bass species are generally tolerant of both lentic and 

fluvial habitats; thus, when stocked in impoundments, these species have potential to 

invade interconnected fluvial habitats and further threaten native fishes (see Marchetti et 

al. 2004).  For example, Largemouth Bass is one of the 100 worst invasive species on the 

planet (www.iucngisd.org).  The Largemouth Bass has been introduced widely 

throughout the world because of its notoriety as a sportfish, but negatively affects native 

fishes through predation (Jackson 2002).  

Over the past several decades, researchers, anglers, and managers have shown 

increased interest in the conservation of native black bass taxa (Birdsong et al. 2010; 

Tringali et al. 2015a).  These taxa – including Shoal Bass (M. cataractae), Neosho 

Smallmouth Bass (M. dolomieu velox), Guadalupe Bass (M. treculii) and Bartram’s Bass 

(M. sp. cf. cataractae) – are typically endemic to one or a few river drainages of the 

southeastern U.S. and are more specialized in their use of fluvial habitats than congener 

species that support impoundment fisheries (Birdsong et al. 2010; Tringali et al. 2015a). 

Many of these fluvial black bass taxa face similar conservation threats as those driving 

imperilment of fluvial fishes across North America:  alteration and loss of habitat, 

fragmentation of populations, and negative interactions with non-native congener species 
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(Allan and Flecker 1993; Birdsong et al. 2010).   For example, native taxa are often 

involved in extensive introgressive hybridization with non-native congeners, or replaced 

by non-natives altogether – a problem that appears most common in impounded systems 

(Pierce and Avyle 1997; Barwick et al. 2006; Stormer and Maceina 2008; Koppelman 

2015).   

As impoundments have been constructed across the southeastern U.S., the lentic 

habitats created favored non-native black bass fisheries at the expense of fluvial habitats 

and the native black basses that inhabit them (Long et al. 2015).  Beyond this initial loss 

of fluvial habitats when impoundments are inundated, impoundments created over a half-

century ago may still impose a number of conservation-genetic threats to native, fluvial 

black bass populations.  High abundance of non-native congeners in impoundments may 

create non-native propagule pressure that encourages upstream invasion and 

hybridization with native species inhabiting upstream tributaries (Ricciardi et al. 2010). 

Impounded habitats may also create movement barriers for fluvial black bass species, as 

they do for other fluvial fish species (Hudman and Gido 2013; Fluker et al. 2014), 

leaving populations in upstream tributaries fragmented from one another.  Hybridization 

with non-natives or fragmentation could alone be cause for conservation concern for 

native fluvial black bass; however, a combination of both factors could exacerbate the 

effects of hybridization (Ricciardi et al. 2010), leading to loss of native species. 

These conservation-genetic concerns regarding the role of impoundments on 

fluvial black bass species can be examined through a series of hypotheses, which we test 

in two case studies of impounded systems of the southeastern U.S.  One, we hypothesize 

that increased relative abundance of non-native congeners and the amount of 
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hybridization with native taxa would occur in interconnected tributaries in relation to 

proximity to the impoundment.  Two, we hypothesize that increased population structure 

and differentiation would be evident between impoundment tributaries and the degree of 

differentiation would exceed levels found in tributaries with no impoundment interposed.  

And three, we hypothesize that introduced populations form a panmictic source of non-

natives that exhibit founder effects of decreased genetic diversity and heterozygosity 

compared to native species.  Case Study I was conducted on Lake Sidney Lanier 

(hereafter, “Lake Lanier”), Georgia, and involved native Shoal Bass and non-native 

Alabama Bass.  Case Study II was performed on Tenkiller Ferry Lake (hereafter, “Lake 

Tenkiller”), Oklahoma, and included native Neosho Smallmouth Bass and a non-native 

strain of Northern Smallmouth Bass.  Hereafter, we cover each case study separately, 

detailing the study area, study species, sample collection, genotyping, conservation-

genetic analyses, and results.  We then consider the results of both case studies, as well as 

other relevant literature, in an overall discussion of the role impoundments may play in 

the decline of native, fluvial black bass species. 

 

Case Study I:  Lake Lanier, Georgia 

I.  Methods 

Study area and species.– Lake Lanier is situated within the upper Chattahoochee 

River basin in Georgia (Fig. 1).  Completed in 1956, Lake Lanier has a surface area of 

150 km2 and impounds two major tributaries, the Chattahoochee and Chestatee rivers.  

The Chattahoochee River is a fifth-order tributary draining approximately 970 km2 as it 
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enters the northeast portion of Lake Lanier, whereas the Chestatee River enters the lake’s 

northwest corner as a fourth-order stream that drains approximately 600 km2.  The most 

direct route between the two river interfaces spans approximately 65 km of impounded 

habitat within Lake Lanier.  Shoal Bass, a fluvial-specialist species native to the basin, 

inhabits the high-gradient shoal habitats that exist in both tributary rivers, but do not 

typically occupy or persist in impounded habitats (Williams and Burgess 1999; Sammons 

and Early 2015; Taylor and Peterson 2015).  In contrast, the non-native Alabama Bass 

was first documented in the Chestatee River near Lake Lanier in 1970, likely originating 

from unauthorized angler introduction(s), and the species now supports a popular 

impoundment fishery (Williams and Burgess 1999; Baker et al. 2008; Rider and Maceina 

2015).  Alabama Bass in Lake Lanier currently support a popular sport fishery that 

probably motivated additional unauthorized introductions of the species into neighboring 

drainages (Pierce and Avyle 1997; Leitner et al. 2015).  A previous study suggested that 

Shoal Bass in the Chattahoochee River upstream of Lake Lanier were relatively pure of 

non-native alleles (Dakin et al. 2015), but introgression between Shoal Bass and other 

non-native congeners like Spotted Bass and Smallmouth Bass currently threatens Shoal 

Bass conservation throughout large portions of their native range (Alvarez et al. 2015; 

Dakin et al. 2015; Tringali et al. 2015b). 

Sample collection.– To collect samples for genotyping, we used a jet-drive boat 

electrofisher to sample black bass at a series of four sites in each river that spanned 

upstream from each river’s interface with Lake Lanier.  Each sample site encompassed 

approximately 350 m of stream length, sampling effort was standardized to 15 min of 

pedal time at each site, and sample numbers represented raw catch of each species at each 
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site.  Most sample sites were situated in or near shoal habitats, but surrounding riffle, run, 

and pool habitats were also sampled.  We collected fin-clip tissue samples from Shoal 

Bass in May 2013 and from Alabama Bass in May 2014, using coloration and 

morphological characteristics to identify each species in the field (Taylor and Peterson 

2014).   

Genotyping.– We genotyped samples with 16 di-nucleotide microsatellite DNA 

markers developed to amplify in black bass species (Msaf 05, 06, 08, 09, 10, 12, 13, 17, 

22, 24, 25, 27, 28, 29, 31, and 32; Seyoum et al. 2013).  Genomic DNA was isolated from 

fin-clips using the Puregene DNA Purification Kit (Gentra Systems).  We amplified 

microsatellites using six multiplex polymerase chain reactions (PCR).  We used the 

following PCR amplification parameters for all loci:  94°C for 2 min, 35 denaturation 

cycles of 94°C for 30 s, annealing at 58°C for 30 s, extension at 72°C for 30 s, and final 

extension at 72°C for 10 min.  We performed capillary electrophoresis with a 3130 XL 

Genetic Analyzer using PCR products that contained 13 µL of formamide (denaturation 

for 4 min at 95°C) and Genescan ROX 500 size standard (Applied Biosystems).  We 

determined length of allele variants in GeneMapper v. 4 (Applied Biosystems).  Prior to 

data analyses, we screened for duplicate genotypes using the multilocus matching 

function in Program GENALEX v. 6.502 (Peakall and Smouse 2006) and retained only the 

first collection of any duplicated genotype. 

Data analyses.– To examine the abundance non-natives and amount of 

hybridization with native taxa in impoundment tributaries, we first used a Bayesian 

clustering algorithm to screen collected genotypes against other congener taxa and 

identify pure and hybrid individuals of each taxon of interest.  We obtained reference 
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genotypes for each case study and used Program STRUCTURE v. 2.3.4 and accessory 

programs to proportionally assign individual genotypes (q-values) to a given number of 

genetic clusters (K) based on linkage equilibrium and conformance to Hardy-Weinberg 

equilibrium (Pritchard et al. 2000).  We used genotypes of seven reference taxa that 

included Shoal Bass, Alabama Bass, and five other congener taxa relevant to the study 

basin (K = 7; see Chapter 2).  In Program STRUCTURE, we employed the ‘PopFlag’ option 

to assign collected genotypes proportionally to taxa based solely on the allelic 

frequencies of reference taxa genotypes (Pritchard et al. 2000).  We assumed the 

admixture ancestry model and independent allele frequencies for model runs, and we 

used a burn-in of 20,000 and 200,000 Markov chain Monte Carlo (MCMC) repetitions 

for each run.  We then ran 20 independent runs at the optimal K value previously 

identified for the reference taxa dataset.  STRUCTURE runs were input into Program 

STRUCTURE HARVESTER web v. 0.6.94 (Earl and vonHoldt 2012) to obtain input files for 

Program CLUMPP v. 1.1.2, which provided optimal alignment of independent STRUCTURE 

runs using cluster matching and permutation (Jakobsson and Rosenberg 2007).  We 

obtained final q-value assignment in Program CLUMPP using the G’ pairwise matrix 

similarity statistic and the ‘LargeKGreedy’ (for K > 4) or ‘Greedy’ (for K ≤ 4) algorithms 

for 1,000 randomly sequenced runs.  Thresholds for ‘pure’ individuals of the four taxa of 

interest were calculated following Littrell et al. (2007).  We removed any genotypes 

assigned to any taxa other than Shoal Bass or Alabama Bass prior to any further analyses.  

To visualize any spatial trends in introgression, we plotted the overall genomic 

proportions of individuals collected at each sample site (Qi; introgression index), as well 

as the proportion of individuals classified as hybrids at each site (H; hybridity index).  
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Hybridization categories generally followed Dakin et al. (2015):  ‘pure’ species met the 

q-value thresholds attained from the methods of Littrell et al. (2007), ‘backcrosses’ had 

assignments between q = 0.7500 and the ‘pure’ threshold assignment to a respective taxa, 

and all remaining individuals were considered first filial generation (F1) or later-

generation hybrids.  

To examine the hypotheses of increased population structure and genetic 

differentiation in native fluvial taxa inhabiting impoundment tributaries and panmictic 

populations of non-natives in the same areas, we characterized population structure and 

genetic differentiation within the ‘pure’ genotypes belonging to each taxa of interest.  

Pure genotypes were organized by tributary, wherein individual sites were ordered from 

nearest impoundment to farthest upstream.  Within Program STRUCTURE, we ran 10 

independent, exploratory runs each of K = 1-5 that assumed the admixture model and 

correlated allele frequencies, and each run had a burn-in of 20,000 and 200,000 MCMC 

repetitions.  We estimated the optimal K within each dataset using the maximum value of 

four supervised estimators that disregard ‘spurious clusters’ that fail to obtain a mean or 

median membership coefficient threshold of ≥ 0.50 for at least one sample location 

(Puechmaille 2016).  If no population structure was detected, we allowed Program 

STRUCTURE to use tributary of origin as prior information (‘LocPrior’ option), which 

confers improved detection of weak population signals that may otherwise go undetected 

by conventional model parameterization (Pritchard et al. 2000).  Once the optimal K 

value was identified, 20 independent STRUCTURE runs were input into Program CLUMPP 

and final q-value assignments were obtained using the settings detailed previously.  To 

quantify genetic differentiation of each taxa across the study area, we performed a 
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hierarchical analysis of molecular variance (AMOVA; Excoffier et al. 1992).  We 

conducted a locus-by-locus AMOVA in Program ARLEQUIN v. 3.5.1.3 (Excoffier and 

Lischer 2010) to produce a global AMOVA as a weighted average over all loci.  Within 

the AMOVA, we estimated the amount of genetic variation present at the following three 

hierarchical levels, along with their associated F-statistic values that indicate the amount 

of differentiation at each level:  within sample sites (FST), among sample sites within a 

tributary (FSC), and among tributaries (FCT).  Tests of significance for AMOVA results 

were calculated based on 10,000 permutations at P ≤ 0.05.  Any negative values obtained 

were considered artifacts of calculation methods and interpreted as zero values.   

To examine whether non-native black bass populations are experiencing founder 

effects, and to provide context to genetic structure and differentiation results, we also 

explored potential structuring mechanisms within the pure taxa of interest by tributary 

system.  We reported the number of private alleles (Aprivate), and the mean across all loci 

for number of alleles (A), effective number of alleles (Ae), expected heterozygosity (He), 

and observed heterozygosity (Ho) as calculated in Program GENALEX v. 6.502 (Peakall 

and Smouse 2006).  We also calculated mean pairwise relatedness (r) and mean 

inbreeding coefficient (F) within each tributary using Program COANCESTRY (Wang 

2011).  Specifically, we used 1,000 bootstraps and 100 control samples to estimate r with 

the TrioML estimator (Wang 2007) and F with the Ritland estimator (Ritland 1996).  We 

also tested for differences in mean r and F between tributaries using 1,000 bootstraps to 

generate 95% C.I.’s used to determine significance at P ≤ 0.05 (Wang 2011).  These 

results provide insights into the model assumptions of Program STRUCTURE (i.e., linkage 
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equilibrium and Hardy-Weinberg equilibrium), and also provide a baseline 

characterization of the conservation-genetic status of fish inhabiting each tributary. 

 

I.  Results 

Samples were genotyped from four sites in each tributary river, with sample sites 

spanning 6-24 river-kilometers (rkm) upstream of Lake Lanier in the Chattahoochee 

River and from 3-15 rkm upstream in the Chestatee River (Table 1; Fig. 1).  Roughly the 

same number of putative Shoal Bass samples were obtained in in the Chattahoochee and 

Chestatee rivers (N = 50 and 45, respectively), but more Alabama Bass were sampled in 

the Chestatee River (N = 63) than in the Chattahoochee River (N = 36).  In both rivers, 

sites closer to Lake Lanier had increased relative abundance of putative Alabama Bass 

and sites farther upstream had higher relative abundance of Shoal Bass. 

Field identification of putative Shoal Bass and Alabama Bass aligned well with 

taxonomic assignment, with only one putative Shoal Bass from the Chattahoochee River 

(site #1) being assigned a majority proportion to the Alabama Bass cluster (Fig. 2).  The 

genomic proportion threshold for pure Shoal Bass was q ≥ 0.9880 and q ≥ 0.9674 for 

pure Alabama Bass, which resulted in 71 pure Shoal Bass and 65 pure Alabama Bass 

genotypes (Table 1).  Prior to evaluating genomic proportions and hybridization 

categories by site, we removed 2 putative Shoal Bass genotypes and 4 putative Alabama 

Bass genotypes that were assigned q ≥ 0.0500 to black bass taxa not of interest in our 

study (see Appendix I).  Alabama Bass dominated the overall genomic proportions of 

sample sites closest to Lake Lanier in both rivers (Qi = 0.850 in Chattahoochee River and 
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(Qi = 0.980 in Chestatee River), whereas Shoal Bass genomic proportions gradually 

became dominant with increasing distance upstream from Lake Lanier in both rivers (Fig. 

3).  Chestatee River sites also had higher genomic proportions of Alabama Bass than 

corresponding Chattahoochee river sites.  In regards to hybridization categories, sites 

closer to Lake Lanier in both rivers were dominated by pure Alabama Bass and 

backcrossed Alabama Bass, whereas pure Shoal Bass and backcrossed Shoal Bass 

became dominant at upstream sites (Fig. 4).  In the Chattahoochee River, the proportion 

of hybrid individuals decreased from H = 0.474 to 0.100 moving upstream, whereas the 

proportion of hybrid individuals in the Chestatee River had a less-pronounced directional 

trend (range in H = 0.160 to 0.313). 

Population structure (K = 2) was detected for both native Shoal Bass and non-

native Alabama Bass when tributary was used as prior information in Program 

STRUCTURE, suggesting population structure existed in both species but was relatively 

weak (Pritchard et al. 2000).  Population structure in Shoal Bass aligned with tributary 

system, with Chattahoochee River genotypes having an average assignment of q = 0.9426 

to one cluster and in the Chestatee River an average assignment of q = 0.6561 to a second 

genetic cluster (Fig. 5a).  Population structure in non-native Alabama Bass also aligned 

with tributary system, with fish from the Chattahoochee River having an average 

assignment of q = 0.7533 to one genetic cluster and in the Chestatee River averaging q = 

0.7946 to a different cluster (Fig. 5b).  AMOVA results were similar for both species, 

with a small (approximately 4%), but statistically significant, percentage of genetic 

variation occurring among tributaries (Table 2).  The remainder of genetic variation (> 

96%) in both species occurred within sites.  
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Shoal Bass and Alabama Bass had similar levels of heterozygosity in both 

tributaries, with no appreciable deviations from Hardy-Weinberg expectations (Table 3).  

Across all sites, non-native Alabama Bass had slightly lower allelic diversity (Ae = 1.761) 

compared to Shoal Bass (Ae = 2.059).  Shoal Bass inhabiting the Chattahoochee River had 

more private alleles compared to the Chestatee River (10 versus 4), whereas Alabama 

Bass had more private alleles in the Chestatee River (11 versus 3).  For Shoal Bass, mean 

pairwise relatedness was significantly higher in the Chattahoochee River (r = 0.087) 

compared to the Chestatee River (r = 0.018), but mean inbreeding coefficients (F) were 

approximately zero for Shoal Bass in both rivers (Table 4).  Mean pairwise relatedness 

was higher in Alabama Bass than Shoal Bass, but did not significantly differ between 

rivers.  The inbreeding coefficient was noticeably higher in Alabama Bass in the 

Chattahoochee River (F = 0.106) than in the Chestatee River (F = 0.012), but not 

significantly different.   

 

Case Study II:  Lake Tenkiller, Oklahoma 

II.  Methods 

Study area and species.– Lake Tenkiller is situated within the Illinois River basin 

of Arkansas and Oklahoma (Fig. 6).  Lake Tenkiller was completed in 1953 and has a 

surface area of 52 km2.  This impoundment is fed by two major tributary streams, the 

sixth-order Illinois River that drains approximately 2,529 km2 and the fifth-order Baron 

Fork that drains 896 km2 prior to its confluence with the Illinois River, situated just 

upstream of Lake Tenkiller.  A smaller, fourth-order tributary, Caney Creek, drains 238 
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km2 prior to emptying into Lake Tenkiller east of the Illinois River confluence.  

Approximately 15 km of impounded habitat is situated between the interfaces of the 

Illinois River and Caney Creek.  Neosho Smallmouth Bass are native to all three 

tributaries to Lake Tenkiller (Hubbs and Bailey 1940; Stark and Echelle 1998); however, 

Neosho Smallmouth Bass do not generally support fisheries in impoundments 

constructed within their native range (Stark and Echelle 1998).  As a result, anglers have 

favored the stocking of non-native Northern Smallmouth Bass into impoundments.  In 

1991 and 1992, the Oklahoma Department of Wildlife Conservation (ODWC) stocked 

Lake Tenkiller with Tennessee lake strain Smallmouth Bass fingerlings from Percy Priest 

Lake, TN broodstock (Malloy 2001; Boxrucker et al. 2004).  A post-stocking survey in 

1999 revealed that Smallmouth Bass in Lake Tenkiller had 85-90% non-native alleles and 

that no non-native alleles were detected upstream in the Baron Fork (Malloy 2001).  

