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Abstract: Twitter data (tweets) has all the attributes of Big Data. Also, it has become the 

source of information where people post their real-time experiences and their opinions on 

various day-to-day issues. Therefore, twitter data mining is being used for knowledge 

extraction and prediction in various domains. As its popularity and size grow, the veracity 

of knowledge extracted becomes a concern. Veracity is one of the V’s of Big Data. The 

integrity of data, data authenticity, trusted origin, trustworthiness are some of the aspects 

that deal with Veracity. This thesis deals with the Veracity aspect of Big Data, in particular, 

veracity in Twitter data, from the truthful vantage point. In this research, we have compared 

existing Big Data Veracity models with a newly proposed measure. The proposed Veracity 

measure is entropy and it is compared with two other models, namely Objectivity, 

Truthfulness and Credibility model(OTC) and Diffusion, Geographic and Spam indices 

(DGS model) of Veracity. Our approach is to define topics on the set of tweets related to a 

domain and compute the veracity measures of the topics. The proposed model is based on 

the bag-of-words model for topic definition. Based on the values of the measures further 

inferences are achieved.

For our analysis, we selected three domains. The domains we chose are the flu, 

food poisoning, and politics. The topics for flu and food poisoning data are based on anchor 

words taken from CDC website. Anchor words of topics for Politics data are taken from 

“ontheissues.org” website. The entropy, OTC model, and DGS model are calculated for 

each topic. Our analysis shows no correlation between entropy, OTC model, and DGS 

model when compared as time series. Computed values of the models could position the 

topics in a veracity spectrum.
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CHAPTER I

INTRODUCTION

Micro-blogging sites like Twitter can be viewed as a social network or information network [1] [2]. 

Nowadays, Twitter is the most frequent platform for Big Data analysis [3]. It has become the source 

of information where people post their real-time experiences and their opinions on various day-to-

day issues which can be used to predict and analyze the data. In an International Data Corporation 

report, it was predicted that “from now until 2020 the data will double in every 2 years”, therefore 

resulting into Exabyte of data [4]. This leads to a challenge of security and trust of the data available 

on Social networking sites.

The integrity of data, data authenticity, trusted origin, trustworthiness are some of the 

aspects that deal with Veracity of data [5]. According to IBM Big Data & Analytics Hub [6], 27% 

of the respondents were not sure about the accuracy of the data and one in three decision-makers 

do not trust the information used for analyzing the data. Along with the above aspects, there are 

some characteristics of Big Data like Volume, Variety, and Dynamicity which constitutes for Big 

Data security issues [5]. With the increase in the size of data and the myriad variety of data, the 

data available for analysis should be trustworthy, not outdated or manipulated. The dynamicity [5] 

deals with the change in structure, data model and migration of datacenter, which brings into the 

picture the confidentiality and integrity of data. Moreover, the value of the data can be hidden in 

jargon or linguistic which may result in the information not recorded in writing or may mislead the 

recipient [7]. The velocity of the data can also deal with removing or altering the important 

information which may, in turn, affect the trustworthiness of data.
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Therefore, Veracity of Big data depends on many other characteristics of Big Data like Volume, 

Variety, Value and Velocity. 

Table 1 lists some V’s of Big Data and their definitions [8]  [9]

Table 1: Definition of V’s in Big Data

Sr. 

No

Characteristics of Big Data Description of Characteristic

1 Volume Scale of data [6].

2 Variety Different forms of data. (unstructured data constitutes 

of 80% of world data) [6]

3 Velocity Analysis of Streaming data [6].

4 Value Extracting business value from the data [9].

5 Veracity Uncertainty of data [6].

This thesis deals with the Veracity aspect of Big Data from the truthful vantage point. We are 

interested in estimating veracity from the data without relying on external information as it may 

not be feasible to collect and analyze external information. There is some research conducted in 

this area such as Objectivity, Truthfulness, and Credibility (OTC) model [10] and measures of 

Veracity [11]. In this thesis, we propose entropy as another measure of Veracity and develop a 

method to associate entropy to topics defined as a bag-of-words. The entropy measure is compared 

against the previously defined measures. There are two motivations for our approach. First, no 

measure available is 100% accurate in determining the truthfulness of data and so more measures 

are needed for validation. Second, entropy is used to measure the ambiguity in statements which 

may be interpreted as a measure of truthfulness in tweets. We apply the measures to topics built on 

Twitter data. 



3

The analysis is done on different kinds of datasets like the flu, food Poisoning, and Politics. 

These datasets were chosen for the following reasons.

Starting with flu dataset, there have been many flu pandemics throughout the history. The study 

of CDC has concluded that each year 200,000 people in the United States are hospitalized each 

year for respiratory and heart conditions illness associated with seasonal influenza virus infections 

(refer to Table 19, row 3). Moreover, CDC has estimated that from the 1976-1977 season to 2006-

2007 flu season, flu-associated deaths range from as low as about 3,000 to as high as about 49,000 

people (refer to Table 33, row 3). Therefore, the correctness of information related to flu in social 

media is a vital factor for society. Flu data is collected from Twitter using keywords collected from 

CDC (refer to Table 19, row 3 and row 4), Mayo Clinic (refer to Table 19, row 9), Flu.gov (refer 

to Table 19, row 6 and row 7) and WebMD (refer to Table 19, row 18, row 19 and row 20) links. 

Further, the data is classified based on flu topics and then statistics and evaluation are done based 

on the flu data.

Next, the analysis is done on food poisoning data as the study of CDC has estimated that every 

year roughly 48 million people get sick from a foodborne illness, 12800 are hospitalized and 3,000 

die from foodborne illness (refer to Table 19, row 23). Therefore, the precision of information 

related to food borne illness in social media is a vital factor for society. Food Poisoning data is 

collected from Twitter using keywords listed in CDC website (refer to Table 19, row 24). Similarly, 

like flu data, the data is classified based on food poisoning topics and then statistics and evaluation 

is done based on the food poisoning data.

Lastly, the analysis is done on Politics data based on US elections 2016 results related to US 

president Donald Trump. The data is collected from Twitter using common keywords like Donald 

Trump, immigration, Muslim, terrorism, Mexico. The analysis is done on politics topics and 

statistics and evaluation is done based on politics data
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CHAPTER II

LITERATURE REVIEW

2.1 RELATED WORK

The vastness and diversity in data have opened the new opportunities in Big Data but on the same 

hand, it has lead into questions in trust of various parts dealing with Big Data like collection and 

preparation of data, storage of data, data quality, nodes, Cloud Service Providers and information 

sharing [12]. Big Data is initially characterized by the 3V’s Volume, Variety, and Velocity. As it 

evolves, more V’s are added to this characterization; the other V’s are Veracity, Value, etc. Veracity 

deals with the reliability of data. Several factors contribute to the reliability of data. This thesis 

deals with the trust factor of the data. The research is based on different works proposed in the 

literature. In this chapter, we review the previously published research related to and contributing 

to our research. These works can be classified as topic modeling, sentiment computations, 

information theory, and veracity. Research related to each of the above works are summarized in 

the following subsections.

2.1.1 TOPIC MODELLING

Topic modeling refers to a generative model for analyzing large quantities of unlabeled 

data. A topic is a probability distribution over the collection of words and topic model is the 

statistical relationship between a group of observed and unknown random variables that specifies 

a probabilistic procedure to generate the topics [13]. One of the most popular topic modeling 

technique used is Latent Dirichlet Allocation (LDA) [13].
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Latent Dirichlet Allocation (LDA) is a generative probabilistic model which extracts the 

topic in the text, based on co-occurrence of words with the topic in the document [14] [13]. 

Following is the algorithm of LDA [14] [13]: 

For each document w in a corpus D:

1. Choose N ~ Poisson ().

2. Choose  ~ Dir (), where Dir (.) is a draw from a uniform Dirichlet distribution 

with scaling parameter.

3. For each of the N words wn:

a. Choose a topic zn ~ Multinomial ().

b. Choose a word wn from p (wn | zn,), a multinomial probability 

conditioned on the topic zn .

