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ABSTRACT:  
This research project was designed to evaluate flash détente and thermovinification relationship 
to color development and aroma composition. Parameters investigated in this study include 
standard analyses of wine, colorimetric analyses, and volatile composition characterization. The 
methods of pre-fermentation include a flash vacuum expansion process, termed flash détente, 
involving high heat and high vacuum and another technique involving heat only, termed 
thermovinification. The standard analyses include pH, titratable acidity, and alcohol by volume. 
The process of flash détente involves a combination of heating wine grape berries from 80 to 90 
ºC for a brief period of 2 to 6 minutes. After heating, the solid mass is introduced into a low 
pressure vacuum chamber below 10 kPa, where, hypothetically, the cellular matrix of the grape 
skins burst from the inside, giving audible popping sounds, allowing for better extraction of 
anthocyanins, skin tannins, and other grape skin phenolic compounds in addition to modulating 
flavor and aroma compounds. Thermovinification involves heat over a longer period, generally 1 
to 24 hours, minus the vacuum step. Flash détente and thermovinification resulted in an increase 
in the wine color density, a measure of the color intensity of red plus yellow/brown pigments. 
Furthermore, yeast assimilable nitrogen, a measure of nitrogen available to yeast and an indirect 
measure of volatile concentration formed, increased in both flash détente and thermovinification 
trials. Volatiles were impacted by processing, resulting in a decrease of undesirable aromas. 
Results demonstrate ability of the flash détente process to improve the coloration of red wines as 
well as accentuate fruity characteristics. 
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Chapter I 

 

INTRODUCTION  

 

 The grape is the most valuable horticultural crop in the world; while the berry is 

mostly processed into wine, some is destined for fresh consumption as table grapes, dried into 

raisins, processed into non-alcoholic juice, and distilled into spirits (Myles et al. 2011). Wine is 

an alcoholic beverage produced with the fermented juice of grapes. Wine has received particular 

interest from consumers in recent times due to its valuable nutritional content as well as its 

bioactive components, including many classes of phenolic compounds, responsible for the taste 

and coloration of red wines. Phenolic compounds are synthesized in grapes as a plant defense 

against ultraviolet radiation, infection by pathogens, parasites, or predators (Stalikas 2007). 

Phenolic compounds are important to red wine quality because they impart color, mouthfeel, and 

ageability (Sacchi et al. 2005). Although phenolics are present in grape juice, the amount is 

generally much lower than in red wine, because of higher solubility in ethanol than in purely 

aqueous solutions and thus are better extracted during fermentation (Sacchi et al. 2005).  

 Color is easily the most recognized aspect of red wine quality for consumers. Two 

classes of phenolics, called anthocyanins and polymeric pigments, are responsible for the red-

purple coloration of red wines (Sacchi et al. 2005). Once grapes are crushed, polymeric pigments 

begin to form, and over time, their amounts tend to increase (Somers 1971). Researchers
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 estimate the total phenolic distribution in red wine grapes to be: pulp, 1%; juice, 5%; 

skin, 50%; and seeds, 44% (Kramling and Singleton 1969). Each class of phenolic compounds is 

compartmentalized within specific areas within the grape berries. Anthocyanins, the color 

component responsible for red grapes characteristic color, are found in the skins, specifically the 

hypodermal cells (Sacchi et al. 2005). Cinnamic acids and their esters are found in the juice and 

their skins, which account for flavor and aroma (Sacchi et al. 2005).  

Due to the major influence on phenolics on red wine quality, many winemaking 

techniques have been developed to influence extraction of specific compounds during the 

vinification process. Compartmentalization factors limit the extraction of different classes of 

these phenolic compounds. Since anthocyanins are located in the vacuoles of the hypodermal 

cells, successful breakdown of the physical barrier is necessary to release these specific 

compounds. Thus, it is important to rupture the membranes of the grape skins rather than merely 

collapse the cell, as a collapsed membrane can trap internal compounds and components (Sacchi 

et al. 2005). 

 Fermentation has a profound effect on the concentration and quality of the compounds 

that promote health benefits and consumer desirability. Traditional fermentation factors such as 

alcohol, carbon dioxide, and sulfur dioxide, combined with heat increases permeability of the 

cells and specific membranes (Sacchi et al. 2005). Even with these factors, the extraction of 

desirable compounds is not optimal. The fermentation process for grapes relies on the ability of 

yeast to convert sugars to alcohol, esters, and other volatile and non-volatile compounds (Duarte 

et al. 2010). Interestingly, the fermentation process increases the level of antioxidant activity by 

facilitating the extraction of anthocyanins and other phenolic compounds. However, many 
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volatiles are tightly bound to the cellular wall, necessitating rupture of the membranes for 

fermentation methods to capture and catalyze new volatile reaction products.  

Wine flavor and aroma comprises a complex chemistry in both qualitative and 

quantitative terms. Several classes of compounds, such as hydrocarbons, alcohols, terpenes, 

esters, aldehydes, ketones, acids, ethers, lactones, and sulfur and nitrogen compounds define 

wine aroma (Etievant 1991). Particular attention has been devoted recently to the analytical 

characterization and the quality improvement of the varietal aroma of wine (García-Carpintero et 

al. 2011).  Furthermore, there is an increasing interest in the world wine market to supply a red 

wine with fruity characteristics (Geffroy et al. 2015). Aroma production is influenced by several 

factors: environment (soil, climate), grape variety, ripeness, fermentation conditions, and 

biological factors, winemaking processes and aging (Rapp 1998). Most of the volatile 

compounds may play a role in the aromatic profile of a wine depending on two factors: 

concentration and their sensory perception factor. A better understanding of wine volatiles may 

guide winemaking quality control and may have an impact on the viticultural and wine 

technological processes (Bonino et al. 2003).  

While there are clear sensory differences in the aromas of different grape varieties, the 

overall volatile composition of most varieties is similar (Herszage and Ebeler 2008). Since these 

specific volatile compounds are present in the range of mg/L to ng/L concentrations, their 

sensory thresholds may have an enormous impact on the overall wine aromatic profile. Gas 

chromatography is an important technique for the analysis of these volatile components 

responsible for the aroma of a particular wine.  
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This research project was designed to evaluate color extraction and volatile composition 

of two grape pre-fermentation processing techniques, flash détente and thermovinification, using 

grape berries grown in Oklahoma. To accomplish this goal, standard measurements of the must 

and wine were taken over time including: pH, titratable acidity, alcohol concentration, 

colorimetric analysis, and other factors. These factors are important to the quality of the finished 

wine, as most producers set quality parameters to control the overall product consistency that is 

sold to consumers and buyers. Furthermore, the concentration of aromatics present in the wines 

were quantitatively determined using Gas chromatography with a flame ionization detector to 

investigate if the different processes had an impact on certain compounds.  

The following specific study objectives were tested: 

1. Flash détente pre-fermentation processing extracts higher concentrations of color 

parameters, including color density and anthocyanin pigments.  

2. Flash détente removes undesirable aromas from wine through use of a condenser 

in the flash process 

3. Pectinase further breaks down the grape skins and releases higher concentrations 

of pigmentation than treatment alone  
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Chapter II 

 

LITERATURE REVIEW 

 

 Because grapes readily ferment, wine has an archeological record dating back more than 

75,000 years ago (Jackson 2008). Some researchers would argue that this does not constitute the 

modern definition of wine, and thus, the first incidence of winemaking techniques appears in the 

representation of a winemaking press from the reign of Udimu (Egypt), around five thousand 

years ago (Petrie 1923). Wines took their modern expression in the 17th century, where sulfur 

additions became common, greatly increasing the likelihood that higher quality wines were 

produced and extended their aging potential (Jackson 2008).   

The basic overall process of the production of wine occurs in many discrete steps. Red 

wine grapes are picked by hand or less commonly, mechanically, at physiological maturity after 

determination of an adequate brix value by refractometer measurements. Other determination 

factors for grape picking are color, pH, acidity level, and taste. The grapes may be stored in 

refrigerated storage until processing to remove field heat and preserve the quality of the finished 

wine. When the grapes are ready to be processed, whole bunches of grapes are weighed and then 

processed through crusher/destemmer equipment to partially release juice and remove stems 

from the process. After this step, the grapes are collected into bins and transferred into 

fermentation vessels and fermentation can proceed.
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Yeast is added at specific levels and the type of yeast is dependent on the winemaker’s 

desires. Fermentation generally occurs over seven to ten days in contact with the skins and seeds 

depending on the requirements of the winemaking process. Fermentation with the skins allows 

the tannins, anthocyanins, and other compounds to be extracted to enhance flavor and 

astringency on the tongue. After the initial fermentation, the skins are pressed from the juice 

after the yeast has nearly metabolized all free sugars into alcohol and carbon dioxide. At this 

point, the winemaker has a decision to make, either bottle the wine or continue through 

secondary fermentation involving the use of lactic bacteria. Currently, the process is standard for 

winemakers in red wines to convert the tart tasting malic acid to the softer tasting lactic acid 

(Jackson 2008). Furthermore, malolactic fermentation removes residual sediment containing 

dead yeast cells and precipitated compounds in the solid phase. An addition of a sulfur dioxide 

solution is used to kill off any native yeast or bacteria that might be present after processing of 

the must, which could cause spoilage of the juice and subsequent wine. Generally, wine is 

allowed to age in oak barrels to add complexity and the addition of oak lactones before bottling, 

although it is not necessary (Jackson 2008).  

Innovation in the wine business helped pave the way for new wine processing techniques 

to be developed. Thermovinification is one process developed in the 1950s involving heat 

treatment of must in California (Berg 1950). In the early 1990s, researchers at The National 

Institute of Agricultural Research, INRA, in France, developed a unique vacuum processing 

method for extracting phytochemicals from grape skins and seeds, termed flash détente. While 

vacuum processing may be relatively new to the wine industry, other similar processes have been 

utilized for many decades in other sectors of the food industry. 
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Vacuum cooling is one such technology used in the US for over 50 years on specific 

horticultural products, including leafy greens, fruits, and vegetables (McDonald and Sun 2000). 

When leafy greens or other horticultural products are sent through the vacuum system, an 

immediate drop in temperature occurs, similar to flash détente processing. The vacuum cooling 

process is used to remove field heat from the products, and to extend the shelf life for both fruits 

and vegetables, as well as leafy greens (McDonald and Sun 2000).    

Deaeration is also a process similar to flash détente that resolves certain issues 

surrounding unwanted odors and color underdevelopment. The goal of deaeration is to reduce 

levels of dissolved oxygen that affect overall flavor deterioration. Deaerators are commonly 

utilized in the food industry for applications of milk, juices, fruit fillings and preserves, sauces, 

in addition to other food products.  

Jordan, Goodner, and Laencina (2003) analyzed the effects of deaeration and 

pasteurization of orange juice aromatic fraction, finding that deaeration had the largest effect on 

the volatile composition. Another benefit of the deaeration process is its ability to extract color 

compounds in juices and fruit purees. Flash détente grape processing, like deaeration, strives to 

resolve issues related to color development and undesirable aromas. Flash détente may then be 

considered a natural evolution utilizing aspects and principles of these similar processes, in order 

to create high quality wine for the industry.  

The flash détente process is not a supplementation of steps in the winemaking process, 

rather it is an addition of steps to increase the likelihood of producing a high quality wine. After 

grape picking, grapes are crushed and destemmed to partially breakdown the grapes and remove 

stems. Since heat is applied in the flash process, field heat removal is not necessary. Following 

crushing, twenty to thirty percent of the total mass in the form of liquid is removed before 
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heating. Next, the flash detente process involves heating grapes rapidly in an oxygen-reduced 

atmosphere. Once a temperature of 80-90°C is reached in the center of the berry skins with 

residual pulp, they are transferred a vat under a low-pressure, high vacuum (less than 10 kPa), 

where an abrupt drop in pressure causes immediate cooling and release of steam (Paranjpe 

2008). This is where the term détente comes from; it is the French term for instant relaxation, as 

in relaxation of the grapes to release water vapors. The flash détente technology causes 

mechanical de-structuring of the cellular matrix of the grapes, releasing targeted volatile 

compounds, mainly from the skins of the grapes. What is important to keep in mind is that flash 

détente enables optimization of other steps in winemaking, and produces wines with greater 

typicality, or more consistency year over year.  This physical pre-treatment of the grapes is the 

starting point for numerous winemaking methods, and is intended to result in the production of 

richly colored grape juice containing a higher concentration of polyphenols (INRA 2013).  

