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Abstract

Previous research evaluated the color vision requirements and 

perceptual factors related to interpretation of color-coded weather radar 

information and resulted in an 80-item developmental test. The objective of 

this study was to use Item Response Theory (IRT) methods to select the most 

efficient set of those items without adversely affecting the reliability or item 

domain of the test. The resulting test was used to examine the effectiveness 

of using Located Latent Class Analysis (LLCA) to distinguish between 

individuals based on their capability of identifying colors on a CRT. The 

participants were 335 individuals with normal color vision and 200 with 

varying degrees of red-green types of color vision deficiency. BILOG-3 (with 

a 3-parameter IRT model specified) provided indices for discrimination, item 

difficulty, and guessing. The greater the discrimination value, the better the 

item discriminates high performers from low performers. Likewise, large 

difficulty values (in the positive direction) indicate more difficult items. Higher 

guessing values indicate a greater probability of guessing the correct choice. 

BILOG-3 also calculates an estimate of each individual's ability using the 

same scale as the item difficulty index. Using these indices, a composite 

scatterplot was constructed. With the item discrimination plotted on the Y- 

axis, and the item difficulty/ability estimate on the X-axis, boundary lines were 

drawn for the guessing parameter in addition to the minimum and maximum 

ability estimates for each anomaloscope diagnosis. Once the item’s content 

was coded onto the scatterplot, items were evaluated on several dimensions
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to select the most efficient items. Maintaining the original passing criterion of 

no more than 1 error, high consistency was found between the original 80 

items and the 50-item test (K(i7 2 )= 95). Correlation between percent correct 

scores was also very high (r(i7 2)= 99). The original inter-item reliability (a=.96) 

and item content were unaltered by shortening the test. LLCA latent trait 

scores, CTT percent correct scores, and IRT ability estimates were highly 

correlated; however, agreement between LLCA latent trait class assignments 

and pass/fail on the CWRT was moderate, K (172) = .62 but not sufficiently 

high to be used as a methodology in safety-critical decisions. The unique, 

multidimensional approach to item selection using the IRT 3-parameter 

estimates while taking item content and ability range information into 

consideration yielded 50 highly reliable items.

XIII
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CHAPTER 1

A Multidimensional Approach to Test Item Selection 

in a Practical Color Vision Test 

Overview

The Federal Aviation Administration (FAA) requires all Air Traffic 

Control Specialists (ATCSs) applicants demonstrate their color discrimination 

ability because several ATCS tasks involve critical, non-redundant, color- 

coded information. Previous research (Mertens, 1990; Mertens & Milburn, 

1998; Mertens, Milburn, & Collins, 1995, 2000) related to the development of 

2 job-sample color vision tests demonstrated that some individuals who fail 

color vision screening tests may be able to perform en route and terminal 

option ATCS color tasks as well as people with normal color vision (NCV).

The FAA has an immediate need for a concise, work-sample color vision 

screening test for Automated Flight Service Station (AFSS) ATCSs. Three 

experiments (Milburn & Mertens, 2002) were conducted examining numerous 

factors related to presenting such a color vision test on a CRT display. As a 

result of those experiments, using both participants with normal and deficient 

color vision, dichotomously scored performance data on 80 items exists.

Errors were rare among participants with NCV and those with mild color 

abnormalities (Milburn & Mertens, 2002). Participants with severe color 

abnormalities made color confusions between virtually all colors. The poor 

performance of participants with red-green color vision deficiencies (CVD) 

supports the need for a color vision requirement for ATCSs at AFSS facilities
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that must use color-coded radar displays when briefing pilots on weather 

before and during flights. A detailed account of the development the Color 

Weather Radar Test (CWRT, Milburn & Mertens, 2002) also chronicled 

method refinements used to ensure reliable presentation of colors and to train 

test-takers.

Statement of the Problem 

During the development of the CWRT, only classical test theory (CTT) 

methods were used to analyze the performance data, to select items, to 

compare performance between color palettes and between color vision 

groups. At the conclusion of each developmental phase, items were selected 

based on CTT methods for evaluation in subsequent experiments. For 

example, only items passed by all individuals with NCV were selected to 

serve as test trials in the next phase. However at each subsequent phase, a 

few people with NCV made an error or two on items previously passed by all 

participants in the NCV group. CTT did not allow the test developer to 

distinguish between random and systematic errors and also, within the 

structure of CTT, the test developer could not predict the performance of an 

individual participant. Furthermore, because CTT item parameters are 

sample dependent, performance on individual items could not be predicted 

across samples, hence performance on the items appeared inconsistent.

Objective

There are 3 major objectives addressed in this paper. The primary 

purpose was to create a more concise edition of the CWRT from the existing
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80 dichotomously scored items by applying test development principles 

advocated by Item Response Theory (IRT) to overcome some of the 

difficulties resulting from having used CTT methods. Secondly, this study 

compared the efficiency of establishing pass/fail cut scores using ability 

estimates (derived from IRT) compared to total percent correct scores 

(obtained using CTT methods). Third, the data were examined using Located 

Latent Class Analysis (LLCA) to determine the extent to which latent classes 

can be modeled from perceptual color vision data acquired from individuals of 

varying types and degrees of CVD. The purpose of using LLCA was to 

evaluate the latent class assignments for potential pass/fail classifications as 

distinctions between those capable and incapable of the color identification 

tasks.
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CHAPTER 2 

Review of Test Theory 

CTT (Gulliksen, 1950) has served as an esteemed guide to test 

development for several decades and continues to be heavily cited. Most 

readers and test developers are familiar with CTT but may not be familiar with 

modern test theory. For that reason, an overview of modern test theory 

method is presented. For a quick study, Embretson's (1996) article on the 

new rules of measurement helps bridge the gap between classical and 

modern test theories. For example, one old rule of CTT applies to test 

length— "longer tests are more reliable than shorter tests” (Embretson, 1996, 

p. 342). Embretson (1996) cites the Spearman-Brown prophesy formula 

(Brown, 1910; Spearman, 1910) and work by Guilford (1954) that 

demonstrate that lengthening a test allows true variance to increase more 

rapidly than error variance, resulting in a more reliable test. Lord and Novick 

(1968) give a specific example of the impact on reliability as a result of 

doubling the length of a test as an increase from an original reliability of .6 to 

an improved reliability of .75. Embretson (2000) demonstrates the same 

effect is present in the reverse— that is by shortening a test with a reliability of 

.86 by two-thirds of its original length results in an anticipated reliability of .80.

However, the new rule states that “shorter tests can be more reliable 

than longer tests” (Embretson, 1996, p. 342). By using adaptive testing to 

select items optimally appropriate to the person's ability level, the test can be 

shorter yet more precise, meaning it has less measurement error and is
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therefore more reliable. Embretson points out that the Spearman-Brown 

prophesy formula (Brown, 1910; Spearman, 1910) assumes that the test is 

lengthened with parallel parts and that is not the case using an adaptive test, 

because items are selected specifically based on the response pattern of the 

test-taker. Other ways that a shorter test can be more reliable than a longer 

test is to use modern test theory methods to select items that:

■ Cover a range of difficulties that correspond to the range of abilities of the 

test-takers;

" Provide the most test information (item discriminability) across the range 

of abilities;

■ Have a low probability of guessing the answer correctly;

■ Are near the cut-point (if the cut-point is known); and

■ Have low measurement error near the cut-point.

Embretson discusses 5 other old rules that have been replaced by new ones 

developed by modern test theory that are essentially captured in the list 

below.

Hambleton and Swaminathan (1985) discuss 5 shortcomings of CTT 

that they believe modern test theory overcomes.

1) Item difficulty and item discrimination depend on the particular 

examinee samples in which they were obtained.

2) Comparison of individuals on a particular ability (for example color 

discrimination ability) by a set of test items is possible only if the 

individuals are given the same or parallel test items.
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3) Test reliability is directly related to variability and is usually defined 

in terms of parallel forms or re-presentation of the same test.

4) Within the CTT framework, a test administrator can not predict how 

an individual will perform on a test item, nor can a test designer 

adapt a test to match a particular examinee's ability level.

5) CTT presumes that measurement error variance is the same for all 

examinees.

Given the shortcomings of CTT, an overview of item response 

theory (IRT) is provided below with the rationale for its selection and use 

in the present experiment and a description of the fit of the model to color 

perception testing.

The beginnings of IRT can be traced back to the 1930's and 40's 

(Lawley, 1943, 1944; Richardson, 1936; and Tucker, 1946) and 

substantial theoretical contributions to the development of IRT have been 

made each decade since (Lazarsfeld, 1950; Lord, 1953a, 1953b; 1974a, 

1974b, 1977, 1980, Birnbaum, 1957,1958a, 1958b; Rasch, 1960 ,1966a, 

1966b; Mislevy & Bock, 1990). IRT has continued to gain acceptance and 

has been used in a variety of applications (Hambleton, 1983).

IRT is considered appropriate for selection of color weather radar test 

items from a large pool of items for three reasons:

1. Item characteristics are not group-dependent (Hambleton, Swaminathan,

& Rogers, 1991).
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2. The performance of a participant on each item can be predicted based on 

that individual's estimated ability.

3. The relationship between the participant's performance on a particular 

item and the individual's estimated ability can be described by a 

monotonically increasing function and graphed as an item characteristic 

curve (ICC). That function stipulates that as ability increases, the 

probability of a correct response to an item increases.

Currently, there are several commercially available computer programs 

to perform the item response analyses. BILOG-3 (Scientific Software 

Incorporated, Chicago, IL) is one such program that provides item analysis 

and test scoring for binary logistic models. BILOG-3 was used because it met 

the following model restrictions. First, each item was scored dichotomously 

as correct or incorrect. Second, BILOG-3 provides ability estimates (9, theta) 

for each individual and provides difficulty (threshold) parameters for each 

item, while taking into account the probability of a correct response to a 

multiple-choice item as a result of guessing. Third, a general assumption of 

IRT is that if the examinee knows the correct answer to the item, the 

examinee will answer correctly. This is not the same as if the examinee gets 

the item correct, then he must have known the correct answer. In a multiple- 

choice test, there is always the likelihood of guessing the correct answer. 

(Guessing will be discussed in greater detail later.) Fourth, BILOG-3's 

underlying theoretical assumption of a monotonically increasing relationship 

between color vision ability and the probability of a correct response seems to
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fit the model. For example, as an Individual's color vision ability improves 

(approaches what is considered “normal” color vision), the likelihood of a 

making a correct response on color identification tasks also increases based 

on previous research that examined accuracy as a function of diagnosis of 

degree of color vision ability.

A unique strategy using IRT item parameters (fully described in the 

Method section) was used to examine the 80 items of the CWRT with the 

purpose of reducing the overall length of the test while providing the most test 

information. Pass/fail performance on the resulting parsimonious test was 

compared to original pass/fail performance. The efficiency and consistency of 

the parsimonious test was evaluated. Additionally, IRT methods were used to 

evaluate individual performance and to establish a pass/fail criterion.