Despite this result, researchers have warned that non-native alleles could quickly 

infiltrate native Neosho Smallmouth Bass populations inhabiting interconnected fluvial 

habitats (Stark and Echelle 1998; Malloy 2001). 

Sample collection.– We sampled Smallmouth Bass for genotyping in May-

September of 2014 and 2015. We sampled the Illinois River, Baron Fork, and Caney 

Creek at several sites spanning upstream from each system’s interface.  An additional 

sample was taken near the dam of Lake Tenkiller.  Sampling was conducted with boat- 

and backpack- mounted electrofishing units and supplemented by angling in areas where 

electrofishing was impractical, and sample sites usually spanned approximately 300 m of 

stream.  Because we were unable to reliably differentiate the two Smallmouth Bass forms 

in the field, we fin-clipped all fish identified as Smallmouth Bass.   
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Genotyping.– Samples were genotyped using seven di-nucleotide microsatellite 

DNA markers developed to amplify in black bass species (Mdo03, Malloy et al. 2000; 

Msaf 01, 05, 06, 14, 17, and 29, Seyoum et al. 2013).  Genomic DNA was isolated from 

fin-clips using the DNeasy Blood and Tissue Kit (Qiagen Corp.).  We amplified 

microsatellites using two multiplex polymerase chain reactions (PCR), and used the 

following PCR amplification parameters for all loci:  95°C for 15 min, 35 cycles of 94°C 

for 30 s, 58°C for 90 s, 72°C for 90 s, and 72°C for 10 min.  We performed capillary 

electrophoresis with an ABI 3730 Genetic Analyzer with a performed on solutions 

containing 1 µL of PCR products (diluted 1:100), 9 µL formamide (Applied Biosystems, 

Inc.), and Genescan ROX 500 size standard (Applied Biosystems, Inc.).  Length of allele 

variants was determined in GeneMapper v. 5 (Applied Biosystems).  Prior to data 

analyses, we screened for duplicate genotypes using the multilocus matching function in 

Program GENALEX and retained only the first collection of any duplicated genotype. 

Data analyses.– For comparative purposes, data analyses for this case study 

followed those performed in Case Study I.  For taxonomic assignment of our sample 

dataset in Program STRUCTURE, we used genotypes of four reference taxa that included 

Neosho Smallmouth Bass, Tennessee lake strain Smallmouth Bass, sympatric Spotted 

Bass, and a genetically-distinct hatchery stock of Smallmouth Bass that may also have 

been introduced into the study area (K = 4; Taylor et al. 2016).  In the calculation of the 

AMOVA, the site in Lake Tenkiller was incorporated at the “tributary” level.  To further 

investigate site-level genetic differentiation in Neosho Smallmouth Bass inhabiting the 

three tributary streams, we also calculated pairwise fixation index values (FST; Wright 

1951; Weir and Cockerham 1984).  Tests of significance for FST results were calculated 
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based on 10,000 permutations at P ≤ 0.05, and any negative values obtained were 

considered artifacts of calculation methods and interpreted as zero values.   

 

II.  Results 

Fish identified as Smallmouth Bass were collected from 12 sites in the Lake 

Tenkiller study area:  1 site situated near Lake Tenkiller’s dam, 3 sites spanning 54 rkm 

upstream of the lake in the Illinois River, 4 sites spanning 19 rkm upstream in the Baron 

Fork, and 4 sites spanning 13 rkm upstream in Caney Creek (Table 5; Fig. 6).  In general, 

20-30 individuals were collected at each site in Lake Tenkiller, the Illinois River, and 

Caney Creek.  A lower sample size of approximately 12 genotypes were taken from 

Baron Fork sites because this tributary was not directly fragmented from the Illinois 

River by Lake Tenkiller, but hybridization levels and natural population structure in this 

tributary were still of interest.  A larger sample size of 47 was taken at the uppermost site 

on the Illinois River to represent a longer sampling reach (approximately 7.5 rkm; 

between Round Hollow and Peavine public access areas). 

Based on taxonomic assignment of collected genotypes, Smallmouth Bass 

collected in Lake Tenkiller were assigned predominately to Tennessee lake strain, 

whereas collections from tributary streams were predominately assigned to Neosho 

Smallmouth Bass (Fig. 7).  The genomic proportion threshold for pure Neosho 

Smallmouth Bass was q ≥ 0.9455 and q ≥ 0.8936for pure Tennessee lake strain, which 

resulted in 143 pure Neosho Smallmouth Bass and 22 pure Tennessee Lake Strain 

genotypes across all sample sites (Table 5).  Reference Tennessee lake strain genotypes 
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were assigned up to q = 0.1690 to the distinct hatchery stock of Smallmouth Bass, 

suggesting the two groups shared some alleles; thus, we removed any sampled genotypes 

assigned q ≥ 0.0500 to Spotted Bass or q ≥ 0.1000 to the distinct hatchery stock of 

Smallmouth Bass prior to assessing any trends in introgression or hybridization 

categories.  In total, 26 genotypes were removed:  9 from Lake Tenkiller, 15 from Illinois 

River, 1 from Baron Fork, and 1 from Caney Creek (see Appendix II).  By sample site, 

overall genomic proportions for Tennessee lake strain Smallmouth Bass were highest at 

the Lake Tenkiller site (Qi = 0.957) and lowest at the upstream sites in Baron Fork (site 

#8) and Caney Creek (site #’s 11 and 12; Qi  < 0.010; Fig. 8).  Overall genomic 

proportions of Tennessee lake strain Smallmouth Bass were highest at sites closer to 

Lake Tenkiller in all three tributaries – only in the Illinois River did Tennessee lake strain 

proportions remain relatively high (Qi = 0.180) at the farthest upstream sites.  The 

proportion of hybrid individuals (H) was > 0.500 in all Illinois River sites, varied 

between 0.083-0.273 in Baron Fork sites, and decreased with upstream distance from the 

lake in Caney Creek from 0.348 to 0.042 (Fig. 9).  Pure Tennessee lake strain 

Smallmouth Bass and their backcrosses were recovered only in Lake Tenkiller and 

Illinois River sites, whereas hybrids in the Baron Fork and Caney Creek represented F1 

or Neosho backcrosses.   

Population structure was evident within the pure genotypes of both native Neosho 

Smallmouth Bass, but was not recovered within non-native Tennessee lake strain 

Smallmouth Bass.  Program STRUCTURE detected weak population structure (i.e., only 

when using tributary of origin as prior information; Pritchard et al. 2000) within Neosho 

Smallmouth Bass (K = 2), but not between Tennessee lake strain fish captured in Lake 
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Tenkiller versus the Illinois River.  Neosho Smallmouth Bass in Illinois River sites were 

assigned an average genomic proportion of q = 0.7003 to one cluster, whereas Caney 

Creek was assigned an average q = 0.8257 to a different cluster (Fig. 10).  Baron Fork 

sites had an intermediate population assignment, sharing a slight majority of its 

assignment with the genetic cluster affiliated with Caney Creek (average q = 0.5925).  

AMOVA results revealed that 2.2% of genetic variation – a small, but statistically 

significant amount – was contained among tributaries for Neosho Smallmouth Bass 

(Table 6).  AMOVA results indicated that no discernable variation was contained 

between Tennessee lake strain fish from Lake Tenkiller and the Illinois River.  A small, 

non-significant amount (9.3%) of genetic variation was contained among sites within 

these two systems.  A significant majority of genetic variation was contained within sites 

for both Smallmouth Bass forms.  Site-level pairwise FST comparisons also displayed the 

greatest genetic differentiation among Neosho Smallmouth Bass between sites in the 

Illinois River and Caney Creek (up to FST = 0.134), although the uppermost site in the 

Baron Fork also had significant differentiation from Caney Creek sites (up to FST = 

0.060; Table 7).   

Potential structuring mechanisms were summarized by tributary, including Lake 

Tenkiller as its own site, for each species.  Observed heterozygosity was higher in non-

native Tennessee than in Neosho Smallmouth Bass, but observed heterozygosity in 

Tennessee lake strain fish was slightly lower than expected values (Table 8).  Tennessee 

lake strain fish also had a higher overall mean effective number of alleles (Ae = 4.772) 

than did native Neosho Smallmouth Bass (Ae = 3.979).  Of the three tributary systems 

containing Neosho Smallmouth Bass, the Illinois River had the highest mean effective 
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number of alleles (Ae = 4.772) and number of private alleles (13).  Mean pairwise 

relatedness (r) and inbreeding coefficients (F) were generally similar between native and 

non-native Smallmouth Bass forms (Table 9).  Small, but statistically significant, 

differences in r existed among Neosho Smallmouth Bass inhabiting each of the three 

tributaries.  Neosho Smallmouth Bass in the Baron Fork had a significantly lower F 

(approximately zero) compared to the Illinois River and Caney Creek, which were 

statistically similar to one another.  There were no statistically significant differences in r 

or F between Tennessee lake strain fish sampled from Lake Tenkiller versus Illinois 

River sites, although r was approximately double at Illinois River sites (r = 0.121). 

 

Overall Discussion 

 Overall, our results provide novel insights into how impoundments and the non-

native black bass species introduced into them, can jeopardize the conservation of native 

fluvial black basses inhabiting upstream tributaries.  Impoundments appear to generate 

non-native propagule pressure that facilitates invasion and subsequent introgression into 

native populations inhabiting upstream tributaries.  A number of ecological mechanisms 

likely influence the patterns and trajectories of the introgression observed, so the eventual 

outcome of introgression remains unclear at this time.  Investigations into whether 

impoundments impose population structure on native populations were somewhat 

inconclusive, perhaps because of time lags affiliated with the genetic approaches 

employed in our study.  Conversely, population structure evident in one introduced 

population (i.e., Alabama Bass in Lake Lanier) revealed that non-natives invading 
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upstream habitats do not necessarily originate from one panmictic population.  Results 

from both case studies highlight the conservation challenges that impoundments and 

associated non-native congener fisheries impose on conservation of native black bass 

populations. 

 The stocking of non-native black bass species into impoundments facilitates the 

invasion of non-natives into upstream fluvial habitats, as well as a rapid onset of 

hybridization and subsequent introgression of non-native alleles into native black bass 

gene pools.  Results from both case studies suggest that hybridization has progressed 

quickly in 10-15 years since previous assessments.  In 2005, 22 putative Shoal Bass were 

sampled in the Chattahoochee River upstream of Lake Lanier and 20 (91%) were 

considered pure Shoal Bass, with only one F1 hybrid (4.5%) and one backcrossed 

individual (4.5%; Dakin et al. 2015).  Our collections from 2013-2014 in the 

Chattahoochee and Chestatee rivers illustrate that F1 hybrids and backcrossed individuals 

of either species now compose 13-47% of individuals at a given site.  In fact, our Lake 

Lanier case study likely underestimated hybridization rates because we only genotyped 

individuals that had the phenotypic traits associated with ‘pure’ individuals from either 

species despite encountering some individuals that appeared to be hybrids.  In Lake 

Tenkiller, an assessment 7-8 years post-stocking of Tennessee lake strain fingerlings 

revealed 85-90% non-native alleles in Lake Tenkiller and did not detect non-native 

alleles upstream in the Baron Fork (Malloy 2001).  Approximately 16 years later, our 

Lake Tenkiller sample was estimated to contain 96% non-native Tennessee Lake strain 

alleles.  Furthermore, the proportion of hybrid individuals (F1 hybrids and backcrosses) 

was > 0.50 at all Illinois River sampling sites and varied from 0.04-0.35 at sites in Baron 
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Fork and Caney Creek.  Our results align well with other investigations of the spread of 

non-native black bass from impoundments.  In 2004, a survey of native Bartram’s Bass 

and non-native Alabama Bass in the Savannah River basin, detected non-natives and 

hybrids at a few tributary sites nearest impoundments; however, only 5-6 years later, non-

natives and their hybrids had quickly spread upstream and into many other tributaries 

(Leitner et al. 2015).  Interestingly, no non-natives or hybrids were detected in tributaries 

connecting directly to mainstem rivers (Leitner et al. 2015), suggesting that impounded 

habitats were facilitating the initial invasion of non-natives and their hybrids into 

tributaries directly entering impoundments.  Similarly, non-native Florida Bass stocked 

into Texas impoundments have infiltrated native Largemouth Bass populations inhabiting 

upstream tributaries, with non-native haplotypes detected up to 80 km upstream of source 

impoundments (Ray et al. 2012).  Overall, this body of evidence suggests that the 

introduction of non-native black basses into impoundments creates propagule pressure 

(see Ricciardi et al. 2010), which facilitates upstream invasion into fluvial habitats and 

encourages hybridization with native black basses. 

 The invasion and introgression of non-native alleles was fairly widespread but 

non-uniform in both case studies, providing insight into the spatial and environmental 

factors that oppose non-native propagule pressure originating from downstream 

impoundments.  Both case studies revealed a spatial trend wherein the highest 

proportions of pure non-natives and non-native introgression were at sites closer to 

impoundment.  Perhaps the artificial and transitory habitats created in river-impoundment 

interfaces differentially favor non-native congeners over native species (see Buckmeier et 

al. 2014).  Conversely, maybe natives are more abundant and better adapted to upstream 
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fluvial habitats, thus providing non-natives less opportunity for successful invasion (see 

Bennett et al. 2010).  In the Lake Tenkiller case study, small stream size (e.g., Caney 

Creek) appeared to favor pure Neosho Smallmouth Bass over non-native Tennessee lake 

strain fish and their hybrids.  Although the proximate ecological mechanisms behind this 

trend remain uninvestigated, a reasonable hypothesis is that Neosho Smallmouth Bass are 

better adapted to the range of environmental conditions within these smaller streams than 

the Tennessee lake strain, which originated from fish presumably adapted to life in the 

much larger Tennessee River system.  Similar spatial and environmental factors, like 

elevation, water temperature, and migration barriers have been found to counteract 

propagule pressure of non-native fish invasion and hybridization in other fishes (Bennett 

et al. 2010).  In contrast, Alabama Bass in the Lake Lanier tributaries do not appear to be 

experiencing the same degree of ecological pressures that inhibit upstream invasion, 

suggesting the specific biology and life-history requirements of non-native species 

influences the success and eventual extent of invasion (see Marchetti et al. 2004).  

Gaining a better understanding of the ecological mechanisms that influence non-native 

black bass invasion and introgression with native forms would help managers predict 

which native populations are most threatened by non-native invasion and introgression so 

that conservation actions could be prioritized accordingly. 

Our results suggest that the conservation of native taxa in our two case studies is 

threatened by hybridization; however, the speed at which hybridization might progress 

and the eventual outcome of the native taxa in each study is uncertain at this time.  In 

general, the speed at which native species are lost to extinction by hybridization increases 

when:  1) reproductive barriers are weak between taxa; 2) the native species is relatively 
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rare or low in abundance; and 3) the non-native species gains a competitive advantage 

over the native species (Wolf et al. 2001).  Natural reproductive barriers between black 

bass species are weakened or altogether compromised when non-native congeners are 

introduced into the range of native species (Koppelman 2015), indicating the potential for 

extinction via hybridization exists in such scenarios.  Whether the propagule pressured 

applied by non-native abundance in downstream impoundments will increase, remain 

steady, or decrease over time is an important consideration, as increased pressure could 

overwhelm any opposing ecological mechanisms that favor natives (Bennett et al. 2010).  

Furthermore, environmental variability associated with fluvial habitats (i.e., dynamic 

streamflow and disturbances) may periodically cause poor recruitment in native fluvial 

populations (Brewer and Long 2015; see Chapter 4), which could lower abundance of 

natives and lead to increased invasion success by non-natives.  Although direct 

competition between black bass species is largely speculative, native fluvial species are 

generally more specialized in their habitat use and diets than their non-native counterparts 

(Sammons 2012; Goclowski et al. 2013; Shaw 2015).  Native specialist species may be 

able to maintain a stronghold over non-native species in unaltered habitats, but alteration 

of habitats could erode selective pressures that favor natives against non-native invasion 

and introgression.  For example, presence of native Brook Trout (Salvelinus fontinalis) in 

the eastern U.S. is less affected by non-native Brown Trout (Salmo trutta) in natural 

habitat conditions than in degraded habitats (Wagner et al. 2013).  Hybridization itself 

can also influence the speed and eventual outcome of hybridization events by affecting 

the fitness of hybrid individuals.  Hybrids experiencing reduced fitness (i.e., outbreeding 

depression) could be at a disadvantage in terms of reproductive output, favoring the 
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maintenance of species boundaries; however, hybrids that experience no reduction in 

fitness could completely swamp or displace the native species (Wolf et al. 2001).  Other 

black bass hybrids experience increased vulnerability to disease beyond the F1 generation 

(Goldberg et al. 2005), suggesting that outbreeding depression may slow or prevent 

complete genetic swamping of native taxa.  However, continued monitoring of non-

native invasion and hybridization rates is warranted to monitor the spread of non-native 

alleles and detect any increasing trends in hybridization rates.    

Concurrent fragmentation of fluvial taxa and non-native propagule pressure could 

exacerbate the effects of hybridization (Ricciardi et al. 2010), leading to genetic 

swamping or complete species replacement; however, our investigation into whether 

impoundments fragment native fluvial black bass populations inhabiting upstream 

tributaries was somewhat inconclusive.  In the Lake Lanier case study, Shoal Bass in the 

Chattahoochee and Chestatee rivers had weak population structure and genetic 

differentiation that was comparable to levels found in the unimpounded upper Flint River 

basin between mainstem river sites and a tributary, Big Lazer Creek (see Chapter 2).  In 

the Lake Tenkiller case study, differences in genetic structure and differentiation 

occurred between the Illinois River and Baron Fork, which are not fragmented by 

impoundment.  Although levels of differentiation between Illinois River and Caney Creek 

were slightly greater, it is unclear how much differentiation is attributed to natural 

population structure versus the potential fragmentation imposed by intervening 

impoundment.  Time lags in the response of genetic measures to underlying 

fragmentation could help explain our results.  A prevalent issue in field of landscape 

genetics, time lags can be influenced by the genetic markers used, the genetic response 
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considered, and the biology of the study organism (Epps and Keyghobadi 2015).  

Although the microsatellite markers employed in our case studies typically mutate on the 

order of decades, measures of differentiation like FST are often better indicators of 

historical, rather than contemporary, connectivity (Epps and Keyghobadi 2015).  