There are many other similar models and techniques related to topic models like Latent Semantic 

Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), Non-negative matrix 

factorization (NMF) and Correlated Topic Model (CTM). LSA is a statistical technique which deals 

with extracting and representing the relations between words in a large corpus. This technique of 

LSA helps in information retrieval from a large text [15]. PLSA which evolved from LSA is a 

probabilistic generative model which associates unobserved variables with each occurrence of a 

word in a document [16]. This co-occurrence of words in the document has applications in 

information retrieval and filtering, machine learning from text and natural language processing 

[17]. Next model, NMF a document clustering method, deals with finding the latent semantic 

structure for the document corpus and identify document clusters in the derived latent semantic 

space. In the latent semantic space, each axis represents the basic topic of a document cluster and 

each document is represented as a combination of the base topics [18]. One of the limitations in 

LDA topic modeling technique is addressed in Correlated Topic Model. LDA is unable to model 
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topic correlation between the generated topics from the model. CTM generates the topic graph 

where each node indicates the topic (containing the set of most probable keywords), the font of the 

node represents its popularity and lastly correlation with other nodes [19].

2.1.2 INFORMATION MEASURE

In this thesis, we adopt entropy as a measure for veracity. It is proposed by Claude Shannon 

known as Shannon’s mathematical theory of communication [20]. Shannon’s theory deals with 

information to be conveyed with three communication problems such as first, the accuracy of the 

information to be transmitted; second, how precisely the meaning is transferred and third, from all 

the information transferred how much is selected from the set of messages. The last aspect is 

basically the effectiveness of the information transmitted from the sender to the receiver. The 

information in this context basically deals with a message to be selected from the set of messages. 

From the set of messages, there should be a function to choose a message from the set.  This 

selection process can be done with the help of logarithmic function (base 2) [21]. The logarithmic 

function is used because if the set of messages increase from 2 choices to 8 choices, the logarithmic 

measure increases from 1 bit to 3 bits of information [20]. Moreover, from the set of possible events 

or messages, the probability of occurrence of each event is attached with the logarithmic function. 

Finally, the individual probability and logarithm of an event are then added to get the information 

measure as Entropy from the set of events or messages.

Shannon’s Entropy [20] is, therefore, the information required to describe an event or 

entity. Following is the Entropy equation: 

H =‒
n
∑

i = 1
pilog pi

Where the n= number of different outcomes. 
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The range of Entropy is 0 ≤ Entropy ≤ log (n) which is based on a number of outcomes. Maximum 

entropy (log n) occurs when all the probabilities have equal values that are 1/n. Minimum entropy 

(0) occurs when one of the probabilities is 1 and rest are 0’s [20].

2.1.3 BIG DATA VERACITY: SENTIMENT LIBRARY  

There are very few Veracity models available in the literature, one of which is the Big Data 

Veracity model: Objective, Truthful and Credible (OTC) [10]. It will be used to compute the 

Veracity measure and compared against the entropy model that we propose in this thesis. Details 

of the OTC model are given below.

2.1.3.1 Objectivity

OTC is a three-dimensional model proposed by Lukoianova. The first dimension of 

Veracity in OTC model is objectivity/subjectivity of the data. Objectivity basically deals with facts 

[22], truth, reality and reliability [23], [24]. Objectivity is the knowledge which is proven whereas 

subjectivity is the knowledge which is weakly supported or has the error possibility [23] [24]. There 

are linguistic tools like automatic essay scoring, automatic classification of the sentiment or opinion 

expressed in a text, which scores the sentiment or opinion classification expressed in the text [25]. 

Moreover, objectivity is just a version of the truth and therefore veracity also deals with next 

dimension that is truthfulness/deception [22] [10]. 

2.1.3.2 Truthfulness

The second dimension, truthfulness in the textual data can be determined by checking if 

there is any false belief or false conclusion in the text [26] [27], which can be verified with the help 

of deception test. If the test is passed, then it is the truthful text but if the test is failed then the user 

has to further look into alternatives and dig deeper for further fact verification [10]. Also, with the 

increasing volume of data, there are more chances of deceptive text communication [10]. Therefore, 

more the text is deceptive, it would lead to incorrect analysis and results. There are many deception 
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detection software which calculates the statistics used for classifying truthful or deceptive text 

(refer to Table 19, row 11) or identify fake product/service reviews on the websites (refer to Table 

19, row 11) [28] [29]. The advantages and disadvantages of the above-mentioned deception tools 

are evaluated in [30].

2.1.3.3 Credibility

The last dimension of the OTC model is the credibility of the data. Credibility deals with 

two qualities, trustworthiness and expertise. Trustworthiness deals with qualities such as truthful, 

well-intentioned or unbiased. Expertise deals with knowledgeable, reputable and competent 

qualities in the related field [31]. Trustworthiness of the content can be achieved by relying on 

character, ability, strength or truth of trusted content (refer to Table 19, row 10). The above 

mentioned two qualities of credibility can be achieved either through the vocabulary of trust or 

credible source [10]. The credibility of the text can be calculated using Mutual Information between 

words which consists of performing analysis on frequently occurring nouns and verbs with the trust 

and credibility [10] using online corpus COCA [32].

2.1.3.4 Calculating OTC model using Sentiment library

We have calculated Objectivity and Truthfulness using text processing library ‘Text Blob’ in 

Python (refer to Table 19, row 2). Text Blob (For installation & downloading (refer to Table 19, 

row 5 and row 8)) library is used to perform natural language processing tasks such as parts-of-

speech tagging, noun phrase extraction, sentiment analysis, classification, language translation, 

word tokenization and many more features (refer to Table 19, row 14). The sentiment property of 

Text Blob calculates the subjectivity and polarity of the given text (refer to Table 19, row 2). 

Subjectivity is the negative side of Objectivity in the OTC model. The calculated subjectivity is a 

floating point number in the range of [0.0, 1.0] where 0.0 means the text is very objective and 1.0 

means the text is very subjective (refer to Table 19, row 2). The polarity deals with positive, 

negative and neutral observed emotions in the text. These emotions can be used to differentiate 
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between truthful and deceptive text [33] [34] [35]. The evidence that the liars use more negative 

emotions than the truth-tellers [36] can be used as a measure to find the polarity in the text, which 

is the second dimension that is Truthfulness/Deception in OTC model. The polarity calculated in 

Text Blob library is a floating point number in the range of [-1.0, 1.0] where 1.0 represents very 

negative emotion, 1.0 represents very positive emotion and 0.0 represents neutral emotion (refer to 

Table 19, row 15). 

The Text Blob library depends on NLTK and Pattern libraries (refer to Table 19, row 16). 

NLTK library has corpus like WordNet which is used by the library and by default Text Blob uses 

Pattern Analyzer (refer to Table 19, row 2). Pattern Analyzer is a sentiment analyzer that uses 

Pattern Library (refer to Table 19, row 17). Pattern is a library in Python which performs data 

mining operations like natural language processing, machine learning, network analysis, and 

visualization. This pattern library is created by ‘Tom De Smelt and Walter Daelemans’ [37] (refer 

to Table 19, row 12) and Tom De Smelt has performed various case studies on python where he 

has given the detailed approach for Sentiment Analysis ( [38] Chpt 7, p. 133). The sentiment 

analysis consists of Lexicon of Dutch adjectives, used by Pattern Library, which consists of the list 

of adjectives and their polarity, subjectivity and intensity scores. This Dutch lexicon is then 

converted into English lexicon ( [38], Chpt 7) and each adjective is associated with properties such 

as wordnet_id, cornetto_synset_id, pos(parts of speech), sense(meaning of the word), polarity, 

subjectivity and intensity scores (refer to Table , row 13).