Vapor that is released during the flash vacuum process is condensed using a condenser 

and collected in a container for disposal. The condensate, known as flash water, is generally high 

in aromatic volatiles known as methoxypyrazines and other volatiles that impart grassy or earthy 

characteristics to the wine. After the flash détente process, the must is then either pressed off into 

the fermentation tank or it is pumped to the tank for fermentation with the skins. Juice that is 

pressed from the flash détente process rapidly cools and separates from the skins. During the 

heating process, destructive enzymes (oxidases like tyrosinase and laccase produced by botrytis) 

and microbes are inactivated, improving the chances that high quality wine can result after 

fermentation, bottling, and aging (Miguel and Valero 2014).  

In the flash détente and thermovinification process, to distinguish it from a traditional 

fermentation, fermentation of the wine can occur once the juice decreases temperature to around 
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240C. The justification for 240C is dependent on the yeast, as most wine yeast ferments optimally 

at 240C (Jackson 2008). The resultant product is filtered to remove the free run juice from the 

crushed berries. After the free run juice is filtered, the grapes are then heated with a heat 

exchanger until they reach the desired temperature of 85-950 C. Upon reaching the temperature 

range, grapes are placed into the sample chamber and subjected to low vacuum pressures, at 

which point they theoretically imploded and released phytonutrients into the juice phase. 

Condensate can be isolated from the juice containing higher amounts of anthocyanins, 

polyphenols, and overall color, a benefit of the process.  

The flash technology is PERA® patented worldwide since 2002 but as of 2013, only a 

few systems for Flash Détente have been produced to date: 75 units in France, 10 in South 

Africa, 10 in Spain and 5 in the US (Favarel 2013). Moreover, commercial Flash détente systems 

are able to handle anywhere from 1 ton per hour to more than 50 tons of grapes per hour (Paranje 

2009). The flash détente process is known to enhance tannin, color, and polyphenol extraction as 

well as resolves issues with underripe grapes. Furthermore, because no research focuses on the 

specifics of flavor and aroma compounds produced during the flash détente process, there is an 

opportunity to explore the possibility for the wine industry to utilize the technology increasing 

the likelihood of producing quality enriched red wines.  

Due mainly to its midcontinental climate, Oklahoma has common issues surrounding the 

quality of specific varieties of grapes produced in the state, specifically color development and 

aroma composition. Understanding of grape varieties that will thrive in Oklahoma and command 

high market prices may help build a foundation that could improve the wine business in 

Oklahoma.  
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Hybrids generally fare better in the Oklahoma environment, though at market they 

command a lower price less per ton of grapes, with the average per ton of hybrid grapes at 400-

700 dollars and the average price paid for vinifera grapes is 1000-1500 dollars per ton (Stafne 

2014). V. vinifera the preferred grape variety of consumers all around the world, for the reason 

that it makes a high quality wine, likes hot and dry conditions in summer, and is prized for its 

productivity.  

The reason that vinifera does not fare well in parts of Oklahoma is due the lack of cold 

hardiness, reduced disease resistance, and its need to be intensively managed (Stafne 2014). 

Even in spite of the issues surrounding vinifera, it is the preferred grape variety to grow for 

commercial production. For these reasons, a processing method that addresses low brix 

accumulation in the grape berry as well as weak coloration and off flavors for red wine 

production is essential. Currently, there exists a multitude of solutions to assist in the processing 

of grapes in wine but still overall quality issues still endure.  

The traditional method of color and flavor extraction from the skins of red grape berries 

is to macerate at a temperature between 24-320C, requiring contact between grape skins and juice 

from the berries (Jackson 2008). Thermovinification is a winemaking technique used by certain 

wineries, where heat is used to extract color and flavor from the grape skins, an advance over 

classic maceration techniques. After the crushing and destemming step, the crushed mass is 

heated to 60-750C for 30 minutes up to 24 hours (Geffroy et al. 2015). After this heating step, the 

must is cooled down to yeast pitching temperatures. One downside to this process is that the 

wine can result in a wine having a “cooked” flavor (Jackson 2008).  

From thermovinification, the concept of flash détente using heat and pressure was 

developed by the INRA to ease problems extracting color and flavors from the grape berries. 
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According to the official blog of the Society of Wine Educators, “In Europe during the early 

years of flash technology, it was mainly used for lower quality grapes or difficult vintages that 

had problems needing fixed.  Now the use of this technology is expanding its application to all 

quality levels of the wine industry” (Audino 2015).  

 One reason that the process became successful initially is that it eliminates enzymatic 

activities, particularly laccase enzymes (Escudier et al. 2008). Since producers seek to eliminate 

waste, which can increase operational costs, the process has major implications for waste 

reduction. Rotting grapes that would otherwise be wasted can possibly be utilized by flash 

détente processing. The other potential major benefit is the decreased need for fermentation vats 

by elimination of the entire solid mass after flashing of the grape berries, though later studies 

demonstrated the importance of fermenting in the solid phase as it better extracts all free and 

loosely bound polyphenols and polysaccharides in general.  Work done in the early 2000’s 

provided some insight into so called “Appellation wine,” which was macerated in the solid 

phase, demonstrating that wines produced were structured, tannic, while keeping their terroir and 

some ripe sweetness (Desseigne et al. 1998).  

Flash détente is a logical progression in the development of new processing techniques to 

satisfy consumer’s desires for new wine products. Flash produced wines allow the winemaker to 

develop a wider range of wines from grapes with controlled maturity. According to Escudier et. 

al., “The objective is not, through technology, to develop industrial wines but, instead, to use it 

as more directive way to diversify and better express the qualities, being vinification, the 

potential composition of the harvest with a reverse engineering approach” (2005). Escudier 

stated that there are two options available to winemakers in practice: one is respect for the grape 
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berries to trigger anaerobic metabolism naturally, and the other is cellular disorganization in 

order to increase the diffusion phenomena (Escudier et al. 2005). 

Grape Physiology 

To understand the impact of flash détente and thermovinification, a brief physiology of 

grape berries is necessary. The grape skin contains many layers: the cuticle, which is the 

outermost layer, is composed of hydroxylated fatty acids and is covered in hydrophobic waxes, 

the intermediate epidermis, the inner layer, and the hypodermis, which is composed of several 

cell layers that contain most of the phenolics in grape skins (Bell 2007). Figure 2 illustrates the 

concept of grape physiology and the spatial location of certain compounds.  
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Figure 1. Grape physiology 

The skins of grape berries form a barrier to the diffusion of components including aromas and 

phenols and acts as protection against external factors (Pinelo et al. 2006). Furthermore, physical 

traits of the cell wall, such as surface topography, porosity, and chemical composition, can also 

influence the association of cell wall polysaccharides and phenolic substances (Pinelo et al. 

2006). Differential analysis of skin walls of red wine grapes may provide some further 

understanding of the application of flash détente. What is known now is that fermentation 

temperature is one of the most crucial variables affecting the extraction of phenols from grape 

skin, and increases flavor extraction by enhancing the solubility of solute.   

Macromolecular Composition 

According to the Institute of Vine and Wine in France, the hot juice from that comes out 

from heat treatment contains strongly laden solids and often have a higher turbidity close to 3000 

NTU (Vingevin 2016). NTU, or Nephelometric Turbidity Units, is a unit of measurement that 

measures light scattering. Thus, it is desirable before setting alcoholic fermentation to clarify the 

hot or warm musts. According to a skilled winemaker at Carneros Vintners, since the must from 

the flash process comes out virtually sterilized, little sulfur dioxide is needed, though exogenous 

tannin is added to prevent oxidation and to stabilize the must (Intardonato 2013). The addition of 

pectinolytic enzymes is theorized to remove off flavors including mold, smoke, and vegetative 

aromas. Exogenous enzymes can be added before the vacuum step or after the vacuum step, 

though most commonly the enzyme blend is added before any vacuum step is initiated. It has 

been theorized that the enzymatic process improves the organoleptic quality of grape juice by 

degradation of pectic substances to create a clear juice (Paranjpe et al. 2012).  



 
 

14 
 

The macromolecular fraction of wines includes polyphenols and polysaccharides, which 

have a major influence on the quality of red wines, mainly color and taste (Doco et al. 2007). 

Doco and his research group (2007) studied the effect of flash release on wine polysaccharide 

composition, and found that the flash release treatment increased extraction of both 

polysaccharides and polyphenols. Because extracted tannins help stabilize color, loss of this 

color, in part, is a consequence of low quality and quantity of extracted tannins, common in 

traditionally macerated wines. The benefit of flash détente is that the process is highly effective 

in separating color compounds, but extracts only the most soluble tannins, generally low 

molecular weight tannins (Doco et al. 2007). To obtain extraction of higher molecular weight 

and more complex tannins, alcohol is necessary. Furthermore, to accomplish extraction of higher 

molecular weight and complex tannins, maceration with the skins is highly recommended after 

the flash process. Extension of contact between the solid phase and the liquid phase during the 

winemaking process gives more aromatic complexities and better taste. In 2007, Doco et. al. 

provided empirical evidence that substantiated claims that the wine macerated with skins had a 

statistically significant higher concentration of polysaccharides compared to the wine macerated 

in the liquid phase only (Doco et al. 2007). Additionally, the wine macerated in the solid phase 

also was higher in polysaccharides arabinose and galactose, demonstrating the ability of flash 

détente to produce enriched wines. Temperature also plays a large factor in the extraction of 

polysaccharides, though increasing the temperature too much can lead to cooked flavors in the 

finished wines.   

Some of the effects of excessive heat during fruit growth and ripening include: reduced 

color development (anthocyanins) in red berries and decreased sugar concentration in fruits 

(Williams, 1994). These are two important factors that the flash détente process seeks to resolve. 
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In industry, a popular method for increasing the brix value is to add sugar directly into the 

fermentation vats, a process known as chaptalization, though the process results in a wine that 

generally does not have the same characteristics of a wine produced using only natural sugars 

present in the grape berry (Martin 1990).   

Benefit and Importance of Anthocyanins 

Anthocyanins are a class of flavonoids that are water soluble, responsible for the familiar 

hue of wines. They function as pigments and comprise the orange, red, purple, and blue colors of 

many fruits, vegetables, flowers and roots. Spatially, anthocyanins are located within the 

vacuoles of the epidermal cells and upon crushing of the grape berries can release into the liquid 

phase during winemaking. When present in water, they are more stable at a low pH, a unique 

factor for wine, as it contains high amounts of organic acids that lower the pH naturally during 

vinification (Somers 1971). Meanwhile, the concentration of anthocyanin is dependent on 

different factors, including geographical origin, cultivar, or variety (Makris 2006).  

Anthocyanin extraction occurs early in fermentation, generally at its maximum 

concentration by day 4 into primary fermentation (Mansfield 2015). Wine is prized for its health-

promoting qualities, particularly due to the anthocyanidins. Not only do anthocyanins provide 

color to wine, but also many studies have correlated these health-promoting compounds with 

antioxidant, anti-inflammatory, and anticarcinogenic properties (Pojer 2013). Additionally, these 

specific compounds provide protection against specific types of heart disease and cancer, as well 

as reduce risk of diabetes and cognitive function disorders (Pojer 2013). Thus, moderate 

consumption of red wine on a regular basis may improve the health of the consumer, while 

providing an enjoyable experience.  
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Wine Quality  

Unlike most other modern processed foods, people’s fascination with wine is difficult to 

define due to its reliance on subtle perceptions, not on its consistency or strong flavor profile 

(Conde et al. 2007). Wine is mostly water, accounting for between 75 and 95 percent of the total 

content by volume. The 15 percent variation is explained by the amount of phenolics, organic 

acids, mineral salts, and pectins which form the wine extract, and can differ from wine to wine 

(Conde et al. 2007).  

