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ABSTRACT

The issue of code's scalability is becoming more crucial with the existence o f advanced 

scalable architectures. While speedup relates the reduction in time when going from 

serial to parallel computation, scalability focuses on the overall performance resulting 

from the increase in problem size and the number of processors.

Scalability will be limited by serial bottlenecks in the code. Locating these 

bottlenecks in parallel environment is not trivial. We used factorial designs to estimate 

empirically an approximation of a multivariate Taylor’s expansion for the code’s 

execution response function. The first order terms in the Taylor’s expansion function 

correspond to the suspected bottlenecks and scale factors. The coefficients of these 

terms are estimates of the code's sensitivity to changes in these suspected locations and 

scale factors. The higher order terms are utilized as informal relative indicators o f the 

code’s scalability. This approach was applied to a large meteorology code running on 

the CRAY J90 and the IBM SP2 scalable distributed memory machine.

A class of interaction plots using speedup is introduced in this dissertation that 

will enable the investigator in comparing the scalability of two parallel systems.
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CHAPTER 1 

INTRODUCTION

One of the main goals of parallel processing is to solve large problems in time much 

shorter than that for the serial processing. To achieve this goal, the eflfect o f the serial 

part of the parallel program needs to be minimized. The notion of speedup, which is 

defined as the ratio of the best known serial time to the given parallel time, was used 

to assess parallel code. Amdahl's law 1967, see (Lakshmivarahan and Dhall 1990), was 

the first step on the way to analyze parallel code. The notion of scalability is used to 

measure how good a parallel system is when the system size is increased. The system 

size is increased usually by using more processors to solve a problem. An ideal parallel 

algorithm will have a speedup proportional to the number o f processors. However, this 

is not the case in real life applications. A parallel program will reach a limit, called 

parallel balance point, after which adding more processors will increase the time 

taken to solve a fixed size problem (Wilson 1993).

In scalability studies, three types of scalability are often defined. One is called 

the machine scalability, the second is the algorithm scalability, and the third is the 

scalability o f a parallel system consisting of algorithm-machine combination. Machine 

scalability was defined based on the asymptotic speedup for a given algorithm and 

problem size on the architecture under study. The asymptotic speedup is the best 

achievable speedup using unlimited number of processors (Nussbaum and Agarwal
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1991). However, scalability of the machine may include many factors other than 

speedup. Cost, addressing, communication, and physical attributes should be 

considered to meet the machine’s scalability requirements (Gustavson 1994).

When studying the algorithm scalability the overhead related to the target 

machine will be described by a general function. This function will either depend on a 

general model or some specific assumptions about the hardware. In the literature many 

parallel hardware models are available such as the PRAM (Parallel Random Access 

Machine), BSP (Bulk-Synchronous Parallel), and LogP (Latency, Overhead, Gap, and 

Processor count).

There are different approaches to quantify the parallel system scalability. 

Grama et al. 1993, defined scalability as the ability of parallel system to increase 

speedup as the number o f processors increases (Grama, Gupta, and Kumar 1993). 

Following an analytical approach, they introduced the isoefficiency function that 

relates problem size to the number of processors required to keep the efficiency fixed 

The isoefficiency function provides the rate at which the problem size must increase in 

order to keep the efficiency fixed as the number of processors increased. As a measure 

of scalability, a system with small isoefficiency function is more scalable.

The isospeed metric was proposed by (Sun and Rover 1994). Based on this 

metric the scalability of parallel algorithm-machine combination was defined. An 

algorithm-machine combination is scalable if the achieved average speed remains



constant when the number o f processors is increased assuming the problem size can be 

increased.

In another approach. Network latency was used to measure and evaluate the 

scalability of parallel programs and architecture (Zhang, Yan, and Mia 1994). The 

evaluation of the scalability can be used to predict the performance of large problems 

on large machines. The scalability of a parallel system at a fixed efficiency level for 

two machine sizes is the ratio of the smaller machine’s latency to the latency of the 

larger machine. The efficiency is kept at fixed level by scaling the problem size.

The analytical approach proposed by (Tambouris and Santen 1995), consists of 

six steps methodology to study the scalability of a parallel system. These steps include 

analysis o f the parallel system, construction of asymptotic performance models, and 

use of these models for first order approximation of scaling behavior.

The approach followed by Sivasubramaniam et al. 1994, used an execution- 

driven simulator to study the scalability of five applications. They defined the notion of 

overhead functions associated with algorithmic and architectural characteristics to 

study the scalability.

A promising technique was suggested by Lyon et al. 1994, for tuning parallel 

code by identifying the program bottlenecks (Lyon et. al. 1994,1995). This technique 

treats the code as a black box with number of input parameters and a measured output. 

An approximation of the multivariate Taylor’s expansion for the code’s execution



response function was estimated by using statistically designed experiments. While this 

technique is in use for industrial processes, it was not used for computer programs 

because o f the lack of natural parameters.

The new approach is to incorporate artificial parameters into the program text 

(Lyon et al. 1994). These parameters can be delay routines inserted in the code to 

simulate changes in code’s performance. The number of processors used to execute 

the code is another parameter to be considered. We used the above approach to 

analyze the ARPS (Advanced Regional Prediction System) code.

ARPS is a non-hydrostatic atmospheric prediction model appropriate for use 

on scales ranging from few meters to hundreds of kilometers. The governing equations 

o f the atmospheric model components of the ARPS include momentum, heat, mass, 

water substances, and the equation of state. ARPS solves prognostic equations for x, 

y, and z components of the Cartesian velocity, the perturbation potential temperature, 

perturbation pressure, and six categories of water substance. More details about ARPS 

can be found in (Droegemeier et al. 1992), (Xue et al. 1995) and (Sathye et al. 1995). 

The ARPS source code consists of 300 subroutines and functions, developed over the 

past six years by about 30 scientific and support personnel. The analytical approach 

will be expensive and cumbersome to apply for such huge code. For this application 

the reduction of overall wall-clock run time is the primary goal. For practical 

operation the system should run faster than the speed of the weather.



In this study experimental design techniques were employed to measure 

sensitivity of ARPS code to changes in performance. The analysis of the effects of 

these changes will point out the primary locations of code to optimize. The 

experiments in this work were conducted on a CRAY J90 and on IBM SP2. The 

results of these experiments are covered in Chapters 4 and 5. The experiments were 

classified into two major parts. The first part scales problem size and the second part 

scales the machine size in terms of the number of processors. In Chapter 2, a review of 

the literature related to this work is provided. A preliminary introduction to 

experimental design techniques used in this study and how it was applied to computer 

systems are presented in Chapter 3. Concluding remarks are contained in Chapter 6.



CHAPTER 2 

LITERATURE REVIEW

In this chapter a review of literature related to the performance and scalability o f 

parallel systems is presented. This chapter will give an overall view of definitions, 

metrics, and approaches used to assess the parallel systems.

2.1 Speedup as a Performance Measure

The most widely used measure to characterize a parallel algorithm is the speedup ratio 

that relates the required time to solve a given problem using the best known serial 

algorithm to the time required to solve the same problem by parallel algorithm using P 

processors (Lakshmivarahan and Dhall 1990). In the literature there exist many 

variations of speedup definitions.