The next analysis involved evaluating the efficiency of Located Latent 

Class Analysis (LLCA) for determining class structure as a function of color 

vision ability (the latent class of interest). LLCA is a statistical method for 

identifying groups of related cases (latent classes) from multivariate 

categorical or dichotomous data. For example, it can be used to identify 

distinct diagnostic classifications given the absence or presence of certain 

symptoms. Most frequently it is used on attitudinal survey data to find types 

of structures in the responses. Likewise, it can be used to locate consumer 

sub-groups from demographic or preference surveys. The goal of LLCA is to 

classify cases of individuals into their most likely latent class. It is called 

latent class because the individual’s class membership is not/or can not be

8
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directly observed by the information gathered from the manifest variables. 

However, the most basic latent class analysis methods are “limited by the 

restrictive assumption that all variables are [conditionally] Independent within 

each latent class” (Uebersax, 1999, p. 283). The most basic assumption of 

conditional independence is met for the data in that one’s response to a 

particular item does not alter the probability of other items in the test.

LLCA was used to identify an individual test-taker’s latent class (color 

vision diagnostic category) using performance data obtained from the CWRT 

(a multi-item inventory designed to measure color vision ability). Individuals 

were classified as having normal or deficient color vision as determined by 

the Nagel Type I anomaloscope, which is considered the criterion test for 

making such determinations. Uebersax (1999) refers to these categories as 

disease-positive and disease-negative cases.

In addition to categorizing individuals as “normal or deficient,” the 

anomaloscope further classifies individuals within the deficient category by 

type of deficiency (protan or deutan). Within each type category, there is a 

continuum ranging from individuals possessing superior color discrimination 

ability (e.g. those having a lower probability of misidentifying colored targets) 

to individuals with severe CVD (e.g. those having a higher probability of 

misidentifying the same colored target). Although there was considerable 

overlap of symptoms or color identification behaviors indicative of the two 

types of deficients, there were also type-specific behaviors. That had the 

potential to violate the conditional independence assumption of latent class



Optimal Item Selection

analysis (LCA) because it implies that, “within each latent class, presence of 

one symptom is associated with a higher probability of presence of other 

symptoms. Thus, one would not necessarily expect a standard two-class 

LCA model to fit such data” (Uebersax, 1999, p. 286). Uebersax further 

explains that “the only way that LCA can accommodate conditional 

dependencies is to add spurious latent classes that are not truly present at 

the taxonic level. Not only does this inflate the number of supposed latent 

classes, but also the entire latent class solution becomes susceptible to 

distortion. Hence, the interpretation of any possibly non-spurious latent 

classes produced becomes suspect. If the goal is to identify groups that 

correspond in meaning and number to reality, then a method is required to 

account for association of items within latent classes.” (Uebersax, 1999, p. 

287). However, that was an issue for the analysis itself and interpretation of 

the results to determine whether color vision perception could be modeled 

using LCA. To do so, LCA must be robust to minor violations of the 

independence assumption and still lead to a solution that could model 

performance. The point was to determine whether it provided a more useful 

method for measuring performance than CTT or IRT.

What this may imply related to using LCA to classify individuals based 

on their performance on the CWRT is as follows:

(1) Because Protans and Deutans make both similar and different 

types of errors (response patterns), it is possible that unique class 

membership may be difficult to establish; and a third class may be

10
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formed from those individuals whose behavior is similar (the 

overlap area).

(2) Alternatively, because multiple items with the same target color are 

presented, the probability of a color deficient failing all of those 

items is very high-probably only lessened by the likelihood of 

guessing an item correctly.

(3) Furthermore, because of underlying color-mixture principles (the 

way colors are made on the CRT by mixing red, green, and blue 

lights to create all colors) any color that is the result of a color 

mixture would also create related items. However, conditional 

independence is maintained for points 2 and 3 because a response 

to one item does not determine the response to another item.

Background

The previous discussion on test theory should provide the reader with 

an adequate review to follow the comparison of CTT, IRT, and LCA presented 

in the results. Although knowledge of the origin of the data may not be 

absolutely necessary to understand the relevance or significance of the 

findings, that information may explain the practical importance of the results 

and the cause of certain response patterns. Therefore, this review provides 

some background information on several diverse, yet relevant topics 

pertaining to development of the work-sample, color vision test for AFSS 

ATCSs. Technological changes within the AFSS substantially changed the 

controller’s tasks and subsequently the color vision standards for ATCSs.

11
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Access to radar imagery began in the mid-1960 s and used a 

monochromatic (one color) coding scheme to display shades of gray 

representing 3 levels of weather intensity. By the early 1980’s, color radar 

imagery was accessible from National Weather Service radars. Six intensity 

levels displayed in color replaced the gray coding scheme. The new digitized 

weather product had at least 3 design aspects that added a level of 

redundancy to interpreting the color-coding. Features such as zoom, level 

select, and blinking enhanced color perception by increasing size; hence 

protected the performance of controllers whether their color vision was normal 

or deficient.

Basically, 16 colors were possible on the CGA (color graphics adapter) 

monitors with the red, green, and blue color guns. Additional technological 

changes allowed computers to produce 256 colors and eventually 16.7 million 

colors. Simultaneously, the resolution on the displays improved from 400 x 

200 to 1280 X 1024 pixels. The improved resolution allowed weather displays 

to be presented in greater detail that more closely represented weather 

patterns. By the mid-1990s, color weather radar product suppliers expanded 

from 7- to 16-levels to represent a finer gradation of weather intensities.

These technological and product changes setup a moving target scenario in 

the development of a work-sample test. Not only were the job-tasks changing 

because of the product changes and improvements, but also presumably the 

level of color vision ability required in air traffic control personnel. Because 

the older system had redundant cues available along with color that the new

1 2
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systems did not, the new systems required the user to rely more heavily on 

the color-coded information for interpretation. For those reasons, 

confirmation of one’s ability to interpret the color-coded information became 

necessary, thus leading to a color vision standard and subsequently the 

development of a color weather radar work sample test.

Color Vision Standards for All Controllers

Applicants for ATCS jobs were required to demonstrate their color 

vision discrimination ability as early as 1978 when Medical Guideline Letter 

Number B-5A-0002 was written. It required NCV for all ATCSs because a 

number of ATCS tasks involved critical, non-redundant, color-coded 

information (Adams & Tague, 1985; Lahey, Veres, Kuyk, Clark, & Smith,

1984, Lahey, Veres, Kuyk, & Clark 1984; Mertens, 1990; Mertens, Milburn, & 

Collins, 1996, 2000; Pickrel & Convey, 1983). Given the number of tasks that 

require the ATCSs to decipher the meaning of the color-coded material, it is 

not surprising that “normal color vision” was a pre-employment job 

requirement Furthermore, the Equal Employment Opportunity Commission's 

(EEOC) regulation (29 C.F.R. Section 1613.705a) states that an agency may 

not make use of any selection test that screens out qualified handicapped 

persons unless it is shown to be job-related.

The first step was substantiating the need for a color vision 

requirement. Justification for the screening test was based on its job- 

relevance, especially the non-redundant nature of color-coding in some ATCS 

tasks. However, making the connection between the color vision screening

13
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test results and the on-the-job tasks was harder to establish when the 

screening test was not composed of actual ATCS materials and/or tasks. 

Ultimately, the determination of NCV and one's capability of performing the 

color-related tasks was based on passing a Pseudolsochromatic Plate 

(PIP)Test (fully described later).

The PIP tests were medical tests designed to measure genetically 

determined variations of color vision among Individuals; however, they do not 

predict the potential satisfactory performance of air traffic control duties 

related to color vision. Therefore, the requirement In the standard that the 

applicant must have normal color vision should be Interpreted to mean that 

the Individual must be able to function normally In recognizing colors in the 

work environment. Consequently, ATCS applicants who did not pass the PIP 

tests should be given the opportunity to demonstrate their ability to recognize 

colors In the air traffic work environment.

Based on results from 2 studies (Mertens, 1990; and Mertens &

Milburn, 1992) a new directive from the Federal Air Surgeon (Jordan, 1992 In 

MGLRM, 1995) was written that Instructed regional flight surgeons to 

administer the Dvorlne PIP to all Individuals seeking Initial employment with 

the FAA as ATCSs. In the event an applicant failed the Dvorlne PIP then 

work sample tests were to be administered. At the time the MGLRM was 

written, only the practical tests for the en route (center) and terminal options 

existed. This report Involves the development of an alternative color 

perception test for the flight service station option.
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Normal Color Vision (NCV) Defined

At this point it is appropriate to provide a very brief and easy-to- 

understand discussion of CVDs and to define what constitutes NCV. In this 

context, NCV refers to the way approximately 95% of the population sees 

colors. Estimates vary, but about 8 to 10% of all males and about one-half of 

1% of females see colors differently than the majority of people. Because a 

very high percentage of the population match colors in a similar way, they are 

said to have NCV. In contrast, some individuals are commonly called color 

blind; however, the more appropriate term is color deficient because the 

occurrence of total color blindness is very rare. The incidence of CVD occurs 

across ethnic groups with the prevalence varying but with Caucasian males 

showing the largest ratio of red-green color vision deficients. The deficiency 

can be acquired as a result of injury, drugs, or disease; but it is most 

commonly inherited as a result of a recessive trait carried on the X 

chromosome—which explains its more likely occurrence in males than 

females. Furthermore, there are types of CVD and the prevalence of each 

varies. Most people with CVD are said to have a red-green deficiency 

because they confuse colors that fall along a line between the colors red and 

green within the 2-dimensional chromaticity diagram. Which brings us to how 

colors are described. “Until 1931, the concept of color had no precise 

scientific basis and colors could be specified only by appeal to physical 

samples [such as a color wheel containing color swatches]. In that year, the 

International Commission on Illumination (CIE) adopted a system of color
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specification, which has lasted to the present time " (Kaiser & Boynton, 1996, 

p. 25). Colors were described in terms of x and y coordinates that could be 

plotted on a chart known as a chromaticity diagram. There are 3 points that 

should be made for a basic understanding of the data presented in this paper. 

Specifically: how are colors made with lights; what effect CVD has on the use 

of a CRT; and how is color vision measured?

Creating Colors with Pigments and Lights

First, understanding the fundamental differences between combining 

primary color pigments and combining colored lights to make secondary 

colors is essential. (The reader is directed to Mueller and Rudolph’s (1966) 

primer on “Light and Vision” which contains an easy-to-read description of the 

distinction between processes.) For example, if red and green colored 

pigments such as paint are combined—the resulting color is almost black, in 

contrast, if red and green colored lights are combined in approximately equal 

proportions— the resulting color is yellow. Furthermore, if full intensity red, 

green, and blue lights are added together—the resulting color is white light. 

