
EFFECT OF DIETARY SOURCE AND CONCENTRATIONS OF COPPER, 

MANGANESE, AND ZINC ON GROWTH PERFORMANCE AND IMMUNE 

RESPONSE OF NURSERY PIGS 

 

 

 

By 

SILVIA SCHAAF 

Bachelor of Science in Animal Science  

Oklahoma State University 

Stillwater, Oklahoma 

2017 

 

 

 

 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirements for 

the Degree of 
MASTER OF SCIENCE 

May, 2017  



ii 

 

EFFECT OF DIETARY SOURCE AND CONCENTRATIONS OF COPPER, 

MANGANESE, AND ZINC ON GROWTH PERFORMANCE AND IMMUNE 

RESPONSE OF NURSERY PIGS 

 

Thesis Approved: 

 

Dr. Scott D. Carter 

Thesis Adviser 

Dr. Adel Pezeshki 

 

Dr. Barbara J. Stoecker 

 



iii 

 

Name: SILVIA SCHAAF  
 
Date of Degree: MAY, 2017 
  
Title of Study: EFFECT OF DIETARY SOURCE AND CONCENTRATIONS OF 

COPPER, MANGANESE, AND ZINC ON GROWTH 
PERFORMANCE AND IMMUNE RESPONSE OF NURSERY 
PIGS. 

 
Major Field: ANIMAL SCIENCE 
 
Abstract: Two experiments were conducted to evaluate dietary source and 
concentrations of copper, manganese, and zinc on growth performance and the 
immune response of nursery pigs. Experiment 1 and 2 evaluated two sources of 
copper, manganese, and zinc: sulfate and chloride. Both sources were then 
evaluated in two dietary concentrations. To study the acute immune response, all 
pigs in both experiments were subjected to acute immune challenge by single 
intraperitoneal injection of lipopolysaccharide (LPS). Additionally, pigs from 
experiment 2 were subjected to multiple intramuscular injections of LPS to 
evaluate the chronic immune response. The data from experiment 1 and 2 
relative to growth performance and acute immune challenge were combined for 
statistical analysis. Overall, BW, ADG, ADFI, and G:F ratio were not different 
among dietary treatment groups. Following the acute immune challenge, pigs fed 
both dietary concentrations of chlorides produced lower concentrations of TNF-α 
and IL-1β. A concentration effect was also observed, with higher dietary 
concentrations of both sources producing less TNF-α and IL-1β. Total-SOD 
activity was not affected by dietary treatments following the acute immune 
challenge. During the multiple LPS injections, growth performance was 
negatively affected; however, no differences were observed among dietary 
treatment groups. Numerically, TNF-α concentration was lower and total-SOD 
activity was greater in both dietary concentrations of chlorides. IL-1β was not 
affected by dietary treatment group during the chronic immune challenge. In 
conclusion, chloride sources are able to alleviate the acute immune response by 
decreasing the proinflammatory cytokine production regardless of the dietary 
concentration, suggesting a higher bioavailability over sulfate sources. Besides 
that, high dietary concentration of copper, manganese, and zinc showed more 
promising results, indicating that the immune response may have a greater 
requirement than that needed for growth. Following a chronic immune challenge, 
chloride sources showed a numerical advantage over sulfates, suggesting less 
stimulation of the inflammatory response.  
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CHAPTER I 
 

 

INTRODUCTION 

 

The weaning process for pigs is associated with several stress factors 

which contribute to intestinal and immune system dysfunctions resulting in 

reduced feed intake, growth, and intestinal diseases (Boudry et al., 2004; 

Campbell et al., 2013; Lalles et al., 2004). This transient growth check can last 

days or weeks, depending on how susceptible the weaned pig becomes to all 

these stress factors (Lalles et al., 2007; Pluske et al., 1997). At this moment, the 

weaned pig immune system is not completely mature yet (Kick et al., 2012), even 

though there is a high demand for adequate immune response and mechanisms 

to combat the oxidative stress (Zhu et al., 2012). Several nutritional strategies to 

improve health status and growth performance have been studied and used to 

minimize the short and long-term effects of weaning (de Lange et al., 2010; Heo 

et al., 2013). 

Micronutrients, such minerals, are required by cells in small amounts, and 

regulate many physiological processes (Afacan et al., 2012). The mineral 

functions range from structural functions to a broad variety of regulatory 

processes, including the efficiency of the use of protein and energy (NRC, 2012).  
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Copper, manganese, and zinc are cofactors of several metalloenzymes 

involved in protein, carbohydrate, lipid metabolism, and also oxidative enzymes 

(Suttle, 2010; Underwood & Suttle, 1999). Although these minerals are added in 

small amounts in the diet, they are important to maintain normal metabolism and 

growth (Klasing, 2013; Suttle, 2010). However, meeting the physiological mineral 

requirements of pigs is certainly influenced by the bioavailability of the mineral 

sources (Cohen, 2014; Klasing, 2013; NRC, 2012).  

Moreover, there is a strong relationship between nutrition, metabolism and 

the immune response (Chandra, 1997; Stafford et al., 2013). Trace mineral 

nutrition affects a large number of biological processes vital to the immune 

response, including gene expression, protein synthesis, signal transduction, and 

cellular proliferation and survival (Afacan et al., 2012; Wintergerst et al.,2007). As 

research in the area of nutritional immunology has increased, it is becoming 

apparent that nutrient needs for immune response do not coincide with those 

required for growth or protein accretion (Johnson, 1998; Kidd, 2004; Sun et al., 

2009). A better understanding of this scenario will allow nutritionists to formulate 

diets to improve immunity and overall health in swine production. However, there 

is not much information regarding the effect of different sources of copper, 

manganese, and zinc on the immune response of weaned pigs subjected to an 

immune challenge.  

Therefore, the objective of this study was to evaluate dietary source and 

concentrations of copper, manganese, and zinc on growth performance and the 

immune response of nursery pigs following an immune challenge. Two 
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experiments were performed and the combined data is presented. The first 

experiment evaluated, beyond growth performance, the acute immune response 

following intraperitoneal lipopolysaccharide (LPS) injection, while the second 

experiment also evaluated the chronic immune response following multiple 

intramuscular lipopolysaccharide (LPS) injections.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

Weaning process and its complications 

The weaning process is a complex period during which piglets face social 

and physical stressors, such as maternal and littermate separation, and changes 

in the environment (Campbell et al., 2013; Lalles et al., 2007). Intensive 

production systems normally wean at an early age which exacerbates the stress 

(Lalles et al., 2007).  

Weaned pigs have to switch from sow´s milk, which is highly digestible, to 

a less digestible and more complex solid feed (Lalles et al., 2007; Pluske et al., 

1997). Furthermore, the lack of some components of milk (e.g., secretory 

immunoglobulins and enzymes) makes them vulnerable to opportunistic 

pathogens as well as delay the maturation of the intestinal cells (Pluske et al., 

1997). As a result, weaning affects intestinal development and immediately 

decreases feed intake leading to undernutrition and to a transient growth check 

(Campbell et al., 2013; Lalles et al., 2004). Brooks et al. (2001) studied the feed 

intake of pigs after weaning. Although 50% of weaned pigs consumed their 
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first meal within 24 h post-weaning, 10% did not eat until 48 h afterwards. 

Besides reduced feed intake, water intake is also compromised which impairs 

growth performance as well (Pluske et al., 1997).  

According to Kelly et al. (1992), the ingestion, as well as the physical 

presence of food in the gastrointestinal tract, are necessary for structural and 

functional maintenance of the intestinal mucosa. In the long term, a reduction in 

feed intake is expected to decrease the rate of cell production and decrease cell 

renewal in the small intestine (Pluske et al., 1997). Boudry et al. (2004) studied 

the changes in intestinal physiology and morphology after weaning. Two weeks 

after weaning, they observed an acute transient as well as long-lasting changes, 

mainly in the small intestine. These changes probably are related to post-

weaning fasting, followed by a period of intestinal maturation corresponding to 

voluntary feed intake restart (Lalles et al., 2007). These marked changes that 

occur in gut structure and function after weaning, such as villous atrophy and 

crypt hyperplasia, cause a temporary decrease in digestive and absorptive 

capacity of the small intestine (Pluske et al., 1997).  

Additionally, Nabuurs et al. (1993b) suggested that villous height and crypt 

depth may influence the pathogenesis of diarrhea after weaning. They postulated 

that the relationship between intestinal morphology and diarrhea may be 

influenced by the function of villous enterocytes and crypt cells, since shorter villi 

and deeper crypts have fewer absorptive and more secretory cells resulting in a 

decreased absorption and increased secretion capacity. A reduction in digestion 

and absorption would sustain the development of an osmotic diarrhea, while 
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unabsorbed dietary material would act as a substrate for enterotoxigenic 

Escherichia coli in the gut (Boudry et al., 2004). 

Post-weaning diarrhea is one of the most common causes of morbidity 

and mortality for weaning piglets, and hence the reduced performance in pigs 

(Lalles et al., 2004; Pluske et al., 1997). This condition is associated with 

proliferation of enterotoxigenic Escherichia coli (E. coli) in the small intestine of 

affected pigs, and has been well documented throughout the world as a cause of 

significant economic loss in swine production systems (Pluske et al., 1997). 

Although specific serotypes of E. coli have a central role in the etiology of post-

weaning diarrhea (PWD), diarrhea may also be caused by rotavirus, and the role 

of this pathogen in the etiology of PWD should also be considered (Lecce et al., 

1983). Nabuurs et al. (1993a) reported that rotavirus and enterotoxigenic E. coli 

(ETEC) were generally detected when pigs had diarrhea; however, they were 

also encountered in normal feces from healthy pigs. 

In addition to pathologic conditions, early weaning also induces substantial 

changes in the intestinal bacterial population (Campbell et al., 2013). Following 

weaning, lactobacilli were detected at significantly lower levels in the 

gastrointestinal tract when compared to unweaned piglets where lactobacilli were 

abundant colonizers (Konstantinov et al., 2004). Furthermore, Konstantinov et al. 

(2006) observed an emergence of clostridia and E. coli in intestinal samples of 

piglets after the early post-weaning period. This beneficial microbiota, such as 

lactobacilli, is especially important during weaning (Konstantinov et al., 2006), 

when the animal still has an immature immune system and depends on certain 
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compounds in the sow’s milk to prevent the growth of opportunistic bacteria 

(Lalles et al., 2007).  

Undoubtedly, development of immune competence is an absolute 

requirement for optimum growth and performance (Lalles et al., 2007). 

Furthermore, weaned pigs have very high demand for antioxidant defense (Hill et 

al., 2014) since the weaning process increases the oxidative stress and free 

radical metabolism (Zhu et al., 2012). Beyond the oxidative stress, elevation of 

cortisol concentrations (Kick et al., 2012) along with other stress hormones, may 

reduce response to growth hormone (Luo & Murphy, 1989), increase energy 

expenditure and loss of body nitrogen (Bessey et al.,1984), retarding 

performance of weaned pigs.  

Several nutritional strategies to alleviate the weaning transition and 

minimize enteric diseases have been tested in the past decade (Campbell et al., 

2013; de Lange et al., 2010; Heo et al., 2013; Lalles et al., 2007). Nutrients play 

an important role in the functionality of the immune system, as they are the 

decisive factors in expression of immunity (Chandra, 1997; Stafford et al., 2013). 

Also, several micronutrients play a crucial role in maintenance of optimum 

immune response (Chandra, 1997; Wintergerst et al., 2007). 

 

Review of the immune system  

The immune response can be divided in two interactive major systems: 

the innate or non-specific immune system and the acquired or specific immune 

system (Wintergerst et al., 2007). The innate immune system is present since 
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birth and its non-specific defense mechanisms are not influenced by previous 

exposure to pathogens (Chandra, 1997). It is considered the first line of defense 

for the body and retards the establishment of infections (Bonham et al., 2002). 

Besides cellular components (e.g. phagocytic cells), the innate immune system 

has structural barriers such as skin and mucous membranes (Chandra, 1997), as 

well as physiological barriers, such as pH and differing oxygen levels (Bonham et 

al., 2002). In addition, a non-cellular component with recognition molecules (C-

reactive protein, serum amyloid protein, mannose-binding protein) and 

complement is involved in phagocytosis, pinocytosis and the inflammatory 

response (Wintergerst et al., 2007). 

Polymorphonuclear cells (PMNs), macrophages and natural killer (NK) 

cells are the first innate immune cells acting in pathogen recognition and 

elimination once pathogens have entered the body. Through phagocytosis 

process they eliminate pathogens by producing reactive oxygen species (ROS) 

which neutralizes their activity (Arango Duque & Descoteaux, 2014). 

Macrophages also comply with essential protective functions involved in host 

defense and inflammation. Once activated, macrophages produce different 

cytotoxic molecules, such as cytokines. Interleukin 1 (IL-1), interleukin 6 (IL-6), 

tumor necrosis factor-α (TNF-α) are examples of cytokines that assist in the 

activation of T cells and act as proinflammatory molecules. Macrophages also 

present antigen physically on their surface and bind directly to T cells (Arango 

Duque & Descoteaux, 2014).  
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Cytokines are small soluble proteins that are crucial for cell signaling 

among immune and non-immune cells (Johnson, 1997). Cytokines are mainly 

produced by macrophages and lymphocytes, although they can also be 

produced by polymorphonuclear (PMNs), endothelial and epithelial cells, 

adipocytes, and connective tissue (Arango Duque & Descoteaux, 2014). They 

are crucial for the regulation of the immune and inflammatory responses 

(Wintergerst et al., 2007). 

The adaptive immune response is divided into cell-mediated and antibody-

mediated immunity constituted by highly specialized cells: the T lymphocytes (T 

cells originating from bone marrow and maturing in the thymus) and B 

lymphocytes (B cells originating and maturing in the bone marrow) (Bonham et 

al., 2002; Chandra, 1997; Wintergerst et al., 2007). Following maturation, these 

cells enter the pool of native cells in the peripheral lymph nodes to be able to 

respond to pathogens (Wintergerst et al., 2007). The cells of the acquired 

immune system are responsible for synthesizing antibodies, providing memory, 

and killing invading micro-organisms after being stimulated by exposure to 

infectious agents (Bonham et al., 2002). B lymphocytes play a role in the humoral 

immune response producing antibodies specifically directed against an antigen, 

whereas T lymphocytes are involved in cell-mediated immune responses by 

activation of other immune cells, such as T helper lymphocytes (CD4+), and by 

the production of toxic granules in cytotoxic T lymphocytes (CD8+) (Bonaventura 

et al., 2015; Bonham et al., 2002; Wintergerst et al., 2007). T lymphocytes are 

only able to recognize antigens presented on cell surfaces. After recognition, the 
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antigen is complexed with MHC class I (endogenous antigens) or MHC class II 

(exogenous antigens). Antigen presenting cells are B cells, macrophages, and 

dendritic cells (Wintergerst et al., 2007). 

Dendritic cells (DC) connect the innate and adaptive immune systems. 

They circulate as immature cells and after contact with the antigen, DC start 

expressing major histocompatibility complex (MHC) molecules and co-receptors 

on their cell surface for the activation and stimulation of T cells (Bonaventura et 

al., 2015). Both systems, the innate and the acquired, act together to provide an 

integrated and efficient defense for the host (Bonham et al., 2002). 

 

Superoxide Dismutase – manganese and copper-zinc SOD 

Reactive oxygen species (ROS) are produced by many physiological 

processes, which include aerobic metabolism, oxidative phosphorylation, and in 

stimulated macrophages and neutrophils during the immune response (Fridovich, 

1995). Oxidative damage, however, may occur when antioxidant properties are 

decreased and/or when oxidative stress is increased, which increases free 

radical production. Free radical–induced oxidative damage has been implicated 

in the pathogenesis of a number of injury and diseases states (Ibrahim et al., 

2000). 

Therefore, the management of the reactive oxygen species is vital for 

proper cellular function and integrity (Marikovsky et al., 2003). If uncontrolled, 

reactive oxygen species, including the superoxide radical, can result in 
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inflammation, lipid peroxidation, and oxidation (Li & Zhou, 2011), and cell injury, 

including DNA damage and cell death (Holley et al., 2011). 

The immune system is particularly susceptible to oxidative stress, since 

immune cells depend on cell signaling via membrane receptors. Interference with 

the signaling system is harmful and results in an impaired immune response 

(Wintergerst et al., 2007). To protect themselves from the constant oxidative 

challenge, cells have developed defense mechanisms that ensure a proper 

balance between pro and antioxidant molecules (Forman & Torres, 2001; 

Marikovsky et al., 2003).  

Superoxide dismutase (SOD) protects cells from reactive oxygen species 

by catalyzing the superoxide radicals into molecular oxygen and hydrogen 

peroxide (Fridovich, 1995; Perry et al., 2010). The elimination of superoxide 

radicals by SOD can, therefore, be considered an anti-inflammatory activity (Li & 

Zhou, 2011). Superoxide dismutase can be classified regarding its localization 

within the cell as well as regarding its mineral cofactor (Fridovich, 1995): copper - 

zinc (Cu, Zn-SOD), manganese (Mn-SOD) and iron (Fe-SOD) (Ibrahim et al., 

2000). Copper and zinc containing SOD (Cu/Zn SOD or SOD1) is primarily found 

in the cytoplasm (Slot et al., 1986), although small amounts of Cu/Zn SOD have 

been identified in the intermembrane space of mitochondria (Okado-Matsumoto 

& Fridovich, 2001). Extracellular SOD (SOD3) shares significant amino acid 

structure with Cu/Zn SOD (40–60%), contains both copper and zinc in its active 

site, but is found in the extracellular region of the cell (Slot et al., 1986). Mn SOD 
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is a manganese containing enzyme localized exclusively in the mitochondrial 

matrix (Okado-Matsumoto & Fridovich, 2001; Perry et al., 2010). 

Manganese superoxide dismutase (Mn-SOD) is considered the principal 

detoxifying enzyme due to its localization inside the mitochondria (Ibrahim et al., 

2000). This SOD scavenges superoxide radicals produced within the organelle 

and protects the mitochondria from the harmful effects of ROS (Perry et al., 

2010). According to Holley et al. (2011) any alteration in its function or 

expression may impact mitochondrial processes and the overall health of cells 

due to oxidative damage. Thus, according to Ibrahim et al. (2000) it is possible 

that increases in Mn SOD activity may yield increased protection against 

oxidative stress. 

The activity of the cytosolic SOD enzyme has been found to be influenced 

by the concentration of dietary copper. Inadequate concentrations of this trace 

mineral in the diet have been associated with a reduction of enzyme activity 

(Bonham et al., 2002). Additionally, Yin et al. (2014) considered that plasma SOD 

activity is also mediated by other factors, such as plasma zinc levels as well as 

by the expression of SOD related genes. Marikovsky et al. (2003) demonstrated 

that alterations in Cu/Zn SOD activity indeed affected the inflammatory response 

through alterations in the potential of the cell to deal with increased superoxide 

radical production.  

The same may occur with a diet deficient in manganese. Rosa et al., 

(1980) reported that, as with copper-zinc SOD, the activity of manganese-SOD 

may be regulated by the availability of its component trace mineral. The 
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membrane damage observed in manganese deficient mice and chickens was 

due to the accumulation of free radicals (O2-) inside the mitochondria. Altered 

Mn-SOD expression or activity as well as factors that affect manganese 

availability can also compromise cellular and mitochondrial lipid integrity (Holley 

et al., 2011). Also, manganese deficiency induced an increase in the Cu-Zn 

enzyme activity (Rosa et al., 1980). The authors concluded that the intracellular 

accumulation of free radicals (O2-), as a consequence of the decreased activity 

of Mn-SOD, induced a compensatory increase in the cytosolic form of this 

enzyme. 

 

Proinflammatory cytokines - TNF – α and IL-1β 

Cytokines are low molecular weight proteins that play a role in cell 

signaling as well as mediate an effective immune response through the 

connection of innate and adaptive immune systems (Huynh et al., 2007; 

Johnson, 1997). Their production takes place in the immune cells, such as 

macrophages, lymphocytes, and polymorphonuclear leukocytes (PMN), although 

cytokines can also be produced by endothelial and epithelial cells, adipocytes, 

and connective tissue (Arango Duque & Descoteaux, 2014). 

These molecules play a vital role in regulating the immune response, such 

as local and systemic inflammation, cellular proliferation, metabolism, 

chemotaxis, and tissue repair (Arango Duque & Descoteaux, 2014; Spurlock, 

1997). For this reason, they can be classified as proinflammatory and anti-

inflammatory cytokines (Arango Duque & Descoteaux, 2014). Different cytokines 
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share similar functions and they may act on many different cell types (Huynh et 

al., 2007). Furthermore, cytokines may induce other immune modulators such as 

glucocorticoids, prostaglandins, and catecholamines, which may affect cell 

metabolism and growth (Spurlock, 1997). Cytokines trigger neuro mediated 

events either by directly accessing the central nervous system (CNS) or by 

triggering the synthesis of cytokines by cells in the CNS (Johnson, 1997). In both 

situations, cytokines in the CNS alter the neuroendocrine system, reducing 

growth hormone secretion and increasing plasma corticosteroids (Spurlock, 

1997). 

An increased production of proinflammatory cytokines such as tumor 

necrosis factor alpha (TNF-α), interleukin 1 (IL-1), interleukin 6 (IL-6), interleukin 

8 (IL-8), and interleukin 12 (IL-12) is observed following an immune system 

stimulation (Johnson, 1997). Among their local effects, increased vascular 

permeability and recruitment of inflammatory cells are induced by these 

molecules (Johnson, 1997). Furthermore, systemic effects such as fever and the 

production of acute inflammatory response proteins are also related to 

proinflammatory cytokines (Arango Duque & Descoteaux, 2014).  

Tumor necrosis factor-α presents regulating properties related to the 

inflammatory response since this cytokine is able to stimulate the production of 

other inflammatory molecules, including IL-1, IL-6, platelet-derived growth factor, 

tumor growth factor, and arachidonic acid metabolites, such as prostaglandin E2 

and prostacyclin. Therefore, TNF-α initiates a cascade of responses that 

contribute to the recruitment and activation of inflammatory cells and immune 
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reactions (Marikovsky et al., 2003). Tumor necrosis factor-α is also considered a 

potent pyrogenic molecule and is one of the main cytokines responsible for septic 

shock (Roth et al., 1994). In the hypothalamus, TNF-α stimulates the corticotropic 

releasing hormone, suppresses appetite, and induces fever. In the liver, it 

stimulates the acute inflammatory response by elevating the synthesis of C-

reactive protein and other mediators (Arango Duque & Descoteaux, 2014). 