Certain features of grapes make it the perfect medium for wine production. These 

features include the high concentration of sugars and other nutrients that provide excellent 

growing conditions for the yeast, natural acidity that controls microorganism growth during and 

after fermentation, a high concentration of ethanol to also provide protection against 

microorganisms, and lastly, a unique manifestation of aromas and flavors (Kunkee 1996). 

Quality largely depends on many complex factors including soil composition, growing 

temperature, growing season, maturity at harvest, light, microorganisms on the grape surface, 

and many other similar factors (Kunkee 1996). These factors can also change from growing 

season to growing season even for the same area of land, keeping all human intervention in the 

growing cycle the exact same.  

However, scientific analysis of wine only provides a small but significant part of the 

bigger picture of wine consumer preference. More importantly, scientific research in wine 

quality guides decision making by master winemakers. Thus, sensory analysis is of paramount 

importance to understand variable’s interaction with consumer’s tastes, which ultimately may 

provide information for winemakers to help improve the quality of wines.   
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Quality Yields and Impedance Analysis 

A study carried out on the quality and yield of juice from grapes treated by flash détente 

vacuum extraction, using combinations of heat, vacuum, and enzymes provides further 

information about the processes effect on grapes for wine (Paranjpe 2008). The objective of this 

research was to analyze the effects of temperature and pressure on flash détente processing of red 

grape juices. Thompson seedless grapes were used, a common table grape, in a full factorial 

design for the flash expansion experiments with two factors (temperature and pressure) at three 

level for each. Temperature was varied at 60, 75, and 900C, while the initial pressure was varied 

at 1, 5, and 10-kPa absolute pressure. These conditions were chosen since results from 

Thompson seedless grapes indicated that they were the most efficient in extracting the highest 

concentration of juice and polyphenols from grapes.  

At 1 kPa absolute pressure, the boiling point of water is 70 C, thus when the fruit enters 

the vacuum at the desired temperature of 90-950C, the grape skins expand violently, releasing the 

cellular components into the liquid phase of the flash juice. The flash water that is produced is 

generally discarded as it has a high concentration of aromatics that are highly disagreeable (Flash 

Détente: Making Red Wine Redder 2015). Lower chamber pressures and higher fruit 

temperatures were found to improve juice yield and phytochemical composition. Quantity yields 

from the cold pressed and heat-treated were at 71.0 g per 100g and 75.8g per 100g of starting 

grapes, respectively. Yields for enzyme processed and flash vacuum expansion treatment were 

84.8 and 84.3 g per 100 grams of starting grape berries, though the two treatments were not 

statistically significant from one another (Paranjpe et al. 2012). Anthocyanin extraction and total 

phenol content was statistically higher for the flash vacuum expansion treatment than other 

treatments with an extraction efficiency of 87.0 g and 2.6 g/L total phenol content, respectively.  
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The study then compared impedances obtained from grape skins using the different 

treatments in his published paper; results indicate that the flash vacuum expansion ruptures more 

cells in the grape skin than enzyme processing and heat treatment, therefore extracting more 

solutes from the grape skin (Paranjpe et al. 2012). Since this method of processing grapes is 

intended to be applicable to industry, Paranje observed the process using a batch method and a 

continuous process method. While Paranje was able to achieve a method that allowed for 

continuous processing of grapes, only a negligible amount of grape berries were ran through the 

system before any kind of reliable trends could be observed and documented.   

Meredith Bell’s research study (2007) on flash détente provides a great overview of the 

effect of ethanol, press temperature, and flash détente on the extraction and partitioning of 

condensed tannins, iron reactive phenolics, and anthocyanins during fermentation. To quantify 

these compounds, free and bound tannins were measured in the grape berry skins during each 

day of fermentation, in order to investigate how and when condensed tannin molecules become 

free or bound to the insoluble cell wall matrix of grape berry skins (Bell 2007). Bell 

demonstrates in her research study that flash détente grape processing effectively extracts 

anthocyanins, iron reactive phenolics, and tannins, though adding the enzyme after the heat and 

pressure step appears to have a noticeable effect on all response variances by decreasing these 

variables in the vast majority of all samples.  

The most interesting discovery in Bell’s study is the majority of flash détente produced 

wines were higher statistically than the control wines in iron reactive phenolics, tannins, and 

anthocyanins, which were all over 1000mg/L catechin equivalents. Average tannin levels were 

reported at 544 mg/L catechin equivalents for a survey that included over 1300 wines 

(Harbertson 2008). Overall, while all three variables increased with the flash détente wine 
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compared to the control, the tannins and iron reactive phenolics showed the most drastic 

changes, while anthocyanins were only slightly higher in concentration for the flash détente 

treatment.  

Ageron et. al. (1995) compared flash détente processed skins to a standard vinification, or 

control, using electron microscopy. The flash détente processed skins displayed a large network 

of cracks all along the skin, while the control demonstrated virtually no cracking. This 

demonstrates that flash détente is effective in lysing cells to ease diffusion of cellular 

components into the liquid phase, increasing quality attributes of the wines. Rheological 

measurements show that the resistance of grape skins to piercing after flash-release and 

vinification is less than from a control vinification (Ageron et al. 1995).  

Organoleptically, flash détente produced wines were judged to be round and fruity 

(Escudier et al. 2008). Consumer panels have reported this as well, which may provide a 

desirable product to consumers (Miguel 2014). Altogether, these research studies provided solid 

background of sensory and chemical compositional differences of flash détente, namely that 

flash détente gave the winemaker useful options in processing raw materials.  

A study that investigated the effect of the flash release treatment on phenolic extraction 

and wine composition found that the flash process efficiently extracted all phenolic compounds 

(hydroxycinnamic acids, flavanols, anthocyanins, catechins, and proanthocyanidins) resulting in 

polyphenol-enriched grape juices (Morel-Salmi et. al. 2006). Phenolic compounds are of 

importance as they are responsible for major wine sensory characteristics such as color and 

astringency. In the four types of wine varieties studied, flash release extraction resulted in higher 

levels of anthocyanins, flavanols, catechins, and proanthocyanidins, though hydroxycinnamic 
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acids were lower in 3 of the 4 varieties of wines by an average of 27 percent (Morel-Salmi 

2006).   

While traditional methods of extraction, such as thermovinification, often pull harsh 

tannins from seeds and skins, flash détente extracts desirable anthocyanins from the grape skins 

without simultaneously over extracting abrasive seed tannins. European-type grapes grown in 

Oklahoma for wine production typically encounter specific problems that result in lower quality 

wine grapes than more established wine terroirs. Furthermore, grapes grown in Oklahoma 

encounter less than ideal Brix values because of the high temperatures and the imperfect red clay 

soil (Stafne 2014). Thus, flash détente may be a viable option to reduce quality-related issues 

through the process’s ability to extract phytochemicals using a heating and vacuum system.  

Wine Volatiles and Aroma 

Wine aroma is attributable to large range of molecules coming from different chemical 

families such as aldehydes, ketones, esters, terpenes, norisoprenoides, acids, alcohols, and sulfur 

compounds (Torrens et al. 2004). Some of the compounds formed have desirable aromas, while 

compounds such as methoxypyrazines and sulfur containing compounds generally have a strong 

degree of disagreeableness to wine drinkers. Since there is increasing interest in the wine buying 

community in red wines with fruity characteristics, Researchers have attempted to gain more 

insight into the compounds present that are responsible for a vegetal or herbaceous character in 

certain wines.  

Chiefly, the persistence of vegetal aromas in wines is due mainly in part by a class of 

compounds called methoxypyrazines. Pyrazines are nitrogen containing heterocyclic compounds 

distributed widely in nature in both animal and plant life forms.  Some of the volatile compounds 

in wines are from the grapes themselves and some volatile compounds are formed during 
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fermentation and aging. Methoxypyrazines are a class of extremely potent odorous molecules 

present in certain vegetables in nature, including most notably, bell peppers and green peas. In 

certain wines, “persistence of the methoxypyrazines causes a defect that gives off green, grassy, 

and vegetative aromas.  

Specifically, the presence of 3-isobutyl-2-methoxypyrazine (IBMP), 3-sec-butyl-2-

methoxypyrazine (SBMP) and 3-isopropyl-2-methoxypyrazine (IPMP) in wines has been related 

with the green and vegetative aromas characteristic of some wines made with Cabernet 

Sauvignon, Sauvignon Blanc, Merlot or Cabernet Franc grapes” (López et. al. 2010). The 

concentrations of these compounds are extremely low (ng/L), but they can influence wine aroma 

due to their extremely low sensory threshold. Reports show that the sensory threshold in 

redwines is about 10-16ng/L (Roujou de Boubee 2003).  

In a study conducted in 2002, researchers in France were able to demonstrate that 

methoxypyrazines in grapes are highly extractable in a traditional winemaking process (Roujou 

de Boubee 2002).  Furthermore, the researchers were able to show that all methoxypyrazines 

separated from the grapes into the juice even before any alcoholic fermentation was able to start. 

  Thus, it may be advantageous to pick wine grapes off the vine once they are adequately 

ripened to decrease the incidence of methoxypyrazine-related aromas. In some areas and within 

some wineries this process may not be possible due to the extremely short period of time that 

grapes are picked for processing, generally three weeks out of the year. For this reason, deeper 

research into the flash détente potential effect on wine grape’s methoxypyrazine compounds 

reduction is necessary for winemakers to make informed decisions about developing quality 

wines.   
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CHAPTER III 

 

MATERIALS AND METHODS 

 
Grape collection and storage 

Approximately 110 kg (250 lbs) of Cabernet Sauvignon grapes were picked from Jones, 

Oklahoma on August 30, 2016 from Duncan Family Farms as shown in figure 2 below. 

          

Figure 2. Grape collection from Jones, Oklahoma 

 Grape clusters were sprayed with a 300 ppm sulfur dioxide solution and placed in a 40C 

refrigerator for 48 hours before crushing and destemming. Initial processing of the grapes 

consisted of crushing, destemming, and addition of 30 ppm SO2 and exogenous sugar to ensure 

the viability of samples. An Enoitalia crusher (Rome, Italy) partially crushed the grapes, 
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releasing some of the juice from the berries. The lot of grape must was stirred in a Vulcan 

model VDLT-40 until roughly homogenous. Samples were split into homogeneous lots of 

around 8 liters (2 gallons) storage buckets, twelve in total, before sample treatment as shown in 

figure 3 below.  

 

Figure 3. Homogenous lots of grape must 

All samples were stored at -15 °C with sealed lids until further processing or analysis.  

Preparation of juice samples 

Frozen, crushed and destemmed Cabernet Sauvignon grapes were placed at room 

temperature for 48 hours to thaw. After thawing, samples were separated and experimental 

treatments were applied as determined randomly. 

Soluble solids 
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Wine grape sugar concentration was estimated as percent soluble solids using an Anton 

Paar Abbemat 200 refractometer (Ashland, VA), and recorded as Brix value (in g/100g). 

Samples were taken in duplicate for reliability of measurements.  

