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Abstract: Rating of insurance policies depends on the probability of events in the tail of 

the distribution. A modeling tool based on extreme value theory to measure such tail-

related risk could potentially improve insurance rating. It is also widely agreed that crop 

yield distributions are spatially correlated. Considering spatial correlation may provide 

more precisely rated policies. In this context, the first essay provides two innovations in 

rating area yield crop insurance. One is to provide a method to fit the tail of crop yield 

distributions using the Generalized Pareto Distribution (GPD), a member of the family of 

extreme value distributions that models only the tail of the distribution. The second 

innovation is to estimate parameters of the distribution using a Bayesian Kriging 

approach that provides spatial smoothing of GPD parameters. Our results demonstrate 

that the proposed model dominates the existing method in out-of-sample performance 

and substantially mitigates regional inequalities in crop insurance loss ratios. Specifically, 

the new model shows considerable improvement in rating deeper tail probability. 

 In the second essay, we extend the Kriging method to a spatial smoothing based 

on a climate space, which is composed of climatological measures. We compare the 

spatial smoothing from the climate space and a general physical space (longitude-latitude 

space) to evaluate the performance of each method. We test the performance for county 

level yearly corn yield data from six U.S. states. Spatial smoothing from climate space 

dominates the results from the physical space in out-of-sample prediction and mitigates 

regional inequalities in crop insurance loss ratios. The climate space notably outperforms 

the physical space in Colorado that has various climates due to its varying topography. 

The third essay develops a new method for pricing calendar spread options (CSO) 

that uses a calendar spread as its underlying asset. Previous studies have suggested CSO 

pricing models based on a joint process of two futures prices. However, CSO for storable 

commodities have distinct features due to physical aspects of the underlying assets. To 

address such aspects, we introduce a new CSO pricing model based on the theory of 

storage. Our model incorporates three stochastic processes and allows non-zero 

correlation structure among the processes to reflect the dynamics of the calendar spread. 

Option prices from the previous models are estimated to evaluate the performance of the 

new model. The new model proposed here outperforms existing models. 
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CHAPTER I 

 
USING BAYESIAN KRIGING FOR SPATIAL SMOOTHING  

IN CROP INSURANCE RATING 

Abstract 

Rating of insurance policies depends on the probability of events in the tail of the 

distribution. A modeling tool based on Extreme Value Theory to measure such tail-

related risk could potentially improve insurance rating. It is also widely agreed that crop 

yield distributions are spatially correlated. Considering spatial correlation may provide 

more precisely rated policies. In this context, this research provides two innovations in 

rating area yield crop insurance. One is to provide a method to fit the tail of crop yield 

distributions using the Generalized Pareto Distribution (GPD), a member of the family of 

extreme value distributions that models only the tail of the distribution. The second 

innovation is to estimate parameters of the distribution using a Bayesian Kriging 

approach that provides spatial smoothing of GPD parameters. The proposed model 

provides estimates of the spatial structure across regions such as the maximum distance 

of the spatial effect. Our results demonstrate that the proposed model dominates the 

existing method in out-of-sample performance and substantially mitigates regional 

inequalities in crop insurance loss ratios. Specifically, the new model shows considerable 

improvement in rating deeper tail probability.
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Key words: Area yield insurance rating, Bayesian Kriging, Bayesian spatial smoothing, 

extreme value theory, Gaussian spatial process, spatial correlation 

 

Introduction  

Adverse selection and moral hazard are common concerns when designing insurance 

products. Area-yield insurance can avoid the problems of moral hazard and transactions 

costs arising from individual crop insurance policies since the indemnity payment is 

based on average yields of the county rather than the actual yields of the individual 

insured. A poorly rated product, however, does not protect against adverse selection and 

regional inequities since a producer who has sufficient information about the county’s 

crop yield distribution could avoid/purchase overpriced/underpriced area-yield insurance.  

Previous literature (Coble, Dismukes, and Glauber 2007; Harri et al. 2011) shows 

that incorrectly rated premiums may create significant economic loss to the Federal Crop 

Insurance Corporation (FCIC) under the Standard Reinsurance Agreement (SRA). 

Federally managed area-yield insurance has been offered by the Risk Management 

Agency (RMA) for major crops in the United States. Area Yield Protection (AYP)1 

currently offers insurance based on county level yield data from the National Agricultural 

Statistics Service (NASS) or other sources of data (RMA, 2013). In addition, revenue-

based, area-level insurance known as Area Revenue Protection (ARP) and the harvest 

price exclusion version of ARP (ARP-HPE) use the same crop yield modeling methods 

as AYP. Further, two new area-based insurance products: the Stacked Income Protection 

Plan (STAX), which is available only for cotton and the Supplemental Coverage Option 

(SCO), which is available for cotton and other crops, were made available with the 2014 
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farm bill (P.L. 113-79). Crop yield modeling methods for these two new products are also 

similar to the methods used for AYP. 

Several studies have developed methods to calculate premium rates for area yield 

crop insurance. Skees, Black, and Barnett (1997) propose a premium rating method that 

is still the base model of current U.S. area crop insurance. They used a two-knot, linear 

spline function to fit technological changes of crop yield and calculate premium rates 

using residuals of the regression. Goodwin and Ker (1998), Ker and Goodwin (2000), 

Ker and Coble (2003), and Harri et al. (2011) propose extensions. These proposed 

methods are based on a two-step procedure. They first fit the temporal process of crop 

yield using historical observations of each county, and then estimate conditional crop 

yield density from the predicted yield level and heteroscedasticity adjusted residuals. 

Current policies are rated with the Harri et al. (2011) approach and some proprietary 

adjustments. Harri et al. (2011) use a hybrid approach where parameters are estimated at 

the county level but are restricted by bounds determined at the district level. Other past 

studies have considered a wide variety of crop yield distributions such as the beta 

distribution (Nelson and Preckel 1989; Tirupattur, Hauser, and Chaherli 1996), the log-

normal distribution (Tirupattur, Hauser, and Chaherli 1996; Jung and Ramezani 1999; 

Stokes 2000), and normal (Just and Weninger 1999). In addition to these distributions, 

Sherrick et al. (2004) also consider the logistic and Weibull distributions. Others have 

suggested a nonparametric kernel density approach (Ker and Goodwin 2000), or a semi-

parametric approach (Ker and Coble 2003). 

Crop yields of a given county tend to be spatially correlated with the yields of 

nearby counties because weather, geological features, and other hidden features that 
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could potentially affect crop yields in one county are usually similar in neighboring 

counties (Annan, Tack, and Harri 2014; Du et al. 2015). Considering this spatial 

correlation can potentially lead to more precise yield distribution estimates and thus more 

accurately estimated premium rates. Although the method suggested by Harri et al. (2011) 

estimates parameters at the county level with spatial restrictions at the district level, the 

method uses only the historical yield data from the county whose density is being 

estimated. Of considerable interest is accounting for spatial correlation to improve crop 

insurance rating. Ozaki et al. (2008) introduce a crop insurance rating method for 

Brazilian data based on a Bayesian hierarchical approach that models temporal and 

spatial autocorrelation of crop yield. They assume normality of crop yield and use a 

random effect to control spatial correlation of the crop yield. However, their spatio-

temporal model only reflects the spatial effects from neighboring counties and their 

approach only considers spatial effects on the mean whereas our approach considers 

spatial smoothing in all parameters. Another approach to spatial smoothing is based on 

Bayesian Model Averaging (BMA). Woodard (2016) uses BMA to get a weighted 

average of county and district level parameters. Ker, Tolhurst, and Liu (2015) estimate a 

posterior density for each county using only its own data. The posterior density of the 

target county is then a weighted average of its own posterior density and densities from 

other counties. This method does not require any knowledge in density similarity and can 

be applied with both parametric and non-parametric estimators. The work using BMA, 

although very different
2
 from the work presented here, indicates the interest in using 

spatial information to model crop yield distributions and crop insurance premium rates. 
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A familiar issue in the estimation of crop yield distributions is that the number of 

time-series observations is very limited. Particularly, estimating the tail of the distribution 

is difficult since rare events usually have limited observations. One potential solution is 

to include observations from the other counties. This approach in turn presents the 

challenge of directly considering spatial correlation as part of the estimation method. We 

address the problem by using a Bayesian hierarchical structure. Unlike BMA, our 

Bayesian Kriging method directly incorporates the spatial smoothing procedure into the 

model. Therefore, posterior densities are estimated jointly using data for all counties
3
. We 

estimate parameters of the yield distribution for each county with a specified functional 

form of the spatial covariance matrix in the process layer of the hierarchical structure.  

Our research develops a method for determining more accurate area yield 

insurance premium rates based on extreme value theory and Bayesian Kriging. The 

contribution of our research to the literature on the estimation of crop yield distributions 

and crop insurance premium rates is the introduction of two innovations. One is to use a 

Bayesian Kriging method for spatial smoothing to estimate crop yield distributions across 

counties. To our knowledge, our research is the first to use such a method for spatial 

smoothing to develop a crop insurance rating model. The second innovation is to only 

estimate the tail of the distribution since that is all that matters in rating crop insurance. 

The tails of crop yield distributions are assumed to follow a Generalized Pareto 

Distribution (GPD)
4
, which is a member of the extreme value distribution family. GPD 

models only the tail of the distribution that generates indemnity payments. County-level 

historical wheat yields (1970-2014) from NASS are used for the estimation. We assume 

that GPD parameters (scale and shape) of the counties are spatially correlated and the 
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spatial processes for the parameters are structured under a Bayesian hierarchical 

framework. Metropolis-Hastings (MH) steps within a Gibbs sampler are used to update 

posterior densities. Maximum likelihood estimates are used as candidates for the MH step 

to increase acceptance rate and speed convergence in the Markov Chain Monte Carlo 

(MCMC) procedure. Our model produces spatially smoothed GPD parameters within the 

MCMC procedure. We verify spatial correlation of GPD parameters from the posterior 

density of Kriging parameters, and we fit the Gaussian spatial process to visualize and 

verify the structure of spatial correlation. A main finding is that estimated premiums from 

the RMA model
5
 result in considerable regional inequalities compared to the method 

proposed here. The RMA model more poorly rates the premiums when measuring deeper 

tail probability. We compare out of sample performance of the two approaches by 

assuming a representative insurance company that chooses whether to retain or cede 

polices under the Standard Reinsurance Agreement (SRA). We verify statistical 

significance of performance through bootstrapping. The new model outperforms the 

RMA model and mitigates regional inequalities in loss ratios. 

 

Generalized Pareto Distribution 

Extreme value theory is used for analysis of low probability events. The theory states that 

the tail of a loss distribution can be approximated by a GPD. The extreme value family 

can be written in a simple form involving three parameters: location (𝜍), scale (𝜎 > 0), 

and shape (𝜉). A positive shape parameter ( 𝜉 > 0, Fréchet type) implies a heavy tail 

distribution, a negative shape parameter (𝜉 < 0,Weibull type) implies a bounded tail, 

and a zero-value shape parameter (𝜉 = 0, Gumbel type) implies a light tail distribution. 
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Suppose 𝑋 is a random variable. Now consider the conditional distribution of 𝑋 given 

that it exceeds 𝑢. If 𝐹 is a cumulative density function (CDF) for 𝑋, the probability of 𝑋 

exceeding 𝑥, given 𝑋 is greater than the threshold 𝑢, can be approximated by the GPD6:  

(1) P(𝑋 > 𝑥| 𝑋 > 𝑢) =  
1 − 𝐹(𝑥)

1 − 𝐹(𝑢)
= {

1 − (1 +
𝜉(𝑥 − 𝑢)

𝜎
)−1/𝜉                  𝜉 ≠ 0

1 − exp−(𝑥−𝑢)/𝜎                                𝜉 = 0

 

where scale parameter 𝜎 > 0, and shape parameter −∞ < 𝜉 < ∞. 

The GPD only uses observations above (or below) a threshold and fits a model to 

those tail data only. GPD allows three basic forms of the tails. As with Generalized 

Extreme Value (GEV) distribution, a positive shape parameter ( 𝜉 > 0, Fréchet type), 

implies a heavy tail (i.e. Student’s t distribution), a negative shape parameter (𝜉 <

0,Weibull type) implies a bounded tail (i.e. beta distribution), and a zero-value shape 

parameter (𝜉 = 0, Gumbel type) implies a light tail distribution (i.e. exponential 

distribution). 

Another advantage of using a GPD for the tail of the distribution is that the 

quantiles have a closed form. Using equation (1) above, the quantiles (𝑋𝑞 = 𝐹
−1(𝑞)) can 

be defined as  

(2) 𝑋𝑞 =  

{
 

 𝑢 +
𝜎

𝜉
[(휁𝑢/𝑞)

𝜉 − 1]                 𝜉 ≠ 0

𝑢 + 𝜎ln (
휁𝑢
𝑞
)                                𝜉 = 0

  

where 휁𝑢 = 1 − 𝐹(𝑢) denotes the probability of exceeding the threshold 𝑢. Therefore, 

once we obtain the parameters of the distribution, a probability that a variable exceeds 

some specific threshold can be directly computed. We must choose a threshold level 𝑢 in 

order to fit the GPD. The threshold selection is one difficulty in fitting the GPD and thus 
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finding an optimal approach to select the threshold is still an active research area. One 

may think that it is natural to obtain the threshold 𝑢 by maximum likelihood along with 

the other parameters. However, this approach will not be stable because the number of 

observations changes as 𝑢 is changed. This fact will lead to a discontinuous or 

unbounded likelihood function. Consistent with the way RMA sets thresholds of current 

policies, we set the coverage level of each county 𝑖 as the threshold to estimate the 

premium rates for different coverage levels
7
. Therefore, each county’s threshold level 𝑢𝑖 

is the 𝑖th county’s predicted yield �̂�𝑖 multiplied by coverage rate 𝜆 (i.e. 70 percent or 90 

percent) of the insurance, where 𝑢𝑖 = 𝜆�̂�𝑖. Then the observations of each county 𝑖 that are 

below the threshold for the county 𝑢𝑖, are used to fit the GPD parameters.  

 

Bayesian Modeling Framework 

Our spatial smoothing procedure is a Kriging approach. Kriging is a geostatistical spatial 

interpolation method. With our approach, the interpolated measures are obtained by 

estimating the parameters of a Gaussian spatial process with an explicit functional form 

of spatial covariance. The spatial correlation varies by distance as well as other measures 

of similarity. The GPD parameters for one county are based on a weighted average of its 

own data and the data from other counties, but the weights decrease with distance. 

Kriging based on Bayesian inference has been actively developed in a large variety of 

disciplines due to its advantage to incorporate model uncertainty associated with the 

Gaussian spatial process. Recent statistical literature (Cooley, Nychka, and Naveau 2007, 

Gelman et al. 2004, Woodworth 2004, Ntzoufras 2011) offers various adjustments of the 
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Bayesian Kriging method, such as spatial smoothing in extreme weather events, disease 

incidence, and mortality rates prediction. 

Our Bayesian Kriging model has a Bayesian hierarchical structure. The Bayesian 

hierarchical structure is defined when a prior distribution of the general Bayesian model 

(priors for the parameters of the likelihood function, i.e. GPD parameters 𝜎 and 𝜉) can 

also be assigned to additional prior parameters, say hyper parameters. Our model assumes 

that the parameters of the likelihood function are spatially correlated. Hence, the model 

incorporates spatial smoothing that reflects such spatial correlation by adding one more 

prior layer (process layer) between the likelihood density and the prior density from the 

basic Bayesian model. Therefore, the values of likelihood function parameters (GPD 

parameters) of each county are assumed to be affected by additional covariates that 

characterize each county (i.e., historical yield level, longitude, latitude) and Kriging 

parameters for spatial smoothing. 

 

Hierarchical structure 

The model has three hierarchical layers. First, in the likelihood layer, the tail of crop yield 

distribution of each county follows a GPD. Second, the process layer models the spatial 

process of the GPD parameters. This second layer determines the parameters of the GPD. 

The parameters of each county are determined by covariates that reflect the spatial 

characteristics of the county. The spatial smoothing of the parameters is performed 

assuming a Gaussian spatial process with an explicit functional form of spatial covariance 

matrix. The third layer consists of the prior distributions for the hyper parameters, called 
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hyper priors, for the covariates of the process layer and Kriging parameters (sill and 

range) in the spatial covariance matrix. The three hierarchical layers can be specified as,  

 

(3) 

Likelihood layer: 𝒀|𝛀𝟏, 𝛀𝟐 ~ 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) 

                               Process layer: 𝛀𝟏|𝛀𝟐 ~ 𝑝2(𝛀𝟏|𝛀𝟐) 

                                 Prior layer ∶  𝛀𝟐 ~ 𝑝3(𝛀𝟐) 

 

where 𝑝𝑗 is the density associated with each layer of the hierarchies, 𝒀 is a matrix of 

yearly crop yields that spans all counties (𝑖 = 1,… , 𝑁) and years (𝑡 = 1,… , 𝑇), 𝛀𝟏 is a 

matrix of the GPD parameters that spans all counties (𝑖 = 1,… , 𝑁) so that 𝛀𝟏 = [𝝈, 𝝃], 

and 𝛀𝟐 is a vector of hyper parameters (coefficients for covariates and Kriging 

parameters), 𝛀2 = [𝛽0, 𝛽ℎ, 𝛿, 휃𝜎 , 𝜌𝜎 , 휃𝜉 , 𝜌𝜉]′. 

When we factorize the conditional density of the likelihood layer 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) 

using Bayes’ theorem, the prior distribution for the likelihood layer density, say 

𝑝(𝛀𝟏, 𝛀𝟐), can be separated into two components: 

 

(4) 𝑝(𝛀𝟏, 𝛀𝟐) =  𝑝2(𝛀𝟏|𝛀𝟐)𝑝3(𝛀𝟐) 

 

with the conditional distribution of GPD parameters given hyper parameters 𝑝2(𝛀𝟏|𝛀𝟐) 

and prior distribution of hyper parameters 𝑝3(𝛀𝟐). 

Then the joint posterior distribution of the Bayesian hierarchical model is 
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(5) 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) =
𝑝(𝛀𝟏, 𝛀𝟐, 𝒀)

𝑝(𝒀)
=

𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐)

∫ ∫ 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐)𝑑𝛀𝟐𝑑𝛀𝟏𝛀𝟐𝛀𝟏

, 

 

and thus the joint posterior distribution 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) is proportional to the multiplication 

of the likelihood 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) and 𝑝(𝛀𝟏, 𝛀𝟐), 

 

(6) 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) ∝  𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐). 

 

Next, plug equation (4) into the right-hand side of equation (6), which gives 

 

(7) 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀)  ∝  𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝2(𝛀𝟏|𝛀𝟐)𝑝3(𝛀𝟐). 

 

Therefore, the joint posterior density of the model 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀), which is our 

target density, is proportional to the multiplication of the three layers of the model. The 

full conditional posterior density for each parameter can be fitted using MH within a 

Gibbs sampling algorithm.  

 

Likelihood layer 

A GPD likelihood function forms the first hierarchy of our model. Let 𝑧𝑖𝑡 denote the 

yearly crop yield at county 𝑖 = 1,… , 𝑁 at year 𝑡 = 1,… , 𝑇. Since our interest is in 

minima of crop yield rather than maxima, we use the negative of the yield observations, 

where 𝑦𝑖𝑡 = −𝑧𝑖𝑡 for any 𝑖 and 𝑡. Given that 𝑦𝑖𝑡 falls below the threshold 𝑢𝑖 for county 𝑖, 
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we assume that the tail of the crop yield of each county can be fit by a GPD whose 

parameters depend on the county’s location.  

