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Abstract: The goal of this study was to test two visual co-robot interfaces (one simple and 

one more complex) and their effectiveness in teaching a novice participant to operate a 

complex machine at a later date without assistance.  Participants (N = 113) were 

randomly assigned to one of three groups (one with a basic user interface, one with a 

more complex guidance interface, and one without an interface) to test the teaching 

ability of the co-robot in training the user to perform a task with a remote-controlled 

excavator.  Each group was asked to load dirt from a bin into a small model dump truck 

(in scale with the excavator) with the help of the robot instructor and were asked to return 

a few days later to complete the task again without the robot instructor.  Trials were 

monitored for completion time and errors and compared to those of an expert operator.  

The result was that the simple interface was slightly more effective than the more 

complex version at teaching humans a complicated task.  This suggests that novices may 

learn better and retain more information when given basic feedback (using operant 

conditioning principles) and less guidance from robot teachers.  As robots are 

increasingly used to help humans learn skills, industries may benefit from simpler guided 

instructions rather than more complex versions.  Such changes in training may result in 

improved situational awareness and increased safety in the workplace.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Robots are becoming increasingly commonplace in industries worldwide and are completing 

complex tasks once thought to be unique to humans.  In addition to being used in manufacturing, 

some robots, often referred to as co-robots or cobots, have been developed to work in 

collaboration with humans in various industries to perform physical tasks (Cherubini, Passama, 

Crosnier, Lasnier, & Fraisse, 2016).  The future of this industry, however, is becoming 

increasingly dependent upon the use of computerized equipment, autonomous and 

semiautonomous machinery, and co-robot training equipment that utilizes computer-based 

interactions in order for operators to train and use the machinery. Due to the shared 

responsibilities these co-robots have with their human partners, they cannot fully replace every 

human occupation.  Despite their limitations, however, there are unique ways in which co-robots 

might assist in instructing novices and students to learn complex tasks.  

Most studies involving human and robot learning focus on how robots learn from humans 

(Thomaz & Breazeal, 2008; Kaipa, Bongard, & Meltzoff, 2010; Cantrell, Schermerhorn, & 

Scheutz, 2011; Chatzis, Korkinof, &Demiris, 2012; Grand, Mostafaoui, Hasnain, and Gaussier; 

2014; Tangkaratt, Morimoto, & Sugiyama, 2016) and how humans can teach robots (Kartoun, 

Stern & Edan, 2010; Koenig, Takayama, Mataric, 2010; Ferreira & Lefevre, 2015; Xia & El 

Kamel, 2016) even while simultaneously performing the same physical task  (Gavish, Gutierrez,



2 
 

 

Webel, & Rodriguez, 2011; Ikemoto, Ben Amor, Minato, Jung, & Ishiguro, 2012; Garrido, Yu & 

Soria, 2015; Kupcsik, Hsu, & Lee, 2016).  Most of these studies focus on demonstration as the 

primary teaching method and fail to apply principals of learning theory, positive reinforcement, 

or operant conditioning with regards to humans learning complex tasks from robots.   

Development and research into effective training models that involve visual teaching and 

guidance interfaces needs to account for how humans learn under these conditions.  With regards 

to interactive experiences, simple interfaces help reduce stimulant load during learning which 

suggests a basic interface would promote better retention of acquired skills (Paas, Tuovinen, 

Tabbers, & Van Gerven, 2010).  Furthermore, studies show that videos are effective at teaching 

tasks and problem solving strategies in both children and adults (Chen & Siegler, 2013; Flynn & 

Whiten, 2013) which further supports its use in a training model.   Additionally, the use of limited 

guidance or feedback, especially in the early training of novices, can also increase learning (Van 

Merrienboer, Kester, & Paas, 2006).  All of this suggests that video interfaces may prove useful 

for training novices with co-robots and that novices may have better retention if they are guided 

with a simple versus complex interface.   

Previous experience may also play an important role in the development of co-robot teaching 

interfaces.  For example, Individuals with experience and exposure to comparable environments 

have a much easier time learning similar material (Williams & Lombrozo, 2013) and handling 

distractions than those without prior experience (Petzoldt, Bar, Ihle, &Krems, 2011).  This is 

especially critical considering the potential danger on construction sites and further highlights the 

importance of experience in establishing individual backgrounds in order to predict the individual 

trainees’ behavior.   
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This study was designed to look at operant conditioning and visual reinforcement in the robot-

human interaction, but, more importantly, to determine which version of the visual feedback 

would result in retention of information and learned skills.  Operant conditioning pertains to 

subjects’ conscious behavioral responses to an environment where as classical conditioning 

focuses on physiological responses to associated stimuli.  To determine if co-robots can 

manipulate positive reinforcement (in the form of visual feedback) to influence the behaviors of 

the novices, this study was set up to focus on operant conditioning only and did not look at 

classical conditioning.  Since this visual interface will be used in industries where humans will 

eventually need to operate equipment without the use of a co-robot trainer, learned behavior is 

imperative when determining the best instructional interface between co-robot and novice 

student.   

We used visual reinforcements from the co-robot to help guide the participant through a learning 

task and then later tested participants without the guidance to determine which interface worked 

best as a teaching method.    One interface used a more detailed guidance system and the other 

used a simple color change as reinforcement.  The complex guidance interface was derived from 

a policy instruction algorithm where the simple visual feedback system was based on a simple 

positive reinforcement learning.  Both test groups were later evaluated based on how well they 

learned the task by asking them to operate the equipment without guidance.  Our hypothesis was 

that the more detailed interface would result in more learned skills.  The result, however, was that 

the simple color changing interface was equally as effective as the complex guidance system.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

The Construction Industry 

Since construction is a very dangerous industry in which mistakes can cost both money and lives 

(Pinto, Nunes, & Ribeiro, 2011; Pinto, 2014; Simanaviciene, Liaudanskiene, & Ustinovichius, 

2014; Sousa, Almeida, & Dias, 2014), construction training programs must consider the 

predictability and consistency in machine operator.  Having a thorough knowledge and 

understanding of an individual’s past behavior may help predict future behavior under the same 

conditions (Forward, 2009; Carrera, Muñoz, Caballero, Fernández, & Albarracín, 2012) which, in 

the construction industry, can prove useful when developing a more efficient training program.   