Yeast Assimilable Nitrogen 

Samples of juice were analyzed for the concentration of yeast assimilable nitrogen, a 

measure of the nitrogen sources available to the yeast for fermentation vigor. The formol titration 

technique was employed to estimate the nutritional status of the grape must in terms of mg/L of 

yeast assimilable nitrogen. Samples were measured after treatment or no treatment depending on 

the batch type randomly assigned. Ten milliliters of sample was filtered, pipetted into a 25 ml 

volumetric flask, and then topped to the 25 ml fill line with deionized water. The 25 ml sample 

was transferred to a beaker and a magnetic stir bar was added. Sodium hydroxide, with a 

concentration of 0.05 N, was added to the solution of juice and water until the pH reached 8.0, 

measured with an Accumet AB 15 pH meter (Buffalo, NY). At this point, 2 ml of pH 8.0 of a 

37% formaldehyde solution was added. Next, the sample was titrated with the same 0.05 N 

sodium hydroxide until the pH reached an endpoint of 8.0. The estimate for yeast assimilable 

nitrogen was calculated according to: 

YAN (mg N/L) = (ml of 0.05 N NaOH titrant) x 175 

pH 

The pH of the Cabernet Sauvignon wine was measured using an Accumet AB 15 pH 

meter (Buffalo, NY). The pH meter was calibrated using pH standards before measuring 

samples. pH measurement was collected after 38 days after the beginning of fermentation by 

stirring samples in a beaker with a magnetic stir bar. Samples were tested in duplicate at room 

temperature to ensure homogeneity of sample measurements.  
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Titratable acidity 

The titratable acidity of the Cabernet Sauvignon wine samples were measured manually 

at 38 days after the beginning of fermentation. Five mL of room temperature wine was mixed 

with 125 mL of deionized water in a 250 mL beaker. The sample was stirred using a magnetic 

stir bar and the initial pH was measured using an Accumet AB 15 pH meter (Buffalo, NY). The 

sample was titrated with 0.1 N sodium hydroxide (Arcos Organics, Fair Lawn, NJ) until it 

reached pH 8.2 and the volume of titrant used was recorded. The titratable acidity was then 

calculated as % tartaric acid using the following formula: % tartaric acid = [(mL NaOH x N 

NaOH x mili-equivalent wt. of tartaric acid)/ mL sample added] x 100 = [(mL NaOH x 0.1 x 

0.067)/5] x 100. Two duplicate readings were taken from each wine sample and averaged. 

Percent alcohol 

The percent alcohol (w/w) of wine samples was measured using an Alcoholizer Wine M 

(Anton Paar, Ashland, VA). Samples of aged wines, after 30 days following pressing of wine 

from grape skins (day 38 total), were collected into 60 mL beakers. Approximately 30mL of 

wine per sample were used in the analysis. Two duplicate readings were taken from each wine 

sample and averaged. Alcohol readings were repeatable to 0.01% (v/v).  

Colorimetric Analysis  

 Spectral analysis of wine samples was done using a Beckman DU520 UV/VIS (Brea, 

CA) single cell module spectrophotometer. Wine samples were tested at day one and day eight 

following the start of fermentation and day thirty after pressing of the wine from grape skins for 

differences between treatments and with the treatment effect of pectinase.  

To accomplish color analysis, the method by The Napa Valley College Department of 

Viticulture and Enology was utilized for all samples (Elridge and Liles 1997). Wines were 
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filtered through .45-micron filters to remove incidence of turbidity that could lead to inaccurate 

data. Measurements of 1:10 diluted wine samples (at pH 3.6) were taken at 420 nm and 520 nm 

in a 10 mm quartz cuvette on day one and day eight, while the full color analysis was used for 

day thirty after pressing for analysis. Blanks were ran using de-ionized water before samples 

were analyzed.  

 On day thirty after pressing, measurements were taken as previously described, in 

addition to more specific color analysis than at day 1 or 8 after fermentation started. For the 

sulfur dioxide test, two milliliters of wine were combined with 160 microliters of a 5.0% solution 

of SO2 and then absorbance was measured at 520nm for each wine sample in triplicate. 

A buffer solution was made using 24 ml of pure ethanol and added to 174 ml of 

deionized water. To the solution, 0.5 grams of potassium bitartrate was dissolved and adjusted to 

pH 3.6. 100 microliters of wine was mixed with 1900 microliters of this buffer solution and the 

absorbance was measured at 365 nm. The absorbance values determined by this metric determine 

the flavone-phenol measurement, a measure of certain phenolics and flavones in the wine. To 

determine free anthocyanins in the wine, the 365 nm absorbance measurements were subtracted 

by the absorbance measurement of sulfur dioxide at 520 nm. Lastly, color hue was determined 

by the ratio of absorbance values at 420 nm to the absorbance values at 520 nm. 

Trial Preparation 

 Containers of frozen, crushed and destemmed Cabernet Sauvignon grapes were placed at 

room temperature for 48 hours to raise the temperature of the juice to accomplish treatment, 

when appropriate, and yeast addition. Samples were randomly assigned to treatment groups and 

treatment was applied when selected for the batch. 
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Control Trial Preparation 

Four liters of grape must was added to an 8-liter container and RC 212 yeast (Lalvin) was 

added when the temperature of the must reached above 20oC for the control trial. If pectinase 

treatment was selected for random treatment, it was applied to the mixture using 5 g per 4 liter 

batch before yeast addition. 

Thermovinification Trial Preparation  

After thawing, samples of 4 liters of must were placed into Ziploc® bags (1.5-gallon) and 

sealed as shown in figure 4 below. If pectinase treatment was selected for random treatment, it 

was applied to the mixture using 5 g per 4 liter batch before yeast addition.  

 

 

Figure 4. Thermovinification processing 

The sealed samples were transferred to a heat circulating bath with an immersion 

circulator, specifically the Anova Culinary PCB-120US-K1 Bluetooth Precision heater (San 
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Francisco, CA), at 600C for 3 hours. After 3 hours, the samples were then cooled to room 

temperature with an ice bath and yeast was introduced using the method described in a following 

section.   

Flash Détente Trial Preparation  

After thawing, 4-liter samples were strained to collect free run juice before heating 

began, shown in figure 5 below.  

 

Figure 5. Filtering of free run juice from solid mass 

 Samples of grape solids minus free run juice were quickly heated in a 40-liter DC-6 

Vulcan-Hart® steam-jacketed kettle (Louisville, KY) for 2-3 minutes, until they reached the 

desired temperature of 90-910C. Grape skin material was stirred with a rubber spatula to ensure 

even heating. The resultant batch of heated grapes was then filtered from the hot juice using a 

Home Basics® metal mesh strainer over a metal bowl (manufacturer unknown) to collect juice 
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before the sample was injected into the flash détente vacuum system. The flash détente vacuum 

consisted of a 3.5-liter stainless steel sample container connected to a 95-liter stainless steel flash 

détente vessel. The flash vacuum equipment is depicted in figure 6 below. 

 

Figure 6. Flash détente system 

The Eden Labs flash evaporation vessel (Seattle, WA) was evacuated to high vacuum, 

below 5.0 kPa, using a KNF Laboxact SEM 840 Vacuum System (Trenton, NJ). While industry 
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standard for flash processing is running the system continuously, the flash system used in the 

study ran in batch production mode. Opening of the ball valve released the contents of the 

sample chamber into the reaction vessel under high vacuum. The boiling point of water in the 

grape cells was below the temperature of the fruit cells at this reduced pressure. Since the fruit 

entered the chamber around 85-900C, the flash evaporation of the water caused a violent 

expansion of the grape cells, hypothetically releasing cellular components into the juice.  

Before grape solids were removed from the system, subsequent batches were ran. Liquid 

from the process was removed by ball valve on the opposite side of the figure above and solids 

were kept in the system until all batches were ran. After being exposed to vacuum, or “flashed”, 

the sample input valve was closed and the vacuum in the vacuum chamber was allowed to return 

to 1.9-5.0 kPa before the next portion of grapes was introduced. Following the last run of grape 

skin material, the experimental must was mixed back in with the free run juice and “flashed” 

juice by scraping the solids with a common kitchen rubber spatula into homogenous flash lots.  

If pectinase treatment was selected for random treatment, it was applied to the mixture 

using 5 g per 4 liter batch. Fermentation proceeded as described in the section below.  

Fermentation  

The experimental must was pitched with Lalvin Bourgorouge RC 212 yeast (Burgundy, 

France). This yeast strain was selected for its ability to accentuate fruity aromas and to extract 

anthocyanins. Yeast, stored under refrigeration, was hydrated before adding to musts. Hydration 

consisted of stirring of five grams of yeast in 50 ml of water at 40-430C and allowed to hydrate 

for 15 minutes. The rehydrated yeast was split evenly between 8 liters of must. Musts were 

fermented for 8 days at 200C to ensure adequate fermentation to completeness in Midwest supply 

8-liter plastic pails with an airlock, as shown below. 
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Figure 7. Fermentation containers 

 During fermentation, the cap, which describes the solid mass of grape skins and seeds 

that float to the top of the vessel during the fermentation process, were punched down once daily.  

Pressing / Racking 

 Liquid was pressed at day 8 from skins and seeds using a Zambelli Enotech bladder press 

(Camisano Vicentino, Italy) shown in figure 8 below. The inside bladder was filled with water 

and this increase in volume in the closed system pressed the liquid apart from the grape skins.  
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Figure 8. Zambelli Enotech bladder wine press 

After pressing, liquid was transferred from plastic pails to 4-liter glass containers, shown in 

figure 9 below (Midwest Supplies) and containers were labeled with the appropriate batch code 

and date of fermentation start.  
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Figure 9. Wine transfer protocol 

 Following transfer to glass containers, samples were racked after one week, a process that 

removes sediment from the bottom of the glass vessel from the liquid wine. Racking was 

performed twice more to remove the majority of sediment from the liquid wine. After racking, 

wines were bottled using a Learn to Brew® auto-siphon (3/8”) and plastic tubing into 375 ml 

dark green wine bottles.   

 
Gas Chromatography Volatile Analysis 

Chemicals and standards  

Dichloromethane (HPLC grade, >99%) was purchased from Arcos organics (Fair Lawn, 

NJ). Hexane was purchased from Fisher Scientific (Pittsburgh, PA). Ethanol was purchased from 

Pharmco-AAPER (Brookfield, CT). The following standards (purity of >95%) were obtained 

from Sigma-Aldrich (St. Louis, MO): 1-Hexanol, Ethyl Acetate, Ethyl Hexanoate, Hexanoic 
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Acid, and Isobutanol. The following internal standards were obtained from Sigma-Aldrich (St. 

Louis, MO): 4-hydroxy-4-methyl-2-pentanone, 4-methyl-2-pentanol, 2-butanol, and 2-octanol. 

Table 1. Analytical standards purity for gas chromatography 

Compound Purity  

Standards  % 

1-Hexanol 99.9 

Ethyl Acetate 99.0 

Ethyl Hexanoate  99.5 

Hexanoic Acid 99.0 

Isobutanol  99.8 

 

Volatile standards preparation  

A solution of each of the standards was prepared by dividing the molecular weight of 

each stock compound by its declared purity, then calculating the weight of the standard needed to 

create a working stock solution. For each standard, the corresponding amount of the compound 

was then weighed into an appropriate volumetric flask and each flask was filled to volume with a 

wine model solution. The wine model solution contained 12% (v/v) ethanol, 5 g/l tartaric acid, 

and pH adjusted to 3.2 with sodium hydroxide. Synthetics wines samples containing volatile 

standards were extracted and analyzed using the procedure in the section below.    

Sample preparation  

A method modified from Ortega and others (2001) was used for free volatile analysis via 

gas chromatography. A dichloromethane micro-extraction process was used to extract free 

volatiles from the wine matrix. The extract procedure was done in a 15 ml centrifuge tube 

(Corning Centristar®) consisted of the addition of 5 ml of wine, 5 ml of milliQ water, 4.5 grams 

of ammonium sulfate salt, 300 µL of dichloromethane and 20 µL of internal standard.  The 
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internal standard contained a mixture of four standards: 2-butanol, 2-octanol, 4-methyl-2-

pentanone, and 4-methyl-4-hydroxy-2-pentanone at 140 µg/ml in ethanol.  