  Let 𝜙𝑖 = log 𝜎𝑖 and 𝜉𝑖 represent the log-transformed scale and shape parameters 

of county 𝑖. The log-transformation allows the parameter 𝜙 to take on both positive and 

negative values. Differentiating the cumulative distribution function (1) gives the 

probability density function (or likelihood) of the likelihood layer, 

 

(8) 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) =  ∏∏[
1

exp𝜙𝑖
[1 +

𝜉𝑖𝑦𝑖𝑡
exp𝜙𝑖

]
−
1

𝜉𝑖
−1

]

𝐼(𝑦𝑖𝑡<𝑢𝑖)𝑇

𝑡=1

𝑁

𝑖=1

 

 

where the indicator function, 𝐼(𝑦𝑖𝑡 < 𝑢𝑖) = {
1     if 𝑦𝑖𝑡 < 𝑢𝑖
 0     otherwise

, denotes the yield data of 

county 𝑖 that fall below the threshold 𝑢𝑖, 𝛀1 = [𝝓, 𝝃] and 𝛀2 = [𝛽0, 𝛽ℎ, 𝛿, 휃𝜎 , 𝜌𝜎 , 휃𝜉 , 𝜌𝜉]′, 

which are the matrix of GPD parameters and vector of hyper-parameters. 

 

Process layer 

The key part of the hierarchical structure is the process layer since it contains the spatial 

smoothing parameters. The Kriging of the GPD parameters (𝜙𝑖 and 𝜉𝑖) is based on a 

Gaussian spatial process
8
. The Kriging parameters (sill and range) determine the degree 

and distance of spatial correlation when performing the spatial smoothing. Since we are 

in a Bayesian framework, the GPD parameters 𝜙𝑖and 𝜉𝑖 are random variables. The GPD 

parameters are then determined by other parameters (𝛽0, 𝛽ℎ, 𝛿, 휃𝜎 , 𝜌𝜎 , 휃𝜉 , 𝜌𝜉) and the 

priors on these parameters are called hyper priors. The hyper priors are assumed to be 
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independent and the spatial processes for each GPD parameter are assumed independent. 

Thus, the model for the log-transformed scale parameters 𝜙𝑖 = log 𝜎𝑖 is 

 

(9) 

𝜙𝑖 =  𝜇𝑖 + 휀𝑖, 

𝜇𝑖 = 𝛽0 +∑𝛽ℎ𝑍ℎ𝑖

𝐻

ℎ=1

, 

𝝓~𝑀𝑉𝐺𝑃(𝝁,  Σ𝜙), 

Σ𝜙 = 𝜓(𝐷𝑖𝑗; 휃𝜙, 𝜌𝜙 ), 

휀𝑖~𝑀𝑉𝑁(0,  Λ), 

 

where 𝜇𝑖 is the deterministic part of the Gaussian spatial process, 𝑍ℎ𝑖 contains covariates 

of the process at county 𝑖, 𝝓 is the vector of log-transformed scale parameters, 𝝓 =

 [𝜙1, … , 𝜙𝑁]′, and is assumed to follow a multivariate Gaussian spatial process with 

spatial covariance matrix, Σ𝜙 = 𝜓(𝐷𝑖𝑗; 휃𝜙, 𝜌𝜙  )9, that is a function of Euclidean distance 

(𝐷𝑖𝑗) between counties 𝑖 and 𝑗, sill parameter 𝜌𝜙, and range parameter 휃𝜙, and 휀𝑖 is a non-

spatial error component that follows 휀𝑖~𝑀𝑉𝑁(0, Λ), where Λ is a diagonal matrix with 

diagonal elements of 𝜐2 and all other elements are zero. The MCMC process generates 

Bayesian Kriging for 𝜙𝑖 from the Gaussian spatial process and the effect of spatial 

correlation is smoothly interpolated by the spatial covariance matrix 

form 𝜓(𝐷𝑖𝑗; 휃𝜙 , 𝜌𝜙 )10.  

Similarly, the latent process of the shape parameters of GPD, 𝜉𝑖, is  
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(10) 

𝜉𝑖 =  𝛿 + 𝜖𝑖 

𝝃~𝑀𝑉𝐺𝑃(𝜹,  Σ𝜉), 

Σ𝜉 = 𝜑(𝐷𝑖𝑗; 휃𝜉 , 𝜌𝜉 ), 

𝜖𝑖~𝑀𝑉𝑁(0,  Ψ),  

 

where 𝛿 is a constant, 𝝃 is a vector of shape parameters 𝝃 = [𝜉1, … , 𝜉𝑁]′, and is assumed 

to follow a multivariate Gaussian process with the explicitly assumed spatial covariance 

matrix, Σ𝜉 = 𝜑(𝐷𝑖𝑗; 휃𝜉 , 𝜌𝜉  ), that is a function of Euclidean distance(𝐷𝑖𝑗) between 

counties 𝑖 and 𝑗, sill parameters 𝜌𝜉 , and range parameter 휃𝜉 , and 𝜖𝑖 non-spatial error 

component that follows 𝜖𝑖~𝑀𝑉𝑁(0,  Ψ) where Ψ is a diagonal matrix with diagonal 

elements of 𝜈2. 

From the two spatial processes of GPD parameters 𝜙 and 𝜉, the vector of log-

transformed scale parameter 𝝓 and shape parameter 𝝃 given 𝛽0, 𝛽ℎ, 𝜌𝜙, 휃𝜙, 𝛿, 𝜌𝜉 , and 휃𝜉  

follows 

 

(11) 

𝝓  |  𝛽0, 𝛽ℎ, 𝜌𝜙, 휃𝜙  ~  𝑀𝑉𝐺𝑃(𝝁, Σ𝜙) 

𝝃  |  𝛿, 𝜌𝜉 , 휃𝜉   ~  𝑀𝑉𝐺𝑃(𝜹, Σ𝜉) 

 

where 𝝁 = 𝜷0 + ∑ 𝜷ℎ𝒁ℎ
𝐻
ℎ=1 ,  Σ𝜙 =  𝜓(𝐷𝑖𝑗; 휃𝜙, 𝜌𝜙)  and Σ𝜉 =  𝜑(𝐷𝑖𝑗; 휃𝜉 , 𝜌𝜉). 

Since we assume the spatial processes for each GPD parameter are independent, 

the second part of equation (7) is 
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(12) 

𝑝2(𝛀𝟏|𝛀𝟐) =  
1

√(2𝜋)𝑁|Σ𝜙|

exp [−
1

2
(𝝓 − 𝝁)′𝛴𝜙

−1(𝝓 − 𝝁)]

×
1

√(2𝜋)𝑁|Σ𝜉|

exp [−
1

2
(𝝃 − 𝜹)′Σ𝜉

−1(𝝃 − 𝜹)] 

 

where 𝝁 is a vector of mean values of 𝜙𝑖 defined by equation (9), 𝜹 is a vector of mean 

values of 𝜉𝑖 defined by equation (10), Σ𝜙 and Σ𝜉 are the covariance matrices for the GPD 

parameters 𝜙𝑖 and 𝜉𝑖, 𝛀1 is the matrix of the GPD parameters, 𝛀1 = [𝝓, 𝝃], for all 

counties (𝑖 = 1,… , 𝑁), and 𝛀2 is a vector of the hyper parameters, 

𝛀2 = [𝛽0, 𝛽ℎ, 𝛿, 휃𝜙, 𝜌𝜙 , 휃𝜉 , 𝜌𝜉]'. 

To develop crop insurance rating models for crops with a temporal trend (i.e., 

technological progress), we would need to include a trend variable in the process layer of 

the Bayesian hierarchical structure. However, including a trend variable brings 

substantial technical challenges under the non-normality assumption for the likelihood 

layer
11

. One simple way to avoid the complexity in modeling is to estimate the trend of 

the crop yield outside the hierarchical procedure in a manner similar to Harri et al. (2011). 

Since the wheat yields have no significant trend, we do not explore the issue of trend here. 

But, if the model were extended to corn or cotton that have strong yield trends, the issue 

of trend would need to be addressed. 

 

Prior layer 

In the prior layer, we specify a prior (i.e., hyper-prior) for the vector of hyper-parameters 

𝛀2, which characterizes the GPD parameters in the process layer. Each parameter in the 
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layer is assumed independent of the others. Since we do not have any prior information 

about a relationship between GPD parameters and covariates in the process layer, we 

impose large prior ranges for the covariate parameters 𝛽0 and 𝛽ℎ. For all the models, the 

prior for all covariates parameters 𝛽0 and 𝛽ℎ is 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10000, 10000). Setting the 

priors of the Kriging parameters sill (𝜌𝜙, 𝜌𝜉) and range (휃𝜙 , 휃𝜉), which describe the 

spatial structure of the scale and shape parameter of the GPD is more difficult. Bayesian 

statistics literature (Berger, DeOivelira, and Sanso 2001; Banerjee, Carlin, and Gelfand 

2004; Cooley, Nychka, and Naveau 2007) points out that improper priors for the Kriging 

parameters may result in improper posterior distributions. Banerjee, Carlin, and Gelfand 

(2004) suggest choosing informative priors for Kriging parameters as the safest way to 

avoid improper posteriors. Therefore, we use empirical information to construct proper 

priors for the Kriging parameters based on the maximum likelihood estimation. We 

explain the choice of prior distributions of the sill parameters (𝜌𝜙, 𝜌𝜉). We first estimate 

scale and shape parameters for each county independently using maximum likelihood. A 

histogram of obtained scale (𝜙𝑖,𝑀𝐿𝐸) and shape (𝜉𝑖,𝑀𝐿𝐸) parameters for each county is 

illustrated in Figure 1. We then fit an empirical variogram
12

, 𝛾(𝐷𝑖𝑗), suggested by Cressie 

(1993), using the obtained MLE parameters for each county to find the proper range of 

prior distribution of the sill parameter. We finally impose a prior of 𝐼𝐺(0.01, 5) for 𝜌𝜙 

and 𝐼𝐺(0.01, 2) for 𝜌𝜉 . To find the prior distributions for range parameters (휃𝜙, 휃𝜉), we 

use prior geographical knowledge of empirical data. Since the spatial effect is measured 

using Euclidean distance based on longitude / latitude coordinate space, the nearest and 

farthest distance between the pair of locations in the empirical dataset are used for the 

prior distribution of the range parameter. Therefore, we impose a prior of 
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𝑔𝑎𝑚𝑚𝑎( 7,71, 0.23) for the range parameters both in scale and shape parameters (휃𝜙 

and 휃𝜉). With the priors as above, the third layer in equation (7) is 

 

(13) 𝑝3(𝛀𝟐) =  𝑝(𝛽0)𝑝(𝛽ℎ)𝑝(𝛿)𝑝(휃𝜙)𝑝(휃𝜉)𝑝(𝜌𝜙)𝑝(𝜌𝜉). 

 

Since 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐), 𝑝2(𝛀𝟏|𝛀𝟐), and 𝑝3(𝛀𝟐) in equation (7) are obtained from 

the three layers in equations (8), (12), and (13), we now have posterior distributions for 

the parameters by multiplying these three layers. The overall schematic of the model 

structure to derive the distribution of crop yields is illustrated in Figure 2. 

 

Markov Chain Monte Carlo Procedure 

The estimation uses Metropolis-Hastings (MH) steps within a Gibbs sampler. In the MH 

algorithm, random parameter values are drawn from a candidate density and then 

accepted or rejected with the accepted values included in the posterior density. Similar to 

Cooley, Nychka, and Naveau (2007), we use the conditional density obtained from 

maximum likelihood estimates of the GPD parameters as the candidate density for the 

posterior distribution. Let �̂� be a vector of MLE estimates for the vector of GPD scale 

parameters 𝝓. From the asymptotic property of MLE’s, we have 

 

(14) √𝑇(�̂� − 𝝓)
𝑑
→   𝑀𝑉𝑁 (0, lim

𝑇→∞
[
1

𝑇
𝐼(𝝓)]

−1

) 
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where 𝐼(𝝓) is the information matrix of MLE estimates. Given the process layer density 

in equation (12), we obtain the joint distribution of �̂� and 𝝓 as 

 

(15) (
�̂�

𝝓
) =  𝑀𝑉𝑁((

𝝁

𝝁
),   [

 Σ𝜙  + 𝐼(𝝓)
−1    Σ𝜙

 Σ𝜙                        Σ𝜙

] ). 

 

We then construct the conditional distribution  

 

(16) 𝝓 | �̂�  ~ 𝑀𝑉𝑁 (𝝁 + Σ𝜙(𝐼(𝝓)
−1 + Σ𝜙)

−1
(�̂� − 𝝁),    Σ𝜙 − Σ𝜙

′(𝐼(𝝓)−1 + Σ𝜙)
−1
 Σ𝜙 ) 

 

that is used as the candidate density in the MH step. By the central limit theorem, MLE 

estimates will be close to the Bayesian posterior, and thus the sampling distribution of the 

MLE should be a good candidate distribution for this part of the posterior. Cooley, 

Nychka, and Naveau (2007) find this approach significantly increases the acceptance rate 

of MH steps. After updating the GPD parameters, Gibbs sampling is further used to 

update the other parameters. A variety of R-packages provide MCMC updating 

algorithms for Bayesian hierarchical structure. We mainly employ SpatialExtremes, 

extRemes, and spBayes packages to construct the estimation procedure. These packages 

provide algorithms for Bayesian spatial smoothing with a normal distribution and a 

Generalized Extreme Value (GEV) distribution. However, these packages do not provide 

a function to estimate the Bayesian spatial smoothing model with GPD. Therefore, we 

combine functions in these packages and modify the likelihood and process layer 
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procedures of the functions and construct a new R function for our proposed model with 

GPD. 

 

Model Selection  

We model county-level winter wheat yield data from National Agricultural Statistics 

Service (NASS). The data contain 1970-2014 annual yields (bushels per acre) for 77 

counties in Oklahoma. Counties with missing observations are discarded. Therefore, 39 

counties’ yields are included in the final dataset. A single state is considered because 

RMA has generally wanted to tell producers that no data from another state affects their 

premium. Also, the algorithm is sufficiently slow enough that estimating the model for 

the whole United States at once is impractical with current computer resources. Since 

RMA would estimate separate models for each state, it would be practical for RMA to 

use the method proposed here. The box plot of the historical county level yields is 

presented in Figure 3.  

Deviance Information Criterion (DIC) suggested by Spiegelhalter et al. (2002) is 

used to evaluate the goodness of fit of each model. DIC has substantial advantages for 

Gaussian likelihoods and is particularly convenient to compute from posterior samples 

(Finley, Banerjee, and Carlin 2007). This criterion is the sum of the Bayesian deviance 

and the effective number of parameters (a penalty for model complexity). The deviance is 

the negative of twice the log-likelihood, 

 

(17) 𝐷(𝛀𝟏, 𝛀𝟐) =  −2log𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) 
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where the 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) is the likelihood function from the likelihood layer. The 

Bayesian deviance is the posterior mean, �̅� = 𝐸[𝐷(𝛀𝟏, 𝛀𝟐)], and an effective number of 

parameters is given by 𝑃𝐷 = �̅�(𝛀𝟏, 𝛀𝟐) − 𝐷(�̅�𝟏, �̅�𝟐), where �̅�𝟏 and �̅�𝟐 are the posterior 

means of the model parameters. Therefore, DIC is given by, 𝐷𝐼𝐶 =  �̅� + 𝑃𝐷. Lower DIC 

values indicate preferred models. 

We use the DIC to select from alternative covariates specifications and two 

different spatial covariance functional forms (exponential and Matern), providing nine 

alternative models. In the process, we draw 100,000 iterations for MCMC chains and 

burn-in the first 20,000 observations to get the posterior distribution of each parameter. 

We fit both trace plots and autocorrelation plots for all posterior densities. All densities 

show sufficiently fast convergence and no significant autocorrelation. Table 1 presents 

the models tested and their corresponding DIC values. We start with a model with no 

spatial smoothing (Model 0), and expand the model with several covariates in the process 

layer of the log-transformed scale parameter (𝜙𝑖), including historical average yield (�̅�𝑖), 

longitude (𝑙𝑜𝑛𝑖), and latitude (𝑙𝑎𝑡𝑖) of the county. Model 5 with a constant coefficient 

and exponential covariance function dominates other models with multiple covariates 

under DIC. Therefore, adding other covariates does not improve the model. Model 5 is 

selected as the main model. Two examples of estimated posterior densities of the GPD 

parameters are presented in Figure 4. Figure 4 illustrates posterior densities of two 

counties, Beaver and Oklahoma, which have the highest and lowest premium rates in 

2014. Both counties have negative posterior values of shape parameters and have similar 

ranges of the posterior values from -0.58 to -0.01. All counties, including Beaver and 

Oklahoma, have similar ranges of the posterior values from -0.59 to -0.01 and the 
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negative shape posterior values indicating that the tail distribution of crop yields is a 

Weibull type, which implies a bounded tail distribution (not unexpected since yields 

cannot be negative). Posterior values of the scale parameters differ substantially between 

the two counties. The scale parameter of GPD indicates the thickness of the tail of the 

distribution. The scale parameter of Beaver County is greater than that of Oklahoma 

County, which indicates the tail of Beaver County’s density is thicker than the tail of 

Oklahoma County’s density.  

One of the most important advantages of our model is that it provides estimates of 

the spatial correlation structure. Figure 5 illustrates posterior densities of Kriging 

parameters. The posterior values of the Kriging parameters are used to identify the 

structure of spatial correlation among GPD parameters of the counties. To illustrate the 

spatial correlation structure, we use an F-Madogram (Cooley, Naveau, and Poncet, 2006). 

Generally, when some observations 𝑦𝑖 (in our case, GPD parameters 𝜙𝑖 and 𝜉𝑖 ) follow a 

Gaussian spatial process with a spatial covariance function 𝜓, a variogram (𝛾𝑖𝑗) 

suggested by Cressi (1993) is used to illustrate the structure of spatial correlation. A 

variogram is formed as 𝛾𝑖𝑗 = 𝜎2{1 − 𝜓(𝐷𝑖𝑗;  휃, 𝜌)}, where 𝛾𝑖𝑗 is the variogram between 

regions 𝑖 and 𝑗, 𝑦𝑖and 𝑦𝑗 are observations in location 𝑖 and 𝑗, 𝜎2 is the variance of the 

Gaussian spatial process, 𝐷𝑖𝑗 is the Euclidean distance between two locations, and 휃 and 

𝜌 are Kriging parameters (range and sill). Therefore, the variogram shows the variance of 

the difference between the observations (i.e., GPD parameters) at two different locations 

(i.e., counties). Since a Gaussian spatial process is stationary and isotropic, the spatial 

correlation between two locations, does not depend on the actual coordinates of the 

locations, but it depends only on the Euclidean distance between two locations. 
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However, if our interest is in extreme values, the variogram cannot be a useful 

tool. Cooley, Naveau, and Poncet (2006) propose a modified madogram called the F-

madogram 𝑣𝐹(𝐷𝑖𝑗), which is a useful quantity to evaluate the structure of spatial 

correlation in a Gaussian random process with an extreme value distribution. Like the 

variogram, the F-madogram is interpreted as the degree of the difference between the 

parameters of two different counties. We plot the F-Madogram for the scale and shape 

parameters from the posterior values of Kriging parameters (sill and range). Figure 6 

illustrates the F-Madograms for the scale and shape parameter. A zero F-Madogram 

𝑣𝐹(𝐷𝑖𝑗) indicates perfect correlation, and a larger value of 𝑣𝐹(𝐷𝑖𝑗) indicates a smaller 

spatial correlation. The sill parameter 𝜌 involves the maximum limit of F-Madogram, 

which represents the maximum difference between the parameters in the different 

counties, and range parameter 휃 involves the distance at which the F-Madogram flattens 

out, which represents the distance that spatial correlation still remains. X-axis ℎ in Figure 

6 is the Euclidean distance between two locations (km), and Y-axis 𝑣𝐹(𝐷𝑖𝑗) represents the 

F-madogram. Therefore, an effect of spatial correlation on the parameters (scale and 

shape) at different locations remains at approximately 200km and the limit of the F-

Madogram value is approximately 0.17, indicating the maximum difference of the 

parameters (scale and shape) obtained
13

. We use R-package ‘SpatialExtremes’ to obtain 

the F-Madogram of GPD parameters.  