2.1.1 Fixed Size Speedup

Let T(N) denotes the time required by the best known serial time to solve a problem of 

size N, and the time required to solve the same problem size on a parallel machine with 

P processors by a parallel algorithm is Tp(N), then

(2 .1) Sp-JXN)/Tp(N)

It is clear that speedup is a function of M the problem size, and P, the number of 

processors. Under the normal conditions, which assumes a pccracompnter consisting of 

a set of identical processors each with its own memory, the speed up is bounded by the



number of processors, that is Sp < P. However, in the literature examples can be 

found for Sp > P, see (Sun and Zhu 1995). This is known as superlinear speedup, that 

may be encountered when the serial algorithm requires time longer than Tp(N)IP. The 

cause o f this problem could be an enhancement in the parallel system that is not 

available when using single processor, or using a single processor exhibits a very low 

performance resulting from data access from secondary stoarge. As an example the 

KSR-1 shared virtual memory show a superlinear speedups because of the longer 

access time to the remote memory as reported by (Ramachandran, Shah, and 

Ravikumar 1993).

2.1.2 Other Fixed Size Speedup Definitions

In the definition of speedup we used the time required the best known serial algorithm 

to measure the serial time. However, the best known algorithm at the current time 

could be replaced by a better serial algorithm in the future. On the other hand, many 

researchers will use the serial version of the parallel algorithm instead of spending time 

developing the best serial algorithm. When the same algorithm is used to measure the 

serial and parallel time the speedup is called relative speedup, while the original 

definition that uses the best known serial algorithm is called real speedup (Sahni and 

Thanvantri 1996). Following these two definitions the absolute speedup is defined as 

the ratio of the required time to solve a problem of size N  by the best known serial 

algorithm using the fastest processor, to the time required to solve the same problem



size by a parallel algorithm using P processors. The problem now is not only to find 

the best known serial algorithm, but to use the fastest processor as well.

2.1.3 Scaled Size Speedup

The fixed size speedup may be suitable for some applications. While in other cases it is 

desirable to increase the problem size with the increase of the number o f processors. 

The fixed size speedup was governed by Amdahl’s law 1967.

Let s denotes the amount o f time spent by the serial portion of the algorithm, 

and p denotes the amount of time spent by the parallel portion of the algorithm. Then 

the speedup by Amdahl’s law

(2.2) Speedup =(s+p)/(s+p/P)

=I/(s+p/P).

Amdahl’s law bounds the speedup by 1/s, so the smaller this fraction the higher the 

speedup regardless of the number o f processors used. In 1988, the definition of the 

scaled speedup was introduced by (Gustafson 1988) and (Gustafson, Montry, and 

Benner 1988). Let s' denotes the time spent on the serial portion, and p' denotes the 

time spent on the parallel portion of the parallel algorithm using P processors, then 

using one processor the time spent by the algorithm is {s'+p' P). The scaled speedup 

then is given by

(y+p'P)
(2.3) Scaled _speedup =



When the problem size increased the serial portion s’ is relatively decreased. It should 

be noticed that in most cases the scaled problem size can not run on single serial 

processor because of memory limitations. Hence, instead o f using the measured serial 

time, it is estimated by measuring interprocessor communication time and idle time on 

each processor. The results presented in (Gustafson, Montry, and Benner 1988) were 

derived using estimations of the serial time.

2.1.4 Time Constrained Speedup

The above definition of scaled speedup allows the problem size to scale to fill the 

available memory. There was no limitations on the execution time. In some 

applications there is an upper bound on execution time. Using the time constrained it 

may be desirable to estimate the limit of the problem size to be solved using P 

processors. Examples of deriving time constrained models for some algorithms are in 

(Worley 1990). However, the analysis was not very realistic since many costs were 

ignored in deriving such models.

2.1.5 Average Speedup

For randomized algorithms the case may be slightly different. The serial and parallel 

running times are described by two random variables and the speedup would be the 

ratio of the expected values of these two variables. Thus if T(N) and Tp(N) are the 

random variables of the running time on one and P processors respectively, then the 

speedup o f the average running times is given as



(2.4) Speed up o f the average running times =

The above ratio is of use only if the we have multiple runs and the total running time 

of all runs is of interest. If we have only one run then the speedup will depends greatly 

on the distribution of the random variables (Ertel 1994).

2.2 EfTiciency and Other Measures of Performance

While speedup measures how much faster the algorithm is capable to run on more than 

one processor, the processor efficiency measures how the processor are utilized. The 

efficiency is defined as the ratio of the speedup to the number o f processors so we may 

write

(2.5) Ep =Sf̂ 'P

The efficiency could be used as a measure o f the wasted processor cycles. In parallel 

computers not all processors are busy all the time. There will be usually a tradeoff 

between speedup and efficiency. Finding bounds on such tradeoffs was presented in 

(Eager, Zahoijan, and Lazowska 1989), in their work the average parallelism was 

used to characterize these tradeoffs. The average parallelism could be simply defined 

as the average number of processors that are kept usefully busy during the execution 

time of a given algorithm using unlimited number of processors.

Another factor that can be used to characterize performance is the redundancy. 

As it has been observed, the development of parallel algorithms introduce extra scalar 

computations to achieve higher speedup. When the communication cost is higher than

1 0



computations extra code will replace communication code by local computations. The 

redundancy factor Rp, is defined as the ratio o f the total scalar operations performed 

by a f-processor parallel algorithm to the total scalar operations of serial algorithm 

(Lakshmivarahan and Dhall 1990).

2.3 The Scalability

The word scalable, as explained in the dictionary, is an adjective of something that can 

be scaled. However, in parallel processing it is used to describe a machine, an 

algorithm, or an algorithm-machine combination. In the following sections various 

definitions of scalability are presented along with a review of some approaches used to 

study scalability. The approach we followed in studying scalability is introduced in this 

chapter and explained in more detail in Chapter 3.

2.3.1 Machine Scalability

The designers, as well as the users, of parallel machines looked at the scalability o f the 

machine and how it will affect the performance (Ramachandran et al. 1993), 

(Liotopoulos 1994), (Marenzoni 1995), and (Koufaty et al. 1996). While for 

sequential machines the effect of adding more memory or replacing an existing 

processor with a faster one is evident. For parallel machines the effect of adding more 

memory to accommodate larger problem sizes or increasing the number of processors 

may not be obvious. Many aspects need to be considered in parallel environments 

before scaling the parallel machine to keep the performance from decreasing. In many 

cases the scalability need to be addressed for general purpose machines rather than for

11



machines designed with specific application in mind. For example in distributed 

systems, partitioning the jobs and balancing the load is an important factor that affect 

the scalability (Kremien 1995).

M. Hill 1990, asked the question “What is Scalability?” and addressed many 

difficulties in finding a crisp definition of machine scalability. One of these difficulties 

is the absence of a reference model architecture to compare the architecture under 

study with (Hill 1990).

Besides the system’s performance, many other factors need to be considered 

when examining scalability of parallel machines (Gustavson 1994). The cost o f scaling 

the machine in the future need to be considered. The physical limitations of the 

technology used is another important factor when designing parallel computers. 

Addressing is another limitation problem when scaling a machines. The use of 

hierarchical variable length addressing may solve this problem, however, for a tightly 

coupled multiprocessors computers this may not be an efficient solution.

Nussbaum and Agarwal 1991, based their definition of parallel machine 

scalability on asymptotic speedup. For a given algorithm, architecture, and a problem 

size the asymptotic speedup, denoted S(N), is the best speedup that can be attained by 

varying only the number of processors. Let N  be the problem size, Tseq(N) is the 

asymptotic serial running time, and Tpa/N) is the asymptotic minimum parallel running 

time, then

(2.6) S(N) =Tseq(N)/Tpar(N).