The resultant mixture was shaken with a VMR analog shaker (Radnor, PA) for 60 

minutes using a moderate to high shaking. The tubes were then centrifuged using a Fisher 

Scientific Centrific Centrifuge® (Waltham, MA) at 2500 rpm for 10 minutes at room 

temperature. The clear bottom of the dichloromethane layer was then collected placed into a 2 

mL amber injection vial with a 250 µL pulled point glass insert and capped (Agilent). Samples 

were inspected for clarity before GC analysis visually.  

GC system 

 A gas chromatography (GC) system with a flame ionization detector was used to analyze 

free volatile compounds. The GC system was manufactured by Agilent technologies (Santa 

Clara, CA) and consisted of a 6890N networked GC system, a 7683B series injector, a 7683 

series auto sampler and air purifier from Alltech (Portland, ME). The GC system was operated 

by HP Agilent Chemstation software. The three gases used by the system were purchased from a 

Stillwater Steel and Welding Supply (Stillwater, OK). Hydrogen (UHP300) was used as carrier 

gas, helium (UHP300) was used as makeup gas, and air was used as the flame igniter.  

DB-Wax fused silica capillary GC column (50m length x 0.32mm I.D. x 0.50 µm film 

thickness with a 5m pre-column) on which the separations were carried out was purchased from 

Agilent Inc. The oven temperature was maintained at 40°C for 5 minutes, raised at 3.0°C/min up 

to 200°C, then held for 5 minutes at 200°C.  

The front inlet was set as split mode with hydrogen as a carrier gas at 30 ml/min. Other 

parameter settings were the detector set at 250°C, and operating the system at a pressure of 11.38 

psi, and a column flow of H2 gas at 3.0 mL/min. The sample injection volume was 2µL. The 
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extraction recovery was estimated by the internal standard solution containing 2-butanol, 4-

methyl-2-pentanol, 4-hydroxy-4-methyl-2-pentanone, and 2-octanol. All volatile compounds 

were identified and quantified by comparisons with the retention times and peak areas obtained 

using the pure standard solutions. All samples were measured in duplicate. 

Statistical Analysis  

Statistical Analyses were performed using analysis of variance (ANOVA) for all data sets 

with Tukey’s HSD to compare treatment groups and their significance. The alpha level was set at 

0.05 for significance to be established, with a 95% confidence interval. The experimental design 

was set up as completely randomized with batches randomly assigned to batch numbers.   
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Chapter IV 

 

RESULTS AND DISCUSSION  

 

Average pH measurements taken at day 38 following the start of fermentation are 

displayed in Table 2. No significant differences in pH were observed between treatments and 

with pectinase addition by batch type. The range of pH in the study was between 3.60 and 3.71, 

similar to the range of a study that examined pre-fermentation heat treatment on grape samples 

across many vintage years and grape varieties (Geffroy 2015).  

pH 

Table 2. Mean pH of samples comparison 
Group	 Control	 Thermovinification	 Flash	Détente	

Treatment	
Control	

(n=4)	

Control	with	
pectinase	

(n=2)	

Thermovinification	

(n=2)	

	Thermovinification	
with	Pectinase	

(n=2)	

Flash	
Détente	

(n=6)	

Flash	Détente	
with	

Pectinase	

		(n=4)	

pH	(±standard	
deviation)	 3.65±0.04	 3.64±0.04	 3.68±0.01	 3.68±0.01	 3.66±0.04	 3.66±0.04	

*Denotes a significant difference between treatment groups   

 

Flash détente and thermovinification trials were not significantly different from the 

control batches, resulting in p-values of 0.48 and 0.16, respectively. In addition, there were no 

significant differences observed when comparing experimental treatments to one another (p-

value=0.28). 
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The mesocarp of the grape contains the bulk of the organic acids, compartmentalized 

specifically in the vacuole of the mesocarp cells (Lund and Bohlmann 2006). It was 

hypothesized initially that there would be no significant change in pH because extraction of these 

organic acids occurs primarily during the crushing step and in the initial stages in the 

fermentation process. The data supports the hypothesis that pre-fermentation treatments have 

have no significant effect on the pH measurement values. Thus, experimental treatments do not 

significantly change the pH of the wine, but studies on other varieties of grapes may further this 

assertion.    

Alcohol Content by Volume  

The mean percent alcohol by volume of the treatment groups taken at day 38 after the 

beginning of fermentation or in other terms, 30 days after pressing, is presented in Table 3. In 

general, alcohol by volume, taken in duplicate, following virtually all conversion of sugar to 

alcohol was nearly the same for all groups including treatment factors. 

Table 3. Mean alcohol by percent volume of samples comparison 

Group	 Control	 Thermovinification	 Flash	Détente		

Treatment		
Control	

(n=4)	

Control	with	
pectinase	

(n=2)	

Thermovinification	

(n=2)	

Thermovinification	
with	Pectinase	

(n=2)	

Flash	
Détente	

(n=6)		

Flash	Détente	
with	Pectinase	

(n=4)	

Alcohol	%	
by	Volume	
(±standard	
deviation)	

13.87±	1.05%	 13.23±0.04%	 14.29%±0.01%	 13.50±0.75%	 14.18±0.73%	 13.91±0.64%	

*Denotes a significant difference between treatment groups   

 

The data exhibits that there were no significant differences among all test groups. 

Comparison of flash détente to control and thermovinification groups resulted in p-values of 0.25 
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and 0.24, respectively. In addition, when comparing thermovinification to the control groups, no 

significant difference was established as well (p=0.47).  

As alcohol content in wines is a function of sugar concentration in the starting material, 

alcohol tolerance of the yeast during fermentation, and fermentation vigor, it was not anticipated 

to observe significant differences in alcohol content among the trial groups. Other factors may 

affect fermentation efficiency, however, this was not observed when comparing the data sets. 

Variation in alcohol content seen between batches of the same treatment was observed, but none 

was significantly different. One possible explanation is insufficient mixing of the batches when 

separating them into 8-liter batches before processing. However, because alcohol percentage 

content was not a major focus of this study, it is recognized as an unresolved issue. Further 

studies could validate if pectinase use significantly impacted alcohol percentage on a larger 

scale.  

Titratable Acidity  

Table 4 displays the average titratable acidity measurements taken at day 38 after the start 

of fermentation, exactly 30 days after pressing of the wine from the grape skins.  

Table 4. Mean titratable acidity of samples comparison 

Group	 Control	 Thermovinification	 Flash	Détente		

Treatment		
Control	

(n=4)	

Control	
with	

pectinase	

(n=2)	

Thermovinification	

(n=2)	

Thermovinification	
with	Pectinase	

(n=2)	

Flash	Détente	

(n=6)		

Flash	Détente	
with	Pectinase	

(n=4)	

Titratable	
Acidity	%	
(±standard	
deviation)	

0.65±0.05%	 0.66±0.08%	 0.66±0.04%	 0.65±0.01%	 0.65±0.02%	 0.69±0.06%	

*Denotes a significant difference between treatment 
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As expected, no significant differences were observed with regard to titratable acidity. 

Flash détente and thermovinification trials resulted in calculated p-values of 0.44 and 0.89, 

respectively, when compared to the control batches. A non-significant p-value of 0.55 was also 

calculated in experimental group comparison to one another. Most red wines fall within 0.60-

0.70% acidity, comprised mainly of tartaric and to a lesser extent, malic acid (Boulton 1980). 

Thus, the titratable acidity values observed in the test wines were within a typical range for red 

wine. Given this information, it is certain that there is no significant differences using the 

experimental treatments with regard to titratable acidity.   

Yeast Assimilable Nitrogen  

Yeast assimilable nitrogen measurement, the quantity of nitrogen nutrients available to 

the yeast during fermentation, is displayed in Figure 10. 

 

Figure 10. Mean yeast assimilable nitrogen concentrations in juice samples 
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1. n = 3 for control, n = 4 for flash détente and n=2 for thermovinification 
2. Error bars indicate one standard deviation from the mean. 

 

Table 5 below shows the average values determined for the yeast assimilable nitrogen test, 

with standard deviations of each.  

Table 5. Mean yeast assimilable nitrogen comparison  

Batch Type 
Control mean 

(n=3) 

Flash Détente mean 

(n=4) 

Thermovinification mean 

(n=2) 

YAN (mg/L) 245.0±8.8c 325.9±10.4b 358.8±12.4a 

• Letter	differences	indicate	a	significant	difference	between	batch	types	(p˂0.05)	

 

Both flash détente and thermovinification samples were higher in yeast assimilable 

nitrogen values when compared to the control batches, which may be due to breakdown of the 

grapes during heating and/or vacuum treatment. Yeast assimilable nitrogen values were higher 

on average in the thermovinification batches, thus it may be possible that the extended heat 

treatment had a greater effect on the extraction process of these nitrogen nutrients. More studies 

are needed on this parameter to confirm this assertion. Significant differences were observed for 

all treatment batches when compared to one another. The average YAN value was 245.0 mg/L 

for the control batches, 325.9 mg/L for the flash détente batches, and 358.8 mg/L for the 

thermovinification batches. Though the results were significant for this parameter for each batch 

type, further studies with different types of red wine grapes could validate these findings on a 

larger scale.  

A common practice in winemaking is to add 100-300 milligrams per liter of diammonium 

phosphate (DAP) to the juice or must at inoculation without measuring nitrogen concentration 

(Grape and Wine Institute, 2013). Since yeast assimilable nitrogen has a considerable impact on 

the flavor profile and thus style of the wine, it is important for winemakers to consider the 
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addition of DAP to create high quality wines. The process of both thermovinification and flash 

détente considerably increased the amount of yeast assimilable nitrogen, a measure of primary or 

alpha amino acids, ammonium ion and small peptides. The consequence is an indirect increase in 

the concentration of volatiles that may be produced during fermentation and through aging.  

All trials with flash détente and thermovinification demonstrate effective balance 

between low YAN levels and excessive YAN levels. As stated in the literature review, high must 

YANs can stimulate overproduction of acetate esters, resulting in the perception of volatile 

acidity and suppression of varietal character (Grape and Wine Institute, 2013). Furthermore, high 

YAN musts are also associated with high concentrations of haze-causing proteins, urea, and 

ethyl carbamate, which are all considered faults by consumers (Grape and Wine Institute, 2013).  

Low YAN concentrations can cause poor fermentation vigor and potentially lead to stuck 

or sluggish fermentation. In addition, with a low concentration of YAN, undesirable aromas may 

be formed, such as long chain volatile fatty acids, and the production of desirable fruity aromas, 

such as esters may be suppressed (Grape and Wine Institute, 2013). The control trials 

demonstrate the need for addition of DAP, but addition may cause undesirable effects in the 

sensory perception of the finished wines if the addition rate is not carefully controlled. Thus, the 

intermediate concentration of YAN achieved in these trials using both flash Détente and 

thermovinification may allow winemakers to produce a high-quality wine without the need for 

the additional nitrogen supplements.   

Color Data Analysis  

Color density is a measure of the combined absorbance values at 420 nm and 520 nm. 

The intensity at 420 nm is a measure of the yellow and brown pigments, while intensity at 520 

nm is a measure of the red pigments. Color density of wine is also known as color intensity and 
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is the most common method to judge the overall color of a wine sample (Jackson 2008).  Figure 

11 below displays the color density absorbance values over three time points, day 1, 8, and 38. 

 

 Figure 11. Mean color density at days 1, 8, and 38 
1. n = 3 for control, n = 4 for flash détente, and n = 2 for thermovinification, thermovinification with 

pectinase, flash détente with pectinase, and control with pectinase (all measured in triplicate) 
2. Error bars indicate one standard deviation from the mean. 

 

As expected in all experimental and control trials, lower color density was apparent at 

day one versus day eight after the start of fermentation or at day 38. Alcohol extraction of color 

occurs as fermentation proceeds and sugars are converted by yeast to alcohol.  