The Dutch Lexicon is created in three steps as manually annotating 1000 adjectives, 

performing one semi-supervised and another supervised machine learning method. Initial 

adjectives are taken from online Dutch book reviews and 7 human annotators have given polarity 

and subjectivity scores to the adjectives. Then scores are compared with ‘DUOMAN subjectivity 

Lexicon for Dutch’ [39], which uses Page Rank Algorithm [40] to annotate the adjectives. The 

second step is to expand the list of adjectives, which is done by taking the adjectives from Dutch 

Newspaper Corpus. The approach taken is similar to using a vector space with adjectives as labels 
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and nouns as feature vectors [41]. Then, for each adjective which is both in newspaper corpus and 

initial lexicon, the number of times the adjective precedes the nouns is counted which results is 

adjective vectors for each noun and nouns as feature vectors. Then for each adjective in the initial 

lexicon, K-NN using cosine similarity [42] is applied to retrieve 20 most similar nearest neighbors 

from the newspaper corpus. The scores of initial lexicon are inherited by the newly discovered 

adjectives which result in 3200 adjectives ( [38] Chpt 7, p. 135). The third step is to find the synsets 

from CORNETTO (Dutch WordNet) for each adjective found in the previous step. The synsets are 

the relations (synonym, antonym) between the words in CORNETTO. After retrieving new 

adjectives from CORNETTO, the scores of adjectives are again passed on to new adjectives 

resulting in 5400 adjectives ( [38] Chpt 7, p. 136).

Lastly, the Dutch adjective lexicon is converted into English lexicon using inter-language 

relations in CORNETTO, having reference to WordNet. More adjectives were taken from IMDB 

movie reviews and then added to English lexicon by a manual single annotator ( [38] Chpt 7, p. 

137) and then compared with Polarity Dataset 2.0 [43].

After computing Objectivity and Truthfulness, Credibility is computed using mutual 

information between 2 words. The mutual information deals with co-occurrence between 2 words. 

First, the words are tokenized using NLTK word tokenize function, then the number of words (n) 

is calculated in the text and the sample space taken is n*n. Next, the count of a number of times 

each of the 2 words are present in the text is computed. Let these count be n1 & n2. 

Mutual Information = 
probability of word1 & word2

probability of word1 ∗  probability of word2

Therefore, Mutual Information =   
n1 ∗  

2

n2 +  n2 ∗  
2

n2 

2n ‒ 1

n2

Finally, all three dimensions of the OTC model are combined into one Veracity index, by 

normalizing the dimensions in the range of (0, 1) interval with 1 being maximum objectivity, 

truthfulness, credibility and 0 being minimum objectivity, truthfulness, credibility [10]. This 
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composite index provides a way of assessing systematic variations in big data quality across 

datasets with textual information. The index could be helpful to identify those parts of the big 

dataset that are of lower quality for their subsequent exclusion if the quality of the entire dataset is 

to be improved [10].

2.1.4 BIG DATA VERACITY: QUANTATIVE MEAURES

Another big data veracity model in the literature is proposed in [11] which deals with evaluating 

the accuracy of data from the tweets. The objective of this model is to compute veracity measures 

as external resources may not be readily available for verification from the data. The model 

proposes three measures based on the spread of information in term of volume, geographic spread 

and repetition in the volume. It is based on the argument that information with high volume and 

inflation rate spreads widely and could be questionable. All the measures are defined with tweets 

as the source of data.

The three measures proposed are Topic Diffusion, Geographic Dispersion and Spam Index [11]. 

The first measure, Diffusion Index deals with how fast the information has spread through Twitter. 

It deals with the concept that fast information has spread faster than the truth. [44].

Diffusion Index = 
 Unique Users

Total tweets

The second measure, Geographic Spread Index is used to measure the extent to which the 

information is spread geographically. 

Geographic Spread Index = 
 Unique Location

Total tweets

And the last measure is the Spam Index, which deals with the impact of repeated tweets by the 

same user. Repeated tweets can be viewed as inflating the diffusion. The measure is similar to 

spamming which propagates questionable information [11].
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Spam Index = 
over unique users

1
unique user tweet count

Total tweets

For convenience, we call this the DGS model. This model is based on the set of tweets and 

selected content of tweets.

2.1.5 OTHER WAYS OF COMPUTING BIG DATA VERACITY 

There are various other ways of improving data veracity like performing masking on the 

data prior to inserting the data in database and ensuring that only authorized users can unmask the 

data [45]; in smart electric grids having geographically dispersed sensors for real-time modelling 

and decision making can be done from only small subset of influential sensors and making 

predictions for all sensors [46]; Veracity(trustworthiness) of web event is measured based on 

uncertainty of attributes, uncertainty of webpage and website confidence [47]. One of the ways of 

improving Veracity is described in “Learning from Uncertainty for Big Data” [48] which deals 

with various definitions of uncertainty like Shannon entropy, Classification entropy, Fuzziness and 

Nonspecificity (Ambiguity).

There are papers [49] relating to junk data in data collection that are not reviewed for this 

research. Our focus is on the validity and truthfulness than the error in data collection.
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2.2 PROBLEM STATEMENT

As outlined in previous sections, Veracity is an important aspect of Big Data and especially twitter 

data. This thesis proposes entropy as a measure of Veracity and compare its reliability against the 

previously published measures. Our approach to analyzing veracity of Twitter data is to define 

topics on the tweets and apply veracity measures to the topics. We conjecture that determining the 

veracity in absolute terms will be difficult to accomplish based on tweets only. So, we propose that 

veracity be considered as a spectrum. Models are viewed as locators of topics within the spectrum. 
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CHAPTER III

METHODOLOGY

3.1 TOOLS USED

This section includes the tools used for data collection

3.1.1 APACHE HADOOP

Apache Hadoop (Table 19, row 1) is an open-source software for reliable, scalable and distributed 

computing. The software library is a framework that allows for distributed processing of large 

volume of data across clusters of computers using simple programming models. Hadoop is 

designed to expand from single machines to thousands of machines and each machine offering 

local computation and storage. The Hadoop project includes Hadoop Common, Hadoop Distributed 

File System (HDFS), Hadoop YARN and Hadoop MapReduce. Hadoop Common are the set of 

utilities which support other Hadoop modules. HDFS (Table 19, row 21) is the distributed file 

system which is fault tolerant and is deployed on low-cost hardware. It is suitable for applications 

having large data sets and provides high-throughput access to data. Some of the goals of HDFs are 

fault detection, quick and automatic recovery, batch processing, coherent and portable across 

heterogeneous platforms.

3.1.2 APACHE FLUME

Apache Flume (Table 19, row 22) is a robust and fault tolerant distributed service used for 

collecting, aggregating and moving large amounts of data. It has a simple and flexible architecture 

based on data streaming flows (refer to Figure 1). 
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Following is the Twitter Data Streaming Process: To start the streaming, Flume uses its integral 

components such as agent, source, channel, sink, and event.

1. Source connects to the source of data (Twitter) and sends the data to the sink through the 

channel.

2. Channel acts as a bridge between Source and Sink.

3. The data from the final stage that is sink is transferred to HDFS.

4. An event is the basic unit of data that is transferred using flume. 

5. An agent is a container for data flow.

Figure 1: Flume Agent

3.2 DATA COLLECTION

Three different types of data are collected. First, we have collected 216 GB of Flu Data. The data 

collection period is 06/1/2015-11/30/2015. The tweets are collected using set of keywords like 

Fever, Feverish chills, chills, Cough, Sore Throat, Runny Nose, Stuffy Nose, Body Ache, Muscle 

Ache, Headache, Fatigue, Tiredness, Tired, Vomiting, Diarrhea, Joint Aches, pain around eyes, 

watery eyes, flushed skin, exhaustion, sneezing, dizziness, runny nose, stuffy nose, cough, diarrhea, 

headache. 

Second, we have collected 18 GB of Food Poisoning Data. The data collection period is 

11/1/2016-01/15/2017. The tweets are collected using set of keywords like diarrhea, fever, 
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abdominal pain, abdominal cramps, vomiting, bloody diarrhea, muscle ache, nausea, headache, stiff 

neck, confusion, convulsion, chills, watery diarrhea, stomach cramps, weight loss, slight fever, 

greasy stools, gas and bloating, double vision, blurred vision, drooping eyelids, slurred speech, 

difficulty swallowing, dry mouth, muscle weakness, jaundice, dark-colored urine, light-color stool

Third, we have collected 200 GB of Politics data. The data collection period is 2/17/2017 – 

3/17/2017. The tweets are collected using the set of keywords like trump, Donald, immigration, 

Muslim, terrorism, Mexico.