12



The parallel time used above Tpar(N), is calculated for a given parallel algorithm using 

problem size N, without limitation on the number of processors. In other words it is 

the minimum achieved running time using as many processors as needed.

The scalability of parallel machine 'FCN) is then defined as the ratio of the 

asymptotic speedups on the real machine (under investigation) and the ideal realization 

of an EREW PRAM. Let Sr(N) and St(N) be the asymptotic speedups for the given 

real architecture and for the ideal machine respectively, then

(2.7) Sh(N) =TserR(NpTparR(N)

(2.8) S ,m  -Tserl(N)/TpaH(N)

(2.9) m hSp(N )/S,(N ) = Tpar,(NPTp.rR(N).

2.3.2 Algorithm Scalability

When studying parallel algorithm scalability it is hard to isolate the analysis of the 

algorithm from the target real or virtual machine. Analysis of sequential algorithms is 

based on the von Neumann model. However, the parallel environment is lacking a 

realistic widely accepted unified model. Thus before analyzing the scalability o f a given 

algorithm certain assumptions about the target hardware should be stated. The work 

in (Muller-Wichards and Ronsch 1995) is an example of such analysis. The timing 

model they used was

(2 . 10) T{P,f̂ ) = aiN) + ̂ ^  + aiP,N)
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where a(N) and P(N) are proportional to the sequential and parallel amount of 

computation respectively. And cr denotes an overhead function of P and N.

23.3 Scalability of Parallel Systems

Probably the most common practice is to study the scalability of a parallel system 

which is a combination of an algorithm and a given machine examples of such studies 

can be found in (Hanebutte, Joslin, and Zubair 1994), (Johan et al. 1994), (Gupta, 

kumar, and Sameh 1995) and (Barragy, Carey, and De Geun 1995). Many approaches 

were presented in the literature to describe and evaluate scalability of parallel systems. 

When studying the scalability of parallel systems three important factors should be 

considered. The first is the parallel machine and its architecture. The second is the 

algorithm, and the third is the problem size. We will use the following informal 

definition of scalability for a parallel system.

Definition 2.1: A parallel system consisting of an algorithm A with problem size N  

running on a parallel machine M  with P processors is said to be scalable if the 

performance will not decrease by increasing the number of processors to

F> P.

In the above definition the performance will be measured by the running time. It 

should be noticed that all factors are kept the same except the number of processors. 

In some cases the problem size may be increased to keep the performance from 

decreasing. In that case the parallel system is not scalable under the above definition.

For some scientific applications the researcher may desire to increase some 

parameters of the algorithm to achieve higher accuracy. In this case it could be
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considered as an increase in the problem size. A methodology followed by Singh, 

Hennessy, and Gupta 1993 for scaling scientific simulation programs on parallel 

computers, was to scale some parameters that affect the sources of simulation errors 

so their error contribution is equal when larger number of processors are used. This 

requires an understanding of the relationship between the program parameters in terms 

of their error contribution.

2,3.3.! IsoefTiciency

An analytical approach to measure the scalability of parallel system was introduced by 

(Grama, Gupta, and Kumar 1993). They defined scalability as the system’s ability to 

increase speedup as the number of processors increased. The isoefficiency function 

was defined and used as a measure of scalability which relates the problem size to the 

number o f processors to keep the efficiency at a fixed level. The problem size was 

defined in terms of the total number o f basic operations instead of input size. Let PFbe 

the total number of basic operations and 4 is the time required for each basic 

operation, then the serial time

(2.16) T, =Wt,

Let To denotes the overhead time and Tp the parallel time using P processors then

(2.17) Tp-CTi^Tf/F

The speedup, as in equation (2.3), is then given by

Sp  —T i/T p

(2.18) = P T ,/a i + r j
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the efficiency is then computed from (2.5) by using (2.18) for speedup which yields

T.=

(2.19) ^

by replacing 7) in (2.19) by its equivalent from (2.16) we get

I
(2.20) Ep =

(2 2 ')  F  = K Ep y

(2.22) iV = -

or it can be written as

(2.23) W-KTo

where K=Ep/tc(l-Ep). The formula (2.23) relates the amount of work fV to the 

efficiency Ep, so with some algebraic manipulation it can be used to relate iV to the 

number o f processors P. As an example, the sum of n numbers will require n 

operations on a sequential machine (indeed n-I operations are needed, but for large n 

the difference is small) and the sequential time will be Ti=ntc. If we add n numbers on 

a parallel machine using P processors, then we may assign fi/P numbers for each 

processor (assuming n is divisible by P). The parallel time will be the time required to 

add the numbers on each processor, that is n/P, plus the overhead time to add the 

partial sums logP ignoring the communication time. So parallel time 7>=^i/P+logP
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and the total overhead time 7^=logP. By substituting in (2.23) we get W=K\o§^. The 

isoefficiency function for this system is 0 (logfy, that means when increasing the 

number of processors form P lo P \  the problem size n need to be increased in the rate

to keep the efficiency fixed. When using two algorithms the scalability is

compared by comparing their isoefficiency functions. This approach may not be 

adequate for some applications since finding an isoefficiency functions is not as simple 

as in the above example. Moreover, this function will tell how the problem size should 

be increased, when used to compare two algorithms will tell which one is scalable in 

terms of efficiency, but ignoring which one will require longer time. In practice 

changes in the number of processors and the problem size may introduce some 

variations in the measured run time see (Gupta, Kumar, and Sameh 1995), (Jamieson, 

Khokhar, and Patel 1995) and (Sahni and Thanvantri 1996).

2.3.3.2 Isospeed

Another analytical approach to study the scalability of a parallel system used the 

isospeed metric (Sun and Rover 1994). Their definition of scalability was based on the 

average unit speed or the average speed definition.

Definition 2.2; The average unit speed is the achieved speed of a given computing 

system divided by P, the number of processors.

Definition 2.3: An algorithm-machine combination is scalable if the achieved average 

speed of the algorithm on the given machine can remain constant with 

increasing numbers o f processors, provided the problem size can be increased.
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In the above definition of scalability the problem size is used equivalently to fV the 

amount of work assuming a relation could be derived between the two. As it was the 

case with isoefficiency the problem size need to be increased to maintain the same 

average speed. Let W be the amount o f work o f an algorithm when P processors are 

used, and fV' is the amount of work of the same algorithm when P’> P processors are 

used to keep the same average speed then the scalability is

P W
(2.24) = —

where fV'is determined by the isospeed constraint. The ideal case when W -  P 'W I P , 

the scalability y/{P,P') = \. But in practice the W> P'W! Pv/\i\ch results in 

scalability < /( f ,P ')< I .  One way to find required W'to keep the average speed 

constant is to have a control program that run the algorithm under investigation and 

increase the problem size until the desired average speed is reached. If a relation can 

be found between the initial average speed and the amount of work then it can be 

utilized to predict scalability under the assumption that it will hold true for larger 

system sizes.

2.3.3.3 Other Approaches to Analyze Scalability

A memory-constrained scalability metric was proposed by (Fienup and Kothari 1994). 