Additionally, species with higher dispersal capabilities, more connected population 

structures, and longer generation times will generally have increased lag time (e.g., Shoal 

Bass; see Chapter 2).  For example, several studies have found that minnow and darter 

species are fragmented by impoundments using methods similar to those we employed 

(Hudman and Gido 2013; Fluker et al. 2014).  If native fluvial black bass populations are 

fragmented by impoundment but time lags have prevented a clear detection of these 

effects in our case studies, native populations not only face increased severity of effects 

from non-native invasions and hybridization (Sakai et al. 2001), but also face increased 

threat of inbreeding depression and local extinction (Frankham 1995; Jager et al. 2001).  

 Non-native congener population structure within impoundments revealed that 

non-native populations are not necessarily panmictic, and genetic diversity of introduced 

populations can be comparable to that of native populations.  From our two case studies, 

it appears that strength of non-native population structure may depend on location(s) of 

initial establishment.  In Lake Tenkiller, Tennessee lake strain Smallmouth Bass were 

rare in standardized sampling until about a decade post-stocking (early 2000’s), wherein 

they became increasingly common in the lower end of the lake (i.e., near the dam) by 

2010 (Josh Johnston, ODWC, personal communication).  From 2010 until present, lake 

strain Smallmouth Bass have been encountered farther north within the lake each year, 

perhaps because of changes in lake habitat over time (Josh Johnston, ODWC, personal 
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communication).  As such, this population likely had a gradual expansion northward 

towards tributary interfaces, resulting in no evidence of genetic structure between fish 

sampled in the impoundment versus in the Illinois River.  In Lake Lanier, however, 

population structure was evident within non-native Alabama Bass.  The first record of 

Alabama Bass in the Lake Lanier area was recorded in the Chestatee River in 1970 

(Williams and Burgess 1999), likely the result of an unauthorized angler introduction 

(Baker et al. 2008).  If fish were initially introduced into the Chestatee River arm of the 

impoundment, our results support that some fish from this original introduction became 

founders of an extensive main-lake population that eventually entered and colonized the 

Chattahoochee River.  Alabama Bass in the Chattahoochee River had a decreased number 

of private alleles, an increased inbreeding coefficient, and lower levels of introgression 

into upstream sites that could be indicative of a more recent invasion period.  

Alternatively, these results could also be explained by multiple introductions of Alabama 

Bass, but we know of no documentation to support this hypothesis.  We also 

hypothesized that stocked populations would likely suffer from founder effects like 

increased homozygosity and decreased allelic diversity because of a presumably low 

effective size of breeders.  Surprisingly, non-native congener heterozygosity allelic 

diversity measures were comparable, or exceeded, levels observed in native populations 

of fluvial black bass species.  These genetic details of non-native black bass populations 

are relevant to native black bass conservation because they highlight that non-native 

propagule pressure could be spatially and temporally variable depending on the dynamics 

of population expansion within impoundments, and that introduced non-native 
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populations do not necessarily suffer any adverse effects from decreased genetic 

diversity.   

 Although the eventual outcomes for the native black bass populations in our case 

studies are difficult to predict, our results reveal existing consequences to the 

conservation of native black bass species and native genetic diversity.  Hybridization can 

disrupt coadapted gene complexes that could render the negative effects of outbreeding 

depression in native populations, including decreased fitness and increased susceptibility 

to disease (Goldberg et al. 2005).  Furthermore, maintaining overall adaptability of native 

species by conserving genetic diversity within and among populations – a particularly 

important conservation goal for imperiled species (Meffe 1986) –  appears to be an 

increasingly difficult task.  For example, the Lake Tenkiller case study coupled with 

results from Taylor et al. (2016) suggest that larger rivers harbor the highest genetic 

diversities for Neosho Smallmouth Bass and are also most likely to be infiltrated by non-

native Tennessee lake strain alleles.  In contrast, populations in smaller streams may 

experience less introgression but have relatively low genetic diversity as well.  Overall, 

impoundments and invading non-native congeners pose a very real threat towards the loss 

of genetically ‘pure’ native species or complete species replacement by non-native 

congeners and the loss of genetic diversity within native species.  In fact, some of these 

mechanisms may have contributed to the replacement of native Shoal Bass with non-

native Spotted Bass in several tributaries to impoundments in the Chattahoochee River 

basin (Stormer and Maceina 2008). 

Hybridization among sympatric black bass species is a natural phenomenon, but 

increased hybridization rates resulting from habitat alteration and introduction of non-
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native congeners is unnatural (Koppelman 2015).  Habitat alteration and ensuing 

hybridization is often the final push toward extinction for many native fluvial fishes 

(Allan and Flecker 1993) – in the case of native black bass conservation, virtually no 

management actions can be taken to ensure the long-term conservation of natives once 

non-natives are established in impoundments.  Efforts to educate managers and anglers 

on the potential negative effects of non-native species, along with the enforcement of 

strict invasive species laws, could help curb and prevent future introductions.  Otherwise, 

stocking programs designed to swamp tributary populations with native genetics could 

temporarily alleviate any hybridization and inbreeding concerns (Fleming et al. 2015), 

but non-native propagule pressure originating from downstream impoundments will 

likely outlast short-term stocking efforts (sensu Leitner et al. 2015).  Identifying genetic 

refuge populations above movement barriers (i.e., lowhead dams) or creating artificial 

refuge populations may also be prudent depending on the range-wide conservation status 

of the species.  Future monitoring efforts are warranted for both study areas to provide an 

improved understanding of the ecological mechanisms regulating the extent and severity 

of introgression and to determine whether genetic time lags may have disguised the role 

of impoundments in fragmenting native populations.  Until such efforts are completed, 

these case studies present a case for managers and anglers alike to consider the long-term 

effects of impoundments and non-native black bass introductions on the conservation of 

native, fluvial black basses. 

 

 



119 
 

References 

Allan, J. D., and A. S. Flecker. 1993. Biodiversity conservation in running waters. 
BioScience 43(1):32–43. 

Alvarez, A. C., D. L. Peterson, A. T. Taylor, M. D. Tringali, and B. L. Barthel. 2015. 
Distribution and amount of hybridization between Shoal Bass and the invasive 
Spotted Bass in the lower Flint River, Georgia. Pages 503–521 in M. D. Tringali, 
J. M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass diversity: 
multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Baker, W. H., C. E. Johnston, and G. W. Folkerts. 2008. The Alabama Bass, Micropterus 
henshalli (Teleostei: Centrarchidae), from the Mobile River Basin. Zootaxa 
1861:57–67. 

Barwick, H. D., K. J. Oswald, J. M. Quattro, and R. D. Barwick. 2006. Redeye Bass 
(Micropterus coosae) and Alabama Spotted Bass (M. punctulatus henshalli) 
hybridization in Keowee Reservoir. Southeastern Naturalist 5(4):661–668. 

Bennett, S. N., J. R. Olson, J. L. Kershner, and P. Corbett. 2010. Propagule pressure and 
stream characteristics influence introgression: Cutthroat and Rainbow Trout in 
British Columbia. Ecological Applications 20(1):263–277. 

Birdsong, T., D. Krause, J. Leitner, J. M. Long, S. Robinson, and S. Sammons. 2010. A 
business plan for the conservation of native black bass species in the southeastern 
U.S. National Fish and Wildlife Foundation, Washington, D.C. 

Boxrucker, J., A. A. Echelle, and R. A. Van Den Bussche. 2004. Determining the degree 
of hybridization in the Smallmouth Bass population of Broken Bow Reservoir and 
the Mountain Fork River. Oklahoma Department of Wildlife Conservation, Final 
Report F-50-R, Project 19, Oklahoma City, Oklahoma. 

Brewer, S. K., and J. M. Long. 2015. Biology and ecology of Neosho Smallmouth Bass 
and the genetically distinct Ouachita lineage. Pages 281–295 in M. D. Tringali, J. 
M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass diversity: 
multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Buckmeier, D. L., N. G. Smith, B. P. Fleming, and K. A. Bodine. 2014. Intra-annual 
variation in river–reservoir interface fish assemblages: implications for fish 
conservation and management in regulated rivers. River Research and 
Applications 30(6):780–790. 



120 
 

Burkhead, N. M. 2012. Extinction rates in North American freshwater fishes, 1900–2010. 
BioScience 62(9):798–808. 

Dakin, E. E., B. A. Porter, B. J. Freeman, and J. M. Long. 2015. Hybridization threatens 
Shoal Bass populations in the upper Chattahoochee River Basin. Pages 491–501 
in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. Black 
bass diversity: multidisciplinary science for conservation. American Fisheries 
Society, Symposium 82, Bethesda, Maryland. 

Earl, D. A., and B. M. vonHoldt. 2012. STRUCTURE HARVESTER: a website and 
program for visualizing STRUCTURE output and implementing the Evanno 
method. Conservation Genetics Resources 4(2):359–361. 

Epps, C. W., and N. Keyghobadi. 2015. Landscape genetics in a changing world: 
disentangling historical and contemporary influences and inferring change. 
Molecular Ecology 24(24):6021–6040. 

Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: a new series of 
programs to perform population genetics analyses under Linux and Windows. 
Molecular Ecology Resources 10(3):564–567. 

Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance 
inferred from metric distances among DNA haplotypes: application to human 
mitochondrial DNA restriction data. Genetics 131(2):479–491. 

Fleming, P. B., G. P. Garrett, and N. G. Smith. 2015. Reducing hybridization and 
introgression in wild populations of Guadalupe Bass through supplemental 
stocking. Pages 537–547 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. 
S. Allen, editors. Black bass diversity: multidisciplinary science for conservation. 
American Fisheries Society, Symposium 82, Bethesda, Maryland. 

Fluker, B. L., B. R. Kuhajda, and P. M. Harris. 2014. The effects of riverine 
impoundment on genetic structure and gene flow in two stream fishes in the 
Mobile River basin. Freshwater Biology 59(3):526–543. 

Frankham, R. 1995. Conservation genetics. Annual Review of Genetics 29(1):305–327. 

Goclowski, M. R., A. J. Kaeser, and S. M. Sammons. 2013. Movement and habitat 
differentiation among adult Shoal Bass, Largemouth Bass, and Spotted Bass in 
the upper Flint River, Georgia. North American Journal of Fisheries Management 
33(1):56–70. 



121 
 

Goldberg, T. L., E. C. Grant, K. R. Inendino, T. W. Kassler, J. E. Claussen, and D. P. 
Philipp. 2005. Increased infectious disease susceptibility resulting from 
outbreeding depression. Conservation Biology 19(2):455–462. 

Guenther, C. B., and A. Spacie. 2006. Changes in fish assemblage structure upstream of 
impoundments within the upper Wabash River basin, Indiana. Transactions of the 
American Fisheries Society 135(3):570–583. 

Herbert, M. E., F. P. Gelwick, and W. L. Montgomery. 2003. Spatial variation of 
headwater fish assemblages explained by hydrologic variability and upstream 
effects of impoundment. Copeia 2003(2):273–284. 

Hubbs, C. L., and R. M. Bailey. 1940. A Revision of the black basses (Micropterus and 
Huro) with descriptions of four new forms. Miscellaneous publications of the 
Museum of Zoology, University of Michigan, No. 48. 

Hudman, S. P., and K. B. Gido. 2013. Multi-scale effects of impoundments on genetic 
structure of Creek Chub (Semotilus atromaculatus) in the Kansas River basin. 
Freshwater Biology 58(2):441–453. 

Jackson, D. A. 2002. Ecological effects of Micropterus introductions: the dark side of 
black bass. Pages 221–232 in David P. Philipp and Ridgway, M.S., editors. Black 
bass:  ecology, conservation, and management. American Fisheries Society 
Symposium 31, Bethesda, Maryland. 

Jager, H. I., J. A. Chandler, K. B. Lepla, and W. V. Winkle. 2001. A theoretical study of 
river fragmentation by dams and its effects on White Sturgeon populations. 
Environmental Biology of Fishes 60(4):347–361. 

Jakobsson, M., and N. A. Rosenberg. 2007. CLUMPP: a cluster matching and 
permutation program for dealing with label switching and multimodality in 
analysis of population structure. Bioinformatics 23(14):1801–1806. 

Jelks, H. L., S. J. Walsh, N. M. Burkhead, S. Contreras-Balderas, E. Diaz-Pardo, D. A. 
Hendrickson, J. Lyons, N. E. Mandrak, F. McCormick, J. S. Nelson, S. P. 
Platania, B. A. Porter, C. B. Renaud, J. J. Schmitter-Soto, E. B. Taylor, and M. L. 
W. Jr. 2008. Conservation status of imperiled North American freshwater and 
diadromous fishes. Fisheries 33(8):372–407. 

Johnson, P. T., J. D. Olden, and M. J. Vander Zanden. 2008. Dam invaders: 
impoundments facilitate biological invasions into freshwaters. Frontiers in 
Ecology and the Environment 6(7):357–363. 



122 
 

Koppelman, J. B. 2015. Black bass hybrids: a natural phenomenon in an unnatural world. 
Pages 467–479 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, 
editors. Black bass diversity: multidisciplinary science for conservation. 
American Fisheries Society, Symposium 82, Bethesda, Maryland. 

Leitner, J. K., K. J. Oswald, M. Bangs, D. Rankin, and J. M. Quattro. 2015. Hybridization 
between native Bartram’s Bass and two introduced species in Savannah drainage 
systems. Pages 481–490 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. 
Allen, editors. Black bass diversity: multidisciplinary science for conservation. 
American Fisheries Society, Symposium 82, Bethesda, Maryland. 

Littrell, B. M., D. J. Lutz-Carrillo, T. H. Bonner, and L. T. Fries. 2007. Status of an 
introgressed Guadalupe Bass population in a Central Texas stream. North 
American Journal of Fisheries Management 27(3):785–791. 

Long, J. M., M. S. Allen, W. F. Porak, and C. D. Suski. 2015. A historical perspective of 
black bass management in the United States. Pages 99–122 in M. D. Tringali, J. 
M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass diversity: 
multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Malloy, T. P. 2001. Introgressive hybridization between native and non-native 
Smallmouth Bass in Oklahoma. Doctoral Dissertation, Oklahoma State 
University, Stillwater, Oklahoma. 

Malloy, T. P., R. A. V. D. Bussche, W. D. Coughlin, and A. A. Echelle. 2000. Isolation 
and characterization of microsatellite loci in Smallmouth Bass, Micropterus 
dolomieu (Teleostei: Centrarchidae), and cross-species amplification in Spotted 
Bass,  M. punctulatus. Molecular Ecology 9(11):1946–1948. 

Marchetti, M. P., P. B. Moyle, and R. Levine. 2004. Invasive species profiling? 
Exploring the characteristics of non-native fishes across invasion stages in 
California. Freshwater Biology 49(5):646–661. 

Meffe, G. K. 1986. Conservation genetics and the management of endangered fishes. 
Fisheries 11(1):14–23. 

Nilsson, C. 2005. Fragmentation and flow regulation of the world’s large river systems. 
Science 308(5720):405–408. 

Peakall, R., and P. E. Smouse. 2006. Genalex 6: genetic analysis in Excel. Population 
genetic software for teaching and research. Molecular Ecology Notes 6(1):288–
295. 



123 
 

Pierce, P. C., and M. J. V. D. Avyle. 1997. Hybridization between introduced Spotted 
Bass and Smallmouth Bass in reservoirs. Transactions of the American Fisheries 
Society 126(6):939–947. 

Poff, N. L., J. D. Olden, D. M. Merritt, and D. M. Pepin. 2007. Homogenization of 
regional river dynamics by dams and global biodiversity implications. 
Proceedings of the National Academy of Sciences 104(14):5732–5737. 

Poff, N. L., and J. K. H. Zimmerman. 2010. Ecological responses to altered flow regimes: 
a literature review to inform the science and management of environmental flows. 
Freshwater Biology 55(1):194–205. 

Porto, L. M., R. L. McLaughlin, and D. L. G. Noakes. 1999. Low-head barrier dams 
restrict the movements of fishes in two Lake Ontario streams. North American 
Journal of Fisheries Management 19(4):1028–1036. 

Pringle, C. M. 1997. Exploring how disturbance is transmitted upstream: going against 
the flow. Journal of the North American Benthological Society 16(2):425–438. 

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure 
using multilocus genotype data. Genetics 155(2):945–959. 

Puechmaille, S. J. 2016. The program STRUCTURE does not reliably recover the correct 
population structure when sampling is uneven: subsampling and new estimators 
alleviate the problem. Molecular Ecology Resources 16(3):608–627. 

Ray, J. W., M. Husemann, R. S. King, and P. D. Danley. 2012. Genetic analysis reveals 
dispersal of Florida Bass haplotypes from reservoirs to rivers in Central Texas. 
Transactions of the American Fisheries Society 141(5):1269–1273. 

Ricciardi, A., L. A. Jones, Å. M. Kestrup, and J. M. Ward. 2010. Expanding the 
propagule pressure concept to understand the impact of biological invasions. 
Pages 225–235 in D. M. Richardson, editor. Fifty Years of Invasion Ecology. 
Wiley-Blackwell. 

Rider, S. J., and M. J. Maceina. 2015. Alabama Bass Micropterus henshalli Hubbs & 
Bailey, 1940. Pages 83–91 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. 
S. Allen, editors. Black bass diversity: multidisciplinary science for conservation. 
American Fisheries Society, Symposium 82, Bethesda, Maryland. 

Ritland, K. 1996. Estimators for pairwise relatedness and individual inbreeding 
coefficients. Genetics Research 67(2):175–185. 



124 
 

Ruhr, C. E. 1957. Effect of stream impoundment in Tennessee on the fish populations of 
tributary streams. Transactions of the American Fisheries Society 86(1):144–157. 

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. 
Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, 
I. M. Parker, J. N. Thompson, and S. G. Weller. 2001. The population biology of 
invasive species. Annual Review of Ecology and Systematics 32:305–332. 

Sammons, S. M. 2012. Diets of juvenile and sub-adult size classes of three Micropterus 
spp. in the Flint River, Georgia: potential for trophic competition. Southeastern 
Naturalist 11(3):387–404. 

Sammons, S. M., and L. A. Early. 2015. Movement and habitat use of Shoal Bass in a 
regulated portion of the Chattahoochee River, Alabama-Georgia, USA. Pages 
249–261 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. 
Black bass diversity: multidisciplinary science for conservation. American 
Fisheries Society, Symposium 82, Bethesda, Maryland. 

Seyoum, S., B. L. Barthel, M. D. Tringali, M. C. Davis, S. L. Schmitt, P. S. Bellotti, and 
W. F. Porak. 2013. Isolation and characterization of eighteen microsatellite loci 
for the Largemouth Bass, Micropterus salmoides, and cross amplification in 
congeneric species. Conservation Genetics Resources 5(3):697–701. 

Shaw, A. C. 2015. Black bass diversity and conservation: an overview. Pages 3–8 in M. 
D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass 
diversity: multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Stark, W. J., and A. A. Echelle. 1998. Genetic structure and systematics of Smallmouth 
Bass, with emphasis on Interior Highlands populations. Transactions of the 
American Fisheries Society 127(3):393–416. 

Stormer, D. G., and M. J. Maceina. 2008. Relative abundance, distribution, and 
population metrics of Shoal Bass in Alabama. Journal of Freshwater Ecology 
23(4):651–661. 