Apache Flume is used to retrieve data from tweet stream. For streaming the data, we have 

created flume agent and twitter application. The twitter application contains the set of keywords 

related to the flu. From the application, API keys are used for streaming the data in Hadoop cluster. 

For flume agent, the configuration file is created which contains tokens of the twitter application. 

The data obtained from twitter is in JSON format.

3.3 DATA PREPROCESSING

From the JSON format file, tweet text, created date, geolocation and user fields are retrieved for 

further processing. The tweets text is then cleaned by removing the URL’s, user mentions, internet 

slang words, emoticons and stop words.

3.4 EVALUATION MEASURE

The Veracity of Big Data deals with the uncertainty of data. In this research, we use Twitter 

data as a case study tool. This research proposes Entropy as a measure to evaluate the veracity 

topics using contributing tweets. Shannon’s Entropy can be used to measure the ambiguity in the 

information contained in a text. We interpret this ambiguity as for the measure of veracity implicit 

in the tweets.

The Entropy is calculated based on Shannon’s Entropy formula: 

H =‒
n
∑

i = 1
pilog pi
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The results of Entropy measure are then compared with two other models from the literature. The 

models used for comparison are the OTC Model and Diffusion, Geographic and Spam Index (DGS) 

model.
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CHAPTER IV

FINDINGS

4.1 TOPIC EXTRACTION

This section deals with presenting the result of analysis from Shannon’s Entropy, OTC 

Model, and DGS model by applying to several topics. A topic is defined by a set of keywords (or 

anchor words) and a document may consist of several topics. Topic Extraction deals with extracting 

information from documents. Topic modeling is a popular method to identify topics. Topic 

modeling refers to a generative model for analyzing large quantities of unlabeled data. LDA is a 

popular technique of topic modeling. LDA is a generative probabilistic model which groups similar 

keywords under a topic based on co-occurrence of words with the topic in the document. 

Another way of Topic Extraction can be getting the topics by manual extraction of keywords 

belonging to them. In this research, we have chosen the manual method of extracting topics from 

the CDC Website for Flu and Food Poisoning data. The topics for Politics data are extracted from 

the “on the issues” website for Donald Trump. We found the topic modeling approach inefficient 

and inaccurate to our research. The Big Data Veracity measures are then evaluated for a topic based 

on tweets containing the set of keywords in a topic.  One reason for us to adopt the topic extraction 

approach is the computationally expensive nature of LDA as shown in the next section.

4.1.1 LDA Topics & Performance

In this section, we analyze the performance of the LDA algorithm. The LDA algorithm is 

implemented by using the parameters document term matrix of the text, a number of topics and 

Gibbs sampling for computing posterior distribution of words assigned to a particular topic. We 

have executed the LDA algorithm on different sizes of data and computed the CPU time on all the 
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sizes. The software used for executing the LDA algorithm is R and the results were executed on 

CSX server. The data sizes are from 8 bytes to 3.5 GB of data. A multi-line graph is plotted to 

depict the LDA performance by taking logarithm of data size versus CPU time. Table 2 describes 

the data sizes and corresponding CPU times for running the algorithm. The multi-line graphs in 

Figure 2 compare user and system CPU times. User CPU time deals with actions performed on 

program and system CPU time deals with the time spent in performing system calls for the kernel.
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Table 2: Data Size & CPU Time 

Data Size CPU Time (user, 
system) in secs

Data Size CPU Time (user, 
system) in secs

23 = 8 Bytes 0.027,0.000 218 = 256 KB 6.275, 0.002

24 = 16 Bytes 0.027,0.000 219 = 512 KB 12.704, 0.005

25 = 32 Bytes 0.029,0.002 220 = 1 MB 25.125, 0.009

26 = 64 Bytes 0.031,0.001 221 = 2 MB 50.672, 0.046

27 = 128 Bytes 0.033,0.000 222 = 4 MB 103.812, 0.076

28 = 256 Bytes 0.037,0.001 223 = 8 MB 223.625, 0.224

29 = 512 Bytes 0.047,0.001 224 = 16MB 271.766, 0.324

210 = 1 KB 0.064,0.002 225 = 32MB 554.492, 0.413

211 = 2 KB 0.102,0.001 226 = 64MB 1638.428, 1.52

212 = 4 KB 0.081,0.000 227 = 128MB 3028.683, 3.963

213 = 8 KB 0.265,0.000 228 = 256MB 24142.294, 25.555

214 = 16 KB 0.488, 0.000 229 = 512MB 27925.940, 75.511

215 = 32 KB 0.971, 0.000 230 = 1GB 68304.798, 367.11

216 = 64 KB 1.737, 0.000 231 = 2GB 272082.48, 1134.22

217 = 128 KB 3.363, 0.001 232 = 4GB = 3.5GB 1009656.762, 
10422.903
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Fig 2: Line Plot of Data v/s CPU time

Based on the results, the following conclusion can be derived:

• User CPU Time is much higher than System CPU Time.

• Minimum Value for User CPU Time is much more than System CPU Time

• The System CPU Time is constant for values between 12 to 16 log (Data Size) and then 

increases as Data Size increases.
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4.1.2 TOPIC EXTRACTION BY MANUAL METHOD

There are two motivations for using the topic extraction method, one is the expensive nature of 

topic modeling algorithm (LDA) which is described in the previous section and the second reason 

is to divide the set of keywords based on the different context of the data which is not done in LDA. 

For example, various contexts of flu data are symptoms, side-effects and treatments and the 

keywords related to the context are grouped in one topic. These topics are retrieved from the CDC 

website. 

1. Topic 1: Fever, chills, Feverish chills, Sneezing, Body Ache, Muscle Ache, Weakness, 

Stuffy Nose, Diarrhea, Vomiting, Cough, Sore Throat, Flushed skin, Runny Nose, Nasal 

Congestion, Tired, Tiredness, fatigue, Headache (Flu symptoms) 

2. Topic 2: Nausea, Vomiting, Delirium, Headache, Muscle Ache, Itching, Runny Nose, 

Nasal Congestion, Fever, Soreness, Redness, Swelling, cough, aches, fatigue, hoarseness, 

Diarrhea, sinusitis, Dizziness, bronchitis (Flu Side-effects) 

3. Topic 3: Rest, medicine (treatments)

The second dataset used in our experiments is food poisoning. Various contexts of food poisoning 

data are symptoms of bacterial foodborne germs, symptoms of viral foodborne germs and 

symptoms of parasitic foodborne germs. The keywords related to various contexts are also taken 

from the CDC Website:

1. Topic 1: Symptoms of Bacterial Foodborne germs - double vision, blurred vision, drooping 

eyelids, slurred speech, difficulty swallowing, dry mouth, muscle weakness, Fever, chills, 

Headache, Nausea, Vomiting, Body aches, cough, dizziness, tiredness, sweats, Hoarseness, 

Fainting, Swelling of abdomen, flushing, Fainting, sore throat, malaise, anorexia, Fatigue, 

pain in muscles, joint, and/or back, depression, low blood pressure, thirst, muscle cramps, 

restlessness, rapid heart rate, loss of skin elasticity, dry mucous membranes, abdominal 
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cramps, diarrhea, weakness, anemia, Rash, Red eyes, Jaundice, loss of balance, stiff neck, 

confusion, Tenesmus.

2. Topic 2: Symptoms of Viral Foodborne germs – diarrhea, throwing up, Nausea, stomach 

pain, fever, headache, body aches, dry mouth and throat, feeling dizzy, sleepy or fussy, cry, 

Fatigue, Abdominal pain, Dark urine, Jaundice, vomiting, Loss of appetite, Clay-colored 

bowel movements, Clay-colored stool 

3. Topic 3: Symptoms of Parasitic Foodborne germs -  stomach pain, stomach cramping, 

bloody stools, fever, abdominal pain, nausea, vomiting, abdominal distention, diarrhea, 

blood and mucus in stool, abdominal discomfort, Weight loss, Dehydration, Stomach 

cramps or pain, Watery diarrhea, bloating, loss of appetite, Gas, Greasy stools, reduced 

vision, blurred vision, pain (often with bright light), redness of the eye, muscle pains, itchy 

skin, constipation,  heart and breathing problems, swelling of the face and eyes, cough, 

chills.

