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Abstract: Invasive species damage ecosystems, economies, and human health. Understanding 

the traits that contribute to successful invasion improves our ability to identify and prevent 

future invasions before damage can occur. Anolis sagrei is a small invasive lizard displacing 

natural populations of its close relative, Anolis carolinensis, in the southeastern United States. I 

staged territorial encounters to compare the behavioral, hormonal, and reproductive 

consequences of social experience in the invasive and native species. Against conspecific 

opponents, lizards of both species were more aggressive as residents than as intruders, but only 

female A. sagrei responded to residency with greater plasma corticosterone. In heterospecific 

trials, males did not differ in behavior or plasma corticosterone based on social experience. 

Female A. sagrei residents and intruders differed in the relationship between reproductive 

variables and body size, seemingly differing in their investment in current or future 

reproduction. A. carolinensis females did not differ in reproductive activity based on social 

experience. In long-term experiences, A. sagrei females did not vary reproductive investment 

uniformly but prioritized different reproductive traits based on their social experience. Overall, 

social experience influences reproductive output in these lizard species, possibly through the 

mechanism of stress hormones, in ways that likely contribute to A. sagrei’s success as an 

invasive competitor. 
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CHAPTER I 
 

 

HORMONES, BEHAVIOR, AND INVASION SUCCESS 

 

1.1 Invasive Species 

Species that enter a new geographical range, spread rapidly, and have negative effects on other 

species or the ecosystem are invasive species. Successful invasions can alter ecosystems, harm crops, 

and harm human health via introduced diseases (Pimentel et al., 2005). Addressing existing invasions is 

expensive and often ineffective. Understanding the traits that contribute to successful invasions will 

improve our ability to predict and prevent invasions before potential damage occurs. No single trait 

consistently predicts invasion success (Chapple et al., 2012), so it is crucial to study the interactions 

among traits. 

 

1.2 This Research 

The main question of this research is: Do hormones and behavior interact to aid the competitive 

ability of invasive lizards? The two lizard species I work with are excellent models for understanding 

invasion because one species displaces natural populations of its close relative (Campbell, 2000). The 

mechanism of displacement is unclear, but both species use complex behaviors (Greenberg & Noble, 

1944; Tokarz & Beck, 1987) and have hormonal reactions to social interaction (Tokarz, 1987; Summers 

et al., 2003); if the species differ in their reactions to social interaction, the invasive species could exploit 
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those differences during invasion. I predict that interspecific differences in behavior, hormonal 

activity, and reproduction aid the competitive ability of the invasive lizard. In the chapters that follow, I 

address the following questions:  

1) Does residency in staged territorial conflict affect aggressive behavior and stress hormone 

activity in males and females of the lizard species Anolis sagrei and Anolis carolinensis? I hypothesized 

that, for both species, residents would show more aggressive behaviors and higher plasma concentrations 

of their main stress hormone than intruders. I found that, in conspecific experiences, lizards of both 

species showed more aggressive behaviors as residents than as intruders, but only female A. sagrei 

varied stress hormone concentration based on residency. In heterospecific experiences, males did not 

differ in aggressive behavior or hormone concentration based on residency. 

2) Does residency in staged territorial conflict affect relative investment in reproduction and 

self-maintenance in females of the lizard species A. sagrei and A. carolinensis? I hypothesized that, for 

both species, residents would invest more in reproduction and less in self-maintenance than intruders. I 

found that A. sagrei residents and intruders differed in the relationship between reproductive traits and 

body size, whereas A. carolinensis did not vary reproductive traits based on residency.   

3) In long-term social experience, are size-matched or size-mismatched pairs at a greater 

disadvantage? I tested competing hypotheses: (1) Bully hypothesis: mismatched pairs will show greater 

disruption of reproductive output as the larger lizard harasses the smaller or restricts access to resources; 

(2) Rivals hypothesis: matched pairs will show greater disruption of reproductive output as lizards 

devote greater energy to aggression in an uncertain dominance hierarchy. I found that lizards did not 

uniformly vary all aspects of reproductive output; instead, lizards emphasized different aspects (number 

of offspring produced, hatching success) based on their size relative to their opponent. 
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CHAPTER II 

 

 

BEHAVIORAL AND HORMONAL CONSEQUENCES OF TERRITORIAL CONTESTS  

IN ANOLIS SAGREI AND ANOLIS CAROLINENSIS 

 

2.1 Abstract 

Territorial behavior results in differential hormonal reactions based on contest outcome in many 

reptile species. Here I tested whether residency in staged conflict affects aggressive behavior and stress 

hormone activity in male and female lizards of two lizard species, the invasive brown anole Anolis 

sagrei and the native green anole Anolis carolinensis. These species interact in the field as A. sagrei 

displaces natural populations of A. carolinensis by uncertain mechanisms. If the species differ in their 

behavioral and hormonal responses to territorial conflict, these differences might aid the invader. In 

conspecific experiences, both species showed more aggressive behaviors as residents than as intruders. 

Circulating concentrations of stress hormone were higher in intruders than residents for lab-raised female 

A. sagrei but not for lizards of other source, sex, or species, so the relationship between aggressive 

behavior and hormonal activity is complex. In heterospecific experiences, male A. sagrei and male A. 

carolinensis displayed the same aggressive behaviors as in conspecific experiences but at lower 

frequencies and they did not differ in aggressive behavior or hormonal activity based on residency. I 

conclude that displacement of A. carolinensis populations is likely not due to direct territorial conflict. 
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2.2 Introduction 

Individuals of many species alter their behavior, hormonal activity, and reproductive traits as a 

result of conflict with others of the same species (Chase & Seitz, 2011). Some species increase their 

likelihood of winning after experiencing a win (e.g., water skink, Eulamprus quoyii, Kar et al., 2016); 

some species increase their likelihood of losing after experiencing a loss (e.g., copperheads, Agkistrodon 

contortrix, Schuett, 1997; green anoles, Anolis carolinensis, Garcia et al., 2014); some species show both 

effects (e.g., tree lizard, Urosaurus ornatus, Zucker & Murray, 1996; White’s skink, Egernia whitii, 

McEvoy et al., 2013). Models show that, in many cases, intrinsic attributes such as body size do not fully 

account for the organization of social groups (although experience likely interacts with intrinsic traits 

such as the body size of the individuals involved in the conflict (Hsu et al., 2006)), so individuals likely 

gain some information from the conflict itself (Beacham, 2003). The persistence of the influence of this 

social experience depends on many factors, which may include expected encounter rates, length of 

breeding season, or rapidity of population fluctuations (Kasumovic et al., 2010).  

Conflict has benefits (e.g., gaining a resource) but also costs (e.g., use of time and energy, risk of 

injury) (Briffa & Elwood, 2009), so individuals benefit from assessing the likelihood of winning a 

potential conflict. In anoles, several traits are correlated to fighting ability and thus might help lizards 

assess their likelihood of winning against an opponent. Dewlap size correlates to maximum bite force, 

which contributes to fighting success in A. carolinensis (Henningsen & Irschick, 2012); dewlap size 

relative to body size predicts contest outcome in male A. sagrei and male A. carolinensis (Edwards & 

Lailvaux, 2013); high rates of head bobbing (rather than head nodding) correlates to success in territory 

defense in A. sagrei males (Simon, 2011); A. carolinensis males with black paint over their eyespots 

(mimicking high serotonin activity) become dominant whereas size-matched males with green paint over 

their eyespots (mimicking low serotonin activity) become subordinate (Korzan et al., 2002). Larger body 

mass contributes to dominance in A. carolinensis (Evans, 1936); larger male A. carolinensis more 

successfully defend their perches (Tokarz, 1985).  
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However, intrinsic traits such as body mass are not the only predictors of success; residency is 

also an advantage. Residency can be defined as occupancy over time within an area from which the 

individual will attempt to drive away others by territorial displays or direct conflict. In the Iberian wall 

lizard, Podarcis hispanica, body size was the first predictor of fight duration, but in cases of small 

differences between contestants, residency decided contests (Lopez & Martin, 2001). In A. carolinensis, 

smaller males were unlikely to win but residents were more likely to win than intruders (Jenssen et al., 

2005); captive A. carolinensis males that had resided in a territory for 24 hours won 91% of their 

conflicts with intruders (Evans, 1936).  

Anole lizards are ideal models for determining the influence of conflict on behavior, hormones, 

and reproduction. A. carolinensis use territorial displays to form dominance hierarchies (Greenberg & 

Noble, 1944). These displays are highly conserved across field and laboratory contexts in A. carolinensis 

males (Lovern et al., 1999), and female A. carolinensis use the same signals as males (Jenssen et al., 

2000). Females must also be studied in this context because female anoles hold territories (Nunez et al., 

1997) and defend their territories with territorial displays (Evans, 1938). When paired under laboratory 

conditions, female A. carolinensis display aggression and form dominant-subordinate relationships in 

which the dominant lizard displaces the subordinate lizard (Andrews & Summers, 1996).  