Initially, color was relatively low at day one after the beginning of fermentation for both 

of the control groups (control and control with pectinase), as might be expected given that color 

is extracted from the grape skins during the initial stages of fermentation when no treatment 
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other than crushing is applied. With the fermentation of sugars into alcohol, higher extraction of 

color from the skins was demonstrated, as the color intensified between day one and day eight 

for these two samples.  

For the thermovinification trials, not much change between day one and day eight is 

apparent, probably due to the breakdown of the skin cells during heating after crushing and 

destemming. For the flash détente trials, a similar relationship is illustrated by the graph above. 

There was major variation observed between treatments initially, but this changed over time as 

the alcohol produced during fermentation allowed for more color extraction in the control batch 

and to a small degree in the flash détente and thermovinification batches.   

At day 8, none of the treatments were significantly different from one another, suggested 

that there was an effect of processing when comparing the results at day 8 to day 38. At day 38, a 

negligible amount of residual sugar remained in the wines and the yeast had largely precipitated 

to the bottom of the fermentation vessel or had been removed by racking. At this point, flash 

détente batches were still significantly different from the control batches (p<0.05), and flash 

détente batches were significantly different from thermovinification batches (p<0.05). This 

evidence suggests that flash détente has a beneficial effect on the wine color density over the first 

part of a red wine’s aging process when compared to heat treatment and to no treatment. Thus, it 

is reasonable to suspect that the vacuum step in flash detente has an effect on the ability of the 

grape skin to release its anthocyanin and other pigment constituents.   

Next, pectinase use was compared to non-pectinase use for each batch type at day 38. 

Pectinase versus the absence of pectinase resulted in no statistical significance between batch 

types. Comparison of flash détente pectinase addition versus absence resulted in a calculated p-

value of 0.89, while thermovinification pectinase addition versus absence resulted in a calculated 
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p-value of 0.49. In control batches, a calculated p-value of 0.21 resulted, comparing pectinase 

addition. Thus, based on this analysis at 38 days after the start of fermentation, the use of 

pectinase does not seem to influence the extraction of color from the grape skins.  

Based on the results of color density, I would not recommend that winemakers add 

pectinase if the primary goal is to extract higher amounts of color from the grape skin cells. The 

significant increase of color absorbance from the flash détente procedure may have an impact on 

consumer preference of the wines, regardless of other quality factors. Further research in the 

form of a sensory panel is needed to further confirm the assertion that the wine color increase has 

an influence on the perception of higher quality wine product to the consumer. Flash détente may 

affect the overall quality character of red wines and is my assertion that it is a useful method to 

increase the amount of color density on a wine. Table 6 below has information related to the 

mean ± standard deviation at each time point of each batch type.	  

Table 6. Mean comparison of color density  

Batch Type Day 1  Day 8  Day 38  

Control (n=3) 1.17±0.47bB 3.75±0.63aA 4.51±0.65bB 

Control with Pectinase (n=2) 1.43±0.22b 3.15±0.30a 3.78±0.06b 

Flash Détente (n=3) 3.33±0.39aA 4.45±0.55aA 6.39±0.91aA 

Flash with Pectinase (n=2) 2.94±1.40a 3.89±0.30a 5.97±0.75a 

Thermovinification (n=2) 3.64±0.12aA 4.35±0.92aA 4.63±0.09bB 

Thermovinification with Pectinase (n=2) 3.59±0.16a 3.86±0.46a 4.68±0.02b 
• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

Figure 12 below displays average free-colored anthocyanin absorbance values measured 

30 days after pressing at day 38 after the beginning of fermentation. Anthocyanins and their 
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polymers and reaction products are the main color pigments found in red wines, providing 

significant information to guide winemaking processes related to color development.  The data 

demonstrates that no statistically significant differences were seen in free-colored anthocyanin 

content among any of the process treatments at day 38.  

 

Figure 12. Free-colored anthocyanins relative concentration means comparison at day 38 
1. n = 3 for control, n = 4 for flash détente, and n = 2 for thermovinification, thermovinification with 

pectinase, flash détente with pectinase and control with pectinase (all measured in triplicate) 
2. Error bars indicate one standard deviation from the mean. 

 

Free anthocyanin absorbance measurements exhibited a wide range of variance, and the 

exact reason is not fully understood, but the data demonstrates that there is no significant 

difference between any of the treatments tested. One possible explanation for the observed 
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values is that the more free anthocyanins were extracted by the flash détente and/or 

thermovinification treatments but that the polymerization and complexing of free anthocyanins 

that occurs over time during the ageing of red wines may have masked this to some degree.   

Flash détente batches comparison to the control batches resulted in a calculated p-value 

of 0.22, while the thermovinification trials resulted in a calculated p-value of 0.26 when 

compared to the control. Based on the total color density measurements reported above, I 

expected to see a larger difference in free colored anthocyanins between flash détente and 

thermovinification, but the data demonstrates otherwise, with a calculated p-value between the 

experimental batch types of 0.82.  

Further testing would be required to demonstrate this hypothesis, but the color data given 

below tends to support this idea as they tend to show higher values for polymerized and co-

pigment compounds in the thermovinification and particularly in the flash détente samples.  

Table 7 below displays the mean at day 38 of testing plus or minus the standard 

deviation.  

Table 7. Mean comparison of free-colored anthocyanin  

Batch	Type	 Day	38		
Control	(n=4)	 2.66±0.53aA	

Control	with	Pectinase	(n=2)	 2.21±0.33a	
Flash	Détente	(n=6)	 3.11±0.52aA		
Flash	with	Pectinase	(n=4)	 3.19±0.79a	
Thermovinification	(n=2)	 3.21±0.31aA	
Thermovinification	with	Pectinase	(n=2)	 2.93±0.33a	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 
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Figure 13 below displays the absorbance unit mean values of free colored anthocyanins 

plus polymerized, colored anthocyanins taken at 38 days or in other words, 30 days following 

pressing of the wine from the grape skins. 

 

Figure 13. Mean absorbance comparison of free-colored plus polymerized, colored 
anthocyanins  

1. n = 4 for control and flash détente with pectinase, n = 6 for flash détente, and n = 2 for 
thermovinification, thermovinification with pectinase and control with pectinase (all measured in 
triplicate) 

2. Error bars indicate one standard deviation from the mean. 

 

Comparing the batch types to one another (without pectinase comparison), a significant 

difference was calculated (p = 0.04), however mean separation techniques resulted in non-

significance between means.  Thus, no significant differences were calculated among treatments.  
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Nevertheless, the flash détente treatment, in particular, had a numerically higher average value.  

Again, this may indicate that flash détente, and to a lesser degree thermovinification, facilitates 

the extraction, polymerization, and/or complexing of anthocyanin pigments, but further research 

would be needed to confirm this on a larger scale. Table 8 below contains means absorbance 

values plus standard deviations at day 38 after the beginning of fermentation for reference.  

Table 8. Mean comparison of free-colored plus polymerized, colored anthocyanins  

Batch	Type	 Day	38		
Control	(n=4)	 2.71±0.64aA	

Control	with	Pectinase	(n=2)	 2.28±0.25a	
Flash	Détente	(n=6)	 3.95±0.80aA	
Flash	with	Pectinase	(n=4)	 3.43±0.76a	
Thermovinification	(n=2)	 3.02±0.06aA	
Thermovinification	with	Pectinase	(n=2)	 2.90±0.39a	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 
 

During aging, it is expected the concentration of free anthocyanins will decrease and the 

concentration of polymerized, colored anthocyanins should increase in a proportional fashion as 

free anthocyanins polymerize into chains. Further studies on aging will determine the extent of 

this parameter and provide information about the stability of these anthocyanin compounds with 

the experimental treatments examined.   

Figure 14 below displays absorbance unit measurements of flavone-phenols present at 

day 38 after the start of fermentation. The measurement of flavone-phenols is a measure of co-

pigmentation between colored pigments and other, generally non-colored, organic molecules in 

solution.  Overall, it has been reported that 30-50 percent of color in young red wines is 

accounted by co-pigmented anthocyanins; this association between the pigments and their co-
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pigmentation factors involves the anthocyanin glucosides, and certain phenolic acids, flavonoids, 

and derivatives of the flavone subgroups (Boulton 2001). 

 

Figure 14. Mean absorbance comparison of flavone-phenols  

1. n = 4 for control and flash détente with pectinase, n = 6 for flash détente, and n = 2 for 
thermovinification, thermovinification with pectinase and control with pectinase (all measured in 
triplicate) 

2. Error bars indicate one standard deviation from the mean. 

 
While the means were generally higher in concentration in both the flash détente and 

thermovinification groups, non-significance was established when comparing the experimental 

treatments and the control, minus the effect of pectinase addition (p=.08). Thus, the 
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concentration of the flavone-phenol measurements were not significantly different from one 

another.  

There were no significant differences observed in co-pigment absorbance values between 

those samples treated with pectinase and those samples not treated with pectinase.  Specifically, 

flash détente pectinase comparison resulted in a p-value of 0.37, thermovinification pectinase 

comparison resulted in a p-value of 0.47, and control pectinase comparison resulted in a p-value 

of 0.27 when compared to no pectinase use. Thus, pectinase use does not correlate to a 

statistically significant difference in flavone-phenol absorbance measurements. Table 9 below 

displays mean and standard deviation for the flavone-phenol absorbance measurements. 

Table 9. Mean comparison of flavone-phenols  

Batch	Type	 Day	38		
Control	(n=4)	 3.77±	0.31aA	

Control	with	Pectinase	(n=2)	 3.14±0.39a	
Flash	Détente	(n=6)	 4.91±0.81aA		
Flash	with	Pectinase	(n=4)	 4.38±0.80a	
Thermovinification	(n=2)	 4.52±0.28aA	
Thermovinification	with	Pectinase	(n=2)	 4.22±0.38a	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

Figure 15 below displays comparisons of absorbance values for the SO2 test as measured 

at 30 days following pressing of the wine from the grape skins (day 38). The SO2 test is a 

measure of the concentration of polymerized color compounds and is determined by determining 

the absorbance of the samples after adjusting the pH to 3.6. Overall, the values as observed at 

day 38 of fermentation/aging were much lower than those observed for free anthocyanins as well 

as the co-pigmented anthocyanins; this is a common occurrence in young wines. During aging, 
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the absorbance value of the SO2 would normally be expected to increase as free anthocyanins 

begin to polymerize, but this factor was not investigated in this study. 

 

Figure 15. Mean absorbance of polymerized anthocyanins  
1. n = 4 for control and flash détente with pectinase, n = 6 for flash détente, and n = 2 for 

thermovinification, thermovinification with pectinase and control with pectinase (all measured in 
triplicate) 

2. Error bars indicate one standard deviation from the mean. 

 
In comparing the batch types, the flash détente batches were significantly different from the 

control batches (p-value <0.01), while the thermovinification batches were not significantly 

different from the control batches or the flash détente batches. Thus, the use of flash détente did 

lead to higher observed concentrations of polymerized anthocyanin pigments in wines compared 

to control samples 30 days after pressing (day 38).  
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The use of pectinase enzymes have the effect of causing polymerized pigments to settle 

out of solution, thus causing them to be lost during multiple rackings. However, in this study, 

none of the comparisons within treatments showed statistically significant differences in 

polymerized pigment concentrations between pectinase treated and untreated wines. Flash 

détente with pectinase addition comparison resulted in a p-value of 0.64, thermovinification 

pectinase comparison resulted in a p-value of 0.70, and similarly, the control pectinase 

comparison resulted in a p-value of 0.22. Table 10 below displays means and standard deviations 

of the batch types examined.  