The third dataset used in our experiments is data from the political domain. Various topics/concepts 

of interest in the politics domain are social, economic, domestic and international issues. We 

extracted keywords and phrases related to these topics from the website “ontheissues.org”.

1. Topic 1: Social Issues – abortion, civil rights, education, families & children, welfare & 

poverty, principal & values.

2. Topic 2: Economic Issues – budget & economy, corporation, government reform, tax 

reform, social security, jobs.

3. Topic 3: Domestic Issues – crime, drugs, gun control, health care, technology, 

environment.

4. Topic 4: International Issues: foreign policy, homeland security, war & peace, free trade, 

immigration, trade & oil.

In the subsections that follow, we provide the results of the three veracity measures OTC model, 

Entropy model, and DGS model applied to the above-mentioned domains. In each domain, topic 
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related data from among the tweets are retrieved. Based on this data, the three measures are 

computed for every topic in the domains. The topics are ranked based on the scores and then ranking 

of topics for entropy measure is compared with the ranking of topics for the OTC model and with 

the DGS model.

4.2 BIG DATA VERACITY: ENTROPY

In this section, we present the results of evaluation of the Entropy measure applied to the flu, food 

poisoning and politics data. As mentioned previously, the Entropy measure is defined using 

Shannon’s Entropy formula: 

H =‒
n
∑

i = 1
pilog pi

where pi represents the probability associated the ith keyword defining the topic. In our computation, 

keyword probabilities are computed by the formula  where N is the total number of words 𝑝𝑖 =  
𝑛𝑖

𝑁

obtained from related tweets after excluding stop words and other insignificant words and ni is the 

number of occurrences of the ith keyword.

Tables 3 shows the computed Entropy scores for the flu topics (refer to section 4.1.2), Food 

poisoning topics (refer to section 4.1.2) and the Politics Data topics (refer to section 4.1.2) 

respectively. Figures 3, 4 and 5 show their respective histograms.

We proposed the Entropy Model as a measure of veracity. If the score is high, then there will be a 

higher degree of ambiguity which shows less certainty and less veracity. If the Entropy score is 

lower, it will show a high degree of certainty and thus higher degree of veracity. Based on this we 

can estimate the degree and ordering of the veracities of the topics.
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Table 3: Entropy Score

Topics Flu Data Entropy 

Score

Food Poisoning Data 

Entropy Score

Politics Data 

Entropy Score

Topic 1 0.4165 0.4041 0.3512

Topic 2 0.4126 0.4098 0.3266

Topic 3 0.3606 0.4089 0.3403

Topic 4 ----- ------ 0.3456
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Figure 3: Histogram of flu data entropy score, Figure 4: Histogram of food poisoning 

data entropy score and Figure 5: Histogram of politics data entropy score
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4.3 BIG DATA VERACITY: OTC MODEL

In this section, we present the results of evaluation of the OTC model applied to the flu, food 

poisoning and politics data. As mentioned previously, the objectivity and truthfulness measure of 

the OTC model is computed by the TextBlob library and credibility of the model is defined using 

mutual information between two words and it is defined by the following formula (refer to section 

2.1.3): 

Mutual Information = 
probability of word1 & word2

probability of word1 ∗  probability of word2

Table 4 shows the individual objectivity, truthfulness and credibility scores for flu data. The range 

of objectivity and credibility score in the OTC model is [0,1]. The range of truthfulness score in 

the OTC model is [-1.0, 1.0]. After computing the truthfulness of the model, the score is normalized 

in the range of [0, 1] (refer to Table 5) and then the average of all the 3 scores is computed (refer 

to Table 6). If the OTC score is high, then there will be a higher degree of certainty and a higher 

degree of veracity. If the OTC score is lower, it will show a higher degree of uncertainty and thus 

lower degree of veracity. Based on this we can estimate the degree and ordering of the veracities 

of the topics.

Tables 6 show the computed OTC model scores for the flu topics (refer to  section 4.1.2), Food 

poisoning topics (refer to section 4.1.2) and the Politics Data topics (refer to section 4.1.2) 

respectively. Figures 6, 7 and 8 show their respective histograms.

Table 4: Flu data OTC Score

Topics Objectivity Score Truthfulness Score Credibility Score

Topic 1 0.5317 -0.1747 0.1198

Topic 2 0.7170 -0.0027 0.1072

Topic 3 0.6405 0.1242 0.1328
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Table 5: Flu Data Normalized Truthfulness Score

Topics Flu Data Normalized 

Truthfulness Score

Topic 1 0.4126

Topic 2 0.4986

Topic 3 0.5621

Table 6: Average OTC Score

Topics Flu Data OTC 

Score

Food Poisoning Data 

OTC Score

Politics Data OTC 

Score

Topic 1 0.3547 0.4317 0.4429

Topic 2 0.4407 0.4270 0.4480

Topic 3 0.4473 0.4411 0.4332

Topic 4 ----- ------ 0.4443
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Figure 6: Histogram of flu data OTC score, Figure 7: Histogram of food poisoning data 

OTC score and Figure 8: Histogram of politics data OTC score

4.4 BIG DATA VERACITY: DGS MODEL

In this section, we present the results of evaluation of the quantitative measures: Diffusion, 

Geographic, Spam Indices (DGS) applied to the flu, food poisoning and politics data. As mentioned 

previously, the DGS model is defined by the following formulae (refer to section 2.1.4): 

Diffusion Index =  ,
 Unique Users

Total tweets

Geographic Spread Index =  and
 Unique Location

Total tweets

Spam Index = 
over unique users

1
unique user tweet count

Total tweets

Tables 7, 9, and 11 show the computed DGS model scores for the flu topics (refer to section 4.1.2), 

Food poisoning topics (refer to section 4.1.2) and the Politics Data topics (refer to section 4.1.2) 
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respectively. Figures 9, 10, and 11 show their 3D plots. 

From Figure 9, 10 and 11, we have found out the distance of each point from (1, 1, 1). If the distance 

from (1, 1, 1) is less, then there will be a higher degree of certainty and a higher degree of veracity. 

If the distance from (1, 1, 1) is higher, it will show a higher degree of uncertainty and thus lower 

degree of veracity. Based on this we can estimate the degree and ordering of the veracities of the 

topics. Tables 8, 10 and 12 show the computed distances of each point from (1, 1, 1) in 3D plots.

Table 7: Flu data DGS model
Topic Diffusion Index Geographic Index Spam Index

1 0.32345 0.07823 1.0063e-13

2 0.08028 0.02046 2.8402e-13

3 0.19226 0.05098 1.1633e-13

Figure 9: 3D plot of flu data DGS model
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Table 8: Flu data DGS model distances 
Topic Distance of each Topic from point (1,1,1)

Topic 1 1.62

Topic 2 1.72

Topic 3 1.69

Table 9: Food Poisoning Data DGS model

Topic Diffusion Index Geographic Index Spam Index

1 0.3536 0.01 1.79e-10

2 0.2272 0.0067 1.69e-11

3 0.4659 0.013 5.85e-11

Figure 10: 3D plot of Food Poisoning data DGS model
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Table 10: Food Poisoning data DGS model distances 

Topic Distance of each Topic from point (1,1,1)

Topic 1 1.61

Topic 2 1.68

Topic 3 1.51

Table 11: Politics Data DGS model

Topic Diffusion Index Geographic Index Spam Index

1 0.1348 0.0237 8.31e-12

2 0.007021 0.0006385 1.75e-09

3 0.1348 0.0237 8.17e-12

4 0.1348 0.0237 8.80e-12

Figure 11: 3D plot of Politics data DGS model
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Table 12: Politics data DGS model distances 
Topic Distance of each Topic from point (1,1,1)

Topic 1 1.7133

Topic 2 1.732

Topic 3 1.7133

Topic 4 1.7133

4.5 VERACITY MEASURES COMPARISON BASED ON TOPIC RANKING

Based on analysis done on Veracity measures in previous sections, following is the topic analysis 

for all 3 datasets using topic rankings for comparison. The model values are computed based on 

the set of all tweets during the analysis period. All the ranking of topics for the flu, food poisoning, 

and politics data is done in increasing order of the model values.