Regarding IL-1, three forms are known: IL-1α, IL-1β and IL-1Ra. Although 

both IL-1α and IL-1β are strongly proinflammatory, perform many of the same 

functions and bind to the IL-1 receptor (IL-1R), there is only 25% amino acid 

homology between them (Arango Duque & Descoteaux, 2014). Similarly to TNF-

α, IL-1β is also an endogenous pyrogen that is produced and released at the 

early stages of the immune response. Although monocytes and macrophages 

are the main sources of IL-1β, it is also released by NK cells, B cells, dendritic 

cells, fibroblasts, and epithelial cells. Similar to TNF-α, IL-1β stimulates the 

production of acute phase proteins from the liver and acts on the central nervous 

system to induce fever and prostaglandin secretion. In mast cells, IL-1β induces 

the release of histamine, which initiates vasodilation and localized inflammation. 

IL-1Ra when linked to the IL-1 receptor does not induce the proinflammatory 

signaling induced by IL-1α and IL-1β (Arango Duque & Descoteaux, 2014). 

Both IL-1β and TNF-α may induce resistance of hepatic growth hormone 

(GH) receptors leading to a significant reduction in plasma insulin-like growth 

factor 1 (IGF-I), which impairs nutrient utilization for growth (Johnson, 1997). It is 

also known that TNF-α has a major role in regulating lipid metabolism. Tumor 
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necrosis factor-α increases hepatic fatty acid synthesis, but in cultured fat cells it 

decreased the activity of lipoprotein lipase, inhibited de novo fatty acid synthesis, 

and stimulated lipolysis (Spurlock, 1997). Hardardottir et al. (1994) also reported 

that TNF-α and IL-1 induce hypertriglyceridemia by decreasing lipoprotein lipase 

activity and by increasing the rate of hepatic fatty acid synthesis and their 

subsequent incorporation into very low-density lipoprotein. Moreover, according 

to Johnson (1998), TNF-α induces adipocytes to secrete leptin, a factor that acts 

centrally reducing food intake and increasing energy expenditure. Therefore, in 

immunological challenged pigs, immune system activity and energy balance may 

be coupled by leptin (Johnson, 1998).  

The inflammatory response is beneficial for the host when the 

proinflammatory cytokines are produced in adequate amounts (Johnson, 1997). 

Otherwise, elevated amounts may trigger an acute generalized inflammatory 

response, such as septic shock and multi-organ failure due to excessive 

production of IL-1β and TNF-α (Arango Duque & Descoteaux, 2014).  

Additionally, overproduction of these cytokines may adversely affect 

growth and feed efficiency (Williams et al., 2009). In immune system challenged 

pigs, the increased release of proinflammatory cytokines caused reduced feed 

intake, growth performance and impairment in feed efficiency, mainly due to 

anorexia and fever (Johnson, 1997; Webel et al., 1997). Because 

proinflammatory cytokines have pronounced effects on amino acid, protein, and 

fat metabolism in rodents, they have been linked to the depression in lean growth 

in immunologically challenged pigs (Johnson, 1997). Muscle protein degradation 
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is a characteristic of an inflammatory response and it is also mediated by IL-1 

and TNF-α (Spurlock, 1997). Therefore, the modulation of these proinflammatory 

cytokines may alleviate the negative effects induced by an immunological 

challenge (Elsasser et al., 2008; Johnson, 1998; Liu et al., 2003). 

 

Copper 

Copper and performance 

Copper plays a significant role in synthesis and activation of several 

oxidative enzymes required for normal metabolism in pigs, including 

ceruloplasmin, cytochrome c oxidase, and superoxide dismutase (Suttle, 2010). 

As a cofactor, copper is indispensable for enzymatic and non-enzymatic copper-

dependent proteins involved in mitochondria respiration, neurotransmitter 

synthesis, connective tissue formation, and pigmentation (McDowell, 2003). 

Along with iron, copper is important for hemoglobin synthesis. Although copper is 

not contained in hemoglobin, a trace of this mineral is necessary to catalyze the 

iron utilization by the body for hemoglobin formation (NRC, 2012).  

According to the NRC (2012), the nutritional copper requirement for 

weaned pigs is 5 to 6 mg of copper per kg of diet during the nursery phase. A 

deficiency of copper leads to poor iron mobilization, impairing hematopoiesis. 

Also, depigmentation, poor keratinization, decreased synthesis of collagen, 

elastin, and myelin may be observed. Additionally, deflected legs, spontaneous 

fractures, cardiac and vascular disorders are consequences of copper deficiency 

(McDowell, 2003; NRC, 2012; Suttle, 2010; Underwood & Suttle, 1999). The 
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maximum tolerable concentration for pigs is 250 ppm. Above that, copper may be 

toxic, especially if fed during extended periods of time (NRC, 2012).  

In swine nutrition, two major copper sources have been used: copper 

sulfate (CuSO4) and tribasic copper chloride (TBCC) (Huang et al., 2015). Both 

present similar growth-promoting effects in weanling pigs (Cromwell et al., 1998). 

However, these two sources differ greatly in their water solubility (Miles et al., 

1998). Copper sulfate is hygroscopic and very soluble in water, while TBCC is 

not hygroscopic and poorly soluble in water, but soluble under acidic conditions 

(Miles et al., 1998). Besides, TBCC is a more concentrated form of copper than 

copper sulfate (58% versus 25% Cu). Because it has low hygroscopicity and 

solubility in water, it should be a less reactive and less destructive form of copper 

when combined with vitamins in the diet (Ammerman et al., 1995).  

Similar to zinc oxide, copper sulfate is commonly added at 

pharmacological concentrations to nursery diets due to its growth promoter 

effect. Studies have shown that copper supplementation at 100 to 250 mg/kg of 

diet increases growth rate, feed efficiency, and stimulates feed intake in pigs 

(Cromwell et al., 1998; Fry et al., 2012). Cromwell et al. (2001) summarized the 

results from 23 experiments showing that supplementation of copper sulfate (200 

to 250 ppm of copper from CuSO4) improved pig performance from 8 to 20 kg of 

body weight. Average daily gain (ADG) was increased by 40 g/pig and a 4.5% 

improvement in feed efficiency was also observed due to CuSO4 addition in 

nursery diets. 
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Previously, Coffey et al. (1994) supplemented nursery diets with different 

inclusions of dietary copper from CuSO4 or Cu-lysine (50, 100 or 200 ppm Cu 

plus basal diet with 18 ppm of copper from CuSO4). An 11.5% improvement in 

growth rate, 8.7% increasing feed intake, and 2.4% improvement in feed 

efficiency was observed in diets supplemented with 100 and 200 ppm Cu 

compared to pigs fed no additional copper. Regardless of copper source, 100 

ppm of copper was as efficacious as 200 ppm of copper in stimulating growth of 

weaned pigs (Coffey et al., 1994).  

Tribasic copper chloride (TBCC) is nearly as efficacious as copper sulfate 

at the same inclusion (200 ppm), resulting in improvements of 8% in growth rate, 

5% in feed intake, and 4% in feed efficiency as compared with control pigs not 

supplemented with additional copper. Furthermore, 100 ppm of copper from 

TBCC is similar in efficacy as 200 ppm, allowing a lower inclusion and resulting 

in a lower excretion (Cromwell et al., 1998). In 2012, Fry et al. compared TBCC 

(225 ppm) and CuSO4 (225 ppm) in nursery diets. The results suggested that 

during phase 1 (d 0 to 6), average daily gain and feed efficiency were greater in 

nursery pigs supplemented with TBCC (225 mg/kg diet). Average daily feed 

intake was not affected by copper amount or source. During phase 2 (d 7 to 21), 

pigs supplemented with TBCC tended to gain less and consume less feed than 

pigs supplemented with CuSO4. Pig growth performance was not affected by 

source or by dietary concentration of copper during phase 3 (d 22 to 35). 

According to Zhou et al. (1994), high concentrations of copper act directly 

on the growth regulatory system. When injected intravenously, copper had 
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similar effects on growth performance compared to dietary copper intake (250 

ppm). They observed a stimulus on serum mitogenic activity, and also an 

increase in growth hormone mRNA concentrations. Therefore, a mode of action 

that does not involve antimicrobial activity may be considered (Zhou et al., 1994). 

Yang et al. (2011) also observed an effect on growth performance through the 

action of copper on growth hormone levels. They found that the diets 

supplemented with 125 ppm of copper methionine or 125 ppm of copper sulfate 

increased the secretion of growth hormone-releasing hormone (GHRH) mRNA, 

influencing its transcription and subsequent synthesis. Over the entire 

experimental period, average daily gain (ADG) was higher in copper 

supplemented groups than in the control group, as well as feed efficiency was 

improved. Between copper sources, there was no significant difference in ADG 

or feed efficiency between 125 ppm copper sulfate and 125 ppm copper 

methionine supplemented groups. 

High dietary concentrations of copper also stimulate feed intake in pigs by 

upregulating neuropeptide Y (NPY) mRNA expression and enhancing NPY 

concentration in the hypothalamus (Li et al., 2008). Their results showed that 

average daily gain (ADG) and average daily feed intake (ADFI) were higher and 

feed to gain (F:G) ratio was lower in pigs fed diets supplemented with 125 or 250 

ppm copper than pigs fed the control diet with 10 ppm copper. However, there 

was no significant difference in growth performance between the 125 ppm and 

the 250 ppm copper groups. The higher NPY concentrations and NPY mRNA 

expression levels in the hypothalamus was observed in both groups fed high 
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concentrations of copper compared to the control group. This link between 

dietary copper, NPY mRNA expression and appetite was also observed by Zhu 

et al., (2011). In this study, they observed that high dietary copper (250 ppm) 

increased NPY mRNA expression levels in the pig hypothalamus through the 

down-regulation of leptin receptor mRNA expression, which might contribute to 

the stimulation of appetite. 

Moreover, the addition of high concentrations of copper to diets of weaned 

pigs improves the digestibility of dietary fat by stimulating lipase and 

phospholipase A activities in the small intestine. According to Luo and Dove 

(1996) the addition of 250 ppm of copper (as CuSO4) improved apparent fat 

digestibility and apparent nitrogen retention in diets containing 5% added animal 

fat. The same dietary concentration of copper increased its levels in plasma, 

liver, and kidney and decreased iron in plasma and liver. No effect on pancreatic 

lipase or phospholipase activities and no effect on trypsin, chymotrypsin, or 

amylase activities in the small intestine or the pancreas were observed in this 

study. They concluded that the improved fat digestibility and the enhanced 

enzymes activities could lead to a better absorption of fatty acids and fat-soluble 

vitamins and affect other pathways of nutrient metabolism, and therefore 

stimulate growth of weaned pigs (Luo & Dove, 1996).  

Recently, in a multi trial analysis, Ma et al. (2015) confirmed that 

improvement in growth performance by high concentrations of copper is 

enhanced by pharmacological concentrations of zinc oxide in nursery diets. A 

greater response to added copper was observed in phases I and II. Namkung et 
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al., (2006) concluded that the addition of 3000 ppm of zinc and 250 ppm of 

copper to the diet improved growth performance of piglets during the first 2 

weeks post-weaning. However, thereafter and when pigs were fed reduced 

concentrations of both minerals no effect of previous zinc and copper 

supplementation levels were observed. 

Hill et al. (2000) observed that average daily gain, feed intake, and feed 

efficiency were improved by the addition of pharmacological concentrations of 

zinc (3000 ppm) and (or) copper (250 ppm) in nursery diets. They also observed 

that the responses to zinc and copper were independent and not additive, 

meaning that the combination of both minerals did not result in an additive growth 

response. However, they did observe that copper and zinc were additive in 

improving feed efficiency in the second week post-weaning. 

The opposite was observed by Perez et al. (2011). The data from their 4 

experiments consistently showed that dietary copper and zinc have additive 

effects in growth promotion, improving performance of weanling pigs. These 

additive effects can be explained as the sum of their different effects to promote 

growth. The mode of action of zinc seems to be restricted to the intestine, 

whereas copper may also have a systemic effect (Perez et al., 2011; Yang et al., 

2011). 

When supplemented together, high doses of zinc oxide (2500 ppm) and 

copper sulfate (175 ppm) reduce the size of some commensal groups of bacteria 

in the gastrointestinal tract, such as lactobacilli and streptococci (Hojberg et al., 

2005). However, the reduced level of these commensal bacteria may benefit the 
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pig by allocating more nutrients for growth performance (Gaskins, et al. 2002). As 

suggested by the author, reduced fermentation of digestible nutrients in the 

proximal part of the gastrointestinal tract may provide more energy available for 

the pig contributing to the growth promoting effect of high dietary zinc oxide 

doses. The influence of zinc oxide in the gastrointestinal microbiota is similar to 

some growth promoting antibiotics, which suppress gram positive commensals 

rather than potentially pathogenic gram negative microorganisms (Hojberg et al., 

2005). Copper sulfate reduced the number of coliforms in the large intestine, 

which may be part of other mechanisms, such as the suppression of specific 

pathogens and the induction of resistance by the animal to pathogen adhesion, 

invasion as well as toxins (Carlson et al., 2004). 

Once again, although supplementation of high concentrations of zinc oxide 

and copper sulfate has shown positive impact on weaned pig performance and 

health status, this practice results in significant excretion of these minerals 

becoming an environmental problem (Carlson et al., 1999; Hill et al., 2000). In 

this way, this use has been decreased or limited in nursery diets (Jondreville et 

al., 2003).  

 

Copper and immune system 

Copper has been shown to play a role in the development and 

maintenance of the immune system (Percival, 1998).  Its deficiency impacts 

functions of multiple immune cell types of innate and acquired immunity, such as 

neutrophil, monocyte, T-cell (Wintergerst et al., 2007), and especially 
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macrophage functions (Percival, 1998). According to Stafford et al. (2013) 

macrophages may utilize copper through several mechanisms during host 

defense, such as acute and delayed generation of ROS. Also, many of the 

copper transport genes have also been implicated in macrophage mediated host 

defense (Stafford et al., 2013). 

During copper deficiency, the capacity of neutrophils to reach the site of 

infection, adhere and transmigrate across to the endothelium to phagocytize and 

eliminate the pathogen is decreased (Karimbakas et al., 1998). Additionally, a 

decrease in the number of circulating neutrophils, a condition termed 

neutropenia, as well as in the number of red blood cells is related to copper 

deficiency (Bonham et al., 2002).  

Copper is also present in the copper/ zinc-containing enzyme SOD 

(Okado-Matsumoto & Fridovich, 2001), which is an essential defense against 

reactive oxygen substances (ROS) decreasing damage of lipids, proteins, and 

DNA, participating actively during inflammatory response (Perry et al., 2010).  

Piglets that were supplemented with high concentrations of copper (250 

ppm) and zinc (3000 ppm) had decreased plasma cortisol levels and cytokine 

circulation after lipopolysaccharide challenge, suggesting that both minerals may 

alleviate the stress response induced with bacterial endotoxin (Namkung et al., 

2006). 

Gonzales-Eguia et al. (2009) compared two sources of copper regarding 

the immune response. They supplemented weaned pig diets with nano copper or 

copper sulfate at 50 ppm of copper. Their results showed a significant increase in 
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level of γ-globulin in the nanoCu group when compared to the control. IgG levels 

in both nanoCu and CuSO4 groups was higher than that in the control group. 

However, they did not observe significant differences between the two copper 

sources. Compared to the control group, both nano Cu and CuSO4 

supplementation significantly increased the SOD activity in the blood serum of 

piglets, and the nano copper group showed the highest activity. 

 

Manganese 

Manganese and performance 

Manganese is an essential trace mineral that participates as a cofactor in 

several enzymatic reactions involved in carbohydrate, lipid, and protein 

metabolism (NRC, 2012). Manganese plays a role in intermediary energy 

metabolism through the activity of metalloenzyme pyruvate carboxylase, which is 

required for normal lipid and carbohydrate metabolism (Suttle, 2010). In addition, 

manganese is a necessary cofactor for biosynthesis of mucopolysaccharides in 

the organic matrix of bones through the activation of glycosyltransferase which 

attaches modified sugars to proteins (NRC, 2012). Moreover, manganese is an 

essential constituent in the metalloenzyme superoxide dismutase (Rosa et al., 

1980), which adds protection against oxidative stress associated with 

inflammatory responses (Suttle, 2010).  

The nutritional manganese requirement for weaned pigs with body weights 

ranging between 5 and 25 kg is 3 to 4 mg of manganese per kg of diet. (NRC, 

2012). Swine diets deficient in manganese impair growth, reduce feed efficiency, 
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and impact negatively the reproductive performance (McDowell, 2003). Although 

the toxic concentration of manganese is not well documented, reduced feed 

intake and growth rates have been observed when pigs were fed 4,000 ppm of 

manganese (Leibholz et al., 1962). Grummer et al. (1950) reported that 500 ppm 

of manganese reduced growth rate and resulted in limb stiffness in growing pigs.  

There is limited research on the performance of nursery pigs related to 

manganese supplementation in the diet. Few studies documented that 

performance of baby pigs and sows were not improved by dietary 

supplementation of manganese (Plumlee et al., 1956). Leibholz et al. (1962) 

reported that 0.4 ppm of manganese was sufficient for young pig performance. 

However, long-term feeding of a diet containing only 0.5 ppm of manganese 

resulted in abnormal skeletal growth, increased fat deposition, irregular or absent 

estrous cycles, resorbed fetuses, weak pigs at the birth, and reduced milk 

production in female pigs fed a semi-purified diet from 3 weeks of age throughout 

growing, gestation and lactation periods (Plumlee et al., 1956). 

Grummer et al. (1950) fed pigs a basal diet containing 12 ppm of 

manganese supplemented with 40, 80 and 160 ppm of manganese. Pigs 

consuming diets supplemented with 40 ppm had increased average daily gain 

and improved overall feed efficiency when compared to pigs fed the basal diet. 

No additional improvement in pig performance was observed with higher 

concentrations of manganese. The opposite was observed by Plumlee et al. 

(1956). No difference in growth rate and feed efficiency was found in pigs fed 
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semi-purified diets from weaning to market weight when concentrations of 

manganese ranged from 0.5 to 40 ppm.  

In a growing-finishing trial, Sawyer et al. (2007) supplemented manganese 

at 350 ppm from manganese sulfate or from manganese amino acid complex. 

The performance results showed that manganese supplementation during the 

early grower phase did not impact ADG, ADFI, or F:G. However, during the later 

grower phase, pigs fed basal diet including manganese had lower intake than 

pigs fed basal diets without supplementation of manganese. Additionally, there 

was a tendency for pigs fed diets supplemented with manganese to be more 

efficient during the later grower phase than those pigs fed the basal diet without 

manganese. Even though pig performance was not improved during the early-

finishing phase, pigs fed basal diets containing manganese grew faster and had 

higher intake than pigs fed basal diets lacking supplemental manganese during 

the late-finishing phase. Across the entire growing-finishing period, however, 

ADG, ADFI, and F:G were not affected by supplemental manganese source. 

 

Manganese and immune system 

Regarding the immune system, manganese has not been broadly studied 

in swine. However, research has been performed in other species. Smialowicz et 

al. (1985) suggested that manganese may play a significant role as an 

immunomodulator. After a single intramuscular injection in mice, manganese 

chloride enhanced macrophage phagocytic activity as well as tumoristatic and 

tumoricidal activity. 
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Son et al. (2007) reported that rats supplemented with high doses of 

manganese (500 ppm) and magnesium (1000 ppm) for 12 weeks significantly 

decreased the percentage of macrophage death compared to the control. The 

preventive effect on cell death was more pronounced in the high dose of 

manganese treated group. Thus, they reported that the high dose manganese 

seems to be more useful to maintain macrophages viability. Moreover, a 

significant decrease on intracellular reactive oxygen species (ROS) and nitric 

oxide (NO) level was observed with the supplementation of the high dose of 

mineral as well. Cytotoxicity of macrophages was also increased in treated rats. 

Son et al. (2007) concluded that the immune system had positive effects after 

supplementation with manganese. However, the exact explanation for the 

modulation of immune response was not defined.  

Sunder et al. (2006) supplemented manganese sulfate at different 

concentrations in diets of broiler chickens to evaluate the mineral retention by 

tissues and immune competence. Regarding immune response, they concluded 

that supplementation of manganese at 100 ppm was essential for enhanced 

immune response affecting both humoral and cell mediated immune responses. 

The immune response was also improved in a similar study conducted by 

Bozkurt et al. (2015). Broilers supplemented with dietary manganese produced 

higher levels of antibodies after vaccination than chickens fed a control diet with 

no manganese supplementation.  
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Zinc 

Zinc and performance 

The nutritional zinc requirement for weaned pigs with body weights 

ranging between 5 and 11 kg is 100 mg of zinc per kg of diet. At the end of the 

nursery phase, a reduction to 80 mg of zinc per kg of diet occurs when the body 

weight is around 25 kg (NRC, 2012).  

Zinc is a ubiquitous element in cells being present in the cytoplasm and in 

most organelles (Bonaventura et al., 2015). Zinc plays an important role in 

regulating gene expression, nutrient metabolism, immune function, and health 

(Rink & Kirchner, 2000). Zinc is a cofactor of more than 300 metalloenzymes 

(Suttle, 2010), particularly those involved in protein, carbohydrate and lipid 

metabolism such as carbonic anhydrase, alkaline phosphatase and zinc-binding 

proteins, including metallothionein (McDowell, 2003). DNA and RNA synthetases 

and transferases have zinc as a cofactor as well (NRC, 2012). Two key structural 

proteins, collagen and keratin, both require zinc for their synthesis. Keratin is the 

major structural protein of the hoof and skin, while collagen is the major structural 

protein of the extracellular matrix and connective tissues, including cartilage and 

bone (Underwood & Suttle, 1999).  

Moreover, zinc is necessary for adequate differentiation of epithelial cells 

and to promote wound healing (Chandra, 1997; Jensen-Waern et al., 1998). 

According to Huang et al., (1999), zinc has a primary effect on tissues with a high 

turnover rate, such as the gastrointestinal tract and immune system, which have 

a significant requirement for DNA and protein synthesis. Zinc contributes to 
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normal intestinal barrier function, and also to the regeneration of damaged gut 

epithelium. Additionally, dietary zinc has been shown to reduce intestinal 

permeability after weaning (Huang et al., 1999; Zhang & Guo, 2009).  