This can be demonstrated by using Microsoft Paint or a similar software 

product on a computer that allows adjustment of the amount of red, green, 

and blue to define custom colors. This is an important difference to 

understand about how colors are made with light (such as on a CRT) and 

pigments (such as a printed color vision test).
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Measuring Color Vision

The next building block of information is an understanding of the 

human color receptors in the eye and why color deficient people confuse 

colors. In this study, only the red-green types of CVD are discussed, because 

people with blue-yellow deficiencies (called tritans) are rare and none 

participated in any of these experiments. Deficients have a reduced sensitivity 

to certain colors. Because the mixture of red and green creates a CRT 

yellow, people with CVD would confuse yellow with green if they have a 

reduced number of receptors for red (protan-type), or confuse yellow with red 

if they do not have sufficient receptors for green (deutan-type).

Given that discussion, how is color vision measured? The Nagel Type 

1 anomaloscope was the primary instrument used to diagnose type and 

degree of red-green color deficiencies in this study. It was recommended by 

the National Research Council-National Academy of Sciences, (NRC-NAS) 

Committee on Vision (1981) for color vision testing. The anomaloscope 

capitalizes on the process of combining red and green lights to create yellow 

as discussed above. First, the anomaloscope uses a prism to split a beam of 

light into the colors of the spectrum (ROY G. BIV is the acronym that we 

learned in school) including red, orange, yellow, green, blue, indigo, and 

violet. The anomaloscope uses a mixture of spectral red and spectral green 

to match to a spectral yellow light. When the participant looks through the 

monocular instrument, an illuminated bipartite circle can be seen. The top 

half is a variable red-green mixture, and the bottom is spectral yellow. By
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varying the luminance of the spectral yellow in the bottom half of the circle 

and the proportion of red and green mixed in the top half of the circle, the 

participant matches the two halves of the circle. The participant is told to 

match both color and brightness. The instrument provides a measurement of 

the luminance and the amount of red and green used to produce a match 

between the two halves of the circle. People with NCV combine almost 

equal proportions of red and green to match to yellow, whereas proportions 

selected by people with CVD greatly vary. Several matches are made and 

the amount they vary in the proportions is their anomaloscope matching 

range. The scale was 0 (spectral green) to 73 (spectral red). People with 

NCV have a very small and consistent matching range; and, people with 

CVD, depending upon the severity of their deficiency, have much larger 

matching ranges. In fact, a person with a severe CVD may match pure 

spectral green (or red or both) to spectral yellow.

Although the anomaloscope targets were much larger than the 

smallest targets used, it follows that a relationship should exist between the 

anomaloscope diagnosis and performance on the CWRT because of the 

similarities inherent to the color mixtures of the two apparatus.

The reader is referred to the report (Milburn & Mertens, 2002) that 

documents the development of the work-sample test because it includes a 

detailed description of the apparatus, stimuli, materials, screening tests, 

practical tests, and performance measures relevant to the 3 experiments' 

data analyzed in this report. However, the following summary will probably
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suffice. Experiment 1 evaluated several factors pertinent to creating test 

stimuli such as optimal target size, selection of color palettes, and the 

presence or absence of a color legend. Classical test theory methods were 

used to select potential test trials from the large pool of items presented in 

Experiment 1. Experiment 2 involved refinement of the participant’s task, 

incorporated findings from Experiment 1, evaluated test-retest reliability, and 

recommended a smaller set of items for use In Experiment 3. Experiment 3 

evaluated 2 methods of responding to test trials and established a cut-score 

for the test.

Restatement of the Experimental Objective

After such a lengthy review of the various facets of information relevant 

to this study, a re statement of the purpose of this experiment seems 

pertinent. It was to create a more concise edition of the CWRT by selecting 

the best items from the existing 80 dichotomously scored items by applying 

test development principles advocated by IRT. Furthermore, this study 

compared the efficiency of establishing pass/fail cut scores using IRT ability 

estimates compared to total percent correct scores obtained using CTT 

methods. The final objective was to compare LLCA class membership to 

anomaloscope diagnosis, to IRT cut scores, and to CTT percent correct 

scores to evaluate the efficiency of the LLCA procedure for potential use in 

determining pass/fail status.
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CHAPTER 3 

Method 

Participants

Prior approval for all procedures and use of human participants was 

obtained from the Institutional Review Board of the Civil Aerospace Medical 

Institute (CAM!). Volunteers were recruited and paid by an independent 

contractor of the Human Resources Research Division of CAM!. The 

informed consent of every participant was obtained prior to participation, and 

each participant was free to withdraw from the experiment without prejudice 

at any time.

All volunteers had at least 20/30 corrected visual acuity in both near 

and distant vision as determined with the Bausch and Lomb Orthorater.

This study analyzed existing data obtained from the participants in 3 

experiments described on Table 1. Participants were 342 people with NCV 

(170 females and 172 males) with a mean age of 31.4 years (sd. = 10.2) and 

204 people with varying types and degrees of CVD (24 females and 180 

males) with a mean age of 37.4 years (sd. = 11.2). All participants were 

between 18 and 57 years of age. A complete breakdown of the number of 

participants in each color vision category in each experiment can be found in 

Table 1. The process for classifying the participant’s color vision is fully 

described below.
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Diagnostic Classification of Participants

Normal Trichromats (n = 342) comprise the majority of all individuals 

and have a high level of color discrimination ability. In summary, all normal 

trichromats made anomaloscope matches that fell between 33 and 48 on the 

anomaloscope scale, midpoint within plus or minus 2 standard deviations of 

the mean midpoint (M = 40.5), and whose matching range was less than 16 

units. This classification also contains the normal trichromats that Pokomy, 

Smith, Verriest, and Pinckers called deviant normal trichromats and weak 

normal trichromats (1979). The anomaloscope color-matching behavior of 

normal trichromats varies by a relatively small amount, but it does vary.

These subgroups of normal trichromats may be thought of as representing 

the tails of either the distribution for the matching range size (the weak normal 

trichromats) or the distribution for the matching range midpoint (the deviant 

normal trichromats). Deviant or weak normal trichromats may show a very 

slight reduction in color discrimination ability.

Simple anomalous trichromats (n = 92) are the mildest of inherited red- 

green CVD. This category includes (1) individuals whose mid-matching point 

falls more than 3 SD above or below the mean for normal trichromats, and 

whose matching range does not overlap the range of mean matches of 

normals, and (2) all individuals with a matching range greater than 15, but 

less than 26 scale units, even if their range of matches overlaps the means 

for normals. Those simple anomalous trichromats having a mean of matches 

above the mean for normal trichromats were classified as simple
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protanomalous (n = 28), and those with a mean of matches falling below the 

normal mean were classified as simple deuteranomalous trichromats (n = 64). 

Simple protanomalous or deuteranomalous trichromats may have mild to 

moderate impairment of color discrimination ability.

Extreme anomalous trichromats (n = 61) have severe impairment and 

were separated into extreme protanomalous (n = 25) and extreme 

deuteranomalous (n=36). The extreme anomalous individuals accept a wide 

range of matches, overlapping the range of matches accepted by both the 

normal trichromats and the simple anomalous trichromat. The extreme 

anomalous trichromats had a matching range greater than 25 and less than 

73 scale units that frequently included the mean of the normal group as well 

as part of the simple deuteranomalous or protanomalous matching ranges. 

Individuals in the extreme protanomalous group typically had a midpoint of 

matches above the NCV group mean and also have a reduced sensitivity to 

long wavelength (red) light. Extreme deutranomalous individuals typically had 

a matching midpoint below the mean of normals and no evidence of a 

sensitivity loss to long wavelengths of light.

Dichromat Anomalous Trichromats (n = 51) were similarly separated 

into protan and deutan groups called protanopes (n = 28) and deuteranopes 

(n = 23), respectively. All dichromats have severe color deficiencies and 

protanopes, like the extreme protanomalous, have reduced sensitivity to long 

wavelengths whereas deuteranopes do not. Both protanopes and 

deuteranopes have a range of 73 scale units (i.e., they accept the entire
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range of possible matches on the anomaloscope). See Table 2 for a brief 

summarization and description of each category.

Materials

Dvorine PIP

The Second Edition (1953) Dvorine Pseudo-lsochromatic [sic] Plates 

(PIP) was administered to all participants. The Dvorine PIP achieved a high 

validity when compared to the Nagel Type I anomaloscope diagnosis of 

"normal trichromat" (Mertens & Milburn, 1993). The NRC-NAS Committee on 

Vision (1981) cited several reports (Belcher, Greenshields, & Wright, 1958; 

Frey, 1962; Sloan & Habel, 1956) that noted the high color vision screening 

validity of the Dvorine PIP.

For each plate of the Dvorine PIP, the task of the observer is to Identify 

a multi-colored Arabic numeral(s) composed of three sizes of dots embedded 

in a multi-colored background of dots. The disguised number(s) differ only in 

color from the background dots; size and Intensity remain constant; hence are 

"hidden" only from the color deficient observers. The Medical Guideline 

Letters Reference Manual (1995) for testing ATCS applicants with a failure 

criterion of more than 2 errors was used, which is consistent with diagnosis of 

NCV as defined by the Dvorine PIP.

Color Weather Radar Test (CWRT)

The CWRT is a work-sample color vision test for AFSS ATCSs that 

used archived weather maps with a legend composed of swatches of the 

colors used to non-redundantly color code 16 levels of weather. Each level is
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related to the increasing probability of turbulence, the intensity of 

precipitation, wind shear, lightning, and hail, which are factors related to the 

hazardous weather conditions of flight. Using the map legend composed of 

shades of blue, green, yellow, red, purple, and white, examinees must identify 

the color on the map designated by an arrow and then use the mouse to mark 

their responses. Photograph 1 is a sample test trial. The CWRT replicates 3 

color palettes found in use at AFSSs.

Training was presented as self-paced, interactive PowerPoint slides 

with voice instructions that accompanied the automated demonstrations and 

was followed by 20 practice trials. The test does not assume any prior 

knowledge of color weather radar displays and requires only the most basic 

computer skills to test the participant’s color vision ability. Items were coded 

as correct or incorrect (1, 0) based on a scoring method that required correct 

identification of the target by color category. The cut score for passing was 

set at no more than 1 error.

Procedure

Item Selection

The first step was to obtain item parameters for each of the 80 

dichotomously coded items by using BILOG-3 with a 3-parameter model 

specified. BILOG-3's output included a discrimination index, item difficulties, 

and a guessing index, a-, b-, and c-parameters, respectively. The greater the 

a-value, the better the item discriminated high performers from low 

performers, the larger the b-value (in the positive direction), the more difficult
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the item, and the higher the c-value, the greater the probability the examinee 

had of guessing the correct choice.