Taylor, A. T., J. M. Long, M. R. Schwemm, M. D. Tringali, and S. K. Brewer. 2016. 
Identification of Neosho Smallmouth Bass (Micropterus dolomieu velox) stocks 
for possible introduction into Grand Lake, Oklahoma. U.S. Fish and Wildlife 
Service Cooperator Science Series, 121–2016. 

Taylor, A. T., and D. L. Peterson. 2014. Shoal bass life history and threats: a synthesis of 
current knowledge of a Micropterus species. Reviews in Fish Biology and 
Fisheries 24(1):159–167. 



125 
 

Taylor, A. T., and D. L. Peterson. 2015. Movement, homing, and fates of fluvial-
specialist Shoal Bass following translocation into an impoundment. Southeastern 
Naturalist 14(3):425–437. 

Taylor, C. A., J. H. Knouft, and T. M. Hiland. 2001. Consequences of stream 
impoundment on fish communities in a small North American drainage. 
Regulated Rivers: Research & Management 17(6):687–698. 

Tringali, M. D., J. M. Long, T. W. Birdsong, and M. S. Allen, editors. 2015a. Black bass 
diversity: multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Tringali, M. D., P. A. Strickland, R. A. Krause, S. Seyoum, B. L. Barthel, A. Alvarez, 
and C. Puchulutegui. 2015b. Conservation status of Shoal Bass in the Chipola 
River, Florida: the threat of hybridization with native and nonnative congeners. 
Pages 523–536 in M. D. Tringali, J. M. Long, T. Birdsong, and M. S. Allen, 
editors. Black bass diversity: multidisciplinary science for conservation. 
American Fisheries Society, Symposium 82. 

Wagner, T., J. T. Deweber, J. Detar, and J. A. Sweka. 2013. Landscape-scale evaluation 
of asymmetric interactions between Brown Trout and Brook Trout using two-
species occupancy models. Transactions of the American Fisheries Society 
142(2):353–361. 

Wang, J. 2007. Triadic IBD coefficients and applications to estimating pairwise 
relatedness. Genetics Research 89(3):135–153. 

Wang, J. 2011. COANCESTRY: a program for simulating, estimating and analysing 
relatedness and inbreeding coefficients. Molecular Ecology Resources 11(1):141–
145. 

Ward, J. V., and J. A. Stanford. 1995. The serial discontinuity concept: extending the 
model to floodplain rivers. Regulated Rivers: Research & Management 10(2–
4):159–168. 

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of 
population structure. Evolution 38(6):1358–1370. 

Williams, J. D., and G. H. Burgess. 1999. A new species of bass, Micropterus cataractae 
(Teleostei: Centrarchidae), from the Apalachicola River basin in Alabama, 
Florida, and Georgia. University of Florida. 



126 
 

Winston, M. R., C. M. Taylor, and J. Pigg. 1991. Upstream extirpation of four minnow 
species due to damming of a prairie stream. Transactions of the American 
Fisheries Society 120(1):98–105. 

Wolf, D. E., N. Takebayashi, and L. H. Rieseberg. 2001. Predicting the risk of extinction 
through hybridization. Conservation Biology 15(4):1039–1053. 

Wright, S. 1951. The genetical structure of populations. Annals of Eugenics 15:323–354. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Table 1.  Sample site information for a study to assess the influence of Lake Lanier, GA, on hybridization between, and population 
structure within, native Shoal Bass (Micropterus cataractae) and non-native Alabama Bass (M. henshalli).  Table includes sample site 
numbers (corresponding to Fig. 1), site names (“D.S.” = downstream of), geospatial coordinates in decimal degrees, years that 
collections were made, approximate elevation of each site (m), approximate number of river-kilometers (rkm) of each site from Lake 
Lanier, the number of putative Shoal Bass and Alabama Bass collected at each site, and the number of taxonomically-screened ‘pure’ 
species at each site. 
   

              Shoal Bass Alabama  Bass 
Site 

# 
site name latitude longitude 

collection 
year(s) 

elevation 
(m) 

rkm from 
lake 

putative N pure N putative N pure N 

Chattahoochee River 
1 Flat Rock 34.466399 -83.686461 2013, 2014 330 6.4 3 1 17 9 
2 Bull Shoals 34.482440 -83.680216 2013, 2014 330 8.8 24 18 16 10 
3 Crow Island 34.503651 -83.666475 2013, 2014 334 11.7 10 9 0 0 
4 Buck Shoals 34.563347 -83.628713 2013, 2014 362 24.0 13 12 3 1!

       
50 40 36 20 

Chestatee River 
5 Big Rock 34.458609 -83.966767 2013, 2014 328 3.0 0 0 23 16 
6 Canoe Launch 34.471844 -83.979555 2013, 2014 330 5.8 6 3 28 19 
7 Horseshoe Bend 34.492659 -83.997084 2013, 2014 333 9.3 18 15 7 6 
8 D.S. Hwy 60 bridge 34.504223 -83.968851 2013, 2014 338 14.6 21 13 5 4 
              45 31 63 45 
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Table 2.  A hierarchical analysis of molecular variance (AMOVA) for native Shoal Bass (Micropterus cataractae) and non-native 
Alabama Bass (M. henshalli) inhabiting the Chattahoochee and Chestatee rivers, both of which are tributaries to Lake Lanier, GA.  
Fish were genotyped using 16 microsatellite DNA loci.  The percentage of molecular variation is partitioned into the following three 
hierarchical levels (largest to smallest):  among tributaries, among sites within tributaries, and within sites.  Corresponding F-statistics 
describe the amount of genetic differentiation at each level.  Asterisks (*) indicate statistically significant (P ≤ 0.05) amounts of 
molecular variation. 
 
!! Shoal Bass Alabama Bass 

Source of variation 
sums of 
squares 

variation 
(%) 

P-value F-statistic 
sums of 
squares 

variation 
(%) 

P-value F-statistic 

Among tributaries 8.55 3.6 * < 0.01   FCT =  0.036 7.91 3.7 * 0.01   FCT =  0.037 
Among sites within tributaries 10.78 -0.9 0.87   FSC = -0.009 12.87 0.1 0.35   FSC =  0.001 
Within sites 343.89 97.3 * 0.04   FST =  0.028 311.71 96.3 * < 0.01   FST =  0.037 

Total 363.22 100.0     332.48 100.0     
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Table 3.  A summary of population-genetic structuring mechanisms for native Shoal 
Bass (Micropterus cataractae) and non-native Alabama Bass (M. henshalli) inhabiting 
the Chattahoochee and Chestatee rivers, both of which are tributaries to Lake Lanier, GA.  
The following measures are averaged across 16 microsatellite DNA loci:  expected 
heterozygosity (He), and observed heterozygosity (Ho), mean number of alleles (A), and 
effective number of alleles (Ae).  We also reported the number of private alleles (Aprivate) 
by river.  
 
Site He Ho A Ae Aprivate N 

Shoal Bass 
All Chattahoochee River sites (1-4) 0.313 0.312 3.313 2.140 10 40 
All Chestatee River sites (5-8) 0.323 0.323 2.938 1.979 4 31 
Combined 0.318 0.317 3.125 2.059 -- 71 

      !Alabama Bass 
All Chattahoochee River sites (1-4) 0.335 0.335 2.688 1.771 3 20 
All Chestatee River sites (5-8) 0.312 0.337 3.188 1.752 11 45 

Combined 0.323 0.336 2.938 1.761 -- 65 
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Table 4.  A summary of mean (and standard deviation; SD) pairwise relatedness (r) and 
mean (SD) inbreeding coefficient (F) for native Shoal Bass (Micropterus cataractae) and 
non-native Alabama Bass (M. henshalli) inhabiting the Chattahoochee and Chestatee 
rivers, both of which are tributaries to Lake Lanier, GA.  The following measures were 
calculated from fish genotyped with 16 microsatellite DNA loci.  Sample sizes (N) are 
different because r is calculated from pairwise comparisons of individual genotypes, 
whereas F is calculated from individual genotypes directly.  Bolded lowercase letters 
indicate statistically significant (P ≤ 0.05) differences in r or F between tributary river 
systems for a particular species.  
 
  r F 

Site r est. SD N F est. SD N 

Shoal Bass 
All Chattahoochee River sites (1-4) 0.087 a 0.131 780 -0.020 0.096 40 
All Chestatee River sites (5-8) 0.018 b 0.167 465  0.014 0.113 31 
Combined 0.081 0.136 2485 -0.005 0.105 71 

      
!Alabama Bass 

All Chattahoochee River sites (1-4) 0.104 0.137 190 0.106 0.373 20 
All Chestatee River sites (5-8) 0.126 0.177 990 0.012 0.305 45 

Combined 0.103 0.158 2080 0.041 0.330 65 
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Table 5.  Sample site information for a study to assess the influence of Lake Tenkiller, OK, on hybridization between, and population 
structure within, native Neosho Smallmouth Bass (Micropterus dolomieu velox) and non-native Tennessee lake strain Smallmouth 
Bass (M. d. dolomieu).  Table includes sample site numbers (corresponding to Fig. 1), site names (“D.S.” = downstream, “U.S.” = 
upstream), geospatial coordinates in decimal degrees, years that collections were made, approximate elevation of each site (m), 
approximate number of river-kilometers (rkm) of each site from Lake Tenkiller, the number of putative Smallmouth Bass (“SMB”) 
collected at each site, and the number of taxonomically-screened ‘pure’ of each species sampled at each site. 

Site 
# 

site name latitude longitude 
collection 

year(s) 
elevation 

(m) 
rkm from 

lake 
SMB field 

collection N 
pure 

Neosho N 
pure lake 

strain N 
Lake Tenkiller 

1 Lake Tenkiller 35.59885 -95.044454 2014 192 N/A 32 0 16 

        
!

 
Illinois River 

2 U.S. of interface 35.842261 -94.920055 2015 194 1.3 26 7 2 
3 Riverside Park 35.922055 -94.923975 2015 203 12.7 22 5 4 
4 Round Hollow to Peavine 36.09421 -94.830422 2015 240 54.0 47 17 0 

       
95 29 6 

Baron Fork 
5 Welling Rd bridge 35.870224 -94.896924 2015 200 5.3 11 8 0 
6 U.S. Wall Trip Br confl. 35.894349 -94.863118 2015 208 10.8 12 11 0 
7 West of N 4580 Rd 35.912631 -94.846221 2015 217 15.1 12 8 0 
8 U.S. Hwy 51 bridge 35.936556 -94.827673 2015 220 19.1 12 11 0 

       
47 38 0 

Caney Creek 
9 D.S. S 581 Rd access 35.793278 -94.846425 2015 200 1.8 24 15 0 

10 U.S. S 581 Rd access 35.798125 -94.840462 2015 210 2.8 29 22 0 
11 Bidding Crk confl. 35.841145 -94.789427 2015 229 10.9 17 16 0 
12 N 4630 Rd crossing 35.841508 -94.77270 2015 237 13.3 24 23 0 
              94 76 0 
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Table 6.  A hierarchical analysis of molecular variance (AMOVA) for native Neosho Smallmouth Bass (Micropterus dolomieu velox) 
and non-native Tennessee lake strain Smallmouth Bass (M. d. dolomieu) inhabiting several tributaries to Lake Tenkiller, OK, 
including the Illinois River, Baron Fork, and Caney Creek.  Fish were genotyped using 7 microsatellite DNA loci.  The percentage of 
molecular variation is partitioned into the following three hierarchical levels (largest to smallest):  among tributaries, among sites 
within tributaries, and within sites.  Since Tennessee lake strain fish were captured from a sample in the lake, this site was incorporate 
at the tributary-level in these analyses.  Corresponding F-statistics describe the amount of genetic differentiation at each level.  
Asterisks (*) indicate statistically significant (P ≤ 0.05) amounts of molecular variation.  Negative values are artifacts of calculation 
methods and were interpreted as zero. 
 
!! Neosho Smallmouth Bass Tennessee lake strain Smallmouth Bass 

Source of variation 
sums of 
squares 

variation 
(%) 

P-value F-statistic sums of 
squares 

variation 
(%) 

P-value F-statistic 

Among tributaries 12.94 2.2 * < 0.01   FCT =  0.022 5.05 -2.9 0.72   FCT = -0.029 
Among sites within tributaries 19.65 0.7 0.06   FSC =  0.007 4.29 9.3 0.06   FSC =  0.090 
Within sites 568.40 97.1 * < 0.01   FST =  0.029 109.72 93.6 * < 0.01   FST =  0.064 

Total 600.99 100.0     119.07 100.0     
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Table 7.  Pairwise fixation index (FST; Wright 1951) values as calculated by Weir and Cockerham (1984), which quantify genetic 
differentiation, are reported for Neosho Smallmouth Bass genotyped with 7 microsatellite DNA loci.  Site numbers (see Table 5 for 
site descriptions) represent the Illinois River (2-4), Baron Fork (5-8), and Caney Creek (9-12), all of which are tributaries to Lake 
Tenkiller, OK.  Values in bold were considered significant at P ≤ 0.05.  Negative values are artifacts of calculation methods and were 
interpreted as FST = 0. 

 
Site # 2 3 4 5 6 7 8 9 10 11 12 

2 -- 
          3 0.0401 -- 

         4 0.0066 0.0056 -- 
        5 -0.0136 0.0324 -0.0019 -- 

       6 0.0076 0.0616 0.0102 -0.0159 -- 
      7 0.0050 0.0376 0.0045 -0.0093 0.0119 -- 

     8 0.0234 0.0395 0.0017 -0.0077 -0.0060 0.0025 -- 
    9 -0.0123 0.0686 0.0274 -0.0070 0.0017 0.0279 0.0124 -- 

   10 0.0167 0.0627 0.0267 0.0004 -0.0025 0.0276 0.0090 0.0005 -- 
  11 0.0122 0.1067 0.0575 0.0133 0.0096 0.0527 0.0435 0.0064 0.0094 -- 

 12 0.0351 0.1341 0.0675 0.0253 0.0137 0.0604 0.0532 0.0329 0.0090 0.0062 -- 
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Table 8.  A summary of population-genetic structuring mechanisms for native Neosho 
Smallmouth Bass (Micropterus dolomieu velox) and non-native Tennessee lake strain 
Smallmouth Bass (M. d. dolomieu) inhabiting several tributaries to Lake Tenkiller, OK.  
The following measures are averaged across 7 microsatellite DNA loci:  expected 
heterozygosity (He), and observed heterozygosity (Ho), mean number of alleles (A), and 
effective number of alleles (Ae).  We also reported the number of private alleles (Aprivate) 
by tributary.  
 
Site He Ho A Ae Aprivate N 

Neosho Smallmouth Bass 
All Illinois River sites (2-4) 0.679 0.650 10.571 4.565 13 29 
All Baron Fork sites (5-8) 0.613 0.639 9.571 3.748 6 38 
All Caney Creek sites (9-12) 0.553 0.543 10.429 3.623 12 76 
Combined 0.615 0.611 10.190 3.979 -- 143 

      
!Tennessee lake strain Smallmouth Bass 

Lake Tenkiller site (1) 0.809 0.764 7.571 5.128 22 16 
All Illinois River sites (2-4) 0.829 0.786 5.571 4.417 8 6 
Combined 0.819 0.775 6.571 4.772 -- 22 
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Table 9.  A summary of mean (and standard deviation; SD) pairwise relatedness (r) and 
mean (SD) inbreeding coefficient (F) for native Neosho Smallmouth Bass (Micropterus 
dolomieu velox) and non-native Tennessee lake strain Smallmouth Bass (M. d. dolomieu) 
inhabiting several tributaries to Lake Tenkiller, OK.  The following measures were 
calculated from fish genotyped with 7 microsatellite DNA loci.  Sample sizes (N) are 
different because r is calculated from all pairwise comparisons of individual genotypes, 
whereas F is calculated from individual genotypes directly.  Bolded lowercase letters 
indicate statistically significant (P ≤ 0.05) differences in r or F between tributaries for a 
particular species.  
 
  r F 

Site r est. SD N F est. SD N 
Neosho Smallmouth Bass 

All Illinois River sites (2-4) 0.041 a 0.081 406  0.069 d 0.229 29 
All Baron Fork sites (5-8) 0.063 b 0.107 703 -0.020 e 0.040 38 
All Caney Creek sites (9-12) 0.088 c 0.140 2850  0.011 d 0.086 76 
Combined 0.060 0.109 10153  0.014 a 0.126 143 

      !Tennessee lake strain Smallmouth Bass 
Lake Tenkiller site (1) 0.068 0.109 120  0.010 a 0.110 16 
All Illinois River sites (2-4) 0.121 0.205 15 -0.008 a 0.057 6 
Combined 0.053 0.105 231  0.005 a 0.099 22 
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Figure 1.  Lake Sidney Lanier, GA, study area and sample sites (see Table 1 for site 
descriptions) in the Chattahoochee and Chestatee rivers used to address the potential role 
of impoundments on hybridization between, and population structure within, native Shoal 
Bass (Micropterus cataractae) and non-native Alabama Bass (M. henshalli). 
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Figure 2.  Taxonomic assignment of 95 putative Shoal Bass (Micropterus cataractae) and 99 putative Alabama Bass (M. henshalli) 
collected from the Chattahoochee and Chestatee rivers (numbers correspond with sample sites in Table 1), which were genotyped with 
16 microsatellite DNA loci.  Assignments were made using the allele frequencies of reference taxa genotypes for seven Micropterus 
taxa (“LMB” = Largemouth Bass x Florida Bass intergrades; “ALB” = Alabama Bass; “SPB” = Spotted Bass; “CTB” = Choctaw 
Bass; “SMB” = Smallmouth Bass; “BAR” = Bartram’s Bass; “SHB” = Shoal Bass).  Colors represent distinct genetic clusters, and 
each individual’s proportional assignment to those clusters is represented within a single vertical bar.  
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Figure 3.  Genomic proportions of native Shoal Bass (“SHB”; Micropterus cataractae) 
and non-native Alabama Bass (“ALB”; M. henshalli) at a number of sample sites 
extending upstream from Lake Sidney Lanier, GA, into the Chattahoochee and Chestatee 
rivers.  Site numbers (see Table 1) and sample sizes (N) are reported for each sample site. 
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Figure 4.  Proportions of individuals belonging to five hybridization categories at sample 
sites in the Chattahoochee and Chestatee rivers upstream of Lake Sidney Lanier, GA.  
Colors in the figure legend correspond to pure, native Shoal Bass (Micropterus 
cataractae; “SHB”), individuals backcrossed towards Shoal Bass (“BC SHB”), F1 or 
later-generation hybrids between Shoal Bass and non-native Alabama Bass (M. 
henshalli), backcrossed Alabama Bass (“BC ALB”), and pure Alabama Bass (“ALB”).  
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a) 

 

b) 