Table 10. Mean of polymerized anthocyanin absorbance values 

Batch	Type	 Day	38	
Control	(n=4)	 1.11±0.11bB	

Control	with	Pectinase	(n=2)	 0.93±0.06b	
Flash	Détente	(n=6)	 1.55±0.17aA		
Flash	with	Pectinase	(n=4)	 1.49±0.17a	
Thermovinification	(n=2)	 1.31±0.03aAB	
Thermovinification	with	Pectinase	(n=2)	 1.29±0.05a	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

Figure 16 shows absorbance measurements at 420 nm at three time points, day 1, 8, and 

38. These data allow us to examine possible relationships among color, time, and processing 

treatment. Absorbance at 420 nm is a function of yellow and brown pigments present in the wine 

samples. 
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Figure 16. Mean absorbance values at 420 nm  
1. n = 3 for control and flash détente and n = 2 for flash detente thermovinification, 

thermovinification with pectinase and control with pectinase (all measured in triplicate) 
2. Error bars indicate one standard deviation from the mean. 

 

All batches increased in yellow and brown pigment concentration over time. Initially, at 

day 1, both flash détente and thermovinification samples exhibited significantly higher 

concentrations of yellow-brown pigment colors as compared to the control.  No differences were 

seen among treatments at day 8.  By day 38, the flash détente wines had statistically higher 

yellow-brown pigment concentrations than both the thermovinification and the control wines.  

Interestingly, the overall magnitude of the differences between both treatments and the controls 

decreased over time. It is possible that the alcohol produced during fermentation may have 

facilitated the extraction of these yellow-brown pigments – the largest increase for the control 

wines was seen between day 1 and day 8.  It is also possible that pressing served to help extract 
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these pigments and this effect was more pronounced in the control samples that has experienced 

less initial tissue disruption as compared to the flash détente and thermovinification treatments. 

Table 11 below displays mean absorbance values and standard deviations at 420 nm for days 1, 

8, and 38 tested in triplicate for each batch.  

Table 11. Mean absorbance values at 420 nm 

Batch	Type	 Day	1		 Day	8		 Day	38		

Control	(n=3)	 0.37±0.06cB	 1.47±0.32abA	 1.81±0.25bcB	
Control	with	Pectinase	(n=2)	 0.54±0.06b	 1.17±0.11b	 1.49±0.05c	
Flash	Détente	(n=3)	 1.23±0.04aA	 1.67±0.18aA	 2.42±0.14aA	
Flash	with	Pectinase	(n=2)	 1.09±0.33a	 1.45±0.10a	 2.26±0.32a	
Thermovinification	(n=2)	 1.27±0.00aA	 1.67±0.40aA	 1.87±0.04bB	
Thermovinification	with	Pectinase	(n=2)	 1.30±0.05a	 1.50±0.22a	 1.89±0.03b	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

Further comparing the two experimental treatments, the total concentration of yellow-

brown pigments and the increase seen over time are generally similar for both flash detente and 

thermovinification at day 1 and day 8, but the flash détente wines showed a greater increase in 

yellow-brown pigment concentration from day 8 to day 38 after fermentation started. These 

results may suggest either that there is some function of pressing that influences the color 

between thermovinification and flash détente – pressing may have extracted more yellow-brown 

pigments in the flash détente-treated samples, or possibly that the duration of heat in 

thermovinification may have had an effect over time on the development of color as measured at 

420nm.  This effect may also have been caused by differing rates of anthocyanin polymerization, 

or there may be an undiscovered factor responsible for this phenomenon. This relationship merits 
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further study to understand the mechanism at action among the three time points and between the 

experimental treatments. 

Figure 17 displays the absorbance measurements at 520 nm over three time periods. 

Absorbance at 520 nm is commonly used to quantify red pigmentation present in the wine 

samples and is taken as a major indicator of quality in red wines.  Thus, these data allow us to 

examine the potential relationships between red color, time, and processing treatment tested.  

 
Figure 17. Mean absorbance values at 520 nm 

3. n = 3 for control and flash détente and n = 2 for flash detente thermovinification, 
thermovinification with pectinase and control with pectinase (all measured in triplicate) 

4. Error bars indicate one standard deviation from the mean. 

 
Overall, the red pigment concentration increased in all samples over time. Initially, flash 

détente and thermovinification batches exhibited more red pigment compared to the control 

batches, but as time progressed, alcohol formation in the control batches may possibly have 

allowed for the extraction of the pigments into the liquid phase. Comparing treatments over time, 
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flash détente resulted in a higher concentration of pigmentation at 520 nm at day 38 following 

pressing, while thermovinification and the control mean values were nearly identical at day 8 and 

38. For all batch types, pectinase use compared to no pectinase use resulted in no significant 

differences at any of the time points tested. Results with means and standard deviations tested in 

triplicate are displayed below in Table 12 for reference  

Table 12. Mean absorbance values at 520 nm  

Batch	Type	 Day	1		 Day	8	 Day	38	

Control	(n=3)	 0.59±0.05cB	 2.28±0.32aA	 2.70±0.38bcB	
Control	with	Pectinase	(n=2)	 0.89±0.15b	 1.97±0.19a	 2.29±0.06c	
Flash	Détente	(n=3)	 2.32±0.12aA	 2.62±0.25aA	 3.69±0.26aA	
Flash	with	Pectinase	(n=2)	 1.85±0.89a	 2.44±0.19a	 3.71±0.40a	
Thermovinification	(n=2)	 2.37±0.12aA	 2.67±0.52aA	 2.85±0.07b	
Thermovinification	with	Pectinase	(n=2)	 2.29±0.11a	 2.37±0.25a	 2.81±0.01bB	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

Overall, the results seen for red pigments mirror those previously described for yellow-

brown pigments almost exactly.  Once again, wines produced using flash détente showed 

significantly higher concentrations of pigments at day 38, specifically red pigments in this case, 

compared to both thermovinification and control treatments. As noted above, this effect merits 

further study to understand the mechanism at action among the three time periods and between 

the experimental treatments. 

Figure 18 below displays the mean absorbance values of color hue after 38 days after the 

beginning of fermentation. The color hue of a wine is a measure of the ratio of the absorbance 

values at 420 nm divided by the absorbance values at 520 nm. Color hue is generally used an 
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indicator of how the ratio of the two absorbance values change over time and can indicate 

browning or oxidation of wine samples. 

 

 

Figure 18. Mean color hue values  

1. n = 4 for control and flash détente with pectinase, n = 6 for flash détente, and n = 2 for 
thermovinification, thermovinification with pectinase and control with pectinase (all measured in 
triplicate) 

2. Error bars indicate one standard deviation from the mean. 

 
Pectinase use was found to have no significant impact on the color hue in this study. 

Comparison of flash détente pectinase addition resulted in a calculated p-value of 0.50, 

thermovinification pectinase comparison resulted in a calculated p-value of 0.47, and the control 

pectinase comparison resulted in a calculated p-value of 0.48. If the batch types are compared to 

one another, statistical analysis demonstrates no significant difference between batches with a p-

value of 0.14. Thus, for all practical purposes, color hue was not affected by batch type or 
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pectinase treatment at 30 days after pressing (day 38 total). Table 13 below displays color hue 

means and standard deviation for all batch types.  

Table 13. Color hue means 

Batch	Type	 Day	38		
Control	(n=4)	 0.67±0.03aA	

Control	with	Pectinase	(n=2)	 0.65±0.02a	
Flash	Détente	(n=6)	 0.62±0.02aA		
Flash	with	Pectinase	(n=4)	 0.61±0.03a	
Thermovinification	(n=2)	 0.62±0.07aA	
Thermovinification	with	Pectinase	(n=2)	 0.62±0.07a	

• Results are displayed as mean ± standard deviation 
• Lowercase letter differences indicate a significant difference between all batch types by column at day 1, day 8, and 

day 38 (p˂0.05) 
• Uppercase letter differences indicate significant difference between batch types (without pectinase comparison) by 

column at day 1, day 8, and day 38 (p<0.05) 

This result is not surprising considering the age of the wines tested.  Ordinarily, an 

increase is expected in the hue value for a red wine as aging occurs, although the usefulness of 

these values is limited when relating the hue values to wine quality attributes (Birse 2007). This 

particular test may prove useful for evaluating oxidation and subsequent browning after the 

experimental wines produced in this experiment have undergone aging. 

Gas Chromatography Data Analysis  

Results for the gas chromatography experiment of wine volatiles are expressed in mg/L.  

The retention times of the volatile compounds investigated are shown in Table 8. Attempts were 

made to analyze other volatiles for which standards had been obtained, but these were detected at 

levels below the minimum quantification level. Thus, they were not included in the results or 

discussion. Measurements were made 3 months after aging began. The five major and minor 

volatile compounds that were analyzed by GC analysis (Table 14) are known to significantly 

influence red wine quality and character. 
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Table 14. Average retention time of pure GC standards 

Compound Standard Standard Retention Time (min) 

1-Hexanol 26.7 

Ethyl Acetate 6.97 

Ethyl Hexanoate 21.2 

Hexanoic Acid 46.1 

Isobutanol 14.6 

   

Ethyl Acetate 

The most significant and most concentrated ester in wines is ethyl acetate, which imparts 

an aroma described as solvent, nail polish or vinegar (Rapp 1998). At high concentrations, it is 

an undesirable compound, but it can enhance a wine’s perceived complexity at lower 

concentrations (Rapp 1986). The concentration of ethyl acetate in the red wine samples tested 

ranged between 37.2 and 53.3 mg/L. The mean ethyl acetate concentration grouped by batch 

type is displayed in Figure 19 below.  
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Figure 19. Mean ethyl acetate concentration 
1. n = 8 for control, n = 19 for flash détente, and n = 5 for thermovinification (all measured in 

duplicate) 
2. Error bars indicate one standard deviation from the mean. 

 

Statistical analysis of the treatment groups shows a significant difference between 

treatment groups, with ANOVA giving a p-value of 0.02. Using Tukey HSD, the only significant 

difference seen was between thermovinification and flash détente groups. In other words, there is 

no difference between the control and treatment groups, but there is a significant difference 

among the two treatment groups. Table 15 below displays mean concentration (mg/L) of ethyl 

acetate measured in triplicate.  

Table 15. Ethyl acetate mean concentration 

Batch	Type	–	Measured	in	triplicate	 Mean	concentration	(mg/L)	
Control	(n=8)	 44.85	±2.40ab	

Flash	Détente	(n=12)		 43.74±3.72b	
Thermovinification	(n=4)	 48.38±3.49a	

• Letter	differences	indicate	significant	difference	between	batch	types	(p˂0.05)	

Relating this back to aroma and the impact on the quality of the wine, thermovinification 

increased the concentration of ethyl acetate, known for its vinegar-like presence, above that 

found in the flash détente trial groups. Flash détente batches were no different from the control, 

indicating that it is neither less nor more desirable than existing methods of production in terms 

of ethyl acetate concentrations.  

Ethyl Hexanoate 

 Another compound in the ester family is ethyl hexanoate, which conveys a green apple or 

fruity aroma (Rapp 1998). Significant difference between the treatments could indicate that there 

is a quality improvement among treatments, given there is an increase in this fruity volatile. The 
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concentration of ethyl hexanoate is between 0.2 mg/L and 1.1 mg/L in the samples examined. 

The mean ethyl hexanoate concentration (mg/L) grouped by batch type is displayed in Figure 20 

below. 

 

Figure 20. Mean ethyl hexanoate concentration 
1. n = 8 for control, n = 19 for flash détente, and n = 5 for thermovinification (all measured in 

duplicate) 
2. Error bars indicate one standard deviation from the mean. 

 
Statistical analysis showed no significant differences between any of the treatment 

groups, giving a p-value of 0.67. In other words, the tested processing treatments had no impact 

on this green apple fruity-aroma volatile. Mean concentrations of ethyl hexanoate are displayed 

in the table below for reference.   
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Table 16. Mean ethyl hexanoate concentration 

Batch	Type	–	Measured	in	triplicate	 Mean	concentration	(mg/L)	
Control	(n=8)	 0.68	±0.18a	

Flash	Détente	(n=12)		 0.60±0.27a	
Thermovinification	(n=4)	 0.58±0.07a	

• Letter	differences	indicate	significant	difference	between	batch	types	(p˂0.05)	

A wide range of variance is present within measurements for ethyl hexanoate, possibly 

due to the low concentration of this volatile compared to others examined.  