Trainees in the construction industry come from a variety of backgrounds but are primarily young 

males (Bureau of Labor Statistics, 2014; Bureau of Labor Statistics, 2015) and have likely had 

exposure to visual reinforcement interfaces from their phone, computer, television, or tablet.  In 

addition to visual feedback from phone and computer apps, trainees may also have experience 

with video games which use some of the same visual reinforcement strategies.  With computers 

and smartphones being very common in western society, visual stimulation can be considered 

within the normal and accepted parameters of common positive reinforcement with regards to 

incoming trainees.  Considering that experience plays a large role in how individuals learn a new 

task (Williams & Lombrozo, 2013), past exposure to similar visual reinforcements can influence
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strategies in the development of how co-robots can train new operators. With the creation of co-

robotic training software and the requirement for operators to continually switch between looking 

at equipment and reading computer monitors, incorporating familiar visual positive reinforcement 

would potentially provide the most useful reinforcement tool for training.   

Ditch Witch, for example, is developing computer simulators for use in their training programs.  

Initially focused on helping oil companies fix drilling equipment in the early 1900s, Ditch Witch 

eventually developed into a company focused on creating machinery that would adapt with the 

times and serve the needs of construction and installation in more urban and developed 

environments (Ditch Witch, 2016).   Current training tools used at Ditch Witch utilize a step by 

step process of computer simulators, interaction with equipment in a safe environment, and 

finally hands-on operation of heavy equipment in a practice yard.  The company also developed a 

computer simulator that incorporates visual feedback as part of the training tool and mimics what 

operators would see in reality.  Part of this simulation involves the use of two joysticks with 

prompted cues as to when to move these sticks or press additional buttons.  The simulator is 

designed to help habituate the user to dual-handed controls while teaching them to read and adjust 

input based on both mechanical (real world) and gauge (screen) feedback.  Such training 

simulators have been shown to indicate future performance on actual instrumental vehicles 

(Santos, Merat, Mouta, Brookhuis, & de Waard, 2005) and can be a valid first step in the training 

process.   

The use of computers in training for real-world experiences has potential for even further 

development.  For example, studies of younger populations suggest that there is transfer of 

knowledge and skill from computer screens to physical tasks (Moser et al., 2015).  Furthermore, 

simple interfaces may be preferred since evidence suggests that complex skills are best learned 

through static diagrams rather than complex animation (Khacharem, Zoudji, & Kalyuga, 2015).   

However, there is additional evidence to suggest that learning one physical task while 
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simultaneously completing another may actually improve the training for the learned task (Feghhi 

& Valizade, 2011).  This further supports the model that training with multiple interactions may 

be beneficial for construction trainees who will be incorporating multiple tasks into each job.  

This study incorporated both basic reinforcement learning as well as more complex interfaces in 

order to determine which learning environment was best for teaching and training novices.   

Different interfaces expose the user to different degrees of stimuli and different leaning strategies.  

Generalized learning that is dependent on cue-based feedback and operant conditioning is better 

for adaptive behavior in later situations and has been shown to be more effective than direct 

learning (Pachur & Olsson, 2012) especially if it is presented in a linear format (Soyer & 

Hogarth, 2015).  When considered in the context of a self-regulated learning environment, this 

corresponds to studies indicating that multiple levels of media in the learning environment helped 

improve both factual and integrated conceptual understanding which were directly related to the 

learning outcomes (Greene, Hutchison, Costa, & Crompton, 2012) and supported the knowledge 

building process of optimal learning (Kim, 2015).  By incorporating more dependence on screens 

and computers as part of the learning and operation of these machinery, construction companies 

allow for greater opportunities in the development of software that can be later incorporated into 

existing training scenarios without changing a large amount of the training tools or processes.   

The continually changing environment of construction and heavy machinery also dictates the 

need for operators to be able to problem solve under different conditions.  For example, machine 

operators need to adjust techniques depending on different soil, weather, temperature, and traffic 

conditions.  In this case, a training paradigm must take into account the necessity to train problem 

solving skills.  Much like operation of machinery and computers, the ability to expand and 

develop analytical problem solving skills is dependent upon relevant experience and background 

knowledge (Anderson & Fincham, 2014).   



7 
 

Learning Theory 

In learning theory, operant conditioning is accomplished through reinforcement and punishment 

with optimal learning occurring through positive reinforcement feedback, which, when combined 

with guided training (Clouse, 1997), can improve self-efficacy and confidence which 

consequently improves performance (Bandura, 1978; Bensadon, 2015).  Such training scenarios 

and feedback must be adapted to the individual and therefore may change depending on the 

context and background of the individual learning (Mooi & Mohsin, 2014; Katahira, 2015).  

When appropriately used in training, positive reinforcement can help shape behaviors which, 

under the reinforcement training, can be used to predict future behaviors (Yechiam & Ert, 2007) 

especially if the individual has vivid memories of successes within that same environmental 

context (Nikolova, Lamberton, & Haws, 2015).  With relation to the development of co-robots in 

construction, an understanding of novices’ past experiences with positive visual reinforcements 

through smartphone or computer interfaces can assist with the development of guidance 

interfaces that utilize these same reinforcements.   

Past and present environmental feedback are important in shaping behaviors, but self-reflection 

and confidence also influence learning.  For example, self-perceived potential and motivation has 

been shown to be a good indicator of performance in young populations (Schniter, Sheremeta, & 

Shields, 2015; Wang, Morin, Liu, & Chian, 2015) and increases behavioral intentions with skill-

intensive tasks (Passyn & Sujan, 2012).  The actual acquisition of new motor skills, however, is 

dependent upon the involvement of existing skill sets (Latash, 2008).  These studies, although 

primarily based in classic behaviorism, are part of a growing trend towards studies that 

incorporate both behavioral and cognitive psychology and focus on the idea that, while neural 

pathways are responsible for behaviors, they can be trained based on environmental feedback 

which can result in changes in individual behavior (Greenough, Larson, & Withers, 1985; 

Izquierdo et al., 1992; Tryon, 1993; Lacasse, 2015). 
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Complex Stimuli in Learning Environment  