 
Figure 5.  Population structure assignments to pure genotypes of (a) native Shoal Bass 
(Micropterus cataractae) and (b) non-native Alabama Bass (M. henshalli) within two 
tributaries of Lake Sidney Lanier, GA – the Chattahoochee River (“CHA”) and the 
Chestatee River (“CHE”).  Samples were genotyped with 16 microsatellite DNA markers 
and population structure (K = 2) in both species was estimated in Program STRUCTURE, 
using tributary of origin as prior information in the Bayesian clustering algorithm.  
Individual genotypes are ordered from downstream sites (left) to upstream sites (right) 
within each tributary. 
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Figure 6.  Tenkiller Ferry Lake, OK, study area and sample sites (see Table 5 for site 
descriptions) in the lake, the Illinois River, the Baron Fork, and Caney Creek that were 
used to address the potential role of impoundments on hybridization between, and 
population structure within, native Neosho Smallmouth Bass (Micropterus dolomieu 
velox) and non-native Tennessee lake strain Smallmouth Bass (M. d. dolomieu). 
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Figure 7.  Taxonomic assignment of 268 individuals identified as Smallmouth Bass (Micropterus dolomieu) from Lake Tenkiller, OK, 
and three tributary streams:  the Illinois River, Baron Fork, and Caney Creek (numbers correspond with sample sites in Table 5).  
Individuals were genotyped with 7 microsatellite DNA loci, and assignments were made using the allele frequencies of reference taxa 
genotypes of four genetically distinct Micropterus groups (“SPB” = Spotted Bass [M. punctulatus]; “TN lake strain” = Tennessee lake 
strain Smallmouth Bass [M. dolomieu dolomieu]; “Hatchery SMB” = a genetically distinct hatchery form of Smallmouth Bass [M. 
dolomieu dolomieu]; and “Neosho SMB” = Neosho Smallmouth Bass [M. dolomieu velox]).  Colors represent distinct genetic clusters, 
and each individual’s proportional assignment to those clusters is represented within a single vertical bar.
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Figure 8.  Genomic proportions of native Neosho Smallmouth Bass (“Neo”; Micropterus 
dolomieu velox) and non-native Tennessee lake strain Smallmouth Bass (“TN”; M. d. 
dolomieu) at a number of sample sites within, and extending into three upstream 
tributaries of, Lake Tenkiller, OK.  Site numbers (see Table 5) and sample sizes (N) are 
reported for each sample site. 
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Figure 9.  Proportions of individuals belonging to five hybridization categories at sample 
sites within, and in upstream tributaries of, Lake Tenkiller, OK.  Colors in the figure 
legend correspond to pure, native Neosho Smallmouth Bass (Micropterus dolomieu 
velox; “Neo”), individuals backcrossed towards Neosho Smallmouth Bass (“BC Neo”), 
F1 or later-generation hybrids between Neosho Smallmouth Bass and non-native 
Tennessee lake strain Smallmouth Bass (M. dolomieu dolomieu), backcrossed Tennessee 
lake strain  (“BC TN”), and pure Tennessee lake strain Smallmouth Bass (“TN”).
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Figure 10.  Population structure assignments to pure genotypes of native Neosho 
Smallmouth Bass (Micropterus dolomieu velox) within three tributaries of Lake 
Tenkiller, OK.  Samples were genotyped with 7 microsatellite DNA markers and 
population structure (K = 2) in both species was estimated in Program STRUCTURE, using 
tributary of origin as prior information in the Bayesian clustering algorithm.  Individual 
genotypes are ordered from downstream sites (left) to upstream sites (right) within each 
tributary. 
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Appendix I.  Putative Shoal Bass (“SHB”; Micropterus cataractae) and Alabama Bass (“ALB”; M. henshalli) that were assigned ≥ 
5% to a different taxonomic group based on a genetic clustering analysis of fish genotyped with 16 microsatellite DNA markers.  Fish 
were sampled from the Chattahoochee (“CHA”) and Chestatee (“CHE”) rivers (see Table 1 for site numbers) that feed Lake Sidney 
Lanier, GA.  Assignments were made using the allele frequencies of reference taxa genotypes for seven Micropterus taxa (“LMB” = 
Largemouth Bass x Florida Bass intergrades; “ALB” = Alabama Bass; “SPB” = Spotted Bass; “CTB” = Choctaw Bass; “SMB” = 
Smallmouth Bass; “BAR” = Bartram’s Bass; “SHB” = Shoal Bass).  Bolded proportional assignments are indicative of values that 
surpassed the ≥ 5% threshold. 
 
!! !! !! !! Individual genomic proportion (q) assignment  
Count site # tributary field ID LMB ALB SPB CTB SMB BAR SHB 

1 1 CHA ALB 0.0091 0.8952 0.0020 0.0635 0.0011 0.0048 0.0243 
2 4 CHA ALB 0.0311 0.6355 0.0029 0.0693 0.0091 0.2038 0.0484 
3 6 CHE ALB 0.0030 0.7949 0.0013 0.0566 0.0010 0.0054 0.1379 
4 6 CHE ALB 0.0040 0.7204 0.0019 0.1702 0.0010 0.0038 0.0985 
5 8 CHE SHB 0.0010 0.0040 0.0168 0.0095 0.0021 0.1133 0.8534 
6 8 CHE SHB 0.0020 0.0291 0.0086 0.0359 0.0039 0.0685 0.8519 

 
Note:  proportional assignments to Choctaw Bass and Bartram’s Bass do not necessarily indicate these taxa are present in the study 
area.  These assignments are more likely indicative of hybridization with native Chattahoochee Bass (M. chattahoochae) or Redeye 
Bass (M. coosae) – both of which are relatives to Bartram’s Bass (Freeman et al. 2015) and have been documented in the study area 
(A. Taylor, unpublished data). 
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Appendix II.  Putative Smallmouth Bass (“SMB”; Micropterus dolomieu) that were 
assigned ≥ 5% to sympatric Spotted Bass (“SPB”; M. punctulatus) or ≥ 10% to a 
genetically distinct hatchery form of Smallmouth Bass (“Hatchery SMB”).  These 
individuals were removed because they were not of direct interest to this study of native 
Neosho Smallmouth Bass (“Neosho SMB”; M. dolomieu velox) and non-native 
Tennessee lake strain Smallmouth Bass (“TN lake strain”; M. dolomieu dolomieu) in 
Lake Tenkiller, OK, and surrounding tributaries (“TNKR” = within Lake Tenkiller 
proper; “ILL” = Illinois River; “BF” = Baron Fork; “CC” = Caney Creek).  Bolded 
proportional assignments are indicative of values that surpassed the thresholds for 
removal. 
!! !! !! !! Individual genomic proportion (q) assignment  

Count site # tributary field ID SPB 
TN lake 

strain 
Hatchery 

SMB 
Neosho 

SMB 
1 1 TNKR SMB 0.0202 0.8427 0.1177 0.0194 
2 1 TNKR SMB 0.0099 0.6972 0.2448 0.0481 
3 1 TNKR SMB 0.0755 0.6538 0.2407 0.0300 
4 1 TNKR SMB 0.1474 0.6778 0.0439 0.1310 
5 1 TNKR SMB 0.3003 0.6262 0.0531 0.0205 
6 1 TNKR SMB 0.0073 0.8387 0.1116 0.0424 
7 1 TNKR SMB 0.1208 0.2443 0.5949 0.0401 
8 1 TNKR SMB 0.0508 0.5593 0.0246 0.3653 
9 1 TNKR SMB 0.0106 0.4668 0.2107 0.3120 

10 2 ILL SMB 0.0102 0.0433 0.1990 0.7475 
11 2 ILL SMB 0.0224 0.8085 0.1386 0.0304 
12 2 ILL SMB 0.0100 0.0779 0.1160 0.7961 
13 2 ILL SMB 0.4559 0.0108 0.0120 0.5213 
14 2 ILL SMB 0.2510 0.1481 0.0219 0.5790 
15 3 ILL SMB 0.0058 0.1166 0.1242 0.7534 
16 3 ILL SMB 0.0154 0.0842 0.4662 0.4341 
17 4 ILL SMB 0.0070 0.1324 0.3734 0.4873 
18 4 ILL SMB 0.0075 0.0528 0.1184 0.8214 
19 4 ILL SMB 0.1126 0.1196 0.2107 0.5571 
20 4 ILL SMB 0.0064 0.0482 0.2706 0.6749 
21 4 ILL SMB 0.0060 0.0174 0.1705 0.8061 
22 4 ILL SMB 0.0146 0.3756 0.1467 0.4631 
23 4 ILL SMB 0.0089 0.1795 0.4466 0.3649 
24 4 ILL SMB 0.0068 0.0707 0.1935 0.7289 
25 7 BF SMB 0.0080 0.0151 0.1365 0.8404 
26 9 CC SMB 0.0190 0.2596 0.2093 0.5121 
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CHAPTER IV 
 

 

POPULATION DYNAMICS OF SHOAL BASS                                                            

AT THE NORTHERN EXTENT OF THEIR RANGE 

 

Abstract 

 Fluvial fishes of the southeastern U.S., including several black bass (genus 

Micropterus) species, face a diverse array of conservation threats.  Often, the population 

dynamics data needed to understand drivers of imperilment and inform management 

decisions are lacking.  We used both raw catch data and capture-mark-recapture (CMR) 

methods to quantify dynamics of three Shoal Bass populations in the upper 

Chattahoochee River Basin (UCRB) presumed to be isolated and of conservation 

concern.  Compared to populations situated at more southerly latitudes, UCRB Shoal 

Bass grew slower, had increased longevity (up to 12 yrs), and experienced lower annual 

mortality (18-24%).  Recruitment strength was most variable in Big Creek, an urbanized 

and flashy system, where variability in discharge appeared to negatively influence 

recruitment.  Abundance was estimated at a number of UCRB sites, and insights drawn 

from this CMR study can help guide the design of future population monitoring studies.  

Over-winter survival might pose a recruitment pinch-point in UCRB populations, as we 
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estimated low over-winter survival (8%) of an age-0 cohort in Big Creek and discovered 

a positive relationship between fall cumulative growing degree-days and recruitment. 

Overall, the results of this study underscore the need for population-specific management 

of Shoal Bass and can be used to inform future monitoring and conservation efforts. 

 

Introduction 

 Fluvial systems in the southeastern U.S. feature diverse arrays of freshwater 

fishes, but habitat alteration, fragmentation, and invasion of non-native species have led 

to high imperilment rates in this region (Allan and Flecker 1993; Benz and Collins 1996; 

Jelks et al. 2008).  Population dynamics data are critical to informing management and 

conservation of imperiled fish populations, allowing managers to pinpoint critical life-

history periods, assess population trends, and establish monitoring benchmarks.  

Relationships between population parameters and environmental factors can also be 

characterized, allowing management actions to become more predictive in nature.  

However, obtaining reliable estimates of population parameters in fluvial systems is often 

difficult because of logistical constraints (e.g., habitat accessibility) and study design 

considerations like system openness (Gwinn et al. 2011).   

 Black bass (genus Micropterus) diversity is also concentrated within the 

southeastern U.S., and there is growing interest in the management and conservation of 

native species and other native forms that include subspecies, unique genetic lineages, 

and undescribed species (Birdsong et al. 2010; Tringali et al. 2015).  Approximately 17 

forms of black bass are currently recognized, and 10 of these forms were not recorded in 
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scientific literature until after 2000 (Long et al. 2015).  Black basses have long-supported 

popular sport fisheries in lakes and impoundments, but recent growth in kayak angling 

has increased interest in fishing for fluvial species (Long et al. 2015; Sammons et al. 

2015).  The status of at least 10 black bass forms is either vulnerable or unknown 

(Birdsong et al. 2010), and conservation threats include the effects of habitat alteration 

and loss, as well as hybridization and competition with non-native congeners that have 

been widely stocked throughout the region (Birdsong et al. 2010; Tringali et al. 2015).  

However, a current lack of population dynamics data at local scales hinders management 

and conservation progress (Birdsong et al. 2010; Taylor and Peterson 2014).  

 The Shoal Bass (M. cataractae) is a fluvial-specialist black bass species endemic 

to the Apalachicola-Chattahoochee-Flint Basin of Georgia, Alabama, and Florida 

(Williams and Burgess 1999).  Shoal Bass typically inhabit medium-to-large rivers and 

streams that contain shoal habitats – areas characterized by high flow velocities and 

bedrock, boulder, and gravel substrates (Williams and Burgess 1999; Taylor and Peterson 

2014).  Shoal Bass spawning behavior is atypical of other black basses.  Adults in the 

Flint River are potamodromous and undertake migrations of up to 200 km (Sammons 

2015), forming large spawning aggregations in shoal complexes (Goclowski et al. 2013; 

Taylor and Peterson 2014).  In the middle Chattahoochee River system, Shoal Bass have 

been documented moving into large shoal complexes of tributary systems, presumably 

for spawning (Sammons and Early 2015).  Throughout their native range Shoal Bass 

appear to be suffering continual declines, primarily from habitat alteration and loss, and 

are considered vulnerable to extinction (Jelks et al. 2008; Taylor and Peterson 2014).   
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Upon describing the Shoal Bass, Williams and Burgess (1999) recommended that 

range-wide population assessments be conducted to inform future management and 

conservation efforts.  Several studies have since quantified various population parameters 

in the upper and lower Flint River, Chipola River, and several tributaries to the middle 

Chattahoochee River.  In these systems, Shoal Bass experience rapid growth (reaching 

355 mm TL by ages 4 or 5), short lifespans (10-11 yrs max), and high annual mortality 

rates (40-60%; Sammons and Goclowski 2012; Ingram and Kilpatrick 2015; Woodside et 

al. 2015).  Local abundance of Shoal Bass has been estimated at some locations, with 

point estimates ranging from 13-72 within shoals of Little Uchee Creek, a middle 

Chattahoochee River tributary (Stormer and Maceina 2008), to 103-993 in several 

reaches of a 29.8-km long section of the Chipola River (Woodside et al. 2015).  

Abundance of spawning adults aggregated in a 1.6-km long spawning shoal in the lower 

Flint River ranged from 87-181 (Taylor 2012).  These studies help fill a previous lack of 

population dynamic data that has hindered population-specific management (Taylor and 

Peterson 2014; Sammons et al. 2015). 

 Despite these recent studies, relatively little is known about the populations 

inhabiting the northern extent of the species range within the upper Chattahoochee River 

Basin (UCRB).  Extensive damming has led to range loss and local extirpation of Shoal 

Bass populations within the area, but Shoal Bass are currently known to occur in four 

general areas within the UCRB (Williams and Burgess 1999; Long and Martin 2008).  

Upstream of Lake Sidney Lanier, Shoal Bass occur in the mainstem Chattahoochee and 

Chestatee rivers.  Downstream of Lake Lanier, coldwater releases have functionally 

eliminated Shoal Bass from a 77-km reach of the mainstem Chattahoochee River; 
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however, Shoal Bass are known to occur in Big Creek, a tributary to this reach (Long and 

Martin 2008).  Dams severely limited gene flow among UCRB populations, and the Big 

Creek population may be vulnerable to inbreeding depression (Dakin et al. 2015).  Near 

the southern extent of the UCRB, a Shoal Bass population also exists in the tailwater-

influenced Chattahoochee River below Morgan Falls Dam.  During recent restoration 

efforts below Morgan Falls Dam, researchers estimated 20% annual mortality (20-49% 

lower than seen in other studied populations) and a maximum age of 14 yrs (3-4 yrs older 

than seen in other studied populations; Porta and Long 2015).  However, these 

parameters may not be indicative of other UCRB populations because artificially-

depressed water temperatures in this reach could have influenced growth and longevity 

(Porta and Long 2015).   

 With increasing interest in Shoal Bass fisheries coinciding with a lack of 

information to inform management of UCRB populations, our goal was to characterize 

Shoal Bass population dynamics in Big Creek, as well as in the Chattahoochee and 

Chestatee rivers above Lake Lanier.  Specifically, our objectives were to 1) model 

individual growth parameters over time; 2) estimate annual mortality; 3) investigate 

potential relationships between recruitment strength and environmental factors; 4) 

quantify local abundance; and 5) estimate apparent survival of age-0 and age-1 cohorts.  

Addressing these questions can inform future management and conservation efforts for 

UCRB populations, and provide a better understanding of the range-wide conservation 

status of Shoal Bass. 
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Methods 

I.  Study sites and sampling. – Big Creek is a fourth-order stream that has a total 

drainage area of approximately 250 km2 within the rolling hills of the Piedmont 

ecoregion.  Lower portions of Big Creek’s watershed are situated within the Atlanta 

metropolitan area and feature increased development and impervious surfaces, 

contributing to increased sediment loads and flashiness of streamflow (Rose and Peters 

2001; Long and Martin 2008).  Shoal Bass are known to occur in a 2-km reach of Big 

Creek from its confluence with the Chattahoochee River upstream to Roswell Mill Dam, 

constructed in the 1830’s (Long and Martin 2008).  The lower 1-km is a slow-moving, 

channelized reach with silt deposits and large woody debris; however, the upper 1-km 

features a series of shallow shoal habitats (Graf and Plewa 2006).  We sampled this upper 

1-km (site #1; Table 1) with a team of 4-6 backpack electrofishers and approximately 10 

netters spanning the stream’s width (Fig. 1).  Sampling proceeded methodically upstream 

to the base of Roswell Mill Dam, and effort (min) was recorded as the total on-time 

averaged across the number of backpack electrofishers deployed.  Backpack electrofisher 

settings were adjusted to obtain an average output of approximately 0.40 amps.  

Sampling was performed in the following months, with two sampling days in close 

proximity in each month: May 2014 (20th and 22nd), October 2014 (17th and 18th), May 

2015 (13th and 15th), and May 2016 (16th and 19th). 

The Chattahoochee River begins in the mountainous Blue Ridge ecoregion, but 

the majority of the river’s catchment is situated in the Piedmont ecoregion.  As the 

Chattahoochee River reaches Lake Lanier, it is a fifth-order stream that drains 

approximately 970 km2.  The watershed is moderately forested, but poultry farming and 
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housing developments have led to increased sediment and nutrient inputs (Zeng and 

Rasmussen 2005).  At higher elevations, cool headwater streams and the mainstem river 

support seasonal trout fisheries, whereas Shoal Bass mainly occur in the lower portions of 

the river near Lake Lanier.  Therefore, we established four 350-m long sampling sites 

spanning upstream from the river’s interface with Lake Lanier (site #’s 2-5; Table 1).  We 

used a jet-drive boat electrofisher to sample each site with pulsed, direct current for a 

total effort of 15 mins pedal time.  While sampling each site, two upstream-to-

downstream passes were made so that each side of the river was sampled sporadically 

from riverbank to mid-channel.  Sites were sampled in May 2013 (5th), 2014 (27th and 

29th), and 2015 (18th and 20th).  Sampling in May 2016 was attempted but not completed 

because low discharge prevented access to sampling sites. 

The Chestatee River’s headwaters also originate in the mountainous Blue Ridge 

ecoregion, and as it proceeds through the Piedmont ecoregion, the river becomes a 

fourth-order stream that drains approximately 600 km2.  The Chestatee River is situated 

within a forested watershed with one of the lowest human population densities in the 

UCRB (Rose and Peters 2001).  A gold rush in the 1830’s and 1840’s exposed the basin 

to heavy metal contaminants, like mercury, that are still present in sediment (Leigh 

1997), but effects to Shoal Bass and other fishes are unknown.  A Shoal Bass population 

is known from the lower reaches of the Chestatee River, so we established four sampling 

sites and sampled them as we did in the Chattahoochee River (site #’s 6-9; Table 1).  