 

Out of sample comparison 

The next step is calculating premium rates using the selected model and evaluating out of 

sample performance. We evaluate our model compared to the model suggested by Harri 
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et al. (2011). The first step is to calculate the premium rates of each county. The premium 

rate for county 𝑖, 𝑝𝑟𝑒𝑚𝑖, for the area yield insurance contract that guarantees the 

coverage level, say 𝜆�̂�𝑖, (Ker and Coble, 2003) is 

 

(18) 𝑝𝑟𝑒𝑚𝑖 =  
𝑃(𝑦𝑖 < 𝜆�̂�𝑖)(𝜆�̂�𝑖 − 𝐸[(𝑦𝑖|𝑦𝑖 < 𝜆�̂�𝑖)])

𝜆�̂�𝑖
 

 

where 𝜆 is the coverage rate, �̂�𝑖 is the predicted yield in county 𝑖, and the expectation and 

probability measures are taken using the conditional predictive posterior distribution.  

Premium rates are calculated for both 70 and 90 percent coverage levels and 

compared to rates with the current rating method suggested by Harri et al. (2011). As 

noted, we refer to the Harri et al. (2011) model as the RMA model. Figure 7 and 8 

illustrate interpolation of 70 and 90 percent premium rates for 2014 from each model 

onto longitude-latitude space, respectively. The left figure has premium rates from the 

proposed model, and the right figure has premium rates from the RMA model. The figure 

demonstrates that the premium rates from the new model show a smoother surface than 

that of the rates from the RMA model. Further, we calculate the out-of-sample loss ratio 

for each model to compare the performance of the two models. The loss ratio is given by 

 

(19) 𝑙𝑜𝑠𝑠𝑟𝑎𝑡𝑖𝑜𝑖 = 
∑ max[𝜆�̂�𝑖𝑡 − 𝑦𝑖𝑡, 0]
𝑇
𝑡=1

∑ 𝑝𝑟𝑒𝑚𝑖𝑡�̂�𝑖𝑡
𝑇
𝑡=1
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where 𝜆 is coverage rate, �̂�𝑖𝑡 is the predicted yield of county 𝑖 at year 𝑡, 𝑦𝑖𝑡 is actual yield 

for county 𝑖 at year 𝑡, and 𝑝𝑟𝑒𝑚𝑖𝑡 is premium rate of county 𝑖 at year 𝑡, which is obtained 

from equation (18). 

The premium gains (denominator) and indemnity losses (numerator) of equation 

(19), under the proposed and RMA (Harri et al, 2011) model, are obtained using actual 

yields of each county from 2000 to 2014. Average, variance, maximum, and minimum 

loss ratio across counties for each model are presented in Table 2. The loss ratio of fairly 

rated crop insurance should equal one. The average loss ratio across the counties under 

70 and 90 percent coverage rates of the new model are 2.10 and 1.19, respectively. Both 

of the averages from the new model are closer to one than the RMA model (2.66 and 

1.43), which indicates the premiums from the new model are more fairly rated than the 

RMA model. The fourth column in Table 2 shows that the new model has a smaller 

variation of loss ratio across counties both in 70 and 90 percent coverage rates. The 

reduction in the variance of the loss ratio (8.14 to 2.40) is greater under the 70 percent 

coverage rate. Specifically, for counties with a high loss ratio under the RMA model, 

such as Alfalfa and Pottawatomie counties, the loss ratio becomes substantially closer to 

one under the new model. More details of county level loss ratios in Oklahoma from the 

RMA model and the new model are presented in Table 3. Figures 9 and 10 project the 

county level loss ratio under the 70 and 90 percent coverage rates from the new model 

and the RMA model onto longitude and latitude space. Both in 70 and 90 percent 

coverage rates, the RMA model results in large loss ratios in east central Oklahoma, 

whereas the new model has a relatively equally distributed loss ratio. The new model 

offers more flexible shapes of the tail of the density via GPD and produces spatially 
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smoothed parameters of the tail density. The new model, in particular, clearly reveals its 

accuracy in the premium calculation under the 70 percent coverage rate. The RMA model 

fits relatively well in the 90 percent coverage rate, but it tends to increasingly 

inaccurately measure the premiums as the coverage rate moves close to the tails.  

Next, similar to Harri et al. (2011), we assume a representative insurance 

company that can choose whether to retain or cede policies to the Federal Crop Insurance 

Corporation (FCIC) under the Standard Reinsurance Agreement (Coble, Dismukes, and 

Glauber 2007). The company is assumed to estimate premium rates using the proposed 

model and compare them with RMA rates. If the rates are higher than the RMA, then 

policies are ceded to the FCIC since the RMA rates are underestimated, and therefore we 

expect a loss. Whereas, if the rates are smaller than the RMA, policies are retained since 

the RMA rates are overestimated, and therefore a profit is expected from retaining the 

policy. We repeat the out-of-sample procedure over the fifteen years from 2000 to 2014 

and calculate the loss ratio of the retained and ceded policies. We then conduct a 

statistical test under the null hypothesis that the loss ratios of the two types of policies are 

identical. The ceded to retained ratio is calculated by dividing the loss ratios of ceded and 

retained policies. Under the null hypothesis, the ceded to retained ratio should equal one. 

A non-parametric bootstrap is used to calculate statistical significance
14

. The “p-value” in 

Table 4 is the type 1 error estimated from the bootstrapping method under the null 

hypothesis that the loss ratios for the ceded and retained policies are identical. The results 

in Table 4 corroborate that the incorrect premium rate calculation may result in a 

significant economic loss under the Standard Reinsurance Agreement (SRA). The ceded 

to retained ratios are 4.20 in 70 percent and 2.18 in 90 percent coverage rate, which 
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implies that the loss ratio of ceded policies is much higher than that of retained policies. 

The p-value confirms the statistical significance.  

 

Conclusions 

We provide a new approach to rate area-yield crop insurance. Two innovations are 

introduced. One is to use a Bayesian Kriging method for spatial smoothing of all 

parameters to estimate crop yield distributions across counties. The model uses spatially 

smoothed parameters of the yield distribution. The second innovation is to only estimate 

the tail of the distribution (using GPD) since that is all that matters in rating crop 

insurance. GPD allows flexible forms of the tail of the distribution and therefore more 

accurately measures the tail probability. 

Our Bayesian Kriging model has notable advantages over other types of spatial 

smoothing methods. The model produces spatially smoothed parameters of the crop yield 

density within the MCMC procedure and thus does not require additional steps for spatial 

smoothing. The weights of the spatial smoothing are measured by Euclidean distance 

between the counties and the Kriging parameters. In this context, the model is less ad hoc 

than other types of the spatial smoothing methods when imposing weights or selecting a 

boundary for the spatial effect. Further, the new model can illustrate the spatial 

correlation structure from the posterior densities of the Kriging parameters. This can 

provide important information about the spatial correlation. Our results demonstrate some 

important implications for crop insurance rating. Spatial correlations of crop yield tail 

distribution (GPD) parameters remain up to a distance of approximately 200 km. This 

result may be used for future studies as a reference when setting the proper range of the 
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effect in considering spatial correlation. In addition, our results verify the advantage of 

using GPD in measuring tail probability. The flexible tail shape of GPD contributes to 

considerable improvement in insurance rating, and the improvement is greater when 

measuring deeper tail probability. 

Several model specifications are examined to identify the quality of the candidate 

models, and the performance of the selected new model is compared to the performance 

of the RMA model. The loss ratios of the two models indicate that policies are more 

fairly rated using the new model than the RMA model. Also, the new model mitigates 

regional inequalities in loss ratios. In fact, premium rates from Bayesian Kriging could 

lead to more precise risk measurement and therefore significantly reduce inequalities in 

loss ratios across counties. 

 An important extension of this research is to develop a comprehensive model for 

other crops, including crops with a temporal trend (i.e. corn or cotton). Adding a trend 

variable into the Bayesian hierarchical structure brings a substantial increase in the scope 

of our work, and of course, this extensive modeling will lead to a significant increase in 

computational complexity. While our model does not directly include the temporal trend 

in our model structure, we can estimate the trend of crop yields outside of the model 

procedure using several types of trend estimation methods similar to Harri et al. (2011). 

Another way to incorporate trend would be to assume normality instead of GPD. One 

possible way to increase computational speed is with Hamiltonian Monte Carlo (HMC). 

HMC can be used to create efficient candidates for the Metropolis-Hastings algorithm by 

adopting Hamiltonian dynamics, and can sometimes substantially reduce the time for 

convergence. In this regard, future research should explore an extensive model that 
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covers both spatial and temporal changes with a GPD distribution. Another possible 

extension of the model is to develop a model where spatial correlation can vary by soil 

type, climate, elevation, etc. Today the availability of abundant and accurate data on 

those factors may enable developing an advanced model to estimate the crop yield 

distribution and measure tail risks. One of the great strengths of the Bayesian Kriging 

method is that it could be widely adopted not only in crop insurance rating but also in any 

area of research that involves spatial correlation. Therefore, future work can extend both 

the application and development of the model to other research areas and issues related to 

spatial correlation. 
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1
 Area protection plans were first established in 1993 under the name Group Risk Plan (GRP). 

2
 Our Bayesian Kriging model has multiple advantages over the Bayesian Model Averaging (BMA) 

approach, but there may be instances where the BMA approach could be preferred. Our approach has an 

explicit functional form for spatial correlation. Our approach yields estimates of spatial correlation 

parameters not provided by BMA. Bayesian methods are used because they allow estimating the GPD 

distribution with more precision. The BMA approach is more of a nonparametric approach to spatial 

smoothing. BMA is less restrictive than our approach, but also less precise if our restrictions are at least 

close to being true. As implemented, the BMA approach has used contiguity rather than a function of 

distance as in our model. We would also argue that our approach may be more intuitive and easier to 

explain to RMA and to producers. 

3
 To estimate the target county’s density, for example, the model not only uses the target county’s historical 

yields but also uses all other counties’ observations. The level of spatial effects (i.e., weight of the spatial 

smoothing) from other counties’ distributions to the target county is smoothly interpolated by the Euclidean 

distance between the counties and Kriging parameters in the spatial covariance function. 

4
 We fit the tail of the crop yield distribution using GPD. Note that the Bayesian spatial smoothing 

approach can also be applied to other density functions such as the normal or Generalized Extreme Value 

distribution. 

5
 We refer to the Harri et al. (2011) model as the RMA model. The exact RMA model is proprietary and not 

known. We compare our model to the Harri et al. (2011) model on which the RMA model is based. The 

RMA is believed to do some heuristic adjustments including some spatial smoothing. 

6
 Unlike Generalized Extreme Value (GEV) distribution, GPD does not have the location parameter (𝜍). 

Instead, GPD has an explicitly given threshold level 𝑢.  

7
 Since a Generalized Pareto Distribution (GPD) only fits the tail of a crop yield distribution using 

observations over an explicitly given threshold, it cannot fit an entire yield distribution. Therefore, we use a 

normal distribution to estimate expected crop yield for each county. Note that parameters of the normal 
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distribution are obtained from the same Bayesian spatial smoothing procedures with GPD parameters and 

therefore the predicted yield for each county from the estimation are spatially smoothed as well. 

8
 In the Gaussian spatial process, any subset of the field locations has a multivariate normal distribution. 

The covariance between any two locations (i.e., counties) is determined by a covariance function (or 

kernel) of the Gaussian spatial process evaluated at the spatial points of two locations.. 

9
 Note that the spatial covariance matrix Σ𝜙 is 𝑁 × 𝑁 matrix. If the covariance matrix has exponential type, 

then Σ𝜙 = 𝜌𝜙𝑒
−𝐷𝑖𝑗/𝜃𝜙 = 𝜌𝜙 [

1 𝑒−𝐷1𝑁/𝜃𝜙

⋮ ⋱ ⋮
𝑒−𝐷𝑁1/𝜃𝜙 1

]. 

10
 When the model draws from the candidate density for GPD parameters in the MCMC procedure, 

Bayesian Kriging is applied. The model generates 𝐾 MCMC draws and each random draw creates an 𝑁 × 

1 (𝑁 is the number of locations) vector 𝒛= [𝑧1, … , 𝑧𝑁]′. Note that for the 𝑘th MCMC draw, 𝒛𝑘~𝑁(0, 1), 

and therefore ∑ 𝑧𝑖𝑘
𝑁
𝑖=1 ≈ 0. Next, the model conducts a Cholesky decomposition for Σ𝜙 = 𝐀𝐀′, where 𝐀 is 

a  lower triangular matrix. Then using the equation 𝝓𝑘 = 𝝁𝑘 + 𝐀𝒛𝑘, the model draws the 𝑘th posterior 

value 𝝓, say 𝝓𝑘, from the 𝑘th posterior value of vector 𝝁𝑘 and the 𝑘th random draw vector 𝒛𝑘, and accepts 

or rejects the draw under the Metropolis-Hastings algorithm. We express this Gaussian spatial process as 

𝝓~𝑀𝑉𝐺𝑃(𝝁,  Σ𝜙). 

11
 Simply including a trend variable as an additional covariate in the process layer may seem to be the 

simplest way to reflect the temporal trend of crop yield. However, only time-invariant covariates can be 

included in the current model with the non-normal likelihood layer. Therefore, in this type of Bayesian 

setting, adding a Gaussian temporal process can be a way to consider the temporal trend of crop yield. 

12
 Since the sill parameter determines the maximum variogram value, we use the empirical variogram to 

find the prior information of the spatial structure of the GPD parameters. For some observations (i.e., GPD 

parameters) 𝑍𝑖 in location 𝑖 = 1,… , 𝑁,  empirical variogram can be defined as  

𝛾(𝐷𝑖𝑗) ≔  
1

2|𝑀(𝐷𝑖𝑗)|
∑ (𝑍𝑖 − 𝑍𝑗)

2

(𝑖,𝑗)∈𝑀(𝐷𝑖𝑗)

 

where 𝑀(𝐷𝑖𝑗) is the number of possible pairs of location 𝑖 and j, 𝐷𝑖𝑗 is Euclidean distance. 
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13

 An F-madogram (𝜈𝐹𝑖𝑗) is similar to a variogram. Unlike a varioram, the F-madogram transforms the 

observations using a Fr�́�chet marginal and calculates the expectation of absolute difference of the 

transformed values between two locations, 𝜈𝐹𝑖𝑗 = 
1

2
E [|exp (−

1

𝑦𝑖
) − exp (−

1

𝑦𝑗
)|]. The 0.17 of F-madogram 

indicates that the maximum value of F-madogram within all possible pairs of two locations in the dataset. 

14
 Similar to Harri et al. (2011), we first pool insurance rates for the counties from the RMA method and the 

proposed method. Then each pool of premium rates from the two methods has 39 times 15 observations, 

where 39 is the number of counties and 15 is the number of years. Using the pool of premium rates, we 

draw 10,000 samples with 15 observations from the non-parametric bootstrapping method. By comparing 

the premium rates from the two approaches, we group the rates under the ceded and retained policies, and 

calculate the loss ratio under the retained and ceded policies. From this procedure, we have the distribution 

of the loss ratio under the null hypothesis that premium rates from the two methods are identical. Finally, 

we compare the bootstrapped samples with actual loss ratio and obtain the p-value. 
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Table I-1. Deviance Information Criterion (DIC) for Models of Oklahoma County Wheat Yield 

Spatial 

Effect 
Model Specification �̅� 𝑝𝐷 DIC 

No spatial 

smoothing 
Model 0 𝜙𝑖 =  𝛽0 + 휀𝑖 11517 40 11557 

Matern Model 1 𝜙𝑖 =  𝛽0 + 휀𝑖 11442 41 11483 

 Model 2 𝜙𝑖 =  𝛽0 + 𝛽1�̅�𝑖 + 휀𝑖 11440 43 11483 

 Model 3 𝜙𝑖 = 𝛽0 + 𝛽1𝑙𝑜𝑛𝑖 + 𝛽2𝑙𝑎𝑡𝑖 + 휀𝑖 11441 45 11486 

 Model 4 𝜙𝑖 = 𝛽0 + 𝛽1�̅�𝑖 + 𝛽2𝑙𝑜𝑛𝑖 + 𝛽3𝑙𝑎𝑡𝑖 + 휀𝑖 11439 48 11487 

exponential Model 5 𝜙𝑖 =  𝛽0 + 휀𝑖 11441 40 11481 

 Model 6 𝜙𝑖 =  𝛽0 + 𝛽1�̅�𝑖 + 휀𝑖 11440 44 11484 

 Model 7 𝜙𝑖 = 𝛽0 + 𝛽1𝑙𝑜𝑛𝑖 + 𝛽2𝑙𝑎𝑡𝑖 + 휀𝑖 11439 45 11484 

 Model 8 𝜙𝑖 = 𝛽0 + 𝛽1�̅�𝑖 + 𝛽2𝑙𝑜𝑛𝑖 + 𝛽3𝑙𝑎𝑡𝑖 + 휀𝑖 11440 48 11488 
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 Table I-2. Estimated Loss Ratio under the New Model and RMA (Harri et al, 2011) Model 

Model 
Coverage Rate 

(%) 

Mean Loss 

Ratio 

Variance of 

Loss Ratio 
Max Loss Ratio Min Loss Ratio 

RMA 70 2.66 8.14 15.72 0.00 

 90 1.43 0.36 3.07 0.47 

New model 70 2.10 2.40 5.35 0.05 

 90 1.19 0.21 2.21 0.35 
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Table I-3. County Level Loss Ratios of New Model and RMA (Harri et al, 2011) Model 

County 
New model  RMA model 

70% 90%  70% 90% 

Alfalfa 3.62 1.25  5.57 2.47 

Beaver 0.33 0.68  0.77 0.90 

Blaine 2.48 1.29  2.25 1.48 

Caddo 0.58 0.83  0.04 0.75 

Canadian 1.54 1.08  4.93 1.67 

Cimarron 0.76 0.82  6.88 2.39 

Cleveland 4.51 1.34  6.33 2.07 

Comanche 2.24 1.65  1.00 1.03 

Cotton 3.88 1.90  1.49 1.27 

Craig 0.35 0.35  1.01 0.71 

Custer 2.28 1.22  1.37 1.45 

Dewey 3.57 1.75  3.14 1.84 

Garfield 5.34 1.48  5.12 1.41 

Garvin 0.50 0.56  1.07 0.87 

Grady 1.68 1.43  0.33 1.21 

Grant 3.51 1.44  1.46 1.07 

Greer 1.14 1.00  1.31 1.16 

Harper 1.11 1.27  0.67 1.02 

Kay 3.86 1.84  1.63 1.77 

Kingfisher 1.61 0.88  2.37 1.76 

Kiowa 0.62 1.08  0.37 1.06 

Logan 5.08 1.71  1.20 1.65 

Major 0.38 0.84  0.22 0.69 

Mayes 0.43 0.52  2.38 1.10 

McClain 2.35 0.61  0.86 0.48 

Noble 5.25 2.21  5.06 1.94 

Oklahoma 0.22 0.67  3.51 1.77 

Osage 1.12 1.04  2.17 1.21 

Ottawa 2.46 1.18  3.92 1.77 

Pawnee 2.33 1.77  0.14 0.74 

Payne 2.55 1.66  1.92 2.13 

Pottawatomie 0.48 0.94  15.72 3.08 

Roger Mills 1.00 0.80  4.71 1.84 

Stephens 0.06 0.72  0.00 0.62 

Tillman 2.48 1.64  1.85 1.42 

Wagoner 3.30 1.82  3.94 2.56 

Washita 1.28 0.66  4.24 1.25 

Woods 4.08 1.54  1.76 1.49 

Woodward 1.29 0.81  0.83 0.78 
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Table I-4. Loss Ratio for Ceded and Retained Policies 

Coverage 

Rate 

Loss ratio of 

Ceded 

Policies 

Loss ratio of 

Retained 

Policies 

Ceded to 

Retained Ratio 

Percent of 

Retained 

Policies 

p-value 

70% 5.34 1.27 4.20 0.38 0.017 

90% 2.44 1.12 2.18 0.26 0.046 
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  Figure I-1. Histogram of MLE estimates for parameters of GPD. 
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 Figure I-2. Schematic of the Bayesian hierarchical structure for the spatial smoothing
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    Figure I-3. Box plot of county level wheat yield in Oklahoma (1970 – 2014). 
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     Figure I-4. Posterior densities of scale and shape parameters for Beaver (left) and Oklahoma (right) county.  