It is not clear to what extent A. carolinensis and A. sagrei use information from previous 

territorial interactions to influence future behavior. In experimental settings, male A. carolinensis have 

been observed to show little effect of contest outcome (Garcia et al., 2012), increase their likelihood of 

losing after a loss only against familiar opponents (Forster et al., 2005), increase their likelihood of 

losing after a loss against unfamiliar opponents (Garcia et al., 2014), increase aggression after observing 

aggression (Yang et al., 2001), or increase aggression after wins and decrease aggression after losses 

(Garcia et al., 2014). 
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Heterospecific interactions are especially complex because individuals may misinterpret signals 

from an individual of a closely related species. A. sagrei displaces populations of A. carolinensis (Losos 

& Spiller, 1999), so behavioral interaction is likely. Male A. carolinensis perch higher in mixed 

populations than in A. carolinensis-only populations, but in lab conditions male A. sagrei show only a 

slight advantage in occupying preferred perch position; A. sagrei females show a much greater 

advantage (Edwards & Lailvaux, 2013). The behavioral interactions that result in this displacement 

likely involve the same territorial behaviors that are well-studied in conspecific contexts. 

Anoles may show less aggression toward heterospecific competitors than conspecific 

competitors. In staged field encounters, Anolis cristatellus males were more aggressive toward 

conspecific males than toward A. gundlachi males (Hess & Losos, 1991), and in the lab, A. carolinensis 

and A. sagrei males were more aggressive toward conspecifics than heterospecifics (Tokarz & Beck, 

1987). However, male Anolis cooki and Anolis cristatellus, competitors for the same microhabitat, are as 

aggressive toward each other as toward conspecifics (Ortiz & Jenssen, 1982). 

It is also possible that interactions would affect the two species unequally. When A. carolinensis 

and A. sagrei are introduced to islands without anole populations, A. carolinensis population density is 

limited on islands with A. sagrei populations, but A. sagrei seem unaffected by the presence of A. 

carolinensis (Losos & Spiller, 1999). When placed in cages with juveniles, A. sagrei prefer to eat 

heterospecific juveniles rather than conspecific juveniles; A. carolinensis rarely eat juveniles at all and 

show no preference when they do (Gerber & Echternacht, 2000). Adult male A. sagrei are more likely to 

eat juveniles than A. carolinensis or A. conspersus and prefer heterospecific juveniles over conspecific 

juveniles, whereas A. carolinensis and A. conspersus show no preference (Gerber, 2000). Some disparity 

in effect may be driven by differences in territorial behavior; A. sagrei display more frequently than A. 

carolinensis in multiple contexts, so it’s possible that in the field A. carolinensis overestimate A. sagrei’s 

motivation and retreat quickly, whereas A. sagrei underestimate A. carolinensis’s motivation and do not 

retreat (Tokarz & Beck, 1987). 
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Hormonal activity influences behavior in ways that can influence contest outcome, such as 

increased territorial displays after experimentally elevating testosterone in male A. sagrei (Tokarz et al., 

2002). The influence of hormonal activity on behavior can vary at the population level, as in eastern 

fence lizards, Sceloporus undulatus, which respond to experimentally elevated corticosterone by 

decreasing activity in populations free of fire ants but increasing activity in populations invaded by fire 

ants (Trompeter & Langkilde, 2011). 

Contest outcome also influences individuals’ hormonal activity. In A. carolinensis, testosterone 

(Hattori, 2009), serotonin (Summers et al., 1997), epinephrine, norepinephrine, and dopamine (Korzan et 

al., 2002) are influenced by contest outcome. Corticosterone, a glucocorticoid, is of particular interest 

because it commonly increases in circulation in response to the energetic demands of aggressive 

behavior in reptiles (Moore & Jessop, 2003) and in turn influences aggressive behavior (Briffa & 

Sneddon, 2007). Maintaining social status is stressful, and species differ in whether high or low rank 

correlates to greater stress (Sapolsky, 2005). Glucocorticoids, which function as stress hormones, may be 

higher in dominants or subordinates, depending on the costs related to maintaining homeostasis 

(Goymann & Wingfield, 2004). The relationship between glucocorticoids and behavior is influenced by 

the context of conflict, the intensity, and other physiological and behavioral responses (Summers et al., 

2005). 

Experimentally elevated corticosterone reduces aggression in A. carolinensis but increases 

aggression in A. sagrei (Parikh & Lovern, unpublished data). The relationship between contest outcome 

and corticosterone is similarly complex across species. Post-contest corticosterone is greater in 

subordinate than dominant individuals in male A. carolinensis (Summers et al., 2003) and male 

copperheads, Agkistrodon contortrix (Schuett & Grober, 2000). However, a difference between 

dominant and subordinate individuals is not always evident in male A. carolinensis (Greenberg & Crews, 

1990), or may be complicated by the familiarity of the opponent (Ling et al., 2010). The duration of 
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social interaction may also influence the timing and direction of differences in corticosterone (e.g., tree 

lizards, Urosaurus ornatus, Knapp & Moore, 1995). 

In this research I address two primary questions. First, does residency affect behavior in A. 

sagrei and A. carolinensis? I hypothesized that residents of both species and both sexes would display 

more aggressive behaviors than intruders. Second, does residency affect post-experience plasma 

concentrations of corticosterone? I hypothesized that plasma corticosterone concentration would be 

greater in residents than intruders for both species and both sexes. 

 

2.3 Methods 

2.3.1 Animals 

Experiments were conducted in May through August, when lizards are in breeding condition. In 

2013 and  2014 I used lab-raised male and female A. sagrei. In  2015 and 2016 I used wild-caught male 

and female A. carolinensis and wild-caught male A. sagrei. Wild-caught lizards were bought from a 

commercial supplier (Underground Reptiles, Deerfield Beach, FL). All lizards were adults and had 

minimum 2 g body mass. All procedures were approved by IACUC as protocol AS1312. 

 

2.3.2 Animal Husbandry 

My husbandry protocol was modified from Lovern et al. (2004). Briefly, lizards were housed 

individually for 14 days prior to each experiment to establish territories and negate previous social 

experience, as A. carolinensis behave as naïve opponents when separated for at least 10 days (Forster et 

al., 2005). Each lizard was housed in a 38 L glass terrarium with peat moss substrate, a dowel rod for a 

perch, a water dish, a plastic nest box (9 x 15 x 8 cm) filled with damp peat moss (females only), and a 
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wire mesh lid.  A 60 W bulb (one bulb per two terraria) provided heat and an 18 W Repti-Sun 5.0 UVB 

bulb (Zoo Med) (one bulb per three terraria) provided UV lighting. Room lights were on from 0700-

2100h, UV lights 0800-2000h, and basking lights 0900-1900h daily. Room temperature ranged from 24-

38 C and humidity ranged from 50% to 75%. Adjacent terraria were separated by cardboard dividers to 

prevent visual contact with immediate neighbors. All lizards were offered the same amount of food: 

mealworms twice per week and crickets twice per week, with one cricket feeding augmented with 

powdered vitamins (Minerall, Herpetivite). Terraria were misted with water daily. If a nest box was 

present, it was checked for eggs daily. 

 

2.3.3 Treatment Groups 

Lizards were randomly assigned to be residents (intended to gain winning experience) or 

intruders (intended to gain losing experience). T-tests confirmed that residents and intruders did not 

differ in mean snout-vent length or mean body mass (all p > 0.05) before trials. Lizards were excluded 

from experiments if their body mass was less than 2 g, if they had a broken or regrown tail, or if they 

appeared in poor health (abnormally low activity, no observed feeding). 

 

2.3.4 Social Experience Trials 

Lizards gained social experience between 1000 and 1400 h (during the lizards’ active period). I 

captured an intruder lizard by hand and released the intruder lizard into the resident lizard's terrarium. 

Lizards interacted for 10 min while I recorded behaviors from a distance of 8 ft. After this experience 

trial I captured the intruder by hand to release back into the intruder’s home terrarium. To standardize 

handling stress, I captured and immediately released the resident back into its home terrarium before and 

after the experience trials.  
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Species-typical territorial behaviors were observed and recorded: head bobs, dewlap extensions, 

approaches, retreats, and bites. A head bob was any bout of jerking the head up and down, separated 

from another bout by at least 3 seconds. A dewlap extension was any individual instance of extension of 

the throat fan. An approach was movement of at least one body length toward the opponent. A retreat 

was movement of at least one body length away from the opponent. A bite was any contact between one 

lizard’s mouth and the other lizard. 

To estimate investment in self-maintenance, I measured each lizard’s snout-vent length and body 

mass at the beginning and end of the experiment to calculate changes.  

 

2.3.5 Corticosterone 

I drew blood from the post-orbital sinus via capillary tube following brief exposure to an 

inhalant anesthetic agent (isoflurane) 30 min after the staged social experience trial. The order of blood 

collection was randomized between resident and intruder for each experience trial and total collection 

time for both lizards did not exceed 4 min. In 2016, baseline corticosterone was sampled 8 d before final 

experience trials. 