Sampling was performed in May 2013 (29th), 2014 (19th and 21st), 2015 (12th, 14th, and 

18th), and 2016 (17th and 18th). 
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Data collection was similar among the three study systems.  Black bass of all 

species and sizes were collected and identified.  For each Shoal Bass captured, the 

following data were obtained:  total length (TL; mm), weight (g), and a sample of 3-5 

scales from the dorsal region.  All sampling events after May 2013 also incorporated a 

capture-mark-recapture (CMR) study design (described in III. Data Analyses), wherein 

we used passive integrated transponder (PIT) tags (Oregon RFID 8mm FDX-B glass tags 

in Big Creek; 12.5mm FDX-B plastic-encapsulated tags in Chattahoochee and Chestatee 

rivers) to provide individual identification over time.  Upon capture, each fish was 

scanned for a PIT tag with a handheld reader (Agrident APR350), and if not already 

tagged and ≥ 70 mm TL, a tag was injected into the coelomic cavity immediately 

posterior to the pectoral fin.  Similar tagging methods typically yield 80-100% post-

tagging survival and 95-100% tag retention (Siepker et al. 2012; Clark 2016).  Fish were 

released near original capture locations following data collection. 

II.  Age estimation. – Because the populations of interest were of conservation 

concern, we estimated age (in years) from non-lethal scale samples using a consensus-

based method (Long et al. in review).  Briefly, two readers independently estimated 

annuli count from a scale sample without consideration of capture date or fish size.  If the 

two readers’ final annuli counts matched, this was adopted as the consensus count; if not, 

an independent concert read provided a consensus count.  Because season-at-capture can 

influence age estimation (i.e., annulus formation during spring months), a final consensus 

estimation of age was made with consideration of consensus annuli counts and capture 

date.  The reliability of this method was assessed by 1) examining precision of age 

estimates; 2) using mark-recapture data to verify timing of first annulus formation and to 
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verify annulus periodicity across all ages by comparing age estimates of recaptured fish 

to known times-at-large, which together can provide in situ validation (Campana 2001); 

and 3) comparing age-independent von Bertalanffy growth models to models built with 

estimated ages to assess reliability of age estimates to inform management (Long et al. in 

review). Briefly, the results of this unpublished study showed that precision (coefficient 

of variation; CV) was low (mean = 5.4%) along with accuracy (57% agreement between 

estimated age and expected increment formation with time at large).  But, age estimates 

were unbiased (approximately equal amounts of over- and under-estimates of age), and 

differences among mean estimated length-at-age from von Bertalanffy growth models 

varied minimally (mean CV = 4.9%) including models that were age-independent (i.e., 

mark-recapture measurements of length over time).  Overall, these results suggested that 

age estimates were reliable and useful for informing management (Long et al. in review).  

III.  Data analyses. – Fish that lacked an age estimate (i.e., regenerated scales or 

missing samples) were proportionally assigned an age using age-length keys constructed 

in the FSA package for Program R (Isermann and Knight 2005; Ogle 2015).  Age-length 

keys were built with 25-mm TL bins, and fish were assigned an age based on keys built 

for each system and sampling month combination to avoid potential bias introduced by 

variation in growth among systems or sampling seasons (Ogle 2015).  To visualize 

differences in catch among systems (May events only, for consistency), we plotted 

length-frequency with the following age categories superimposed: young age classes 

(ages 1 and 2), non-harvestable size adults (< 355 mm TL; ages 3-6), and harvestable size 

adults (≥ 355 mm TL; ages 7+). 
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i.  Growth. – To model Shoal Bass growth in the UCRB, we used the von 

Bertalanffy growth function: 

E|L|t = L∞ (1 – e –K ( t – t
0  

) ), 

where E|L|t is mean length at age t.  Parameters estimated by the function include the 

maximum mean length (L∞), a growth parameter (K) that measures how quickly the 

function approaches L∞, and the theoretical age in years for a length of zero (t0).  We 

obtained parameter starting values for each system (Ford 1933; Walford 1946) and then 

fit nonlinear regressions for the growth function.  To discern any differences in growth 

functions among systems, we fit eight von Bertalanffy models that allowed different 

combinations of model parameters to be shared among all systems or to vary by system 

(Ogle 2015).  We performed model-ranking with Akaike’s information criterion (AIC; 

Akaike 1973) with small-sample bias adjustment (AICc; Hurvich and Tsai 1989) to 

determine the model with the best fit to the data (lowest AICc score), and Akaike weights 

(w) quantified the relative strength of evidence for each model (Burnham and Anderson 

2002).  The most plausible model was used to infer differences in growth parameters 

among populations, and estimates of mean-length-at-age and non-parametric 

bootstrapped 95% confidence intervals were retrieved.  We built, fit, and ranked growth 

function models using the FSA and ‘nlstools’ packages in Program R (Ogle 2015). 

ii.  Mortality. – We estimated annual mortality in each system using raw catch 

data and estimated ages.  We chose this approach because our mark-recapture dataset was 

not sufficient to estimate age-specific survival, with few exceptions (see v. Survival of 

young cohorts).  For consistency among systems, we used only May sampling events.  
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We performed linear regression of catch-curves using the FSA package in Program R 

(Ogle 2015), wherein we used weighted regression to reduce the influence of older, 

under-represented age classes (Maceina and Bettoli 1998).  We pooled catch data by age 

(i.e., not year-class) in each system across sample years to dampen the potential effects of 

recruitment variation (Ogle 2015). We only included ages that recruited to the gear in 

each system by excluding ages in the ascending limbs of the catch-curves (Ogle 2015).  

iii.  Recruitment variation. – We quantified recruitment variation with a distinct 

set of weighted catch-curve regressions, wherein the residuals provided an index of year-

class strength (Maceina 1997; Maceina and Bettoli 1998).  We used raw catch data from 

May samples and, again, only included ages recruited to the gear used in each system.  

Regressions were performed for each system and sampling year combination, keeping 

track of the year-class represented by each age.  In this manner, a given year-class in a 

system could be represented by multiple residuals derived from different sampling years.  

We used raw residuals for modeling environmental relationships, but used Studentized 

residuals to facilitate interpretation of strong (≥ 2 SD) and weak (≤ -2 SD) year-classes 

(Maceina 1997).  

We calculated environmental variables for four biologically-relevant seasons in 

each year: “spring” spawning and hatching period (April-June; Taylor and Peterson 

2014) ; “summer” post-hatch period (July-September; Sammons and Goclowski 2012); 

“fall” growth period (October-December; Woodside et al. 2015); and “over-winter” 

survival (January-March; Suski and Ridgway 2009).  For comparability, we followed 

Woodside et al. (2015) in calculating seasonal hydrology variables based on mean daily 

discharge (m3/s):  minimum, median, average, SD, and number of days above seasonal 
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average.  Mean daily discharge values were obtained from USGS stream gauge stations 

immediately upstream or downstream of sampling sites that provided data through the 

timespan of year-classes represented in our catch (02335700 [Big Creek], 02331600 

[Chattahoochee River], 0233500 [Chestatee River]).  To characterize temperature 

conditions favorable to growth, we also included seasonal cumulative growing degree-

days and average growing degree-days.  We calculated growing degree-days with a base 

temperature of 0 ºC (Schlosser et al. 2000; Chezik et al. 2013), using daily high and low 

air temperature records from the NOAA National Centers for Environmental Information 

(USW00053863 [Big Creek]; USC00093621 [Chattahoochee and Chestatee rivers]).  

We investigated possible relationships between recruitment strength and 

environmental factors in each system using linear models built with a limited set of 

variables.  Continuous variables were natural-log transformed and degree-day counts 

were transformed by the natural log of (x+1) to meet normality assumptions prior to 

modeling.  Pearson correlation coefficients among variables commonly exceeded r = 

|0.7|; therefore, we conducted a multivariate principal components analysis (PCA) with 

the transformed datasets to identify redundant linear trends among variables in each 

system.  We conducted PCA analyses in PC-ORD v. 6 (McCune and Mefford 2011) to 

reduce the number of variables to be modeled.  We retained the highest-loading variable 

to each axis (i.e., highest correlated to each axis) where the number of axes considered 

explained at least 10% of the variation in the dataset.  Because of sample size limitations 

and the exploratory nature of this modeling exercise, we opted to construct univariate 

linear models only.  We related recruitment strength (residuals) to environmental 

variables using linear models constructed with the ‘lm’ command in Program R at a 
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significance level of p ≤ 0.05.  We evaluated the assumption of homoscedasticity with 

residual plots and the assumption that residuals are normally distributed with Q-Q plots.   

iv.  Abundance. – We analyzed CMR data from all sampling occasions after May 

2013 using Huggins’ closed-population models (Huggins 1989) in Program MARK v. 6.0 

(White and Burnham 1999).  Huggins’ models estimate abundance (N) as a derived 

parameter, along with 95% confidence intervals (CI’s), based on capture (p) and 

recapture probabilities (c) from CMR histories.  We considered sampling events held 

within the same month to represent closed periods during which N was estimated.  

Sampling events within each month were usually conducted 1-2 days apart; however, 

equipment malfunction caused a 6-day interval between sampling events for two 

Chestatee River sites (#’s 8 and 9) in 2015.  We parameterized models to allow p to vary 

over time because of heterogeneity in stream conditions and sampling crews during the 

closed periods.  

v.  Survival of young cohorts. – We used open-population CMR analysis to 

estimate survival (ϕ) of the 2014 year-class of Shoal Bass in Big Creek.  In Program 

MARK (White and Burnham 1999), we used the Cormack-Jolly-Seber (CJS) model with 

a parameterization that allowed ϕ to vary over time and we held p constant (because of 

data constraints).  The 2014 year-class was first encountered as age-0 fish in Fall 2014, 

followed by age-1 fish in Spring 2015 and age-2 fish in Spring 2016.  We only included 

capture histories of fish encountered in one of these seasons with the corresponding 

correct age so as to estimate ϕ for the 2014 year-class only.  Capture histories associated 

with individual sampling events within each season/year combination were pooled for 

analysis, and we manually adjusted model time intervals to correspond to the elapsed 
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time between seasons (approximately a half-year interval followed by a full-year 

interval).  The interval between the first two seasons provided an opportunity to quantify 

over-winter ϕ of young-of-year Shoal Bass, a potential pinch-point in the recruitment of 

black basses to age-1 (Fullerton et al. 2000; Curry et al. 2005).  The interval between the 

last two seasons was used to estimate ϕ of fish from age-1 to age-2, which may also be 

less than survival of older age classes whose survival was estimated with catch-curve 

regressions.   

 

Results 

We caught 1,028 Shoal Bass during May sampling events, with 549 (53%) from 

Big Creek, 185 (18%) from the Chattahoochee River, and 294 (29%) from the Chestatee 

River.  An additional 161 Shoal Bass from Big Creek were captured in October 2014.  

We estimated age for 92% of scale samples and assigned ages with age-length keys to 27 

samples in Big Creek, 27 in the Chattahoochee River, and 31 in the Chestatee River.  

Ages ranged from 1-12 yrs in all three systems, and age-0 fish were only encountered in 

Big Creek in October 2014.  Differences in raw catch were evident among systems, with 

more younger and shorter fish captured in Big Creek than in either river system (Fig. 2).  

Harvestable-size fish (≥ 355 mm TL) comprised 10% of Big Creek’s catch compared to 

18% in both river systems.  Maximum TL observed was 478 mm in Big Creek, 516 mm 

in the Chattahoochee River, and 487 mm in the Chestatee River.   

i.  Growth. – von Bertalanffy growth functions were built using 388 samples from 

Big Creek, 185 samples from the Chattahoochee River, and 294 samples from the 
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Chestatee River.  Model selection supported the most complex model that allowed all 

three parameters to differ among systems, and this model had high relative strength of 

evidence compared to other candidate models (w = 0.53; Table 2).  Although 95% 

confidence intervals overlapped for all parameters in all three systems, the Chattahoochee 

River had a higher estimate of L∞ and lower estimates of K and t0, as well as wider 

confidence intervals around parameter estimates (Table 3).  Despite these differences, the 

growth functions for each system produced similar mean-length-at-age estimates, with 

divergence in estimates occurring mostly at younger (0 and 1 yrs) and older (11 and 12 

yrs) ages (Table 4; Fig. 3).   

ii.  Mortality. – Shoal Bass did not fully recruit to boat-electrofishing gear used in 

the Chattahoochee and Chestatee rivers until age-3, but recruited to backpack-

electrofishing gear in Big Creek at age-0.  Because catch-curve regressions assume 

mortality rates are equal across all ages included, we excluded younger age classes 

recruited to the gear in Big Creek because they may experience disproportionately higher 

mortality rates than older age classes (see Results:  v. Survival of young cohorts).  In this 

manner, results were more comparable across systems because mortality was estimated 

across same range of ages.  Catch-curve estimates of annual mortality for ages 3-12 were 

similar among systems:  18.4% (95% CI’s: 7.8-27.8%; R2 = 0.65) in Big Creek, 20.8% 

(95% CI’s: 13.2-27.7%; R2 = 0.81) in the Chattahoochee River, and 23.7% (95% CI’s: 

13.8-32.4%; R2 = 0.80) in the Chestatee River (Fig. 4). 

 iii.  Recruitment variation. – We used ages 3-12 to perform weighted catch-curve 

regressions to investigate recruitment variation in each system.  Studentized residuals 

indicated strong year-classes in 2006 and 2007 in Big Creek and in 2006 in the 
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Chattahoochee River, whereas weak year-classes were evident in 2004, 2009, and 2013 

in Big Creek, in 2003, 2004, and 2011 in the Chattahoochee River, and in 2007 and 2008 

in the Chestatee River (Fig. 5).  Principal components analysis identified three axes that 

explained at least 10% of the variation in each system, wherein the majority of variation 

among environmental variables (PC-axis 1) in Big Creek was driven by summer SD of 

discharge (49%), compared to fall minimum discharge in the Chattahoochee (50%) and 

Chestatee (50%) rivers (Table 5).  Two significant linear models were obtained in Big 

Creek, one suggesting a negative relationship between recruitment strength and summer 

SD of discharge (p < 0.01; R2 = 0.38) and another indicating a positive relationship 

between recruitment strength and fall cumulative growing degree-days (p = 0.04; R2 = 

0.15; Table 6).  We obtained a single significant model in the Chattahoochee River that 

suggested a positive relationship between recruitment strength and winter SD of 

discharge (p = 0.04; R2 = 0.16).  No significant models were obtained in the Chestatee 

River, likely because recruitment variation was not as pronounced as in the other 

systems.  No violations to linear model assumptions of homoscedasticity or normality of 

residuals were evident among the models examined. 

 iv.  Abundance. – Numbers of marked fish were highest in Big Creek and in 

Chestatee River site #9, which also had some of the highest recapture rates (Table 7; 

CMR capture histories are provided in Appendix 1).  Mean TL of captures was usually 

lower than mean TL of recaptured fish because tagged fish grew between initial capture 

and subsequent recaptures across primary periods.  We did not document movement of 

tagged fish among sample sites in the Chestatee River, and only one fish moved between 

sites in the Chattahoochee River (from site #2 to #3, ~2.4 km upstream); thus, we treated 



164 
 

sites as independent locations instead of pooled, system-wide estimates in both rivers.  

We were unable to estimate N at a subset of sites in the Chestatee River because of a lack 

of recaptured fish, including site # 6 (2014, 2015, and 2016), # 7 (2014 only), and # 8 

(2014 only; Table 7).  Point estimates of N varied from 10-154  at sites in the 

Chattahoochee and Chestatee rivers, and low proportions of recaptured fish at some sites 

resulted in relatively wide confidence intervals.  Point estimates of N in Big Creek (site # 

1) ranged from 219-348, and overlapping 95% CI’s indicated that estimates were similar 

across all sampling seasons.  Abundance in Big Creek was largely driven by young fish, 

as 78% (316 of 408) of unique PIT-tagged individuals had max age estimates between 0-

2 yrs, compared to only 9% (36 of 408) having max ages of ≥ 7 yrs. 

 v.  Survival of young cohorts. – The age-0 cohort spawned in 2014 was estimated 

to have an over-winter survival of ϕ = 8.0% (95% CI’s: 1.3-35.4%) between Fall 2014 

and Spring 2015.  The same cohort was estimated to have an annual survival rate of ϕ = 

33.3% (95% CI’s: 11.9%-64.8%) between age-1 (May 2015) and age-2 (May 2016).  

 

Discussion 

The results of this study provide baseline life history and population dynamics 

data that can be used to tailor management, prioritize conservation, and guide future 

monitoring efforts.  Compared to other studied populations, Shoal Bass in the UCRB 

have pronounced differences in growth, longevity, and annual mortality that may warrant 

population-specific management strategies.  Over-winter survival appears to be an 

important pinch-point for recruitment in UCRB populations, which may help explain 
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observed life-history characteristics.  Of the three populations investigated, the isolated 

population in Big Creek appears to be of greatest conservation concern because of 

variable recruitment and low adult abundance.   

The life history differences discovered in UCRB Shoal Bass populations 

underscores the need for population-specific management strategies.  Because fishes are 

ectothermic, temperature-related differences in life histories are common across latitude 

and elevation gradients (Coutant 1976; Conover 1992; Kennedy et al. 2003).  In the 

UCRB, Shoal Bass grew slower (reaching 355 mm TL at age 7, compared to ages 4 or 5 

elsewhere; Sammons and Goclowski 2012; Woodside et al. 2015) and attained shorter 

maximum lengths (516 mm TL in the Chattahoochee River compared to 561 mm TL in 

lower Flint River; Ingram and Kilpatrick 2015) than in populations situated in southern 

latitudes and lower elevations.  We estimated ages up to 12 yrs in all three UCRB 

systems compared to rare estimates of 10-11 yrs in the Flint and Chipola rivers 

(Sammons and Goclowski 2012; Ingram and Kilpatrick 2015; Woodside et al. 2015), 

suggesting Shoal Bass also live longer in UCRB populations.  Coinciding with these 

differences, UCRB populations also experienced noticeably lower annual mortality (18-

24%) compared to similarly-derived estimates of 40-69% in the Flint and Chipola rivers 

(Sammons and Goclowski 2012; Ingram and Kilpatrick 2015; Woodside et al. 2015).  

These life history differences may warrant population-specific management strategies.  

For example, Shoal Bass in the UCRB must live approximately 7 years to reach 

harvestable size (≥ 355 mm TL) whereas fish in the lower latitude portions of their range 

reach this size in 4-5 years, which would differentially affect population responses to 

exploitation.  Because fishing pressure for Shoal Bass in the UCRB is unknown, creel 
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surveys to assess angler effort and harvest are warranted, along with an evaluation of how 

harvest-limit adjustments could influence these populations.   

Over-winter survival could be important for recruitment in UCRB populations.  

The low over-winter survival of the 2014 year-class in Big Creek was similar to other 

black bass species at northern latitudes where winters are more severe (Fullerton et al. 