BlLOG-3 provided an ability estimate for all participants obtained 

separately for two response-modes administered to participants in 

Experiment 3. (Participants responded to each trial by using the mouse to 

mark their choice and in a separate administration, participants announced 

their choice using specified color names.) Using the ability estimates, 

descriptive statistics were calculated for each color vision type, degree of 

deficiency, and by anomaloscope diagnosis. See Table 10. Focusing on the 

computer-response mode data (because that response method was selected 

for use in the final version of the CWRT), item parameters were calculated 

and BILOG-3 item characteristic curves (ICCs) were examined individually. 

ICCs plot the a-value (item discrimination) on the Y-axis, and the b-value on 

the X-axis (item difficulty/theta, ©). The height of the c-parameter on the V- 

axis indicates the probability of a correct response to a multiple-choice item 

as a result of guessing. Additionally, BILOG-3 draws the item information 

curve on the same graph indicating the range of abilities for which that item 

provides information and the point at which the height of the curve is tallest 

(called the b-value), and it is the point at which the item provides the 

maximum information. The b-value position Is also known as the inflection 

point on the ICC, that is the point at which the slope is highest. The item 

information curve Is essentially the inverse of the measurement error, so a 

high, broad curve would indicate a wide range of abilities for which the
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measurement error is small. To further Interpret the item information curve, 

the width on the X-axis describes the range of ability scores for which the item 

provides information and the height indicates the amount of information 

available as a function of the ability scale. For example, the first item plotted 

on Figure 1(a) is one that provides a limited amount of information (the dotted 

line) across a range of ability scores ranging from -3  to +1.5. In contrast, the 

item information curve (the dotted line) plotted on Figure 1(b) demonstrates 

an item that provides information about a smaller range of ability scores, -1.0 

to +1.5, but provides a substantial amount of information near the zero point 

on the ability scale.

The ICC (the solid line) provides information about the probability of a 

correct response as a function of ability. For example. Figure 1(c) is the ICC 

for a very difficult item. Notice that the probability of a correct response is low 

and flat over a large range of ability scores and is equal to the c-parameter, or 

the probability of correctly guessing the correct answer. In contrast. Figure 

1(d) is a plot of a very easy item (b= -3.53) indicating a .70 probability of a 

correct response given a low ability scale score o f-3 .0 . Notice the high 

probabilities of a correct response across a range of low abilities (the solid 

line) and the very little test information available for the item shown in Figure 

1(d). A composite scatterplot was constructed using the following steps.

1. With the a-values on the Y-axis, and b-values on the X-axis, a horizontal 

line was drawn to indicate the maximum c-value of all items. Descriptive 

statistics using IRT ability estimates were calculated for each diagnosis.
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Boundaries, representing the ability range of each diagnostic color vision 

group, were drawn as vertical lines onto the composite scatterplot. See 

Table 4 for descriptive statistics and Figure 2 for a sample plot.

2. The item points were color-coded to represent each item's content (the 

target color). See Figure 3.

3. Items plotted to the left of the lowest ability score boundary line and items 

with a-parameters that fall below the c-value line were dropped. See 

Figure 4.

4. Items were then evaluated based on content, item discrimination, and item 

difficulty. For example, if several items with yellow targets appear in the 

same general location on the b-value scale (on the X-axis), they were 

considered items of similar difficulty and content. See Figure 5.

5. Since the goal of the CWRT is to select individuals who can perform as 

well as people with NCV, items were selected (to provide the greatest test 

information) from items plotted near that cut-point.

The scatterplot facilitated a multi-dimensional approach to selection of optimal

items based on decisions related to a-, b-, and c- parameters, including ability

cut-score range, and all as a function of item content.
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CHAPTER 4 

Results and Discussion 

Using the described method for item selection, 50 items were chosen 

to meet the primary objective of the experiment—to create a more 

parsimonious test. Several analyses were conducted to answer the pertinent 

research questions concerning the efficiency and/or the appropriateness of 

the method used. The feasibility of using ability estimates rather than percent 

correct scores as a measure of performance and to establish cut-scores was 

examined. Generally speaking, this phase of the analyses involved a 

comparison of performance on the original 80 items with performance on the 

50-item set and an evaluation of the consistency of 2 dependent variables 

(percent correct and ability estimates).

The first premise that was established was the effectiveness of the 

item selection process and its impact on the test's reliability. Because the 

Spearman-Brown prophesy formula predicted only a small possible 

improvement from a (172) = .964 to .971 by doubling the length of the original 

data set to 160 items, then the goal of shortening the test was to maintain the 

original test's high reliability. That goal was accomplished with the 50 

selected items. The original inter-item reliability, a (172) = .964, was 

unaltered by shortening the test. Although no precedence was found in the 

literature for the multivariate approach to item selection using IRT's 3- 

parameter estimates coupled with item content and ability range information, 

the method yielded 50 highly reliable items. However, the 30 items that were
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not selected had a much lower Cronbach a (172) = .76. In addition, the 

correlation of percent correct was much lower for those 30 items than for the 

50 items when compared to the total test score (r (172) = .77 vs. .99, p < .01, 

respectively). Taking into account the shorter length (30 items compared to 

50 items) the Spearman-Brown prophesy formula predicted an improvement 

in reliability to .79 given an additional 30 parallel items.

The next step was to determine the effect shortening the test had on 

the distribution of scores.

Comparison of Errors on the 80- and 50-Item CWRT and the Dvorine PIP  

To understand the distribution of scores and the extent of the overlap 

between the color vision groups. Table 5 presents a crosstabulation of errors 

on the Dvorine PIP compared with errors on the 80 item color weather radar 

test as a function of degree of deficiency. Scores for the NCV group fit tightly 

into a small range of errors both on the Dvorine and the CWRT, with no one 

making more than 2 errors on the Dvorine PIP or 3 errors the CWRT. In 

contrast, the scores for participants with mild to moderate deficiencies, (the 

simple category) are dispersed across a wide range of errors (from 0 to 12) 

on the Dvorine PIP coupled with a small number of errors, or in some cases, 

a perfect score on the CWRT. However, all of the dichromats (those with 

severe deficiencies) made between 10 and 13 errors on the Dvorine 

corresponding with 4 to 48 errors on the CWRT.

Table 6 is provided to show the relationship between the number of 

errors on the 50-item CWRT and errors on the Dvorine PIP. The most
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consequential effect of deleting 30 items was on those who made only a few 

errors on the 80-item test because of their proximity to the cut-score as will be 

discussed in the next section.

Establish Pass/Fail Criteria 

It is generally held that establishing a pass criterion or cut-score for 

any test is a major concern of the test designer. Rarely does a dividing line 

naturally occur between novices and experts, between apprentice and 

journeymen, or between people with normal and defective color vision. As a 

result, an overlap exists between the two distributions of scores making it 

difficult to set a cut-score. Furthermore, there are no clear-cut guidelines 

presented in the literature to definitively establish a cut-score for each new 

test developed. However, several researchers familiar with selection tests 

(personal communications with D. Broach, June 2001 ; R.Terry, January 2000; 

& M. Pulat, October, 1995) have suggested establishing the criterion 

performance standard at the point that included the performance of 95% to 

98% of the subject-matter-experts or journeyman level employees. That is, in 

this case, if 95% to 98% of all people with NCV perform at, or above, the 

criterion cut-score, it is probably accurate to say that the criterion is placed at 

an appropriate point to describe the way people with NCV perform. The cut- 

score should include all but the extreme tails of the distribution of people with 

NCV.

The goal was to establish a cut-score for passing the CWRT based on 

theory, empirical evidence, and safety considerations. Establishing the
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pass/fail criterion for a test is always important and is directly tied to the type 

and purpose of the test. For example, if a test were designed to select the 

people who were most knowledgeable of the topic of interest, the cut-point 

would be established based on pre-determined qualifications for the job at the 

entry level. Or, depending upon the job market, an organization could opt to 

select only the top 15 to 20% of all applicants. However, the purpose of this 

test is to evaluate individuals based on the color capabilities of people with 

NCV to determine whether an individual (applicant) possesses those same 

capabilities. Of all people with NCV 89.3% made zero errors, 5% made 1 

error, 3.5% made 2 errors, and 1.7% made 3 errors on the CWRT in the 

computer response condition.

The cut-score was established in a previous study (Milburn & Mertens, 

2002) at 2 standard deviations below the mean for people with NCV. The 

NCV group mean was 99.78% correct (sd = 0.716) that translated to only 1 

error on the 80-item test (98.75% correct). A determination was made to err 

conservatively when setting the criterion because of the safety-critical aspect 

associated with the selection criterion. A contingency table of pass/fail 

performance of the 80-item CWRT with the Dvorine PIP, the initial screening 

test for AFSS ATCSs, is provided on Table 7. Previous studies (Mertens, 

1990; Mertens & Milburn, 1992a, 1992b; Mertens, Milburn, & Collins, 1998) 

reported high predictive validity values for the Dvorine PIP test (all reporting 

Kappas near .90) for simulated ATCS color-identification tasks. As with the 

practical color vision tests for the en route and terminal options, a few people
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were able to perform the work-sample tasks but were unable to pass the 

Dvorine PIP screening test. Mertens (1990) reported false-positive rates 

ranging between 7.1% and 35.8% for the Dvorine PIP test for prediction of 

performance on the 7-level, color weather radar tests using small and large 

targets, respectively.

Concerning the 50-item CWRT, the decision was to maintain the cut 

score for passing at no more than 1 error. Approximately 95% of all people 

with NCV passed with that criterion.

Comparison Between the 80- and 50-item Tests 

The objective was to ascertain the extent to which the item reduction 

altered the pass/fail performance of individuals while maintaining the same 

pass/fail criterion. Shortening the CWRT affected the pass/fail decision for a 

few participants. They were 2 NCV participants and 1 person with an 

extreme Deutan-type deficiency. The 3 people missed 2 items each on the 

80-item test and as a result of dropping 30 items, they made only 1 error on 

the 50-item test. Each person had made an error on a different item that was 

dropped. See Table 8. Table 9 provides a crosstabulation of the pass/fail 

performance on the original 80-item test compared to the reduced item set. 

The analysis of the agreement between the 2 test scores indicated a Cohen’s 

kappa value of K (172) = .946 and a correlation between the percent correct 

scores of r (172) = .993.
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Comparison of Test Information Curves

Given the high correlation between percent correct scores and 

agreement between pass/fail performance, the next step was to produce test 

information curves for the original 80 items and then for the resulting 50-item 

test and visually compare the two curves. See Figure 6. The goal in test 

development is to produce a test item function that is high and flat over the 

range of thetas (0 , ability estimates) where accurate measurement is desired. 

As a consequence of dropping items that provided test information for only 

very low-level ability people, the test information curve shows that the 

parsimonious test provides little information at the -3 .0  ability level.