Flu data results:

The ranking of the topics is Topic 1, Topic 2 and Topic 3 for Entropy measure and also for the 

OTC model (refer to section 4.2, Table 3, Figure 3 and Table 6, Figure 6). While, the ranking of 

topics is Topic 2, Topic 3 and Topic 1 for DGS model (refer to section 4.4, Table 8). This shows 

that OTC model and Entropy measure almost match. At the same time, they differ in ranking from 

the DGS model. 

Food Poisoning data results:

For the OTC model, the ranking of topics is Topic 2, Topic 1 and Topic 3 (refer to Section 4.3, 

Table 6, and Figure 7). The ranking in case of Entropy measure is Topic 3, Topic 2 and Topic 1 

(refer to section 4.2, Table 4, Figure 4). The ranking of topics for DGS model is Topic 3, Topic 1 

and Topic 2 (refer to section 4.4, Table 10). The results show that the three models do not agree on 



33

the ranking of topics. 

Politics data results:

The ranking of topics for OTC model is Topic 3, Topic 1, Topic 4 and Topic 2 (refer to section 4.3, 

Table 6, Figure 8). The ranking in case of Entropy measure is Topic 1, Topic 4, Topic 3 and Topic 

2 (refer to section 4.2. Table 4, Figure 5). While the ranking of topics for the DGS model is Topic 

2, and with other topics, Topic 1, Topic 3 and Topic 4 having the same ranking (refer to section 

4.4, Table 12). The results show that the three models do not agree on the ranking of topics. The 

conclusion is that the three models reflect different properties of the tweets and so cannot be used 

as corroborating evidence for the pair of models. 

The different models do not agree on the ordering of the topics in all the data domains considered. 

However, their relative values seem to agree on the level of veracity inherent in the data and the 

placement in the veracity spectrum. To gain further insight, we also conduct a different analysis by 

representing data as time series.

The next section deals with Time Series analysis of veracity measures done on the three datasets.

4.6 TIME SERIES ANALYSIS OF VERACITY MEASURES

Time Series analysis is performed in order to study different statistics and trends of data for 

different models and their correlation for each topic. The process deals with calculating the scores 

of Entropy, OTC model and DGS model for each day and plotting the graph of each topic for all 

three models.

4.6.1 FOOD POISONING DATA: TIME SERIES ANALYSIS

Figures 12, 13 and 14 are the time series graph of Food Poisoning Data for Topic 1, Topic 2 and 

Topic 3 respectively (refer to section 4.1.2).

The relationship between the models is calculated by performing analysis of variance (ANOVA) 

and by calculating the correlation coefficient. ANOVA deals with performing statistical hypothesis 
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testing on sample data and testing the results from the null hypothesis. The test results are 

statistically significant if it is unlikely to have occurred by chance, that is, if the probability (p-

value) is less than the significance level and the F-value is greater than F-critical then it leads to 

rejection of the null hypothesis. The null hypothesis considered in this case, means all three models 

(groups) are the same. Then the alternate hypothesis would be at least one of the mean is different 

from the mean of another model. The significance level considered is 0.05.

Table 13: Food Poisoning topics p-value and F value 

Topic Id p-value F value

Topic 1 1.1E-148 5691.78

Topic 2 6.9E-144 5261.38

Topic 3 2.9E-149 5792.25

In Table 13, all the p-values are less than 0.05 (significance level) and F-values are greater than 

3.05 (F-critical) and so we reject the null hypothesis. So, there is a possibility that at least one of 

the mean of a particular model is different from the means of other models.

To find the difference between the 3 models, the correlation coefficient is calculated for each topic. 

Table 14 represent the correlation coefficient scores and the relationship between the models for 

Topic 1, Topic 2 and Topic 3 respectively for food poisoning data.

If the correlation coefficient (r) lies between ±0.5 and ± 1, then it is said to be a strong correlation, 

if the r value lies between ±0.3 and ±0.49, then it is said to be a medium correlation and if the r 

value lies below ±0.29, then it is a weak correlation. There is no correlation if the value is zero.
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Figure 12: Time series graph of Topic 1 Food Poisoning data

Figure 13: Time series graph of Topic 2 Food Poisoning data
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Figure 14: Time series graph of Topic 3 Food Poisoning data

Table 14: Food Poisoning Data Correlation coefficient for topics

Topic Pairing of 2 models Correlation 
coefficient (r)

Relationship

1 OTC and DGS 0.002 Weak positive correlation

2 OTC and DGS -0.057 Weak negative correlation

3 OTC and DGS -0.146 Weak negative correlation

1 Entropy and DGS 0.103 Weak positive correlation

2 Entropy and DGS 0.057 Weak positive correlation

3 Entropy and DGS -0.122 Weak negative correlation

1 Entropy and OTC -0.5675154 Strong negative correlation

2 Entropy and OTC -1 Strong negative correlation

3 Entropy and OTC -0.49361 Strong negative correlation

4.6.2 POLITICS DATA: TIME SERIES ANALYSIS

Figure 15, 16, 17 and 18 are the time series graph of Politics Data for Topic 1, Topic 2, Topic 3 

and Topic 4 respectively. (refer to section 4.1.2). 

The difference in the models is computed through ANOVA and through finding the correlation 
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coefficient similar to section 4.6.1

Table 15: Politics topics p-value and F value 

Topic Id p-value F value

Topic 1 2.117E-36 1709.08

Topic 2 2.99E-09 35.55

Topic 3 2.19E-30 353.23

Topic 4 4.59E-31 442.23

In Table 15, all the p-values are less than 0.05(significance level) and F-values are greater than 

3.25(F-critical) and so we reject the null hypothesis. So, there is a possibility that at least one of the 

mean of a particular model is different from the means of other models.

Table 16 represent the correlation coefficient scores and the relationship between the models for 

Topic 1, Topic 2, Topic 3 and Topic 4 respectively for politics data.

Figure 15: Time series graph of Topic 1 Politics data
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Figure 16: Time series graph of Topic 2 Politics data

Figure 17: Time series graph of Topic 3 Politics data
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Figure 18: Time series graph of Topic 4 Politics data

Table 16: Politics Data Correlation coefficient for topics

Topic Pairing of 2 models Correlation 
coefficient (r)

Relationship

1 OTC and DGS 0.545 Strong positive correlation

2 OTC and DGS -0.224 Weak negative correlation

3 OTC and DGS -0.11 Weak negative correlation

4 OTC and DGS -0.097 Weak negative correlation

1 Entropy and DGS -0.445 Weak negative correlation

2 Entropy and DGS 0.198 Weak positive correlation

3 Entropy and DGS -0.57 Weak negative correlation

4 Entropy and DGS 0.097 Weak positive correlation

1 Entropy and OTC -0.1308 Weak negative correlation

2 Entropy and OTC -0.109 Weak negative correlation

3 Entropy and OTC 0.037 Weak positive correlation

4 Entropy and OTC 0.116 Weak positive correlation

4.6.3 FLU DATA: TIME SERIES ANALYSIS
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Figure 19, 20 and 21 are the time series graph of Flu Data for Topic 1, Topic 2 and Topic 3 

respectively. (refer to section 4.1.2). 

The difference in the models is computed through ANOVA and through finding the correlation 

coefficient similar to section 4.6.1

Table 17: Flu topics p-value and F value 

Topic Id p-value F value

Topic 1 7.8E-114 805.61

Topic 2 3.9E-171 2467.50

Topic 3 7.9E-207 4582.13

In Table 17, all the p-values are less than 0.05(significance level) and F-values are greater than 

3.03(F-critical) and so we reject the null hypothesis. So, there is a possibility that at least one of the 

mean of a particular model is different from the means of other models.