2000; Curry et al. 2005), suggesting a strong forcing mechanism present in this year-class 

at least.  Winter mortality has been documented to be important for recruitment in other 

black bass species, with growth-dependent effects evident (Oliver et al. 1979; Miranda 

and Hubbard 1994). Thus, conditions favorable to faster growth prior to the over-

wintering period could be favorable for UCRB Shoal Bass recruitment (Conover 1992).  

In our catch-curve residual analysis, recruitment in Big Creek was positively related to 

cumulative growing degree-days in fall, a presumed growing period for age-0 Shoal Bass.  

Furthermore, recruitment in the Chattahoochee River was positively related to winter SD 

of discharge, which may also indicate an influence of winter temperature.  Discharge in 

the upper Chattahoochee River during winter is generally a function of the number and 

magnitude of rain events, which temporarily elevate water temperatures (data available 

from USGS gauge 02330450).  Winters with above-average water temperatures, or even 

brief periods of elevated water temperatures, may confer improved over-winter survival 

of Shoal Bass in the UCRB by temporarily relieving metabolic demands on stored energy 

reserves and perhaps allowing foraging activity (see Fullerton et al. 2000).  The slower 

growth and increased longevity we documented in UCRB populations may reflect an 

adaptation to poor recruitment driven by marginal temperature conditions, a phenomenon 

documented in other freshwater fishes (Conover 1992; Kennedy et al. 2003).  
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Inconsistency in recruitment variability among systems suggests that watershed-

specific factors are influential.  Two previous studies provide contrasting conclusions 

about Shoal Bass recruitment, similar to our results.  Low variation in recruitment in the 

upper Flint River suggests that the environment is either stable or that the environment 

exerts little influence (Sammons and Goclowski 2012), but variable recruitment in the 

Chipola River has been associated with poor year-classes related to high spring and 

summer discharge (Woodside et al. 2015).  In our study, recruitment variation coincided 

with the degree of landcover alteration in each watershed – from little variation in the 

relatively-forested Chestatee River to high variation in the urbanized Big Creek.  

Negative relationships between recruitment and increased variation in summer discharge 

in Big Creek are likely linked to increased sedimentation and flashiness associated with 

watershed urbanization.  Sedimentation can deteriorate spawning substrate quality (Kemp 

et al. 2011), and larval black bass are vulnerable to downstream displacement during high 

discharge events (Harvey 1987).  High flow events and increased variation in discharge 

during spawning season have been shown to negatively influence recruitment in fluvial 

populations of Smallmouth Bass (Lukas and Orth 1995; Smith et al. 2005), and 

Largemouth Bass and Suwanee Bass (Bonvechio and Allen 2005).  To date, the effect of 

watershed land use on Shoal Bass populations is anecdotal, but has been implicated in 

Shoal Bass population declines in several tributaries to the middle Chattahoochee River 

(Stormer and Maceina 2008).  Additional studies are warranted to identify the specific 

pathways through which landcover characteristics influence Shoal Bass recruitment and 

population persistence.   



168 
 

Recruitment variability in Big Creek, coupled with the low number of older 

adults, heightens conservation concern for this isolated population (Dakin et al. 2015).  In 

Little Uchee Creek, a similar-sized tributary of the middle Chattahoochee River, adult 

abundance estimates were similar to those in Big Creek prior to an apparent functional 

extirpation of Shoal Bass in Little Uchee Creek (Stormer and Maceina 2008).  Variable 

recruitment, low adult abundance, and the isolated nature of Big Creek raises concerns 

that the population could be vulnerable to local extirpation caused by several years of 

poor environmental conditions, demographic stochasticity, or sudden anthropogenic 

disturbance.  In addition to these population-dynamic concerns, the genetic integrity of 

the Shoal Bass population in Big Creek is threatened by introgressive hybridization with 

non-native congener species like Smallmouth Bass (M. dolomieu; Dakin et al. 2015) and 

Alabama Bass (M. henshalli; A. Taylor, unpublished data).  Supplemental stocking may 

help bolster the Big Creek population during years of poor recruitment and alleviate 

genetic concerns like inbreeding depression and introgression of non-native alleles 

(Dakin et al. 2015; Porta and Long 2015).  If stocking is implemented, brood stock source 

is an important consideration because life history differences similar to those documented 

in UCRB populations have a genetic basis in other fishes (Schultz et al. 1998; Conover et 

al. 2009).  Stocking fish from southern latitudes may increase mortality and degrade any 

potential local adaptations through hybridization, as documented in Largemouth Bass (M. 

salmoides; Fullerton et al. 2000). 

Our efforts to estimate local abundance provided additional population status 

insights that can be used to inform future population monitoring efforts.  Sites with 

appreciable uncertainty around N estimates had low capture and recapture rates.  
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Managers interested in developing long-term monitoring protocols for Shoal Bass may 

wish to weigh potential tradeoffs in the effort required to collect data and the degree of 

accuracy and precision needed with abundance estimates to inform management.  If 

CMR approaches are employed to monitor Shoal Bass abundance in the future, additional 

sampling events and increased sampling effort within each event would allow for more 

realistic model parameterizations and provide increased precision.  CMR studies are 

effort-intensive and may not always be feasible, but resource managers interested in long-

term monitoring of population trends may benefit from understanding how p varies 

across individual (e.g., length) and environmental (e.g., substrate, flow velocity, depth, 

and water temperature) factors (for example, Price and Peterson 2010; Mollenhauer and 

Brewer 2017).  A less-intensive monitoring option would be to use catch-per-unit effort 

(CPUE) as an index of abundance, but this index may be misleading when the 

assumption of constant p is violated (Hilborn and Walters 1992; Gwinn et al. 2011).  If 

variation in p was quantified across a range of sampling conditions, CPUE could be 

adjusted to provide a more-reliable index of abundance (Hubert and Fabrizio 2007). 

The results of our study point to additional sampling-related issues that should be 

addressed in the future.  First, improved understanding of Shoal Bass movement in the 

UCRB would not only provide additional insight into the ecology of these northern 

populations, but could also be used to refine CMR study design (e.g., sampling area size 

and closure assumptions; Gwinn et al. 2011).  We documented only one individual 

moving between sample sites in either river system, so Shoal Bass in the UCRB may be 

more sedentary than in other portions of their range (e.g., long-distance migration to 

spawning sites in the Flint River; Sammons 2015), or adults may have high spawning-site 
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fidelity to particular shoals.  Second, sampling in riverine shoal habitats presented a 

challenge to study design.  On several occasions, access to sampling sites with the jet-

drive boat electrofisher was impeded because of low water levels.  Innovation of 

sampling gears and strategies for sampling shoal habitats of large rivers would make 

long-term monitoring efforts more practical. 

Several of the results of this study, including growth models, mortality estimates, 

and recruitment variation, are influenced by our age estimates.  Scale-based age estimates 

are typically less precise than those based on otoliths and may be plagued by annuli 

resorbing or annuli crowding in older fish, highlighting the importance of validating 

annuli formation (Quist et al. 2012).  The scale-based age estimates used in this study 

were considered to be reliable at the population-level of management (i.e., similar growth 

model results with age-independent estimates) and without systematic bias (Long et al. in 

review).  Similar conclusions were reached with known-age Smallmouth Bass, wherein 

scale-based age estimates were 71% accurate but produced growth curves that 

corresponded well to measured mean total lengths (Heidinger and Clodfelter 1987).  

These results demonstrate that individual-level aging error does not necessarily constrain 

population-level inferences.  Moreover, although we found no systematic bias in our age 

estimates, if annuli resorbing or crowding resulted in any undetected underestimation in 

age, our estimates of longevity and annual mortality would only become more 

differentiated from other populations (i.e., even greater increased longevity and even 

lower annual mortality).  Unbiased inaccuracies, such as ours, produce a smoothing effect 

across age groups, leading to reduced magnitude of strong year classes (Campana 2001); 
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therefore, the potential relationships we identified between recruitment strength and 

environmental factors should be maintained or become stronger in absence of aging error.  

As biologists begin to weigh management and conservation options (e.g., 

stocking) and researchers continue to gain improved understanding of the distribution and 

population genetics of Shoal Bass, our results underscore the need for population-specific 

management.  Shoal Bass inhabiting the UCRB have marked life-history and population-

dynamic differences compared to southerly populations, including slower growth, 

increased longevity, lower annual mortality, and low over-winter survival.  The Big 

Creek population appears to be of greatest conservation concern among the three UCRB 

populations examined in this study.  Considering the fragmented nature of UCRB 

populations (Dakin et al. 2015), establishment of population monitoring protocols in all 

three study populations is justifiable.  

 

References 

Akaike, H. 1973. Information theory and an extension of the maximum likelihood 
principle. Pages 267–281 in B. N. Petrov and F. Csaki, editors. Second 
international symposium on information theory. Akademiai Kiado, Budapest, 
Hungary. 

Allan, J. D., and A. S. Flecker. 1993. Biodiversity conservation in running waters. 
BioScience 43(1):32–43. 

Benz, G. W., and D. E. Collins, editors. 1996. Aquatic fauna in peril:  the southeastern 
perspective. Southeast Aquatic Research Institute, Decatur, AL. 

Birdsong, T., D. Krause, J. Leitner, J. M. Long, S. Robinson, and S. Sammons. 2010. A 
business plan for the conservation of native black bass species in the southeastern 
U.S. National Fish and Wildlife Foundation, Washington, D.C. 



172 
 

Bonvechio, T. F., and M. S. Allen. 2005. Relations between hydrological variables and 
year-class strength of sportfish in eight Florida waterbodies. Hydrobiologia 
532:193–207. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference:  a 
practical information-theoretic approach. Second edition. Springer, New York, 
NY. 

Campana, S. E. 2001. Accuracy, precision and quality control in age determination, 
including a review of the use and abuse of age validation methods.  Journal of 
Fish Biology 59:197–242.  

Chezik, K. A., N. P. Lester, and P. A. Venturelli. 2013. Fish growth and degree-days I: 
selecting a base temperature for a within-population study. Canadian Journal of 
Fisheries and Aquatic Sciences 71(1):47–55. 

Clark, S. R. 2016. Effects of passive integrated transponder tags on the physiology and 
swimming performance of a small-bodied stream fish. Transactions of the 
American Fisheries Society 145(6):1179–1192. 

Conover, D. O. 1992. Seasonality and the scheduling of life history at different latitudes. 
Journal of Fish Biology 41:161–178. 

Conover, D. O., T. A. Duffy, and L. A. Hice. 2009. The covariance between genetic and 
environmental influences across ecological gradients. Annals of the New York 
Academy of Sciences 1168(1):100–129. 

Coutant, C. C. 1976. Thermal effects on fish ecology. Pages 891–896 in Encyclopedia of 
environmental science and engineering, volume 2.  Gordon and Breach Science 
Publishers, New York. 

Curry, R. A., S. L. Currie, S. K. Arndt, and A. T. Bielak. 2005. Winter survival of age-0 
Smallmouth Bass, Micropterus dolomieu, in north eastern lakes. Environmental 
Biology of Fishes 72(2):111–122. 

Dakin, E. E., B. A. Porter, B. J. Freeman, and J. M. Long. 2015. Hybridization threatens 
Shoal Bass populations in the upper Chattahoochee River Basin. Pages 491–501 
in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. Black 
bass diversity: multidisciplinary science for conservation. American Fisheries 
Society, Symposium 82, Bethesda, Maryland. 

Ford, E. 1933. An account of the herring investigations conducted at Plymouth during the 
years from 1924 to 1933. Journal of the Marine Biological Association of the 
United Kingdom 19(1):305–384. 



173 
 

Fullerton, A. H., J. E. Garvey, R. A. Wright, and R. A. Stein. 2000. Overwinter growth 
and survival of Largemouth Bass: interactions among size, food, origin, and 
winter severity. Transactions of the American Fisheries Society 129(1):1–12. 

Goclowski, M. R., A. J. Kaeser, and S. M. Sammons. 2013. Movement and habitat 
differentiation among adult Shoal Bass, Largemouth Bass, and Spotted Bass in 
the upper Flint River, Georgia. North American Journal of Fisheries Management 
33(1):56–70. 

Graf, W. L., and T. M. Plewa. 2006. Channel change in Big Creek, Chattahoochee River 
National Recreation Area. National Park Service, South Atlantic Cooperative 
Ecosystems Studies Unit, Requisition Reference No. R5028050506. 

Gwinn, D. C., P. Brown, J. C. Tetzlaff, and M. S. Allen. 2011. Evaluating mark–
recapture sampling designs for fish in an open riverine system. Marine and 
Freshwater Research 62(7):835–840. 

Harvey, B. C. 1987. Susceptibility of young-of-the-year fishes to downstream 
displacement by flooding. Transactions of the American Fisheries Society 
116(6):851–855. 

Heidinger, R. C., and K. Clodfelter. 1987. Validity of the otolith for determining age and 
growth of Walleye, Striped Bass, and Smallmouth Bass in power plant cooling 
ponds. Pages 241–251 in R. C. Summerfelt and G. E. Hall, editors. The age and 
growth of fish. The Iowa State University Press, Ames. 

Hilborn, R., and C. J. Walters, editors. 1992. Quantitative fisheries stock assessment - 
choice, dynamics and uncertainty. Chapman and Hall, New York. 

Hubert, W. A., and M. C. Fabrizio. 2007. Relative abundance and catch per unit effort. 
Pages 279–325 in C. S. Guy and M. L. Brown, editors. Analysis and 
interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, 
Maryland. 

Huggins, R. M. 1989. On the statistical analysis of capture-recapture experiments. 
Biometrika 76:133–140. 

Hurvich, C. M., and C. L. Tsai. 1989. Regression and time series model selection in small 
samples. Biometrika 76:297–307. 

Ingram, T. R., and J. M. Kilpatrick. 2015. Assessment of the Shoal Bass population in the 
lower Flint River, Georgia. Pages 157–168 in M. D. Tringali, J. M. Long, T. W. 
Birdsong, and M. S. Allen, editors. Black bass diversity: multidisciplinary science 



174 
 

for conservation. American Fisheries Society, Symposium 82, Bethesda, 
Maryland. 

Isermann, D. A., and C. T. Knight. 2005. A computer program for age–length keys 
incorporating age assignment to individual fish. North American Journal of 
Fisheries Management 25(3):1153–1160. 

Jelks, H. L., S. J. Walsh, N. M. Burkhead, S. Contreras-Balderas, E. Diaz-Pardo, D. A. 
Hendrickson, J. Lyons, N. E. Mandrak, F. McCormick, J. S. Nelson, S. P. 
Platania, B. A. Porter, C. B. Renaud, J. J. Schmitter-Soto, E. B. Taylor, and M. L. 
W. Jr. 2008. Conservation status of imperiled North American freshwater and 
diadromous fishes. Fisheries 33(8):372–407. 

Kemp, P., D. Sear, A. Collins, P. Naden, and I. Jones. 2011. The impacts of fine sediment 
on riverine fish. Hydrological Processes 25(11):1800–1821. 

Kennedy, B. M., D. P. Peterson, and K. D. Fausch. 2003. Different life histories of Brook 
Trout populations invading mid-elevation and high-elevation Cutthroat Trout 
streams in Colorado. Western North American Naturalist 63(2):215–223. 

Leigh, D. S. 1997. Mercury-tainted overbank sediment from past gold mining in north 
Georgia, USA. Environmental Geology 30(3–4):244–251. 

Long, J. M., M. S. Allen, W. F. Porak, and C. D. Suski. 2015. A historical perspective of 
black bass management in the United States. Pages 99–122 in M. D. Tringali, J. 
M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass diversity: 
multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Long, J. M., C. T. Holley, and A. T. Taylor. In review. Evaluating reliability of scale-
based age estimates to inform management of vulnerable populations of Shoal 
Bass Micropterus cataractae. Journal of Fish Biology. 

Long, J. M., and C. Martin. 2008. The evolution of fisheries management of the upper 
Chattahoochee River in response to changing water management. Pages 21–36 in 
M. S. Allen, S. M. Sammons, and M. J. Maceina, editors. Balancing fisheries 
management and water uses for impounded river systems. American Fisheries 
Society, Symposium 62, Bethesda, Maryland. 

Lukas, J. A., and D. J. Orth. 1995. Factors affecting nesting success of Smallmouth Bass 
in a regulated Virginia stream. Transactions of the American Fisheries Society 
124:726–735. 



175 
 

Maceina, M. J. 1997. Simple application of using residuals from catch-curve regressions 
to assess year-class strength in fish. Fisheries Research 32(2):115–121. 

Maceina, M. J., and P. W. Bettoli. 1998. Variation in Largemouth Bass recruitment in 
four mainstream impoundments of the Tennessee River. North American Journal 
of Fisheries Management 18(4):998–1003. 

McCune, B., and M. J. Mefford. 2011. PC-ORD. Multivariate analysis of ecological data.  
Version 6. MjM Software, Geleneden Beach, Oregon. 

Miranda, L. E., and W. D. Hubbard. 1994. Length-dependent winter survival and lipid 
composition of age-0 Largemouth Bass in Bay Springs Reservoir, Mississippi. 
Transactions of the American Fisheries Society 123(1):80–87. 

Mollenhauer, R., and S. K. Brewer. 2017. Multinomial N-mixture models improve the 
applicability of electrofishing for developing population estimates of stream-
dwelling Smallmouth Bass. North American Journal of Fisheries Management 
37(1):211–224. 

Ogle, D. H. 2015. Introductory fisheries analyses with R. Chapman and Hall. 

Oliver, J. D., G. F. Holeton, and K. E. Chua. 1979. Overwinter mortality of fingerling 
Smallmouth Bass in relation to size, relative energy stores, and environmental 
temperature. Transactions of the American Fisheries Society 108(2):130–136. 

Porta, M. J., and J. M. Long. 2015. Evaluation of a five-year Shoal Bass conservation-
stocking program in the upper Chattahoochee River, Georgia. Pages 169–180 in 
M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. Black bass 
diversity: multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Price, A. L., and J. T. Peterson. 2010. Estimation and modeling of electrofishing capture 
efficiency for fishes in wadeable warmwater streams. North American Journal of 
Fisheries Management 30(2):481–498. 

Quist, M. C., M. A. Pegg, and D. R. DeVries. 2012. Age and growth. Pages 677–731 in 
A. V. Zale, D. L. Parrish, and T. M. Sutton, editors. Fisheries techniques, third 
edition. American Fisheries Society, Bethesda, Maryland. 

Rose, S., and N. E. Peters. 2001. Effects of urbanization on streamflow in the Atlanta 
area (Georgia, USA): a comparative hydrological approach. Hydrological 
Processes 15(8):1441–1457. 



176 
 

Sammons, S. M. 2015. First evidence of potadromy and partial migration in black basses: 
Shoal Bass Micropterus cataractae (Actinopterygii, Centrarchidae) in the Upper 
Flint River, USA. Hydrobiologia 751(1):135–146. 

Sammons, S. M., and L. A. Early. 2015. Movement and habitat use of Shoal Bass in a 
regulated portion of the Chattahoochee River, Alabama-Georgia, USA. Pages 
249–261 in M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. 
Black bass diversity: multidisciplinary science for conservation. American 
Fisheries Society, Symposium 82, Bethesda, Maryland. 