Similar to the isoefficiency function, an asymptotic function will indicate the scalability 

of a parallel system. The CMP (Constant Memory per Processor) scalability is defined 

as the function that describes the asymptotic growth of CMP_speedup(P) as P goes to
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infinity. If the function goes to infinity as P goes to infinity then the algorithm is said 

to be scalable. The CMP_Speedup(P) is defined as a function of P while the size of the 

local storage used per processor is constant.

An experimental approach was followed by (Zhang, Yan, and Ma 1994). In 

that approach they used a measurement o f the network latency to evaluate the 

scalability. They defined the average latency L(W,P) as the average amount of 

overhead time needed for each processor to complete the assigned work. This latency 

is a function of the problem size W and the machine size P. On the contrast of 

isoefficiency and isospeed, since different implementations of an algorithm may have 

different impacts on scalability, see also (Jamieson, Khokhar, and Patel 1995), the 

latency metric will consider different implementations of the algorithm. In this case it 

will define the scalability of a parallel systems consisting of a parallel algorithm 

implementation and a parallel machine. The scalability metric based on latency is 

defined below

L (W P)
(2 25)

where Le is the average latency when the eflRciency is kept at a fixed level. In general 

since more overhead is expected in scaled system the value scale{e,{P,P')) < 1. This 

method may be applied in environments were the latency measurement is available. 

This approach was followed to a physics simulation program on a KSR-l machine 

(Zhang, Yan, and Ma 1994). The average latency was measured with the help of 

special hardware monitor.
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A fairly different approach used a simulation of a parallel shared memory 

machine (Sivasubramaniam et al. 1994). The execution-driven simulator SPASM was 

used in studying scalability by quantifying the overhead functions. The overhead was 

classified into algorithmic overhead due to the nature o f the algorithm and interaction 

overhead caused by the interaction between the architecture and the algorithm. The 

algorithmic overhead was quantified by computing the time taken to execute the 

parallel program on an ideal machine, as PRAM, and measuring the deviation from the 

linear speedup curve. Furthermore, interaction overhead was separated into latency 

overhead and contention overhead. Latency overhead is due to waiting for a message 

to be available assuming the message did not contend on any link. The contention 

overhead is the time taken by a processor waiting for a link to be available. The use of 

a simulator provides more flexibility in choosing the hardware system configuration, 

but the results depend greatly on the simulation parameters.

2.4 Monitoring Tools for Performance Measurement

Monitoring tools in the parallel environment face many challenges. A monitoring tool 

usually is provided by hardware manufacturer to aid in the development and tuning of 

parallel code. Portable tools are difficult to implement since they can not be isolated 

from the specifications of the hardware. A portable toolkit named AIMS (Automated 

Instrumentation and Monitoring System) that uses both simulation and measurement 

to predict performance is an example of such a tool. Portability of AIMS is kept by 

using a modular design of the tool components. The basic idea behind this tools is to
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collect a stream of events into a trace file with consistent format across architucters. 

Since the measurement at run time may perturb the execution, see (Malony, Reed, and 

Wijshoflf 1992), such intrusions are removed by an intrusion-compensation module 

depending on the underlying architecture (Yan, Sarukkai, and Mehra 1995).

For distributed systems a tool named ZM4/SIMPLE, used a combination of 

software and hardware monitoring (Hofinann et al. 1994). The hardware monitor ZM4 

(abbreviation for German “Zahlmonitor 4”) is structured as master/slave system with a 

CEC (Control and Evaluation Computer) that is a master, and number o f MAs 

(Monitor Agents) as slaves. The MA is a PC with special hardware components to 

detect and record events on the network. The software part SIMPLE is implemented 

to analyze event traces collected by MAs.

2.S Analysis of Scalability by Estimating Code’s Sensitivity

The approach we followed in this work is inspired by the work of G. Lyon et al 1995, 

and based on experimental design techniques to study the sensitivity o f the code to 

changes in its performance with respect to changes in the number o f processors or the 

problem size. This approach unlike other approaches neither needs special hardware 

measurement nor it needs a deep knowledge of the code. Yet, it provides a model that 

indicates how the system performance will change with the scaling o f system 

parameters. Moreover, it will point out the segments of code that have high effect on 

the performance. The flexibility of this approach makes it suitable for wide range of 

applications. This technique was applied to some sample codes as in (Snelick et al.
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1993), (Lyon, Snelick, and Kacker 1994) and (Lyon, Kacker, Linz 1995). The 

following chapter will give a background on experimental design techniques we used 

in this work and how it was used to estimate scalability. Our initial experiment on a 

cluster o f work-stations is also presented.
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CHAPTERS 

EXPERIMENTAL DESIGN

Experiments are essential for scientific and engineering development. Scientists used 

experiments to study an observed phenomenon and separate the effects from other 

circumstances. Engineers used experiments to assist in the development of 

manufacturing process. Products need to be tested and modified before reaching the 

market. A well designed experiment should derive the required information at the least 

expenditure of resources. This chapter introduces factorial designs and how it can be 

used to obtain the required information with minimum cost. The SPT (Synthetic 

Perturbation Tuning) approach is introduced with a small illustrative example on how 

to utilize factorial designs to analyze computer codes. The initial experiment of the 

ARPS code on a cluster of work stations is presented with the analysis of the results.

3.1 Designing an Efficient Experiment

Experimental investigation could be a long and expensive process. Experimental 

design aims to obtain the required information with high accuracy and minimum cost. 

An investigator with no planed experiments could end up with inaccurate information 

and waste of resources. Three key elements are essential for any successful 

experiment; knowledge of the process, measured response variables, and clear goals 

and objectives.
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A sufficient knowledge of the process is necessary, and this knowledge could 

be built by a sequence of preliminary experiments before going to the full experiment 

rather than studying the process deeply. These sequence of experiments aim to point 

out the significant factors that have high influence on the process. Before starting any 

experiment the response variable must be specified. The measurement of the response 

need to be quantitative, qualitative response variables are difficult to compute, and 

need to be transformed into quantitative formats before any computations can take 

place. For parallel code the total run time (wall-clock time) is usually the response to 

be measured (Crowl 1994) and (Lyon, Kacker, and Linz 1995). The goal of an 

experiment applied to parallel system could be studying the effect of changes in some 

of the systems parameters. If the parameters include the number of processors and the 

problem size then it may be used to study the scalability of the parallel system. The 

objective, in this case, would be to find the bottlenecks in the code that are not 

scalable and enhance them. Any experimenter should keep the above three elements in 

mind before starting experimentation. In the following section we will introduce the 

basic aspects of factorial desings.

3.2 Factorial Designs

Unlike one factor at a time experiments, factorial designs are powerful technique to 

study the effect of more than one factor at a time. As we will see, the number o f 

treatments grow exponentially with the number o f factors under investigation, hence 

fractional factorial designs may be used to reduce the number of treatments. We will
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State some definitions before introducing factorial experiments and how they can be 

used to study parallel systems.

3.2.1 Background and Definitions

Any designed experiment will consist o f several elements. The following definitions are 

necessary to introduce the factorial experiments. A factorial experiment is an 

experiment in which we wish to study simultaneously the effects of several factors. 

Each factorial experiment will have one or more factors to which meaningful changes 

can be made to observe their effect on the response variable. We will consider discrete 

factors were each can have / discrete levels. We may denote these levels as 0, 1,2, 

...,/-l. Also a factorial experiment will have a measured response.