 
 

40 
 

 

        Figure I-5. Posterior densities of Kriging parameters 
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        Figure I-6. F-Madogram of scale (left) and shape parameters (right) 
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Figure I-7. 70% Premium rates from new model (left) and RMA (Harri et al, 2011) model (right) 
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Figure I-8. 90% Premium rates from new model (left) and RMA (Harri et al, 2011) model (right) 
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Figure I-9. Loss ratio (70% coverage rate) of new model (left) and RMA (Harri et al, 2011) model 

(right). 

  

-10.2

-10

-9.8
-9.6

3.45

3.5

3.55

3.6

3.65

0

5

10

15

 

longitude
lattitude

 

lo
s
s
ra

ti
o

longitude

la
tt

it
u

d
e

 

 

-10.2 -10.1 -10 -9.9 -9.8 -9.7 -9.6 -9.5

3.45

3.5

3.55

3.6

3.65

2

4

6

8

10

12

14

-10.2
-10

-9.8

-9.6

3.45
3.5

3.55
3.6

3.65

0

5

10

15

longitudelattitude

lo
s
s
ra

ti
o

longitude

la
tt

it
u

d
e

 

 

-10.2 -10.1 -10 -9.9 -9.8 -9.7 -9.6 -9.5

3.45

3.5

3.55

3.6

3.65

2

4

6

8

10

12

14



 
 

45 
 

  

        

Figure I-10. Loss ratio (90% coverage rate) of new model (left) and RMA (Harri et al, 2011) model 

(right). 
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CHAPTER II 

 
SPATIALLY SMOOTHED CROP YIELD DENSITY ESTIMATION: 

PHYSICAL DISTANCE VS CLIMATE SIMILARITY 

Abstract 

Crop yield density tends to be spatially correlated because nearby areas share similar 

climate and agronomic characteristics. Many crop insurance studies have pointed out that 

the spatial yield correlation should be considered to provide more precise premium 

rating. Bayesian Kriging for spatial smoothing offers a promising way to use such spatial 

correlation when estimating crop yield densities. This article contributes to agricultural 

economics literature by providing a spatial smoothing method based on a climate space, 

which is composed of climatological measures. We compare the spatial smoothing from 

the climate space and a general physical space (longitude-latitude space) to evaluate the 

performance of each method. We use loss ratio of crop insurance to test the performance 

for county level yearly corn yield data from six U.S. states. Spatial smoothing from 

climate space dominates the results from the physical space in out-of-sample prediction 

and mitigates regional inequalities in crop insurance loss ratios. The climate space 

notably outperforms the physical space in Colorado that has varying climate due to its 

varying topography.
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Key words: Bayesian hierarchical structure, Bayesian spatial smoothing, Bayesian 

Kriging, climate space, crop insurance, crop yield similarity, physical space, spatial 

correlation. 

 

Introduction 

Yields of a given crop tend to be spatially correlated due to agronomical and 

climatological similarity of nearby areas. A risk inherent in crop yield, therefore, can also 

be spatially correlated due to such spatial correlation in crop yields. As a result, shortfalls 

of crop yield in a particular region, such as a county or district, usually tend to be 

correlated with shortfalls of yield in the neighboring regions. Previous literature (Annan 

et al. 2014; Du et al. 2015; Goodwin 2015; Ker, Tolhurst, and Liu 2015; Woodard 2016) 

has discussed this issue and pointed out that considering spatial correlation could more 

accurately measure downside yield risk and thus reduce adverse selection in crop 

insurance. 

Several statistical methods have been suggested in agricultural economics 

literature to reflect the spatial correlation in estimating crop yield density. For example, 

Goodwin and Ker (1998) use pooled observations from surrounding counties. Ozaki et al. 

(2008) use a spatial weighting matrix in an attempt to consider spatial correlation in crop 

yield. They impose uniform weights on parameter estimates from surrounding counties 

but impose zero weights beyond the surrounding counties. Ozaki and Silva (2009) 

propose a skewed normal multivariate conditional yield distribution for spatial 

smoothing. However, similar to Ozaki et al. (2008), they do not consider correlation 

beyond surrounding counties. Current area-based crop insurance programs are rated with 
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a model suggested by Harri et al. (2011). To reflect the spatial correlation, the model 

imposes a district level restriction on the county level parameters. Other studies consider 

spatial correlation using Bayesian Model Averaging (BMA). Ker, Tolhurst, and Liu 

(2015) estimate a posterior density for each county using observations of each county and 

then take Bayesian averaging of its own posterior density and densities from other 

counties. Woodard (2016) employs BMA to get a weighted average of county and district 

level parameters. More recently, Park, Brorsen, and Harri (2016) suggest Bayesian 

Kriging as a method for spatial smoothing. Their Bayesian Kriging approach produces 

spatially smoothed parameter estimates that vary smoothly over space. Their weight for 

smoothing is determined by a physical distance in longitude-latitude space (i.e., physical 

space).  

In addition to the Bayesian Kriging method for spatial smoothing under the 

traditional way of using physical space, we offer an alternative spatial smoothing under a 

space with climatological coordinates, which is a climate space. The climate space uses 

temperature and precipitation as coordinates rather than latitude and longitude. We use an 

average number of days in months (July and August) with maximum temperature greater 

than or equal to 90℉ (DT90) and a total average precipitation amount (𝑚𝑚) for the 

months from May to August (TPCP) as the two axes. In this application, our focus is on 

how the distribution of crop yield varies over two different types of spaces (physical and 

climate space). We then compare the performances of the estimates from these two 

spaces using a loss ratio under a crop insurance program. 

The primary goal of the article is to suggest a new method for actuarially accurate 

crop insurance rating considering the spatial correlation of the crop yield densities. We 
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extend the Bayesian Kriging spatial smoothing method to use climate space instead of 

physical distance. We are not aware of any literature in agricultural economics that uses 

spatial smoothing based on climate space. We evaluate and compare the performances of 

the spatial smoothing from physical space and from climate space.  

We choose corn as a crop for evaluating the performance of each model. We 

utilize annual county level yield data from the National Agricultural Statistics Service 

(NASS) for Iowa, Illinois, Nebraska, Minnesota, Indiana, and Colorado from 1955 to 

2014. We find that climate space performs better or at least similar to physical space in 

every state in the dataset. Specifically, in Colorado and Nebraska, climate space 

substantially mitigates regional inequalities of loss ratio for crop yield densities.  

 In the following section, we discuss a theoretical framework for Bayesian 

hierarchical structure of our Bayesian Kriging method. In the empirical application 

section, we explain the dataset used for empirical estimation and describe two different 

types of smoothing spaces. We then introduce premium calculating procedures for 

evaluating the performance of the models from the different smoothing spaces. The last 

section has conclusions. 

 

Theoretical Framework 

We use a Kriging method for spatial smoothing. Kriging is a geostatistical spatial 

interpolation method that has been actively employed in a broad variety of disciplines. 

The method assumes that spatial correlation (i.e., density similarity) varies smoothly and 

decreases with the distance between locations. Note that regardless of which space 
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(physical or climate) is used for the spatial smoothing, the estimation procedure is 

identical. 

 

Overview of the Bayesian hierarchical structure 

The Kriging method here is estimated under a Bayesian hierarchical structure. A 

Bayesian hierarchical model can be specified when Bayesian modeling structure can be 

written in multiple levels (i.e., hierarchies). In a Bayesian hierarchical framework, 

therefore, a prior distribution of the general Bayesian model can also be structured as 

additional prior parameters, called hyper-priors.  

We consider two types of specifications for the process layer: a Gaussian spatial 

process type (GP) and an auto-regressive type with Gaussian spatial process
1
 (AR). GP 

only considers spatial correlation of the crop yield distribution based on the Gaussian 

spatial process whereas AR takes into consideration both spatial and temporal correlation 

(spatio-temporal) using the Gaussian spatial process and the auto-regressive process. 

Both GP and AR can be represented in the Bayesian hierarchical structure with three 

layers: likelihood layer, process layer, and prior layer. In the likelihood layer of the 

hierarchy, the crop yield distribution for each county is assumed to follow a normal 

distribution. Second, the process layer models the spatial and temporal structure for 

parameters of the crop yield distribution. In this layer, we only model the hierarchical 

structure of mean parameter 𝜇 of the crop yield distribution
2
. The process layer has both 

deterministic and stochastic effects. The deterministic part of the process at each county 

is determined by a set of explanatory variables of the county and the stochastic part will 

operate the spatial and temporal smoothing process. The third layer of the hierarchy 
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consists of the prior density for the coefficients of the explanatory variables and Kriging 

parameters to conduct spatial smoothing, which are called hyper priors. The hierarchy we 

use can be structured as,  

(1) 

                                           𝒀| 𝝁𝑡, 𝚯 ~ 𝑝1(𝒀 | 𝝁𝑡, 𝚯) 

                                                𝝁𝑡 | 𝚯 ~ 𝑝2(𝝁𝑡 | 𝚯) 

                                                       𝚯 ~ 𝑝3(𝚯) 

where 𝑝1, 𝑝2, and 𝑝3 are the density associated with each layer of the hierarchy, 

likelihood layer, process layer, and prior layer, respectively, 𝒀 is a matrix of crop yields 

that spans all counties (𝑛 = 1, … , 𝑁) and all years (𝑡 = 1,… , 𝑇), 𝝁𝑡 is a vector of the 

mean parameters of the likelihood function at year 𝑡 that contains all counties, where 

𝝁𝑡 = [𝜇1𝑡, … , 𝜇𝑁𝑡]′, and 𝚯 is a vector of hyper parameters, where 

𝚯 = [𝛽1, … , 𝛽𝐾, 𝜔, 휃, 𝜌, 𝜎
2]′. 

By Bayes’ theorem, the joint posterior distribution of the model is  

 

(2) 𝑝(𝝁𝑡, 𝚯 | 𝒀)  ∝  𝑝1(𝒀 | 𝝁𝑡, 𝚯)𝑝2(𝝁𝑡 | 𝚯)𝑝3(𝚯). 

  

Therefore, the joint posterior density of the model 𝑝(𝝁𝑡, 𝚯 | 𝒀) is proportional to the 

multiplication of the three layers of the hierarchy, which will be specified in the 

following subsections. 

 

Likelihood layer 
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A likelihood function of the crop yield distribution forms the first layer of the model. 

Both GP and AR assume that the crop yield of each county follows a normal distribution. 

Then, the first layer of the model, the likelihood layer is 

(3) 𝑝1(𝒀| 𝝁𝑡, 𝚯)  =  ∏
1

√2𝜋𝜎2
exp 

(𝒚𝑡 − 𝝁𝑡)′(𝒚𝑡 − 𝝁𝑡)

2𝜎2

𝑇

𝑡=1

 

where 𝒚𝑡 denotes a vector of crop yield at year 𝑡 that spans all counties, 𝒚𝑡 =

[𝑦1𝑡, … , 𝑦𝑁𝑡]′, 𝝁𝑡 is a vector of the mean parameter at year 𝑡 that includes all counties, 

and 𝚯 is a vector of hyper parameters, 𝚯 = [𝛽1, … , 𝛽𝐾, 𝜔, 휃, 𝜌, 𝜎
2]′. 

 

Process layer 

In the second layer of the hierarchy, we model the spatial process of mean parameters 𝜇 

for each GP and AR accounts for spatial / spatial and temporal correlations relevant to 

crop yield distribution. Since we assume a Gaussian spatial process, mean parameters of 

all counties are assumed to be multivariate normally distributed
3
. Spatial and temporal 

smoothing for the parameter 𝝁𝑡 is conducted from the stochastic part of the process via 

Gaussian spatial process and first order autoregressive, AR(1), process. The level of 

spatial dependence is measured from a spatial covariance matrix with Kriging 

parameters, which captures the detailed spatial structure for the mean parameters 𝝁𝑡.  

First, the Gaussian spatial process (GP) allows spatial correlation of crop yield. 

The GP is specified as, 
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(4) 

 𝝁𝑡 = 𝝍𝑡 + 𝜼 + 𝜺𝑡, 

𝝍𝑡 = 𝑿𝑡𝜷 

𝜼 ~𝑀𝑉𝐺𝑃(Σ), 

Σ𝜂 = 𝜌𝜂𝑒
−𝐷𝑖𝑗/𝜃𝜂 , 

𝜺𝑡~𝑀𝑉𝑁(𝟎,  𝜎
2𝑰), 

where 𝝁𝑡 is a vector of mean parameter for crop yield distribution at year 𝑡 that contains 

all counties, 𝝁𝑡 = [𝜇1𝑡, … , 𝜇𝑁𝑡]′, 𝝍𝑡 deterministic part of the mean structure, 𝑿𝑡 is a 𝑇 by 

𝐾 matrix of explanatory variables that determine the mean structure at time 𝑡 such as 

historical moving average yield level of each county and trend variable, 𝜷 is a 𝐾 by 1 

vector of coefficients of explanatory variables 𝜷 = [𝛽1, … , 𝛽𝐾]′ , 𝜼 is the spatial random 

effects, 𝜼 =  [휂1, … , 휂𝑁]′ that is assumed to follow a multivariate Gaussian process with 

exponential type spatial covariance matrix, Σ = 𝜌𝑒−𝐷𝑖𝑗/𝜃, which is a function of 

Euclidean distance (𝐷𝑖𝑗) between counties 𝑖 and 𝑗, sill parameter 𝜌, and range parameter 

휃, and 𝜺𝑡 is a non-spatial error component. In empirical part, we obtain the parameter 

estimates under the two different types of spatial smoothing structure: traditional physical 

space and climate space. Therefore, the distance 𝐷𝑖𝑗 between two counties in the spatial 

covariance matrix will be differently measured in accordance with which spatial space is 

used. 

The second type of specification is an auto-regressive model with Gaussian 

spatial process (AR). The AR is defined as, 

(5) 𝝁𝑡 = 𝜔𝝁𝑡−1 +𝝍𝑡 + 𝜼 + 𝜺𝑡, 
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𝝍𝑡 = 𝑿𝑡𝜷 

𝜼 ~ 𝑀𝑉𝐺𝑃(Σ), 

Σ = 𝜌𝑒−𝐷𝑖𝑗/𝜃, 

𝜺𝑡~𝑀𝑉𝑁(𝟎,  𝜎
2𝑰), 

where 𝝁𝑡−1 is a vector of lagged mean parameter for crop yield distribution at year 𝑡 − 1 

that contains all counties, 𝝁𝑡 = [𝜇1𝑡−1, … , 𝜇𝑁𝑡−1]′, 𝜔 denotes the temporal correlation 

parameter under the first order auto regressive process that is assumed to be in the 

interval, −1 < 𝜔 < 1, and all other parameters are identical to the GP model. Obviously, 

for 𝜔 = 0, AR is exactly the same as the GP model.   

The AR addresses temporal correlation of the crop yield together with its spatial 

correlation. Some factors that affect crop yield realizations (i.e., climate) tend to be 

correlated, both spatially and temporally, and thus adjacent counties would experiences 

spatial correlations of crop yields over multiple periods of time. The AR specification 

reflects these spatio-temporal aspects of the crop yield densities. 

From the process for the mean parameters, the vector of the parameter 𝝁𝑡 given 

the parameters , 𝜔, 휃, 𝜌, and 𝜎2 follows 

(6) 𝝁𝑡 |  𝛽, 𝜔, 휃, 𝜌, 𝜎
2  ~  𝑀𝑉𝐺𝑃(𝝍𝑡,   Σ ). 

Then the process layer densities for GP and AR model can be specified as equation (7) 

and (8), respectively,  

(7) 𝑝2(𝝁𝑡|𝚯) =  
1

√(2𝜋)𝑁|Σ|
exp [−

1

2
(𝝁𝑡 −𝝍𝑡)

′Σ−1(𝝁𝑡 −𝝍𝑡)] 
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(8) 𝑝2(𝝁𝑡|𝚯) =  
1

√(2𝜋)𝑁|Σ|
exp [−

1

2
(𝝁𝑡 − 𝜔𝝁𝑡−1 −𝝍𝑡)

′Σ−1(𝝁𝑡 − 𝜔𝝁𝑡−1 −𝝍𝑡)] 

where 𝝍𝑡 is a vector of the deterministic part of the mean process at time 𝑡 defined by 

equations (4) and (5), and  𝚯 = [𝛽, 𝜔, 휃, 𝜌, 𝜎2]′ is a vector of hyper-parameters, Σ is 

spatial covariance parameter, where Σ = 𝜌𝑒−𝐷𝑖𝑗/𝜃. Since we are in the Bayesian 

framework, the parameters of the crop yield process are treated as random variables. 

Therefore, we impose independent priors for the hyper parameters (𝛽,𝜔, 휃, 𝜌, 𝜎2) in the 

following prior layer.  

 

Prior layer 

The third layer of the hierarchy has the priors for the hyper-parameters 𝚯, which are 

parameters for explanatory variables, Kriging parameters, and variance parameter in the 

process layer. Since the model assumes the parameters in the prior layer are independent, 

a multiplication of each prior for the hyper parameters forms the prior layer. For 

convenience, we group the hyper parameters into three different types depending on their 

role in the process layer: coefficient, variance, and Kriging parameters. First, all 

coefficient parameters in the process layer 𝛽1, … , 𝛽𝑘 and 𝜔 are given normal priors. We 

impose 𝑁(0, 104) priors for each of the coefficient parameters. For the variance 

parameter 𝜎2, we impose general inverse gamma priors 𝐼𝐺(0.1, 0.1) same as Ozaki et al. 

(2008). However, imposing priors for the Kriging parameters (𝜌, 휃), which describe the 

spatial structure of the Gaussian spatial process, is more problematic than the other 

priors. There is a large Bayesian statistics literature (Berger, DeOivelira, and Sanso 2001; 

Banerjee, Carlin, and Gelfand 2004; Cooley, Nychka, and Naveau 2007) regarding 
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consistency of proper priors for the Kriging parameters that argues improper priors for 

such parameters may induce significant improper posteriors. Some statistics literature 

(Banerjee, Carlin, and Gelfand 2004; Sahu, Gelfand, and Holland 2006; Cooley, Nychka, 

and Naveau 2007) suggest an empirical Bayes method in which the Kriging priors are 

estimated from the empirical data to avoid improper priors. In this regards, we use the 

empirical information to find the priors of the Kriging parameters. Since the sill 

parameter 𝜌 determines the maximum level of the variogram, which is a function 

describing the degree of spatial correlation of a stochastic spatial process, an empirical 

variogram is a general way to collect prior information about the sill parameter. 

Therefore, we first estimate the mean parameter of each county using maximum 

likelihood. Then using the estimated MLE parameters for each county, we fit the 

empirical variogram.
4
 The results of the empirical variogram are used to impose inverse 

gamma prior for the sill parameter 𝜌 since the value of sill parameter determines 

maximum of variogram. Two parameters of the inverse gamma prior are obtained from 

maximum likelihood by using the empirical variogram values.  

The next step is to find the prior distributions for the range parameter 휃. We use 

prior empirical distance information of the empirical data to impose prior for the range 

parameter since the range parameter 휃 determines maximum distance of the spatial effect. 