 

1-Hexanol 

The volatile compound 1-hexanol imparts an aroma described as green or grassy 

(Villamor 2012). A lower concentration of 1-hexanol would generally indicate a higher quality 

wine as an excessively green or grassy aroma is considered a quality defect in most wines. The 

average concentration ranged from 0.5 mg/L to 2.1 mg/L in the experiment. The average 

concentrations (mg/L) of 1-hexanol are displayed in Figure 21 below.  

  

Figure 21. Mean 1-hexanol concentration 
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1. n = 8 for control, n = 19 for flash détente, and n = 5 for thermovinification (all measured in 
duplicate) 

2. Error bars indicate one standard deviation from the mean. 

 
Statistical analysis demonstrated a highly significant p-value of <.0001, indicating a 

difference between the batch treatments. From the figure it is apparent that the difference is 

between both experimental treatments and the control batches. Tukey’s HSD demonstrates there 

is a p-value of <0.01 for the difference between the flash détente and the control batches and a p-

value of <0.01 for the difference between the thermovinification and control batches. The mean 

concentration (mg/L) of 1-hexanol is displayed in table 17 below.  

Table 17. 1-Hexanol mean concentration 

Batch	Type	–	Measured	in	triplicate	 Mean	concentration	(mg/L)	
Control	(n=8)	 1.78	±0.24b	

Flash	Détente	(n=12)		 0.76±0.13a	
Thermovinification	(n=4)	 0.95±0.11a	

• Letter	differences	indicate	significant	difference	between	batch	types	(p˂0.05)	

Although sensory evaluation would be necessary to confirm this, the lower 1-hexanol 

concentrations seen in both the flash détente and thermovinification treatments may indicate that 

both processes have the potential to improve the perceived sensory quality of red wines made 

from Oklahoma grapes by reducing grassy or vegetal aromas and flavors.  

Hexanoic Acid  

Hexanoic acid is an acid found in wines that imparts an aroma described as fatty type 

odor that is described as unpleasant in high concentrations (Rapp 1998). The average 

concentration measured ranged from 2.9 mg/L 4.7 mg/L in this experiment. The average 

concentration of each batch type is displayed in Figure 22 below.  
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Figure 22. Mean hexanoic acid concentration 
1. n = 8 for control, n = 19 for flash détente, and n = 5 for thermovinification (all measured in 

duplicate) 
2. Error bars indicate one standard deviation from the mean. 

 

Statistical analysis indicated that were no significant differences observed in hexanoic 

acid content among the tested treatments (p-value=0.13). Other studies conducted on this volatile 

over many seasons and across wine grape varieties, have clearly indicated that concentrations of 

this compound may vary by a factor of 2 to 3 (Geffroy 2015). Table 18 below displays mean 

concentration of hexanoic acid in the wine samples.  

Table 18. Mean hexanoic acid concentration 

Batch	Type	–	Measured	in	triplicate	 Mean	concentration	(mg/L)	
Control	(n=8)	 4.04	±0.45a	

Flash	Détente	(n=12)		 3.45±0.42a	
Thermovinification	(n=4)	 3.55±0.39a	

• Letter	differences	indicate	significant	difference	between	batch	types	(p˂0.05)	
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 The results of this experiment did not demonstrate much variability in hexanoic 

concentration by treatment; more studies would be needed to understand the possible impact of 

processing treatments on this volatile compound over years and among different varieties of 

grapes.   

Isobutanol  

Isobutanol is a volatile compound that imparts an aroma variously described as wine-like, 

solvent-like, or bitter (Rapp 1998). This compound contributes desirable complexity to wine at 

concentrations below 300 mg/L. The concentration of isobutanol in the experiment ranged 

between 85.0 mg/L and 99.6 mg/L in the wines. The average isobutanol concentration is 

displayed in Figure 23 below.  

 

Figure 23. Mean isobutanol concentration 
1. n = 8 for control, n = 19 for flash détente, and n = 5 for thermovinification (all measured in 

duplicate) 
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2. Error bars indicate one standard deviation from the mean. 

 
Because of isobutanol’s influence on the complexity of wine aroma, and because the 

aroma of isobutanol is itself difficult to describe with precision, it is challenging to isolate and 

adequately describe all of the effects that this volatile compound may have on a wine’s aroma 

and flavor. Table 19 below displays mean concentration for isobutanol for each batch type.  

Table 19. Mean isobutanol concentration 

Batch	Type	–	Measured	in	triplicate	 Mean	concentration	(mg/L)	
Control	(n=8)	 94.87	±3.42a	

Flash	Détente	(n=12)		 93.54±3.75a	
Thermovinification	(n=4)	 91.55±7.65a	

• Letter	differences	indicate	significant	difference	between	batch	types	(p˂0.05)	

No statistically significant differences were seen among the treatments tested (p-value = 

0.42). Thus, neither thermovinification nor flash détente had a significant effect on the measured 

concentration of isobutanol in the wine samples.  

Discussion of methodology 

While flash détente processing is conducted in a continuous production process, this 

study used batch processing to process grape skin and associated pulp. Recognizing this 

parameter is important and differences may arise when comparing the methodology utilizing 

batch versus continuous processing. Furthermore, due to limitations of heating systems, an open 

container was utilized as compared to a closed system in continuous processing. Overall the 

system used worked well, but there were some problems/inefficiencies. These problems and 

possible solutions are listed below.  

1. Heating was in batch mode in a steam jacketed vessel. Heating through this 

method led to a large variation in temperature samples, leading to overheating in 
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some parts of the grapes. Furthermore, agitation was necessary to decrease 

variation, which may have further destroyed the grapes further. 

2. Straining was manual throughout the whole process. Since grapes were strained 

after heating and then transferred to the system sample container, heat may have 

decreased during the process. A possible solution to this problem could be grapes 

moving parallel to the straining equipment to avoid blockage of the strainer.  

3. Heating was done in an open oxygen environment when heating of grape skins 

and associated pulp. Volatiles may have been released at this point, and not 

primarily driven off at the point of condensation in the flash vessel. A potential 

solution could be to heat samples in a closed container with a stirring element 

and then a mechanical pump to displace samples from the heating element.  

Solving these issues may lead to increased efficiency and better results replicable to industrial 

operations. The batch system helped understand the process related to color formation, though 

further studies are needed in continuous production mode to validate volatile composition 

findings contained in this paper.  
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Chapter V 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This study focused on the impact of two processing methods designed to help disrupt 

grape tissue at the start of the fermentation process and thereby enhance color and volatile 

compounds in the finished wine. Overall, the data demonstrate the utility of flash détente to 

develop deeper red-colored wines with reduced grassy and vegetal aromas and flavors. 

Thermovinification also demonstrated the potential to accentuate finished wines with an 

enhanced aromatic profile although its impact on color was not as great as the flash détente 

treatment.  

With the possible exception of Yeast assimilable nitrogen (YAN), none of the standard 

enological parameters examined, i.e. pH, titratable acidity, and alcohol by volume, were 

expected to be significantly different among the processing treatments examined and the results 

confirmed these expectations. YAN was higher in both experimental processing treatments, 

possibly due to the breakdown of the grape skin cell’s physical structure, which may have 

allowed for a higher concentration of nitrogen sources to be available to the yeast for 

fermentation. In addition to quantifying essential yeast nutrient content, thus helping to avoid 

incomplete or “stuck” fermentations, YAN also provides information about the aromas that may 

result during and after fermentation both because a healthy and vigorous fermentation can 

enhance desirable aroma compound creation and avoid off-aroma compound creation and 
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because some of the nitrogenous compounds measured may participate in off-aroma 

compound formation if concentrations are too high. The results of this study indicate that use of 

either flash détente or thermovinification may reduce or eliminate the need for added yeast 

nutrients and thereby reduce both the incidence of stuck fermentations and the formation of 

sulphidic off-flavors that may result in lower quality wines.  

The specific objectives and results of this study related to color, aroma compound 

concentrations, and pectinase use are presented below. 

1. Flash détente and/or thermovinification were originally hypothesized to enhance the color 

of wines.  Data indicate that the significant color differences were observed and these 

came largely from differing concentrations of free and polymerized anthocyanins as 

measured by absorbance values at specific wavelengths of 420 and 520 nm. Increases in 

these absorbance values indicate that Cabernet Sauvignon wines made using both flash 

détente and thermovinification were generally more deeply pigmented than control wines 

and that flash détente wines were highest in free anthocyanins at week 38. This research 

may enable the wine industry to tailor applications of the flash détente and 

thermovinification processes for specific grape varieties and blends. This may allow 

winemakers to resolve common issues related to color formation with regard to grapes 

grown in the area.  

2. Flash détente and/or thermovinification were originally hypothesized to liberate fruity 

aromas and decrease the concentration of undesirable aromas in wines. The volatiles 

analyzed demonstrated a reduction in the green and grassy-type aroma for both flash 

détente and thermovinification treatments, though no increase in the concentration of 

fruity esters was observed. More studies are needed with a wider array of volatiles in 
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order to determine whether or not aroma composition is significantly changed with the 

flash détente and/or thermovinification processes.  In addition, sensory panels will need 

to be conducted to understand consumer preference for these wine products and to 

determine if the observed reductions in undesirable aroma compounds translate to higher 

subjective sensory scores.  

3. The use of pectinase was originally hypothesized to assist in further extracting color 

compounds from grape skins during fermentation.  However, in this study all 

measurements comparing color of wines made with pectinase demonstrated that pectinase 

had no statistically significant effect on color. Thus, based on these results, the use of 

pectinase to improve wine color cannot be recommended, particularly as the use of 

pectinase involves added cost and requires specialized knowledge. This study showed 

that apart from flash détente and thermovinification treatments, extraction of color 

appeared to be largely impacted by changes in alcohol content during fermentation.  

Overall, this research may help winemakers in the state of Oklahoma to produce higher 

quality, richer colored wines made with grapes grown in the state. Due to issues related to color 

formation, and laws that prohibit the addition of many coloring agents in wine, flash détente in 

particular may provide a process with which to create naturally deeper red hues in red wine. 

Furthermore, with the market at-large demanding more natural food and beverage products, it 

may provide an effective means to satisfy the demand for high-quality wines without color 

additives, thus enhancing marketing potential.  

Given the limited sample size of this study, it may be beneficial to have wineries test this 

process on a larger scale using additional grape varieties over several seasons in order to verify 
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the findings contained in this study. Flash détente demonstrated that it has the ability to produce 

more deeply colored red wines at day 38, but larger samples are needed for testing over time.  

Suggestions for future research include quantifying methoxypyrazine compounds in 

wines produced using the flash détente and thermovinification process and to compare them to 

wines produced using standard winemaking procedures. These earthy, grassy compounds impart 

a sensory attribute to wines that is highly disagreeable to most consumers. They could not be 

tested using the methods employed in this study due to their extremely low concentrations; 

typically, these compounds are present at levels of ng/L.  

In addition, future studies might profitably focus on the use of flash détente and 

thermovinification to produce wines suitable as blending stock for winemakers. Furthermore, an 

important area that warrants further research is the sensory evaluation of the experimental wines 

made during this study using sensory panels with both trained and untrained sensory panelists. 

Trained sensory panels could verify analytical findings of this experiment, while untrained 

panels could demonstrate the utility of the processes in marketing and consumer quality 

perception factors.  

In summary, this study constitutes research that highlights the potential advantages of 

flash détente and thermovinification as processing pre-fermentation techniques. It also serves to 

familiarize winemakers with these relatively uncommon winemaking processes and thus may 

stimulate interest among smaller wineries. With that in mind, if sufficient interest exists among 

these smaller winemakers, another potentially fruitful avenue of research would be the design 

and testing of a relatively small-scale, affordable system for flash détente processing that would 

be more practical than the laboratory-scale device used in this study. Such a system could be 

extremely useful in helping to stimulate interest and drive adoption of the flash détente process.   
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