Plasma corticosterone concentration was determined by radioimmunoassay. Samples were 

centrifuged at 4000 rpm for 4 min. Plasma was removed and stored at 4 C. I added 500 µl of ddH2O and 

20 µl of tritiated steroid (“tracer”) to all sample tubes and standard tubes. I vortexed all tubes, covered 

them with aluminum foil, and refrigerated them overnight. Steroid was extracted twice with 2 ml diethyl 

ether and evaporated under nitrogen gas in a water bath for 15 min at 37 ºC. I added 300 µl PBSg to all 

tubes, vortexed for 5 sec, and refrigerated the tubes overnight. After bringing all tubes to room 

temperature I vortexed all tubes for 5 sec, added 50 µl of each sample into scintillation vials with 2 ml 

Ultima Gold scintillation cocktail (Packard), vortexed for 5 sec, and counted radiation using a 

scintillation counter. I placed 200 µl of each sample into test tubes. To construct a standard curve I 
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conducted a serial dilution of 250 pg to 1.95 pg. I added 100 µl of antibody and 100 µl of tracer into all 

tubes for a final volume of 400 µl per tube. I vortexed for 2 sec, covered tubes with aluminum foil, and 

refrigerated them overnight. After bringing all tubes to room temperature I added 500 µl dextran-coated 

charcoal in PBS (65% charcoal, 35% PBS) to all tubes to stop the assay and remove unbound tracer. I 

vortexed racks manually for 10 sec and, 15 min after adding charcoal solution, centrifuged them at 2200 

rpm for 10 min at 4 ºC. I decanted the supernatant into scintillation vials, added 3.5 ml Ultima Gold, and 

vortexed. Then I counted on a scintillation counter. 

 

2.3.6 Data Analysis 

I used t-tests to detect differences between residents and intruders for each behavior, for 

corticosterone concentrations, and for self-maintenance variables. Lizards were assigned to experience 1, 

2, or 3 staged experiences; however, as the number of experiences did not significantly affect behavior, 

data analysis here includes only the first staged experience for each lizard. 

 

2.4 Results 

2.4.1 Behavior: Conspecific Opponents: Anolis sagrei females 

Female A. sagrei residents extended their dewlaps significantly more than intruders (Figure 1). 

Residents and intruders did not differ significantly in their change in snout-vent length or body mass (p > 

0.05 for both variables).  
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2.4.2 Behavior: Conspecific Opponents: Anolis sagrei males 

Male A. sagrei residents bit more often (Figure 2) and performed significantly more dewlap 

extensions (Figure 3) than intruders; intruders retreated significantly more often than residents (Figure 

2). Residents and intruders did not differ significantly in change in snout-vent length or body mass (p > 

0.05 for both variables). 

 

2.4.3 Behavior: Conspecific Opponents: Anolis carolinensis females 

Female A. carolinensis residents performed significantly more headbobs than intruders (Figure 

4). Residents and intruders did not differ significantly in their changes in snout-vent length or body mass 

(p > 0.05 for both variables). 

 

2.4.4 Behavior: Conspecific Opponents: Anolis carolinensis males 

Male A. carolinensis did not differ significantly in any behavior based on residency (Figure 5). 

Residents and intruders did not differ significantly in their changes in snout-vent length or body mass (p 

> 0.05 for both variables).  

 

2.4.5 Behavior: Heterospecific Opponents 

Neither male A. sagrei (Figure 6, Figure 7) nor male A. carolinensis (Figure 8) differed 

significantly in behavior in heterospecific experiences based on residency. In general, behavior did not 

differ significantly by species (Figure 9). Neither male A. sagrei nor male A. carolinensis differed 

significantly in the change in snout-vent length or change in body mass based on residency (p > 0.05 for 

both variables). 
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2.4.6 Corticosterone: Conspecific Opponents: Anolis sagrei 

Male A. sagrei did not differ significantly in plasma corticosterone based on residency (Figure 

10), but female A. sagrei had higher plasma corticosterone in intruders than in residents (Figure 10). 

Within residents and intruders, corticosterone did not vary by sex (Figure 11). 

 

2.4.7 Corticosterone: Conspecific Opponents: Anolis carolinensis 

Neither male nor female A. carolinensis differed in mean corticosterone by residency (Figure 

12). Corticosterone had a greater mean (Figure 13) and greater variance (Figure 14) in A. carolinensis 

females than in males. 

 

2.4.8 Corticosterone: Heterospecific Opponents 

Neither male A. sagrei (Figure 15) nor male A. carolinensis (Figure 16) differed significantly in 

behavior based on residency against a heterospecific opponent. The two species did not differ 

significantly at baseline or post-experience corticosterone concentrations (Figure 17). Staged experiences 

increased mean corticosterone in both A. sagrei and A. carolinensis, regardless of residency (Figure 18). 

Variance in corticosterone concentration was significantly greater in A. carolinensis than in A. sagrei 

both before and after staged experiences (Figure 19). Variance increased with experience for A. sagrei 

but not A. carolinensis (Figure 20). 

 

2.5 Discussion 

 The first hypothesis, that residents of both species would display more aggressive behaviors than 

intruders, was supported at the species level, although the specific behaviors affected by residency varied 
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by species and sex. The second hypothesis, that plasma corticosterone concentration would be greater in 

residents than intruders for both species and both sexes, was largely unsupported; only for female A. 

sagrei did residency affect corticosterone. 

 

2.5.1 Behavior: Conspecific Opponents: Residency 

With the exception of A. carolinensis males, all groups were more aggressive as residents than 

intruders, suggesting the experimental setup successfully simulated territorial conflict, allowing further 

study of the hormonal and reproductive consequences of such different experiences. Several behaviors 

that are not significantly different between residents and intruders show trends toward greater aggression 

in residents, so a larger sample size might increase the number of behaviors that are significantly 

different based on residency.  

 

2.5.2 Behavior: Conspecific Opponents: Self-Maintenance 

Lizards did not differ in their growth and self-maintenance (measured by changes in snout-vent 

length and body mass) based on residency during social experience trials. This pattern is observed in 

both species, in lab-raised and wild-caught lizards, and in females and males. Perhaps significant 

differences would result from the constant interaction of lizards housed together. Future research should 

explore the effects of a greater number of experiences and of long-term experience on self-maintenance 

in both female and male lizards. 
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2.5.3 Behavior: Heterospecific Opponents 

Several behaviors in conspecific experiences were similar (headbobs) or identical (dewlap 

extensions, approaches, retreats, bites) for the two species, so territorial disputes could occur between 

species in the field. However, in heterospecific experiences with wild-caught A. sagrei and A. 

carolinensis males, residency did not affect any behavior for either species. Lizards in heterospecific 

experiences showed a trend toward fewer behaviors than lizards in conspecific experiences (although 

this was not statistically tested), suggesting a greater level of caution towards heterospecifics. This result 

is similar to results found in other anole species: in staged field encounters, Anolis cristatellus shows 

greater aggression toward conspecifics than toward Anolis gundlachi (Hess & Losos, 1991). However, 

some species are quite aggressive toward heterospecifics; Anolis cooki and Anolis cristatellus compete 

for the same microhabitat and heterospecific interactions are as aggressive as conspecific interactions for 

each species (Ortiz & Jenssen, 1982). A. sagrei and A. carolinensis’ caution suggests the displacement of 

A. carolinensis during invasions is not due to aggression between males, but might instead result from 

resource partitioning (Campbell, 2000; Edwards & Lailvaux, 2012). Growth and self-maintenance traits 

did not differ based on residency; since both species showed less aggression in heterospecific 

experiences than in conspecific experiences, the lack of effect of residency is not surprising. Future work 

should compare the behavioral responses to heterospecific social interactions in lizards from uninvaded 

and invaded populations. 

 

2.5.4 Corticosterone:  Residency 

Plasma corticosterone was greater in residents than in intruders for lab-raised female A. sagrei; 

there was no difference based on residents for lab-raised male A. sagrei, wild-caught female A. 

carolinensis, or wild-caught male A. carolinensis. Behavioral differences based on residency did not 

always match differences in stress hormones, similar to results in tree lizards, Urosaurus ornatus 
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(Thompson & Moore, 1992). It is possible that the stress of captivity masked any stress due to social 

interaction for wild-caught lizards. Because the source of study animals differed for the two species, it is 

not clear whether a species difference exists during conspecific experiences. The advantage of wild-

caught lizards is that they likely more closely resemble lizards in the field than lab-raised lizards do, but 

the disadvantage is that captivity is likely stressful for them, perhaps stressful enough to mask 

differences in stress hormones based on social experience even when behavior differs between residents 

and intruders. The advantage of lab-raised lizards is that captivity is familiar to them, so it makes sense 

that their reaction to social experience would show more subtle differences in stress hormones. Future 

work should build on this research by conducting similar experiments with wild-caught A. sagrei and 

lab-raised A. carolinensis. 

The relationship between stress hormone activity and fitness is complex. The relationship 

between stress hormone activity and variables used to estimate fitness may be positive, negative, or 

nonexistent (Bonier et al., 2009). Future work should investigate the effects of social interaction on 

short-term and long-term hormone activity and the relationship between stress hormone activity and 

measures of fitness in these species. 