Essentially, the curve is shifted to the right (in the positive direction) 

compared to the 80-item test. The most test information is available near the 

-1 .0  level in the shorter test (Figure 6 Point A) compared to the highest point 

of the curve in the 80-item test (Figure 6, Point B) that was near the -2 .5  

point. An ability estimate near the -1 .0  point is approaching the lower range 

of ability estimates for people with NCV as diagnosed by the anomaloscope. 

As discussed earlier, the area near the cut-point on the ability scale needs to 

be the strongest point of the test. To further explain, the majority of items that 

provide high test information need to be just below and just above the cut 

point on the item difficulty/ability scale to adequately sample that range of 

ability and do so with a high degree of accuracy. The strongest point of the 

parsimonious test (Point A) shifted nearer the cut-point (the minimum ability of 

the criterion group) compared to the position of the original test peak (Point

33



Optimal Item Selection

B). Both tests had very low measurement error near the cut point. The 

combination of these two factors provides evidence that the test provides 

accurate and consistent information near the cut point-some assurance for 

low false positive and false negative cut-point decisions.

Using IRT Ability Estimates as a Dependent Variable 

To establish confidence in the IRT ability estimates for use as a 

dependent variable, its feasibility, reliability, and correlation to benchmark 

standards should be established. The ability estimate should demonstrate a 

high correlation with the anomaloscope-measured degree of deficiency and 

should be shown to be at least as consistent as the percent correct score in 

repeated measures. Furthermore, if the IRT invariance claim holds, the IRT 

ability estimates should be consistent across parallel forms. So, the first 

objective was to establish credibility of the measure by comparing the ability 

estimate to a criterion-referenced measure, the anomaloscope diagnosis. 

Comparison of Ability Estimates to Degree of Deficiency

A strong relationship should exist between ability estimates (ranging 

from -3.998 to +0.514) and degree of deficiency (coded 0 - 4  representing 

NCV, simple, extreme, and dichromat degrees of deficiency) because both 

are measures of color discrimination ability. Figure 7 provides box plots to 

compare the ability estimates by anomaloscope diagnosis. Notice the 

relationship between the ability and the degree of deficiency and the small 

standard deviations for each group. A strong negative correlation between 

the ability estimate and the degree of severity of deficiency was found, r (172)
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= - 81, meaning the more severe the CVD, the lower the color discrimination 

ability score. The correlation between percent correct on the CWRT and 

degree of deficiency was, as expected, also negative, r (172) = - .70, but 

smaller. See Figure 8.

Comparison of Percent Correct and Ability Estimates as Measures of 

Performance

In Experiment 2 of Milburn and Mertens’ study (2002), a correlation 

between the percent correct for Time 1 and Time 2 was calculated to get an 

estimate of test-retest reliability, r (257) = .95. Therefore, a similar correlation 

was calculated to assess the relationship between the two test presentations 

using BILOG-3 individual ability estimates as the dependent variable. The 

objective was to determine how similar the two ability estimates were, and 

also to compare the correlations of the two dependent variables. The ability 

estimates calculated separately for Time 1 and Time 2 were very similar, r 

(257) = .987, and somewhat higher than found using percent correct scores.

The computer and verbal response conditions used in Experiment 3 

provides another measure of reliability of the CWRT and the dependent 

variables. The close association between the 2 separate estimates of ability 

for the 2 response conditions graphed as a function of deficiency type, degree 

of deficiency, and by diagnosis on Figures 9, 10, and 11.

Reliability of Ability Estimates

The invariance property of IRT ability estimates was examined further 

by obtaining separate ability estimates derived from the dichotomously scored
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items as given In Experiments 1 and 2. Keep In mind that the selected Items 

of the CWRT were part of a much larger test In those experiments. 

Furthermore, the number and distribution of participants within each color 

vision category were different for each experiment. However, unlike CTT 

statistics, IRT estimates are not sample specific. There are several 

comparisons possible for the ability estimates, (the person statistics), which 

can be made using both CTT and IRT methods. Adding or removing an Item 

from the test can Impact the observed percent correct scores using CTT, but 

IRT ability estimates are Invariant If the same latent trait Is measured.

Parallel Tests Reliability

Forty people participated In Experiment 1 and returned for Experiment 

2 (6 people with NCV, and 34 people with CVD). Ability estimates were 

calculated Independently for Experiment 1 and the repeated measures that 

are called Time 1 and Time 2 of Experiment 2. Pearson bl-varlate 

correlations were calculated to compare the 3 ability estimates. The 

correlation between Experiment 1 and Time 1 of Experiment 2 was r (40) = 

.907, between Experiment 1 and Time 2 of Experiment 2 was r (40) = .914, 

and between Time 1 and Time 2 of Experiment 2 was r (40) = .988. These 

results are particularly Interesting because (a) several task refinements were 

made between Experiments 1 and 2; (b) the composition of the Item sets from 

which the ability estimates were calculated changed; and (c) Experiments 1 

and 2 were about 1 year apart. The high correlations Indicate a strong 

relationship exists between the two test scores. Furthermore, the correlation
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between Time 1 and Time 2 of Experiment 2, even for a small sample, 

indicates few differences between the two ability estimates.

Efficiency of Ability Estimates for Establishing Pass/Fail Criterion 

Applying the same logic to set the cut-score for ability estimates as 

was used to establish the pass/fail criterion with percent correct scores 

described above, the cut-score was set at 2 standard deviations below the 

mean for people with NCV. The mean for the NCV group (Experiment 3) was 

a scale score of 0.415 with a standard deviation of 0.305. See Table 4. With 

the cut-score set to include 2 SO below the mean for the criterion group, the 

minimum passing scale score was -0 .195.

A crosstabulation of pass/fail decisions (on the 80-item test) based on 

2sd below the mean for the NCV group, k (172) = .811 determined from ability 

estimates and percent correct scores is shown on Table 10. The two 

methods agreed for 92.02% of the cases, but did not agree for 6 individuals 

with diagnosis as follows: 2 normals, 1 simple protan, 2 simple deutans, and 1 

extreme deutan. Five of those individuals were failed using the ability 

estimate criterion but passed using the percent correct criterion. One simple 

deutan was passed based on the ability estimate and failed the percent 

correct criterion.

Another statistical method called Located Latent Class Analysis 

(LLCA) that used response patterns to determine item difficulty, assign a trait 

score, and to classify individuals was explored.
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Located Latent Class Analysis (LLCA)

LLCA Computer Program

Based on personal communications with the LLCA programmer (J. 

Uebersax, March, 2002) analysis involving more than 20 to 25 items to 

estimate parameters is unexplored. Because the parsimonious CWRT 

contained 50 items, my goal was to analyze response patterns to all 50 items. 

Dr. Uebersax generously provided the source code and the program was re­

dimensioned to allow for 50 items. Unfortunately, several problems were 

encountered while trying to estimate parameters with only 36 unique 

response patterns because of too few unique response patterns. Uebersax 

indicated that K+1 unique response patterns are needed to make estimates. 

Therefore, 20 of the most discriminating items were selected based on the 

same multidimensional graphing procedure previously described. The target 

colors of the 20 items were distributed as 5 each of yellow, green, and purple 

targets, 2 red, and 3 white targets. Table 11 provides the usual CTT 

information (such as mean percent correct, standard deviations, Pearson 

correlations with the total test score, and the resulting alpha if the item were 

deleted) for each of the selected items.

Using only participants from the computer response mode of 

Experiment 3 (see Table 1) 32 unique response patterns were discovered for 

20 selected items of the CWRT because 137 Individuals responded correctly 

to all 50 items. That was the goal of the test-developers—to create a test on 

which people with NCV consistently performed accurately. However,
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response patterns without variability do not provide any information about the 

relative difficulty of each item. Some explanation of the assumptions of IRT 

and LLCA must be addressed at this point. Both methods assume that the 

test measures a single latent ability or trait and that as an individual's ability 

increases, the likelihood of a correct response also Increases. These 

assumptions are referred to as the unidimensional and monotonie 

assumptions. Traub (1983) pointed out that one must not conclude that a data 

set meets all of the assumptions of a model, but that a researcher should 

determine the adequacy of the fit of the data set to the model assumptions. 

When the fit is poor, the resulting calculations will be questionable. The 

purpose of interjecting this discussion at this point is to state that the model- 

data fit is unknown and to question whether the number of unique response 

patterns is adequate.

The LLCA results are organized as 4 main sections; analysis involving 

item parameters, measures of individual participant performance, classes or 

categories of participants followed by a comparison of CTT, IRT, and LLCA 

variables. Item parameters include item difficulties (from CTT) and threshold 

values (from BILOG and LLCA). Participant performance was measured by 

percent correct (an estimate of CTT’s true score), latent trait ability estimates 

(theta values from BILOG), and latent trait scores (from LLCA). Three 

separate models were specified and the resulting LLCA class assignments 

were compared to anomaloscope diagnoses and CWRT pass/fail decisions.
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Finally, comparative analyses to determine how well each of the methods 

classified individuals was conducted.

Item Analysis

Although selection of test trials were based on the IRT multi­

dimensional approach previously described, it is possible to employ a 

selection strategy based on LLCA probabilities by selecting test items with the 

most polar probabilities. Table 12 lists the conditional rating probabilities for 

the simplest LLCA model with 2 latent classes and 2 manifest variables. A 

conditional probability is computed for each latent class given a correct 

response and given an incorrect response— resulting in 4 probabilities. The 

way this data were coded, the most discriminating items have conditional 

probabilities approaching 1 when the latent class number matches the 

manifest category number. For example, the latent class could be predicted 

from performance on a perfectly discriminating item 100% of the time 

because if an examinee responded incorrectly to the item (coded 1), it would 

mean that they belonged to latent class 1. Likewise, if they responded 

correctly (coded 2) to the item, then they belonged to latent class 2. Rarely in 

the real world do items such as that one exist; however, using LLCA 

conditional probabilities, the most discriminating items can be identified. For 

example, compare the conditional probabilities for item 1 to item 4 using 

Table 12. Both items report a high probability (.968 and .994) of membership 

in latent class 2 if the item is answered correctly (manifest category 2), but the 

likelihood of being in latent class 1 if the response is incorrect is much higher
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for item 1 than item 4 (.814 vs. .440). Creating a test by selecting items 

based on the described methodology should be addressed in a follow-on 

study to compare item selection strategies. However, the method that was 

used in this experiment was to select test trials based on IRT parameter 

estimates then use LLCA parameter estimates to evaluate the efficiency of 

the model for classifying participants based on performance on the selected 

items.

Reliability of Item Threshold Parameters

Recall that Experiment 3 (Milburn & Mertens, 2002) involved re­

presentation of the same items in a unique random order using 2 separate 

response methods (computer mouse or orally, versions 1 and 2 respectively). 