Visual guidance and teaching through computer screens poses challenges with regards to 

managing stimulation overload, graphical interfaces, and multitasking.  With regards to 

environmental stimulation, researchers have found that employees demonstrated poor 

performance when working in high stimulus surroundings (Oldham, Kulik, & Stepina, 1991) or 

when they were subjected to information overload (Jackson & Farzeneh, 2012).  Studies in visual 

learning suggest that individuals retained more information when learning through a simple 

graphic display rather than a more complex animated version or even static pictures (Fong, Lilly, 

& Por, 2012) and subjects often remember tasks better when there are fewer objects even if 

complexity varied (Luria & Vogel, 2011).   Reduced performance resulting from stimulus 

overload is further supported with studies indicating that increased computer stimulation also 

elevates stress in the user (Lee, Son, & Kim, 2016) and that participants make decisions more 

easily when information and variation between choices is limited (Pilli & Mazzon, 2016).  There 

are individual variations, however, since some people can process multiple stimuli and organize 

tasks to accomplish a goal (Reissland & Manzey, 2016) and participants with higher 

comprehension and prior understanding of a task perform better under learning environments 

similar to their past experiences (Tsai, Huang, Hou, Hsu, & Chiou, 2016).  In general, though, 

studies indicate that people prefer tasks with lower complexity (Wickens, Gutweiller, & 

Santamaria, 2015) which further supports the need for simple learning interfaces with co-robots.  

The review of existing literature suggests that a simple guidance interface may be more effective 

than complex systems in co-robot training.   

 

Behavior and Emotion 

Although heavy machinery is becoming increasing semi-autonomous at some level, physical 

operation of the equipment will still be at least partially in the control of the operator.  Because of 
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this, the behavioral patterns and the repercussions of these patterns with regards to mechanical 

operation needs to be taken into account.  Individuals require active engagement in learning a 

skill (Barnett et al., 2016; Buszard, Farrow, Zhu, & Masters, 2016) which requires them to have 

full awareness and control over their physical function.  Behavioral changes are often influenced 

by emotion changes and motivations (X. Wang, 2011; Butz, 2013; Harth, Leach, & Kessler, 

2013; Sinclair, 2013; Baillon, Koellinger, & Treffers, 2015; Forrest, Smith, Fussner, Dodd, & 

Clerkin, 2015; Martinussen, Sømhovd, Møller, & Siebler, 2015; Stussi, Brosch, & Sander, 2015) 

and the operation of machinery (Hu, Xie, & Li, 2013; Jeon, Walker, & Yim, 2014).  Furthermore, 

existing psychological conditions can influence the ability to learn or process rewards and 

reinforcements (Thoma, Norra, Juckel, Suchan, & Bellebaum, 2015) and perceived behavioral 

control ( Roberts, O’Connor, & Bélanger, 2013; Meijer, Catacutan, Sileshi, & Nieuwenhuis, 

2015; Oliver, Han, Bos, & Backs, 2015).  Moreover, evidence suggests that individuals with a 

calm approach and emotional control have more control over their behavior under stressful 

conditions and are less likely to engage in risky behavior (Amstadter, 2008; Sinclair, 2013; Aldao 

& Tull, 2015; Baillon et al., 2015; Kahle, Miller, Lopez, & Hastings, 2015).  Furthermore, the 

ability of an individual to handle stress is directly correlated with learning, self-regulated learning 

and problem solving (Ahmadi, 2015).  This means that emotional conditions can directly 

influence learning and must therefore be considered in the context of training.  

Emotional regulation promotes adaptive strategies that can influence performance (Wagstaff, 

Hanton, & Fletcher, 2013) and changes in emotional regulation can impact behavior (Christensen 

& Aldao, 2015).  Current studies in emotional regulation in the context of physical activities 

focus primarily on sports context in which athletes need to regulate emotions in order to control 

behavior for the benefit and safety of the team (Gunnell, Crocker, Wilson, Mack, & Zumbo, 

2013; Tamminen & Crocker, 2013).  Furthermore the use of an Individual Zone of Optimal 

Functioning framework has shown to enhance skills and emotional regulation within the athletic 
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community (Salminen, Liukkonen, Hanin, & Hyvönen, 1995; Woodcock, Cumming, Duda, & 

Sharp, 2012).  On the other hand, there is some evidence to suggest there is limited effectiveness 

to emotional regulations in organizations (Dumbravă, 2014).  With regards to construction, 

however, emotional regulation may prove to be a beneficial tool to improve behavioral 

consistencies and safety due to its use in physical activities.   

Large machinery and construction often involve hazardous conditions and the operator of 

equipment needs to have full control over the physical operation of machinery in order to avoid 

harm or death of him/herself or others.  Current training paradigms involve error and mistake-

based models that allow users to learn from their mistakes which can result in better analytic 

potential when the user is asked to perform those same tasks under pressure (Zhu, Poolton, 

Wilson, Maxwell, & Masters, 2011).  Similar types of trainings that involve generalized guidance 

rather than ones that use extreme detail have also shown that individuals learn the task better 

when given more opportunities to use learn skills (Mullen, Faull, Jones, & Kingston, 2015).  

These skills, once acquired and practiced, can become practiced motor skills (Frank, Land, & 

Schack, 2013) (and in some extreme cases, motor reactions) to avoid danger and harm to others 

(Kibele, 2006) which can potentially be of extreme value under hazardous conditions such as 

construction sites.   

With this in mind, current training through physical interaction, simulators, and equipment use 

can help trainees to learn and make mistakes during the learning process which not only helps 

prevent future mistakes, but also creates the potential for improved motor performance under the 

inevitable pressure that comes with the risks of the industry.  Therefore, when considering 

training scenarios in the construction industry, training paradigms need to consider the emotional 

regulation of the operator and their resulting behavioral and physical changes with regards to the 

machinery.  This study looked into past experiences with similar equipment, but did not gather 
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data with regards to emotional states and further research is needed to determine the effect of 

emotional changes on the interactions with co-robots in a training environment.   
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CHAPTER III 
 

 

METHODOLOGY 

The purpose of this study was to test the effectiveness of visual positive reinforcement strategies 

during the co-robot training scenario.  The dependent variables were chosen to compare the 

effectiveness of a simple user guidance system compared to a more complex guidance system 

when training novices to use equipment. The simple interface (Fig. 1) relies on basic principles of 

operant conditioning in which the user is guided to repeat behaviors for which he or she has 

received positive reinforcement.  In this study a green color signified a correct movement of the 

joystick and a red color signified a wrong movement.  The more complex guidance system (Fig. 