 

2.5.5 Corticosterone: Females vs. Males 

It is interesting that lab-raised female A. sagrei showed differences based on residency but males 

did not; perhaps dominance hierarchies are more stable for females than for males, so a losing 

experience corresponds to a longer-term reduction in access to resources. Perhaps the difference between 

sexes relates to differences in reproductive investment; nearly every female is expected to reproduce in 

the field, but only the most dominant males reproduce, leading to a greater range of reproductive success 

among males (Gerber, 2000). 
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Lab-raised A. sagrei showed no sex differences in plasma corticosterone, but corticosterone was 

greater in female wild-caught A. carolinensis than in males. It is unclear whether this species difference 

is actually due to species or animal source. Perhaps differences in females’ status more greatly affect 

behavior towards males than toward other females; other work with female A. carolinensis shows that 

social status does not affect perch site selection, body color, or prey capture, but does affect frequency of 

signals to males (Andrews & Summers, 1996). 

 

2.5.6 Corticosterone: Heterospecific Opponents 

Neither wild-caught A. sagrei males nor wild-caught A. carolinensis males differed in plasma 

corticosterone based on residency in heterospecific experiences. This result is consistent with the lack of 

effect of residency on behavior in heterospecific experiences. Perhaps both species are so cautious that 

neither recognizes residency or threats to residency. The lack of behavioral or hormonal differences 

based on residency supports the conclusion that displacement of A. carolinensis during invasion is not 

caused by direct conflict between males (Edwards & Lailvaux, 2013).  

 

2.5.7 Limitations 

In this study, lizard interactions were standardized at 10 minutes to aid statistical analysis,  

whereas interactions in the field vary in duration as individuals abandon contests they are unlikely to 

win.  

These experiments tested lizards in pairs only. Social interactions in the field often involve only 

two individuals, but more individuals may be involved directly or may observe the social interactions of 

others. Studies have found that aggression in pairs may show low correlation to aggression in groups 

(Chase et al., 2003) or high correlation (Dugatkin & Druen, 2004). Future work should focus on larger 
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groups and observers, as models predict observation of others interacting could contribute to social 

organization in similar ways to direct involvement (Dugatkin & Earley, 2003). 
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Figure 1. Behavior by residency in female A. sagrei (n = 21 resident trials, 16 intruder trials; error bars 

represent one standard error). T = -2.37, p = 0.028 for dewlap extensions and p > 0.05 for all other 

behaviors. An asterisk indicates a significant difference. 

  

* 
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Figure 2. Behavior by residency in male A. sagrei (n = 21 resident trials, 17 intruder trials; error bars 

represent one standard error). T = 2.44, p = 0.025 for retreats, t = -2.43, p = 0.024 for bites, and p > 0.05 

for all other behaviors. An asterisk indicates a significant difference. 

 

Figure 3. Dewlap extensions by residency in male A. sagrei (n = 21 resident trials, 17 intruder trials; 

error bars represent one standard error). T = -2.50, p = 0.017. An asterisk indicates a significant 

difference. 

* * 

* 
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Figure 4. Behavior by residency in female A. carolinensis (n = 9 resident trials, 9 intruder trials; error 

bars represent one standard error). T = -2.56, p = 0.024 for headbobs and p > 0.05 for all other behaviors. 

An asterisk indicates a significant difference. 

 

Figure 5. Behavior by residency in male A. carolinensis (n = 11 resident trials, 11 intruder trials; error 

bars represent one standard error). P > 0.05 for all behaviors. An asterisk indicates a significant 

difference. 

* 
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Figure 6. Behavior by residency in male A. sagrei in heterospecific experiences (n = 9 resident trials, 9 

intruder trials; error bars represent one standard error). P > 0.05 for all behaviors. An asterisk indicates a 

significant difference. 

 

Figure 7. Dewlap extensions by residency in male A. sagrei in heterospecific experiences (n = 9 resident 

trials, 9 intruder trials; error bars represent one standard error). P > 0.05. An asterisk indicates a 

significant difference. 
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Figure 8. Behavior by residency in male A. carolinensis in heterospecific experiences (n = 9 resident 

trials, 9 intruder trials; error bars represent one standard error). P > 0.05 for all behaviors. An asterisk 

indicates a significant difference. 

 

Figure 9. Behavior by species in male A. sagrei and A. carolinensis in heterospecific experiences (n = 18 

A. sagrei trials, 18 A. carolinensis trials; error bars represent one standard error). P > 0.05 for all 

behaviors. An asterisk indicates a significant difference. 
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Figure 10. Corticosterone by residency within sex in A. sagrei (n = 10 male residents, 8 male intruders, 

12 female residents, 11 female intruders; error bars represent one standard error). P > 0.05 for males, T = 

-2.2, p = 0.040 for females. An asterisk indicates a significant difference. 

 

Figure 11. Corticosterone by sex within residency in A. sagrei (n = 10 resident males, 12 resident 

females, 8 intruder males, 11 intruder females; error bars represent one standard error). P > 0.05 for 

residents and intruders. An asterisk indicates a significant difference. 

* 
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Figure 12. Corticosterone by residency within sex in A. carolinensis (n = 11 male residents, 11 male 

intruders, 9 female residents, 8 female intruders; error bars represent one standard error). P > 0.05 for 

males and females. An asterisk indicates a significant difference. 

 

 

Figure 13. Corticosterone by sex in A. carolinensis (n = 22 males, 17 females; error bars represent one 

standard error). T = 3.0, p = 0.007. An asterisk indicates a significant difference. 

 

* 



26 
 

 

Figure 14. Variance in corticosterone in A. carolinensis in conspecific experiences (n = 22 males, 17 

females). F = 4.2, p = 0.001. An asterisk indicates a significant difference. 

 

 

Figure 15. Corticosterone in male A. sagrei in heterospecific experiences (n = 8 residents, 8 intruders; 

error bars represent one standard error). P > 0.05 for baseline and post-experience concentrations. An 

asterisk indicates a significant difference. 

 

* 
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Figure 16. Corticosterone in male A. carolinensis in heterospecific experiences (n = 9 residents, 9 

intruders; error bars represent one standard error). P > 0.05 for baseline and post-experience 

concentrations. An asterisk indicates a significant difference. 

 

Figure 17. Corticosterone by species in male A. sagrei and A. carolinensis in heterospecific experiences 

(n = 16 A. sagrei, 18 A. carolinensis; error bars represent one standard error). P > 0.05 for both baseline 

and post-experience concentrations. An asterisk indicates a significant difference. 
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Figure 18. Corticosterone in male A. sagrei and A. carolinensis in heterospecific experiences (n = 16 A. 

sagrei, 18 A. carolinensis; error bars represent one standard error). T = -3.5, p = 0.003 for A. sagrei and t 

= -3.5, p = 0.003 for A. carolinensis. An asterisk indicates a significant difference. 

 

 

Figure 19. Variance in corticosterone in male A. sagrei and A. carolinensis in heterospecific experiences 

(n = 16 A. sagrei, 18 A. carolinensis). F = 0.2, p = 0.001 for baseline concentrations and f = 0.4, p = 

0.048 for post-experience concentrations. An asterisk indicates a significant difference. 

 

* 

* 

* * 
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Figure 20. Variance in corticosterone in male A. sagrei and A. carolinensis in heterospecific experiences 

before and after experiences (n = 16 A. sagrei, 18 A. carolinensis). F = 0.4, p = 0.030 for A. sagrei and p 

> 0.05 for A. carolinensis. An asterisk indicates a significant difference.  

* 
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CHAPTER III 
 

 

TERRITORIAL CONTESTS AFFECT REPRODUCTION  

IN ANOLIS SAGREI AND ANOLIS CAROLINENSIS FEMALES 

 

3.1 Abstract 

Territorial species compete over resources such as food and shelter, resulting in unequal access 

to resources that are useful in producing offspring. Inappropriate behavior during a territorial dispute is 

costly because an individual who is too bold wastes energy on an unwinnable fight and an individual 

who is too cautious abandons useful resources. Some species avoid inappropriate behavior by using 

information from previous territorial disputes to alter territorial behavior, becoming more or less 

aggressive based on previous successes or failures. This study investigates the effects of territorial 

competitions on females’ investment in the competing interests of reproduction and self-maintenance. 

Female Anolis sagrei and Anolis carolinensis were exposed to brief conspecific interactions as residents 

or intruders. Lab-raised A. sagrei residents and intruders differed in the relationship between 

reproductive variables and body size. Wild-caught A. carolinensis did not differ in reproductive or self-

maintenance traits based on residency. Social experience influences reproduction in lab-raised A. sagrei. 