Zinc also plays a role in the production, storage, and secretion of 

individual hormones as well as in the effectiveness of receptor sites (McDowell, 

2003). Among the most notable effects of zinc deficiency on hormone production 

and secretion are those related to testosterone, insulin, and adrenal 

corticosteroids (McDowell, 2003; NRC, 2012). 

Zinc deficiency results in impairment of immune function (Rink & Kirchner, 

2000), parakeratosis, diarrhea in young pigs, growth retardation and depressed 

feed intake (McDowell, 2003; NRC, 2012). The growth efficiency may be affected 

by the impairment of amino acid utilization or protein synthesis by animals during 

zinc deficiency (McDowell, 2003).  

Zinc toxicity depends upon the zinc source, dietary concentration, the 

duration of feeding, and the concentrations of other minerals in the diet. The 

maximum tolerable dietary concentration for swine has been set at 1000 ppm 

with exception of zinc oxide, which may be included at higher concentrations for 

several weeks (NRC, 2012).  

During absorption, zinc interacts competitively with several elements, such 

as calcium, copper, and iron. Excessive intake of zinc may thus result in copper 

and iron deficiency (Jensen-Waern et al., 1998). Hill et al. (2001) observed that 

the increase in plasma zinc and the concurrent decline in plasma copper began 
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when dietary zinc concentrations were higher than 1000 ppm and was 

exacerbated as the dietary zinc concentration increased.  

Zinc bioavailability is influenced by source and dietary concentration. Hahn 

& Baker (1993) and Carlson et al. (1999) observed that plasma zinc 

concentration increased as the dietary concentration of zinc increased, 

particularly when diets contained above 1000 ppm of zinc. Additionally, the form 

of zinc in the diet affected its bioavailability and subsequent plasma 

concentration (Hahn & Baker, 1993). Zinc oxide had lower bioavailability, which 

resulted in lower plasma zinc concentrations compared to zinc sources 

chemically bound with sulfate or lysine (Hahn & Baker, 1993). Besides that, zinc 

from grains and plant protein also has low bioavailability, however, it may be 

enhanced by microbial phytase addition to the diet (NRC, 2012). According to 

McDowell (2003), cereal grain contains phytic acid which impairs zinc digestion. 

Among other sources of zinc, zinc sulfate is highly hygroscopic, resulting in 

several reactions with metal ions and in the breakdown of vitamins, fatty acid, 

and other nutrients in the diet, while tetrabasic zinc chloride (TBZC) is insoluble 

in water, therefore, more chemically stable in the diets (Zhang & Guo, 2007). 

Zinc oxide is the most widely studied source of zinc in nursery diets; 

however, other zinc sources can substitute for zinc oxide at the same or even 

lower concentration (Mavromichalis et al., 2001). Zinc oxide is commonly used as 

a pharmacological agent while zinc sulfate is used as an inorganic nutritional 

source (Hill et al., 2014). The availability of organic sources of zinc for dietary 

supplementation has become popular in the last 20 years, although data with the 



32 

 

comparison of organic and inorganic zinc sources in nursery diets are limited (Hill 

et al., 2014). 

Mavromichalis et al. (2001) compared growth performance of weaned pigs 

after supplementation of zinc oxide (ZnO) and tetrabasic zinc chloride (TBZC) in 

pharmacologic concentrations (1500 or 3000 mg Zn/ kg). Both sources of zinc 

increased weight gain and feed efficiency, however feed efficiency was improved 

to a greater result by TBZC. In a similar study, Zhang & Guo (2007) fed 

pharmacological concentrations of zinc from ZnO or TBZC during the first 4 

weeks after weaning. They concluded that TBZC could be a desirable zinc 

source compared with ZnO for nursery diets to enhance growth performance at 

lower dosage. During the entire experimental period, supplementation of Zn at 

2250 mg/kg of diet from ZnO increased ADG and ADFI by 27% and 19%, 

respectively, while there were about 33% increase in ADG and 20% increase in 

ADFI by supplementing 1500 mg Zn/kg of diet as TBZC.  

Pharmacological concentrations of zinc (2000 to 3000 ppm) from zinc 

oxide (ZnO) have been widely used in nursery diets due to its effects on 

enhancing growth performance and alleviating the incidence of diarrhea (Hill et 

al., 2001; Lalles et al., 2004; Shelton et al., 2011). At high concentrations, zinc 

oxide increases weight gain and improves feed efficiency in weaned pigs 

regardless of diarrhea incidence (Carlson et al., 1999; Smith et al., 1997). The 

oxide form of the mineral seems to be critical in achieving these response 

benefits and is less toxic than other inorganic zinc sources (Hahn & Baker, 

1993).  
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Poulsen (1995) and Smith et al. (1997) reported that growth rate was 

increased by 10-26% when nursery pigs were fed diets with 2500 to 4000 ppm of 

zinc oxide. Other studies also demonstrated that pharmacological doses of zinc 

oxide improve growth performance in weanling pigs during the first 2 weeks post-

weaning (Case & Carlson, 2002; Mavromichalis et al., 2001; Perez et al., 2011).  

Hahn & Baker (1993) reported a 17% increase in daily weight gain and 

14% increase in daily feed intake in weaned pigs supplemented with 3000 ppm 

of zinc oxide compared to pigs fed lower concentrations of zinc oxide, zinc 

sulfate or zinc-lysine. Hill et al. (2001) also reported improvement in growth rates 

in response to feeding pharmacological concentrations of ZnO. Moreover, Hill et 

al. (2001) reported that pigs weaned early (less than 15 d of age) had greater 

benefits of feeding high amounts of zinc oxide than pigs weaned at 20 d of age. 

Previously, Carlson et al. (1999) reported that both early and later weaned pigs 

responded in a beneficial manner to supplemental zinc oxide from weaning to 14 

d post-weaning with minimal differences in responses afterwards.  

An increase in feed intake was also observed by Yin et al. (2009) after 

supplementation of 2000 ppm of zinc oxide in nursery diets. The increase in 

plasma concentrations of ghrelin, a molecule that stimulates feed intake, may 

explain the increased feed intake and increased growth rate of weaned pigs. 

Hedemann et al. (2006) reported that zinc increases the activity of several 

pancreatic enzymes. A high concentration of zinc (2500 ppm) in nursery diet 

resulted in a greater activity of 5 of 7 measured enzymes in pancreatic tissue 

homogenate, such as amylase activity, carboxypeptidase A, chymotrypsin, 
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trypsin, and lipase, which may increase the digestibility of other nutrients in the 

diet. Li et al. (2016) reported that zinc supplementation in nursery diets improved 

nutrient digestibility regardless of the zinc source when compared to the control 

group without any zinc addition in the diet. They also observed that crude protein, 

crude fat and phosphorus digestibility were higher in the groups supplemented 

with zinc than those in the control group. 

The intestinal morphology is also affected by feeding pharmacological 

concentrations of zinc oxide. Li et al. (2001) reported that high concentrations of 

zinc oxide (3000 ppm) fed to weaned pigs increased villus height and decreased 

crypt depth at 11 d post-weaning compared with pigs without supplementation of 

zinc. In this study, zinc oxide supplementation altered the mucosal morphology, 

especially in the jejunum. Previously, in 1999, Carlson et al. suggested a 

potential role of zinc on improving intestinal morphology as well.  

Under a natural diarrhea outbreak due to E. coli, Perez et al. (2011) 

observed that high dietary zinc oxide supplementation (3000 ppm) was effective 

in improving pig health. In a previous study, Katouli et al. (1999) observed that 

feeding 2500 ppm of zinc oxide was able to reduce post-weaning diarrhea by 

improving the stability of the intestinal flora and maintaining high diversity of 

coliforms, a factor which promotes an active competition for colonizing receptor 

sites of pathogenic strains. Several mechanisms for the mode of action of zinc to 

reduce diarrhea have been suggested including a reduced secretory capacity in 

the small intestine epithelium (Carlson et al., 2004), protection of intestinal cell 

membrane integrity by preventing their rupture, inhibiting bacterial adhesion and 
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invasion, and reducing cytokine induced inflammation (Roselli et al., 2003). Zinc 

oxide also decreased the response to E. coli infection by reducing plasma 

cortisol (Namkung et al., 2006).  

Furthermore, Huang et al. (1999) reported that supplementation of 3000 

ppm of zinc oxide may prevent septicemia by reducing translocation of E. coli 

and Enterococcus spp. from small intestine to the corresponding lymph nodes in 

weaned pigs. Bacteria were cultured from ileum lymph nodes in 3 of 9 pigs fed 

supplemental zinc oxide while 8 of 9 pigs of the control group (149 ppm of zinc 

oxide) had bacterial growth. The numbers of bacteria in the ileum lymph nodes 

tended to be lower in zinc oxide supplemented pigs (15±7 CFU per g of tissue) 

than in control pigs (387±194 CFU per g of tissue).  

Although supplementation of pharmacological concentrations of zinc oxide 

has shown positive impact on weaned pig performance and health status, it 

results in elevated excretion of this mineral in the manure becoming an 

environmental problem (Carlson et al., 1999; Hill et al., 2000). Because of this 

reason, this practice has been criticized worldwide, and many countries have 

limited or banned the use of high concentrations of zinc oxide in nursery diets 

(Jondreville et al., 2003).  

 

Zinc and immune system  

Zinc is an essential micronutrient (McDowell, 2003), and its homeostasis 

plays an important role in the regulation of the immune system (Wellinghausen et 
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al., 1997). The majority of immunological events are somehow influenced by the 

availability of zinc (Haase & Rink, 2014). 

Zinc is essential for cell-mediated innate immunity, affecting the function of 

neutrophils, natural killer cells and macrophages (Rink & Haase, 2007). Immune 

cells contain a wide number of different zinc containing enzymes and zinc finger 

proteins (Haase & Rink, 2014). Some requirements for zinc in immune function 

are related to its role as an enzymatic cofactor (Rink & Kirchner, 2000) as well as 

to its additional role in regulating immune cell signaling (Haase & Rink, 2014). 

Zinc executes its functions in two different ways: as a neurotransmitter, being the 

first messenger in cell to cell communication, or as an intracellular signaling 

molecule (as the secondary messenger) (Bonaventura et al., 2015). 

Zinc participates in the chemo attractant process between the immune 

cells, therefore, its deficiency leads to reduced polymorphonuclear cells 

chemotaxis (Rink & Kirchner, 2000). Zinc induces monocytes to produce 

cytokines such as interleukin IL-1 β, IL-6 and TNF-α (Haase & Rink, 2014; Rink & 

Kirchner, 2000; Wellinghausen et al., 1997). Furthermore, the monocytes 

function and amount is also affected by zinc availability (Stafford et al., 2013). On 

the other hand, it has been reported that zinc supplementation may reduce the 

gene expression of proinflammatory cytokines such as TNF-α, IL-1β, and IL-8, 

controlling their overproduction during immune response (Bao et al., 2003). Zinc 

also interacts with macrophages enhancing their microbicide activity (Stafford et 

al., 2013). Van Heugten et al. (2003) reported increased phagocytic capability of 

peritoneal exudate cells when weaning piglets were fed 160 ppm of zinc sulfate. 
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The effect of zinc on phagocytosis is probably mediated by zinc proteins involved 

in this process.  

The secretion of thymulin is affected by zinc availability, which stimulates 

T-cell production (Wellinghausen et al., 1997). Therefore, dietary zinc deficiency 

results in a profound suppressive effect on thymic function, T-lymphocyte 

development and proliferation, as well as resistance to infections (Kubena & 

McMurray, 1996). Supplementation of different sources of zinc significantly 

improved immune traits (goat red blood cells antibody titer, IgG and ƴ-globulin) 

and the cell-mediated and humoral components of the immune system in 

weaned pigs (Li et al., 2016). 

Sun et al. (2009) evaluated the effect of zinc supplementation on growth 

performance of pigs after an immunological challenge. Zinc supplementation did 

not relieve daily feed intake depression during d 7 to 14 after lipopolysaccharide 

challenge, but there was a trend for average daily gain to be enhanced with 

supplemental zinc. This indicated that zinc supplementation may alter the 

negative effects of an immunological stress (Sun et al., 2009). In this study, they 

also observed a trend for lymphocyte proliferation to be enhanced with 

supplemental zinc. Likewise, Van Heugten et al. (2003) reported that pigs 

supplemented with zinc (control + 80 ppm added Zn from Zn methionine) had 

greater lymphocyte proliferation than pigs fed the control diet (basal 

concentration of 80 ppm added Zn from ZnSO4).  

Lipopolysaccharide Challenge in Pigs 
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Lipopolysaccharide (LPS), an intrinsic component of the outer membrane 

of gram-negative bacteria, has frequently been used as a model to study immune 

and neuroendocrine interactions in pigs (Tuchscherer et al., 2004; Wright et al., 

2000). LPS induces sickness behaviors, including vomiting, diarrhea, lethargy, 

increased body temperature, and reduced feed intake in pigs (Johnson & Von 

Borell, 1994; Webel et al., 1997; Wright et al., 2000), mimicking a natural 

bacterial infection (Mandali et al., 2000). Reductions in feed intake are mostly 

dose-dependent in intensity and duration (Frank et al., 2005; Johnson & Von 

Borell, 1994), and the major changes are typically alleviated 24-48 h after the 

challenge (Wright et al., 2000). 

The bacterial lipopolysaccharide is recognized by a receptor complex 

composed of CD14, Toll-like receptor (TLR4) and MD-2. Many different cell types 

express CD14, TLR4 and MD2, including monocytes, macrophages, lymphoid 

cells and cells that are not part of the immune system, such as epithelial, 

endothelial and vascular smooth-muscle cells (Bryant et al., 2010). When LPS is 

circulating, the lipopolysaccharide-binding protein (LBP) accelerates the binding 

of the endotoxin to CD14 (Fitzgerald et al., 2004). CD14 facilitates the transfer of 

LPS to the TLR4/MD-2 receptor complex and modulates LPS recognition (Lu et 

al., 2008). Then, the TLR4 is activated via pathogen associated molecular 

patterns (PAMP) (Lippolis, 2008). The LPS molecule is composed by lipid A, O 

side chain, and core oligosaccharide (Freudenberg et al., 2008). The lipid A is 

the PAMP that activates TLR4. It initiates a signaling cascade that leads to 

activation of nuclear factor kappa B (NFκB), which leads to the activation of 
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genes encoding various cytokines and chemokines that are central to an immune 

response (Lippolis, 2008). Among them, there are proinflammatory cytokines 

(TNF-α, IL-1β, and IL-6) as well as cyclooxygenase (COX)-2 and the subsequent 

induction of the eicosanoid pathway, including prostaglandins (PGs), 

thromboxanes (TXs) and leukotrienes (LTs), which are collectively referred to as 

eicosanoids. Arachidonic acid (AA) is the main source of eicosanoids. The PGE2 

induces the endotoxic febrile response. Additionally, an important upregulation 

and synthesis of a variety of proteins, the acute phase proteins (APP), occurs in 

the liver. In pigs, C-reactive protein (CRP), serum amyloidA (SAA), haptoglobin 

(Hp) and pig major acute phase protein (pig-MAP) have been identified as major 

positive APP (Wyns et al., 2015).  

Lipopolysaccharide also activates the hypothalamus-pituitary-adrenal 

(HPA) axis via pro-inflammatory cytokine stimulation, resulting in increased 

secretions of glucocorticoids (Johnson et al., 1997), which may reduce response 

to growth hormone (Luo & Murphy, 1989) and increase energy expenditure, 

muscle protein degradation and loss of body nitrogen (Williams et al., 2009). 

The response of proinflammatory cytokines and various acute phase 

proteins has been studied by several researchers who have used broad ranges 

of LPS dosages (from 25 to 200 µg/kg) and serotypes (Wyns et al., 2015) as well 

as different administration routes in pigs (intravenous, intramuscular, 

intraperitoneal and subcutaneous) (Frank et al., 2005; Kanitz et al., 2002; Liu et 

al., 2003; Namkung et al., 2006; Tuchscherer et al., 2004; Wright et al., 2000). 

The LPS serotype O111:B4 is the most frequently used in swine research 
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(Williams et al., 2009). While a single LPS administration better reflects the 

sequence of events following an acute LPS challenge, a multiple administration 

with increasing amounts of LPS imitates more accurately a clinical endotoxemia, 

since endotoxin remains in circulation for a longer period and it is continuously 

produced and released during a gram-negative bacterial infection (Rakhshandeh 

& de Lange, 2012; Wyns et al., 2015). In chronic studies, the LPS dose should 

be increased at every injection time to avoid resistance (Liu et al., 2003; 

Rakhshandeh & de Lange, 2012). Low dose endotoxin challenge (5 – 10 µg/kg) 

have also been successfully used to study the time response of TNF-α, IL-6 and 

cortisol in pigs as an indicators of stimulation of sub-acute infection (Warren et 

al., 1997; Webel et al., 1997). 

Liu et al. (2008) described that LPS challenge (100 µg/kg, intraperitoneal 

route) severely decreased performance of weaned pigs during 48 h post-

challenge. In 2006, Namkung et al. challenged weaned pigs with 75 µg/kg of LPS 

intramuscularly on d 13 and 19 after weaning, observing that LPS significantly 

decreased average daily gain and average daily feed intake of pigs during 7 d 

following the challenge. These findings were consistent with some previous 

studies in pigs (Johnson, 1997; Liu et al., 2008).  

Regarding immunological parameters, Namkung et al. (2006) observed 

that LPS injection also resulted in an increased lymphocyte proliferation, 

concentration of plasma cytokines (IL-1β and TNF-α) and cortisol within 3 h after 

the injection indicating an activation of the immune system. Wright et al. (2000), 

reported maximum cortisol concentrations at 2 h after LPS challenge (100 µg/kg,  
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Figure II.1. Signaling recognition of lipopolysaccharide (LPS) and activation of 
proinflammatory cytokines production. 

 

 

 

 

intraperitoneal route) in weaned pigs, returning to control levels by 16 h after 

treatment. Also, the stimulation of the acute response was supported by a 

significant rise in plasma TNF-α concentration at 2 and 4 h after LPS injection. 

The outcome of the activation of the immune system is that nutrients are 

directed to support its function rather than to growth (Spurlock, 1997), which 

(Adapted from Lu et al., 2008) 
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impairs nutrient utilization and performance (Johnson, 1997; Liu et al., 2003). Liu 

et al. (2003) observed depression of weight gain and feed intake in weaned pigs 

after an immunological challenge with LPS (200 µg/kg, intraperitoneal route) on d 

14 and 21 after weaning, as well as increased lymphocyte proliferation, IL-1β and 

cortisol concentration. Wright et al. (2000) reported a reduction in plasma IGF-I 

with a concomitant elevation of plasma cortisol during both the first and the 

second LPS challenges periods, which may indicate the repartition of nutrients 

away from normal growth towards the immune response (Liu et al., 2003).  

 

Summary 

Nursery pigs are subjected to several stress factors following weaning, 

which demand an adequate immune response. Nutritionally, minerals such as 

copper, manganese, and zinc play an important role in many metabolic 

processes necessary to maintain a normal growth rate and performance. Beyond 

that, these minerals are involved in the maintenance of immune system function. 

However, little research has been performed regarding the interaction 

between nutritional concentrations of these trace minerals and the immune 

response in nursery pigs. The availability of information is related mainly to zinc 

and copper when added in high concentrations in the diets. Manganese, on the 

other hand, has been studied in other species. Furthermore, more studies 

concerning the bioavailability of minerals in nursery diets are necessary, since 

some publications have shown that is varies according to the mineral source.  



43 

 

Therefore, there is a relevant opportunity to enhance the knowledge 

related to feeding nutritional concentrations of trace minerals in nursery diets and 

the impact on performance and immune response as well.  
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CHAPTER III 
 

 

Effect of dietary source and concentrations of copper, manganese, and 

zinc on growth performance and the immune response of nursery pigs 

following acute and chronic lipopolysaccharide challenge. 

S. Schaaf1, S. D. Carter1, C. Cooper1, C. Shilli1, P. Aparachita1, I. L. Silva1, K. 

Perryman2, and J. Usry2 

1Oklahoma State University, Stillwater, OK, 2Micronutrients, Indianapolis, IN 

 

Abstract 

Weaned pigs have to overcome several stress factors following weaning, 

which demand an adequate immune response. Beyond nutrition, minerals play a 

role in immune system function. However, bioavailability of minerals varies 

according to mineral source. The objective of this research was to evaluate 

dietary sources and concentrations of copper, manganese, and zinc on growth 

performance and the immune response of nursery pigs following an acute and 

chronic immune challenge. Two experiments with two hundred and eighty 

weaned pigs each were performed. Following a 7-d adaptation period, 10 pigs 

per pen were randomly allotted according to body weight (BW) and gender to 

one of four dietary treatments with 7 replicates in each experiment. The dietary 
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treatments consisted of: LS (low sulfates: 5 ppm of Cu from copper sulfate, 16 

ppm of Mn from manganese sulfate, and 50 ppm of Zn from zinc sulfate), HS 

(high sulfates: 10 ppm of Cu from copper sulfate, 32 ppm of Mn from manganese 

sulfate, and 100 ppm of Zn from zinc sulfate), LC  (low chlorides: 5 ppm of Cu 

from copper chloride, 16 ppm of Mn from manganese chloride, and 50 ppm of Zn 

from zinc chloride), and HC (high chlorides: 10 ppm of Cu from copper chloride, 

32 ppm of Mn from manganese chloride, and 100 ppm of Zn from zinc chloride). 

On d 21 and 22 of each experiment, 2 pigs per pen received a single 

intraperitoneal injection of LPS (25 µg/ kg of BW, serotype Escherichia coli 

O111:B4, Sigma-Aldrich, Co., St. Louis, MO) to stimulate an acute immune 

response. Body weight, body temperature and blood samples were taken prior to 

the injection and 3 h afterwards. In the second experiment, pigs from 12 selected 

pens were also subjected to multiple LPS injections (10 µg/ kg of BW, serotype 

E. coli O55:B5, Sigma-Aldrich, Co., St. Louis, MO) on d 28, 30, 32 and 34 of the 

experiment to stimulate a chronic immune response. Blood samples were taken 

prior to the first LPS injection on d 28 and 3 h following the last injection on d 34. 