2) introduced arrows and directions in addition to color changes to assist the user in performing 

the task as close to the expert movements as possible.  Since some simulators and video games 

use more complex systems to teach a task (Luria & Vogel, 2011), it was important to test whether 

a simple interface could achieve the same result.   

A total of 113 participants (N = 113) volunteered for this study.  The average age of participants 

was 23.7 with approximately 72% males and 27% females with 26.5% Asians, 33.6% Caucasian, 

and the remainder of varying self-reported ethnic descent.  All volunteers were active students, 

faculty, or visitors in the psychology and engineering departments at Oklahoma State University 

in Stillwater, Oklahoma.  All participants sat in a standard office chair and visualized a guidance 

system on a standard 15-inch computer screen set on a box slightly to their left as to not block the 

view of the remote-controlled excavator located directly in front of them on the floor.  
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Participants were randomly assigned to one of three groups upon their arrival with each group 

corresponding to a different user interface.  Each participant was then asked to complete a short 

survey in which they were asked, via Likert scale, to describe their comfort level with the 

joystick, past experiences with similar two-handed joysticks, and how often they play video 

games (See Appendix A).   Each participant was then given three trials to become familiar with 

the controls and equipment prior to the use of the interface and any recording of actions.  The use 

of three practice trials was based on experience with volunteers who agreed to partake in practice 

attempts of the study prior to finalization.  The researchers found that individuals felt adequately 

comfortable with controller use after three practice trials.  This allowed for all users to gain 

general familiarity with the joysticks and actions associated with each movement.  Once the 

participants finished the initial introduction, a research assistant would introduce them to the 

graphical user interface (GUI) on the computer screen and explain what the interface meant.  

Group 1 with the colored circles (see Fig. 1) would experience changes from red to green circles 

for each hand if the actions were congruent with expected or optimal actions.  Group 2 had speed 

bars (Fig. 2) that integrated the color reinforcements of Group 1 with direction arrows giving 

more complex visual cues as to what the participants should do with regards to the joysticks.   

Group 3 was the control group who had blank screens.  

 

Fig 1.  Circle GUI 

 



14 
 

 

Fig 2.  Speed Bar GUI  

 

The visual interface appeared based on the flow diagram shown in Fig 3.  Based on the interface 

designed by Harshal Maske, a member of the engineering team associated with the National 

Robotics Initiative, the co-robot utilized real time feedback through the joystick operation of the 

participant.  In addition to information gathered through the computer based on joystick feedback, 

the co-robot also gathered information from the position of the excavator via ceiling-mounted 

cameras that tracked the movements of each marker on the excavator, truck, and sand bin (see 

Fig. 4).  Optimal times and positions were determined based on movements captured by “experts” 

and the co-robot then adjusted the visual feedback to help guide the user to adjust his or her 

joystick movements to best match those of the expert.  The instructional policy created for this 

part of the study was hand coded by Harshal Maske and was based on research in artificial 

intelligence, reinforcement learning, and learning from demonstration (Maske, Kieson, 

Chowdhary, & Abramson, 2016).    
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Fig 3. Instruction Interface Flow Diagram 

 

The remote-controlled excavator was a fully hydraulic 1/14th scale model (Fig. 4) of 345D CAT 

Excavator. The model lacked joint-angle encoders and internal proprioception, hence all the 

experiments were performed inside a motion capture facility to ensure individual joint 

movements are captured in real-time and compared with optimal trajectories and actions. The 

motion capture facility included small physical markers on each joint of the excavator as well as 

interaction points for the cameras to locate the position of the sand bin and the truck.  Ceiling-

mounted cameras tracked the motion of the pins and relayed it back to the computer so that the 

computer could calculate positions, angle, and trajectory during each motion in relation to how 

the user manipulated the joystick.  

 

 

 



16 
 

 

Fig 4.  Model Excavator and Truck  

 

Participants were asked to complete a minimum of three initial trials (cycles) with the robotic 

excavator and then asked to return one to three days later (based on the availability of the 

participant) to perform additional cycles (also called Retests) without the help of the co-robot.   

Once the participants started their interaction with the co-robot, times were recorded for each of 

these cycles and retests in addition to how many errors the participant made with regards to 

movements compared to those of experts.  At the third retest cycle time, the researchers also 

counted how many times the participant hit the truck with the bucket of the excavator as well as 

how many movements (actions) were done by the truck to perform the task.   

The goal was to determine if the GUI interfaces demonstrated improvement over the control 

group with regards to errors, actions, truck hits, changes in cycle times, and optimal end times 

and if each group demonstrated significant changes over the course of cycles with regards to 

errors or times.  In addition, the researchers wanted to compare each group to the expert (for 

optimal actions and cycle time) but also to determine if there were significant differences between 

them.   
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Once the data was recorded, mean actions for each GUI group were compared to the expert 

number of actions (10.561) using a one sample t test and to each other through ANOVA to 

determine if there were significant differences.  Mean truck hits were then averaged for each 

group and compared through ANOVA to determine if there were significant differences between 

them.  Cycle errors were compared within each group through paired t tests and then retest 3 

cycle errors were compared between groups with ANOVA to determine if there were significant 

differences.  Times were compared within each group using paired t tests to determine significant 

changes over initial cycle times and retest times and compared between groups using ANOVA.  

They were also compared to the expert time (24.9s) through a one sample t test to determine if 

there were significant differences between resulting mean end times and expert (optimal) time.   