Each version contained 32 unique response patterns, but they were not 

identical. Threshold parameters for the selected 20 items were calculated 

from the response patterns from each single presentation of the test and were 

compared to get a measure of reliability of the threshold parameters, r = .794. 

Table provides the slope, asymptote, and threshold parameters for each item 

for test version 1.

Using only the computer test version response patterns, the LLCA 20 item 

threshold values were compared to the CTT item difficulties and were very 

highly negatively correlated, r= -.967. (Recall that higher threshold values 

indicate more difficult items whereas the same CTT indicator is noted by 

lower values— hence an inverse relationship.)
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The next analysis involved comparing the LLCA item threshold values with 

the IRT (BILOG-3) item thresholds and the resulting correlation was very high 

r=.955. The third comparison was between IRT item threshold values and the 

CTT item difficulties with a correlation of r= -.959.

For exploratory purposes only, the data sets for versions 1 and 2 were 

combined (58 unique response patterns) to determine whether increasing the 

number improved LLCA item threshold parameter estimates. When the LLCA 

item parameters calculated separately were compared to the combination, the 

correlations were very high for the 20 items, r=.931 and r=.950, indicating that 

for purposes of calculating item thresholds, few differences exist between the 

item parameter estimates calculated using 32 and 58 response patterns. This 

analysis does not attempt to pinpoint the number of responses needed to 

reliably obtain item thresholds, but was simply a gross check of the statistic. 

Presumably, some improvements to the item thresholds were possible with 

the added unique response patterns. That is a matter that could be examined 

using contrived data and multiple step-wise replications by adding additional 

unique response patterns until the optimum number is achieved.

LLCA Classification Efficiency 

The LLCA program was executed specifying several different models 

using just the computer response version of the test. The theoretical rational 

for specifying 2, 3, and 4 latent classes relates to clinical methodology for 

color vision classification as 2 groups— normal/deficient, 3 color vision 

types— normals, protans, and deutans, and 4 degrees of color vision—
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normal, mild deficients, moderate deficients, and severe deficients, 

respectively. The first model specified was the 2 latent class model 

(deficient/normal color vision— classes 1 and 2, respectively) with 2 manifest 

categories (incorrect/correct coded 1 and 2, respectively).

Two Latent Classes

The most general class assignment placed participants into two 

classes—deficient or normal color vision. Table 14 reports test sensitivity and 

specificity information. Sensitivity is the proportion of true positives that are 

correctly identified by the test and specificity is the proportion of true 

negatives that are correctly identified by the test. Based on this information 

from the sample studied, you could expect 31.67% of the participants with 

deficient color vision to indicate positive for the deficiency (class 1), while 

100% of those with NCV would have normal test results (negative for the 

deficiency) or class assignments (class 2). Test sensitivity and specificity are 

known only if criterion test information is available (as was the case in our 

experiment) and is an approach used for quantifying the diagnostic ability of 

the test. Although, in practice and in most real world applications, such 

information is not available and we must rely on developmental or validation 

study results to determine how well the test predicts deficiency or color 

abnormality. Kappa was used to measure agreement between the LLCA 2- 

class assignments and the criterion test diagnosis of normal versus deficient 

color vision and agreement was poor (K (171) = .376. However, Kappa 

improved, K (172) = 722, when the simple-degree deficients were included
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with the normal group (because they tend to respond more like normals than 

deficients).

Three Latent Classes

Agreement between the LLCA 3-class assignments and the 3 

anomaloscope type diagnoses was measured. Because Kappa is calculated 

by measuring agreement between like-coded classes and because LLCA 

class number assignments were unmapped to the anomaloscope class 

numbers, some deciphering was required. As with the 2-class analysis, 

group 2 was determined to be the normal group because individuals with all 

items correct were labeled group 2. Groups 1 and 3 were compared with 

both the deutan and protan groups. With protans coded as group 1 and 

deutans coded as group 3, agreement was poor, K (172)= .21, but improved 

somewhat when the coding was reversed, K (172)= .33. Table 15 shows the 

distribution between LLCA class assignments and the 3 criterion diagnostic 

type categories.

Four Latent Classes

Mapping between the 4 LLCA class assignments and the 4 degrees of 

deficiency was much easier to decipher because of the linear relationship 

between latent class location parameters (between -3 and +3) and the 

increasing degrees of deficiency. However, the normal group was still coded 

as group 2 with a latent class location parameter o f+3 and the individual 

(rather than group of cases) with the most items coded as 1 (incorrect) had a 

latent class location parameter of -3  as in 3-class model analysis. Two
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additional groups were formed with intermediate location values of .3 and 

1.207 with only 1 individual (a dichromat deutan) placed in the latter group. 

See Table 16. Naming the latent class groups produced by LLCA is similar to 

labeling the factors or constructs produced by factor analysis. At this point, 

little is known about the structure within the response patterns of this data set 

that would result in such a partitioning, but this exploratory work may serve as 

a reference in future studies. Agreement between the 4 class assignments 

and the diagnosis of degree of deficiency was weak, K (172)= .23. The SPSS 

coding for degree of deficiency was matched to the sequential latent class 

location parameters for purposes of the kappa analysis; however, not even 

mapping the normal group to class 2 was done with confidence because 

several from each diagnostic degree were also classified as group 2. 

Therefore, the meaning of membership in class 2 is unknown.

Comparison of LLCA Class Assignment to Pass/Fail on the CWRT

LLCA class assignments were compared to pass/fail decisions on the 

CWRT. First, the 2-class model results were tested and agreement was 

moderate, K (172) = .62 but not sufficiently high to be used as a methodology 

in safety-critical decisions. LLCA coded 18 individuals into class 2 who failed 

the CWRT. See Table 17.

Individual Participant Performance 

In this section, 3 ways to compute a performance score for each 

participant were compared. CTT percent correct scores were previously 

compared to IRT ability estimates, but now both of those dependent variables
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will be compared to LLCA latent trait scores calculated from 3 specified 

models— 2, 3, and 4-class models.

Comparison of IRT Ability Estimates to LLCA Latent Trait Scores

The IRT ability estimates were compared to the LLCA latent trait 

scores calculated under each model, r (172)=.847, .901, .939 and the 

correlation improved as the number of classes specified increased, perhaps 

the result of greater variability of latent trait scores assigned. Tables 18, 19, 

and 20 show the frequency and distribution of latent trait scores for each 

model tested. The latent trait scores ranged between -3  and +3 for all three 

models, but the number oi unique scores assigned (8, 9, and 12) varied with 

the models (2-, 3-, and 4-classes, respectively). Tables 21, 22, and 23 

present LLCA latent trait scores with the response patterns and frequencies, 

class assignments, and the probability of a class given a response as a result 

of fitting the 2-, 3-, and 4-class models.

Comparison of Ability Estimates with Percent Correct Scores

A previous analysis compared IRT ability estimates with percent 

correct scores to evaluate their efficiency as dependent variables but did not 

involve a direct comparison of the two scores to determine the extent of 

association. Using the original 80-item test, a correlation of r (172) = .903 

was found between percent correct scores and the IRT ability estimate. The 

correlation improved considerably, (r (172) = .953, between the percent 

correct score and the ability estimate assessed from the 20 items, which is 

probably the result of eliminating random errors in one or both of the scores.
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Comparison of LLCA Latent Trait Scores with Percent Correct

LLCA latent trait scores obtained under the 2-, 3-, and 4-class models 

were compared to the percent correct score on the original 80-item test. 

Correlations improved, r (172) = .826, .912, and .916, as the number of 

classes specified increased as was noted with the association between IRT 

ability estimates and LLCA latent trait scores previously discussed.

Classification Comparison 

Finally, a comparative analysis evaluating the efficiency of each method’s 

quantification of each individual's performance was conducted. Pass/fait cut 

scores were established at 2 standard deviations below the mean for the NCV 

group for each method’s dependent variable. Kappas between CTT percent 

correct scores; LLCA latent trait scores; and IRT BILOG-3 ability estimates; 

and normal/deficient classifications made by the anomaloscope were K (172)

= .528; .469; and .504, respectively.

Table 24 contains 4 contingency tables displaying the frequencies for the 

3 measures reported above in addition to the LLCA class assignments using 

the 2-class model, K (172) = 376 previously discussed. Agreement with the 

anomaloscope diagnosis for each of the measures is low, yet very similar. 

However, if agreement were high between performance on the work-sample 

color vision test and a diagnostic test such as the anomaloscope, the work- 

sample test would not be necessary. But, the low agreement between actual 

performance and the criterion measure indicates that the two tests are not 

measuring the same level of performance required for the dichotomous
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classifications. Evidence of the overlap between the dichotomous 

classifications is apparent in the number of participants with mild to moderate 

CVD that capably perform the work-sample test.
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CHAPTER 5 

Conclusions

CTT item selection methods were used in the early stages of test 

development with the greatest drawback being CTT's inability to distinguish 

between random and systematic errors. To overcome that shortcoming, this 

study applied a unique strategy using IRT item parameters to examine the 

items of the CWRT with the purpose of shortening the test while providing the 

most test information. One advantage of IRT over CTT was that it placed 

participant performance and item performance on the same scale using one 

metric to describe the two most basic parts of testing and measurement. By 

linking the selection of items to the ability of a target population (in this case, 

people with NCV), it was possible to select individual items that predicted a 

high probability of a correct answer given NCV ability. Using CTT such an 

evaluation of individual items was not directly ascertainable.

The IRT selection method yielded 50 items and a pass/fail criterion 

was maintained at 98% correct that was established in previous research 

(Milburn & Mertens, 2002). The high Kappa, K (172) = .94, comparing the 

pass/fail performance on the original test (80 items) and the shortened 

version (50 items) indicated a high percentage of agreement between the two 

tests. Three people were reclassified from failing to passing as a result of 

dropping 30 items. They were 2 NCV participants and 1 person with a 

moderate Deutan-type deficiency. The 3 people missed 2 items each on the 

80-item test and as a result of dropping 30 items, they made only 1 error on
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the 50-item test. Keep in mind that the process used to determine which 

items were dropped from the test was determined by the discriminability and 

difficulty of the items according a prescribed procedure and did not involve 

singling out items because people with NCV missed them. Therefore, the item 

reduction procedure should not adversely impact nor aid any particular color 

vision group more than any other.

The high correlations between the 80- and 50-item tests calculated 

separately for 2 dependent measures indicates few alterations in the total 

percent correct and ability estimates, but instead shows a shifting of the scale 

to fewer total items. Because Cronbach’s index of internal consistency was 

so high, a(172) = .96, a high correlation was expected between the 

parsimonious set of items and the original set.

The 50-item test retained the longer test’s high reliability, a (172) = .96, 

and did so contrary to CTT canons that state that longer tests are more 

reliable than shorter tests. Furthermore, the retention of the high Cronbach 

alpha of the 50-item test was possible because the selection procedure 

eliminated less reliable items.