Among the remaining 16 pens, 8 pens were subjected to saline solution injection 

and 8 pens served as the control (no injection). Serum was analyzed for TNF-α 

and IL-1 β by enzyme-linked immunosorbent assay (Quantikine® ELISA, R&D 

Systems) and also for total-SOD activity by colorimetric assay (DetectX®, Arbor 

Assays). The data were analyzed as a 2x2 factorial arrangement (concentration, 

source and concentration x source interaction). Overall, BW, ADG, ADFI, and 

G:F ratio were not different (P > 0.10) among dietary treatment groups. At h 0 of 
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the acute immune challenge, the least square means for TNF-α (pg/mL) and IL-

1β (pg/mL) were respectively: LS – 145.7, 66.7; HS – 128.8, 67.1; LC – 130.7, 

68.3; HC – 140.9, 68.8. Pigs fed chlorides had lower TNF-α 3 h post-injection, 

compared with pigs fed sulfates (LC - 7297.2; HC - 6180.5 vs LS - 9063.7; HS - 

7563.0 pg/mL; P = 0.031). Interleukin 1β was also lower in pigs fed chlorides 

compared with pigs fed sulfates (416.1 and 363.3 vs 639.3 and 420.3 pg/mL; P = 

0.020). Both chloride sources had lower BW loss 3 h following the single LPS 

injection (P = 0.043). A concentration effect was also observed, with higher 

dietary concentrations producing less TNF-α (P = 0.071) and IL-1β (P = 0.024). 

Total-SOD activity decreased (P > 0.10) among all dietary treatment groups. 

During the multiple LPS injections, growth performance was negatively affected 

(P < 0.005); however, no differences (P > 0.10) were observed among dietary 

treatment groups. Numerically, TNF-α concentration was lower (P=0.196) and 

total-SOD activity was greater (P=0.190) in pigs fed chloride sources. Interleukin-

1β production was not affected (P > 0.10) by dietary treatment group during the 

chronic immune challenge. Chloride sources are able to alleviate the acute 

immune response by decreasing the proinflammatory cytokine production 

regardless the dietary concentration, suggesting a higher bioavailability over 

sulfate sources. Besides that, high dietary concentration of copper, manganese, 

and zinc presented more promising results, indicating that the immune response 

may have a greater requirement than that needed for growth. Additionally, 

following a chronic immune challenge, pigs fed chloride sources had a numerical 

advantage for immune response over pigs fed sulfate sources, suggesting less 
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stimulation of the inflammatory response and potential enhanced antioxidant 

activity. More replicates are needed to confirm the effects of chloride sources 

following a chronic immune challenge in nursery pigs.  

 

Introduction 

Weaned pigs need to cope with several stress factors following weaning. 

Nutritionally, there is a significant change in the diet, which increases the 

susceptibility to intestinal diseases, especially diarrhea caused by 

enterotoxigenic Escherichia coli (Lalles et al., 2007; Pluske et al., 1997). In 

addition, a transient growth check is observed due to changes in intestinal 

function and decreased feed intake (Lalles et al., 2004). Therefore, weaned pigs 

demand an adequate immune response and mechanisms to combat the 

oxidative stress following weaning (Kick et al., 2012; Zhu et al., 2012). The 

biological alterations in metabolism, immune system, and intestinal functions last 

several days and have short and long-term effects on subsequent pig growth and 

health (Boudry et al., 2004). In this way, the adaptation to all stress factors is 

essential to avoid poor performance and mortality during the nursery phase 

(Campbell et al., 2013). 

To alleviate the weaning transition and minimize enteric diseases, different 

nutritional approaches have been studied in the past decade (Lalles et al., 2007). 

Among them, feeding trace minerals in pharmacological concentrations, such as 

zinc oxide and copper sulfate, have been broadly used to improve growth 

performance and to control diarrhea in nursery pigs (Hill et al., 2001). However, 



48 

 

this practice has been restricted or limited in many countries due to the 

environmental impact of excess excretion of these minerals (Hill et al., 2000; 

Jondreville et al., 2003). 

Trace minerals, such as copper, manganese, and zinc are nutritionally 

important as they are cofactors of several metalloenzymes involved in protein, 

carbohydrate, lipid metabolism, and also oxidative enzymes (Suttle, 2010).  

Immunologically, these minerals play a role in a large number of biological 

processes vital to the immune response (Chandra, 1997; Wintergerst et al., 

2007). However, some authors (Johnson, 1998; Kidd, 2004; Van Heugten et al., 

2003) suggested that nutritional concentrations of minerals are not able to meet 

the immune system requirements to obtain an adequate response under immune 

challenges. Moreover, since the bioavailability is influenced by the mineral 

source (Klasing, 2013; NRC, 2012), the mineral function, stability, performance 

results, and immune response are influenced as well (Cohen, 2014; Zhang & 

Guo, 2007). 

Thus, this research aimed to evaluate the effect of dietary sources and 

concentrations of copper, manganese, and zinc on growth performance and 

immune response of weaned pigs following acute and chronic lipopolysaccharide 

(LPS) challenge.  

 

Materials and Methods 

Animal Care and Feeding 
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Two experiments utilizing 280 crossbred (PIC®) pigs (140 barrows and 

140 gilts) each were performed for a period of 6 wk in each experiment. Pigs 

were weaned at average of 20 d of age and allotted randomly to one of four 

dietary treatments with 7 replicates per treatment within each experiment. The 

pigs were handled and cared for according to the guidelines established by the 

Oklahoma State University Institutional Animal Care and Use Committee.  

In each experiment, pigs were blocked randomly by body weight (BW), 

gender, and housed in pens in a proportion of 5 barrows to 5 gilts, totaling 10 

pigs per pen. Pigs were housed in a nursery facility with control of environmental 

temperature and ventilation. 

During the first seven days of the experiment, all pigs received the same 

diet (N1) (Table III.1 and III.2). This common diet was formulated to 5 ppm of 

added Cu from copper sulfate, 16 ppm of added Mn from manganese sulfate, 

and 50 ppm of added Zn from zinc sulfate. All remaining nutrients in the diet were 

added at or above the requirements listed in the NRC (2012).  

On d 7, the treatment diets were allotted to pens: LS (5 ppm of added Cu 

from copper sulfate, 16 ppm of added Mn from manganese sulfate, and 50 ppm 

of added Zn from zinc sulfate), HS (10 ppm of added Cu from copper sulfate, 32 

ppm of added Mn from manganese sulfate, and 100 ppm of added Zn from zinc 

sulfate), LC (5 ppm of added Cu from copper chloride, 16 ppm of added Mn from 

manganese chloride, and 50 ppm of added Zn from zinc chloride), and HC (10 

ppm of added Cu from copper chloride, 32 ppm of added Mn from manganese 

chloride, and 100 ppm of added Zn from zinc chloride). To properly meet the 
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nutritional requirements of all remaining nutrients according to the NRC (2012), 

the treatment diets were formulated in two different phases: N2 and N3 (Table 

III.1 and III.2). The N2 diet was fed from d 7 to 21, and the N3 diet was fed from d 

21 to 42. Both diets were formulated as basal diets, and each treatment mineral 

premix was added subsequently during the mixing process. 

During the entire experiment, pigs were allowed to consume feed and 

water ad libitum. Water was provided via water nipple and each pen had a 

multiple-hole stainless steel feeder. The feed provided was recorded for each 

pen at every feeding time according to the treatment, and the feed intake was 

calculated weekly after weighing feeders and subtracting the remaining feed. 

Additionally, body weight (BW) was also measured on a weekly basis, starting on 

d 0, followed by d 7, 14, 21, 28, 35 and 42 of the experiment. Average daily gain 

(ADG), average daily feed intake (ADFI) and feed efficiency (G:F) were then 

calculated.  

 

Mineral Premix and Diet Analysis 

The mineral premixes were analyzed by Cumberland Valley Analytical 

Services (Hagerstown, MD) through Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) for Cu, Mn, and Zn. Briefly, this technique combines a 

high temperature ICP (Inductively Coupled Plasma) source with a mass 

spectrometer. The ICP source converts the atoms of the elements in the sample 

to ions. These ions are then separated and detected by the mass spectrometer 

(Wolf, 2005). 
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All diets were analyzed for moisture, dry matter, crude protein, crude fiber, 

crude fat, ash, net energy (NE), digestible energy (DE), metabolizable energy 

(ME), calcium, phosphorus, magnesium, potassium, sulfur, sodium, iron, zinc, 

manganese and copper. All analyzes were performed by Servitech (Dodge City, 

KS). 

 

Acute Escherichia coli Lipopolysaccharide Challenge  

On d 21 and 22 of both experiments, 1 barrow and 1 gilt per pen were 

subjected to a single lipopolysaccharide (LPS) challenge. To study the immune 

response, the Escherichia coli LPS O111:B4 (Sigma-Aldrich, Co., St. Louis, MO) 

was suspended in 9 g/L of sterile saline solution for a final dosage of 25 µg of 

LPS/kg of body weight (Bible, 2013; Mandali et al., 2000). The suspension was 

kept in cold storage.  

Prior to the injection, the selected pigs were ear tagged, their rectal 

temperature and body weight were recorded and blood samples were taken. 

Then, the injection was performed in the lower abdomen in the intraperitoneal 

cavity with the weight-dependent LPS suspension. Besides the h 0, rectal 

temperatures and body weight were recorded at 3 and 6 h post-injection. Blood 

was drawn at 3 h post-injection. The time for sampling after LPS injection was 

chosen based on the maximal peak obtained for concentrations of tumor 

necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) (Mandali et al., 2000; Warren 

et al., 1997; Webel et al., 1997). Changes in rectal temperature and percentage 

of body weight were calculated using h 0 as a baseline.  
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Blood Collection 

Blood was taken from the anterior vena cava (jugular) in the supine 

position using a 20 gauge 3.8 cm vacutainer needle with a 10 mL sterile serum 

tube (BD, Franklin Lakes, NJ) followed by a 3 mL sterile plasma tube (BD, 

Franklin Lakes, NJ). The h 0 sampling was used as the baseline. The blood 

samples were placed on ice after collection and stored at 2-5oC overnight. The 

samples were centrifuged for 10 minutes at 2,000 x g to separate the serum or 

plasma, following the manufacturer’s instructions. Afterwards, the serum or 

plasma was collected using a plastic disposable transfer pipet and dispensed into 

appropriately labeled micro centrifuge tubes. The tubes were stored at -20oC until 

further analysis.  

 

Blood Analysis 

Serum samples from h 0 and 3 were analyzed in duplicate for TNF-α, IL-

1β and total-SOD activity. An enzyme-linked immunosorbent assay (ELISA) kit 

was used to measure the concentration of TNF-α and IL-1β (R&D Systems, Inc., 

Minneapolis, MN), while total-SOD activity was measured by a colorimetric 

activity assay (Arbor Assays, Ann Arbor, MI). All samples were analyzed 

following the manufacturer’s instructions according to the specific assay. All the 

supplies needed for the analysis were purchased from VWR (Radnor, PA). 

The enzyme-linked immunosorbent assay (ELISA) employs the 

quantitative sandwich enzyme immunoassay technique. Standard, control, and 

samples were added to the wells with a pre-coated monoclonal antibody specific 
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for each porcine cytokine. After incubation for 2 h, the unbound substances were 

washed away, and an enzyme-linked monoclonal antibody specific for the 

measured cytokine was added to the wells to bind the cytokine immobilized 

during the first incubation. A further 2 h of incubation was followed by a wash to 

remove any unbound antibody-enzyme reagent, and then a substrate solution 

was added to the wells. Color developed in proportion to the amount of the 

cytokine bound in the initial step. The color development was stopped by adding 

the stop solution, and the intensity of the color was measured at 450 nm with the 

correction wavelength set at 570 nm. The sample values were then read off the 

standard curve. In the TNF-α ELISA assay, the h 3 samples were diluted 10-fold.  

The colorimetric activity assay for SOD utilizes one reagent to generate 

superoxide in the presence of oxygen in the samples, which converts a colorless 

substrate into a yellow colored product. The colored product is read at 450 nm. 

Increasing levels of SOD in the samples causes a decrease in superoxide 

concentration and a reduction in yellow product. The results are expressed in 

terms of units of SOD activity per mL. A bovine erythrocyte SOD standard is 

provided to generate a standard curve for the assay and all samples should be 

read off of the standard curve. 

 

Chronic Escherichia coli Lipopolysaccharide Challenge  

On d 28, 30, 32 and 34 of Experiment 2, pigs from 12 selected pens were 

subjected to lipopolysaccharide (LPS) challenge. There were 3 replications of 

each dietary treatment among these 12 pens. The remaining 16 pens were 
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divided evenly across two treatments: 8 pens were subjected to saline solution 

injection and 8 pens served as the control (no injection) (Table III.3). 

The Escherichia coli O55:B5 lipopolysaccharide (Sigma-Aldrich, Co., St. 

Louis, MO) was chosen to perform the chronic immune challenge according to 

Rakhshandeh and de Lange (2012), who studied the chronic stimulation of the 

immune system of growing pigs following multiple LPS injections. The dose was 

chosen after a Pilot Study performed in the Swine Research Facility (Oklahoma 

State University), which can be accessed in this thesis (Appendix 3). The LPS 

was suspended in a 9 g/L of sterile saline solution for a final dosage of 10 µg of 

LPS /kg of body weight. The suspension was kept in cold storage. 

Prior to the injection, all 28 pens and feeders were individually weighed. 

From each of the 12 pens determined to be challenged with LPS, 2 ear tagged 

pigs per pen were bled. Then, the LPS injection was performed on all pigs 

intramuscularly in the neck just behind and below the ear according to the 

average pen weight. Saline solution was administered intramuscularly in all pigs 

from the remaining 8 pens to evaluate whether the stress from the injection and 

handling would impact growth performance. The amount injected was 1 ml per 

pig. The injection procedures were repeated on d 30, 32 and 34, and blood was 

drawn from the same 2 ear tagged pigs per pen at 3 h following the last injection 

on d 34.  

On d 35 of the trial, all 28 pens and feeders were weighed individually to 

calculate ADG, ADFI and G:F ratio. Changes in blood parameters and body 

weight were calculated using h 0 from d 28 as a baseline.  
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 Blood collection and analysis were similar to that described previously. 

In the TNF-α ELISA assay, the h 3 samples were diluted 10-fold.  

For both experiments, the inter-assay CV for TNF-α , IL-1β and SOD were 

3.3%, 3.4%, and 3.6%, while the intra-assay CV were 4.0%, 6.6%, and 15%, 

respectively. 

 

Statistical Analysis 

Initially, data within each experiment were analyzed as a randomized 

complete block design with body weight as the blocking effect. Growth 

performance as well as body weight, rectal temperature, and blood analysis 

following acute and chronic LPS challenges were analyzed using a GLM 

procedure (SAS Institute, version 9.2), in a 2 x 2 factorial design (concentration, 

source and concentration x source interaction). The LPS data were sorted by 

hour before analysis.  

Because both experiments were similar, data from Experiment 1 and 2 

relative to growth performance and acute immune challenge measurements were 

combined. The combined data were analyzed as a randomized complete block 

design with the model including the effects of experiment, treatment, block and 

the interactions. Treatment effects were tested as 2 x 2 factorial design using 

orthogonal contrasts. The main effects of dietary source of minerals and 

concentrations, and their interaction were tested. 
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Pen served as the experimental unit. The treatment means are presented 

as least square means. Differences were considered significant at the P < 0.05 

level and a trend at 0.05 < P < 0.10.  

 

Results 

 There were no experiment by treatment interactions (P > 0.209) noted for 

any response criteria; thus, the pooled data are presented. 

 

Growth performance  

The growth performance data are presented in Table III.4. Overall, there 

were no differences (P > 0.10) in growth performance among the dietary 

treatment groups. The initial body weight (BW) was not different (P > 0.10), with 

an average of 7.04 kg on d 7. On d 21, prior to the LPS challenge, no differences 

were observed (P > 0.10) in average BW, ADG, ADFI and G:F ratio. Following 

the LPS challenge, between d 21 and 42 of the experiment, average BW, ADG, 

ADFI and G:F ratio were also not affected (P > 0.10) by dietary treatment. There 

was a tendency (P=0.085) for pigs fed the sulfate sources to have better G:F 

ratio between d 7 and 42. There were no source x dietary concentration 

interactions (P > 0.412) for any growth performance data. 

 There were no experiment by treatment interactions for growth 

performance; however, differences between experiments existed. Pigs in Exp. 1 

had poorer performance (P<0.0001) compared with pigs in Exp. 2. The initial 

average BW on d 7 was 6.8 kg (Exp. 1) vs 7.3 kg (Exp. 2), resulting in a 0.5 kg 
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difference. Prior to the LPS challenge, on d 21, the average BW was 10.9 kg 

(Exp. 1) vs 12.5 kg (Exp. 2), resulting in 1.6 kg difference. On d 42, average BW 

was 20.7 kg (Exp. 1) vs 24.2 kg (Exp. 2), a difference of 3.5 kg of BW.  

 

Acute LPS challenge – Body weight and rectal temperature changes 

The changes in body weight observed 3 h post-injection were affected by 

dietary treatment (Figure III.1). Pigs fed chloride sources had lower (P = 0.043) 

BW loss than pigs fed sulfate sources (Table III.5). Between 3 and 6 h post-

injection, pigs fed high dietary concentrations of sulfates and chlorides had lower 

body weight change (P = 0.028). 

Overall, pigs fed high dietary concentrations of both sources (HS and HC) 

had lower (P = 0.002) change in body weight 6 h following the immune challenge. 

There were no source x dietary concentration interactions (P > 0.164) for any 

immune response data. 

The combined data demonstrated an increase in rectal temperature 

following the LPS challenge among all treatment groups, with the peak occurring 

within 3 h post-injection (Table III.5). Numerically, pigs fed the high dietary 

concentrations (HS and HC) had the lowest (P = 0.129) increase in body 

temperature 3 h following the immune challenge (Figure III.2). Between 3 and 6 

h, no differences were observed among dietary treatment groups. Overall, no 

differences (P > 0.10) were observed for rectal temperature change between h 0 

and 6 of the acute immune challenge, and no source x dietary concentration 

interactions (P = 0.853) were noted. However, there was a difference for body 
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weight change (P < 0.05) and rectal temperature change (P<0.01) between 

experiments. Experiment 1 was conducted during the summer season while 

Experiment 2 was conducted at the end of the fall season. The greater change in 

BW and rectal temperature observed in Experiment 1 could have been related to 

heat stress. 

  

Acute LPS challenge – Blood analytes 

The blood data are presented in Table III.6. At h 0, pigs fed low sulfates 

(LS) had the highest TNF-α concentration (P = 0.031). There was a source effect 

(P = 0.031) for TNF-α concentration 3 h post-injection (Figure III.3). Pigs fed 

chloride sources had lower production of this proinflammatory cytokine. Also, a 

tendency for a concentration effect (P = 0.071) was observed, with pigs fed high 

dietary concentrations having lower TNF-α compared with those fed the lower 

dietary concentrations. No interaction between source and concentration 

(P=0.788) was observed for this blood analyte, although numerically, pigs fed the 

high dietary concentration of chlorides had the lowest TNF-α. The TNF-α fold 

change for pigs fed chlorides had a tendency to be lower (P=0.077) than for pigs 

fed sulfates (Figure III.4). 

For IL-1β concentrations, there was a tendency for a source effect (P = 

0.091) prior to the LPS injection (Table III.6). Pigs fed the chloride sources had 

the highest IL-1β concentrations in their serum. Following the immune challenge, 

there was a source effect (P = 0.018) for IL-1β concentrations 3 h post LPS 

injection (Figure III.5). Pigs fed the chloride sources (LC and HC) produced less 
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IL-1β than those fed sulfates (LS and HS). Similarly to TNF-α, there was also a 

concentration effect (P = 0.023) for IL-1β concentrations with pigs fed high 

dietary concentrations producing lower IL-1β amounts. Even though no 

interaction of source and concentration (P=0.159) was observed for IL-1β, 

numerically, pigs fed the high dietary concentrations of chlorides produced the 

lowest amount of IL-1β (Table III.6). The same was observed for the IL-1β fold 

change, with a source effect (P=0.010) showing that pigs fed chlorides had lower 

IL-1β fold change than pigs fed sulfate (Figure III.6). Additionally, there was a 

concentration effect (P=0.021) for IL-1β fold change, with high dietary 

concentrations having lower IL-1β change. Again, no interaction of source and 

concentration (P=0.158) was observed for IL-1β fold change, although 

numerically, pigs fed high dietary concentrations of chlorides produced the lowest 

amount of IL-1β. 

The decrease in total-SOD activity was not affected (P > 0.10) by source 

or dietary concentration of copper, manganese, and zinc following the acute 

immune challenge (Figure III.7).  

 There was a difference for TNF- α (P < 0.0001) and IL-1β (P<0.01) 

between experiments. Overall, pigs from Experiment 2 produced higher amounts 

of both proinflammatory cytokines following the acute immune challenge. 

However, no source x dietary concentration interaction (P > 0.158) was noted. 
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Growth performance following chronic LPS challenge 

The multiple LPS injections affected (P<0.005) growth performance 

compared to the groups that received saline solution or no injection (Table III.7). 

The effects of the chronic immune challenge lasted throughout the study (d 28 to 

42). The stress related to the injection and handling did not affect (P > 0.10) 

growth performance parameters. 

The growth performance results presented in Table III.8 refer to the 12 

pens subjected to multiple LPS injections between d 28 and 34 of the Experiment 

2. There was no difference (P > 0.10) in BW, ADG, ADFI, and G:F ratio among 

dietary treatment groups at the end of the chronic immune challenge (d 35). No 

differences (P > 0.10) were observed during the subsequent weeks (d 35 to 42) 

of the immune challenge as well. 

 

Chronic LPS challenge – Blood analytes 

The data for blood measurements are presented in Table III.9. At the end 

of the chronic immune challenge, the concentration of TNF-α was numerically 

(P=0.196) lower in both dietary concentrations of chloride sources (Figure III.8 

and 9). The IL-1β concentration was not different (P > 0.10) among dietary 

treatment groups at the end of the chronic immune challenge, although 

numerically (P=0.305) pigs fed high dietary concentrations had lower production 

of this proinflammatory cytokine (Figure III.10 and 11). 

Moreover, pigs fed chlorides also had numerically (P=0.190) higher total-

SOD activity compared to pigs fed sulfate sources (Figure III.12 and 13).  
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Discussion  

According to the Nutrient Requirements of Swine (NRC, 2012), the 

recommended concentrations of copper, manganese, and zinc in nursery diets 

are 5-6 ppm, 3-4 ppm, and 80-100 ppm, respectively. These concentrations were 

defined based on review of scientific literature to guarantee optimum growth 

performance and metabolic functions. The NRC (2012) states that requirements 

include contributions of all dietary ingredients, even though micro mineral 

contents and bioavailability estimates are variable and largely unknown. 