Results from the survey regarding joystick comfort, use, and video game play were compared 

using Spearman’s correlation to the end result times to determine if there were any significant 

correlations between past experiences and the resulting end time.  
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CHAPTER IV 
 

 

FINDINGS 

 

Participants and Measures 

The purpose of this study was to determine the effect of different graphical user interfaces for 

training novice participants to perform a complex task.  The study tested both a simple interface 

(colored circles) and a more complex interface (speed bars) in addition to a control (no interface) 

to determine how a co-robot interface would affect the learning of a skill in participants.  Physical 

motion of the model excavator in addition to timed cycles (trials) were evaluated to determine the  

differences between the groups, similarities of each group to the optimal “expert” motions and 

times, and changes within each group with regards to errors and times.  Participant actions were 

evaluated based on how many single motions it took for the participants to maneuver the 

excavator into the correct position (Mean Actions), the number of times each participant hit the 

truck with the bucket of the excavator (Truck Hits), and how many times they needed to correct 

their movements (Errors).  Mean actions and truck hits were collected at the last retest time 

whereas the errors were counted at each cycle and all data were collected through video and 

analyzed with the help of research assistants.   In addition to the physical motions of the 

excavator, each trial was timed and compared to other trials within the group as well as an 

optimal “expert” time set by the researchers.   
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A total of 113 participants (N = 113) were randomly sorted into groups: Group 1 using the 

Guidance User Interface (GUI) Circles, Group 2 using the GUI with Speed Bars, and Group 3 

with no GUI (control).  Each participant was instructed briefly on how the controllers work then 

given a minimum of three trials to attempt to scoop sand from the tub and deposit into the truck 

using the controls and the assistance of the selected training GUI. 

 

Mean Actions 

We define actions as the number of movements needed to complete the truck loading task.  

Averages for each group were compared against the expert average (N = 6, average number of 

actions = 10.561) in a one sample t test.  Analysis of the distribution of the data showed outliers 

in each group (See Appendix B) so the data was then selected to only include mean actions 

greater than 2 and less than 26.  The resulting data showed Group 1 (N = 32) with a mean of 

14.71 (SD = 4.13), Group 2 (N = 39) with a mean of 14.28 (SD = 3.87) and Group 3 (N = 32) with 

a mean of 16.06 (SD = 3.87).  Three data points were removed from Group 1, two from Group 2, 

and two from Group 3.  The resulting ANOVA can be seen in Table 1, with the one-sample t tests 

in Table 2. 

 

Table 1 

Analysis of variance (ANOVA) of mean actions between all experimental groups 

 Sum of 

Squares 

df Mean 

Square 

F p  

Between 

Groups 

58.39 2 29.20 1.84 .164 

Within 

Groups 

1587.67 100 15.88   

Total 1646.06 102    
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Table 2 

One-sample t test between mean actions of each group and expert (10.56) 

 95% Confidence 

Interval of the 

Difference 

Experiment 

Group 

t df Sig Mean 

Difference 

Lower Upper  

Group 1: 

GUI Circles 

5.68 31 .00* 4.15 2.66 5.64 

Group 2: 

GUI Speed 

Bars 

5.88 38 .00* 3.72 2.44 5.01 

Group 3: No 

GUI 

8.04 31 .00* 5.50 4.10 6.89 

*Significant at the p < .01 level. 

The results for the analysis of variance for actions was not significant F(2,100) = 1.84 (p = .164) 

and the one-sample t tests resulted in significant differences (p < .01) between the mean actions 

and the mean actions of the expert (10.56) for each group, suggesting no differences between the 

groups and no group demonstrating expert level accuracy with regards to actions.   

 

Truck Hits 

Truck hits were defined as the number of times the participant maneuvered the excavator in a way 

that caused a collision between the boom arm or shovel attachment and the model truck.  The 

purpose of the trial was to scoop sand out of the plastic container and dump it into the truck 

without any faults or collisions.   Experts would therefore have zero collisions and any collisions 

would be seen as an error of the novice during the trial.  Ideal truck hits would therefore be zero.  

Stem and leaf plots for the distribution of data can be seen in Appendix C.  A one-way ANOVA 

was conducted to determine significant differences between the groups (Table 4).   
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Table 3 

Descriptive statistics for truck hits for all experimental groups 

Experiment 

Group 

N Minimum Maximum M SD 

Group 1: 

GUI Circles 

34 .00 12.00 .59 2.00 

Group 2:  

GUI Speed 

Bars 

41 .00 3.00 .29 .68 

Group 3:  No 

GUI 

34 .00 4.00 .35 .95 

 

Table 4 

Analysis of variance (ANOVA) for truck hits between all experimental groups 

 Sum of 

Squares 

df Mean 

Square 

F p  

Between 

Groups 

1.75 2 .87 .46 .63 

Within 

Groups 

202.49 106 1.91   

Total 204.22 108    

 

The ANOVA did not result in any significant results and therefore no significant differences were 

found between the groups with regards to truck hits.   

 

Cycle Errors 

Cycle errors were defined as the number of unnecessary motions made by the novice during the 

truck loading task.   Cycle error averages were calculated for each group for cycle 1, cycle 3, 

retest 1 and retest 3 and descriptive statistics for each cycle and retest are displayed in Table 5.  

Paired t tests were conducted for comparing cycle 1 and cycle 3, cycle 3 and retest 1, and retest 1 
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and retest 3 (Table 6) and an ANOVA was used to determine significant differences between 

errors for each group at retest 3 (Table 7).   

 

Table 5 

Descriptive statistics for errors for each experimental group at cycle 1, cycle 3, retest 1, and 

retest 3 

 Group 1: GUI Circles Group 2: GUI Speed 

Bars 

Group 3: No GUI 

 N M SD N M SD N M SD 

Cycle 

1 

32 3.44 3.59 41 2.59 1.87 38 2.68 2.45 

Cycle 

3 

32 2.63 2.44 41 2.71 2.74 38 2.34 1.89 

Retest 

1 

20 2.4 2.06 27 2.30 1.73 35 1.86 2.10 

Retest 

3 

21 1.38 1.12 27 1.26 1.32 35 1.29 1.25 
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Table 6 

Paired sample t test for cycle errors within all experimental groups   

 95% Confidence 

Interval of the 

Difference 

 

Experiment 

Group 

Paired 

Cycles 

M SD Std 

Error 

Mean 

Lower Upper t df Sig. 