Sammons, S. M., and M. R. Goclowski. 2012. Relations between Shoal Bass and 
sympatric congeneric black bass species in Georgia rivers with emphasis on 
movement patterns, habitat use, and recruitment. Georgia Department of Natural 
Resources, Wildlife Resources Division, Final Report, Social Circle, GA. 

Sammons, S. M., K. L. Woodside, and C. J. Paxton. 2015. Shoal Bass Micropterus 
cataractae Williams & Burgess, 1999. Pages 75–81 in M. D. Tringali, J. M. 
Long, T. W. Birdsong, and M. S. Allen, editors. Black bass diversity: 
multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Schlosser, I. J., J. D. Johnson, W. L. Knotek, and M. Lapinska. 2000. Climate variability 
and size-structured interactions among juvenile fish along a lake–stream gradient. 
Ecology 81(4):1046–1057. 

Schultz, E. T., D. O. Conover, and A. Ehtisham. 1998. The dead of winter: size-
dependent variation and genetic differences in seasonal mortality among Atlantic 
silverside (Atherinidae: Menidia menidia) from different latitudes. Canadian 
Journal of Fisheries and Aquatic Sciences 55(5):1149–1157. 

Siepker, M. J., D. S. Knuth, E. L. Ball, and J. B. Koppelman. 2012. Evaluating a novel 
passive integrated transponder tag in Largemouth Bass. North American Journal 
of Fisheries Management 32(3):528–532. 

Smith, S. M., J. S. Odenkirk, and S. J. Reeser. 2005. Smallmouth Bass recruitment 
variability and its relation to stream discharge in three Virginia rivers. North 
American Journal of Fisheries Management 25: 1112–1121. 

Stormer, D. G., and M. J. Maceina. 2008. Relative abundance, distribution, and 
population metrics of Shoal Bass in Alabama. Journal of Freshwater Ecology 
23(4):651–661. 



177 
 

Suski, C. D., and M. S. Ridgway. 2009. Winter biology of centrarchid fisheries. Page in 
S. Cooke and D. P. Philipp, editors. Centrarchid fishes: diversity, biology and 
conservation. Blackwell Publishing, West Susex, UK. 

Taylor, A. T. 2012. Status assessment of a Shoal Bass population in the lower Flint River, 
Georgia. MS Thesis, University of Georgia, Athens, GA. 

Taylor, A. T., and D. L. Peterson. 2014. Shoal bass life history and threats: a synthesis of 
current knowledge of a Micropterus species. Reviews in Fish Biology and 
Fisheries 24(1):159–167. 

Tringali, M. D., J. M. Long, T. W. Birdsong, and M. S. Allen, editors. 2015. Black bass 
diversity: multidisciplinary science for conservation. American Fisheries Society, 
Symposium 82, Bethesda, Maryland. 

Walford, L. A. 1946. A new graphic method of describing the growth of animals. 
Biological Bulletin 90(2):141–147. 

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from 
populations of marked animals. Bird Study 46(sup1):S120–S139. 

Williams, J. D., and G. H. Burgess. 1999. A new species of bass, Micropterus cataractae 
(Teleostei: Centrarchidae), from the Apalachicola River basin in Alabama, 
Florida, and Georgia. University of Florida. 

Woodside, K. L., C. J. Paxton, and N. C. Kierl. 2015. Stock assessment of Shoal Bass in 
the Chipola River, Florida. Pages 139–155 in M. D. Tringali, J. M. Long, T. W. 
Birdsong, and M. S. Allen, editors. Black bass diversity: multidisciplinary science 
for conservation. American Fisheries Society, Symposium 82, Bethesda, 
Maryland. 

Zeng, X., and T. C. Rasmussen. 2005. Multivariate statistical characterization of water 
quality in Lake Lanier, Georgia, USA. Journal of Environmental Quality 
34(6):1980–1991. 

 



178 
 

Table 1.  Descriptions of Shoal Bass (M. cataractae) sample site locations in the upper Chattahoochee River Basin, Georgia, 
including site name, coordinates (decimal degrees), elevation (m), their distance in river-kilometers (rkm) upstream from Lake Sidney 
Lanier, length of stream sampled (m), and general habitat descriptions. 
 

Site 
# site name latitude longitude 

elevation 
(m) 

rkm 
from 
lake 

length 
(m) general habitat description 

Big Creek 
1 Big Creek 34.012126 -84.360198 265 NA 1000 shoal habitat with a few pools interspersed 

        
Chattahoochee River 

2 Flat Rock 34.466399 -83.686461 330 6.4 350 deep pool and run with bedrock substrate 
3 Bull Shoals 34.482440 -83.680216 330 8.8 350 shallow bedrock shoals and cobble riffle 
4 Crow Island 34.503651 -83.666475 334 11.7 350 shallow pool and run with boulder substrate 
5 Buck Shoals 34.563347 -83.628713 362 24 350 deep run with boulders between shoals 

        
Chestatee River 

6 Big Rock 34.458609 -83.966767 328 3 350 deep pool with bedrock and sand substrate 
7 Canoe Launch 34.471844 -83.979555 330 5.8 350 shallow series of bedrock shoals  
8 Horseshoe Bend 34.492659 -83.997084 333 9.3 350 shallow riffle with gravel substrates 
9 Hwy. 60 34.504223 -83.968851 338 14.6 350 shallow bedrock shoal and gravel run 
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Table 2.  Model selection results comparing von Bertalanffy growth functions describing 
mean-length-at-age of Shoal Bass among three upper Chattahoochee River populations:  
Big Creek, Chattahoochee River, and Chestatee River.  Parameters of the function are 
maximum mean length (L∞), a growth parameter (K), and the theoretical age in years for 
a length of zero (t0).   
 

Model df AICc Δ AICc 
Akaike weight 

(w)  
Different K, L∞, and t0 10 8541.47 0.00 0.53 
Different K 6 8543.11 1.64 0.23 
Different L∞ 6 8544.35 2.88 0.13 
Different K and L∞ 8 8546.33 4.86 0.05 
Different K and t0 8 8546.60 5.13 0.04 
Different L∞ and t0 8 8548.36 6.89 0.02 
Different t0 6 8550.87 9.40 0.00 
Same K, L∞, and t0 4 8567.82 26.35 0.00 
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Table 3.  von Bertalanffy growth functions describing mean-length-at-age of Shoal Bass 
among three upper Chattahoochee River populations (n = sample size in each system).  
Estimates and associated non-parametric bootstrapped 95% confidence intervals (CI; L = 
lower and U = upper) were produced for model components including maximum mean 
length (L∞), a growth parameter (K), and the theoretical age in years for a length of zero 
(t0). 
 

Parameter est. 95% LCI  95%UCI 
Big Creek (n=388) 

     L∞ 729.94 629.45 882.58 
     K 0.08 0.06 0.10 
     t0 -0.83 -1.04 -0.65 

    
Chattahoochee River (n=185) 

     L∞ 1576.06 736.48 3413.15 
     K 0.03 0.01 0.08 
     t0 -1.87 -2.65 -0.84 

    
Chestatee River (n=294) 

     L∞ 645.38 565.37 819.06 
     K 0.11 0.07 0.14 
     t0 -0.53 -1.00 -0.19 
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Table 4.  von Bertalanffy growth function estimates of mean total length (TL; mm) for 
each age (yrs) and associated non-parametric bootstrapped 95% confidence intervals (CI; 
L = lower and U = upper) for Shoal Bass in three systems of the upper Chattahoochee 
River basin.   
 

  Big Creek Chattahoochee River Chestatee River 

Age TL LCI UCI TL LCI UCI TL LCI UCI 

0 47.9 40.5 55.0 77.9 46.6 97.2 36.1 14.5 58.3 

1 101.5 98.1 104.9 117.9 98.3 132.2 98.9 86.4 111.9 

2 150.8 147.8 154.1 156.8 144.4 167.7 155.1 148.0 162.5 

3 196.3 192.1 200.6 194.8 186.4 202.8 205.6 200.6 210.6 

4 238.2 233.2 243.3 231.7 225.3 238.8 250.9 245.5 256.5 

5 276.8 271.5 282.2 267.6 261.9 275.4 291.5 285.5 297.6 

6 312.4 307.2 317.5 302.5 296.6 310.7 327.9 322.0 333.8 

7 345.2 340.4 350.3 336.5 330.0 345.2 360.6 354.5 366.4 

8 375.4 369.9 381.1 369.7 361.8 378.6 390.0 383.1 396.8 

9 403.3 396.2 409.9 401.9 391.6 412.0 416.3 407.6 425.9 

10 428.9 419.8 437.6 433.2 418.9 445.2 439.8 428.8 452.5 

11 452.6 440.6 464.0 463.8 443.5 478.3 461.0 447.2 477.8 

12 474.3 459.4 488.8 493.5 466.9 511.6 480.0 462.9 501.4 
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Table 5.  Results of principal component analysis (PCA) used to reduce the number of 
inter-correlated environmental variables considered in linear models of recruitment 
strength.  The highest-loading variable from any axis explaining at least 10% of the 
variance in each system’s dataset was included.  Reported are the PCA axis number, axis 
eigenvalue, and the % of variation explained by each axis, along with the highest-loading 
variable (i.e., highest correlated to each axis) to each axis and its correlation coefficient 
(r) to the axis.    
 

Axis eigenvalue 
% of 

variation highest loading variable r  
Big Creek 

1 13.82 49.35 Summer SD of discharge 0.95 
2 5.79 20.69 Spring min. discharge -0.81 
3 3.39 12.12 Fall cumulative growing degree-days -0.77 

    !Chattahoochee River 
1 14.05 50.17 Fall min. discharge 0.96 
2 5.92 21.13 Winter SD of discharge 0.75 
3 3.72 13.27 Summer cumulative growing degree-days -0.73 

!
   

!Chestatee River 
1 13.98 49.93 Fall min. discharge 0.96 
2 5.58 19.94 Spring min. discharge -0.75 
3 3.68 13.13 Spring avg. growing degree-days -0.90 
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Table 6.  Results of univariate linear models relating catch-curve residuals representing 
Shoal Bass recruitment strength in three systems of the upper Chattahoochee River basin 
to a subset of environmental variables obtained from principal component analysis.  
Models were considered significant at P ≤ 0.05 level (bold).  
 
Variable estimate SE df p R2 

Big Creek 
Summer SD discharge -0.27 0.07 1, 26 < 0.01 0.38 
Spring min. discharge -0.36 0.22 1, 26 0.11 0.09 
Fall cumulative growing degree-days 3.49 1.60 1, 26 0.04 0.15 

      Chattahoochee River 
Fall min. discharge -0.16 0.18 1, 23 0.39 0.03 
Winter SD discharge 0.55 0.26 1, 23 0.04 0.16 
Summer cumulative growing degree-days 3.91 3.70 1, 23 0.30 0.05 

      Chestatee River 
Fall min. discharge 0.17 0.16 1, 28 0.31 0.04 
Spring min. discharge 0.36 0.25 1, 28 0.17 0.07 
Spring avg. growing degree-days 1.16 2.49 1, 28 0.65 0.01 
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Table 7.  Capture-mark-recapture data for Shoal Bass in three upper Chattahoochee 
River Basin systems, including sample site, date sampled, number of fish captured, mean 
total length (TL; mm) of captures, number of fish recaptured, mean TL of recaptures, as 
well as Huggins’ closed-captures estimates of abundance (N) and associated 95% 
confidence intervals (CI; L = lower and U = upper).  “N/A” indicates measure was 
unobtainable or inestimable given the data collected.  (Table continued on following 
page). 
 

Site 
# date 

# 
captured  

Mean 
capture 

TL 
# 

recaptured 

Mean 
recapture 

TL 
N 

est. LCI UCI 
 

Big Creek 
1 5/20/14 22 212 N/A N/A 242 125 579 
1 5/22/14 44 208 4 300 
1 10/17/14 74 130 5 250 253 200 347 
1 10/18/14 81 116 27 142 
1 5/13/15 53 168 19 188 219 164 325 
1 5/15/15 67 184 38 211 
1 5/16/16 131 161 25 260 348 276 470 
1 5/19/16 69 181 35 207 

         Chattahoochee River 
2 5/27/14 6 280 N/A N/A 48 19 229 
2 5/29/14 8 216 1 287 
2 5/18/15 4 200 0 N/A 12 7 53 
2 5/20/15 3 282 1 210 
3 5/27/14 9 272 N/A N/A 50 25 158 
3 5/29/14 11 236 2 249 
3 5/18/15 16 274 5 283 60 37 137 
3 5/20/15 15 310 4 235 
4 5/27/14 9 282 N/A N/A 144 45 708 
4 5/29/14 17 252 1 215 
4 5/18/15 9 302 1 252 90 30 439 
4 5/20/15 10 277 1 464 
5 5/27/14 14 289 N/A N/A 21 17 42 
5 5/29/14 6 259 4 282 
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Table 7 (continued) 

 
 

Chestatee River 
6 5/19/14 0 N/A N/A N/A N/A N/A N/A 
6 5/21/14 0 N/A N/A N/A 
6 5/12/15 0 N/A N/A N/A N/A N/A N/A 
6 5/14/15 0 N/A N/A N/A 
6 5/17/16 0 N/A N/A N/A N/A N/A N/A 
6 5/18/16 0 N/A N/A N/A 
7 5/19/14 9 294 N/A N/A N/A N/A N/A 
7 5/21/14 7 225 0 N/A 
7 5/12/15 9 285 4 338 18 13 43 
7 5/14/15 6 294 3 333 
7 5/17/16 11 299 4 315 154 47 759 
7 5/18/16 14 286 4 388 
8 5/19/14 3 231 N/A N/A N/A N/A N/A 
8 5/21/14 2 150 0 N/A 
8 5/12/15 2 200 0 N/A 10 6 42 
8 5/18/15 5 236 1 202 
8 5/17/16 3 276 2 278 12 7 53 
8 5/18/16 4 238 1 300 
9 5/19/14 23 250 N/A N/A 83 59 146 
9 5/21/14 29 251 8 296 
9 5/12/15 34 272 6 259 73 59 106 
9 5/18/15 30 270 19 308 
9 5/17/16 30 299 9 348 76 59 119 
9 5/18/16 28 274 17 316 

 

 

 

 

 

 

 

 

 



186 
 

 

Figure 1.  Study area within the upper Chattahoochee River Basin (UCRB) or northern 
Georgia, U.S.A.  Sampling site numbers correspond with descriptions in Table 1.  Both 
the Chattahoochee and Chestatee rivers begin in the mountainous Blue Ridge ecoregion 
prior to entering the rolling hills of the Piedmont ecoregion, where more agricultural 
activities occur.  Big Creek’s catchment is more urbanized because portions are situated 
in the Atlanta, GA, metropolitan area. 
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Figure 2.  Length-frequency histograms, with age categories superimposed, depicting 
raw catch of Shoal Bass May sampling events in (a) Big Creek, (b) Chattahoochee River, 
and (c) Chestatee River. 
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Figure 3.  von Bertalanffy growth functions for Shoal Bass in three upper Chattahoochee River Basin populations (Big Creek, 
Chattahoochee River, and Chestatee River), including the raw data used to build each function.  For comparative purposes, we 
included growth functions for Shoal Bass in the upper Flint River (Sammons and Goclowski 2012) and in the Chipola River 
(Woodside et al. 2015).
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Figure 4.  Catch-curve weighted regressions used to estimate annual mortality in Shoal 
Bass aged 3-12 in (a) Big Creek, (b) Chattahoochee River, and (c) Chestatee River.  Fish 
aged < 3 yrs (hollow data points) were not included in regressions.  R2 measures fit to the 
regression line, Z is the instantaneous mortality rate, and A is annual mortality. 
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Figure 5.  Studentized residuals from weighted catch-curve regressions indicating year-
class strength of Shoal Bass in (a) Big Creek, (b) Chattahoochee River, and (c) Chestatee 
River.  Studentized residuals exceeding +/- 2 SD (dashed lines) were considered strong 
and weak year-classes, respectively.  Symbols indicate residuals calculated over different 
sampling years. 
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Appendix I.  Capture-mark-recapture (CMR) histories used to build Huggins’ models to 
estimate Shoal Bass abundance and to build Cormack-Jolly-Seber (CJS) models to 
estimate survival of young cohorts in Big Creek.  Unique capture histories are 
represented by 0’s and 1’s (e.g., 10 represents detected on day 1 but not detected on day 
2), followed by the count of individuals with that capture history.  Negative counts 
represent the number of individuals not released back into the population (i.e., sampling 
mortality) following the last encounter.  
 
 
Huggins’ model inputs: 
 
Big Creek (site #1), Spring 2014: 
 
11 4; 
10 18; 
01 40; 
 
 
Big Creek (site #1), Fall 2014: 
 
11 23; 
10 48; 
10 -3; 
01 58; 
 
 
Big Creek (site #1), Spring 2015: 
 
11 16; 
10 36; 
10 -1; 
01 50; 
01 -1; 
 
 
Big Creek (site #1), Spring 2016: 
 
11 26; 
10 105; 
01 43; 
 
 
 
 
 
 

Chattahoochee River (site #2), Spring 
2014: 
 
11 1; 
10 5; 
01 7; 
 
 
Chattahoochee River (site #2), Spring 
2015: 
 
11 1; 
10 3; 
01 2; 
 
 
Chattahoochee River (site #3), Spring 
2014: 
 
11 2; 
10 7; 
01 9; 
 
 
Chattahoochee River (site #3), Spring 
2015: 
 
11 4; 
10 12; 
01 11; 
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Chattahoochee River (site #4), Spring 
2014: 
 
11 1; 
10 8; 
01 15; 
 
 
Chattahoochee River (site #4), Spring 
2015: 
 
11 1; 
10 8; 
01 9; 
 
 
Chattahoochee River (site #5), Spring 
2014: 
 
11 4; 
10 10; 
01 2; 
 
 
Chestatee River (site #7), Spring 2014: 
 
11 0; 
10 9; 
01 7; 
 
 
Chestatee River (site #7), Spring 2015: 
 
11 3; 
10 6; 
01 3; 
 
 
Chestatee River (site #7), Spring 2016: 
 
11 1; 
10 10; 
01 13; 
 
 
 

Chestatee River (site #8), Spring 2015: 
 
11 1; 
10 1; 
01 4; 
 
 
Chestatee River (site #8), Spring 2016: 
 
11 1; 
10 2; 
01 3; 
 
 
Chestatee River (site #9), Spring 2014: 
 
11 8; 
10 15; 
01 21; 
 
 
Chestatee River (site #9), Spring 2015: 
 
11 14; 
10 20; 
01 16; 
 
 
Chestatee River (site #9), Spring 2016: 
 
11 11; 
10 19; 
01 17; 
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CJS model input:  
 
Big Creek 2014 cohort from age-0 (Fall 
2014) to age-1 (Spring 2015) to age-2 
(Spring 2016): 
 
111 2; 
110 9; 
101 2; 
100 73; 
100 -3; 
011 6; 
010 36; 
010 -3; 
001 14; 
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