Social experience may influence reproduction in wild-caught A. carolinensis in ways that are masked by 

the stress of captivity. 
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3.2 Introduction 

Female anoles hold territories (Nunez et al., 1997) and use territorial displays to defend them 

(Evans, 1938); these displays are the same as those displayed by territorial males, although at lower 

frequencies (Jenssen et al., 2000). In the lab, paired female A. carolinensis form dominant-subordinate 

relationships that affect behavior, although social status does not seem to affect prey capture (Andrews 

& Summers, 1996). Even in the absence of overt territorial behaviors, territorial interactions affect 

hormonal activity (Davis & Marler, 2003). 

Anolis lizards store sperm from multiple males for months (Calsbeek et al., 2007), choosing 

from among the sperm of several males post-mating to maximize offspring quality (Calsbeek & 

Bonneaud, 2008). Anolis lizards lay one-egg clutches with no parental care (Tokarz & Jones, 1979).  

However, reproduction is still costly and there are trade-offs between reproduction and survival. When 

the ovaries of A. sagrei were surgically removed to prevent reproduction, females increased survival to 

the end of the breeding season by 56%, to the end of the winter by 96%, and to the next year by 200% 

(Cox & Calsbeek, 2009). The trade-off could be due to intrinsic factors such as reduced resources 

available to self-maintenance while reproducing or to extrinsic factors such as increased predation risk 

while reproducing (Cox & Calsbeek, 2009). A. sagrei females experience the best growth, body 

condition, fat, and survival through the breeding season with a bilateral ovariectomy, intermediate 

performance for all variables with unilateral ovariectomy, and the worst performance with sham surgery 

(Cox et al., 2014).  

Reproductive activity also affects stress hormones. Female tree lizards, Urosauraus ornatus, 

differ in the intensity of their stress responses, as measured by increases in plasma corticosterone, based 

on their reproductive stage (Woodley & Moore, 2002). Female Texas horned lizards, Phrynosoma 

cornutum, have higher corticosterone during egg-laying (Wack et al., 2008). 
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Territorial behavior can influence reproductive investment. At high conspecific population 

densities, when territorial behavior is common, A. carolinensis and A. sagrei females reduced the 

number of eggs produced (but not egg size or lipid content); at high heterospecific population densities, 

A. carolinensis but not A. sagrei females reduced the number of eggs produced (Vincent, 2002).  

Traits that are useful in territorial defense are also useful in reproduction. Larger A. sagrei 

females produce heavier eggs (Warner et al., 2013) and are more likely to survive the breeding season, 

although they have no survival advantage over the winter (Delaney & Warner, 2016). Territorial 

behavior of parents may affect indirectly their offspring through differential access to food resources and 

subsequent investment in offspring. A. carolinensis females with greater diet quality laid more but not 

heavier eggs (Lovern & Adams, 2008); A. sagrei females with greater diet quality had heavier eggs, 

heavier offspring, faster offspring growth, and higher offspring survival, apparently by greater yolk 

investment (Warner & Lovern, 2014). 

Maternal hormonal activity can affect offspring. Lizards transfer corticosterone to developing 

embryos before laying the eggs (Uller et al., 2009). Maternal corticosterone can adversely affect reptile 

embryos’ physical development (Uller et al., 2009) and hatching success (Meylan et al., 2010). A. 

carolinensis reproductive behavior is affected by the stress associated with dominance hierarchies 

(Greenberg, 2002). High stocking densities in captive American alligators (Alligator mississippiensis) 

raised plasma corticosterone and reduced nesting success (Elsey et al., 1990). Elevated corticosterone in 

the eggs of tree lizards, Urosauraus ornatus, decreased time to hatching, which limits time to develop 

before hatching, which can decrease hatchling survival (Weiss et al., 2007). Elevated corticosterone 

adversely affects lizards’ offspring body size (Uller et al., 2009) and body condition (Cadby et al., 2010), 

although not all species show this effect (e.g., common lizard, Lacerta vivipara, Uller & Olsson, 2006). 

The effect of corticosterone on offspring can differ by species; elevated corticosterone levels during 

embryonic development increase the growth rate of the Eastern three-lined skink, Bassiana duperreyi 

but decrease growth rate of the jacky dragon, Amphibolurus muricatus (Warner et al., 2009). 
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Exposure to maternal corticosterone during embryonic development also affects offspring later 

in life. Elevated corticosterone during embryonic development in common lizards, Lacerta vivipara, 

decreases juvenile sprint speed and tendency to flee (Meylan & Clobert, 2004). Experimentally elevated 

corticosterone in eggs increased juveniles’ time to emerge from shelter after a simulated attack, 

indicating greater caution (Uller & Olsson, 2006). Sometimes effects are complex, as in Lacerta 

vivipara; experimentally elevated corticosterone in mothers reduced juvenile body size and body 

condition but increased juveniles’ physiological performance (Meylan et al., 2010). Corticosterone 

exposure at different developmental stages and of different durations has different effects on juveniles’ 

dispersal strategies (Vercken et al., 2007). 

Females should alter the sex ratio of their offspring to increase their fitness (Sheldon & West, 

2002). Theoretically, females in good condition should produce more sons to maximize their 

reproductive output (Trivers & Willard, 1973); “good condition” may include “high status” and high 

status contributes to good condition through greater access to food and shelter resources. When body 

condition is good, males tend to have greater reproductive success than females, and when body 

condition is poor, females tend to have greater reproductive success than males; mammalian data support 

this (Trivers & Willard, 1973). 

Sex ratios can be influenced by social status, as in female Barbary macaques, Macaca sylvanus, 

which produce more sons when they have high status and more daughters when they have low status 

(Paul et al., 1992). The hormones associated with different social statuses may be the mechanism of 

adjusted sex ratios. Elevated corticosterone in female common lizards, Lacerta vivipara, increases 

survival of their male offspring (Meylan & Clobert, 2005), biases offspring toward females in the Jacky 

dragon, Amphibolurus muricatus (Warner et al., 2009), and biases offspring toward males in the Eastern 

three-lined skink, Bassiana duperreyi (Warner et al., 2009). 
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I hypothesized that residents would invest more in reproduction than intruders by producing 

either greater quantity or quality of offspring, with offspring sex ratios biased toward males in residents 

and toward females in intruders, representing a greater investment in current reproduction in response 

current success in territorial conflict. I also hypothesized that intruders would invest more in self-

maintenance than residents by losing less body mass during the experiment, representing a greater 

investment in future reproduction by investing in current survival in response to current failure in 

territorial conflict. 

 

3.3 Methods 

3.3.1 Animals 

Experiments involved 19 lab-raised Anolis sagrei females (in 2013 and 2014) and 12 wild-

caught Anolis carolinensis females (in 2015) purchased from Underground Reptiles (Deerfield, FL). All 

lizards were adults and had minimum 2 g body mass. Experiments took place during the breeding season 

(May through August) when A. sagrei (e.g., Cox & Calsbeek, 2015) and A. carolinensis (e.g., Husak et 

al., 2007) defend territories. All procedures were approved by IACUC as protocol AS1312. 

 

3.3.2 Animal Husbandry 

My husbandry protocol was modified from Lovern et al., 2004. Briefly, lizards were housed in 

110 L glass terraria in mixed-sex groups to gain mating experience prior to experiments, then housed 

individually for 14 days prior to each experiment to establish territories and negate previous social 

experience, as A. carolinensis behave as naïve opponents when separated for at least 10 days (Forster et 

al., 2005). Each lizard was housed in a 38 L glass terrarium with peat moss substrate, a dowel rod for a 

perch, a water dish, a plastic nest box (9x15x8 cm) filled with damp peat moss, and a wire mesh lid.  A 
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60 W bulb (one bulb per two terraria) provided heat and an 18 W Repti-Sun 5.0 UVB bulb (Zoo Med) 

(one bulb per three terraria) provided UV lighting. Room lights were on from 0700-2100h, UV lights 

0800-2000h, and basking lights 0900-1900h daily. Room temperature ranged from 24-38 C and humidity 

was maintained between 50% and 75%. Adjacent terraria were separated by cardboard dividers to 

prevent visual contact with neighbors. All lizards were offered the same amount of food: mealworms 

twice per week, crickets twice per week; once per week, crickets were dusted with vitamins (Minerall, 

Herpetivite). Terraria were misted with water daily.  

Nest boxes were checked daily for eggs. Eggs were removed, weighed, and placed in a small 

glass jar of vermiculite (10 g vermiculite, 10 mL distilled water); moisture was retained by a square of 

plastic wrap fixed over the mouth of the jar by a rubber band. Eggs were incubated at 28 C and checked 

daily for hatchlings. 

 

3.3.3 Treatment Groups 

Treatment groups were identical to those described in chapter 1. Lizards were randomly 

assigned to be residents (intended to gain winning experience) or intruders (intended to gain losing 

experience). T-tests confirmed that residents and intruders did not differ significantly in mean snout-vent 

length or mean body mass (p > 0.05) before trials. Lizards were excluded from experiments if their body 

mass was less than 2 g, if they had a broken or regrown tail, or if they appeared in poor health 

(abnormally low activity, no observed feeding).  