Group 1: 

GUI Circles 

Cycle 1 

and Cycle 

3 

.81 3.15 .56 -.32 1.94 1.46 31 .15 

Cycle 3 

and Retest 

1 

.90 3.16 .71 -.58 2.38 1.27 19 .22 

Retest 1 

and Retest 

3 

1.00 2.00 .44 .09 1.91 2.29 20 .03** 

Group 2:  

GUI Speed 

Bars 

Cycle 1 

and Cycle 

3 

-.12 2.55 .40 -.93 .68 -.31 40 .76 

Cycle 3 

and Retest 

1 

-.22 1.99 .38 -1.01 .56 -.581 26 .57 

Retest 1 

and Retest 

3 

1.04 1.99 .38 .25 1.82 2.71 26 .01** 

Group 3: No 

GUI 

Cycle 1 

and Cycle 

3 

.34 2.52 .41 -.49 1.17 .84 37 .41 

Cycle 3 

and Retest 

1 

.46 2.75 .46 -.49 1.40 .98 34 .33 

Retest 1 

and Retest 

3 

.57 1.70 .29 -.013 1.16 1.98 34 .055 

**Results significant at the p < .05 level 

The results of the paired samples t test revealed in significant differences between retest 1 and 

retest 3 for both Group 1 and Group 2.  The paired t test between retest 1 and retest 3 for group 1 

resulted in t(20) = 2.29 which was significant (p = .03, p < .05) and the paired t test for between 

retest 1 an retest 3 for group 2 resulted in t(26) = 2.71 which was significant (p = .01, p < .05).  

The findings for the paired sample t tests for errors suggests that groups experiencing the colored 
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circle and speed bar GUIs demonstrated significant change in error where the group without a 

GUI showed no significant change in error over the course of the study.  

The errors for retest 3 were then compared between the groups using ANOVA.  The results can 

be seen in Table 7.   Despite Group 1 and Group 2 showing significant differences within their 

own groups, the results of the ANOVA suggest there was no significant differences (p = .94) 

between all experimental groups with regards to errors at retest 3.  

 

Table 7 

Analysis of variance (ANOVA) for errors at retest time 3 between all experimental groups 

 Sum of 

Squares 

df Mean 

Square 

F p  

Between 

Groups 

.19 2 .10 .06 .94 

Within 

Groups 

123.28 80 1.54   

Total 123.47 82    

 

 

Cycle Times 

Each participant was asked to complete the task at least three times and each cycle was timed.  

Means were calculated for each cycle/trial for each group for both original and retest cycle times.  

Paired t tests were then conducted to compare the times of cycle 1 to cycle 3, cycle 3 to retest 1, 

and retest 1 to retest 3.  An ANOVA was used to compare the timed results of retest 3 and a one-

sample t test was used to compare retest 3 times with the expert time (24.9s).   

Analysis of the distribution of data showed extreme outliers for Group 1 and Group 3 (See 

Appendix D), consequently data were selected to only include retest times that were less than 65s.   
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Two cases were removed from Group 1 and one case was removed from Group 3.  The results of 

the paired samples t tests can be seen in Table 8.   

 

Table 8 

Paired sample t test for cycle times within all experimental groups   

 95% 

Confidence 

Interval of the 

Difference 

 

Experiment 

Group 

Paired 

Cycles 

M SD Std 

Error 

Mean 

Lower Upper t df p 

Group 1: 

GUI Circles 

Cycle 1 

and Cycle 

3 

2.78 18.06 3.41 -4.22 9.79 .82 27 .42 

Cycle 3 

and Retest 

1 

3.39 26.30 4.97 -6.8 13.59 .68 27 .50 

Retest 1 

and Retest 

3 

18.62 22.16 4.12 10.19 27.05 4.53 28 .00* 

Group 2:  

GUI Speed 

Bars 

Cycle 1 

and Cycle 

3 

9.04 43.39 8.51 -8.49 26.56 1.06 25 .30 

Cycle 3 

and Retest 

1 

3.19 27.39 5.37 -7.87 14.25 .59 25 .56 

Retest 1 

and Retest 

3 

6.12 17.74 3.48 -1.05 13.28 1.76 25 .09 

Group 3: No 

GUI 

Cycle 1 

and Cycle 

3 

7.41 34.14 6.57 -6.10 20.91 1.13 26 .27 

Cycle 3 

and Retest 

1 

8.26 38.14 7.34 -6.83 23.35 1.13 26 .27 

Retest 1 

and Retest 

3 

10.76 22.29 4.14 2.28 19.24 2.60 28 .02** 

*Results significant at the p < .01 level 

**Results significant at the p < .05 level 
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The results of the paired samples t test for cycle times suggests there were no significant 

differences between times for cycle 1 and cycle 3 or between cycle 3 and retest 1.  Group 1 (M = 

18.62,SD = 22.16) and Group 3 (M = 10.76, SD = 22.29) showed significant differences between 

retest 1 and retest 3 (p < .05; p = .02, p < .05 respectively).  This suggests that both Group 1 with 

the circle GUI and the control group demonstrated significant changes in time during the retest.   

 

Table 9 

Analysis of variance (ANOVA) for times at retest time 3 between all experimental groups 

 Sum of 

Squares 

df Mean 

Square 

F p  

Between 

Groups 

1592.99 2 796.50 6.41 .00* 

Within 

Groups 

10068.569 81 124.30   

Total 11661.56 83    

*Significant at the p < .01 level. 

The ANOVA for retest 3 times (Table 9) showed that the difference in retest 3 times between 

groups was significant F(2,81) = 6.41 (p < .01) suggesting significant differences between at least 

two of the groups.  Tukey post-hoc comparisons were performed and resulted in significant 

differences between retest 3 times for Group 1 and Group 2 (p < .01) and between Group 1 and 

Group 3 (p < .05), suggesting that those who used the circle GUI demonstrated significant 

differences in their retest 3 times when compared to the other two groups.  Figure 5 shows the 

mean times for each group with corresponding error bars at cycle time 1, cycle 3, retest 1 and 

retest 3.   
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Fig. 5  Mean Cycle Times and Corresponding Errors for Experimental Groups 

 

To determine how close each group came to the expert time of 24.9s, a one-sample t test was 

performed with each groups’ retest 3 times.  For retest 3 the mean for Group 1 (N = 29) was 

30.21 (SD = 10.73), the mean for group 2 (N = 26) was 39.50 (SD = 11.611) and the mean for 

group 3 (N = 29) was 39.24 (SD = 11.13).  The result of the one sample t test can be seen in Table 

10.   
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Table 10 

One-sample t test between retest 3 times of each group and expert (24.9) 

 95% Confidence 

Interval of the 

Difference 

Experiment 

Group 

t df p Mean 

Difference 

Lower Upper  

Group 1: 

GUI Circles 

2.66 28 .013** 5.31 1.22 9.39 

Group 2: 

GUI Speed 

Bars 

6.41 25 .00* 14.60 9.91 19.29 

Group 3: No 

GUI 

6.94 28 .00* 14.34 10.11 18.58 

*Significant at the p < .01 level. 