Consequently, it is common to supplement micro minerals in excess of 

requirements established in the NRC (Gowanlock et al., 2013).  

During the entire experiment, all 4 dietary treatment diets met properly the 

nutritional requirements of copper, manganese, and zinc regardless of their 

source and concentration (Table III.1 and III.2). The dietary amount provided in 

each diet exceeded all recommendations listed in the NRC (2012) for these 

minerals. For this reason, no differences in growth performance were observed 

throughout the experiment. Previously, some authors have observed the same 

result. In a study to evaluate growth performance, Mahan et al. (2014) fed 

weaned pigs during 35 d with corn-soybean meal basal diets with or without 

addition of copper, manganese, zinc, and iron from organic or inorganic sources 

at 0%, 25%, 50% and 100% of the concentrations established in the NRC (1998). 

The results showed no difference on growth performance during the initial 21 d 

post-weaning. The last 7 d of the study, there was a numerical increase in ADG 

in the 25% NRC treatment group, but no improvement in growth performance 
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was observed in higher concentrations of micro minerals. They concluded that 

during the initial period post-weaning, the carry-over from the sow or the 

bioavailability of the innate minerals from the basal diet was enough to meet the 

performance needs of the weaned pigs. In a similar study, after supplementation 

of organic minerals in nursery diets, Martin et al. (2011) observed no differences 

in ADG and ADFI when copper, manganese, and zinc were added to the diets at 

100% or 150% of the nutritional requirements listed in the NRC (1998). In a 

previous study, Van Heugten et al. (2003) fed pigs with 104 ppm total zinc 

(control diet) or control diet added with 80 ppm or 160 ppm of ZnSO4, Zinc-

methionine or Zinc-lysine. They also reported no effect on ADG and ADFI after 

supplementing nursery pigs with different sources and nutritional concentrations 

of zinc. In grower-finisher pigs, supplementation of copper, manganese, and zinc 

at 0%, 50% or 100% of the nutritional requirements (NRC, 2012) did not affect 

growth performance. In this study, Gowanlock et al. (2013) concluded that there 

was sufficient amount of innate micro minerals in the corn-soybean meal diet to 

meet the grower-finisher pig’s requirements for growth, although possible other 

factors, such as disease and environmental stressors, may increase the need for 

these minerals.  

Growth performance would be expected to increase in case of addition of 

higher amounts of zinc and copper (Hill et al., 2001; Lalles et al., 2004; Shelton 

et al., 2011), however it would result in pharmacological effects rather than 

nutritional effects (Cho et al., 2015). Namkung et al. (2006) reported an 

improvement in ADG during weeks 1 and week 2 post-weaning when pigs were 
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fed high dietary zinc oxide (3000 ppm) or high dietary copper sulfate (250 ppm) 

respectively, compared with the control, which was fed 150 ppm of zinc oxide 

and 15 ppm of copper sulfate. Additionally, these effects would be reached 

exclusively by using higher concentrations of zinc (2000 to 3000 ppm) from zinc 

oxide (ZnO) and copper (250 ppm) from copper sulfate (CuSO4), since both 

sources have been stated to be safe when added in pharmacological 

concentrations in nursery diets (Fry et al., 2012; Hahn & Baker, 1993; NRC, 

2012). 

To study the acute immune response, a single LPS challenge was 

performed in experiment 1 and 2. Following the LPS injection, pigs from all 

dietary treatment groups presented sickness behaviors, such as lethargy, 

vomiting, diarrhea, and reduction of feed intake. Moreover, the rectal temperature 

was increased among all dietary treatments, with the peak of hyperthermia 

occurring within 3 h post-injection. All these observations were in accordance 

with previous studies (Bible et al., 2013; Frank et al., 2005; Johnson & Von 

Borell, 1994; Mandali et al., 2000; Webel et al., 1997; Wright et al., 2000), 

demonstrating that the immune system was activated. Furthermore, the 

proinflammatory cytokines measured increased among all 4 dietary treatments, 

evidence that activation of the immune system following the LPS injection. 

Previous studies (Arango Duque & Descoteaux, 2014; Johnson & Von Borell, 

1994; Wyns et al., 2015) have reported that many of the behavioral and 

physiological effects of LPS are attributed to the production of proinflammatory 

cytokines. 
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Even though feed intake was not measured following the acute LPS 

challenge, the reduction in feed consumption was easily noticed. According to 

Johnson and Von Borell (1994), reduction in intake following a LPS challenge is 

dose-dependent in intensity and duration, which is typically alleviated after 24 to 

48 h. Warren et al. (1997) reported that pigs challenged intraperitoneally (IP) with 

50 µg of LPS/kg of BW (E. coli serotype K-235) returned to the same feed intake 

levels of control pigs at 24 h following the challenge, while Wright et al. (2000) 

after challenging nursery pigs with 100 µg of LPS/kg of BW by IP route (E. coli 

serotype B55:O5) observed that the feed intake returned to levels of control pigs 

between 24 and 48 h after injection. Li et al. (2008) reported 65% reduction of 

ADFI in pigs challenged with 100 µg of LPS/kg of BW (E. coli serotype B55:O5) 

over the 48 h of the immune challenge. According to Frank et al. (2005), the 

differences among these studies may be related to the route of administration, 

genotype and body weight of the pigs, LPS serotype, and to prior exposure to 

environmental pathogens. As reported in previous studies (Johnson, 1997; 

Warren et al., 1997; Wright et al., 2000), the suppression of feed intake by pigs 

observed in the 24 h following the LPS challenge is consistent with the anorectic 

effects that accompany immune challenges.  

Little research has been published in regards to feeding different dietary 

concentrations and sources of copper, manganese, and zinc and their effects on 

the immune response of weaned pigs. Indeed, there are some data available 

demonstrating that pharmacological concentrations, especially of copper and 

zinc, impact positively the immune system response. Namkung et al. (2006) 
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reported that pigs supplemented with 3000 ppm of zinc oxide or 250 ppm of 

copper sulfate subjected to LPS challenge (E. coli, 055:B5, 75 ug LPS/ kg BW) 

had reduced plasma cortisol levels as compared with pigs on the control diet. 

Sunder et al. (2006) reported that supplementation of manganese at 100 ppm 

was essential for enhanced immune response affecting both humoral and cell 

mediated immune responses in broiler chickens. 

In the present research, pigs fed high dietary concentration of sulfates 

(HS) and pigs fed high dietary concentration of chlorides (HC) had lower body 

weight change and faster recovery of the initial body weight post single LPS 

injection. The recovery was probably due to return to water intake, alleviating the 

dehydration process and consequently the changes in the BW. These results 

suggest that the immune system when activated has a higher demand for 

copper, manganese, and zinc than that needed for growth performance. 

According to Sun et al. (2009), the changes in metabolism during an 

immunological challenge modify the nutritional requirements mainly because the 

nutrients are redistributed away from the growth process to support the immune 

system function.  

The increase in rectal temperature following the acute LPS challenge was 

not different among the dietary treatment groups, although numerically, some 

differences in body temperature change were observed between h 0 and 3. 

Overall, the results are promising for high dietary concentrations of chlorides 

(HC), however more replicates are needed to confirm this.  
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Pigs fed both dietary concentrations of chloride source (LC and HC) 

presented a more attenuated immune response following an acute immune 

challenge. Both dietary treatment groups produced less TNF-α and IL-1β, having 

a numerical advantage over sulfates sources (LS and HS). It suggests that 

chloride sources may have a higher bioavailability than sulfate sources, which 

agrees with previous studies (Ammerman et al., 1995; Miles et al., 1998; Zhang 

& Guo, 2007). Overall, TNF-α and IL-1β concentration were lower in pigs fed 

high dietary concentration of chlorides (HC), which may explain the numerical 

lower increase in the rectal temperature 3 h following the acute immune 

challenge for this group of pigs. Once again, these results suggest an increased 

demand of the immune system for nutrients to promote an adequate response 

when it is activated (Johnson, 1998).  

The lower production of proinflammatory cytokines indicates that the 

immune system was less stimulated by infectious or inflammatory process. 

Consequently, the increase in catabolic processes and the impairment in growth 

performance will be less pronounced (Elsasser et al., 2008; Williams et al., 

2009), which is very important especially during chronic health challenges.  

The total-SOD activity decreased in all dietary treatment groups, which 

agrees with studies that reported an increase in the oxidative stress during an 

immune response (Ibrahim et al., 2000; Li & Zhou, 2011; Perry et al., 2010). 

Superoxide dismutase (SOD) protects cells from reactive oxygen species by 

catalyzing the excess of superoxide radicals into molecular oxygen and hydrogen 

peroxide (Fridovich, 1995; Perry et al., 2010). The elimination of superoxide 
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radicals by SOD can, therefore, be considered an anti-inflammatory activity (Li & 

Zhou, 2011). Following an acute immune challenge, no differences were 

observed by feeding different sources and dietary concentrations of copper, 

manganese, and zinc in the total-SOD activity.  

A chronic immune challenge was also performed in experiment 2. Pigs 

from 12 pens subjected to multiple LPS injections between d 28 and 34 of the 

experiment decreased their feed intake and presented sickness behaviors, such 

as lethargy, diarrhea, vomiting and shivering right after the LPS injections, which 

agree with previous studies (Johnson, 1997; Webel et al., 1997; Wright et al., 

2000; Wyns et al., 2015). Although these observations were not different among 

dietary treatment groups, they did contrast with pens that were not subjected to 

LPS injection, suggesting an effective immune stimulation. Moreover, the 

performance worsening occurred exclusively due to LPS injection, since there 

were no differences in growth performance between groups that were injected 

with saline solution and groups that were not injected. 

It has been shown that metabolic changes associated with infectious 

diseases or inflammatory processes can result in decreases in feed intake, 

weight gain and feed efficiency (Johnson, 1997; Johnson, 1998). As observed by 

Liu et al. (2003), the poor performance of the challenged pigs compared to non-

challenged pigs indicates that there was a partitioning of nutrients away from 

growth towards the immune system, which decreased the efficiency of nutrient 

utilization for growth (Elsasser et al., 2008). This scenario contributes to the 

modification of nutritional requirements following an immune challenge, which 
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increases the demand for nutrients (Sun et al., 2009), including copper, 

manganese, and zinc. 

The immune parameters evaluated after the chronic immune challenge 

suggest that both dietary concentrations of chloride sources have advantage 

over sulfate sources, especially regarding the production of TNF-α and total-SOD 

activity. Differently from what happened following the acute immune challenge, 

the total-SOD activity increased in both dietary concentrations of chlorides. 

According to Fridovich (1995), following an immune challenge, macrophages are 

activated and the oxygen consumption increases markedly, which results in 

increased production of ROS and increased demand for SOD. Increases in SOD 

activity does not necessarily mean a change in the oxidative balance of the cell, 

but it may affect the potential of the cell to deal with increased superoxide radical 

production, which is important to regulate metabolism to maintain a normal 

steady state (Marikovsky et al., 2003). The higher bioavailability of chloride 

sources (Ammerman et al., 1995; Miles et al., 1998; Zhang & Guo, 2007) may 

have contributed to this numerical increase in total-SOD activity. Although there 

were not statistical differences, the results are promising and more replicates are 

needed to better evaluate the effects of chloride sources following a chronic 

immune challenge.  

 

Conclusion 

Chloride sources are able to alleviate the acute immune response by 

decreasing the proinflammatory cytokine production regardless of the dietary 
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concentration, suggesting a higher bioavailability over sulfate sources. Besides 

that, pigs fed high dietary concentrations of copper, manganese, and zinc 

showed more promising results, indicating that the immune response may have a 

greater requirement than that needed for growth. 
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Table III.1. Nutrient composition of the diets 

Ingredients, % N1 N2 N3 

Corn, yellow dent         32.60 45.99 59.26 

Soybean meal, 47.5% CP    15.00 22.00 34.30 

Whey, dried               25.00 15.00 0.00 

Lactose                   7.00 0.00 0.00 

Fish meal, menhaden       6.00 3.00 0.00 

Plasma spray-dried        6.00 3.00 0.00 

Soybean Oil 4.00 4.00 3.00 

Soy protein concentrate   2.21 2.69 0.00 

Dicalcium phosphate 18.5% 0.67 1.39 1.58 

Blood cell spray-dried    0.00 1.25 0.00 

Salt                      0.50 0.50 0.50 

Limestone                 0.45 0.49 0.74 

L-lysine HCl              0.17 0.24 0.25 

DL-methionine             0.18 0.20 0.11 

L-threonine               0.07 0.10 0.09 

Vitamin Premix   0.05 0.05 0.05 

Trace Mineral Premixa 0.10 0.10 0.10 

Total 100.00 100.00 100.00 
aTrace Mineral Premix:  
Low Sulfates (Treatment A): 20000 ppm Cu as Copper Sulfate; 295100 ppm Fe 
as Ferrous Sulfate Monohydrate; 500 ppm Ca as Calcium Iodate; 50000 ppm  
Mn as Manganese Sulfate; 10000 ppm Se as Selenium Premix; 140800 ppm Zn 
as Zinc sulfate; 483600 ppm Carrier. 
High Sulfates (Treatment B): 40000 ppm Cu as Copper Sulfate; 295100 ppm Fe 
as Ferrous Sulfate Monohydrate; 500 ppm Ca as Calcium Iodate; 100000 ppm 
Mn as Manganese Sulfate; 10000 ppm Se as Selenium Premix; 281600 ppm Zn 
as Zinc sulfate; 272800 ppm Carrier. 
Low Chlorides (Treatment C): 8600 ppm Cu as Copper Chloride; 295100 ppm Fe 
as Ferrous Sulfate Monohydrate; 500 ppm Ca as Calcium Iodate; 36400 ppm Mn 
as Manganese Chloride; 10000 ppm Se as Selenium Premix; 90900 ppm Zn as 
Zinc Chloride; 558600 ppm Carrier. 
High Chlorides (Treatment D): 17200 ppm Cu as Copper Chloride; 295100 ppm 
Fe as Ferrous Sulfate Monohydrate; 500 ppm Ca as Calcium Iodate; 72800 ppm  
Mn as Manganese Chloride; 10000 ppm Se as Selenium Premix; 181800 ppm 
Zn as Zinc Chloride; 422700 ppm Carrier. 
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Table III.2. Chemical Composition of the basal diets 

 

 

 

 

 

 

 

 

 

 
Analyzed levels: 
N1: LS (9 ppm Cu; 33 ppm Mn; 88 ppm Zn); HS (9 ppm Cu; 33 ppm Mn; 88 ppm 
Zn); LC (9 ppm Cu; 33 ppm Mn; 88 ppm Zn); HC (9 ppm Cu; 33 ppm Mn; 88 ppm 
Zn). 
N2: LS (8.7 ppm Cu; 52.3 ppm Mn; 78.3 ppm Zn); HS (12 ppm Cu; 60.5 ppm Mn; 
122.7 ppm Zn); LC (11 ppm Cu; 54.7 ppm Mn; 89.3 ppm Zn); HC (16 ppm Cu; 70 
ppm Mn; 126 ppm Zn). 
N3: LS (10 ppm Cu; 45.7 ppm Mn; 78 ppm Zn); HS (16.3 ppm Cu; 44.7 ppm Mn; 
141 ppm Zn); LC (11.3 ppm Cu; 45.3 ppm Mn; 83 ppm Zn); HC (15.3 ppm Cu; 76 
ppm Mn; 133.3 ppm Zn). 

 

  

Analysis N1 N2 N3 

Met. Energy (Kcal/kg) 3,600 3,495 3,420 

Dry Matter, % 92.5 91.1 89.5 

Crude Protein, % 23 23.6 21.6 

Crude Fiber, % 1.34 1.88 2.51 

Crude Fat, % 6.18 6.34 5.49 

Ash, % 9.45 9.62 2.02 

Lactose, % 33.6 14.6 0 

Lysine, % 1.66 1.64 1.36 

Manganese (ppm) 17 35.4 27 

Copper (ppm) 4 4.4 6.5 

Zinc (ppm) 38 29 31.5 
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Table III.3. Pens allotment for chronic LPS challengea 

Block Pen Dietary treatment Treatment 

1 5 A LPS 

1 10 B LPS 

1 21 C LPS 

1 22 D LPS 

    

2 6 A Saline 

2 28 B Saline 

2 16 C Saline 

2 25 D Saline 

    

3 26 A Control 

3 13 B Control 

3 24 C Control 

3 9 D Control 

    

4 15 A LPS 

4 11 B LPS 

4 12 C LPS 

4 18 D LPS 

    

5 1 A Saline 

5 2 B Saline 

5 27 C Saline 

5 3 D Saline 

    

6 17 A Control 

6 23 B Control 

6 7 C Control 

6 8 D Control 

    

7 19 A LPS 

7 20 B LPS 

7 4 C LPS 

7 14 D LPS 
aLPS Escherichia coli O55:B5, 10 µg/kg of BW. 
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Table III.4. Effect of source and dietary concentrations of copper, manganese, and zinc on growth performance 
of nursery pigsa 

  Source and dietary concentrationb               P value = 

  
LS HS LC HC 

  
SE 

  
Exp 

  
Exp*Trt 

  
Source Concentration SxC 

          

d 7-21               

  Init BW, kg 7.0 7.0 7.0 7.0  0.11  <.0001  0.998  0.963 0.939 0.939 
  Final BW, kg 11.7 11.9 11.6 11.8  0.20  <.0001  0.529  0.448 0.369 0.874 
  ADG, kg 0.337 0.347 0.330 0.339  0.01  <.0001  0.339 

 
0.442 0.340 0.973 

  ADFI, kg 0.419 0.425 0.411 0.416  0.01  <.0001  0.217  0.402 0.567 0.989 
  G:F 0.799 0.809 0.798 0.805  0.02  <.0001  0.982  0.827 0.441 0.882                

               

d 21-42               

  Init BW, kg 11.8 11.9 11.6 11.8  0.18  <.0001  0.385  0.378 0.484 0.683 
  Final BW, kg 22.5 22.8 22.2 22.4  0.33  <.0001  0.562  0.200 0.244 0.808 
  ADG, kg 0.520 0.533 0.514 0.520  0.01  <.0001  0.912  0.336 0.366 0.757 
  ADFI, kg 0.775 0.787 0.777 0.775  0.01  <.0001  0.786  0.709 0.734 0.619 
  G:F 0.670 0.676 0.660 0.671  0.01  0.260  0.567  0.199 0.160 0.594                

               

d 7-42               

  Init BW, kg 7.0 7.0 7.0 7.0  0.11  <.0001  0.998  0.963 0.939 0.939 
  Final BW, kg 22.5 22.8 22.2 22.4  0.32  <.0001  0.743  0.307 0.369 0.962 
  ADG, kg 0.449 0.457 0.439 0.447  0.01  <.0001  0.595  0.220 0.293 1.000 
  ADFI, kg 0.621 0.631 0.622 0.623  0.01  <.0001  0.685  0.764 0.626 0.677 
  G:F 0.720 0.723 0.704 0.717   0.01   <.0001   0.949   0.085 0.218 0.412 
aLeast square means for 14 pens/ treatment (exp. 1 and 2).  
bLS: low sulfates; HS: high sulfates; LC: low chlorides; HC: high chlorides. 
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Table III.5. Effect of source and dietary concentrations of copper, manganese, and zinc on body weight and 
rectal temperature of nursery pigsa following an acute LPS challengeb 

  Source and dietary concentrationc               P value = 

  
LS HS LC HC 

  
SE 

  
Exp 

  
Exp*Trt 

  
Source Concentration SxC 

          

Wt, kg               

  H0 13.1 13.0 13.0 12.9  0.25  0.055  0.488  0.724 0.776 0.851 

  H3 12.6 12.5 12.6 12.6  0.24  0.013  0.452  0.915 0.958 0.907 

  H6 12.3 12.7 12.5 12.5  0.26  0.088  0.526  0.827 0.520 0.546 

               

Temp, oC               

  H0 39.5 39.6 39.5 39.6  0.05  0.013  0.481  0.516 0.038 0.933 

  H3 41.0 41.0 40.9 40.9  0.07  <.0001  0.653  0.209 0.806 0.760 

  H6 40.3 40.4 40.3 40.4  0.10  <.0001  0.780   0.966 0.365 0.668 
aLeast square means for 14 pens/ treatment (exp. 1 and 2).     
bLPS Escherichia coli O111:B4, 25 µg/kg of BW. 
cLS: low sulfates; HS: high sulfates; LC: low chlorides; HC: high chlorides. 
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Table III.6. Effect of source and dietary concentrations of copper, manganese, and zinc on blood analytes and total-SOD 
activity of nursery pigsa following an acute LPS challengeb 

  Source and dietary concentrationc               P value = 

  LS HS LC HC   SE   Exp   Exp*Trt   Source Concentration SxC 

TNF, pg/mLd               

  H0 145.7 128.8 130.7 140.9  6.08  <.0001  0.588  0.815 0.586 0.031 

  H3 9064 7563 7297 6181  708  <.0001  0.625  0.031 0.071 0.788 

 

 

             

IL-1β, pg/mLe               

  H0 66.7 67.1 68.3 68.8  0.95 
 

0.118 
 

0.343  0.091 0.605 0.962 

  H3 639.3 420.3 416.1 363.3  58.1  0.010  0.533 
 

0.020 0.024 0.159 

               

Total-SODf activity, U/ml               

  H0 1.210 1.194 1.258 1.224 
 

0.04 
 

0.087  0.987  0.368 0.561 0.837 

  H3 0.989 0.973 1.031 1.015  0.04  0.926  0.999  0.340 0.713 1.000 
aLeast square means for 14 pens/ treatment (exp. 1 and 2).         
bLPS Escherichia coli O111:B4, 25 µg/kg of BW.     
cLS: low sulfates; HS: high sulfates; LC: low chlorides; HC: high chlorides.     

dTNF-α = tumor necrosis factor-α.              
eIL-1β = interleukin 1β.             
fTotal-SOD activity = Cu/Zn and Mn superoxide dismutase.           
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Table III.7. Effect of multiple intramuscular injections of LPS or saline 
solution on growth performance of nursery pigsa 