 

3.3.4 Social Experience Trials 

Lizards gained social experience between 1000 and 1400 h (during the lizards’ active period). I 

captured an intruder lizard by hand and released the intruder lizard into the resident lizard’s terrarium. 
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Lizards interacted for 10 min while I recorded behaviors from a distance of 8 feet. After this experience I 

captured the intruder by hand to release back into the intruder’s home terrarium. To standardize handling 

stress, I captured and immediately released the resident back into its home terrarium before and after the 

experience. 

To test whether staged experiences simulated successful and unsuccessful terrirorial conflict, 

species-typical territorial behaviors were observed and recorded: head bobs, dewlap extensions, 

approaches, retreats, and bites. A head bob was any bout of jerking the head up and down, separated 

from another bout by at least 3 seconds. A dewlap extension was any individual instance of extension of 

the throat fan. An approach was movement of at least one body length toward the opponent. A retreat 

was movement of at least one body length away from the opponent. A bite was any contact between one 

lizard’s mouth and the other lizard.  

 

3.3.5 Variables 

To estimate investment in reproduction, I measured reproductive traits for each lizard throughout 

the rest of the experiment: the number of eggs laid, the number of eggs hatched, mean egg mass, mean 

days to hatch, mean hatchling mass, mean hatchling snout-vent length, and offspring sex ratio. To 

estimate investment in self-maintenance, I measured snout-vent length and body mass at the beginning 

and end of the experiment to determine change in each variable. 

 

3.3.6 Data Analysis 

I used t-tests to detect behavioral differences between residents and intruders. T-tests were used 

to compare each reproductive and self-maintenance variable in resident and intruder lizards. To address 

the pseudoreplication of siblings, I calculated the mean value for all offspring for each lizard for 
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statistical analysis. I ran simple regressions to compare maternal snout-vent length and reproductive 

variables among all lizards, among winners, and among losers. 

 

3.4 Results 

3.4.1 A. sagrei 

Residents and intruders did not differ significantly in any reproductive or self-maintenance 

variable (p > 0.05 for all variables). Residents and intruders did differ in the relationship between 

maternal snout-vent length and reproductive variables; the mean number of eggs laid, mean egg mass, 

mean days to hatch, and mean hatchling mass were positively related to maternal snout-vent length in 

residents, whereas in intruders mean days to hatch was negatively related to maternal snout-vent length 

(Table 1). 

 

3.4.2 A. carolinensis 

Residents and intruders did not differ significantly in reproductive or self-maintenance variables 

(p > 0.05 for all variables). No reproductive variable was significantly related to maternal snout-vent 

length (p > 0.05 for all variables). 

 

3.5 Discussion 

 The first hypothesis, that residents would invest more in reproduction than intruders, was not 

supported in A. sagrei or A. carolinensis, although A. sagrei residents and intruders differed significantly 

in the relationship between reproductive variables and maternal body size. The second hypothesis, that 
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intruders would invest more in self-maintenance than residents, was not supported, as residents and 

intruders did not differ significantly in self-maintenance variables 

 

3.5.1 A. sagrei  

Lab-raised A. sagrei females did not show the expected differences in reproductive variables 

based on residency. Since Anolis lizards are estimated to live several years in the field (Toda et al., 

2010), it would be advantageous to the losing lizard (with limited food and shelter resources) to 

maximize her chances of survival to the next breeding season to try reproducing again. Winners have 

resources now, so should invest in maximizing their reproduction now. Winners can prioritize current 

reproduction whereas losers, although still reproducing now, should invest more than winners in future 

reproduction. Perhaps a greater number of experiences would result in differential reproductive 

investment. 

The relationship between reproductive variables and maternal body size (measured by snout-

vent length) differed between residents and intruders. Body size seems more important to lizards who 

have successfully defended a territory than those who have not, even when food resources are equal. It is 

possible that, although smaller residents would benefit from investing as much in each individual 

offspring as larger residents, some morphological or physiological constraint prevents them from doing 

so. Another possibility is that lizards of different ages prioritize current and future reproduction 

differently, as described by the cost-of-reproduction hypothesis (Jasienska, 2009). Smaller lizards are 

younger, and although they are successfully defending a territory now, they may not be successful in the 

future. With potential breeding seasons in their future, they might invest less in each individual offspring 

now if they can spend those energetic resources on increasing their chances to survive to the next 

breeding season to reproduce again. Larger, older lizards are closer to the end of their lives, so investing 
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maximally in each offspring now represents a lesser cost to future reproductive opportunities than for 

younger lizards. 

 

3.5.2 A. carolinensis 

Wild-caught A. carolinensis females did not significantly differ in reproductive variables based 

on residency, nor was any measured reproductive variable related to maternal body size, although egg 

production was quite low (a total of 14 eggs), so a larger sample size might yield statistical differences 

based on residency. It is also possible that the stress of captivity masked any differences in reproduction 

and self-maintenance based on residency. The complex relationship between stress and reproduction 

involves hormones not measured in this study (e.g., elevated levels of epinephrine suppress oviposition 

in A. carolinensis (Jones et al., 1983)), so future work should take multiple hormones into account.  

 

3.5.3 Limitations 

It is difficult to draw conclusions about species differences because the A. sagrei in this study 

were lab-raised and the A. carolinensis were wild-caught.  Attempts at studying lab-raised A. 

carolinensis yielded too little data to analyze. Future work should study lizards from similar sources to 

make direct comparison more robust, especially in long-term interactions and heterospecific interactions. 

Future work should also compare the effects of maternal status on offspring traits as juveniles and adults, 

as the associated stress hormones may influence traits such as behavior in offspring (Vercken et al., 

2007). 
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Table 1. Relationship between maternal snout-vent length and offspring variables in lab-raised female  

A. sagrei with conspecific opponents (n = 20 resident lizards, 18 intruder lizards). 

 

 
 

 

Variable R
2

Coefficient P value R
2

Coefficient P value

Mean Number of Eggs Laid 31.3% 0.87 0.016 19.1% 0.47 0.054

Mean Egg Mass 40.2% 26.44 0.006 0.1% 1.59 0.889

Mean Days to Hatch 32.4% 0.54 0.017 26.6% -0.56 0.028

Mean Hatchling Mass 39.7% 24.69 0.007 0.1% 1.58 0.882

Mean Percent Female Offspring 1.1% 0.02 0.683 3.1% -0.03 0.501

Residents Intruders
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CHAPTER IV 
 

 

THE REPRODUCTIVE EFFECTS OF LONG-TERM SOCIAL EXPERIENCE  

IN AN INVASIVE LIZARD 

 

4.1 Abstract 

The formation of dominance hierarchies reduces the costs of competition for resources. Different 

dominance rankings may lead to different physiological and behavioral traits. Previous work 

demonstrated that female lizards (Anolis sagrei) that achieved different rankings in brief (10 min) 

interactions invested differently in reproduction. This study investigates the effect of long-term 

interactions between female pairs which were either size-matched or size-mismatched in both 

conspecific and heterospecific pairs. I tested competing hypotheses: (1) Bully hypothesis: mismatched 

pairs will show greater disruption of reproductive output as the larger lizard harasses the smaller or 

restricts access to resources; (2) Rivals hypothesis: matched pairs will show greater disruption of 

reproductive output as lizards devote more energy to aggression in an uncertain dominance hierarchy. In 

conspecific pairs, mismatched pairs laid more eggs than matched pairs, supporting the rivals hypothesis. 

In heterospecific pairs, mismatched pairs produced offspring with greater hatchling mass, supporting the 

rivals hypothesis, but matched pairs had greater hatching success, supporting the bully hypothesis. 

Lizards may not alter all aspects of reproductive output together but rather emphasize different traits to 

maximize fitness in different social circumstances. 
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4.2 Introduction 

Individuals in a population compete for finite resources such as food, space, or mates. 

Competition is costly as competitors risk injury and spend energy and time. Some species minimize the 

costs of competition by forming dominance hierarchies (Hsu et al. 2006). 

Dominance hierarchies are formed as individuals compete. Some individuals win these 

competitions and gain greater access to resources; others lose and have reduced access. Differential 

access to resources results in a social structure with high-status and low-status individuals: a dominance 

hierarchy. Dominance hierarchies reduce the costs of competition for low-status individuals if they are 

aware of their low status as they may avoid competitions they are unlikely to win and they may prioritize 

other tasks (Hsu et al. 2006). 

High-status individuals and low-status individuals may vary greatly in physiology and behavior 

(Sapolsky 2005). Anolis is a genus of lizard species commonly used to study dominance hierarchy 

formation as they establish and defend small territories when space is limited, as under laboratory 

conditions (Andrews and Summers 1996). Previous work in our lab demonstrated that female Anolis 

sagrei alter reproductive investment based on the outcome of brief interactions; after a 10 min 

interaction using residency to control outcome (the resident lizard would “win” and the intruder would 

“lose”), hatchlings of winners were significantly heavier than the hatchlings of losers, despite equal food 

resources for all lizards (Magaña, chapter 3 of this dissertation). 