Limitations caused by too few unique response patterns in the CWRT 

data necessitated the selection of a smaller set of items in order to examine 

the feasibility of using LLCA to classify and grade participants. Using the 

same procedure as was used to select 50 items, 20 items were selected.

LLCA latent trait scores and class assignments were compared to CTT 

percent correct scores, IRT ability estimates, anomaloscope diagnoses, and
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finally to pass/fail decisions on the CWRT. LLCA latent trait scores correlated 

very highly to CTT percent correct scores and IRT ability estimates and 

correlations improved with the number of classes in the model increased. 

Correlations ranged between .826 and .939. However, when the latent 

classes were dichotomized, the 2-class model agreement was moderate, K 

(172) = .62 when compared to pass/fail criteria decisions. Agreement of the 

latent class assignments not considered sufficiently high to be used as a 

methodology in safety-critical decisions. However, the scatterplot technique 

using the IRT item parameters and individual ability estimates to select test 

items by item content yielded 50 highly reliable items and should be 

considered over traditional CTT item selection methods.
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Table 1

Participants in each Experiment by Gender and Color Vision Group

Diagnosis

Experiment Simple Extreme DIchromat

Normal Protan Deutan Protan Deutan Protan Deutan Total

Male 27 7 14 8 14 8 8 86

Female 26 3 1 1 31

EXP1 53 7 17 8 15 8 9 117

Male 94 13 19 11 11 10 8 166

Female 83 ' ::T\ ' 6 ■/- ■ ' - 91

177 14 25 12 11 10 257

Male 51 6 13 5 10 9 6 100

Female 61 1 9 1 72

EXP 3 112 7 22 5 10 10 6 172

Total 342 28 64 25 36 28 23 546
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Table 2

Anomaloscope Classification

Code Diagnosis Rationale/Method

N

SP

EP

DP

SD

ED

DD

Normal

Simple Protan

Extreme Protan

Dichromat Protan

Simple Deutan

Extreme Deutan 

Dichromat Deutan

Midpoint of color matches between 33 and 48 with a range less than 16 units.

Midpoint of color matches greater than 40.5 with a range of 16 to 25 units or 

midpoint greater than 48 and range less than 16 units.

Color matching range of 25 to 72 units with a systematic decrease in matching 

brightness as color approaches red.

Color matching range of 73 units with a systematic decrease in matching 

brightness as color approaches red.

Midpoint of color matches less than 40.5 with a range of 15 to 25 units and little 

variation in matching brightness or midpoint less than 33 and range less than 16 

units.

Color matching range of 25 to 72 units and little variation in matching brightness. 

Color matching range of 73 units with little variation in matching brightness.

includes weak or deviant normal trichromat

§I
I
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I



Optimal Item Selection

Table 3

Descriptive Statistics for the Verbal and Computer Response Conditions as a 

Function of Anomaloscope Diagnosis

Diagnosis

Response

Condition N Minimum Maximum Mean SD

Normal Verbal 108 93.75 100 99.42 1.189

Computer 112 96.25 100 99.78 0.716

Simple Protan Verbal 7 93.75 100 93.75 2.28

Computer 7 97.50 100 97.50 1.25

Simple Deutan Verbal 21 87.50 100 98.87 2.76

Computer 22 98.75 100 99.89 0.37

Extreme Protan Verbal 5 53.75 98.75 82.00 19.79

Computer 5 67.50 97.50 84.50 15.17

Extreme Deutan Verbal 10 52.50 100 91.13 14.76

Computer 10 65.00 100 91.37 11.40

Dichromat Protan Verbal 10 61.25 88.75 78.25 9.63

Computer 10 63.75 92.50 79.75 10.39

Dichromat Deutan Verbal 6 53.75 90.0 79.37 14.18

Computer 6 40.00 95.00 74.79 20.11
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Table 4

Descriptive Statistics for the BILOG-3 Ability Estimates for the 

Computer Response Mode

Diagnosis N Minimum Maximum Mean SD

Normal 112 -0.879 0.514 0.415 0.305

Simple Protan 7 -0.907 0.514 -0.227 0.704

Simple Deutan 22 -0.461 0.514 0.442 0.239

Extreme Protan 5 -3.011 -0.907 -1.838 0.933

Extreme Deutan 10 -3.012 0.514 -0.887 1.234

Dichromat Protan 10 -2.985 -1.499 -2.235 0.523

Dichromat Deutan 6 -3.998 -1.186 -2.379 1.006

64



O)ai

Table 5
Crosstabulation of Errors on the 80-Item CWRT by Number of Errors on the Dvorine PIP
Reported by Degree of Deficiency______________________________________ ______

Total Errors on the Dvorine PIP
1 8 9 10 11 12 13 Total

Degree CWRT

'iS fc iiiü S iî
Simple 0

01
s.

I
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Table 6
Crosstabulation of Errors on the 50-Item CWRT by Number of Errors on the Dvorine PIP
Reported by Degree of Deficiency_____________________________________________

Total Errors on the Dvorine PIP
0 1 6 8 9 10 11 12 13 Total

Degree of CWRT 
Deficiency Errors

Simple

Extreime

0  

!  
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Table 7
Crosstabulation of Pass/Fail Performance on the 80-item Test and the Dvorine PIP
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Distribution
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Table 8

Crosstabulation of Pass/Fall Performance on the 50- Item CWRT and the Dvorine PIP
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Table 9

Crosstabulation of Pass/Fail Performance on the Original and 

Reduced Item Sets

Original Item Set

Pass Fail

Reduced Item Set Pass 136 3

Fail 0 33
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Table 10

Crosstabulation of Pass/Fall Decisions Using 2 sd Below the Mean for 

Normals with Ability Estimates and Percent Correct Scores Calculated from 

the Computer Response Mode of Experiment 3 (80-item Test)

Diagnosis

Normal 

Simple Protan 

Simple Deutan

Extreme Protan 

Extreme Deutan 

Dichromat Protan 

Dichromat Deutan

Total

»

il
IfQ. 0)aa 0. 
Q

Dependent Variable 

Ability Estimate

Pass Fail Total

Pass 98 2 100
Fail 6 6 12

Pass 3 1 4
Fail 3 3

Pass 20 1 21
Fail 1 1

Pass
Fail 5 5

Pass 3 1 4
Fail 6 6

Pass
Fail 10 10

Pass
Fail 6 6

Pass 124 5 129
Fail 7 36 43
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Table 11

Classical Test Theory Information'^

Item

Number

Mean percent 

Correct

Standard

Deviation

Pearson

Correlation

Alpha if 

Item 

Deleted

1 4 884 3215 652 .9104

2 9 959 1982 468 .9141

3 17 895 .3070 .791 .9051

4 19 .948 .2233 .610 .9103

5 15 988 1075 489 .9139

6 23 971 1685 569 .9116

7 26 971 .1685 583 .9113

8 37 983 1313 .367 .9152

9 40 924 .2651 .713 .9075

10 42 971 1685 612 .9108

11 47 .959 .1982 622 .9102

12 43 977 .1512 .522 .9127

13 45 965 .1840 694 .9089

14 46 .977 1512 .616 .9111

15 54 942 .2347 .604 .9105

16 62 971 .1685 .455 .9137

17 70 .971 .1685 .498 .9129

18 71 983 .1313 617 • 9116

19 80 878 .3283 .657 9104

20 84 .924 .2651 .512 .9134

'alpha = .9154, standardized item alpha = .9217
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Table 12

Conditional Rating Probabilities

Item Latent Class Manifest Category Conditional Probability

1 1 1 0.8144
1 2 0.1856
2 1 0.0319
2 2 0.9681

2 1 1 0.3364
1 2 0.6636
2 1 0.0038
2 2 0.9962

3 1 1 0.7361
1 2 0.2639
2 1 0.0205
2 2 0.9795

4 1 1 0.4407
1 2 0.5593
2 1 0.0059
2 2 0.9941

5 1 1 0.0577
1 2 0.9423
2 1 0.0005
2 2 0.9995

6 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

7 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

8 1 1 0.0000
1 2 1.0000
2 1 0.0000
2 2 1.0000
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Table 12 (continued). Conditional Rating Probabilities

Item Latent Class Manifest Category Conditional Probability

9 1 1 0.5838
1 2 0.4162
2 1 0.0104
2 2 0.9896

10 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

11 1 1 0.3364
1 2 0.6636
2 1 0.0038
2 2 0.9962

12 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

13 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

14 1 1 0.1715
1 2 0.8285
2 1 0.0016
2 2 0.9984

15 1 1 0.4407
1 2 0.5593
2 1 0.0059
2 2 0.9941

16 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978
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Table 12 (continued). Conditional Rating Probabilities

Item Latent Class Manifest Category Conditional Probability

17 1 1 0.2273
1 2 0.7727
2 1 0.0022
2 2 0.9978

18 1 1 0.1715
1 2 0.8285
2 1 0.0016
2 2 0.9984

19 1 1 0.8340
1 2 0.1660
2 1 0.0364
2 2 0.9636

20 1 1 0.6266
1 2 0.3734
2 1 0.0125
2 2 0.9875
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Table 13

Bilog-3 Rescaled Item Parameters for Computer Response Mode

Item Slope Threshold Asymptote

1 1.550 -1.595 0.157

2 0.814 -3.197 0.164

3 1.741 -1.791 0.112

4 1.088 -2.672 0.155

5 1.136 -3.900 0.163

6 1.350 -3.036 0.165

7 1.151 -3.170 0.158

8 1.029 -3.593 0.178

9 1.547 -2.039 0.170

10 1.156 -3.170 0.158

11 1.346 -2.748 0.165

12 1.064 -3.405 0.164

13 1.552 -2.872 0.152

14 1.334 -3.258 0.157

15 1.018 -2.603 0.159

16 0.866 -3.445 0.164

17 0.848 -3.493 0.161

18 1.264 -3.510 0.159

19 1.835 -1.474 0.160

20 1.840 -1.768 0.249
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Table 14

LLCA 2-Class Assignment as a Function of Normai/Deficient Anomaioscope 

Diagnosis

Anomaloscope Diagnosis

Class Normal Deficient Total

1 19 19

2 112 41 153

Total 112 60 172
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Table 15
LLCA 3-Class Assignment as a Function of Anomaloscope Diagnosis of 

Type of Color Vision Deficiency

Anomaloscope Diagnosis 

Class Protan Normal Deutan Total

II 1 1 1

2 10 112 31 153

3 12 6 18

Total 22 112 38 172
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Table 16
LLCA 4-Class Assignment as a Function of Anomaloscope Diagnosis of 