Two parameters of gamma prior for the range parameter 휃 are imposed based on the 

previous empirical distance information and maximum likelihood estimation. 

With the priors as above, the third layer in equation (2) can be expressed as 

(9) 𝑝3(𝚯) =  𝑝(𝛽𝑘)𝑝(𝜔)𝑝(𝜌𝜂)𝑝(휃𝜂)𝑝(𝜎
2). 
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Joint posterior distribution 

We now have densities for each hierarchy, 𝑝1(𝒀 | 𝝁𝑡, 𝚯), 𝑝2(𝝁𝑡 | 𝚯), and 𝑝3(𝚯) from the 

previous sections. The joint posterior distributions for our model can be obtained by 

multiplying these three layers. The logarithm of the joint posterior distributions of the GP 

is  

(10) 

log 𝑝(𝝁𝑡, 𝚯 | 𝒀) ∝  −
𝑁𝑇

2
log 𝜎2 −

1

2𝜎2
 ∑(𝒚𝑡 − 𝝁𝑡)′(𝒚𝑡 − 𝝁𝑡)

𝑇

𝑡=1

−
∑ log|Σ|𝑇
𝑡=1

2
  

−
1

2
∑ (𝝁𝑡 −𝝍𝑡)

′Σ−1(𝝁𝑡 −𝝍𝑡)
𝑇
𝑡=1 + log (𝑝3(𝚯)).    

Likewise, the logarithm of the joint posterior distributions of the AR is    

(11) 

log 𝑝(𝝁𝑡, 𝚯 | 𝒀) ∝  −
𝑁𝑇

2
log 𝜎2 −

1

2𝜎2
 ∑(𝒚𝑡 − 𝝁𝑡)′(𝒚𝑡 − 𝝁𝑡)

𝑇

𝑡=1

−
∑ log|Σ|𝑇
𝑡=1

2
  

−
1

2
(𝝁𝑡 − 𝜔𝝁𝑡−1 −𝝍𝑡)

′Σ−1(𝝁𝑡 − 𝜔𝝁𝑡−1 −𝝍𝑡)  + log(𝑝3(𝚯)).    

 

Empirical Application 

Our study uses county-level yearly corn yield data from NASS. The data contains 1955-

2014 annual yields (bushels per acre) for Iowa, Illinois, Nebraska, Minnesota, Indiana, 

and 1963-2009 for Colorado. Counties with missing observations are discarded. 

Therefore, the final dataset includes 99 counties for Iowa, 77 for Illinois and Nebraska, 

68 for Minnesota, 75 for Indiana, and 18 counties for Colorado. 

The states of Iowa, Illinois, and Nebraska have been the first, second and third 

largest corn producers in the United States. In 2015, Iowa produced around 2.5 billion 
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bushels of corn, Illinois produced 2.01 billion bushels of corn, and Nebraska produced 

1.7 billion bushels of corn (2015 state agriculture overview, NASS). Minnesota and 

Indiana are fourth and fifth largest corn producer in the United States, respectively. 

Colorado is the fourteenth largest corn producer in the United States. Colorado is located 

where the Great Plains of North America connects with the Rocky Mountains. Colorado 

is included because it has more varying climatic conditions than the other states.  

 A coordinate of the physical space consists of longitude and latitude of each 

county and thus the spatial smoothing from the physical space uses Euclidean distance 

between the locations on the physical space (i.e., physical distance). On the other hand, a 

coordinate of each point in the climate space is given by its climatological quantities. 

Therefore, spatial smoothing based on climate space uses the Euclidean distance between 

the locations on the climate space, which reflects climatological similarity between the 

locations
5
. From this climate space, we construct the spatial structure that relates the 

parameters of the crop yield density to the climate characteristics of the locations.  

 Several empirical studies have tried to determine the relationship between climate 

factors and crop yields. Schlenker and Roberts (2009) estimate the impact of climate 

change on agricultural output using panel data. They find that temperature above a 

threshold level has a negative impact on crop yields since it increases heat exposure and 

water stress. They use temperature and precipitation as the main climate variables for 

their research. Other related studies (Hendricks and Peterson 2012; Lobell et al. 2013; 

Dell, Jones, and Olken 2014) employ temperature and precipitation as explanatory 

variables. In accordance with the previous literature, we choose temperature and 

precipitation of each location as the climate coordinates.  
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The data for the climate space are collected from the Global Historical 

Climatology Network Database (GHCND) under the National Oceanic and Atmospheric 

Administration (NOAA). GHCND includes 18 meteorological variables including 

temperature (monthly means, extremes, and number of days that exceed a threshold), 

precipitation (total, mean, extremes), and snowfall, snow depth, and some other elements 

for each weather station. The climatological quantities for our climate space are a set of 

collected data over an extended period of time. Therefore, an average number of days in 

months (July and August) with maximum temperature greater than or equal to 90℉ 

(DT90) and an average precipitation amount (𝑚𝑚) for the months from May to August 

(TPCP) from 1955 to 2014 are used as the climate coordinates. We take an average of the 

climate quantities from the counties with multiple weather stations. Counties with no 

weather stations (5 counties in all dataset) are discarded from our dataset. 

In the climate space, counties with similar climate features are grouped together 

even when their locations are physically distant. Colorado has diverse geographical 

features, including mountainous terrain, vast plains, desert canyons, and mesas. For that 

reason, we expect that Colorado has diverse climate conditions as well so that county 

locations in Colorado on the two different spaces are substantially different. Figure 1 

translates county locations in Colorado from the physical space (longitude/latitude) to the 

climate space (DT90/TPCP). The x-axis of the climate space is DT90 and the y-axis is 

TPCP. In contrast to Colorado, counties in corn-belt states such as Iowa tend to be 

grouped together in the climate space as well as in the physical space. The reason may be 

that the counties in Iowa have similar geographical features and thus nearly located 

counties have similar climate characteristics as well. Therefore, we expect that distances 
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among the counties in Iowa on the physical space and the climate space are closely 

related. 

To verify the difference between these two states, we calculate correlations 

between the distances from two different spaces
6
. As with our expectation for the two 

states, the correlations between two types of distances are 0.47 in Iowa and -0.09 in 

Colorado. This fact may result in considerable differences in the spatial smoothing 

estimation from the two different spaces, and yield more substantial difference in 

Colorado than in Iowa.  

 

Posterior predictive distribution 

As suggested by Ozaki et al. (2008), we compute premium rates from posterior predictive 

values. The posterior predictive distribution 𝑝(𝒚∗| 𝒀) is obtained by integrating over the 

parameters with respect to the joint posterior distributions, 

(12) 𝑝(𝒚∗| 𝒀) =   ∫ ∫ 𝑝1(𝒚
∗| 𝝁, 𝚯)𝑝2(𝝁

∗ | 𝝁,𝚯)𝑝(𝝁,𝚯 | 𝒀)𝑑𝚯𝑑𝝁

𝚯𝝁

, 

where 𝑝1(𝒚
∗| 𝝁, 𝚯) is the density of the likelihood layer, 𝑝2(𝝁

∗ |𝝁,𝚯) is the density of 

the process layer, 𝑝(𝝁,𝚯 | 𝒀) is the posterior density of the model obtained from Markov 

Chain Monte Carlo (MCMC) procedure
7
, 𝝁∗ and 𝒚∗ are vector of posterior predicted 

mean parameters and crop yields, respectively. Note that 𝝁∗ and 𝒚∗ can denote either or 

both of a new location (county) and a new time point (year). Conceptual steps for 

prediction are as follows. First, vectors of random samples 𝝁 and 𝚯 are drawn from the 

posterior density 𝑝(𝝁,𝚯 | 𝒀). Then the Bayesian spatial smoothing (Kriging) for 𝝁∗ is 

applied from the process layer 𝑝2(𝝁
∗ | 𝝁,𝚯) by updating conditional distribution for 
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𝝁∗ given the current values of 𝝁,𝚯 in each iteration of the MCMC algorithm. Finally, the 

vector of predicted yields 𝒚∗ is drawn from the likelihood layer density 𝑝1(𝒚
∗| 𝝁, 𝚯). 

 One important advantage of using the Kriging method is to get densities of 

counties with insufficient historical observations (i.e., missing observation) or even no 

observations. Since Kriging identifies a spatial structure for explaining a variation of 

densities across space, we can predict densities of locations with no historical 

observations using the Kriging parameters and posterior predictive formula in equation 

(12)
8
. 

The prediction quality of the model is evaluated by calculating the Predictive 

Model Choice Criteria (PMCC) suggested by Gelfand and Ghosh (1998), which is 

defined as, 

(13) 𝑃𝑀𝐶𝐶 =∑𝐸[(𝒚𝑡
∗ − 𝒚𝑡)′(𝒚𝑡

∗ − 𝒚𝑡)] + 𝑣𝑎𝑟(𝒚𝑡
∗)

𝑇

𝑡=1

,  

where 𝒚𝑡
∗ denotes a vector of predicted yield level at year 𝑡, and 𝒚𝑡 is a vector of actual 

yields at year 𝑡. The first term of the PMCC represents the goodness of fit of the model, 

and the second term represents a penalty of model complexity. Several specifications for 

deterministic parts of GP and AR are tested as potential candidates for the empirical 

analysis. A model with lower PMCC is chosen as the preferred model. We test multiple 

different specifications for the process layer structure with a moving average term for 

historical yields (from last five years to ten years), simple linear trend, and quadratic 

linear trend. Among these alternatives, the model including five years of moving average 

and simple linear trend minimizes PMCC and thus is selected as our main model. The 
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main model for the GP can be expressed according to the following structure for the 

process layer, 

(14) 𝝁𝑡 = 𝛽0 + 𝛽1�̅�𝑡 + 𝛽2𝒕 + 𝜼 + 𝜺𝑡, 

and for the AR model,  

(15) 𝝁𝑡 = 𝜔𝝁𝑡−1 + 𝛽0 + 𝛽1�̅� + 𝛽2𝒕 + 𝜼 + 𝜺𝑡, 

where �̅�𝑡 is a vector of current five years average of yields, �̅� =  [ �̅�1, … , �̅�𝑁]′, and 𝒕 is a 

vector of trend variable 𝒕 =  [ 𝑡1, … , 𝑡𝑁]′. 

Several R-packages provide MCMC algorithms for Bayesian Kriging estimation. We 

mainly use spTimer, spBayes, and SpatialExtremes packages. These packages are used to 

estimate posterior distributions, posterior predictive distributions, and PMCC of the 

models. We run 20,000 iterations for MCMC chains and burn-in the first 5,000 

observations to avoid an autocorrelation problem of the posterior values. We check for all 

parameters the graphical diagnostics of convergence using trace plots and autocorrelation 

plots. All posterior densities achieve fast convergence with no significant autocorrelation. 

To save space, Table 1 presents only the averages and standard deviations of the posterior 

parameter values for the four states in the dataset. Two leading states in the corn-belt 

area, Iowa and Illinois, show similar posterior parameter values. Both states have very 

small levels of temporal correlation parameter ω (0.01 for Iowa and 0.02 for Illinois) and 

thus the parameter of the current five year average yields (𝛽1) and trend parameter (𝛽2) 

differ little between the GP and the AR. In contrast, we find a notable level of temporal 

correlations (𝜔) in Nebraska and Colorado (0.37 for Nebraska and 0.57 for Colorado). 
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The results indicate that the two leading states in the corn-belt area (Iowa and Illinois) 

have a more steadily increasing trend than Nebraska and Colorado. 

 

Out of sample performance 

Providing actuarially sound premiums is an essential task to RMA. Crop producers will 

turn down insurance contracts when the premiums are overrated and may result in an 

adverse selection problem. Likewise, underrated premiums may induce insurance losses 

to agencies. The premium rate of crop insurance represents expected payouts as a 

proportion of total liability. The premium rate can be structured as 

(16) 𝑝𝑟𝑒𝑚𝑖 =  
𝑃(𝑦𝑖 < 𝜆�̂�𝑖)(𝜆�̂�𝑖 − 𝐸[(𝑦𝑖|𝑦𝑖 < 𝜆�̂�𝑖)])

𝜆�̂�𝑖
 

where 𝜆 is the coverage level, 0 < 𝜆 < 1, �̂�𝑖 is an expected crop yield at county 𝑖. 

 The premium rates can be estimated using the posterior predictive distributions 

and the premium rate formula equation (16). The posterior predictive distribution for 

each county can be obtained from the formula in equation (12). We then calculate the 90 

percent coverage premium rates from equation (16). The expected yield �̂�𝑖 in county 𝑖 is 

to be the posterior mean of the predictive distribution for each county. The premium rates 

differ across the alternative model specification and use of the spatial smoothing spaces. 

For example, each state has premium rates from AR and GP model estimated under both 

the physical and the climate space. Table 2 presents each state’s average premium rates 

across counties from 2000 to 2014. One interesting result is that Colorado shows notable 

difference in average premium rates between using the physical space and the climate 

space compared to the other states. Figure 2 and 3 illustrate estimated premium rates of 

Iowa and Colorado from the two types of spaces, respectively. The left map presents the 
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premiums from the physical space, and the right map presents the premiums from climate 

space. In accordance with our expectation, premium estimates in Iowa from the two 

spaces show no substantial difference, which reflects Iowa having similar spatial 

structure both climate and physical distance. In contrast to Iowa, premiums in Colorado 

show meaningful differences in spatial structure. Specifically, we find that premiums of 

western region counties (Delta, Mesa, and Montrose) and southern region counties (Baca 

and Otero) are increased when we use climate space. 

 We use a loss ratio under the corresponding crop insurance program as a tool for 

evaluating out of sample performance of the models under the two different smoothing 

spaces. The loss ratio is given by 

(17) 𝑙𝑜𝑠𝑠𝑟𝑎𝑡𝑖𝑜𝑖 = 
∑ max[𝜆�̂�𝑖𝑡 − 𝑦𝑖𝑡, 0]
𝑇
𝑡=1

∑ 𝑝𝑟𝑒𝑚𝑖𝑡�̂�𝑖𝑡
𝑇
𝑡=1

, 

where 𝜆 is coverage level, �̂�𝑖𝑡 is a predicted yield of county 𝑖 at year 𝑡, 𝑦𝑖𝑡 is an actual 

yield for county 𝑖 at year 𝑡, and 𝑝𝑟𝑒𝑚𝑖𝑡 is the premium rate of county 𝑖 at year 𝑡, which is 

obtained from equation (16). 

The premium gains and indemnity losses from equation (17) are calculated using 

actual yields and estimated premiums of each county from 2000 to 2014. Average, 

variance, maximum, and minimum loss ratio across counties for the six states are 

presented in Table 3. The loss ratio of fairly rated crop insurance should equal one. Thus, 

a model with average loss ratio close to one and with a small variance across counties 

(i.e., regional equality) might be a preferred model. Our results demonstrate that 

considering the temporal correlation of crop yield (AR model) results in notable 

improvement in measuring the premiums in every state in our dataset. The average loss 
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ratios from the AR model are close to one and have smaller variance in every state 

compared to the GP model.  

Climate space performs better or equal to physical space in every state in our 

dataset. In Colorado and Nebraska, the climate space conspicuously provides greater 

performance in out of sample prediction. Both of the average loss ratios from the climate 

space are closer to one than the physical space in Colorado (4.75 and 4.17) and Nebraska 

(1.97 and 1.67), which indicates the premiums from the climate space are more fairly 

rated than the physical space. Perhaps most significant is the finding that climate space 

smoothing resolves the serious regional inequality problem in Colorado. Our results also 

show that climate space has a smaller variation of loss ratio across counties. The 

reduction in the variance of the loss ratio of Colorado is from 36.31 to 18.80 and 

Nebraska is from 12.34 to 7.46. Specifically, for counties in Colorado with a high loss 

ratio under physical space, such as Adams and Washington counties, the loss ratio 

becomes closer to one under climate space smoothing. Our results demonstrate that 

climate space smoothing more pertinently describes spatial structure of the crop yield 

density compared to the physical space smoothing especially for a state like Colorado 

where the climate is diverse. In case of Colorado, a closeness of physical distance 

between locations would not be a successful factor to explain crop yield similarity across 

space. 

 

Conclusion 

Federal crop insurance programs have been solidified by the Agricultural Act of 2014. In 

this regard, providing accurate premiums for insurance contracts has become again the 
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utmost important role of RMA. However, the current RMA model does not fully attempt 

to use historical data from other areas in estimating the premium for an area of interest. 

Therefore, the current model has problems both in reflecting spatial correlation and 

retaining enough observations to properly estimate the premiums. The Bayesian Kriging 

model proposed here suggests a promising way to solve such problems. 

There are only a few examples of Bayesian Kriging models in the agricultural 

economics literature, and this article is the first to use climate space smoothing. Our 

results show that crop yield similarity across locations tends to be more affected by 

climate similarity than locational closeness. By conducting climate space smoothing, we 

can provide a better way to measure the crop yield densities especially for a 

geographically diverse region such as Colorado. Future research could consider 

additional measures of similarity such as soil type and slope of agricultural land. 

The Kriging method could be adopted in any research area that involves spatial 

correlation. A prominent extension of the model, for example, would be for precision 

agriculture. Today the availability of accurate and abundant field monitoring data allows 

developing a crop yield response model that parameters are smoothed by site specific 

agrological characteristics such as soil type, water, etc. This application could provide 

better site specific Variable Rate Application (VRA) fertilizer prescriptions. 

One of great strengths of the Kriging model would be density estimation for the 

counties where historical yield data is limited or there are no observations. Bayesian 

Kriging method defines and describes a spatial structure for a variation of densities across 

space. The method allows a density prediction of any locations (counties) with no 

historical observations by using a posterior predictive distribution. In this regard, the 
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method suggests a useful way to produce density measures for counties with no yield 

reported. 

Because we are focusing on introducing and comparing the performance of the 

climate space smoothing method compared to the physical distance smoothing, our model 

treats crop yield density in a simple manner using the normality assumption. Although 

the normality assumption has the advantage of simplifying the MCMC structure and 

could easily include trend variable into our model specification, the assumption still has a 

shortcoming to adjust higher moment characteristics of crop yield density such as 

asymmetric skewness. Therefore, while it may require developing techniques that are not 

yet available in the statistics literature, future research should attempt to relax this 

distributional assumption. 

The Kriging method for climate space smoothing proposed here clearly has the 

potential to offer significant efficiency gains in crop yield density estimation, where 

historical observations is limited and has varying climate conditions. 
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1
 The Gaussian spatial process is a stochastic process where any finite subcollection of random variable 

(i.e., mean parameter of any county) is multivariate normally distributed. The covariance of those random 

variables between any two locations (i.e., covariance between 𝜇𝑖 and 𝜇𝑗) is determined by a Euclidean 

distance between two locations and spatial covariance matrixΣ. 

2
 To avoid complexity of the Markov Chain Monte Carlo (MCMC) structure, we only assume the 

hierarchical structure for the mean parameter. Therefore, we directly impose general inverse-gamma type 

prior distribution to the variance parameter of the likelihood layer 𝜎2. 

3
 Under the Bayesian framework, we regard the mean parameter 𝜇 as a random variable. When a random 

vector of mean equation, 𝝁 = (𝜇1, … 𝜇𝑁)
𝑇 is assumed to follow a Gaussian spatial process, the mean 

parameters of the counties 𝜇1, … 𝜇𝑁 are jointly normally distributed. 

4
 We use the empirical variogram to impose proper priors for the sill parameter 𝜌. For MLE estimates of 

mean parameter �̂�𝑖 for county location 𝑖 = 1,… , 𝑁,  empirical variogram can be defined as  

 𝛾(𝐷𝑖𝑗) ≔  
1

2𝑀
∑ (�̂�𝑖 − �̂�𝑗)

2

(𝑖,𝑗)∈𝑀

 

where 𝑀 is the number of all possible pairs of counties, 𝐷𝑖𝑗 is Euclidean distance between two counties 𝑖 

and 𝑗, �̂�𝑖 and �̂�𝑗 are MLE estimates for the mean parameter of county 𝑖 and 𝑗, respectively. 