**Significant at the p < .05 level 

 

 

The results of the one-sample t test suggest that all of the groups’ times for retest 3 were 

significantly different from the expert.   

 

Past Experience and Test Results 

The questions on the survey regarding comfort with the controller, past controller use, and game 

play (See Appendix A) were based on a Likert-type scale and the data were collected and 

compared to the final retest 3 times to determine any correlation.  Outliers were left out and all 

groups were combined (N = 83).  A Spearman’s correlation was performed and the results are in 

Table 11 
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Table 11. 

Correlations between retest 3 times and controller comfort, controller use, and game play 

 Controller Comfort Controller Use  Game Play 

Retest 3 .09 .15 .05 

 

No significant correlations were discovered between retest time 3 and the Likert responses of 

participants for controller comfort, controller use, or frequency of game play.   

 

Summary 

The overall findings of this study found no significance difference between groups with regards 

to mean actions and no closeness between the actions of each group and the expert (10.51).  

Similarly, there were no significant differences between groups with regards to truck hits.  

Significant changes in errors were found, however between retest 1 and retest 3 in Group 1 (M = 

1.00, SD = 2.00) t(20) = 2.29 (p = .03, p < .05) and Group 2 (M = 1.04, SD = 1.99) t(26) = 2.71 (p 

= .01, p < .05) suggesting participants using visual guidance demonstrated greater changes in 

movement errors than those without a GUI.   

Paired sample tests for times resulted in significant changes between retest 1 and retest 3 times 

for both Group 1 (M = 18.62,SD = 22.16) t(28) = 4.53 (p < .05) and Group 3(M = 10.76, SD = 

22.29) t(28) = 2.60 (p < .05, p = .02) and an ANOVA test resulted in only Group 1 having retest 3 

times that were significantly different F(2,81) = 6.41 (p <.05) than the others at retest 3.  These 

tests suggest that Group 1 and Group 3 had more significant changes towards the end of the 

cycles than did Group 2, however, the resulting retest 3 times only showed a significant 

difference (p < .05, p = .02) between Group 1 and the other two groups.  This suggests that not 
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only did Group 1 demonstrate significant change towards the end, but the resulting time was 

significantly different than the other groups.  When compared to the expert time (24.9s), however, 

no groups demonstrated values that corresponded with the expert, suggesting that all groups 

remained significantly different at retest time 3 when compared to the optimal time.   

Correlation tests between the survey and retest 3 found no significant results.   

The findings indicate that only changes in errors and times showed any significance when 

comparing different interfaces.  Based on the results, visual interfaces seem to provide some 

improvement over the control with regards to errors and, although there were significant changes 

in cycle times for Group 1 (GUI Circles) and Group 3 (No GUI) over the duration of the cycles, 

all groups remained significantly different than the expert at the end of the retests.  Group 1, 

however, showed significantly different times at the end than the other two and came closest to 

the expert time of 24.9s.   
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CHAPTER V 
 

 

CONCLUSION 

 

The goal of this study was to test two user interfaces (one simple and one more complex) to 

determine which visual interface would provide the most effective teaching tool from which the 

novice could learn.  The result was somewhat surprising in that the simpler interface slightly 

outperformed the more complex one, demonstrating that a very simple visual reinforcement 

strategy may obtain greater results when robots are used to teach humans a skill set.  This 

supports some studies that suggest that less-complex learning systems may be suitable for 

learning for both human and robots (Tangkaratt, Morimoto, & Sugiyama, 2016) and that less 

guidance in learning may allow for greater learning potential in humans (Paas, Tuovinen, 

Tabbers, &Van Gerven, 2010; Van Merrienboer, Kester, & Paas, 2006).  Since both visual 

displays showed improved learning over the control group, we can conclude that simple visual 

feedback can help assist in human learning from co-robots and more complex interfaces may not 

be necessary.  This is especially evident in Fig. 5 which shows the changes in means for each test 

time and the differences between the end times.  The conclusions may be biased, however, since 

the participant pool was largely well-educated college-level participants who are not necessarily 

representative of the target population of construction workers.       

Although there was no significant difference between the two groups during the retest, a number 

participants in Group 2 (Speed Bars) who verbalized that the interface was a bit distracting which 
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further supports the idea that a simple visual reinforcement tool is equally as effective at 

teachingthe task.  The result would be less distracting co-robot interfaces that result in retained 

information in the human learner.  When considering the use of such co-robots in the construction 

industry, for example, less visual input would reduce stimulant load for the operator and would 

result in improved safety and situational awareness.   

Co-robots, Cobots, and autonomous robotic partners are being designed by multiple industries to 

provide not only teaching tools, but also trusted working partners.  In some cases infrared sensors 

are being tested to improve robot responses to human interaction and create more dynamic 

learning environments for the robot and human (Salter & Dautenhahn, 2006) and some scientists 

are developing robots that can better read human emotional responses in a learning environment 

(Singh, Karanam & Kumar, 2013).  The interaction between human and robot in a learning 

environment has a lot of potential for growth especially through competition-based systems 

(Morita, Jitsev, & Morrison, 2016).  The combination of research in this area will likely lead to 

the integration of improved visual interfaces and better learning environments for humans from 

the co-robot instructors.   

The idea that humans may retain more information by learning with simple interfaces may 

eventually play a larger role in how we interact with the evolving digital world.  Smartphones, 

tablets, and laptops are only a few of the ways our technology travels with us.  This, of course, 

gives people the ability to access information at almost any given time.  It also means that we 

increasingly rely on that access to help guide us through daily interactions like navigation, finding 

relevant news, and even personal interactions.  This increasing reliance, however, may eventually 

mean that we lose the ability to function without our technology under these specific 

circumstances.  Our electronics, like robotic guidance systems, walk us through the process of 

obtaining information or reaching our goals without actually teaching us in a way that allows us 

to get there on our own.  Not only does this create a dependence on our technology, but also 



33 
 

perhaps means that we may not be capable of performing those same tasks without the help of our 

technological guidance systems.   