Let R denote the measured response, to study the effect of factor F  on the 

response R we may compare the values o f R at different levels o f F. In most cases the 

response R is subject to other nuisance factors not included in the study. If a nuisance 

factor can be easily identified so the experiments can be classified accordingly, then 

effect of this nuisance factor can be eliminated by using block designs. When the 

nuisance factors are small and the experiments can not be classified under these factors 

then an unknown noise will be noticed in the response. This noise will appear as 

variance of R. Let the actual response without noise denoted as 6 . Then we may 

express the relation between the measured response R and the actual response as 

follows,

(3.1) R = e ^ e .
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Where gis the noise resulting from non-controllable factors .

Definition 3.1: For an experiment with m factors, each fector F, (r=l,2,

has h levels. Let /  denote the current selected level for factor F, then 

we define a treatment  ̂= ( / , , / 2,. . . , /* )  as a combination of level 

settings of factors F,, F2. ...,F„.

It is clear that the total number of treatments will be //x/^x ... x/„ Now we may rewrite

equation (3 .1) as follows

(3.2) R{t) = 9{t) + e{t).

We assume the noise is a random variable with mean zero and variance cr', that is, 

£[g(r)] = 0 and V[e{t)\ = cr* , where cr* is unknown but could be estimated Now 

we define one way to compare two levels of a factor F. We will denote the actual 

theoretical yield at treatment t, as 6{t̂  ), or for short 6, .

Definition 3.2: For a factor F a t /  levels t h e n i s  the actual yield at treatment 

t, = ( / I ) .  We compare two treatments t, and // by estimating the value of 

{6 {J,) - 6 {tj)} or (^ - ^ ) that is called the contrast between the two

treatments of F.

Also we may define the contrast between all the levels of a given factor as follows.

Definition 3.3: Let 9' = (^ ,^ ,...,6 )_ ,) be the actual responses for a factor F  

with / treatments, with each level corresponds to one treatment and 

a' = (ao ,a ,,...,a ,.,)the  treatment vector of F  such that = 0.
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Then we say that a '9= {a^d  ̂ ) is a contrast between

the 6 , at all the treatments of the factor F.

Before describing a factorial experiment using the above definitions we need to

introduce Hadamard matrices. This type of matrices is related to factorial designs at

two levels as we will see shortly.

Definition 3.4: Let a ' = and 6' = (6„,6, , . be two

vectors, then a and b are said to be orthogonal if the inner product of 

the two vectors is equal zero, that is 

a ‘b = +a,ô,+-"+a,_,6,.,) = 0 .

Definition 3.5: A squared matrix H  of order n whose entries are +1 or -1 is 

called a Hadamard matrix of order n if each two rows are orthogonal. 

That is HH' = n l , where /  is the identity matrix of order n.

We write a Hadamard matrix of order n -T ' as H„. We will use “+” and to denote

the matrix element as abbreviation of “+1” and “-1”. The following are some examples

of Hadamard matrices:

+ + 

+  -

+  -h  +  4*

+  —  +  —

+  +  —  —

+  -  -  4 -
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H, =

+ + + + + + + + '

+ - + - + - + -

+ + - - + + - -

+ - - + + - - +

+ + + +

+ - + - - + - +

+ + - - - - + +

+ - - + - + + -

Definition 3.6: Let A he a. matrix of size mxn, and B a matrix of size pxq  the 

direct product of the two matrices A and B written as (A0B) is defined

by;

(3.3) A<S>B =
a „ 5  a,2B

We can obtain a Hadamard matrix //„ by taking the direct product oi Him  times. For 

example, = H\^Hi,  also H-i = We may find other methods to build

Hadamard matrices in (Hedayat and Wallis 1978) and (Drouin 1993).

Now using the above definitions we will describe a small factorial design and 

how useful information can be obtained by simple calculations. Consider the case 

where each factor is at two levels. The two levels are denoted as “-1” and “+1” or for 

short we may write and Let F\ and Fj be two factors with /, and I2 levels, 

where h = h = 2. Let a ' =(+,+,+,+), a | = (+ ,- ,+ ,-) , = (+ ,+ ,-,-), and

= (a, « flj) ' = (+ ,-,-,+ ), where <2, is the element by element product o f the
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two vectors (also called the direct product). Let Û’ where 0. is the

actual response at treatment Then the following contrasts are defined,

P

A  = 4 ^ ,

and >6(2 = ^ i2̂ -

Ignoring a constant multiplier, we will use ;0b to find the global mean which is denoted 

also as //. We will use the contrasts P\ and ^  to estimate the main effects o f factors 

F\ and F2 respectively. The last contrast P\2 will be used to estimate the interaction 

effect of the two factors F\ and Fj. We may write this design in a matrix format using 

Hadamard matrix of order 4 as follows;

(3.4)

+ -f + + ' 0 :
p + — + — p
p + + — — 0 ,

+ — — + p .

3.2.2 Factorial Designs at Two Levels

To perform a general factorial design an experimenter selects fixed number o f levels 

for each factor, and then run the experiments with all possible combinations. As we 

have seen before, for an experiment with m factors, where factor F  has /, levels the 

total number of combinations is /, When each factor has exactly two

levels it is called two level factorial design. A two level factorial design with m factors
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has I” treatments. The two levels o f each factor will be denoted with for the low 

setting and “+” for the high setting. The contrasts we have defined before are used to 

estimate the main effects and interaction effect as we will see later.

Consider a design with three Actors, F\, F2, and F3 at two levels each. The 

total number o f treatments required for a full factorial design will be 2  ̂= 8 treatments. 

The design shown in Table 3-1 contains the columns corresponding to the treatment 

vectors o f the main factors. The signs in each column are said to be in the standard 

order. At each row representing a treatment t, a response corresponds to that 

treatment. A design is said to be in standard order if the first column consists of 

successive minus signs and plus signs, the second column consists o f successive pairs 

of minus signs and plus signs, the third consists of four minus signs followed by four 

plus signs, and so on. The following is a general definition of the standard order

Definition 3.7: A two level full factorial design with m factors is said to be in 

standard order if column / consists of 2'*‘ minus signs followed by 2"' 

plus signs until the column is full.

3 0



Treatment Fx Fz Fg 9
h - - -
h + - - ^2
h - + - ^3
ti + + - e.
h - - + 9,
h + - +  Os
h - + + 6,
h + +

Table 3-1: Full Actorial design

with three factors in

standard order.

Consider the two treatments t\ and in Table 3-1, 

t\ - - - 6̂

Î2 + - - 9̂

it is a one factor at a time experiment where we change the level of F, with contrast 

^  . Also the treatments and U, and /e, and /? and /g will have the contrasts

9^-9^, 9^-9^,  and 9̂  - 9 ^  These are four estimates of the effect of F\. The average 

of all the estimates will be

(3 5) ^

or we may write

„  (^ 2  +  ^4 +  ^6 +  ^8 )  )
(3.6) A = -----------; -----------  4----------
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which is the average o f the four responses when Fi was at the high level “+” minus the 

average of the four runs when the F, was at the low level The numerator in (3.5) 

is the contrast between the 0̂ , while the denominator is half the number of runs. We 

may now define the main effect, interaction effect, and the mean as follows.

Definition 3.8: For a factorial design the merin effect of a factor F  is the 

contrast between the responses of all treatments divided by half the 

number o f runs. We write

a 'e  
(3 7)

Where n is the number of treatments, and a ' 6  is the contrast obtained from the inner 

product of a\ the transpose of the treatment vector of factor F, and 9 the response

vector.