5
 In the climate space, locations (counties) that have similar climate features are closely located, even 

though their locations may be distant on the traditional physical space. 

6
 Since our dataset includes 99 counties for Iowa and 18 counties for Colorado, all possible pairs of 

distances among the counties for each state are 4,851 and 153, respectively. We first obtain the distances 

from two different types of space (physical and climate). We then normalize these distances and calculate 

correlations between the two types of distance. 

7
 All models in this article are fitted using a Metropolis-Hastings (MH) within Gibbs sampling algorithm. 

As mentioned in the prior layer section, standard conjugate priors are assumed for all coefficients (normal) 

and variance (inverse gamma) parameters. However, prior densities for the Kriging parameters (sill and 



 
 

72 
 

                                                                                                                                                                             
range) are non-standard. Hence the MH algorithm is employed to draw samples from the Kriging 

parameters. 

8
 Kriging defines a spatial interpolation function that determines spatial correlation structure across density 

parameters of locations. Therefore, we can generate an interpolated density for any specific point using the 

Kriging parameters (sill and range) and spatial information of the point (coordinates). In this article, we do 

not aim to produce a specific county’s density with no historical observations. However, Kriging can 

produce densities with no observations by using the posterior predictive distribution in equation (12). 
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Table II-1. Average Posterior Parameter Values for Selected States 

State / Smoothing Space Physical Space Climate Space 

Model Structure 
GP 

(S.D) 
AR 

(S.D) 
GP 

(S.D) 
AR 

(S.D) 

Iowa 𝛽1 1.01 

(0.02) 

1.02 

(0.03) 

1.01 

(0.02) 

1.02 

(0.03) 

𝛽2 1.75 

(0.02) 

1.78 

(0.03) 

1.76 

(0.02) 

1.78 

(0.02) 

𝜔 - 0.01 

(0.00) 

- 0.01 

(0.00) 

𝜌 40.35 

(3.25) 

40.15 

(3.25) 

51.31 

(4.12) 

50.23 

(4.19) 

휃 18.23 

(2.65) 

18.42 

(2.95) 

21.83 

(3.65) 

22.43 

(3.11) 

     

Illinois 𝛽1 1.03 

(0.03) 

1.01 

(0.03) 

1.02 

(0.02) 

1.01 

(0.02) 

𝛽2 1.72 

(0.02) 

1.71 

(0.03) 

1.72 

(0.02) 

1.72 

(0.02) 

𝜔 - 0.02 

(0.00) 

- 0.02 

(0.00) 

𝜌 36.35 

(3.95) 

36.15 

(3.99) 

45.31 

(5.22) 

45.23 

(5.23) 

휃 19.38 

(3.26) 

19.22 

(3.15) 

24.13 

(4.82) 

24.15 

(5.11) 

     

Nebraska 𝛽1 0.78 

(0.03) 

0.63 

(0.03) 

0.99 

(0.02) 

0.63 

(0.03) 

𝛽2 2.07 

(0.02) 

1.34 

(0.02) 

2.13 

(0.02) 

1.34 

(0.02) 

𝜔 
- 

0.37 

(0.01) 
 

0.36 

(0.02) 

𝜌 42.11 

(6.51) 

42.19 

(6.52) 

61.31 

(4.12) 

62.23 

(4.19) 

휃 15.12 

(1.11) 

14.21 

(1.12) 

20.69 

(2.18) 

20.66 

(2.26) 

     

Colorado 𝛽1 0.30 

(0.02) 

0.14 

(0.02) 

0.30 

(0.02) 

0.15 

(0.02) 

𝛽2 1.83 

(0.05) 

0.74 

(0.01) 

1.81 

(0.04) 

0.74 

(0.01) 

𝜔 
- 

0.56 

(0.01) 
- 

0.58 

(0.01) 

 
𝜌 77.25 

(7.42) 

78.10 

(7.44) 

98.31 

(11.12) 

98.44 

(11.19) 

 
휃 12.13 

(1.00) 

12.12 

(1.00) 

19.13 

(3.65) 

19.12 

(3.61) 
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 Table II-2. Average of 90 Percent Coverage Premium Rates across Counties 

State / Smoothing Space Physical Space Climate Space 

Model Structure GP AR GP AR 

Iowa Premium 

Rate (%) 
1.73 1.79 1.57 1.59 

Illinois Premium 

Rate (%) 
1.52 1.54 1.54 1.55 

Nebraska Premium 

Rate (%) 
1.38 1.27 1.28 1.31 

Minnesota Premium 

Rate (%) 
1.59 1.57 1.63 1.59 

Indiana Premium 

Rate (%) 
1.65 1.69 1.64 1.75 

Colorado Premium 

Rate (%) 
1.48 1.62 2.41 2.53 

 

  



 
 

75 
 

Table II-3. Estimated Loss Ratio under the Physical Space and the Climate Space 

State / Smoothing Space Physical Space Climate Space 

Model Structure GP AR GP AR 

Iowa Mean 0.94 0.94 1.05 1.00 

Variance 1.26 1.30 1.23 0.96 

Max 5.06 4.88 4.26 3.62 

Min 0.00 0.55 0.00 0.56 

Illinois Mean 2.06 2.03 2.03 2.00 

Variance 1.08 1.10 1.07 1.01 

Max 4.28 4.35 4.26 4.32 

Min 0.00 0.00 0.00 0.13 

Nebraska Mean 2.22 1.97 2.36 1.67 

Variance 7.55 4.30 9.54 3.15 

Max 14.39 10.28 12.34 7.46 

Min 0.00 0.00 0.05 0.31 

Minnesota Mean 0.37 0.41 0.36 0.42 

Variance 0.21 0.20 0.18 0.19 

Max 1.67 1.49 1.45 1.47 

Min 0.00 0.00 0.00 0.00 

Indiana Mean 0.86 0.92 0.91 0.98 

Variance 0.58 1.74 0.36 0.12 

Max 5.36 4.89 5.34 4.98 

Min 0.05 0.09 0.06 0.23 

Colorado Mean 6.97 4.75 5.86 4.17 

Variance 59.90 26.01 36.31 18.80 

Max 23.19 15.78 17.65 13.25 

Min 0.17 0.05 0.17 0.35 
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  Figure II-1. Translation of counties of Colorado in physical space (above) to climate space (below) 
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Figure II-2. Premiums of Iowa from physical space (left) and from climate space (right) 

 

 

 

 

 

 

 

             

Figure II-3. Premiums of Colorado from physical space (left) and from climate space (right) 
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CHAPTER III 

 
MULTI-FACTOR STOCHASTIC VOLATILITY MODEL FOR PRICING 

CALENDAR SPREAD OPTIONS 

Abstract 

A calendar spread is the difference between the nearby futures price and a specified 

deferred futures month price on the same commodity. A calendar spread option (CSO) is 

an option that uses a calendar spread as its underlying asset. Previous studies have 

suggested CSO pricing models based on a joint process of two futures prices. However, 

CSO for storable commodities have distinct features due to physical aspects of the 

underlying assets. To address such aspects, we introduce a new CSO pricing model based 

on the theory of storage. Our model incorporates three stochastic processes and allows 

non-zero correlation structure among the processes to reflect the dynamics of the calendar 

spread. Option prices from the previous models are estimated to evaluate the performance 

of the new model. We use root mean squared error (RMSE) as tools for the evaluation. 

The new model proposed here outperforms the existing models in ‘in the money’ and ‘out 

of the money.’ The existing models tend to overestimate actual payoffs when ‘at the 

money’ and ‘out of the money’. 

Key words: calendar spread options, futures, stochastic volatility model, term structure 

effect, crude oil futures 
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Introduction 

A calendar spread option (CSO) is an option that uses a calendar spread, which is the 

difference between a nearby futures price and a specified deferred futures month price on 

the same commodity, as an underlying asset. The Chicago Mercantile Exchange (CME) 

Group offers CSO on futures in storable commodities such as corn, wheat, soybean, 

soybean oil, soybean meal, cotton, and crude oil. Unlike a payoff of a standard vanilla 

option that depends only on the dynamics of one underlying futures contract, a payoff of 

CSO is calculated from the price dynamics of the two futures contracts. Therefore, 

pricing CSO must consider the joint stochastic processes of the two futures contracts.  

Several models for pricing CSO have been suggested. Gibson and Schwartz 

(1990) introduce a two-factor model taking account of stochastic convenience yield. They 

assume a mean reverting convenience yield. Shimko (1994) suggests a closed-form 

approximation of the futures spread option model, based on the framework of Gibson and 

Schwartz. Poitras (1998) proposes a model that futures prices have a joint normal 

distribution. Hinz and Fehr (2010) suggest a model that assumes the calendar spread 

follows a shifted lognormal distribution. Seok et al. (2014) suggest a CSO pricing model 

for storable commodities that assumes convenience yield follows arithmetic Brownian 

motion. However, they use Monte Carlo to price the CSO and do not use a calibration 

procedure to obtain parameters of the solution. More recently, Schneider and Tavin 

(2016) suggest a model for pricing CSO based on the joint characteristic function of two 

futures. They provide an analytical solution from the joint characteristic process. 

There are some important empirical features of commodity futures markets. First 

is non-constant (stochastic) volatility of futures contract, which is well known as term 
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structure (Samuelson effect) of volatility; a futures price tends to be more volatile as it 

approaches maturity. The non-constant volatility may also be observed as a volatility 

smile; implied volatilities tend to increase as strike prices get away from a current spot 

price. A second feature is that futures with different maturities are not perfectly 

correlated, but tend to move together. To address these features, the paper employs 

traditional theory of storage (Working 1949; Brennan 1958) to reflect these features of 

the commodity futures market in pricing the CSO for storable commodities. From the 

theory, a calendar spread can be expressed as a function of nearby futures, storage cost, 

interest cost, and convenience yield. We then define processes for the components of the 

calendar spread and suggest a formula for pricing CSO. Our model includes multi-

stochastic factors based on the stochastic volatility framework proposed by Heston 

(1993) and Christoffersen et al. (2009). The model allows correlations among the 

stochastic factors to reflect empirical features of the commodity market. The model also 

provides an analytical solution to price CSO. We demonstrate that our model is more 

flexible than other CSO pricing models in reflecting the term structure effect and smile or 

smirk of the implied volatility. We expect that a more precise pricing model for CSO 

would allow market makers to offer lower bid-ask spreads and thus increase market 

volume of CSO. 

We use the empirical market data for West Texas Intermediate (WTI) to calibrate 

the parameters of the analytical solution. Daily closing prices for 1-month CSO from Jan 

4, 2016 to Feb 27, 2017 are obtained from the Datamine of CME group. T-bill rate from 

Federal Reserve Bank Report is used as the risk-free rate of the model. Using the dataset, 

we obtain the set of parameters that minimizes a relative difference between market value 
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of CSO and the theoretical value of CSO from the model. The new model with three 

stochastic factors outperforms existing models in out of sample performance especially 

when the strike of the option is placed ‘deep in the money’ or ‘deep out of money’. The 

results might be due to non-zero correlation and stochastic factors in the model that 

provides flexibility in controlling term structure effects in implied volatility. Gibson and 

Schwartz (1990) model shows the least preferred performance over the models. It 

relatively performs well in ‘in the money’ pricing, but overestimates actual payoffs in ‘at 

the money’ and ‘out of the money.' 

The rest of the article proceeds as follows. In the theoretical framework section, 

we define the theory of storage and describe stochastic processes for each factor that 

composes the calendar spread. In the next section, we describe CSO structure and provide 

an analytical solution of CSO. In the calibration section, we explain the dataset we use 

and explain the calibration procedure. In the empirical analysis, we compare the 

performance of the new model with existing models using root mean squared error 

(RMSE).  

 

Theoretical framework 

The spread between futures and spot prices has been explained using the theory of 

storage. Following the theory, the spread between the futures and spot price is a function 

of the interest cost, storage cost, and convenience yield. The traditional theory of Kaldor 

(1939) and Brennan (1958) argues that net marginal cost of storage includes the financial 

opportunity cost of capital, which is interest cost, and direct warehousing or storage costs, 

and convenience yield earned from holding inventories. The benefits reflected in 
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convenience yield arise from the flexibility in stock uses since the company can provide 

immediately when the cost in production increases. Therefore, the benefits of holding 

inventories have been discussed in many articles and play a crucial role in explaining 

normal and inverted markets. Following the traditional framework, the spread between 

futures and spot price can be expressed as 

(1) 𝐹(𝑡, 𝑇) − 𝑆(𝑡) = 𝑟(𝑡, 𝑇 − 𝑡)𝑆(𝑡) +𝑊(𝑡, 𝑇 − 𝑡) − 𝑌(𝑇 − 𝑡)  

where 𝐹(𝑡, 𝑇) is futures price at time 𝑡 for maturity 𝑇, 𝑆(𝑡) is spot price at current time 𝑡, 

𝑟(𝑡, 𝑇 − 𝑡) is interest rate, 𝑊(𝑡, 𝑇 − 𝑡) is storage costs, and 𝑌(𝑡, 𝑇 − 𝑡) is convenience 

yield. 

 The spot price of the commodity is not readily observable. Therefore, several studies 

support using the futures price as a proxy for the spot price (Brennan 1958; Gibson and 

Schwartz 1990; Schwartz 1997; Hinz and Fehr 2010). In this regard, we replace nearby 

futures price as a proxy for the spot price, and the equation is changed into 

(2)                        𝐹2(𝑡, 𝑇2) − 𝐹1(𝑡, 𝑇1) = 𝑟(𝑇2 − 𝑇1)𝐹1(𝑡,  𝑇1) + 𝑊(𝑇2 − 𝑇1) − 𝑌(𝑡, 𝑇2 − 𝑇1) 

where 𝐹1(𝑡, 𝑇1) is nearby futures price at 𝑡 with 𝑇1 maturity and 𝐹2(𝑡, 𝑇2) is distant 

futures price at 𝑡 with 𝑇2 maturity.  Following the equation (2), the spread between 

futures and spot price is interest cost plus storage cost minus sum of convenience yield 

that includes the price of the risk arises from the stochastic volatility. Since we change 

the spot price to nearby futures price in equation (1) and (2), we can apply the formula to 

estimate the value of CSO. If the calendar spread put option is exercised, at the expiration 

date, a buyer of the option will receive a short position in the nearby futures and a long 

position in the distant futures. Therefore, the value of the European calendar spread put 

option with exercise price 𝐾 is 
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(3)         𝑃𝑐𝑠 =  max(𝐾 − [𝐹1(𝑇, 𝑇1) − 𝐹2(𝑇, 𝑇2)],   0)                        𝑇 ≤ 𝑇1 ≤ 𝑇2,  

 where 𝑇 is maturity date of the European calendar spread put option 𝑃𝑐𝑠. 

  We assume that both interest rate (𝑟) and storage costs (𝑊) are constant. Thus, we 

can only consider nearby futures price and convenience yield to derive the payoff of the 

calendar spread call option. By substituting equation (2) into (3), equation (3), the value 

of the European calendar spread put option 𝑃𝑐𝑠, can be replaced with a bear spread 

valuation problem where a long call option of nearby futures (𝐶𝐴) and a short call option 

of convenience yield with zero strike (𝐶𝐵). Then equation (3) is changed into 

(4) 
                           𝑃𝑐𝑠 = 𝐶𝐴 − 𝐶𝐵, 
                           𝑃𝑐𝑠 = max(𝐹(𝑡, 𝑇) − �̃�,   0) − max(𝑌(𝑡, 𝑇),   0),                       

where 𝐹(𝑡, 𝑇) = 𝑟(𝑡, 𝑇)𝐹1(𝑡, 𝑇) + 𝑊(𝑡, 𝑇) and �̃� =  −𝐾. 

 

Long call option solution  

Christoffersen et al. (2009) extend the Heston (1993) model to a multi-stochastic 

volatility factor setting. They show that the model can provide more flexible modeling of 

the volatility term structure than the Heston (1993) model. Therefore, it has a broader 

capacity to capture the empirical dynamics of calendar spread. Our model is based on the 

model introduced by Christoffersen et al. (2009). Unlike the previous model, we assume 

that convenience yield follows arithmetic Brownian motion. The model is structured as 

follows, 

 𝑑𝐹(𝑡) =  𝜇𝐹(𝑡)𝑑𝑡 + √𝑣(𝑡)𝐹(𝑡)𝑑𝑍1(𝑡) + 𝜎1𝐹(𝑡)𝑑𝑍2(𝑡)  

 𝑑𝑣(𝑡) = 𝑘[휃 − 𝑣(𝑡)]𝑑𝑡 + 𝛿√𝑣(𝑡)𝑑𝑍3(𝑡)  

(5) 𝑑𝑌(𝑡) =  𝛼𝑑𝑡 + 𝜎2𝑑𝑍4(𝑡)  
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 𝑑𝑍1(𝑡)𝑑𝑍3(𝑡) =  𝜌1𝑑𝑡  

 𝑑𝑍2(𝑡)𝑑𝑍4(𝑡) =  𝜌2𝑑𝑡,  

where 𝐹(𝑡) is nearby futures price introduced in equation (4) and is assumed to follow 

geometric Brownian motion with two stochastic volatility factors, the volatility factor 

𝑣(𝑡) is assumed to follow Cox-Ingersoll-Ross (CIR) process, convenience yield 𝑌(𝑡) 

follows arithmetic Brownian motion, and 𝑍1(𝑡), 𝑍2(𝑡), 𝑍3(𝑡) and 𝑍4(𝑡) are standard 

Wiener process. The model assumes that 𝑍1(𝑡) has correlation 𝜌1 with 𝑍3(𝑡), and 𝑍2(𝑡) 

has correlation  𝜌2 with 𝑍4(𝑡). However, 𝑍3(𝑡) and 𝑍4(𝑡), and 𝑍1(𝑡) and 𝑍2(𝑡) are not 

correlated. Therefore, the variance of the futures price is the sum of two uncorrelated 

factors, which are general volatility factor and convenience yield, and these factors are 

individually correlated with the futures price. 

  Our model structure allows dynamics of the calendar spread (i.e., asymmetry or 

term structure effect). The volatility process 𝑣(𝑡) controls smile or smirk of implied 

volatility. Also, the correlation parameters 𝜌1 and 𝜌2 capture non-zero correlations 

between return of 𝐹(𝑡) and volatility 𝑣(𝑡) and convenience yield 𝑌(𝑡). An advantage of 

the model is that the model has an analytical solution. To simplify the notation, we 

change the stochastic processes in equation (5) into 

 𝑑𝐹 = 𝜇𝐹𝑑𝑡 + 𝜎𝐹1𝑑𝑧1 + 𝜎𝐹2𝑑𝑧2  

 𝑑𝑣 =  𝜇𝑣𝑑𝑡 + 𝜎𝑣𝑑𝑧3  

(6) 𝑑𝑌 =  𝜇𝑌𝑑𝑡 + 𝜎𝑌𝑑𝑧4  

 𝑑𝑧1(𝑡)𝑑𝑧3(𝑡) =  𝜌1𝑑𝑡  

 𝑑𝑧2(𝑡)𝑑𝑧4(𝑡) =  𝜌2𝑑𝑡.  
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Expanding the first long call option 𝐶𝐴 using Ito’s lemma gives, 

(7) 

𝑑𝐶𝐴 = [
𝜕𝐶𝐴

𝜕𝑡
+ 𝜇𝐹

𝜕𝐶𝐴

𝜕𝐹
+ 𝜇𝑣

𝜕𝐶𝐴

𝜕𝑣
+ 𝜇𝑌

𝜕𝐶𝐴

𝜕𝑌
+
1

2
(𝜎𝐹1

2 + 𝜎𝐹2
2 )

𝜕2𝐶𝐴

𝜕𝐹2
+
1

2
𝜎𝑣
2 𝜕

2𝐶𝐴

𝜕𝑣2
+

1

2
𝜎𝑌
2 𝜕

2𝐶𝐴

𝜕𝑌2
+ 𝜌1𝜎𝐹1𝜎𝑣

𝜕2𝐶𝐴

𝜕𝐹𝜕𝑣
+ 𝜌2𝜎𝐹2𝜎𝑌

𝜕2𝐶𝐴

𝜕𝐹𝜕𝑌
] 𝑑𝑡 + 𝜎𝐹1

𝜕𝐶𝐴

𝜕𝐹
𝑑𝑧1 +

𝜎𝐹2
𝜕𝐶𝐴

𝜕𝐹
𝑑𝑧2 + 𝜎𝑣

𝜕𝐶𝐴

𝜕𝑣
𝑑𝑧3 + 𝜎𝑌

𝜕𝐶𝐴

𝜕𝑌
𝑑𝑧4. 