Table 18 represent the correlation coefficient scores and the relationship between the models for 

Topic 1, Topic 2 and Topic 3 respectively for politics data.
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Figure 19: Time series graph of Topic 1 Flu data

Figure 20: Time series graph of Topic 2 Flu data

Figure 21: Time series graph of Topic 3 Flu data

Table 18: Flu Data Correlation coefficient for topics

Topic Pairing of 2 models Correlation 
coefficient (r)

Relationship

1 OTC and DGS 0.157 Weak positive correlation

2 OTC and DGS NA no correlation
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3 OTC and DGS NA no correlation

1 Entropy and DGS -0.125 Weak negative correlation

2 Entropy and DGS NA no correlation

3 Entropy and DGS NA no correlation

1 Entropy and OTC -0.211 Weak negative correlation

2 Entropy and OTC -0.175 Weak negative correlation

3 Entropy and OTC 0.136 Weak positive correlation

4.7 INFERENCE

Flu data results:

Flu data results through topic ranking show that OTC model and Entropy measure almost match 

with the difference in ranking of Topics for DGS model.

From Section 4.6, Figures 16, 17 and 18 show the daily variations of the three measures in 

one graph for each topic of the flu dataset. Table 18 shows the correlations and the implied 

relationships. While the daily graphs demonstrate the agreement of the models on some days, the 

correlations show more disagreement than agreement. The intermodal comparisons do not provide 

any corroborating information. Repeating the time series analysis for all the other topics in the 

politics dataset reveals the same outcomes.

Moreover, according to CDC Data statistics for June 2015 - November 2015 there was 

206661 Influenza-related illness visits in the hospital which is 1.24% of a total number of visits 

related to any kind of illness in hospitals. Of this 1.24% of Influenza-related illness visits, 1.05% 



43

that is 2169 number of cases is Influenza positive tests reported by CDC. The maximum number 

of Influenza positive tests are found in the month of January (2015) and the number keeps on 

decreasing with October (2015) month having least number of cases. (Refer to Table 19, row 25). 

This shows that the tweets used for analysis fall into a non-flu season. So the scores are consistent 

and do not show a flu epidemic.

Food Poisoning data results:

Food Poisoning data results through topic ranking show that OTC model and DGS model match 

with the difference in ranking of topics for Entropy measure for food poisoning data. 

From Section 4.6, Figures 12, 13 and 14 show the daily variations of the three measures in 

one graph for each topic of the food poisoning dataset. Table 14 shows the correlations and the 

implied relationships. While the daily graphs demonstrate the agreement of the models on some 

days, the correlations show more disagreement than agreement. As in the previous case, the 

intermodal comparisons do not provide any corroborating information. 

Politics data results:

Politics data results through topic ranking show that OTC model, Entropy measure and DGS model.

From Section 4.6, Figures 15, 16 and 17 show the daily variations of the three measures in 

one graph for each topic of the politics dataset. Table 16 shows the correlations and the implied 

relationships. Daily graphs show the agreement of models on some days, the correlations here too 

show more disagreement with only OTC and DGS model show positive correlation for topic 1.

Finally, looking at the results of all three datasets, it can be concluded that OTC model, 

Entropy measure and DGS model do not show the strong correlation among themselves.  The 

reason that the measures are not unanimous most likely is because of the way the measures are 

computed. OTC model performs sentiment analysis but needs external information for 

computation, Entropy is computed by performing sentiment analysis on tweets text without the 

need for external information. It estimates veracity based on the bag of words and topic model as 
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the basis. DGS model is computed from the tweet themselves using users count and geographic 

location of the tweets without using external resources. 
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CHAPTER V

CONCLUSION

Micro-blogging sites like Twitter have become the source of information where people post their 

real-time experiences and their opinions on various day-to-day issues which can be used to predict 

and analyze the data. This information sometimes leads to spread of untrue information and has an 

influence on society. In this thesis, we have proposed Entropy as a measure of veracity and 

compared its reliability against the previously published measures. The measures are evaluated on 

the basis of different topics of the data. The topics are defined by words taken from government 

website based on various contexts of a particular data domain. After comparing the uncertainty of 

the tweets, our analysis shows some evidence that the model values are dependent on the 

approaches on which they are based. OTC measure is calculating the sentiments in text along with 

external sources, entropy measure is calculated through tweet text without any external sources. 

DGS measure deals with evaluating the accuracy of data from tweet text, users and geographic 

location without any external sources. 

The computed model results do not agree on the topic rankings. However, they place the 

topics in a veracity spectrum in a consistent manner.  Flu data available from CDC for the time 

period corresponding to Twitter flu data period are used for model validation. We interpret the 

tweets as indicator of flu. The data period analyzed is not considered flu season and the computed 

model values are not high. So, the data seems to validate the topic placement in the veracity 

spectrum by the models. No official data was available corresponding to the timeframe of the other 

datasets. 
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Verifying the other datasets with external data is proposed as future work. Also, as entropy 

computes the veracity of topics based on topic model (bag-of-words), other topic modeling 

algorithms can be explored as future work.
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Table 19: External Links

Sr 
No

Links

(1) Apache Hadoop, http://hadoop.apache.org/

(2) Blob classes, http://textblob.readthedocs.io/en/dev/api_reference.html
(3) CDC, http://www.cdc.gov/flu/about/disease/symptoms.htm[09-06- 2015], 

http://www.cdc.gov/flu/about/qa/hospital.htm, http://www.cdc.gov/flu/about/disease/us_flu-
related_deaths.htm

(4) CDC, http://www.cdc.gov/flu/pdf/freeresources/updated/treating_flu.pdf [09-06- 2015]
(5) Downloading of TextBlob 0.11.1 file, https://pypi.python.org/pypi/textblob
(6) Flu.gov, http://www.flu.gov/symptoms-treatment/symptoms/ [09-06- 2015]
(7) Flu.gov, http://www.flu.gov/symptoms-treatment/treatment/ [09-06- 2015]

(8) Installation of TextBlob, http://textblob.readthedocs.io/en/dev/install.html
(9) Mayo Clinic, http://www.mayoclinic.org/diseases-conditions/flu/basics/symptoms/con-20035101 [09-06- 

2015]
(10) Merriam-Webster Online Dictionary. (2009). Retrieved 10 February 2009, www.merriam-webster.com

(11) Moffit, J.S.Giboney, 2012 http://splice.cmi.arizona.edu/
(12) Pattern Module, http://www.clips.ua.ac.be/pattern
(13) Sentiment Lexicon, https://github.com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml
(14) TextBlob: Simplified Text Processing, https://textblob.readthedocs.io/en/latest/#features
(15) TextBlob Sentiment: Calculating Polarity and Subjectivity, http://planspace.org/20150607-

textblob_sentiment/
(16) TextBlob Documentation, https://media.readthedocs.org/pdf/textblob/dev/textblob.pdf
(17) TextBlob Sentiment Analyzers, 

http://textblob.readthedocs.io/en/dev/api_reference.html#textblob.en.sentiments.PatternAnalyzer
(18) WebMD, http://www.webmd.com/cold-and-flu/flu-guide/adult-flu-symptoms

(19) WebMD, http://www.webmd.com/cold-and-flu/flu-guide/is-it-cold-flu [09-06- 2015]

(20) WebMD, http://www.webmd.com/cold-and-flu/flu-guide/flu-treatment [09-06- 2014]

(21) HDFS Architecture Guide https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
(22) Apache Flume https://flume.apache.org/

(23) CDC, https://www.cdc.gov/foodsafety/foodborne-germs.html
(24) CDC, https://www.cdc.gov/foodsafety/diseases/index.html
(25) CDC, https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

http://hadoop.apache.org/
http://textblob.readthedocs.io/en/dev/api_reference.html
http://www.cdc.gov/flu/about/disease/symptoms.htm
http://www.cdc.gov/flu/about/qa/hospital.htm
http://www.cdc.gov/flu/pdf/freeresources/updated/treating_flu.pdf
https://pypi.python.org/pypi/textblob
http://www.flu.gov/symptoms-treatment/symptoms/
http://www.flu.gov/symptoms-treatment/treatment/
http://textblob.readthedocs.io/en/dev/install.html
http://www.mayoclinic.org/diseases-conditions/flu/basics/symptoms/con-20035101
http://www.merriam-webster.com/
http://splice.cmi.arizona.edu/
http://www.clips.ua.ac.be/pattern
https://github.com/sloria/TextBlob/blob/dev/textblob/en/en-sentiment.xml
https://textblob.readthedocs.io/en/latest/#features
http://planspace.org/20150607-textblob_sentiment/
http://planspace.org/20150607-textblob_sentiment/
https://media.readthedocs.org/pdf/textblob/dev/textblob.pdf
http://textblob.readthedocs.io/en/dev/api_reference.html#textblob.en.sentiments.PatternAnalyzer
http://www.webmd.com/cold-and-flu/flu-guide/adult-flu-symptoms
http://www.webmd.com/cold-and-flu/flu-guide/is-it-cold-flu
http://www.webmd.com/cold-and-flu/flu-guide/flu-treatment
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://flume.apache.org/
https://www.cdc.gov/foodsafety/foodborne-germs.html
https://www.cdc.gov/foodsafety/diseases/index.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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APPENDICES