  
Control Saline LPS 

  
SE 

  
P value 

      

d 28-35        

  Init BW, kg 15.3b 15.4b 15.3b 
 0.21  0.864 

  Final BW, kg 19.9b 19.9b 19.0c 
 0.25  0.052 

  ADG, kg 0.649b 0.634b 0.532c 
 0.01  <.0001 

  ADFI, kg 0.868b 0.867b 0.753c 
 0.02  <.0001 

  G:F 0.748b 0.731b 0.707c 
 

0.01 
 

0.005 

        

d 35-42        

  Init BW, kg 19.9b 19.9b 19.0c 
 0.25  0.052 

  Final BW, kg 24.7b 24.7b 23.8c 
 0.29  0.092 

  ADG, kg 0.801b 0.795b 0.798b 
 0.01  0.953 

  ADFI, kg 1.206b 1.211b 1.176b 
 0.02  0.477 

  G:F 0.664b 0.656b 0.679b 
 0.02  0.144 

        

d 28-42        

  Init BW, kg 15.3b 15.4b 15.3b  0.21  0.864 

  Final BW, kg 24.7b 24.7b 23.8c  0.29  0.092 

  ADG, kg 0.719b 0.708b 0.655c 
 0.01  0.001 

  ADFI, kg 1.024b 1.026b 0.947c 
 0.02  0.003 

  G:F 0.702b 0.691b 0.692c   0.01   0.204 
aFor pigs administered chronic LPS (3 pens/trt), saline solution (2 pens/trt) or 
no injections (2 pens/trt) on d 28, 30, 32, and 34. 
b,cMeans that have no superscript in common are significantly different from 
each other. 
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Table III.8. Effect of source and dietary concentrations of copper, manganese, and zinc on growth performance 
of nursery pigsa subjected to multiple LPS challengesb 

  Source and dietary concentrationc       P value = 

  
LS HS LC HC 

  
SE 

  
Source Concentration SxC 

      

d 28-35           

  Init BW, kg 15.5 15.5 14.9 15.2  0.33  0.171 0.649 0.690 

  Final BW, kg 19.3 19.2 18.6 18.9  0.42  0.233 0.758 0.689 

  ADG, kg 0.539 0.531 0.529 0.530  0.03  0.877 0.918 0.918 

  ADFI, kg 0.776 0.759 0.724 0.752  0.04  0.456 0.894 0.558 

  G:F 0.692 0.699 0.728 0.705 
 

0.04 
 

0.302 0.696 0.441 

           

d 35-42           

  Init BW, kg 19.3 19.2 18.6 18.9  0.42  0.233 0.758 0.689 

  Final BW, kg 24.2 23.8 23.4 23.6  0.50  0.350 0.881 0.531 

  ADG, kg 0.825 0.763 0.807 0.797  0.03  0.765 0.234 0.370 

  ADFI, kg 1.234 1.120 1.181 1.167  0.05  0.951 0.216 0.322 

  G:F 0.667 0.681 0.683 0.683  0.04  0.646 0.729 0.718 

           

d 28-42           

  Init BW, kg 15.5 15.5 14.9 15.2  0.33  0.171 0.649 0.690 

  Final BW, kg 24.2 23.8 23.4 23.6  0.50  0.350 0.881 0.531 

  ADG, kg 0.671 0.638 0.657 0.654  0.02  0.972 0.451 0.542 

  ADFI, kg 0.983 0.925 0.934 0.943  0.04  0.670 0.522 0.382 

  G:F 0.682 0.690 0.703 0.693   0.02   0.335 0.948 0.490 
aLeast square means for 3 pens/ treatment subjected to multiple LPS injections. 
bLPS Escherichia coli O55:B5, 10 µg/kg of BW. 
cLS: low sulfates; HS: high sulfates; LC: low chlorides; HC: high chlorides. 
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Table III.9. Effect of source and dietary concentrations of copper, manganese, and zinc on blood analytes and 
total-SOD activity of nursery pigsa following a chronic LPS challengeb 

  Source and dietary concentrationc       P value = 

  
LS HS LC HC 

  
SE 

  
Source Concentration SxC 

      

TNF, pg/mLd          

H0 221.4 210.6 176.6 187.7  35.1  0.372 0.997 0.766 

H3 1116.6 971.0 833.0 581.8  231.4  0.196 0.424 0.827 

  

 

        

IL-1β, pg/mLe           

H0 56.4 51.0 52.8 53.7  2.03 
 

0.832 0.310 0.175 

H3 125.4 97.4 102.8 94.1  16.4  0.460 0.305 0.578 

           

Total-SODf activity, U/ml          

  H0 0.983 1.079 0.900 1.045 
 

0.10 
 

0.571 0.260 0.811 

  H3 0.920 0.976 0.986 1.091  0.08  0.303 0.355 0.766 
aLeast square means for 3 pens/ treatment. 
bLPS Escherichia coli O55:B5, 10 µg/kg of BW. 
cLS: low sulfates; HS: high sulfates; LC: low chlorides; HC: high chlorides.       

dTNF-α = tumor necrosis factor-α.         
eIL-1β = interleukin 1β.          
fTotal-SOD activity = Cu/Zn and Mn superoxide dismutase.        
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Figure III.1. Effect of dietary source and concentrations of copper, manganese, and zinc on 

body weight of nursery pigs following acute lipopolysaccharide challenge. The serotype of 

LPS was Escherichia coli O111:B4, 25 µg/kg of BW. LS = low sulfates; HS = high sulfates; 

LC = low chlorides; HC = high chlorides. 

-0.49

-0.21

-0.71

-0.48

0.13

-0.35

-0.45

-0.11

-0.56

-0.29

-0.14

-0.43

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

H0-3, KG H3-6, KG H0-6, KG

BW change following acute immune challenge

LS HS LC HC

Source, P = 0.043

Conc., P = 0.128

Int., P = 0.177

SE = 0.06

Source, P = 0.651

Conc., P = 0.028

Int., P = 0.164

SE = 0.09

Source, P = 0.372

Conc., P = 0.002

Int., P = 0.557

SE = 0.08



80 

 

 

 

 

 

 

 

  

Figure III.2. Effect of dietary source and concentrations of copper, manganese, and zinc on 

rectal temperature of nursery pigs following acute lipopolysaccharide challenge. The 

serotype of LPS was Escherichia coli O111:B4, 25 µg/kg of BW. LS = low sulfates; HS = 

high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.3. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum tumor necrosis factor-α (TNF-α) of nursery pigs 3 hours following acute 

lipopolysaccharide challenge. The serotype of LPS was Escherichia coli O111:B4, 25 µg/kg 

of BW. LS = low sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.4. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum tumor necrosis factor-α (TNF-α) fold of nursery pigs 3 hours following acute 

lipopolysaccharide challenge. The serotype of LPS was Escherichia coli O111:B4, 25 µg/kg 

of BW. LS = low sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.5. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum interleukin-1β (IL-1β) of nursery pigs 3 hours following acute lipopolysaccharide 

challenge. The serotype of LPS was Escherichia coli O111:B4, 25 µg/kg of BW. LS = low 

sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.6. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum interleukin-1β (IL-1β) fold of nursery pigs 3 hours following acute lipopolysaccharide 

challenge. The serotype of LPS was Escherichia coli O111:B4, 25 µg/kg of BW. LS = low 

sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.7. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum total superoxide dismutase (total-SOD) activity of nursery pigs 3 hours following 

acute lipopolysaccharide challenge. The serotype of LPS was Escherichia coli O111:B4, 25 

µg/kg of BW. LS = low sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.8. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum tumor necrosis factor-α (TNF-α) of nursery pigs subjected to chronic 

lipopolysaccharide challenge between days 28 and 34. The serotype of LPS was 

Escherichia coli O55:B5, 10 µg/kg of BW. LS = low sulfates; HS = high sulfates; LC = low 

chlorides; HC = high chlorides. 
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Figure III.9. Effect of dietary sources and concentrations of copper, manganese, and zinc on 

serum tumor necrosis factor-α (TNF-α) fold of nursery pigs subjected to chronic 

lipopolysaccharide challenge between days 28 and 34. The serotype of LPS was 

Escherichia coli O55:B5, 10 µg/kg of BW. LS = low sulfates; HS = high sulfates; LC = low 

chlorides; HC = high chlorides. 
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Figure III.10. Effect of dietary source and concentrations of copper, manganese, and zinc 

on serum interleukin-1β (IL-1β) of nursery pigs subjected to chronic lipopolysaccharide 

challenge between days 28 and 34. The serotype of LPS was Escherichia coli O55:B5, 10 

µg/kg of BW. LS = low sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 
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Figure III.11. Effect of dietary source and concentrations of copper, manganese, and zinc on 

serum interleukin-1β (IL-1β) fold of nursery pigs subjected to chronic lipopolysaccharide 

challenge between days 28 and 34. The serotype of LPS was Escherichia coli O55:B5, 10 

µg/kg of BW. LS = low sulfates; HS = high sulfates; LC = low chlorides; HC = high chlorides. 

 

2.30

1.93 1.93

1.73

0.00

0.50

1.00

1.50

2.00

2.50

H0-3 FOLD

IL-1β fold following chronic immune challenge

LS HS LC HC

Source, P = 0.442

Conc., P = 0.442

Int., P = 0.817

SE = 0.34



90 

 

 

 

 

 

 

  

Figure III.12. Effect of dietary source and concentrations of copper, manganese, and zinc 

on serum total superoxide dismutase (SOD) activity of nursery pigs subjected to chronic 

lipopolysaccharide challenge between days 28 and 34, 10 µg/kg of BW. The serotype of 

LPS was Escherichia coli O55:B5. LS = low sulfates; HS = high sulfates; LC = low 

chlorides; HC = high chlorides. 
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Figure III.13. Effect of dietary source and concentrations of copper, manganese, and zinc on 

changes in serum total superoxide dismutase (SOD) activity of nursery pigs subjected to 

chronic lipopolysaccharide challenge between days 28 and 34, 10 µg/kg of BW. The 

serotype of LPS was Escherichia coli O55:B5. LS = low sulfates; HS = high sulfates; LC = 

low chlorides; HC = high chlorides. 
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CHAPTER IV 
 

 

Summary 

 

The study of the interaction between nutrition and immune system has 

increased in recent years, especially in humans. In swine nutrition, little research 

has been done and for this reason, there are a lot of opportunities to improve the 

knowledge in this area. The present research demonstrated that nutritional dietary 

concentrations of copper, manganese, and zinc are adequate to support normal 

metabolism and immune response, although the immune system seems to require 

higher amounts of these trace minerals while it is activated. Moreover, this 

research suggests that the bioavailability of sulfate sources and chloride sources 

might be different, which influence the immune response as well.   

In swine production, an adequate immune response during the nursery 

phase contributes to the growth performance results. Therefore, the study of 

minerals and their impact on the immune response is a relevant nutritional 

strategy, and more studies is this area are essential to better understand this 

interaction.  
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Appendix 1. Table 1. Pen means for body weight and average daily gain 

    BW, kg   ADG, g  

Block Treatment Pen D7 D21 D42 D7-21 D21-42 D7-42 

1 A 11 7.5 11.7 22.1 298 497 417 

1 B 21 7.4 12.3 23.7 353 542 466 

1 C 10 7.4 12.3 21.9 347 461 416 

1 D 3 7.4 11.6 21.3 302 462 398 

2 A 23 7.1 11.2 20.9 289 463 393 

2 B 4 7.1 11.7 21.3 328 460 407 

2 C 18 7.0 11.5 22.0 321 501 429 

2 D 6 7.2 10.9 20.6 266 460 382 

3 A 2 6.9 11.2 20.2 305 428 379 

3 B 28 7.0 12.3 21.9 379 458 427 

3 C 16 6.9 10.9 21.0 285 481 403 

3 D 15 6.9 11.6 22.2 337 506 438 

4 A 20 6.8 10.5 19.4 266 422 359 

4 B 9 6.8 10.9 20.8 292 469 398 

4 C 14 6.9 10.7 20.1 272 448 377 

4 D 12 6.8 10.4 19.1 256 415 352 

5 A 7 6.7 11.0 21.1 308 482 412 

5 B 19 6.7 10.6 21.1 279 497 410 

5 C 8 6.7 10.7 20.3 289 458 390 

5 D 1 6.6 10.4 19.7 276 443 376 

6 A 17 6.3 10.5 20.5 305 474 406 

6 B 13 6.6 10.9 21.4 308 500 423 

6 C 5 6.3 10.2 19.5 276 443 376 

6 D 25 6.6 10.6 20.5 285 472 397 

7 A 24 6.2 9.9 18.9 263 430 363 

7 B 26 6.0 9.2 17.9 224 415 339 

7 C 22 6.2 10.8 19.0 328 393 367 

7 D 27 6.2 10.3 20.6 295 492 413 
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Appendix 1. Table 2. Pen means for average daily feed intake and gain to feed ratio 

     ADFI, g     G:F   

Block Treatment Pen D7-21 D21-42 D7-42 D7-21 D21-42 D7-42 

1 A 11 426 726 603 0.700 0.684 0.692 

1 B 21 470 793 656 0.752 0.683 0.711 

1 C 10 427 714 596 0.812 0.646 0.697 

1 D 3 376 690 556 0.802 0.670 0.715 

2 A 23 372 690 562 0.777 0.671 0.699 

2 B 4 391 668 550 0.838 0.689 0.740 

2 C 18 433 745 617 0.741 0.672 0.695 

2 D 6 357 653 527 0.745 0.705 0.725 

3 A 2 417 690 567 0.730 0.620 0.669 

3 B 28 460 740 628 0.824 0.619 0.679 

3 C 16 400 745 594 0.714 0.646 0.679 

3 D 15 450 795 649 0.749 0.636 0.675 

4 A 20 348 620 511 0.764 0.680 0.703 

4 B 9 389 688 553 0.750 0.683 0.721 

4 C 14 357 671 546 0.763 0.666 0.692 

4 D 12 353 605 501 0.725 0.686 0.701 

5 A 7 379 697 559 0.813 0.692 0.738 

5 B 19 372 735 590 0.750 0.677 0.695 

5 C 8 393 713 581 0.735 0.643 0.672 

5 D 1 359 674 548 0.769 0.658 0.687 

6 A 17 408 721 588 0.747 0.657 0.690 

6 B 13 395 702 569 0.780 0.713 0.744 

6 C 5 376 657 534 0.732 0.673 0.703 

6 D 25 409 723 594 0.697 0.653 0.669 

7 A 24 354 613 510 0.741 0.701 0.712 

7 B 26 329 631 510 0.680 0.658 0.664 

7 C 22 432 650 562 0.758 0.605 0.653 

7 D 27 359 718 570 0.822 0.685 0.725 
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Appendix 1. Table 3. Pen mortality on day 7, 21 and 42 

Block Treatment Pen D7 D21 D42 

1 A 11 0 1 1 

1 B 21 0 2 2 

1 C 10 0 1 1 

1 D 3 0 2 2 

2 A 23 0 0 0 

2 B 4 0 2 2 

2 C 18 0 1 1 

2 D 6 0 2 2 

3 A 2 0 2 2 

3 B 28 0 0 0 

3 C 16 0 2 2 

3 D 15 0 1 1 

4 A 20 0 0 0 

4 B 9 0 3 3 

4 C 14 0 0 0 

4 D 12 0 1 1 

5 A 7 0 2 2 

5 B 19 0 0 0 

5 C 8 0 1 1 

5 D 1 0 0 0 

6 A 17 0 1 1 

6 B 13 0 3 3 

6 C 5 0 2 2 

6 D 25 0 1 1 

7 A 24 0 0 0 

7 B 26 0 0 0 

7 C 22 0 1 1 

7 D 27 0 1 1 
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Appendix 1. Table 4. Pen means for body weight and changes in body 
weight following acute LPS challengea 

      BW, kg BW change, g 

Block Treatment Pen H0 H3 H6 H0 - 3 H0 - 6 H3 - 6 

1 A 11 13.1 12.6 12.0 -431 -1022 -590 

1 B 21 13.9 13.6 14.2 -329 269 598 

1 C 10 12.9 12.6 12.9 -306 34 341 

1 D 3 13.7 13.2 13.2 -488 -458 30 

2 A 23 12.4 11.9 12.0 -465 -420 45 

2 B 4 13.2 12.7 12.3 -420 -821 -401 

2 C 18 13.2 12.7 11.8 -533 -1370 -836 

2 D 6 12.4 11.9 11.7 -443 -632 -189 

3 A 2 14.5 13.9 13.6 -613 -919 -306 

3 B 28 13.6 13.1 13.2 -556 -390 166 

3 C 16 14.0 13.3 13.1 -670 -874 -204 

3 D 15 13.8 13.5 13.2 -284 -579 -295 

4 A 20 12.9 12.3 12.4 -545 -477 68 

4 B 9 13.7 13.1 13.0 -579 -636 -57 

4 C 14 12.3 11.9 11.5 -431 -855 -424 

4 D 12 12.3 12.2 12.5 -170 204 375 

5 A 7 12.4 11.9 11.9 -511 -530 -19 

5 B 19 12.4 11.9 12.0 -499 -435 64 

5 C 8 12.9 12.4 13.0 -488 129 617 

5 D 1 12.2 11.7 11.8 -465 -367 98 

6 A 17 12.3 11.7 11.5 -636 -802 -166 

6 B 13 13.4 11.8 13.3 -1612 -106 1506 

6 C 5 11.9 11.4 11.3 -465 -624 -159 

6 D 25 11.1 10.6 10.8 -465 -314 151 

7 A 24 11.3 10.9 10.1 -375 -1214 -840 

7 B 26 10.6 10.4 10.7 -250 38 288 

7 C 22 13.5 13.1 13.1 -454 -397 57 

7 D 27 11.2 10.9 11.0 -284 -178 106 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 1. Table 5. Pen means for rectal temperature and changes in 
rectal temperature following acute LPS challengea 

      
Rectal Temperature, 

oC 
Changes in Rectal 

Temperature 

Block Treatment Pen H0 H3 H6 H0 - 3 H0 - 6 H3 - 6 

1 A 11 39.4 41.0 40.6 1.58 1.17 -0.42 

1 B 21 39.6 41.2 40.7 1.54 1.06 -0.48 

1 C 10 39.8 41.5 40.6 1.71 0.77 -0.94 

1 D 3 39.5 41.3 40.9 1.76 1.35 -0.42 

2 A 23 39.4 41.6 40.2 2.17 0.85 -1.31 

2 B 4 39.5 41.2 41.0 1.69 1.52 -0.18 

2 C 18 39.5 41.2 40.9 1.61 1.33 -0.28 

2 D 6 39.8 40.8 40.5 1.03 0.66 -0.37 

3 A 2 39.8 41.1 40.2 1.28 0.32 -0.96 

3 B 28 39.7 41.3 40.9 1.61 1.14 -0.47 

3 C 16 39.7 41.2 40.4 1.58 0.75 -0.83 

3 D 15 39.5 40.9 40.4 1.36 0.87 -0.49 

4 A 20 39.4 41.2 40.8 1.82 1.44 -0.38 

4 B 9 39.9 41.6 40.5 1.67 0.65 -1.02 

4 C 14 39.3 41.1 40.2 1.79 0.91 -0.88 

4 D 12 39.3 40.6 40.6 1.29 1.26 -0.03 

5 A 7 39.3 41.1 40.9 1.82 1.64 -0.18 

5 B 19 39.7 41.5 41.5 1.79 1.74 -0.05 

5 C 8 39.7 41.0 40.6 1.35 0.90 -0.45 

5 D 1 39.7 41.1 41.0 1.35 1.29 -0.06 

6 A 17 39.7 41.1 40.8 1.38 1.06 -0.32 

6 B 13 39.8 41.2 40.8 1.44 1.05 -0.39 

6 C 5 39.4 41.3 40.9 1.89 1.50 -0.39 

6 D 25 39.5 41.4 40.6 1.87 1.11 -0.76 

7 A 24 39.5 41.2 40.9 1.71 1.44 -0.26 

7 B 26 39.5 40.7 40.0 1.24 0.50 -0.74 

7 C 22 39.6 41.1 40.4 1.58 0.85 -0.73 

7 D 27 39.9 41.3 40.4 1.38 0.45 -0.92 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 1. Table 6. Pen means for TNF-α and changes in TNF-α following 
acute LPS challengea 

      TNF-α, pg/mL Changes in TNF-α 

Block Treatment Pen H0 H3 H0 - 3 Fold 

1 A 11 147.3 4090.2 3942.96 27.77 

1 B 21 92.3 4195.5 4103.16 45.43 

1 C 10 163.8 5051.2 4887.48 30.85 

1 D 3 139.6 5135.1 4995.50 36.79 

2 A 23 155.7 8321.2 8165.55 53.45 

2 B 4 172.1 7107.7 6935.54 41.29 

2 C 18 170.3 3524.0 3353.68 20.70 

2 D 6 141.2 5829.1 5687.86 41.28 

3 A 2 180.9 8657.2 8476.36 47.87 

3 B 28 146.3 4000.6 3854.37 27.35 

3 C 16 151.6 9986.2 9834.60 65.86 

3 D 15 173.7 7459.0 7285.23 42.93 

4 A 20 165.1 7692.7 7527.65 46.61 

4 B 9 119.7 5031.2 4911.43 42.02 

4 C 14 149.3 6312.5 6163.24 42.29 

4 D 12 155.8 3684.7 3528.91 23.65 

5 A 7 158.6 3999.9 3841.32 25.23 

5 B 19 157.3 4155.8 3998.49 26.42 

5 C 8 153.1 4054.6 3901.50 26.48 

5 D 1 179.0 3468.6 3289.55 19.37 

6 A 17 170.0 11306.4 11136.40 66.52 

6 B 13 155.6 9379.5 9223.91 60.28 

6 C 5 154.0 6990.9 6836.86 45.38 

6 D 25 166.3 5589.9 5423.61 33.62 

7 A 24 213.8 8443.3 8229.49 39.49 

7 B 26 146.3 1913.6 1767.28 13.08 

7 C 22 105.7 4736.8 4631.05 44.80 

7 D 27 167.9 3786.2 3618.27 22.55 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 1. Table 7. Pen means for IL-1β and changes in IL-1β following 
acute LPS challengea 