 

Under the complete market assumption of risk neutral measure, the form of the dynamic 

portfolio 𝑀 = 𝐶𝐴 − 𝜉𝐹 − 𝜓𝑈, which has option 𝐶𝐴 = 𝐶𝐴(𝐹, 𝑣, 𝑌, 𝑡), and 𝜉 units of the 

futures 𝐹, and 𝜓 units of another option 𝑈 = 𝑈(𝐹, 𝑣, 𝑌, 𝑡), can be used for perfect hedge. 

Applying Ito’s lemma to 𝑑𝑀, the dynamic of the portfolio value 𝑀 can be expanded in a 

similar manner to equation (7), and now we have, 

(8) 𝑑𝑀 = 𝑑𝐶𝐴 −  𝜉𝑑𝐹 − 𝜓𝑑𝑈.  

To obtain risk neutrality, the coefficients of 𝑑𝑧1, 𝑑𝑧2, 𝑑𝑧3 and 𝑑𝑧4in portfolio expansion 

equation (8) must be zero. This implies the following two equations,  

(9) 𝜓 =
𝜕𝐶𝐴/𝜕𝑣

𝜕𝑈/𝜕𝑣
=
𝜕𝐶𝐴/𝜕𝑌

𝜕𝑈/𝜕𝑌
=
𝜕𝐶𝐴
𝜕𝑈

  

(10) 𝜉 =  
𝜕𝐶𝐴
𝜕𝐹

− 𝜓
𝜕𝑈

𝜕𝐹
.  

  Under the risk neutrality, the instantaneous change of a value of the portfolio 𝑀 

should be equal to the return on a risk-free investment. Otherwise, there will be an 

arbitrage opportunity. Since the portfolio 𝑀 must earn the same amount of risk-free rate 

𝑟, we have 

(11) 𝑑𝑀 = 𝑟𝑀𝑑𝑡 = 𝑟[𝑑𝐶𝐴 −  𝜉𝑑𝐹 − 𝜓𝑑𝑈]𝑑𝑡.  

 When we equate equation (8) and (11), and replace 𝜓 and 𝜉 from equation (9) and (10) 

gives a function that represents price of volatility risk (drift term of volatility process) 
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suggested by Heston (1993), which is assumed to be a linear function of 𝑣 such that 

𝜇𝑣 = 𝑓(𝐹, 𝑣, 𝑡) = 𝑘[휃 − 𝑣] − 𝜆(𝐹, 𝑣, 𝑡) = 𝑘[휃 − 𝑣] − 𝜆𝑣. Substitute 𝜇𝑣 = 𝑓(𝐹, 𝑣, 𝑡) 

equation (8) and (11) gives the fundamental partial differential equation for the option is  

(12) 

𝑟𝐹
𝜕𝐶𝐴
𝜕𝐹

 + 
1

2
(𝑣 + 𝜎1

2)𝐹2
𝜕2𝐶𝐴
𝜕𝐹2

  + {𝑘[휃 − 𝑣] − 𝜆𝑣}
𝜕𝐶𝐴
𝜕𝑣

 +  
1

2
𝑣𝛿2

𝜕2𝐶𝐴
𝜕𝑣2

 

+ 𝛼
𝜕𝐶𝐴
𝜕𝑌

 + 
1

2
𝜎2
2
𝜕2𝐶𝐴
𝜕𝑌2

+ 𝜌1𝛿𝑣𝐹 
𝜕2𝐶𝐴
𝜕𝐹𝜕𝑣

 + 𝜌2𝜎1𝜎2𝐹 
𝜕2𝐶𝐴
𝜕𝐹𝜕𝑌

+   
𝜕𝐶𝐴
𝜕𝑡

 −  𝑟𝐶𝐴 =  0. 

 

 

To simplify the equation, assume that 𝑥 = ln𝐹, then the partial derivatives are 
𝜕𝐶𝐴

𝜕𝐹
=

 𝑒−𝑥
𝜕𝐶𝐴

𝜕𝑥
,
𝜕2𝐶𝐴

𝜕𝐹2
=

1

𝐹2
𝜕2𝐶𝐴

𝜕𝑥2
−

1

𝐹2
𝜕𝐶𝐴

𝜕𝑥
,   
𝜕2𝐶𝐴

𝜕𝐹𝜕𝑣
=

1

𝐹

𝜕2𝐶𝐴

𝜕𝑥𝜕𝑣
, and 

𝜕2𝐶𝐴

𝜕𝐹𝜕𝑌
=

𝜕

𝜕𝑥
(
𝜕𝐶𝐴

𝜕𝑌
)
𝜕𝑥

𝜕𝐹
= 

1

𝐹

𝜕2𝐶𝐴

𝜕𝑥𝜕𝑌
. 

Substituting the results into equation (12) gives 

(13) 

(𝑟 −
1

2
(𝑣 + 𝜎1

2))
𝜕𝐶𝐴
𝜕𝑥

+ {𝑘[휃 − 𝑣] − 𝜆𝑣}
𝜕𝐶𝐴
𝜕𝑣

 + 𝛼
𝜕𝐶𝐴
𝜕𝑌

+
1

2
(𝑣 + 𝜎1

2)
𝜕2𝐶𝐴
𝜕𝑥2

 

+
1

2
𝛿2𝑣

𝜕2𝐶𝐴
𝜕𝑣2

+
1

2
𝜎2
2
𝜕2𝐶𝐴
𝜕𝑌2

+ 𝜌1𝛿𝑣 
𝜕2𝐶𝐴
𝜕𝑥𝜕𝑣

+ 𝜌2𝜎1𝜎2
𝜕2𝐶𝐴
𝜕𝑥𝜕𝑌

+
𝜕𝐶𝐴
𝜕𝑡

 −  𝑟𝐶𝐴 =  0. 

 

  

The difference between equation (12) and (13) is that the coefficient of the partial 

derivatives does not contain 𝑥. Therefore, now we can more easily solve the partial 

differential equation.  

  The European call option has the following three boundary conditions 

𝐶𝐴(𝐹𝑇 , 𝑣, 𝑌, 𝑡) = max (𝐹𝑇 − �̃�, 0), 𝐶𝐴(0, 𝑣, 𝑌, 𝑡) = 0, and  
𝜕𝐶𝐴

𝜕𝐹𝑇
𝐶𝐴(∞, 𝑣, 𝑌, 𝑡) = 1. By 
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analogy with the Black-Scholes formula, the solution for the European option has the 

form 

(14) 

𝐶𝐴(𝐹𝑇 , 𝑣, 𝑌, 𝑡) = 𝐹𝑃1 − 𝑒
−𝑟(𝑇−𝑡)�̃�𝑃2 

𝐶𝐴(𝑥, 𝑣, 𝑌, 𝑡) = 𝑒
𝑥𝑃1 − 𝑒

−𝑟𝜏�̃�𝑃2 

 

where 𝑃1 and 𝑃2 are cumulative density functions about the moneyness of the option at 

maturity, and 𝜏 = 𝑇 − 𝑡. From equation (14), we obtain the following partial derivatives 

such as 
𝜕𝐶𝐴

𝜕𝑥
= 𝑒𝑥𝑃1 + 𝑒

𝑥 𝜕𝑃1

𝜕𝑥
− 𝑒−𝑟𝜏�̃�

𝜕𝑃2

𝜕𝑥
 , and resubstitute these partial derivatives into 

equation (14) to give 

(15) 𝑒𝑥[ℎ(𝑃1)] − 𝑒
−𝑟𝜏�̃�[ℎ(𝑃2)] = 0  

where ℎ(𝑃𝑗) is a polynomial function of 𝑃𝑗.  

Then the solution for the equation (15) is ℎ(𝑃1) = ℎ(𝑃2) = 0, where  

(16) 

ℎ(𝑃1) = (𝑟 +
1

2
(𝑣 + 𝜎1

2))
𝜕𝑃1
𝜕𝑥

+
1

2
(𝑣 + 𝜎1

2)
𝜕2𝑃1
𝜕𝑥2

+ (𝑘휃 − 𝑣(𝑘 + 𝜆 − 𝜌1𝛿))
𝜕𝑃1
𝜕𝑣

+
1

2
𝛿2𝑣

𝜕2𝑃1
𝜕𝑣2

+ (𝛼 − 𝑌𝜌2𝜎2)
𝜕𝑃1
𝜕𝑌

+
1

2
𝜎2
2
𝜕2𝑃1
𝜕𝑌2

+ 𝜌1𝛿𝑣
𝜕2𝑃1
𝜕𝑥𝜕𝑣

+ 𝜌2𝜎1𝜎2
𝜕2𝑃1
𝜕𝑥𝜕𝑌

+
𝜕𝑃1
𝜕𝑡

= 0 

 

   

(17) 

ℎ(𝑃2) = (𝑟 −
1

2
(𝑣 + 𝜎1

2))
𝜕𝑃2
𝜕𝑥

+
1

2
(𝑣 + 𝜎1

2)
𝜕2𝑃2
𝜕𝑥2

+ (𝑘휃 − 𝑣(𝑘 + 𝜆))
𝜕𝑃2
𝜕𝑣

+
1

2
𝛿2𝑣

𝜕2𝑃2
𝜕𝑣2

+ 𝛼
𝜕𝑃2
𝜕𝑌

+
1

2
𝜎2
2
𝜕2𝑃2
𝜕𝑌2

+ 𝜌1𝛿𝑣
𝜕2𝑃2
𝜕𝑥𝜕𝑣

+ 𝜌2𝜎1𝜎2
𝜕2𝑃2
𝜕𝑥𝜕𝑌

+
𝜕𝑃2
𝜕𝑡

= 0.  

 



 
 

91 
 

However, the cumulative probability function 𝑃𝑗 cannot be immediately solved in closed 

form. According to Heston (1993) and Christoffersen et al (2009), by alternatively using 

the Feynman-Kac theorem, it can be shown that its characteristic function 

𝑓𝑗(𝑥, 𝑣, 𝑌, 𝑇 ; 𝜙) must satisfy the same PDEs subject to the terminal condition 

𝑓𝑗(𝑥, 𝑣, 𝑌, 𝜏 ; 𝜙) =  𝑒
𝑖𝜙𝑥.  

Assuming that the characteristic function has the solution 

(18) 𝑓𝑗(𝑥, 𝑣, 𝑌, 𝜏 ; 𝜙) =  𝑒
𝐶+𝐷𝑣+𝐺𝑌+𝑖𝜙𝑥 

where 𝐶, 𝐷, and 𝐺 are the function of 𝜏. Therefore, the characteristic function should 

satisfy equations (16) and (17), and from 𝑓𝑗(𝑥, 𝑣, 𝑌, 𝜏 ; 𝜙) =  𝑒
𝑖𝜙𝑥, we get partial 

derivatives such as 
𝜕𝑓

𝜕𝑥
= 𝑖𝜙𝑓 and 

𝜕𝑓

𝜕𝜏
= (

𝜕𝐶

𝜕𝜏
+
𝜕𝐷

𝜕𝜏
𝑣 +

𝜕𝐺

𝜕𝜏
𝑌) 𝑓, and resubstitute these 

partial derivatives into equation (16) and (17), we have 

(19) 

[
1

2
𝛿2𝐷2 + (𝜌1𝛿𝑖𝜙 − 𝑏𝑗)𝐷 + 𝑢𝑗𝑖𝜙 −

1

2
𝜙2 +

𝜕𝐷

𝜕𝜏
] 𝑣 + [

1

2
𝜎2
2𝐺2 + (𝜌2𝜎2𝑖𝜙 −

𝑐𝑗)𝐷 + 𝑢𝑗𝑖𝜙 −
1

2
𝜙2 +

𝜕𝐺

𝜕𝜏
] 𝑌 + [𝑟𝑖𝜙 + 𝑘휃𝐷 + 𝛼𝐺 +

𝜕𝐶

𝜕𝜏
] = 0, 

for 𝑗 = 1, 2, where 𝑏1 = 𝑘 + 𝜆 − 𝜌1𝛿,   𝑏2 = 𝑘 + 𝜆,  𝑐1 = −𝜌2𝜎2,   𝑐2 =  0,   𝑢1 =
1

2
 ,   

𝑢2 = −
1

2
. This gives rise to a system for 𝑃1 and 𝑃2, and each function has three Riccati 

equations : 

(20) 

1

2
𝛿2𝐷2 + (𝜌1𝛿𝑖𝜙𝑢𝑖 − 𝑏𝑗)𝐷 + 𝑢𝑗𝑖𝜙 −

1

2
𝜙2 +

𝜕𝐷

𝜕𝜏
= 0 

1

2
𝜎2
2𝐺2 + (𝜌2𝜎2𝑖𝜙𝑢𝑖 − 𝑐𝑗)𝐺 + 𝑢𝑗𝑖𝜙 −

1

2
𝜙2 +

𝜕𝐺

𝜕𝜏
= 0 

𝑟𝑖𝜙 + 𝑘휃𝐷 + 𝛼𝐺 +
𝜕𝐶

𝜕𝜏
= 0 
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subject to  the initial value 𝐶(0 ; 𝜙) =  𝐷(0 ; 𝜙) = 𝐺(0 ; 𝜙) = 0. Now we can solve the 

Riccati equation with the initial value above. The solution is 

(21) 

𝐶(𝜏 ; 𝜙) =  𝑟𝑖𝜙𝜏 + 
𝑘휃

𝛿2
[(𝑏𝑗 − 𝜌1𝛿𝑖𝜙 + 𝑑1)𝜏 − 2ln (

1 − 𝑔1𝑒
𝑑1𝜏

1 − 𝑔1
) ]

+ 
𝛼

𝜎2
2 [(𝑐𝑗 − 𝜌2𝜎2𝑖𝜙 + 𝑑2)𝜏 − 2ln (

1 − 𝑔2𝑒
𝑑2𝜏

1 − 𝑔2
) ] 

(22) 𝐷(𝜏 ; 𝜙) =   
𝑏𝑗 − 𝜌1𝛿𝑖𝜙 + 𝑑1 

𝛿2
[
1 − 𝑒𝑑1𝜏

1 − 𝑔1𝑒𝑑1𝜏
 ] 

(23) 𝐺(𝜏 ; 𝜙) =  
𝑐𝑗 − 𝜌2𝜎2𝑖𝜙 + 𝑑2 

𝜎2
2 [

1 − 𝑒𝑑2𝜏

1 − 𝑔2𝑒𝑑2𝜏
 ] 

where 𝑔1 = 
𝑏𝑗−𝜌1𝛿𝑖𝜙+𝑑1 

𝑏𝑗−𝜌1𝛿𝑖𝜙−𝑑1
, 𝑔2 = 

𝑐𝑗−𝜌2𝜎2𝑖𝜙+𝑑2

𝑐𝑗−𝜌2𝜎2𝑖𝜙−𝑑2
, 𝑑1 =

√(𝜌1𝛿𝑖𝜙 − 𝑏𝑗)2 − 𝛿2(2𝑢𝑖𝑖𝜙 − 𝜙2), and 𝑑2 = √(𝜌2𝜎2𝑖𝜙 − 𝑐𝑗)2 − 𝜎22(2𝑢𝑖𝑖𝜙 − 𝜙2). 

 The solution forms of the terms 𝐷(𝜏; 𝜙) and 𝐺(𝜏; 𝜙) are identical to the one-dimensional 

counterpart in Heston (1993), and 𝐶(𝜏; 𝜙)is also identical to the sum of two terms of one-

dimensional Heston (1993)’s solution plus 𝑟𝑖𝜙𝜏. 

 From the Fourier inversion theorem, we have 

(24) 𝑃1 = 
1

2
+
1

𝜋
∫ 𝑅𝑒 [

𝑒
𝑖𝜙 ln(

𝐹(𝑡)

�̃�
)𝑓(𝑣,𝑌,𝜏,𝜙+1)

𝑖𝜙𝐹(𝑡)𝑒𝑟𝜏
]

∞

0

𝑑𝜙, 

(25) 𝑃2 = 
1

2
+
1

𝜋
∫ 𝑅𝑒 [

𝑒
𝑖𝜙 ln(

𝐹(𝑡)
𝐾
)𝑓(𝑣,𝑌,𝜏,𝜙)

𝑖𝜙
]

∞

0

𝑑𝜙. 

 By employing option pricing formula 𝐶(𝐹𝑇 , 𝑣, 𝑌, 𝑡) = 𝐹𝑃1 − 𝑒
−𝑟𝜏�̃�𝑃2, we have a 

solution for the call option, 
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(26) 

𝐶𝐴(𝐹𝑇 , 𝑣, 𝑌, 𝑡) =  
1

2
(𝐹(𝑡) − �̃�𝑒−𝑟𝜏)

+
𝑒−𝑟𝜏

𝜋
∫ 𝑅𝑒 [

𝑒
𝑖𝜙 ln(

𝐹(𝑡)

�̃�
)𝑓(𝜙+1)

𝑖𝜙
−
𝑒
𝑖𝜙 ln(

𝐹(𝑡)

�̃�
)𝑓( 𝜙)

𝑖𝜙
]

∞

0

𝑑𝜙. 

 

Short call option solution  

The second part of the calendar spread put option (𝑃𝐶𝑆) in equation (4) is a short call 

option that has convenience yield (𝑌) as its underlying asset with zero strike price 𝐶𝐵. We 

assume that the convenience yield follows arithmetic Brownian motion with mean zero 

(𝛼 = 0) and variance 𝜎2
2𝜏 . Then the value of a European call option is  

(27) 𝐶𝐵 = max(𝑌(𝑡, 𝑇) − 𝑋,   0) 

where 𝑋 is the strike price of the option. According to the framework of Bachelier 

(1990), the second call option value for the convenience yield with zero strike price is 

(28) 𝐶𝐵 = 𝑒
−𝑟𝜏 [𝑌(𝑡)Φ(

𝑌(𝑡)

𝜎2√𝜏
) + 𝜎2√𝜏𝜙 (

𝑌(𝑡)

𝜎2√𝜏
)] 

where Φ and 𝜙 are standard normal cumulative density and probability density, 

respectively. 

 

A solution of CSO 

We already defined two call option values (𝐶𝐴 and 𝐶𝐵) that compose calendar spread put 

options of the model. Hence the complete analytical solution for the calendar spread put 

option  𝑃𝑐𝑠 in equation (4) can be obtained by combining the two call option values, 

(29) 
          𝑃𝑐𝑠 = 𝐶𝐴 − 𝐶𝐵 
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                 =
1

2
(𝐹(𝑡) − �̃�𝑒−𝑟𝜏)

+
𝑒−𝑟𝜏

𝜋
∫ 𝑅𝑒 [

𝑒
𝑖𝜙 ln(

𝐹(𝑡)

�̃�
)𝑓(𝜙+1)

𝑖𝜙
−
𝑒
𝑖𝜙 ln(

𝐹(𝑡)

�̃�
)𝑓( 𝜙)

𝑖𝜙
]

∞

0

𝑑𝜙

− 𝑒−𝑟𝜏 [𝑌(𝑡)Φ(
𝑌(𝑡)

𝜎2√𝜏
) + 𝜎2√𝜏𝜙(

𝑌(𝑡)

𝜎2√𝜏
)].                       