Definition 3.9: For a factorial design with m factors and n treatments, let a 

and b be the treatment vectors for factors F, and Fj respectively. Then 

the interaction vector of the two factors is a new vector c obtained 

from the direct product of a  • 6 . That is c = (a,6%, ..., a„b„).

The above definition could be generalized for more than two factors. For example, the

interaction vector for the three factors F„ Fj, and Ft with treatment vectors a, b, and c

will be the direct product a»b»c .  Now we define the interaction effect as follows

Definition 3.10: For a factorial design the interaction effect of m factors F\, 

Fj, ...,F„ is the contrast o f the interaction of theses factors divided by 

half the number of treatments. This interaction is said to be of order m. 

The contrast of the interaction is obtained from the dot product of the
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interaction vector a by the response vector 6 . We write the interaction 

effect as

0 -8) A l.»

The mean, however, is defined as

Definition 3.11: For a factorial experiment with m factors and n treatments the 

global mean (or the mean) is defined as the sum of all responses 

divided by the number of treatments. That is

(3.9) fi =
n

The main and interaction effects will be used as indicators to the important factors. 

One way to judge the importance of a factor is to pickup the factors with the highest 

effects. After picking these significant factors the magnitude and sign o f the effects are 

considered in the analysis. However, this method may lead to wrong conclusions. 

When the uncontrolled noise is high the values of the effects could be due to the noise 

effect and not a real effect of the factors. A better way to judge theses effects is to 

compare them against the standard error interval. Only the effects and interactions 

found to be out o f this interval will be considered significant.

3.2.3 Estimating the Standard Error

The experimenter could use the high order interaction effects as estimates of the 

standard error under the assumption that the high order interactions are negligible. 

This may happen when the experimenter had a high confidence that the high order
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interactions does not exist in the process under study, and the values of these effects 

are only due to the noise effects. Nonetheless, this assumption does not always hold, 

and when the replication of the experiments is possible we could have a better estimate 

of the standard error. If the experimenter could replicate each treatment r times, then 

the total number o f runs would be rxn. The variation between the replicates at each 

treatment is used to estimate the standard deviation for that treatment. Then we 

estimate the standard error for the experiment based on the standard deviations o f the 

treatments.

If we consider each replicated treatment as a set of experiments with the same 

conditions then let n be the number of treatments, and r, is the number of replicates 

for treatment where / = 1,2, ..., n. Let v, = r,-l denote the degrees of freedom o f 

the fth set. The variances,' is an estimate of cr  ̂ with v, degrees of freedom. The 

pooled estimate o f all the runs variance is

(3.10) S' =
V, +v,+--+v„

When V = V, = v, =•••= , then

m l
nv 

y  s-
(3.11)
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In equation (3.6) the main effea was represented as the difference between the 

average of low runs and the high runs. We will replace the actual response^ by the 

measured response /?/, then we rewrite (3.6) as follows

( 3 . 1 2 )  A =  ; -;  •

If we denote the average o f responses at low level as R_ and the average of responses 

at high level as , then we rewrite (3.12) as follows

(3.13) A = & - &

In general each main effect or interaction is a statistic of the form

(3.14) P = R . - R .

r x n
where each average contain —̂  ■ responses, assuming independent error the variance

is given by

2

V{p) = V(R^-R_)

2 2 "i
+

r x n  r x n J

(3.15) = — O'"
r x n

where ct* is substituted by the estimate So we write

(3.16) V{p)^
r x n

and the variance for the mean
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(3.17)
r x n

The standard error SE = and the mean standard error . As we

mentioned earlier, when comparing the main effects and interactions effects with the 

standard error interval, denoted SE, we use 2SE corresponding to 95.45% under the 

normal distribution curve or 3SE corresponding to 99.73%. According to the central 

limit theorem the error noise is very close to the normal distribution when the runs are 

randomized and the number of runs is reasonably large.

3.2.4 Fractional Factorial Designs

Since the number of runs of a two level factorial design increases geometrically as m 

the number of factors increases, it is necessary to find a reduced set of treatments. 

Half-fractional factorial design are used to obtain the required information about the 

process with m factors in 2"̂ * treatments. The cost, however, is to lose some of the 

high order interactions assuming they are negligible.

An example of half-fractional factorial design with m=3 factors is constructed 

using H2 Hadamard matrix. Let F\, Fz, and F3 be three factors, then we rewrite (3.4) 

as follows

(3.18)

f ' ’+ + + +'A'A + — + —
A + 4- - -
.A. 4- — — +A .
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where the treatment vector for F3 is equivalent to the interaction vector o f the two 

factors F\ and Fz . The number of treatments is 2^* which is half of the number o f 

treatments in 1? full factorial design. The design is constructed by assuming the 

interaction effectneg lig ib le  so could be aliased with it.

Treatment Fi F2 Fs R

h + + + Ri

h - + - R2

h + - - R3

U - - + R4

Table 3-2: An example of 2^' 

fractional factorial design.

The orthogonality of Hadamard matrices and the similarity between the entries o f 

Hadamard matrix and two level factorial designs is the motivation to use Hadamard 

matrices to construct full and fractional factorial designs. The fractional factorials are 

usually described by the number of factors and the resolution of the design. For an 

integer k, a fractional factorial design is said to be of resolution 2A+1 if it satisfies the 

condition that all effects of order k or less are estimable whenever all effects o f order 

higher than k  are assumed to be zero. A fractional factorial design is said to be of 

resolution 2k if all effects of order ^-1 or less are estimable whenever all effects of 

order Ar+l or higher are assumed to be zero. It have been proved that the existence o f a 

Hadamard matrices o f size implies the existence of orthogonal fractional design of
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resolution III for Ak-\ factors each at two levels (Hedayat and Wallis 1978). The 

design in Table 3-2 is of resolution III, denoted 2 ^ ',  the subscript denotes the 

resolution of the design. The designs of resolution HI, IV, and V are of our interest 

since they are very common. For designs of resolution III no main effect is aliased with 

any other main effect, but they are aliased with two factor interactions and some two 

factor interactions may be aliased with each other. In the design of resolution IV no 

main effects are aliased v.ith each other or with two factor interactions, but two factor 

interactions are aliased with each other. Designs o f resolution V will have no main 

effect or two factor interaction aliased with any other main effect or interaction, but 

two factor interactions are aliased with three factor interactions.

3.2.5 Building a Linear Model to Describe the Process

The computed effects can be utilized to build a linear model for predicting the 

performance with change of the factors. Let F\, F2, F„ be the factors involved in 

the study with estimated effects P\, P2, Pm\ and interaction effects fin, Pn, ..., 

P \2 .m- Let d(t) be the actual response at treatment t = ft be the estimated

global mean, and SE the estimated standard error, then

(319) m * s e

This similar to Taylor’s expansion when the second and higher order derivatives in the 

Taylor's series are assumed to be zero.
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3.3 Design of Experiments to Analyze Parallel Codes

The full and fractional factorial designs at two levels were introduced in the previous 

sections, this section explains how these factorial designs can be used to tune parallel 

code. The goal of the experiment is find out how to increase the performance of the 

parallel code when the number of processors increased. However, increasing the 

performance can be done if the bottlenecks of the code are identified, and then 

minimized or eliminated. The question is what factors could be used when analyzing 

parallel codes.