These results demonstrate differential reproductive investment based on the outcome of brief 

interactions, but the similarity of these experimental conditions to natural populations is unclear. If 

potential territories are limited, interactions in the field may be prolonged and residency may be 

uncertain. Tree lizards, Urosaurus ornatus, experience different stress hormone activity in short-term 

and long-term interactions (Knapp & Moore, 1995). If hormonal activity differs similarly in Anolis 
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species, the reproductive consequences of social interaction may also differ based on the duration of 

social interaction. 

 The species of an individual’s opponent could also matter. Since A. carolinensis and A. sagrei 

occupy similar microhabitats that overlap at the trunk and ground (Edwards & Lailvaux, 2012) and eat 

similar arthropod prey (Campbell, 2000), perhaps the presence of the other species increases 

corticosterone in ways that affect reproduction. A greater effect on one species than in the other would 

be an advantage to the less-affected species. 

Further, individuals may respond differently to long-term interaction with opponents of similar 

and dissimilar size. Large body size contributes to success in territory defense (e.g., male A. sagrei, 

Tokarz 1985), although body size is sometimes unrelated to contest outcome (e.g., male Egerni whitii, 

McEvoy et al. 2013). Like males, Anolis females defend territories (Nunez et al. 1997) and under 

laboratory conditions paired females assume dominant and submissive statuses characterized by 

differences in aggressive behaviors (Andrews and Summers 1996). 

In short-term (10 min) interactions with lizards of the same species, both A. carolinensis and A. 

sagrei were more aggressive as residents than as intruders (Magaña, chapter 1 of this dissertation). 

However, in interactions with lizards of a different species, males did not show this residency effect 

(Magaña, chapter 1 of this dissertation). In this laboratory study I tested whether the impact of social 

interaction on reproductive output would be greater in female lizards of similar size (matched pairs) or 

dissimilar size (mismatched pairs). I tested competing hypotheses: (1) Bully hypothesis: mismatched 

female pairs will show greater disruption of reproductive output as the larger lizard harasses the smaller 

lizard or restricts access to resources; (2) Rivals hypothesis: matched female pairs will show greater 

disruption of reproductive output as the lizards devote greater energy to aggressive behaviors in an 

uncertain dominance hierarchy. Disruption is defined here as change relative to baseline in any 

reproductive trait that may reduce fitness, e.g., producing fewer eggs or smaller hatchlings. I conducted 
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two experiments, one with A. sagrei females only, and one with A. sagrei paired with A. carolinensis, to 

test the hypothesis that A. carolinensis would experience greater disruption of reproduction than A. 

sagrei in mixed-species pairs, contributing to the success of A. sagrei as an invader. 

 

4.3 Methods 

4.3.1 Animals 

Experiments involved 16 lab-raised female A. sagrei in conspecific pairs (2015) and 16 wild-

caught A. sagrei and 16 wild-caught A. carolinensis in heterospecific pairs (2016) purchased from 

Underground Reptiles (Deerfield, FL). Experiments took place during the breeding season (May through 

August) when A. sagrei and A. carolinensis defend territories (e.g., A. carolinensis Husak et al., 2007; A. 

sagrei Cox & Calsbeek, 2015). All procedures are approved by IACUC as protocol AS1312. 

 

4.3.2 Animal Husbandry 

Prior to conspecific experiences, laboratory-hatched and raised A. sagrei were housed in mixed-

sex groups in 110 L glass terraria from hatching through their first winter prior to their first breeding 

season. Prior to heterospecific experiences, wild-caught A. sagrei and A. carolinensis were weighed and 

their snout-vent lengths were measured upon arrival at the lab. Lizards were housed in conspecific 

groups of 8 in 110 L glass terraria for 18 days prior to the experiment; one conspecific male was 

introduced to each terrarium for 2 days to allow mating opportunities. 

My husbandry protocol was modified from Lovern et al., 2004.  Prior to experiments, each 110 

L terrarium was equipped with one 60-W heat lamp and pairs of terraria shared one Repti-Sun 5.0 UV 

lamp. For experiments, lizards were transferred to 38 L glass terraria in pairs according to their treatment 
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group. Female A. sagrei store sperm throughout the breeding season, so females could continue to 

produce eggs without access to males (Tokarz 1998). Rows of 38 L terraria shared one 60-W heat lamp 

per two terraria and one Repti-Sun 5.0 UV lamp per three terraria. Cardboard dividers between terraria 

prevented lizards from seeing their neighbors. Room lights were turned on 0800-2000 h, UV lights 

turned on 0900-1900 h, and heat lamps turned on 1000-1800 h. Room temperature ranged from 24-38 C 

and humidity was maintained between 50% and 75%. Each terrarium contained one dowel rod perch, a 

water dish, and a lidded plastic container (9 x 15 x 8 cm) half-filled with damp peat moss in which 

lizards laid their eggs. Drinking water was provided ad libitum via water dishes and daily misting of 

terraria. Lizards were offered mealworms two days per week and crickets twice per week, once per week 

enriched by coating with powdered Miner-all (Sticky Tongue Farms) and powdered Herpetivite (Rep-

Cal) prior to offering to lizards. 

Nest boxes were checked daily and eggs were removed, weighed, and incubated in vermiculite 

(10 ml water added to 10 g vermiculite) at 28 C. Eggs were checked daily for hatchlings; on the day of 

hatching I weighed and measured the snout-vent length of each hatchling. 

 

4.3.3 Treatment Groups 

For each experiment (conspecific experiences and heterospecific experiences), lizards were 

ranked by body mass measured to the nearest 0.01 g. Lizards in the greater half of each sample were 

categorized as "big" and lizards in the lesser half categorized as "little." T-tests were used to compare 

"big" and "little" lizards: in the conspecific experiment, "big" lizards and "little" lizards differed 

significantly in mean body mass (the “big” lizards’ mean was 2.8g, the “little” lizards’ mean was 2.2g, t 

= 5.75, p < 0.001)  but not snout-vent length (the ”big” lizards’ mean was 42.9mm, the “little” lizards’ 

mean was 41.3mm, t = 0.98, p = 0.344); in the heterospecific experiment, "big" lizards and "little" 

lizards differed significantly in mean body mass (the ”big” lizards’ mean was 2.1g, the “little” lizards’ 
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mean was 1.6g, t = 7.04, p < 0.001) and snout-vent length (the ”big” lizards’ mean was 44.6mm, the 

“little” lizards’ mean was 40.8mm, t = 4.19, p < 0.001). Matched pairs consisted of two "big" lizards or 

two "little" lizards whereas mismatched pairs consisted of one "big" and one "little" lizard. Experiment 

start date and duration were constant for all conspecific pairs and for all heterospecific pairs. 

 

4.3.4 Variables 

I measured variables estimating investment in reproduction: the number of eggs laid, the number 

of eggs hatched, mean egg mass, mean days to hatch, mean hatchling mass, mean hatchling snout-vent 

length, mean hatchling body condition (snout-vent length divided by body mass), and offspring sex ratio. 

Reproductive variables were measured for each conspecific pair (maternity could not be determined) and 

for each lizard in heterospecific pairs (maternity was determined by egg characteristics; A. sagrei lay 

smaller eggs than A. carolinensis (A. carolinensis eggs are approximately 340 mg, A. sagrei eggs 

approximately 165 mg, Magaña, unpublished data)). I also measured variables estimating investment in 

growth and self-maintenance: change in snout-vent length, change in body mass, and change in body 

condition (body mass divided by snout-vent length) during the experiment (7 weeks for the conspecific 

pairs, 4 weeks for the heterospecific pairs). 

 

4.3.5 Data Analysis 

To compare matched and mismatched pairs, I used t-tests to compare means for the reproductive 

variables of each pair and the self-maintenance variables of each lizard. To address the pseudoreplication 

of siblings, each pair’s mean value for each reproductive variable was used in statistical analysis. 
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4.4 Results 

4.4.1 Conspecific Opponents: Anolis sagrei 

Mismatched pairs produced significantly more eggs than matched pairs (Figure 21), although it 

is unclear whether both lizards in a pair produced equally. Relatedly, mismatched pairs had a 

significantly smaller inter-egg interval than matched pairs (Figure 22). Mismatched and matched pairs 

did not differ significantly in any other reproductive variable (p >  0.05 for all variables).  Neither "big" 

lizards nor "little" lizards differed significantly in self-maintenance variables based on whether they 

lived in matched or mismatched pairs (p > 0.05 for all variables). 

 

4.4.2 Heterospecific Opponents: Anolis carolinensis 

No Anolis carolinensis female laid eggs. 

 

4.4.3 Heterospecific Opponents: Anolis sagrei 

"Big" lizards in matched and mismatched pairs did not differ significantly in reproductive 

variables (p > 0.05 for all variables).  Among "little" lizards, matched lizards had a significantly higher 

percentage of their eggs survive to hatching than mismatched lizards (Figure 23). Neither "big" lizards 

nor "little" lizards differed significantly in self-maintenance variables based on whether they lived in 

matched or mismatched pairs (p > 0.05 for all variables). 
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4.4.4 Heterospecific Opponents: Anolis sagrei and Anolis carolinensis  

A. sagrei and A. carolinensis did not differ significantly in changes in snout-vent length or body 

mass over the course of the experiment; significant differences did not exist for "big" lizards in matched 

pairs or mismatched pairs, nor for "little" lizards in matched pairs or mismatched pairs (p > 0.05 for all 

variables). 