1. Twitter Data Streaming Configuration file

TwitterAgent.sources = Twitter

TwitterAgent.channels = MemChannel

TwitterAgent.sinks = HDFS

TwitterAgent.sources.Twitter.type = com.cloudera.flume.source.TwitterSource

TwitterAgent.sources.Twitter.channels = MemChannel

TwitterAgent.sources.Twitter.consumerKey = B5cZu4txtGCrdkq8ShCWoVcju

TwitterAgent.sources.Twitter.consumerSecret = 

339n0j3g2HMF0qV9zAMKp95XyThLPOjSQhfiK6nv5MIZ3sqeAR

TwitterAgent.sources.Twitter.accessToken = 3379110614-

BNtMtUKNKNECFUdfh3WDugZ0UflHU03gaBD1Pna

TwitterAgent.sources.Twitter.accessTokenSecret = 

Rzv616mODXltA4Y145rRpQ2El49yZCixnj39gYIbbaYUe

TwitterAgent.sources.Twitter.keywords = diarrhea,fever,abdominal pain,abdominal 

cramps,vomiting,bloody diarrhea,muscle ache,nausea,headache,stiff 

neck,confusion,convulsion,chills,watery diarrhea,stomach cramps,weight loss,slight 

fever,greasy stools,gas and bloating,double vision,blurred vision,drooping eyelids,slurred 

speech,difficulty swallowing,dry mouth,muscle weakness,jaundice,dark-colored 

urine,light-color stool
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TwitterAgent.sinks.HDFS.channel = MemChannel

TwitterAgent.sinks.HDFS.type = hdfs

TwitterAgent.sinks.HDFS.hdfs.path = hdfs://hadoop1:9000/paryani/FoodPoisioningData/

TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream

TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text

TwitterAgent.sinks.HDFS.hdfs.batchSize = 100

TwitterAgent.sinks.HDFS.hdfs.rollSize = 0

TwitterAgent.sinks.HDFS.hdfs.rollCount = 0

TwitterAgent.channels.MemChannel.type = memory

TwitterAgent.channels.MemChannel.capacity = 10000

TwitterAgent.channels.MemChannel.transactionCapacity = 1000

 
2. Sample JSON Data

{"filter_level":"low","retweeted":false,"in_reply_to_screen_name":null,"possibly_sensiti
ve":false,"truncated":false,"lang":"en","in_reply_to_status_id_str":null,"id":64130298632
9751552,"in_reply_to_user_id_str":null,"timestamp_ms":"1441733521431","in_reply_to
_status_id":null,"created_at":"Tue Sep 08 17:32:01 +0000 
2015","favorite_count":0,"place":null,"coordinates":null,"text":"RT @ColleenB123: Also 
- diarrhea is 
awful.","contributors":null,"retweeted_status":{"filter_level":"low","contributors":null,"t
ext":"Also - diarrhea is 
awful.","geo":null,"retweeted":false,"in_reply_to_screen_name":null,"possibly_sensitive
":false,"truncated":false,"lang":"en","entities":{"trends":[],"symbols":[],"urls":[],"hashtag
s":[],"user_mentions":[]},"in_reply_to_status_id_str":null,"id":641141853174128640,"so
urce":"<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for 
iPhone<\/a>","in_reply_to_user_id_str":null,"favorited":false,"in_reply_to_status_id":nul
l,"retweet_count":437,"created_at":"Tue Sep 08 06:51:44 +0000 
2015","in_reply_to_user_id":null,"favorite_count":2833,"id_str":"641141853174128640"
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,"place":null,"user":{"location":"Los 
Angeles","default_profile":false,"profile_background_tile":true,"statuses_count":16521,"
lang":"en","profile_link_color":"2FC2EF","profile_banner_url":"https://pbs.twimg.com/p
rofile_banners/267305045/1430708583","id":267305045,"following":null,"protected":fal
se,"favourites_count":24432,"profile_text_color":"333333","verified":true,"description":"
I am Miranda Sings alter ego. I like cookies, documentaries, kittens, and that guy I 
married. 
http://youtube.com/psychosoprano","contributors_enabled":false,"profile_sidebar_border
_color":"EEEEEE","name":"Colleen 
Ballinger","profile_background_color":"1A1B1F","created_at":"Wed Mar 16 17:55:20 
+0000 
2011","default_profile_image":false,"followers_count":1007677,"profile_image_url_http
s":"https://pbs.twimg.com/profile_images/635317228716564480/KypMTpAG_normal.jp
g","geo_enabled":true,"profile_background_image_url":"http://pbs.twimg.com/profile_ba
ckground_images/602200021/80umi8063weaa53pvk8d.jpeg","profile_background_imag
e_url_https":"https://pbs.twimg.com/profile_background_images/602200021/80umi8063
weaa53pvk8d.jpeg","follow_request_sent":null,"url":null,"utc_offset":-
25200,"time_zone":"Arizona","notifications":null,"profile_use_background_image":true,
"friends_count":8235,"profile_sidebar_fill_color":"EFEFEF","screen_name":"ColleenB1
23","id_str":"267305045","profile_image_url":"http://pbs.twimg.com/profile_images/635
317228716564480/KypMTpAG_normal.jpg","listed_count":1536,"is_translator":false},"
coordinates":null},"geo":null,"entities":{"trends":[],"symbols":[],"urls":[],"hashtags":[],"
user_mentions":[{"id":267305045,"name":"Colleen 
Ballinger","indices":[3,15],"screen_name":"ColleenB123","id_str":"267305045"}]},"sour
ce":"<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for 
iPhone<\/a>","favorited":false,"in_reply_to_user_id":null,"retweet_count":0,"id_str":"64
1302986329751552","user":{"location":"","default_profile":false,"profile_background_ti
le":false,"statuses_count":2707,"lang":"en","profile_link_color":"3B94D9","profile_bann
er_url":"https://pbs.twimg.com/profile_banners/3130256735/1434982226","id":3130256
735,"following":null,"protected":false,"favourites_count":4441,"profile_text_color":"000
000","verified":false,"description":"Justin Bieber, Ariana Grande, Selena Gomez, and 
Colleen Evans mean so much to me. Couldnt ask for better idols! I made this account just 
to follow them 
:)","contributors_enabled":false,"profile_sidebar_border_color":"000000","name":"Gillia
nEvnsBallinger","profile_background_color":"000000","created_at":"Tue Mar 31 
01:06:48 +0000 
2015","default_profile_image":false,"followers_count":35,"profile_image_url_https":"htt
ps://pbs.twimg.com/profile_images/627314665668898816/3CvXIrWf_normal.jpg","geo_
enabled":false,"profile_background_image_url":"http://abs.twimg.com/images/themes/th
eme1/bg.png","profile_background_image_url_https":"https://abs.twimg.com/images/the
mes/theme1/bg.png","follow_request_sent":null,"url":"http://evansjourneybegan7-2-
15.com","utc_offset":-25200,"time_zone":"Pacific Time (US & 
Canada)","notifications":null,"profile_use_background_image":false,"friends_count":55,
"profile_sidebar_fill_color":"000000","screen_name":"colleenb127","id_str":"313025673
5","profile_image_url":"http://pbs.twimg.com/profile_images/627314665668898816/3Cv
XIrWf_normal.jpg","listed_count":1,"is_translator":false}}
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