3.3.1 The Use of Synthetic Perturbations

The technique used by Snelick et al. 1993, is a promising approach to identify the 

sources of the poor performance in the parallel code. The SPT (Synthetic Perturbation 

Tuning) technique introduces the notion of inserting artificial delays into the source 

code and apply experimental design techniques to capture the effects of these delays 

on the performance (Lyon, Snelick, and Kacker 1994) and (Lyon, Kacker, and Linz 

1995). The logic is that if a delay decrease the performance then improvements of the 

code will result in improved performance. The main problem here is choosing these 

segments of the code where delays should be inserted. Screening is used to identify the 

segments o f code that have a significant effect on the performance. The knowledge 

about the structure of the code will help, also, in choosing the suspected segments of 

code. For large code the investigator may need to do some preliminary experiments
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(screening), followed by experiments that focus on the factors that appeared to have 

significant effect on the performance.

The synthetic perturbations and factorial designs will be used together to 

provide an economical way for tuning the code. We need a set of factors that affect 

the performance, also we need a measured response. Most of parallel codes lack 

adjustable parameters to be used as experiment factors, synthetic perturbation is a 

good economical alternative to simulate local adjustable efficiency changes. The 

inserted delay can be easily inserted and removed without changing the original code. 

Each synthetic perturbation is an extra code that causes delay and should have no 

effect on the computations. The inserted delay should be large enough to be 

distinguished from the background noise, yet the delay should not be significantly large 

to slow the system. The amount of delay needed could be determined after some initial 

small experiments.

Since scalability is related to the measured performance when the size of the 

machine or the problem size are scaled, the experiment should be designed with the 

machine size and problem size as a factors along with the other factors representing 

segments of the code. The factorial design will be used to isolate important factors, 

and to map a relation between the input factors and the output response using a linear 

model
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3.3.2 Example of Factorial Experiment with Parallel Code

Given a parallel program we want to test its scalability. First, we find which segments 

o f the program are potential bottlenecks. At each segment a delay is inserted which 

can be switched on or off. Each artificial delay will be associated with a factor. The 

factor may be set at one of two levels, low level denoted when no delay is applied 

and high level denoted when delay is applied. The number o f processors used to 

run the parallel program and the problem size are factors as well. For the factor 

associated with number of processors, the sitting of this factor to low will 

correspond to P  processors, and setting to high “+” corresponds to F'  processors, 

where P < P' . If the scale factor is associated with the problem size the low setting 

will represent small problem size N  and high setting will represent the scaled 

problem size FT,  where N  < N\  After running the experiment the investigator selects 

the significant factors, and perform more experiments to find which parts of the code 

affects scalability.

Let Fi, and be three factors where the factors F\  and Fz corresponds to 

two different segments of the code with inserted delay, and the factor Fs corresponds 

to the number of processors. Table 3-3 shows the 2̂  full factorial design, with r  = 2, 

for two replicates.
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F, Fi Fs R\ F2 Total Average R

- - - 19 20 39 19.5

- - + 10 8 18 9

- + - 17 21 38 19

- + + 9 8 17 8.5

+ - - 18 20 38 19

+ - + 9 9 18 9

+ + - 19 18 37 18.5

+ + + 9 9 18 9

Table 3-3: Responses o f an experiment applied to a 

parallel program with three factors.

The settings of factors Fi  and F2 to represents no delay is applied, and the sitting 

to represents applied delay at that segment of code. The settings of the third factor 

F3 at low when the number of processors P = 4,  and at high “+” when F ' = 8 

processors were used. Each row of the Table 3-3, corresponds to one treatment of the 

experiment. The first row means to run the program without delay and using 4 

processors, while the second row means to run the program without delay using 8 

processors and so on. The order in which the experiments were performed is not the 

same as it appears in the table. The experiments were run in random order to ensure 

the normality o f noise. The response to be measured is the total elapsed (wall clock) 

time. The average response of each treatment is in the last column of the table. We 

now estimate the effects of the factors following the definitions given earlier and using 

the average response at each treatment instead of the actual response.
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^ 19 + 9 + I8 i  + 9 - 1 9 .5 - 9 - 1 9 - 8 i
A = --------------- :---------------

= -0.125

19 + 8.5+183 + 9 - 1 9 5 - 9 - 1 9 - 9
A =

= -0375

^ 9 + 8 3  + 9 + 9 - 1 9 3 -1 9 - 1 9 -1 8 3
 ; ------------------------

= -10.125

The interaction effects were estimated in the same way

193 + 9 + 183 + 9 - 1 9 - 8 3 - 1 9 - 9
Az =

= 0.125

193+19 + 9 + 9 - 9 - 8 3 - 1 9 - 1 8 3  
i ---------------------

= 0375

19.5 + 8.5+19 + 9 - 9 - 1 9 - 9 - 1 8 3  
  ---------------------

= 0.125

9 + 19 + 19 + 9 -1 9 .5 -8 3 -9 -1 8 .5
Azs = --------------- ; ---------------

= 0.125

The estimated mean will be

19.5 + 9 + 19 + 83 + 19 + 9 + 183 + 9
--------------------- i ---------------------

-  13.938

The above effects and interactions are compared against the standard error. If the 

value is out of the standard error interval 2SE, then the factor is considered significant.
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otherwise it could be a result of the background noise. The standard error was 

estimated by estimating

4(1.688)
2 x 8  

= 0.422

then the estimated standard error

SE = VO.422 
= ±0.65

Similarly the estimates for the mean

(1.688) 
2 x 8  

= 0.106

V{M) =

then the estimated standard error is Vo.106 = ±0326.

The above estimates does not show any significant interaction out o f the error 

interval 2SE. The high order interactions ( as the interaction m Ihis example) could 

be used as an estimate of the standard error if there is no replications. It is important to 

check if there is an interaction before interpreting the main effects. The main effects of 

factors F\ and are within the error interval. The effect of F-i, the scale factor, is 

large and out of the error interval. The negative sign indicates that scaling the number 

of processors will decrease the response that is the run time in this case. The linear 

model corresponding to the above process

6 {t) = 13.94 -  0.13fj -0.38F, -  lO.OFj +01.3f;, +038f;^+0.13/^ + 0.13/^^ ±0.65.
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3.4 Initial Test of ARPS Code

This section explains how initial experiments were applied to ARPS and the 

preliminary results of the initial study on a cluster of work stations. We start with 

some information about ARPS. More detailed information can be found in 

(Droegemeier et al. 1992), (Xue et al. 1995) and (Sathye et al. 1995).

3.4.1 The Advanced Regional Prediction System (ARPS)

The Advanced Regional Prediction System (ARPS) was developed by group of 

researchers at the Center for Analysis and Prediction of Storms (CAPS), University o f 

Oklahoma. ARPS model is one of six major areas under CAPS program. The 

development o f the ARPS model started in July, 1990 with ARPS version 1.0, but the 

first formal release was version 3.0 in September, 1992.

The ARPS model is a three-dimensional, non hydrostatic code designed for the 

prediction of small scale, short duration events like thunderstorms, snow bands, and 

downslope windstorms. The location of the events range from 1 to 50 kilometers, and 

timing of events ranging from 5 minutes to 1 hour. The developed model included 

governing equations for momentum, heat, mass, water substances, turbulent kinetic 

energy, and the equation of state. The model was developed at CAPS with three main 

goals: sufficient adaptability to new data assimilation strategies, ease of use, and 

suitability for variety of computing platforms. Moreover, the model was designed to be 

suitable for scalable parallel processors, which makes it a good target for the 

scalability study. Because the code is huge (more than 280 subroutines distributed in
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30 files) and was developed by more than 30 scientific and support personnel over the 

last six years, the approaches mentioned earlier (see Chapter 2) are difficult to apply if 

not impossible. The SPT approach is the best economical way to test scalability of this 

code.