      IL-1β, pg/mL Changes in IL-1β 

Block Treatment Pen H0 H3 H0 - 3 Fold 

1 A 11 69.6 339.1 269.47 4.87 

1 B 21 70.3 158.4 88.05 2.25 

1 C 10 68.2 216.2 148.02 3.17 

1 D 3 66.5 216.9 150.33 3.26 

2 A 23 66.2 359.4 293.16 5.43 

2 B 4 64.6 270.2 205.55 4.18 

2 C 18 72.0 338.7 266.74 4.71 

2 D 6 69.6 421.7 352.08 6.06 

3 A 2 70.3 1106.9 1036.61 15.75 

3 B 28 70.8 275.5 204.69 3.89 

3 C 16 70.4 1012.1 941.71 14.38 

3 D 15 67.5 485.3 417.86 7.19 

4 A 20 60.9 350.5 289.66 5.76 

4 B 9 67.8 161.3 93.52 2.38 

4 C 14 68.8 337.5 268.70 4.90 

4 D 12 72.2 253.0 180.77 3.50 

5 A 7 69.1 446.3 377.24 6.46 

5 B 19 65.0 227.0 162.00 3.49 

5 C 8 64.1 226.0 161.90 3.53 

5 D 1 75.9 281.1 205.17 3.70 

6 A 17 63.1 787.6 724.46 12.48 

6 B 13 76.3 569.6 493.29 7.47 

6 C 5 67.7 372.1 304.45 5.50 

6 D 25 74.4 338.1 263.71 4.55 

7 A 24 65.8 318.6 252.80 4.84 

7 B 26 69.6 367.9 298.27 5.28 

7 C 22 68.7 206.8 138.12 3.01 

7 D 27 62.5 259.1 196.56 4.14 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 1. Table 8. Pen means for SOD activity and changes in SOD 
activity following acute LPS challengea 

      SOD activity, U/mL Changes in SOD activity 

Block Treatment Pen H0 H3 H0 - 3 

1 A 11 1.178 0.954 -0.224 

1 B 21 1.050 1.201 0.150 

1 C 10 1.079 0.911 -0.168 

1 D 3 1.377 0.968 -0.409 

2 A 23 1.155 1.233 0.077 

2 B 4 1.389 0.855 -0.534 

2 C 18 1.700 1.240 -0.461 

2 D 6 1.291 1.215 -0.076 

3 A 2 1.289 1.011 -0.278 

3 B 28 1.058 0.873 -0.184 

3 C 16 1.167 1.078 -0.089 

3 D 15 1.108 0.954 -0.154 

4 A 20 1.321 0.843 -0.478 

4 B 9 1.166 1.021 -0.145 

4 C 14 1.190 1.290 0.100 

4 D 12 1.199 1.145 -0.054 

5 A 7 0.952 0.932 -0.020 

5 B 19 1.102 1.038 -0.064 

5 C 8 1.182 0.982 -0.200 

5 D 1 1.199 0.775 -0.424 

6 A 17 1.152 0.983 -0.170 

6 B 13 1.204 1.036 -0.169 

6 C 5 1.170 1.044 -0.126 

6 D 25 1.105 0.935 -0.170 

7 A 24 1.136 0.916 -0.220 

7 B 26 1.223 0.800 -0.423 

7 C 22 1.050 0.679 -0.371 

7 D 27 0.976 1.088 0.112 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 1. Pen means for body weight and average daily gain 

      BW, kg ADG, g 

Block Treatment Pen D7 D21 D42 D7-21 D21-42 D7-42 

1 A 5 7.7 13.3 24.2 399 545 485 

1 B 10 7.7 13.2 24.1 391 547 483 

1 C 21 7.8 12.8 25.0 357 611 506 

1 D 22 7.7 13.5 25.2 412 588 515 

2 A 6 7.6 13.6 25.8 425 611 534 

2 B 28 7.6 13.1 25.9 397 640 540 

2 C 16 7.5 12.0 22.7 324 536 449 

2 D 25 7.6 13.7 25.9 438 611 540 

3 A 26 7.4 13.3 23.8 420 523 480 

3 B 13 7.4 13.3 25.7 418 623 538 

3 C 24 7.5 12.3 24.2 345 593 491 

3 D 9 7.4 13.3 24.9 422 577 513 

4 A 15 7.2 12.7 24.2 392 575 500 

4 B 11 7.4 12.8 23.4 386 530 471 

4 C 12 7.2 11.8 22.4 331 528 447 

4 D 18 7.4 11.4 23.5 284 585 474 

5 A 1 7.2 12.3 24.2 363 599 502 

5 B 2 7.1 12.4 24.2 381 586 502 

5 C 27 7.2 11.0 21.1 . . . 

5 D 3 7.1 12.6 23.8 392 558 490 

6 A 17 7.0 11.8 25.1 341 637 532 

6 B 23 7.0 11.9 23.6 350 586 489 

6 C 7 7.0 12.8 25.5 412 638 545 

6 D 8 6.9 12.7 24.6 412 592 518 

7 A 19 6.6 11.5 24.3 350 602 519 

7 B 20 6.8 12.0 24.0 370 601 506 

7 C 4 6.8 12.1 22.7 379 531 469 

7 D 14 6.6 11.8 22.2 373 517 458 
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Appendix 2. Table 2. Pen means for average daily feed intake and gain to 
feed ratio 

        ADFI, g     G:F   

Block Treatment Pen D7-21 D21-42 D7-42 D7-21 D21-42 D7-42 

1 A 5 497 860 710 0.803 0.634 0.682 

1 B 10 461 802 662 0.848 0.682 0.729 

1 C 21 428 911 700 0.833 0.671 0.723 

1 D 22 477 886 718 0.863 0.663 0.718 

2 A 6 492 914 740 0.864 0.668 0.722 

2 B 28 470 936 733 0.845 0.684 0.737 

2 C 16 392 817 642 0.827 0.656 0.699 

2 D 25 489 903 711 0.896 0.677 0.759 

3 A 26 470 808 660 0.894 0.647 0.728 

3 B 13 477 912 710 0.877 0.683 0.758 

3 C 24 411 891 682 0.841 0.665 0.720 

3 D 9 492 862 709 0.857 0.669 0.723 

4 A 15 464 837 649 0.845 0.687 0.770 

4 B 11 436 772 625 0.885 0.687 0.753 

4 C 12 401 768 606 0.825 0.688 0.738 

4 D 18 371 852 642 0.765 0.687 0.739 

5 A 1 424 876 690 0.858 0.684 0.728 

5 B 2 447 895 700 0.853 0.655 0.717 

5 C 27 . . . . . . 

5 D 3 431 861 668 0.908 0.649 0.733 

6 A 17 398 918 675 0.855 0.694 0.789 

6 B 23 413 862 666 0.848 0.679 0.734 

6 C 7 441 943 729 0.934 0.676 0.748 

6 D 8 488 871 714 0.843 0.680 0.726 

7 A 19 412 886 665 0.849 0.679 0.781 

7 B 20 433 887 675 0.853 0.677 0.749 

7 C 4 439 799 651 0.864 0.664 0.720 

7 D 14 413 757 610 0.902 0.683 0.750 
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Appendix 2. Table 3. Pen mortality on day 7, 21 and 42 

Block Treatment Pen D7 D21 D42 

1 A 5 0 0 0 

1 B 10 0 0 0 

1 C 21 0 1 1 

1 D 22 0 0 0 

2 A 6 0 0 0 

2 B 28 0 1 1 

2 C 16 0 0 0 

2 D 25 0 2 2 

3 A 26 0 1 1 

3 B 13 0 2 2 

3 C 24 0 1 1 

3 D 9 0 0 0 

4 A 15 0 4 4 

4 B 11 0 1 1 

4 C 12 0 2 2 

4 D 18 0 0 1 

5 A 1 0 0 0 

5 B 2 0 1 1 

5 C 27 0 0 1 

5 D 3 1 1 2 

6 A 17 0 1 2 

6 B 23 0 1 1 

6 C 7 1 0 1 

6 D 8 0 0 0 

7 A 19 0 1 2 

7 B 20 0 2 2 

7 C 4 0 0 0 

7 D 14 0 1 1 
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Appendix 2. Table 4. Pen means for body weight and changes in body 
weight following acute LPS challengea 

      BW, kg BW change, g 

Block Treatment Pen H0 H3 H6 H0 - 3 H0 - 6 H3 - 6 

1 A 5 14.0 13.6 13.5 -386 -511 -125 

1 B 10 14.6 14.2 14.1 -420 -477 -57 

1 C 21 12.9 12.6 12.8 -363 -159 204 

1 D 22 12.5 12.0 12.0 -409 -488 -79 

2 A 6 15.2 14.5 14.3 -670 -863 -193 

2 B 28 12.3 12.0 12.0 -295 -269 26 

2 C 16 11.6 11.3 11.1 -306 -443 -136 

2 D 25 13.5 13.3 11.9 -261 -1646 -1385 

3 A 26 13.5 13.1 13.2 -386 -306 79 

3 B 13 13.4 13.1 13.2 -397 -216 182 

3 C 24 13.2 12.7 12.1 -477 -1105 -628 

3 D 9 14.1 14.0 13.9 -68 -125 -57 

4 A 15 13.1 12.7 11.7 -409 -1396 -987 

4 B 11 13.3 13.0 13.8 -306 496 802 

4 C 12 14.1 13.7 13.7 -363 -375 -11 

4 D 18 13.7 13.3 13.3 -420 -431 -11 

5 A 1 13.9 13.1 13.1 -783 -738 45 

5 B 2 13.4 13.0 12.0 -375 -1358 -984 

5 C 27 12.6 12.2 12.1 -363 -522 -159 

5 D 3 13.4 13.0 12.6 -363 -768 -405 

6 A 17 12.1 11.9 12.0 -227 -174 53 

6 B 23 12.9 12.5 12.2 -420 -628 -208 

6 C 7 13.3 12.8 12.6 -556 -760 -204 

6 D 8 14.3 14.2 13.8 -148 -477 -329 

7 A 19 12.1 11.6 11.5 -465 -522 -57 

7 B 20 11.7 11.4 11.3 -306 -397 -91 

7 C 4 13.9 13.3 13.3 -568 -556 11 

7 D 14 12.5 12.7 12.7 204 227 23 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 5. Pen means for rectal temperature and changes in 
rectal temperature following acute LPS challengea 

      
Rectal Temperature, 

oC 
Changes in Rectal 

Temperature 

Block Treatment Pen H0 H3 H6 H0 - 3 H0 - 6 H3 - 6 

1 A 5 39.8 40.8 40.4 0.99 0.63 -0.36 

1 B 10 39.5 41.0 40.3 1.50 0.71 -0.79 

1 C 21 39.3 40.5 40.2 1.17 0.88 -0.29 

1 D 22 39.1 40.7 40.1 1.64 1.00 -0.64 

2 A 6 39.4 41.3 40.5 1.89 1.14 -0.75 

2 B 28 39.3 41.1 40.4 1.78 1.06 -0.72 

2 C 16 39.3 40.6 40.2 1.25 0.89 -0.36 

2 D 25 39.7 40.8 40.6 1.10 0.94 -0.15 

3 A 26 39.3 41.0 39.5 1.64 0.17 -1.47 

3 B 13 39.6 40.5 39.4 0.88 -0.17 -1.04 

3 C 24 39.3 40.7 39.9 1.35 0.64 -0.71 

3 D 9 39.6 41.2 40.6 1.61 0.96 -0.65 

4 A 15 39.4 40.3 39.0 0.97 -0.39 -1.36 

4 B 11 39.7 41.1 40.5 1.37 0.81 -0.57 

4 C 12 39.4 40.6 40.0 1.14 0.60 -0.54 

4 D 18 39.4 41.0 40.2 1.56 0.76 -0.79 

5 A 1 39.5 40.8 40.0 1.26 0.47 -0.79 

5 B 2 39.5 40.8 40.4 1.28 0.91 -0.37 

5 C 27 39.3 41.2 40.2 1.83 0.89 -0.94 

5 D 3 39.9 40.9 40.4 0.98 0.46 -0.52 

6 A 17 39.6 40.9 40.4 1.35 0.77 -0.58 

6 B 23 39.4 40.4 39.9 1.00 0.46 -0.54 

6 C 7 39.3 40.9 40.3 1.57 1.01 -0.56 

6 D 8 39.5 40.6 40.3 1.10 0.79 -0.31 

7 A 19 39.5 40.8 40.0 1.29 0.44 -0.85 

7 B 20 39.5 40.6 39.8 1.07 0.32 -0.75 

7 C 4 39.6 40.4 39.9 0.82 0.39 -0.43 

7 D 14 39.4 40.1 39.1 0.63 -0.36 -0.99 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 6. Pen means for TNF-α and changes in TNF-α following 
acute LPS challengea 

      TNF-α, pg/mL Changes in TNF-α 

Block Treatment Pen H0 H3 H0 - 3 Fold 

1 A 5 123.8 6966.8 6842.99 56.29 

1 B 10 130.9 9044.6 8913.71 69.10 

1 C 21 111.9 8861.4 8749.51 79.21 

1 D 22 92.9 3506.4 3413.43 37.73 

2 A 6 103.3 7007.7 6904.37 67.81 

2 B 28 100.0 9731.4 9631.48 97.34 

2 C 16 101.3 7647.9 7546.64 75.51 

2 D 25 107.7 13876.5 13768.72 128.80 

3 A 26 108.9 6895.9 6787.02 63.32 

3 B 13 112.8 11704.9 11592.08 103.77 

3 C 24 96.2 12149.3 12053.09 126.32 

3 D 9 86.5 6326.0 6239.53 73.14 

4 A 15 118.0 15288.9 15170.89 129.55 

4 B 11 132.5 12938.6 12806.03 97.63 

4 C 12 101.3 8831.8 8730.55 87.19 

4 D 18 150.9 4506.7 4355.75 29.86 

5 A 1 107.5 11283.2 11175.71 104.98 

5 B 2 81.0 8405.9 8324.95 103.80 

5 C 27 123.4 4379.5 4256.08 35.48 

5 D 3 169.7 8468.0 8298.28 49.90 

6 A 17 110.4 14295.4 14185.07 129.54 

6 B 23 109.4 9458.5 9349.11 86.50 

6 C 7 113.0 7102.7 6989.71 62.87 

6 D 8 129.8 5862.0 5732.21 45.16 

7 A 19 176.4 12643.5 12467.13 71.67 

7 B 20 147.2 8814.3 8667.14 59.89 

7 C 4 135.3 12532.2 12396.99 92.66 

7 D 14 111.6 9028.7 8917.11 80.88 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 7. Pen means for IL-1β and changes in IL-1β following 
acute LPS challengea 

      IL-1β, pg/mL Changes in IL-1β 

Block Treatment Pen H0 H3 H0 - 3 Fold 

1 A 5 68.7 669.6 600.96 9.75 

1 B 10 65.2 467.3 402.16 7.17 

1 C 21 63.3 511.1 447.73 8.07 

1 D 22 62.6 172.2 109.61 2.75 

2 A 6 71.4 374.5 303.10 5.25 

2 B 28 61.5 382.3 320.81 6.21 

2 C 16 72.5 437.3 364.80 6.03 

2 D 25 67.5 411.0 343.49 6.09 

3 A 26 63.4 448.2 384.79 7.07 

3 B 13 68.7 491.5 422.87 7.16 

3 C 24 66.4 601.1 534.62 9.05 

3 D 9 71.5 288.5 217.06 4.04 

4 A 15 67.7 1139.2 1071.45 16.82 

4 B 11 60.8 867.6 806.88 14.28 

4 C 12 69.0 301.8 232.75 4.37 

4 D 18 72.5 289.0 216.57 3.99 

5 A 1 65.7 761.7 695.96 11.59 

5 B 2 68.3 384.9 316.61 5.63 

5 C 27 65.9 412.5 346.62 6.26 

5 D 3 70.9 724.7 653.86 10.23 

6 A 17 66.8 985.0 918.24 14.75 

6 B 23 64.4 398.3 333.82 6.18 

6 C 7 72.2 433.8 361.62 6.01 

6 D 8 67.6 652.3 584.70 9.64 

7 A 19 65.2 863.5 798.27 13.24 

7 B 20 66.7 862.8 796.16 12.94 

7 C 4 66.7 417.9 351.19 6.26 

7 D 14 62.6 292.8 230.25 4.68 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 8. Pen means for SOD activity and changes in SOD activity 
following acute LPS challengea 

      SOD activity, U/mL Changes in SOD activity 

Block Treatment Pen H0 H3 H0 - 3 

1 A 5 1.482 0.916 -0.566 

1 B 10 1.198 1.124 -0.075 

1 C 21 1.082 0.926 -0.155 

1 D 22 1.334 0.992 -0.341 

2 A 6 1.335 1.209 -0.126 

2 B 28 1.288 0.878 -0.410 

2 C 16 1.867 1.127 -0.740 

2 D 25 1.210 1.239 0.029 

3 A 26 1.221 1.037 -0.184 

3 B 13 1.129 0.859 -0.270 

3 C 24 1.137 1.055 -0.081 

3 D 9 1.340 0.911 -0.429 

4 A 15 1.338 0.899 -0.439 

4 B 11 1.216 1.080 -0.136 

4 C 12 1.226 1.385 0.159 

4 D 18 1.214 1.243 0.030 

5 A 1 1.111 0.900 -0.211 

5 B 2 1.261 0.995 -0.266 

5 C 27 1.127 1.010 -0.117 

5 D 3 1.399 0.725 -0.674 

6 A 17 1.137 1.036 -0.101 

6 B 23 1.159 1.052 -0.107 

6 C 7 1.405 1.017 -0.387 

6 D 8 1.266 0.849 -0.417 

7 A 19 1.138 0.979 -0.159 

7 B 20 1.278 0.811 -0.467 

7 C 4 1.223 0.690 -0.534 

7 D 14 1.118 1.170 0.051 
a2 males and 2 females subjected to intraperitoneal LPS injection (O111:B4, 25 
µg/kg BW) 
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Appendix 2. Table 9. Pen means for body weight and average daily gain subjected 
to multiple LPS injection, saline solution injection and no injectiona 

        BW, kg ADG,g 

Block Trt Pen Injection D21 D28 D35 D42 
D21-
28 

D28-
35 

D35-
42 

D28-
42 

D21
-42 

1 A 5 LPS 13.3 15.6 19.5 24.2 324 558 787 664 545 

1 B 10 LPS 13.2 15.9 19.6 24.1 396 525 749 629 547 

1 C 21 LPS 12.8 15.6 19.7 25.0 405 584 883 722 611 

1 D 22 LPS 13.5 16.7 20.5 25.2 460 538 795 657 588 

2 A 6 Saline 13.6 16.4 21.0 25.8 409 655 795 719 611 

2 B 28 Saline 13.1 16.1 20.8 25.9 432 663 858 753 640 

2 C 16 Saline 12.0 14.3 18.2 22.7 331 545 764 646 536 

2 D 25 Saline 13.7 16.3 20.8 25.9 368 649 851 742 611 

3 A 26 
No 

injection 13.3 15.1 19.1 23.8 254 577 773 667 523 

3 B 13 
No 

injection 13.3 16.2 20.8 25.7 425 657 813 729 623 

3 C 24 
No 

injection 12.3 14.8 19.3 24.2 361 634 816 718 593 

3 D 9 
No 

injection 13.3 15.9 20.2 24.9 363 623 772 691 577 

4 A 15 LPS 12.7 15.7 18.9 24.2 426 460 883 655 575 

4 B 11 LPS 12.8 15.3 18.7 23.4 368 483 773 617 530 

4 C 12 LPS 11.8 14.4 17.8 22.4 363 490 766 617 528 

4 D 18 LPS 11.8 14.6 18.7 23.5 404 577 807 683 585 

5 A 1 Saline 12.3 14.9 19.5 24.2 376 655 795 719 599 

5 B 2 Saline 12.4 14.9 19.5 24.2 356 656 773 710 586 

5 C 27 Saline 11.6 13.6 17.3 21.1 . . . . . 

5 D 3 Saline 12.6 15.1 19.4 23.8 355 616 728 668 558 

6 A 17 
No 

injection 12.4 15.3 20.1 25.1 416 689 832 755 637 

6 B 23 
No 

injection 11.9 14.4 18.8 23.6 362 620 807 706 586 

6 C 7 
No 

injection 12.8 15.6 20.5 25.5 411 699 832 761 638 

6 D 8 
No 

injection 12.7 15.1 20.0 24.6 344 694 764 726 592 

7 A 19 LPS 12.3 15.3 19.5 24.3 430 600 804 694 602 

7 B 20 LPS 12.0 15.3 19.4 24.0 477 584 766 668 601 

7 C 4 LPS 12.1 14.5 18.1 22.7 344 512 772 632 531 

7 D 14 LPS 11.8 14.1 17.5 22.2 324 476 790 621 517 
aPens subjected to intramuscular LPS injections (O55:B5, 10 µg/kg BW), saline solution 
injections or no injections on day 28, 30, 32 and 34. 
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Appendix 2. Table 10. Pen means for average daily feed intake and gain to feed ratio subjected to multiple 
LPS injection, saline solution injection and no injectiona 

        ADFI, g G:F 

Block Trt Pen Injection 
D21-
28 

D28-
35 

D35-
42 

D28-
42 

D21-
42 

D21-
28 

D28-
35 

D35-
42 

D28-
42 

D21-
42 

1 A 5 LPS 607 791 1235 996 860 0.534 0.705 0.637 0.666 0.634 

1 B 10 LPS 605 762 1080 909 802 0.654 0.689 0.694 0.692 0.682 

1 C 21 LPS 738 749 1306 1006 911 0.549 0.780 0.676 0.718 0.671 

1 D 22 LPS 715 769 1223 979 886 0.644 0.700 0.650 0.671 0.663 

2 A 6 Saline 662 879 1248 1049 914 0.617 0.745 0.637 0.686 0.668 

2 B 28 Saline 660 901 1304 1087 936 0.654 0.736 0.658 0.693 0.684 

2 C 16 Saline 591 765 1140 938 817 0.560 0.712 0.671 0.689 0.656 

2 D 25 Saline 626 900 1240 1057 903 0.588 0.721 0.686 0.702 0.677 

3 A 26 
No 

injection 546 771 1158 950 808 0.466 0.748 0.668 0.703 0.647 

3 B 13 
No 

injection 676 908 1201 1043 912 0.628 0.723 0.677 0.699 0.683 

3 C 24 
No 

injection 642 891 1186 1028 891 0.562 0.711 0.687 0.699 0.665 

3 D 9 
No 

injection 623 826 1182 990 862 0.583 0.754 0.653 0.698 0.669 

4 A 15 LPS 674 699 1265 947 837 0.633 0.659 0.698 0.692 0.687 

4 B 11 LPS 598 688 1072 865 772 0.616 0.702 0.722 0.713 0.687 

4 C 12 LPS 610 672 1116 873 768 0.595 0.729 0.686 0.707 0.688 

4 D 18 LPS 610 808 1186 983 852 0.661 0.714 0.680 0.695 0.687 

5 A 1 Saline 606 870 1198 1022 876 0.620 0.753 0.663 0.704 0.684 

5 B 2 Saline 646 884 1203 1031 895 0.551 0.742 0.643 0.688 0.655 

5 C 27 Saline . . . . . . . . . . 

5 D 3 Saline 616 867 1144 995 861 0.576 0.710 0.637 0.671 0.649 

6 A 17 
No 

injection 629 898 1277 1073 918 0.662 0.767 0.652 0.704 0.694 
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6 B 23 
No 

injection 616 850 1168 996 862 0.587 0.729 0.691 0.709 0.679 

6 C 7 
No 

injection 656 906 1322 1098 943 0.626 0.772 0.629 0.693 0.676 

6 D 8 
No 

injection 603 896 1155 1016 871 0.570 0.775 0.661 0.715 0.680 

7 A 19 LPS 662 840 1203 1008 886 0.650 0.714 0.668 0.689 0.679 

7 B 20 LPS 674 825 1209 1002 887 0.708 0.707 0.634 0.666 0.677 

7 C 4 LPS 570 752 1122 923 799 0.603 0.681 0.688 0.685 0.664 

7 D 14 LPS 569 680 1093 869 757 0.570 0.701 0.723 0.715 0.683 
aPens subjected to intramuscular LPS injections (O55:B5, 10 µg/kg BW), saline solution injections or no injections 
on day 28, 30, 32 and 34. 
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Appendix 2. Table 11. Pen means for average daily gain and gain to feed ratio 
subjected to multiple LPS injection, saline solution injection and no injection 
without dead pig weightsa 