Note that calendar spread call option value can be obtained using put-call parity. We use 

the analytical solution to calibrate parameters and compare our values with values from 

existing methods. 

 

Empirical Framework 

In this section, we use empirical data for crude oil (WTI) to calibrate parameters of the 

model. Our dataset includes daily New York Mercantile Exchange (NYMEX) CSO 

closing prices, WTI futures prices, T-bill rate for interest rate, and physical storage costs. 

The daily NYMEX 1-month CSO closing prices from Jan 4, 2016 to Feb 27, 2017 are 

obtained from the Datamine of CME group. We only use closing prices that are actually 

traded. Therefore, options with zero volume are discarded from the dataset. We use the 1-

month CSO price (where 𝑇2 − 𝑇1 = 1 month) for calibration since it has good liquidity 

compared to 2, 3, 6, and 12-month CSOs. The calibrated parameters are a set of 

parameters that minimizes difference between market CSO values and the theoretical 

CSO values. To proceed with the calibration, we should additionally calculate a current 

convenience yield to get the second call option value (𝐶𝐵), which is a part of an analytical 

solution for CSO. Based on the theory of storage in equation (2), the implicit convenience 

yield 𝑌(𝑡) can be obtained by adding spread (𝐹2(𝑡, 𝑇2) − 𝐹1(𝑡, 𝑇1)), interest costs (𝑟(𝑇2 −
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𝑇1)𝐹1(𝑡,  𝑇1)), and physical storage cost (𝑊(𝑇2 − 𝑇1)). T-bill rate from Federal Reserve 

Bank Report is used as a risk-free rate to determine the interest costs. Storage costs are 

difficult to obtain. We employ a monthly spot freight rate (for very large crude carriers, 

or VLCCs, steaming from the Middle East Gulf to the West) from Containerisation 

International (CI) as a proxy for storage costs since offshore storage in carriers would be 

a form of holding stocks. The spot freight rates are interpolated to daily values.  

Calibration procedure 

One difficulty of applying our new model is that there are unknown structural parameters 

which cannot be observed from market data. Several types of research have been devoted 

to finding a way of obtaining those parameters, yet there is no consensus. In this section, 

we introduce a numerical calibration procedure for our proposed model.  

 One possible challenge when estimating the parameters of the multi-factor 

stochastic model is that we must jointly estimate the structural parameters (𝑘, 휃, 𝛿, 𝜎1, 

𝜎2, 𝜌1, 𝜌2) with the spot volatility 𝑣. Several methods were introduced in previous 

literature. One general approach regards the spot volatility 𝑣 as another parameter and 

reestimates the value daily(Bakshi et al. 1997). Other methods filter the volatility value 

from the empirical market data of underlying returns. This approach can be done using a 

Kalman filter (Carr and Wu 2007), Bayesian estimation (Jones 2003; Eraker 2004), and 

an efficient method of moments approach (Pan 2002).  

 In this article, we employ an iterative two-step calibration procedure suggested by 

Huang and Wu (2004) and Christoffersen et al. (2009) where the structural parameters 

and spot volatility are estimated using empirical CSO data. Let 𝑉𝑖
𝑚 denote the i’th market 
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value of CSO, and 𝑉𝑖
∗(𝜏, 𝐹, 𝑟, 𝑌, 𝐾; Θ, 𝑣) denote the theoretical CSO price of the new 

model. Consider a sample of 𝑁 CSOs. In the first step, the sum of squared errors between 

theoretical values and market CSO values given a set of structural parameters Θ will be 

minimized under the spot process values 𝑣, 

(30)                     𝑣 = argmin
𝑣

∑[
𝑉𝑖
𝑚 − 𝑉𝑖

∗(𝜏, 𝐹, 𝑟, 𝐾; Θ, 𝑣) 

𝑉𝑒𝑔𝑎𝑖
]

2

,     𝑖 = 1,… ,𝑁

𝑁

𝑖=1

.  

where 𝑉𝑒𝑔𝑎𝑖 denotes vega of the option 𝑖 computed using the implied volatility from the 

Black-Scholes formula and market CSO values. 

 In the second step, for given spot volatility values 𝑣 obtained from equation (30), 

the sum of squared errors between theoretical values and market CSO values is 

minimized under the set of structural parameters Θ̂,  

(31)                 Θ̂ = argmin
Θ

∑[
𝑉𝑖
𝑚 − 𝑉𝑖

∗(𝜏, 𝐹, 𝑟, 𝐾; Θ, 𝑣) 

𝑉𝑒𝑔𝑎𝑖
]

2

,     𝑖 = 1,… ,𝑁

𝑁

𝑖=1

.  

The iteration procedure between equation (30) and (31) is conducted until convergence is 

achieved in the objective function value in equation (31). 

The overall calibration procedure proceeds as follows. First, risk free rates and 

physical storage rates are interpolated to daily values. Next, the implicit convenience 

yield is calculated using the theory of storage formula in equation (2). Then using 

equations (30) and (31), the set of structural parameters Θ̂ and the spot volatility 𝑣 that 

minimizes sum of squared errors is obtained. The daily 1-month CSO closing prices from 

Jan 4, 2016 to Feb 27, 2017 are used for the calibration. Since we discard zero volume 
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options from our dataset, the total number of market CSO prices 𝑁 for the calibration is 

1,901. MATLAB function ‘lsqnonlin’ is used for estimation.  

Calibration of the model can be sensitive to the choice of the starting point. 

Therefore, we impose zero starting values for speed of reversion 𝑘 and long run average 

휃 in our first step of iteration in equation (3) to avoid problems associated with starting 

value sensitivity. Further, we find the calibration is sensitive to the volatility for 

convenience yield 𝜎2. Hence, we impose a starting value 𝜎2 = 0.3257, which is 

calculated from the implicit convenience yield under the assumption of arithmetic 

Brownian motion using the market data from January 4, 2016 to Feb 27, 2017. Likewise, 

we use empirical data to set the starting value for 𝑣 using the same dataset with 𝜎2 

(𝑣=0.4661). The two correlation parameters 𝜌1 and 𝜌2 are bounded from -1 to 1, and all 

volatility parameters (휃, 𝜎1, 𝜎2, 𝛿) and speed of adjustment parameter (𝑘) have lower 

bound of zero. Table 1 presents the values of obtained parameters Θ̂. The results show 

that the correlation parameters 𝜌1 is positive, whereas 𝜌2 is negative. Therefore, we find 

that when the nearby futures price increases, the volatility process becomes more volatile. 

On the other hand, negative correlation parameter 𝜌2 induces that when the futures price 

increases, the convenience yield process becomes less volatile. 

 

Prediction Tests 

Two different previous models (Gibson and Schwarz 1990; Poitras 1998) are considered 

to compare the performance of the new model. The dataset from January 2, 1985 to Feb 

27, 2017 is used for obtaining parameters of each model. The dataset is collected from 
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Energy Information Administration (EIA). Table 2 summarizes statistics for each 

calendar spread, implicit convenience yield, interest rates, and storage cost obtained. 

First, Gibson and Schwarz (1990) assume the spot price follows geometric 

Brownian motion and the convenience yield follows a mean-reverting process. We 

replace spot price to the nearby futures price. Then the two joint stochastic processes for 

the model can be defined as 

(32) 

𝑑𝐹(𝑡) =  𝜇𝐹(𝑡)𝑑𝑡 + 𝜎𝑠1𝐹(𝑡)𝑑𝑍1(𝑡) 

𝑑𝑌(𝑡) = 𝑎[𝑏 − 𝑌(𝑡)]𝑑𝑡 + 𝜎𝑠2𝑑𝑍2(𝑡) 

𝑑𝑍1(𝑡)𝑑𝑍2(𝑡) =  𝜌. 

All structural parameters of the model including the nearby futures drift 𝜇, two volatility 

parameters 𝜎𝑠1 and 𝜎𝑠2, and the mean reverting process parameters 𝑘 and 휃 are calibrated 

from the same procedure and dataset as our propsed model. Since Heston (1993) provides 

an analytical solution for single stochastic volatility type model we have defined here for 

Gibson and Schwarz model, the solution is replaced into equation (30) and (31) to obtain 

the parameters. From the two equations for calibration, all structural parameters are 

obtained. Two parameters of the mean reverting process 𝑎 = 0.6895 and 𝑏 = 0.0157. 

All the other parameters are 𝜇 = 0.08, 𝜎𝑠1 = 0.23, 𝜎𝑠2 = 0.35, and 𝜌 = −0.29. We then 

calculate the value of the call option values from the analytical solution. 

 Poitras (1998) suggests a calendar spread option pricing model where two futures 

prices (𝐹1, 𝐹2) follow arithmetic Brownian motion such that  

(33) 

𝑑𝐹1(𝑡) =  𝜇1𝑑𝑡 + 𝜎𝑝1𝑑𝑍1(𝑡) 

𝑑𝐹2(𝑡) =  𝜇2𝑑𝑡 + 𝜎𝑝2𝑑𝑍2(𝑡). 

Then the calendar spread between two futures follows 
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(34) 𝑑(𝐹1(𝑡) − 𝐹2(𝑡)) =  (𝜇1 − 𝜇2)𝑑𝑡 + 𝜎𝑝𝑑𝑍𝑝(𝑡) 

where 𝜎𝑝
2 = 𝜎𝑝1

2 + 𝜎𝑝2
2 − 2𝜎𝑝12 is the variance of the spread process, and 𝜎𝑠 is the 

covariance between two futures process. Then the solution of the calendar spread call 

option 𝐶 is 

(35) 

𝐶𝑃 = 𝑒
−𝑟𝜏 [(𝐹1(𝑡) − 𝐹2(𝑡) − 𝑋)Φ(

𝐹1(𝑡) − 𝐹2(𝑡) − 𝑋

𝜎𝑝√𝜏
)

+ 𝜎𝑝√𝜏𝜙 (
𝐹1(𝑡) − 𝐹2(𝑡) − 𝑋

𝜎𝑝√𝜏
)] 

where 𝜏 is time to maturity, 𝐹1(𝑡) and 𝐹2(𝑡) are current price level of two futures, 𝑋 is 

strike price, and Φ and 𝜙 are CDF and PDF of standard normal distribution, respectively. 

We estimate the parameter 𝜎𝑝 of the model using empirical dataset. The estimated value 

is 𝜎𝑝 = 0.9747.  

We use root mean squared error (RMSE) as a measure of accuracy. The results 

are provided by three types of moneyness (at the money, in the money, and out of the 

money) with different trading days. First, the exercise price of at the money is the same 

as the calendar spread of the first trading day (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑). Second, exercise price of in 

the money is the calendar spread of the first trading day minus one (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑 − 1), 

the exercise price for out of the money is specified as the spread of the first trading day 

plus one (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑 + 1). Also, the exercise prices and spreads given in the first 

trading day of each month (from January 2000 to October 2016) are used to compute 

option payoffs over the subsequent trading days. Five trading days are trading day 10, 20, 

40, 80, and 120. The RMSE for model ℎ is calculated from the equation  
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(36) 
                   𝑅𝑀𝑆𝐸ℎ = √

1

𝑀
∑[𝑉𝑖ℎ − (�̂�𝑖ℎ  |𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 = 𝑗)]

2
,

𝑁

𝑖=1

  𝑗

= 10, 20, 40, 80, 120 

where 𝑀 is the number of payoffs, 𝑀 = 202 , 𝑉𝑖 is actual payoffs, and �̂�𝑖 denotes 

predicted payoffs (values) of the CSO from each model. 

Table 3 reports payoffs of the five different maturities in ‘at the money’. Averages 

of actual payoffs for several trading days are calculated by comparing the spreads given 

in the first trading day of each month with spreads at the expiration day of each option 

and its strike prices. In all cases, actual payoffs of call options are greater than that of 

calls. Gibson and Schwarz and the new model show similar pricing for ‘at the money’ 

options. Both Gibson and Schwarz and the new model overestimate put option values 

compared to actual payoffs. Poitras model tends to underestimate option values especially 

for options near expiration. Since Poitras model assumes no cointegration between the 

two futures and constant volatility for the calendar spread process, the model may fail to 

reflect the volatility dynamics of the calendar spread process. Tables 4 and 5 report the 

payoffs of ‘in the money’ and ‘out of the money’ options. Gibson and Schwarz model 

overestimates put option values at ‘in the money’, whereas Poitras underestimates call 

options. The new model shows relatively good performance in pricing calls, however it 

overestimates put payoffs. In Table 5, both call and put option values from the Gibson 

and Schwarz model are overpriced. Poitras values are underpriced / overpriced in call / 

put option payoffs. The new model relatively performs well in pricing ‘out of the money’ 

options. Both call and put option values of the new model are close to actual payoffs. The 

RMSE values are reported as well to compare the performance of each model. The new 
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model mostly outperforms other models. For example, in Table 5, the new model 

presents smallest RMSE values at ‘out of money’ options in all expirations. Gibson and 

Schwartz (1990) model relatively performs well in ‘at the money’ pricing, but 

overestimates actual payoffs in ‘in the money’ and ‘out of money’. 

 

Conclusions 

The futures and options markets for crude oil are the most liquid and vigorously traded 

commodities contracts in the financial market. The term structure in the market is 

substantially affected by demand and supply of the crude oil, storage costs, convenience 

yield, and anticipation of production. Further, in contrast to other agricultural commodity 

markets where seasonality dominates the relationship between spot and futures price, the 

crude oil market has more continuous price evolution.  

The new model proposed here describes the calendar spread between two futures 

based on the theory of storage. By doing so, the calendar spread process is converted to 

the processes of the nearby futures, volatility of the futures, and convenience yield based 

on the theory of storage. We assume that convenience follows arithmetic Brownian 

motion, nearby futures follows geometric Brownian motion, and volatility of nearby 

futures follows a CIR process. Further, our model allows correlations between the return 

of the nearby futures and its volatility and the convenience yield. Our specification of the 

model provides a flexible adjustment of the empirical features of the futures contracts. 

In the empirical analysis, we calibrate parameters of the model using the 

analytical solution and market values of CSO. Closing prices of the 1-month CSO for 
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WTI futures are used as the market values. We test the performance of the new model by 

comparing with other existing pricing models and find that the new model with multi-

stochastic factors outperforms the other two models. The reason may be the flexible 

specification of the model for adjusting dynamics of the underlying asset. The new model 

has clear advantages in controlling the dynamics of the calendar spread such as term 

structure effect and Samuelson effect. 

The solution of the new model additionally requires a parameter calibration 

procedure, which can be sensitive to starting values. To get stable estimates, we employ 

an iterative two-step calibration method that differentiates procedures for the structural 

parameters and the spot processes. Further, we impose some upper / lower bound 

restrictions on the structural parameter estimates. However, future study would need to 

compare the results from the method used in this article with the results from other 

calibration approaches such as Bayesian estimation, Kalman filter, and particle filtering 

to verify robustness of the estimates. 

 We expect that our proposed CSO pricing model can be used both for market 

makers and the CME group. The new model has clear potential to lower bid-ask spreads. 

Also, the model is more flexible and accurate than the existing pricing models 

considered. Therefore, the model can be a promising alternative to provide reasonable 

settlement prices in the CSO market as well, which could increase the trade volume of the 

CSO market.
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Table III-1. Calibrated Parameters of the New Model 

𝑘 휃 𝛿 𝜎1 𝜎2 𝜌1 𝜌2 

0.52 0.03 0.39 0.32 0.24 0.17 -0.48 

 

 

 

 

Table III-2. Summary Statistics of Interest Rate, Storage Costs, and Convenience Yield 

Commodity Sample Period 
Mean 

(%, $/bbl) 

Maximum 

(%, $/bbl) 

Minimum 

(%, $/bbl) 

S D 

(%, $/bbl) 

T-BILL 

(3-month) 

Jan 02, 1985 - Feb 27, 2017 4.22 11.14 0.00 2.80 

Prime rate Jan 02, 1985 - Feb 27, 2017 7.04 13.00 3.25 2.57 

Storage cost Jan 02, 1985 - Feb 27, 2017 0.24 0.40 0.15 0.08 

Convenience 

yield 

Jan 02, 1985 - Feb 27, 2017 1.72 15.57 -13.31 1.93 

One-month 

spread 

Jan 02, 1985 - Feb 27, 2017 -0.03 11.55 -8.49 0.81 

Two-month 

spread 

Jan 02, 1985 - Feb 27, 2017 -0.02 12.05 -12.71 1.38 

Three-month 

spread 

Jan 02, 1985 - Feb 27, 2017 0.01 12.14 -15.21 1.83 
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Table III-3. Price of 1 month WTI Calendar Spread Options ‘at the money’ 

At the money (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑) 
Trading 

days to 

expiration 

Gibson & Schwartz Poitras New model Actual payoff 

Call Put Call Put Call Put Call Put 

10 0.52 0.45 0.06 0.06 0.55 0.40 0.53 0.21 

20 0.55 0.50 0.09 0.09 0.61 0.45 0.53 0.22 

40 0.60 0.53 0.13 0.13 0.61 0.51 0.54 0.21 

80 0.63 0.59 0.18 0.18 0.61 0.52 0.54 0.20 

120 0.65 0.66 0.22 0.22 0.62 0.54 0.55 0.19 

RMSE 

10 0.33 0.44 0.45 0.45 0.21 0.21   

20 0.34 0.35 0.46 0.44 0.21 0.20   

40 0.32 0.32 0.44 0.42 0.20 0.24   

80 0.45 0.35 0.39 0.41 0.23 0.20   

120 0.48 0.45 0.46 0.45 0.32 0.31   
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Table III-4. Price of 1 month WTI Calendar Spread Options ‘in the money’ 

In the money (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑 − 1) 

Trading 

days to 

expiration 

Gibson & Schwartz Poitras New model Actual payoff 

Call Put Call Put Call Put Call Put 

10 1.03 0.32 1.00 0.00 1.12 0.13 1.34 0.03 

20 1.16 0.37 1.00 0.00 1.13 0.19 1.34 0.02 

40 1.19 0.41 1.00 0.00 1.15 0.24 1.35 0.02 

80 1.25 0.45 1.01 0.01 1.16 0.27 1.37 0.02 

120 1.32 0.54 1.01 0.02 1.17 0.29 1.38 0.01 

RMSE     

10 0.73 0.50 0.48 0.25 0.48 0.10   

20 0.69 0.54 0.64 0.16 0.61 0.11   

40 0.61 1.10 0.63 0.20 0.57 0.22   

80 0.74 1.15 0.50 0.12 0.49 0.16   

120 0.50 1.32 0.64 0.09 0.61 0.13   
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Table III-5. Price of 1 month WTI Calendar Spread Options ‘out of money’ 

Out of the money (𝑋 = 𝑆𝑝𝑟𝑒𝑎𝑑 + 1) 

Trading 

days to 

expiration 

Gibson & Schwartz Poitras New model Actual payoff 

Call Put Call Put Call Put Call Put 

10 0.33 1.01 0.00 1.00 0.01 0.64 0.14 0.82 

20 0.37 1.12 0.00 1.00 0.04 0.68 0.14 0.82 

40 0.41 1.15 0.00 1.00 0.07 0.71 0.14 0.81 

80 0.47 1.21 0.01 1.01 0.10 0.71 0.14 0.79 

120 0.49 1.31 0.02 1.01 0.10 0.73 0.15 0.78 

RMSE     

10 0.83 1.12 0.16 0.31 0.13 0.32   

20 0.82 1.13 0.15 0.29 0.09 0.25   

40 0.76 1.07 0.16 0.30 0.10 0.34   

80 0.92 0.91 0.15 0.32 0.08 0.31   

120 0.90 1.48 0.13 0.33 0.06 0.30   
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