The growing number of interactive devices in our environment may, in fact, increase our stress 

and reduce our ability to retain information and learn tasks.  Too much stimulation or information 

can reduce productivity (Jackson & Farzaneh, 2012; Oldham et. al., 2017) and simple 

descriptions are often more easily remembered than complex ones (Luria & Vogel, 2011). 

Furthermore, if participants are asked to engage in multiple tasks at once, stress increases and 

performance declines (Paas et. al., 2010; Reissand & Manzey, 2016).  This further supports the 

idea that individuals in a complex learning environment may perform and learn better when 

stimulus and stress are reduced.  Part of this may involve adapting co-robot interfaces that are 

simpler and provide basic feedback rather than complex guidance.   

This study helps explore the ways technology can guide or, in some ways, impede our ability to 

learn from our environment.  Perhaps this could open discussions for more ethics in terms of how 

much technology needs to be a part of our lives versus a means of dependence for humans on 

electronics.   It may also mean the development of applications or interactive software that creates 

opportunities for individuals to learn rather than depend.  Understanding how we, as humans, 

interact and learn from our technological (and eventually robotic) environment may give us more 

insight into what it means to be human in a growing world of electronic intelligence.
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APPENDICES 
 

 

Appendix A.  Pre-trial Survey 

Survey 1.  Pre-Trial Questionnaire  

Participation Survey (Given BEFORE experiment) 

General Information: 

 

Gender:   F M O  (other)  

 

Age:  _________ 

 

Ethnicity:__________ 

 

Background Questions:  

 

How would you classify your mood today? _____________ 

 

How would you classify your energy level? (circle one)  Low    Medium High  

 

How comfortable do you feel using remote-controlled equipment? 

 

 1 2 3 4 5 

Not comfortable   Very comfortable  

 

How comfortable do you feel using two-handed controls such as video game controllers or the 

hand-held controllers used in this study? 

 

 1 2 3 4 5 

Not comfortable   Very comfortable  
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Appendix A. (Cont.’d) 

 

How often do you use two-handed controllers such as video game controllers or the hand-held 

controllers used in this study? (in this case 1= not at all, 2= occasionally, 3= a few times a month, 

4 = at least once a week, 5 = every day)  

 

 1 2 3 4 5 

Not at all    Every day 

 

How often do you play video games?   

 1 2 3 4 5 

Not at all    Every day 

 

Have you every driven construction equipment, heavy machinery, or tractors?  Y  N  

 

If Yes, how often have you/do you use or drive heavy equipment or machinery?   

(in this case 1= not at all, 2= occasionally, 3= a few times a month, 4 = at least once a week, 5 = 

every day)  

 

 1 2 3 4 5 

Not at all    Every day 
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Appendix B.  Data Distribution for Mean Actions  

 

Mean actions Stem-and-Leaf Plot for 

Experiment group = Gui circles 

 

 Frequency     Stem &  Leaf 

 

     1.00   Extremes    (=<3) 

     1.00         0 .  6 

    14.00         1 .  01112222233344 

    12.00         1 .  555666677889 

     4.00          2 .  0113 

     2.00   Extremes    (>=27) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 

 

 

Mean actions Stem-and-Leaf Plot for 

Experiment group = Gui speed bars 

 

 Frequency     Stem &  Leaf 

 

1.0   Extremes    (=<2) 

      .00         0 . 

     3.00         0 .  588 

    21.00         1 .  000011111222333344444 

    12.00         1 .  555667899999 

     3.00         2 .  012 

     1.00   Extremes    (>=28) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 

 

 

Mean actions Stem-and-Leaf Plot for 

Experiment group = No Gui 

 

 Frequency     Stem &  Leaf 

 

     1.00         0 .  7 

    12.00         1 .  000333334444 

    15.00         1 .  555566677888999 

     4.00          2 .  1234 

     2.00   Extremes    (>=29) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 
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Appendix C.  Data distribution for Truck Hits 

 

 

Truck hits Stem-and-Leaf Plot for 

Experiment group = Gui circles 

 

 Frequency     Stem &  Leaf 

 

    29.00         0 .  00000000000000000000000000000 

     5.00   Extremes    (>=1) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 

 

 

 

Truck hits Stem-and-Leaf Plot for 

Experiment group = Gui speed bars 

 

 Frequency     Stem &  Leaf 

 

    33.00         0 .  000000000000000000000000000000000 

     8.00   Extremes    (>=1) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 

 

 

 

Truck hits Stem-and-Leaf Plot for 

Experiment group = No Gui 

 

 Frequency     Stem &  Leaf 

 

    29.00         0 .  00000000000000000000000000000 

     5.00   Extremes    (>=1) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 
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Appendix D.  Distribution of Data for Retest 3 times.   

 

Retesttime3 Stem-and-Leaf Plot for 

Experiment group = Gui circles 

 

 Frequency     Stem &  Leaf 

 

     3.00         1 .  999 

    13.00         2 .  0000112335589 

     8.00         3 .  24456679 

     4.00         4 .  1467 

      .00         5 . 

     1.00         6 .  1 

     2.00   Extremes    (>=65) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 

 

 

 

Retesttime3 Stem-and-Leaf Plot for 

Experiment group = Gui speed bars 

 

 Frequency     Stem &  Leaf 

 

     2.00        2 .  34 

     4.00         2 .  6679 

     5.00         3 .  11233 

     3.00         3 .  668 

     2.00         4 .  00 

     6.00         4 .  678999 

      .00        5 . 

     2.00       5 .  57 

     2.00        6 .  02 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 
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Appendix D.  (Cont’d) 

 

Retesttime3 Stem-and-Leaf Plot for 

Experiment group = No Gui 

 

 Frequency     Stem &  Leaf 

 

     2.00         2 .  01 

     2.00         2 .  58 

     8.00         3 .  00011234 

     5.00         3 .  56889 

     1.00         4 .  1 

     5.00         4 .  66689 

     3.00         5 .  223 

     2.00         5 .  67 

     1.00         6 .  1 

      .00         6 . 

     1.00         7 .  2 

     1.00         7 .  6 

     1.00   Extremes    (>=85) 

 

 Stem width:     10.00 

 Each leaf:        1 case(s) 
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