        ADG without dead wts, g G:F without dead wts 

Block Trt Pen Injection 
D21-
28 

D28-
35 

D28-
42 

D21-
42 

D21-
28 

D28-
35 

D28-
42 

D21-
42 

1 A 5 LPS 324 558 664 545 0.534 0.705 0.666 0.634 

1 B 10 LPS 396 525 629 547 0.654 0.689 0.692 0.682 

1 C 21 LPS 364 584 722 550 0.494 0.780 0.718 0.603 

1 D 22 LPS 460 538 657 588 0.644 0.700 0.671 0.663 

2 A 6 Saline 409 655 719 611 0.617 0.745 0.686 0.668 

2 B 28 Saline 388 663 753 576 0.589 0.736 0.693 0.616 

2 C 16 Saline 331 545 646 536 0.560 0.712 0.689 0.656 

2 D 25 Saline 294 649 742 489 0.470 0.721 0.702 0.542 

3 A 26 
No 

injection 229 577 667 471 0.420 0.748 0.703 0.582 

3 B 13 
No 

injection 340 657 729 498 0.503 0.723 0.699 0.546 

3 C 24 
No 

injection 325 634 718 534 0.506 0.711 0.699 0.599 

3 D 9 
No 

injection 363 623 691 577 0.583 0.754 0.698 0.669 

4 A 15 LPS 298 394 562 360 0.443 0.659 0.593 0.430 

4 B 11 LPS 331 483 617 477 0.554 0.702 0.713 0.618 

4 C 12 LPS 363 392 494 448 0.595 0.729 0.566 0.583 

4 D 18 LPS 404 577 683 585 0.661 0.714 0.695 0.687 

5 A 1 Saline 376 655 719 599 0.620 0.753 0.704 0.684 

5 B 2 Saline 320 656 710 528 0.496 0.742 0.688 0.589 

5 C 27 Saline . . . . . . . . 

5 D 3 Saline 315 616 668 496 0.512 0.710 0.671 0.577 

6 A 17 
No 

injection 370 689 755 566 0.588 0.767 0.704 0.617 

6 B 23 
No 

injection 326 620 706 527 0.528 0.729 0.709 0.611 

6 C 7 
No 

injection 411 699 761 638 0.626 0.772 0.693 0.676 

6 D 8 
No 

injection 344 694 726 592 0.570 0.775 0.715 0.680 

7 A 19 LPS 382 600 694 535 0.577 0.714 0.689 0.603 

7 B 20 LPS 381 584 668 481 0.566 0.707 0.666 0.542 

7 C 4 LPS 344 512 632 531 0.603 0.681 0.685 0.664 

7 D 14 LPS 324 429 559 477 0.570 0.701 0.644 0.630 
aPens subjected to intramuscular LPS injections (O55:B5, 10 µg/kg BW), saline solution 
injections or no injections on day 28, 30, 32 and 34. 
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Appendix 2. Table 12. Pen means for average daily gain and gain to feed ratio 
subjected to multiple LPS injection, saline solution injection and no injection 
with dead pig weightsa 

        ADG with dead wts, g G:F with dead wts 

Block Trt Pen Injection 
D21-
28 

D28-
35 

D28-
42 

D21-
42 

D21-
28 

D28-
35 

D28-
42 

D21-
42 

1 A 5 LPS 324 558 664 545 0.534 0.705 0.666 0.634 

1 B 10 LPS 396 525 629 547 0.654 0.689 0.692 0.682 

1 C 21 LPS 382 584 722 602 0.518 0.780 0.718 0.661 

1 D 22 LPS 460 538 657 588 0.644 0.700 0.671 0.663 

2 A 6 Saline 409 655 719 611 0.617 0.745 0.686 0.668 

2 B 28 Saline 406 663 753 630 0.615 0.736 0.693 0.673 

2 C 16 Saline 331 545 646 536 0.560 0.712 0.689 0.656 

2 D 25 Saline 385 649 742 607 0.615 0.721 0.702 0.681 

3 A 26 
No 

injection 261 577 667 525 0.478 0.748 0.703 0.650 

3 B 13 
No 

injection 403 657 729 612 0.596 0.723 0.699 0.671 

3 C 24 
No 

injection 393 634 718 603 0.612 0.711 0.699 0.677 

3 D 9 
No 

injection 363 623 691 577 0.583 0.754 0.698 0.669 

4 A 15 LPS 442 459 645 501 0.656 0.657 0.681 0.673 

4 B 11 LPS 357 483 617 526 0.596 0.702 0.713 0.681 

4 C 12 LPS 363 440 588 457 0.595 0.655 0.673 0.649 

4 D 18 LPS 404 577 683 585 0.661 0.714 0.695 0.687 

5 A 1 Saline 376 655 719 599 0.620 0.753 0.704 0.684 

5 B 2 Saline 406 656 710 602 0.628 0.742 0.688 0.673 

5 C 27 Saline . . . . . . . . 

5 D 3 Saline 383 616 668 567 0.622 0.710 0.671 0.659 

6 A 17 
No 

injection 392 689 755 628 0.624 0.767 0.704 0.685 

6 B 23 
No 

injection 377 620 706 590 0.611 0.729 0.709 0.684 

6 C 7 
No 

injection 411 699 761 638 0.626 0.772 0.693 0.676 

6 D 8 
No 

injection 344 694 726 592 0.570 0.775 0.715 0.680 

7 A 19 LPS 424 600 694 600 0.641 0.714 0.689 0.676 

7 B 20 LPS 464 584 668 596 0.688 0.707 0.666 0.672 

7 C 4 LPS 344 512 632 531 0.603 0.681 0.685 0.664 

7 D 14 LPS 324 497 631 496 0.570 0.732 0.727 0.683 
aPens subjected to intramuscular LPS injections (O55:B5, 10 µg/kg BW), saline 
solution injections or no injections on day 28, 30, 32 and 34. 
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Appendix 2. Table 13. Mortality in pens subjected to multiple LPS 
injection, saline solution injection and no injectiona  

Block Treatment Pen Injection D21-28 D28-35 D35-42 D28-42 D21-42 

1 A 5 LPS 0 0 0 0 0 

1 B 10 LPS 0 0 0 0 0 

1 C 21 LPS 1 0 0 0 1 

1 D 22 LPS 0 0 0 0 0 

2 A 6 Saline 0 0 0 0 0 

2 B 28 Saline 1 0 0 0 1 

2 C 16 Saline 0 0 0 0 0 

2 D 25 Saline 2 0 0 0 2 

3 A 26 No injection 1 0 0 0 1 

3 B 13 No injection 2 0 0 0 2 

3 C 24 No injection 1 0 0 0 1 

3 D 9 No injection 0 0 0 0 0 

4 A 15 LPS 3 1 0 1 4 

4 B 11 LPS 1 0 0 0 1 

4 C 12 LPS 0 2 0 2 2 

4 D 18 LPS 0 0 0 0 0 

5 A 1 Saline 0 0 0 0 0 

5 B 2 Saline 1 0 0 0 1 

5 C 27 Saline . . . . . 

5 D 3 Saline 1 0 0 0 1 

6 A 17 No injection 1 0 0 0 1 

6 B 23 No injection 1 0 0 0 1 

6 C 7 No injection 0 0 0 0 0 

6 D 8 No injection 0 0 0 0 0 

7 A 19 LPS 1 0 0 0 1 

7 B 20 LPS 2 0 0 0 2 

7 C 4 LPS 0 0 0 0 0 

7 D 14 LPS 0 1 0 1 1 
aPens subjected to intramuscular LPS injections (O55:B5, 10 µg/kg BW), saline 
solution injections or no injections on day 28, 30, 32 and 34. 
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Appendix 2. Table 14. Pen means for TNF-α and changes in TNF-α 
following chronic immune challengea 

      TNF-α, pg/ mL Changes in TNF-α 

Block Treatment Pen Hr. 0 Hr. 3 Fold 

1 A 5 296.2 1605.9 5.42 

1 B 10 151.1 891.1 5.90 

1 C 21 172.4 917.9 5.32 

1 D 22 220.0 220.0 0.00 

4 A 15 234.6 1023.3 4.36 

4 B 11 236.5 640.1 2.71 

4 C 12 163.6 703.3 4.30 

4 D 18 139.9 944.8 6.75 

7 A 19 133.4 720.6 5.40 

7 B 20 244.2 1381.7 5.66 

7 C 4 193.8 877.7 4.53 

7 D 14 203.2 580.7 2.86 
aBlood collected from 2 pigs per pen subjected to IM LPS injection (O55:B5, 10 
µg/kg BW) on days 28, 30, 32 and 34.
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Appendix 2. Table 15. Pen means for IL-1β and changes in IL-1β following 
chronic immune challengea 

      IL-1β, pg/ mL Changes in IL-1β 

Block Treatment Pen H0 H3 Fold  

1 A 5 60.9 132.2 2.17 

1 B 10 49.6 79.8 1.61 

1 C 21 53.0 139.3 2.63 

1 D 22 56.7 111.4 1.97 

4 A 15 59.2 89.1 1.50 

4 B 11 52.2 76.1 1.46 

4 C 12 51.6 83.4 1.62 

4 D 18 53.9 93.6 1.74 

7 A 19 49.1 154.8 3.15 

7 B 20 51.3 136.2 2.65 

7 C 4 53.9 85.7 1.59 

7 D 14 50.5 77.2 1.53 
aBlood collected from 2 pigs per pen subjected to IM LPS injection (O55:B5, 10 
µg/kg BW) on days 28, 30, 32 and 34. 
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Appendix 2. Table 16. Pen means for SOD activity and changes in SOD activity 
following chronic immune challengea 

      SOD activity, U/mL Changes in SOD activity 

Block Treatment Pen H0 H3 H0 - 3 

1 A 5 0.950 0.971 0.021 

1 B 10 0.853 0.770 -0.083 

1 C 21 0.936 0.985 0.049 

1 D 22 1.109 1.036 -0.073 

4 A 15 0.998 0.834 -0.164 

4 B 11 1.467 1.118 -0.349 

4 C 12 0.935 1.017 0.083 

4 D 18 1.048 1.301 0.254 

7 A 19 1.000 0.956 -0.044 

7 B 20 0.918 1.039 0.122 

7 C 4 0.829 0.955 0.126 

7 D 14 0.979 0.936 -0.043 
aBlood collected from 2 pigs per pen subjected to IM LPS injection (O55:B5, 10 µg/kg BW) 
on days 28, 30, 32 and 34. 



144 

 

 

 

 

 

 

 

Appendix 3 

 

Pilot Study 

  



145 

 

Pilot Study: Multiple intramuscular lipopolysaccharide injections and the 

effect on body weight, body temperature, and survival rate of nursery pigs. 

S. Schaaf1, S. D. Carter1, P. Aparachita1, I. L. Silva1 

1Oklahoma State University, Stillwater, OK 

 

Abstract 

One experiment was conducted to evaluate the effect of multiple 

intramuscular injections of lipopolysaccharide on body weight, body temperature, 

and survival rate of nursery pigs. A total of 10 pigs (average of 20 d old) were 

allotted in 1 of 2 treatments: LPS injection or control. On d 28, 30, 32 and 34, 5 

pigs were injected intramuscularly with LPS Escherichia coli O55:B5 (Sigma-

Aldrich, Co., St. Louis, MO). After the first injection on d 28, the amount of LPS 

was increased by 12% at each injection to avoid resistance. Previously to each 

injection, BW and rectal temperature were recorded. Body temperature was also 

recorded 3 h following each LPS administration. Pigs were fed the same diet and 

allowed to consume feed and water ad libitum during the study. The results 

demonstrated BW loss following the first LPS injection and decreased ADG 

during the subsequent days of LPS injection. Rectal temperatures increased 

substantially following each of the injections indicating that the immune system
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was consistently activated. No mortality was observed during the study. 

Therefore, multiple intramuscular injections of 10 µg of LPS/ kg of body 

weight is an adequate amount to stimulate the immune system without 

compromising survival rate in nursey pigs. Additionally, increasing amounts of 

LPS (12% at each injection) is able to avoid resistance.  

 

Introduction 

Single injections of LPS has been demonstrated to be a safe method to 

stimulate the acute immune response in pigs (Wyns et al., 2015). To study the 

relationship between chronic immune system stimulation and nutrient level, a 

model that represents chronic stimulation is needed. This model can be used to 

evaluate potential nutritional strategies to alleviate the impact of immune system 

stimulation on animals (Escribano et al., 2014; Rakhshandeh & de Lange, 2012). 

However, few studies have used multiple injections of LPS to evaluate chronic 

immune response in pigs (Rakhshandeh & de Lange, 2012). More than that, 

there is no published data related to this methodology in nursery pigs. Therefore, 

the objective of this pilot study was to evaluate the effect of multiple 

intramuscular injections of lipopolysaccharide on body weight, body temperature, 

and survival rate of nursery pigs. 

 

Materials and Methods 

Animal Care and Feeding 
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A total of ten crossbred (PIC®) pigs (6 barrows and 4 gilts) were weaned 

at average of 20 d of age and allotted randomly to one of two treatments. The 

pigs were handled and cared according to the guidelines established by the 

Oklahoma State University Institutional Animal Care and Use Committee.  

Pigs were blocked randomly by body weight (BW) and gender and housed 

in pens in a proportion of 3 barrows to 2 gilts, totalizing 5 pigs per pen. Pigs were 

housed at the wean-to-finish facility with the environment temperature and 

ventilation controlled and checked twice a day. During the trial, all pigs received 

the same diet formulated to exceed the requirements listed in the NRC (2012). 

The pigs were allowed to consume feed and water ad libitum. Water was 

provided via water nipple and each pen had a multiple-hole stainless steel 

feeder. Body weight (BW) and average daily gain (ADG) were calculated in this 

study.  

 

Escherichia coli Lipopolysaccharide Challenge 

On d 28, 30, 32 and 34 of the experiment, 5 pigs were subjected to 

intramuscular lipopolysaccharide (LPS) injection, while the remaining 5 pigs 

served as the control. The Escherichia coli O55:B5 LPS (Sigma-Aldrich, Co., St. 

Louis, MO) was suspended in a 9 g/L of sterile saline for a final dosage of 10 µg 

of LPS/ kg of body weight. Following the first injection on d 28, the subsequent 

amount of LPS was increased by 12% to avoid resistance (Rakhshandeh & de 

Lange, 2012). The suspension was kept in cold storage.  
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Prior to each injection, pigs were weighed, and their temperature was 

recorded. The injections were performed intramuscularly in the neck with the 

weight-dependent LPS suspension. Rectal temperatures was recorded again 3 h 

post injection. Body weight was also recorded on d 35 of the study. Changes in 

rectal temperature and percentage of body weight were calculated using h 0 from 

d 28 as a baseline.  

 

Statistical Analysis 

No statistical analysis were performed for this study. The results were 

interpreted numerically according to observations for each pig subjected to LPS 

treatment or control. 

 

Results 

The results are presented in Table.1 and 2. Pigs injected with LPS lost 

0.43 kg 48 h following the first LPS injection, while the control group gained 0.53 

kg. The subsequent injections did not result in BW loss, although pigs subjected 

to multiple LPS injections had decreased ADG compared to the control group. 

On d 35, 24 hours after the last LPS injection, pigs that received LPS gained 2.88 

kg while control pigs gained 3.77 kg, resulting in a numerical difference of 0.128 

g in ADG between treatment groups. Rectal temperatures increased in LPS 

injected pigs following each of the injections compared to the control. Although 

sickness behaviors were not evaluated, lethargy and shivering were observed 

right after the LPS injection. There was no mortality during the study.  
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Discussion  

The BW loss and the increment in body temperature agrees with 

observations made in previous studies (Bible, 2013; Johnson & Von Borell, 1994; 

Rakhshandeh & de Lange, 2012; Wright et al., 2000), demonstrating that the 

protocol established in this study, in fact, stimulated the immune system without 

compromising the survival rate.  

The worsening in the ADG compared to the control group can be 

explained by the action of the LPS. According to (Johnson et al., 1996; Warren et 

al., 1997) lipopolysaccharide activates the hypothalamus-pituitary-adrenal (HPA) 

axis via proinflammatory cytokine stimulation, resulting in increased secretions of 

glucocorticoids and reduced response to growth hormone (Luo & Murphy, 1989). 

Moreover, glucocorticoids increase energy expenditure, muscle protein 

degradation and loss of body nitrogen (Williams et al., 2009). Therefore, the 

activation of the immune system redirect the nutrients to support its function 

rather than to growth (Spurlock, 1997), which impairs nutrient utilization and 

performance (Johnson, 1997; Liu et al., 2003). 

 

Conclusion 

Multiple intramuscular injections of 10 µg of LPS/ kg of body weight of LPS 

Escherichia coli O55:B5 seems to be an adequate amount to stimulate the 

immune system without compromising survival rate in nursey pigs. Additionally, 

increasing amounts of LPS (12% at each injection) is able to avoid resistance.  
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Appendix 3. Table 1. Effect of multiple LPS injections on body weight of nursery pigsa,b,c  
    Day 28 Day 30 Day 32 Day 34 Day 35 

Pig Trt. 
Body 

Weight 
Body 

Weight 
BW 

change 
Body 

Weight 
BW 

change 
Body 

Weight 
BW 

change 
Body 

Weight 
BW 

change 

1 L 15.1 15.0 -0.09 16.5 1.45 18.0 2.91 18.0 2.91 

2 L 13.8 14.4 0.54 15.6 1.73 16.9 3.04 17.4 3.59 

3 L 15.3 15.1 -0.27 16.3 0.95 18.4 3.09 18.6 3.22 

4 L 14.5 13.8 -0.73 15.0 0.50 16.2 1.68 16.9 2.45 

5 L 19.9 18.3 -1.59 20.4 0.54 21.9 2.00 22.1 2.22 

Average 15.7 15.3 -0.43 16.8 1.04 18.3 2.54 18.6 2.88 

6 C 12.1 12.7 0.54 14.4 2.27 15.3 3.13 15.6 3.45 

7 C 12.6 13.2 0.64 14.9 2.36 16.2 3.59 16.7 4.13 

8 C 21.9 22.4 0.50 23.4 1.45 25.1 3.18 26.2 4.22 

9 C 13.2 13.5 0.27 14.7 1.50 15.8 2.63 16.7 3.50 

10 C 10.7 11.4 0.68 12.4 1.73 14.1 3.45 14.2 3.54 

Average 14.1 14.6 0.53 16.0 1.86 17.3 3.20 17.9 3.77 
aLPS Escherichia coli O55:B5, 10 µg/kg of BW. 
bBW variation from day 28. 
cBody weight recorded prior (hour 0) to the LPS injection. 
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Appendix 3. Table 2. Effect of multiple LPS injections on rectal temperature of nursery pigsa,b,c 

    Day 30c Day 32 Day 34 

Pig Trt. Temp. 
Temp. 

3h 
Temp. 
change Temp. 

Temp. 
3h 

Temp. 
change Temp. 

Temp. 
3h 

Temp. 
change 

1 L 39.2 40.2 0.94 39.6 40.6 1.06 39.4 40.9 1.50 

2 L 39.5 40.7 1.22 39.3 40.1 0.83 39.1 39.9 0.89 

3 L 39.4 40.8 1.39 38.9 39.8 0.83 39.2 40.1 0.89 

4 L 39.5 41.2 1.72 39.6 39.8 0.22 39.2 40.1 0.89 

5 L 39.4 40.2 0.78 39.4 40.4 1.00 39.2 39.4 0.17 

Average 39.4 40.6 1.21 39.3 40.1 0.79 39.2 40.1 0.87 

6 C 0.0 0.0 0.00 39.4 39.6 0.17 39.1 38.8 -0.33 

7 C 0.0 0.0 0.00 38.9 39.3 0.39 38.8 39.1 0.28 

8 C 0.0 0.0 0.00 39.3 39.7 0.33 39.3 39.1 -0.17 

9 C 0.0 0.0 0.00 39.7 39.6 -0.11 39.6 39.2 -0.39 

10 C 0.0 0.0 0.00 39.9 40.1 0.17 39.2 39.1 -0.06 

Average 0.0 0.0 0.00 39.4 39.6 0.19 39.2 39.1 -0.13 
aLPS Escherichia coli O55:B5, 10 µg/kg of BW. 
bRectal temperature recorded prior (hour 0) and 3 hours following the LPS injection. 
cRectal temperature of the control group was not recorded on day 30. 
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Appendix 3. Figure 1. Effects of multiple lipopolysaccharide injections on body weight 

change of nursery pigs between days 28 and 35. The serotype of LPS was Escherichia 

coli O55:B5. 
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Appendix 3. Figure 2. Effects of multiple lipopolysaccharide injections on rectal 

temperature change of nursery pigs between days 28 and 35. The serotype of LPS was 

Escherichia coli O55:B5. 
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