Degree of Color Vision Deficiency

Anomaloscope Degree Diagnosis 

^  Class Normal Simple Extreme Dichromat Total
S
E l  1 1
c
,S>

I
sm 
Ü
'T 4 1 1g
H Total 112 15 29 16 172

2 112 10 29 2 153

3 5 12 17
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Table 17
LLCA 2-Class Assignment for CWRT Pass/Fall Decision

CWRT Pass/Fail Decision 

Class Fail Pass Total

J5 g 1 19 19
9  I
2  .g> 2 18 135 153g J
d  ^  Total 37 135 172
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Table 18

LLCA Latent Trait Scores “ Resulting From Fitting a Two-Class Model

Latent Trait Score Observed Percent

-3.00000 9 5.2

-2.99990 3 1.7

-2.99160 3 1.7

-2.05540 1 .6

.00000 3 1.7

2.76800 7 4.1

2.99820 9 5.2

3.00000 137 79.7

N = 172 “mean = 2.39 SD = 1.76
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Table 19

LLCA Latent Trait Scores “ Resulting From Fitting a Three-Class Model

Latent Trait Score Observed Percent

-3.00000 1 .6

00000 3 1.7

.29920 1 .6

.30000 10 5.8

.30160 3 1.7

.45810 1 .6

2.64470 7 4.1

2.99620 9 5.2

3.00000 137 79.7

N = 172 “mean = 2.66 SD = .95

83



Optimal Item Selection

Table 20

LLCA Latent Trait Scores “ Resulting From Fitting a Four-Class Model

Latent Trait Score Observed Percent

-300000 1 .6

00000 3 1.7

30000 3 1.7

30020 2 1.2

30100 1 .6

30560 2 1.2

33010 3 1.7

.44430 3 1.7

.80030 1 .6

1.96680 7 4.1

2.93860 9 5.2

2.99790 137 79.7

N = 172 “mean = 2.64 SD = .94

84



00en

Table 21
CWRT Data and Results of Fitting a Two-Class Model

Response Pattern® Observed Expected Class P (class|response) Latent Trait Score

22222222222222222222 137 133.70 2 1.0000 3.0000

12112112121212222222 1 0.00 1 1.0000 -3.0000

12222222222222122222 1 0.03 2 0.9613 2.7680

12112222122222222211 1 0.03 1 1.0000 -3.0000

12122222122222222212 1 0.03 1 0.9986 -2.9916

22222222222222222212 2 5.05 2 0.9997 2.9982

21222222222222222222 1 0.51 2 0.9997 2.9982

12112222122121222211 1 0.00 1 1.0000 -3.0000

11222222122222112222 1 0.00 1 1.0000 -2.9999

21111221212211222212 1 0.00 1 0.0000 0.0000

12222222222222222222 2 4.41 2 0.9997 2.9982

12222222222222222212 2 0.17 2 0.9613 2.7680 o•Q
11111112111111111112 1 0.00 1 1.0000 -3.0000 1
12122221122222111211 1 0.00 1 0.0000 0.0000 1

22212222221222221211 1 0.00 1 1.0000 -2.9999 %»

1



Table 21 (continued). CWRT Data and Results of Fitting a Two-Class Model

00o>

Response Pattern  ̂ Observed Expected Class P (c!ass|response) Latent Trait Score

12122222122122222211 1 0.01 1 1.0000 -3.0000

12122111121212122222 1 0.00 1 0.0000 0.0000

11122122221212212211 1 0.00 1 1.0000 -3.0000

12122222222222122211 1 0.02 1 1.0000 -2.9999

22222222222222222211 2 0.07 0.9613 2.7680

21112122221222122212 1 0.00 1 1.0000 -3.0000

22122222122222222211 1 0.01 1 0.9986 -2.9916

12122222111122122111 1 0.00 1 1.0000 -3.0000

12112212112211121111 1 0.00 1 1.0000 -3.0000

12122222222222222222 1 0.10 2 0.9613 2.7680

22122212212222222212 1 0.00 1 0.9986 -2.9916

21222222222222212222 1 0.00 2 0.9613 2.7680

22212222222222222222 1 0.79 2 0.9997 2.9982

22222222222222122222 1 0.79 2 0.9997 2.9982

22222222222222221222 1 0.30 2 0.9997 2.9982

12222222122222222221 1 0.00 1 0.8426 -2.0554

22122222222222222222 1
dt A -  o _________

2.80 2 0.9997 2.9982

1
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Table 22

CWRT Data and Results of Fitting a Three-Class Model

Response Pattern® Observed Expected Class P (ciass|response) Latent Trait Score

22222222222222222222 137 131.89 2 1.0000 3.0000

12112112121212222222 1 0.00 3 1.0000 0.3000

12222222222222122222 1 0.03 2 0.8684 2.6447

12112222122222222211 1 0.05 3 1.0000 0.3000

12122222122222222212 1 0.06 3 0.9994 0.3016

22222222222222222212 2 4.84 2 0.9986 2.9962

21222222222222222222 1 0.48 2 0.9986 2.9962

12112222122121222211 1 0.00 3 1.0000 0.3000

11222222122222112222 1 0.00 3 1.0000 0.3000

21111221212211222212 1 0.00 3 0.0000 0.0000

12222222222222222222 2 4.24 2 0.9986 2.9962

12222222222222222212 2 0.18 2 0.8684 2.6447

11111112111111111112 1 0.01 1 1.0000 -3.0000

12122221122222111211 1 0.00 3 0.0000 0.0000

22212222221222221211 1 0.00 3 1.0000 0.3000

12122222122122222211 1 0.02 3 1.0000 0.3000

12122111121212122222 1 0.00 3 0.0000 0.0000

0•o
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Table 22 (continued). CWRT Data and Results of Fitting a Three-Class Model

Response Pattern® Observed Expected Class P  (classjresponse) Latent Trait Score

11122122221212212211 1 0.00 3 1.0000 0.3000

12122222222222122211 1 0.04 3 1.0000 0.3000

22222222222222222211 2 0.07 2 0.8684 2.6447

21112122221222122212 1 0.00 3 1.0000 0.3000

22122222122222222211 1 0.02 3 0.9994 0.3016

12122222111122122111 1 0.00 3 1.0000 0.3000

12112212112211121111 1 0.00 3 0.9998 0.2992

12122222222222222222 1 0.10 2 0.8684 2.6447

22122212212222222212 1 0.00 3 0.9994 0.3016

21222222222222212222 1 0.00 2 0.8684 2.6447

22212222222222222222 1 0.78 2 0.9986 2.9962

22222222222222122222 1 0.78 2 0.9986 2.9962

22222222222222221222 1 0.26 2 0.9986 2.9962

12222222122222222221 1 0.01 3 0.9415 0.4581

22122222222222222222 1 2.74 2 0.9986 2.9962

a - _1 = fail, 2 = pass

0
1
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Table 23

CWRT Data and Results of Fitting a Four-Class Model

Response Pattern® Observed Expected Class P (classjresponse) Latent Trait Score

22222222222222222222 137 135.40 2 0.9988 2.9979

12112112121212222222 1 0.00 3 0.9988 0.3002

12222222222222122222 1 0.03 2 0.4644 1.9668

12112222122222222211 1 0.05 3 0.9938 0.3056

12122222122222222212 1 0.06 3 0.8412 0.4443

22222222222222222212 2 3.93 2 0.9663 2.9386

21222222222222222222 1 0.37 2 0.9663 2.9386

12112222122121222211 1 0.00 3 0.9988 0.3002

11222222122222112222 1 0.00 3 0.9668 0.3301

21111221212211222212 1 0.00 3 0.0000 0.0000

12222222222222222222 2 3.41 2 0.9663 2.9386

12222222222222222212 2 0.20 2 0.4644 1.9668 Q

11111112111111111112 1 0.00 1 1.0000 -3.0000 1

12122221122222111211 1 0.00 3 0.0000 0.0000 i

22212222221222221211 1 0.00 3 0.9668 0.3301 w

12122222122122222211 1 0.02 3 0.9938 0.3056 1

12122111121212122222 1 0.00 3 0.0000 0.0000 °



Table 23 (continued). CWRT Data and Results of Fitting a Four-Class Model

CO
o

Response Pattern® Observed Expected Class P (classjresponse) Latent Trait Score

11122122221212212211 1 0.00 3 1.0000 0.3000

12122222222222122211 1 0.04 3 0.9668 0.3301

22222222222222222211 2 0.08 2 0.4644 1.9668

21112122221222122212 1 0.00 3 0.9989 0.3010

22122222122222222211 1 0.02 3 0.8412 0.4443

12122222111122122111 1 0.00 3 1.0000 0.3000

12112212112211121111 1 0.00 3 1.0000 0.3000

12122222222222222222 1 0.11 2 0.4644 1.9668

22122212212222222212 1 0.00 3 0.8412 0.4443

21222222222222212222 1 0.00 2 0.4644 1.9668

22212222222222222222 1 0.60 2 0.9663 2.9386

22222222222222122222 1 0.60 2 0.9663 2.9386

22222222222222221222 1 0.19 2 0.9663 2.9386

12222222122222222221 1 0.01 4 0.4996 0.8003

22122222222222222222 1 2.16 2 0.9663 2.9386

a <1 -1 = fail, 2 = pass

0  

!
1
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Table 24
Comparison of CTT, IRT, and LLCA Pass/Fail Decisions as a Function of Normal 
or Deficient Anomaloscope Diagnoses^

Anomaloscope Diagnosis 

Normal Deficient

Anomaloscope Diagnosis 

Normal Deficient

III
Ü CNJ

a  o
Pass 105 27

Fail 33

1 1

Q.
1UJ > CD

o (D
(U F

< m ouCOz
CM

Pass 107 30

Fall 30

K(172) = .528 K(172) = 504

Anomaloscope Diagnosis Anomaloscope Diagnosis

Normal Deficient Normal Deficient

“  S & Pass

Ifl
C O (0m Pa.<  CO 
O  CM

111

1

35

25

If
^  cSf
_i <

Class 2 1 1 2  

Class 1

41

19

—1

K(172) = .469 K(172) = .376

N = 172, 20-item test
‘’Crosstabulation was the same using latent trait scores from the 2-, 3-, and 4-class model
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Appendix B 

Figures

92



Item Response Function and Item Information
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Figure 3. Item Content Color-Coded by Target Color
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Figure 4. Selecting Items for Omission
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Box Plots of Ability Estimates by Diagnosis
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Figure 7. Boxplots of Ability Estimates by Diagnosis
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Box Plots of Percent Correct by Diagnosis
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Figure 8. Boxplots of Percent Correct by Diagnosis
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Figure 9. Ability Estimates for Computer and Verbal Response Modes as a Function 
of Type of Deficiency
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Figure 10. Ability Estimates for Computer and Verbal Response Modes as a Function 
of Degree of Deficiency
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Figure 11. Ability Estimates for Computer and Verbal Response Modes as a Function of 
Diagnosis
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Optimal Item Selection
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