Regarding general behavior, A. carolinensis lizards typically approached food more quickly than 

A. sagrei, although lizards seemed to eat an approximately equal amount of food. No fighting was 

observed, and lizards often shared the perch under the heat lamp. 

 

4.5 Discussion 

4.5.1 Conspecific Opponents: Anolis sagrei 

Differences in reproductive output in mismatched and matched pairs offer more support for the 

rivals hypothesis than the bully hypothesis, although that support is limited to a single aspect of 

reproduction: the number of offspring produced. Mismatched pairs laid more eggs than matched pairs 

(Figure 21), which supports the rivals hypothesis. This result is expected if matched lizards devote more 

energetic resources to aggressive behavior in an uncertain dominance hierarchy. Although it is possible 

that the greater egg production in mismatched pairs is solely due to the larger lizard, which would offer 

more support for the bully hypothesis, the low mean inter-egg interval for both pairing types (3.2 d for 

mismatched pairs, 4.4 d for matched pairs) suggests both lizards in a pair laid eggs, as individuals of the 

closely-related A. carolinensis lizard lays eggs at intervals of approximately 7-10 d (Jenssen & Nunez, 

1998). It is possible that a larger sample size would yield results that more strongly support one or both 

hypotheses.  
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4.5.2 Heterospecific Opponents: Anolis carolinensis 

A. carolinensis’s failure to reproduce is puzzling, as this protocol has been successful in the past. 

The lizards ate consistently, maintained healthy body mass, and had access to males prior to the 

experiment. Another study found that A. carolinensis females reduced the number of eggs produced at 

high population densities of A. sagrei (Vincent, 2002); however, in this study, the lack of reproduction in 

unpaired control lizards (not discussed in this dissertation) suggests that the lack of reproduction was not 

a response to the presence of A. sagrei. 

 

4.5.3 Heterospecific Opponents: Anolis sagrei 

Matched “little” lizards had greater hatchling success than mismatched “little” lizards (Figure 

23), possibly supporting the bully hypothesis, if little lizards in mismatched pairs experienced greater 

harassment or resource restrictions than lizards in matched pairs. The lack of effect in “big” lizards is 

unexpected; perhaps a larger body size allows compensation for the effects of social experience in some 

way. A larger sample size would increase the power of the statistical tests and could reveal significant 

differences in reproductive variables based on pairing type. 

 

4.5.4 Limitations 

The classification of lizards as “big” or “little” is relevant only to this sample; it is not clear that 

this artificial classification scheme reflects real differences in wild populations. The different sources of 

lizards complicate direct comparison between types of social interaction, as lizards in conspecific 

experiences were lab-raised and lizards in heterospecific experiences were wild-caught. The inability to 

determine maternity in conspecific experiences also complicates comparison. It is not clear whether A. 

sagrei females would alter investment in reproduction if their heterospecific opponents also reproduced. 
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It is possible that neither the bully hypothesis nor the rivals hypothesis is strongly supported in 

this experiment because they both accurately describe social interactions, producing offsetting 

disadvantages. It could be that mismatched pairs are at a disadvantage as the bigger lizard harasses the 

smaller lizard and restricts her access to resources (bully hypothesis) whereas matched pairs are also at a 

disadvantage as the similarly-sized lizards spend energy in territorial conflict (rivals hypothesis). If both 

occur to similar extents, the resulting disadvantages could be approximately equivalent. 

 

4.5.5 Future Research 

Future work would benefit from a protocol that determines the maternity of offspring of 

conspecific pairs to detect differences in the responses of large and small lizards to conspecific social 

experience. 

Increased range of lizards’ ages and body sizes would make experimental social experiences 

more closely resemble natural social experiences. All lab-raised lizards in conspecific experiences 

hatched in the same season, so their age range was approximately three months. In a natural population, 

lizards that survive to their full life span may interact with lizards one or even two seasons younger and 

thus much smaller (e.g., Fitch, 1972). It is possible that for some reproductive traits in this study 

matched and mismatched pairs showed no significant differences because mismatched pairs were not 

mismatched enough. An increased size differential in mismatched pairs might trigger further changes in 

reproductive output. Sample sizes were also small, thus limiting the power of the tests. 

Future work should also investigate stress hormones as a potential mechanism of differences in 

reproductive output between matched and mismatched pairs. Social status affects stress hormones 

(Sapolsky, 2005), and maternal stress hormones during fetal development affect juvenile traits (Vercken 

et al., 2007), so stress hormones may be the mechanism of the differences seen in this study. Sampling 

circulating corticosterone at multiple time points throughout the long-term interaction would allow 
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detection of the concentration and fluctuations of stress hormones in lizards in different social 

circumstances.  
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Figure 21. Mean number of eggs produced by pairing type in female A. sagrei in conspecific pairs (n = 4 

matched pairs, 4 mismatched pairs; error bars represent one standard error). T = -3.58, p = 0.016. An 

asterisk indicates a significant difference. 

 

Figure 22. Mean inter-egg interval by pairing type in female A. sagrei in conspecific pairs (n = 4 

matched pairs, 4 mismatched pairs; error bars represent one standard error). T = -3.96, p = 0.007. An 

asterisk indicates a significant difference.  

* 

* 
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Figure 23. Mean percentage of eggs that survived to hatching in “little” female A. sagrei in 

heterospecific pairs (n = 4 matched lizards, 4 mismatched lizards; error bars represent one standard 

error). T = 3.6, p = 0.012. An asterisk indicates a significant difference. 

 

 

 

* 
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CHAPTER V 
 

 

OVERALL CONCLUSIONS 

 

Social experience influences reproductive output, possibly through stress hormone mechanisms, 

in a lizard. The interaction between social experience and reproduction likely contributes to the invasive 

species’ success as a competitor. 

 

5.1 Chapter 2: Behavior and Corticosterone and Short-term Social Experience 

In conspecific experiences, residents behaved more aggressively than intruders, consistent with 

residents winning and intruders losing. Residency had little to no effect on self-maintenance at this scale. 

In heterospecific experiences, residency did not affect the aggressive behaviors of males. Lizards were 

cautious against heterospecifics, even though lizards of these species likely interact in the field as they 

compete for microhabitats (Edwards & Lailvaux, 2012) and prey (Campbell, 2000). 

Plasma corticosterone concentration differed significantly based on residency in lab-raised 

female A. sagrei and in no other group, despite the effect of residency on aggressive behavior. It is 

possible that females’ hormonal response to residency is greater due to more stable dominance 

hierarchies for females than for males or because average reproductive investment is greater for females 

than for males (Gerber, 2000). Because the source of study animals differed for the two species, it is not 

clear whether a species difference exists during conspecific experiences. Future work should investigate 
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corticosterone concentration differences during heterospecific experiences. Other hormones such as 

epinephrine should also be investigated, as epinephrine suppresses oviposition in A. carolinensis (Jones 

et al., 1983). 

Heterospecific opponents seem to negate the effect of residency on plasma corticosterone as well 

as on aggressive behavior. Although these species share similar microhabitats, it is unclear whether 

lizards from single-species populations would recognize an opponent of the other species as a direct 

threat. Future work should focus on lizards from mixed-species populations and on females in both 

short-term and long-term interactions. 

 

5.2 Chapter 3: Reproduction and Short-term Social Experience 

This sample of lab-raised A. sagrei did not significantly vary reproductive investment based on 

residency, although the relationship between reproductive variables and maternal body size did differ 

significantly based on residency. Future work should focus on a broader range of body sizes (and ages) 

of lizards to more closely resemble field conditions. 

This sample of wild-caught A. carolinensis females also did not significantly differ in 

reproductive variables based on residency. Future work should investigate the effects of long-term 

interactions. Future work should also incorporate A. sagrei and A. carolinensis from the same source to 

allow for direct comparison. 

 

5.3 Chapter 4: Reproduction and Long-term Social Experience 

In lab-raised A. sagrei in long-term experience against a conspecific opponent, mismatched pairs 

laid significantly more eggs than matched pairs, seemingly supporting the rivals hypothesis. Future work 
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should determine the maternity of each offspring, involve a greater range of lizard sizes and ages, and 

track stress hormone activity throughout the experience. 

In wild-caught A. sagrei in long-term experience against a heterospecific opponent, matched 

pairs had significantly greater hatching success than mismatched lizards, supporting the bully 

hypothesis, among “little” lizards only. It is not clear whether conspecific and heterospecific social 

experience actually supports different hypotheses or if this result is the product of different sources of 

lizards and small sample size. It is also not clear why A. carolinensis failed to reproduce in 

heterospecific experiences. Future work should investigate reproductively active A. carolinensis and 

track stress hormone activity throughout the experience.
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