Figure 3-1: (a) The x-y decomposition with light shade representing 

the inner border grid point to be send to neighboring 

processors, and the darker shade represents the grid points to 

be received from the neighboring processors, (b) An example 

of 3x3 mesh of processors with wrap-around connections.

The parallel version of ARPS uses two dimensional domain decomposition where the 

grid space was partitioned along the x and ^  axis, as in Figure 3-1. The shaded region 

is the data shared with other neighboring processors. The shared region need to be 

exchanged after each time step ( Johnson et al. 1994) and (Sathy et al. 1995).
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3.4.2 The Initial Experiment

The parallel version of ARPS was run on a cluster of HP9000 model 715/64 

workstations connected with 10 mb/sec Ethernet network. The processors are 

assumed to be arranged in a mesh with wraparound connections as in Figure 3-1(b). 

Each processor is assigned a subset of the grid points of the whole domain, after each 

time step the boundary values are exchanged with the neighboring processors. For this 

experiment we used the PVM (Parallel Virtual Machine) version of ARPS.

Five factors where selected for this initial study plus the scale factor. The scale 

factor, denoted Fq, was set to for 2x2 mesh, and set to “+” for 3x3 mesh. The 

other factors Fu F2, F3, F4, and F5 represent different segments of the ARPS code 

which are believed to be representative o f other similar segments. The factors are set 

to low level when no delay was applied to that segment o f code and to high level 

“+” when delay was applied. The experiment was run in random order with r  = 5 

replicates and m = 6  factors with total of 5x2* = 320 runs.

Since the ARPS model has many adjustable parameters to be set before 

running the code, these parameters were fixed during this study to the default values, 

except for the model run time and the grid size which are set to values within the time 

and memory space limits. Before selecting the factors the calling tree o f the system 

was obtained to aid in selecting the code segments to work as factors for this 

experiment (see Appendix A). The communication patterns of the subroutines 

exchanging the boundary conditions were considered also in selecting the factors. All
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the selected factors except F; represent subroutines that were executed (called) during 

the current runs of the system. The subroutine where Fs was located was not called 

under the current settings of ARPS parameters. We expect that the effect o f this factor 

will be insignificant. For these set o f experiments we set the model run time to 120 

seconds.

3.4.3 The Results of the Initial Experiment

Table 3-4, shows the main effects when running on 2x2 and 3x3 meshes along with 

the main effects of the overall runs. The last column show the interaction between the 

scale factor and other factors, this column should be examined first before the main 

effects can be examined. It is clear that all interactions are within the error interval.

Factor Name

Main Effect 
at 2x2 

mesh size

Main effect 
at 3x3 

mesh size
Overall 

Main Effect
Interaction 
with Scale

F, AD VU 3.35 3.91 3.63 0.28

Fz ADVCTS 6.77 6.06 6.42 -0.35

F] BCSU 68.92 67.24 68.08 -0.84

F, BOUNDU 9.9 10.46 10.18 0.28

F; SLOVTKE -3.5 0.89 -1.33 2.22

Table 3-4: Main and interaction effects with scale factor for the initial experiment 

on a cluster of work stations with fi = 113.71 and SE = ±1.34.

The mean ft = 113.71 and the standard error estimated to be SE = ±1.34. The 

main effect of Fo was )0o=-12.46 is out of the error interval 2SE. However, the
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average decrease gained in run time from using five more processors is no more than 

13 seconds indicating no point o f using larger size mesh without modifying the code to 

be more scalable or enhance the underlying architecture, the change in response is 

within the experimental noise margin.

The same may be said about the effects of remaining factors except F3 which 

have high effect ;%=68.08 which is out of the standard error interval and much larger 

than other effects. The high effect of F3 ( subroutine BCSU ) suggest that any 

enhancement for this subroutine may decrease the overall response time. The next 

factor was F , with effect ^4=10.18. The factor F5 corresponding to subroutine 

"SOLVTKE" is within the 2SE error interval as expected.

3.5 Summary

In this chapter the experimental design technique used in this research is explained. 

The factorial designs are used to study the effect of more than one factor at a time. 

The fractional factorial designs could be used when the number of factors involved in 

the study grows and hence the number of treatments grows exponentially.

The Hadamard matrices were used to generate factorial designs because of the 

similarity in the entries and their orthogonal design. We presented a small example on 

how to estimate the effects and to map a relation between these effects an the response 

via a linear response model.
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Also, we introduced ARPS and our initial experiment on a cluster of work 

stations. The next two chapters will present the results o f our experiments on a shared 

memory machine CRAY J90 and a distributed memory machine the IBM SP2.
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CHAPTER 4 

ANALYSIS OF ARPS CODE ON CRAY J90

At the end of Chapter 3 an initial experiment on a cluster of work stations was 

introduced. The experiments in this chapter were conducted on the shared memory 

machine the CRAY J90. We classified the experiments in this chapter into two major 

parts. In the first part we scaled the problem size, that is covered in Section 4.3, and in 

the second part we scaled the machine size which is covered in Section 4.4. We further 

analyzed the interaction in section 4.5, and examined the effect of using large delay in 

section 4.6. In section 4.7 we linked the speedup to scalability using interaction plots. 

Before going into the details o f the empirical work and the analysis of the results, we 

will give a brief background about the environment under which we conducted the 

experiments, and the CRAY J90 used in this study.

4.1 The CRAY J90

The study was performed on the CRAY J90 with eight vector processors, and 2GB 

global shared memory divided into 64 interleaved memory banks. Under the current 

configuration of the system a parallel job is not guaranteed a fixed number of 

processors if other jobs are running in the system. To ensure that a parallel job will get 

the required number of processors until its completion, and to get accurate 

measurements of the running time we used a special exclusive queue to run our
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parallel jobs that require more than one processor. This queue will allow only one job 

at a time, and all jobs on the other queues will be suspended while the exclusive queue 

is running.

To perform the experiments we used both the serial and parallel versions of 

ARPS. The serial version was compiled using CRAY FORTARN 77 compiling system 

“cf77’ with the option “-Zv”, while the parallel version was compiled with the “-Zp” 

compiler option. The first option will compile the code for maximum level of 

vectorization but with out auto multitasking that is known as autotasking. The second 

option will compile for both maximum level of vectorization and autotasking that will 

automatically enable the code to run on more than one processor Details about the 

compiling system are in (Cray 1993).

4.2 Description of the Experiments

This study consisted of two major parts. We analyzed the effect of scaling the problem 

size while using one vector processor in the first part, and the effect of scaling the 

machine size by changing the number o f processors in the second part. In each of the 

two parts, 13 factors were involved where Fo is the scale factor as in Table 1. As it 

was mentioned earlier the measured response was the wall-clock running time. For all 

the experiments a fractional factorial design of resolution 4 was used with 32 

treatments, each treatment was replicated three times. The fractional design is shown 

in Appendix B.
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4.3 Scaling the Problem Size

In the first part the scale factor Fo represented the scaling o f the problem size (the grid 

size in this case) while running on one vector processor. This part involved two 

experiments. In the first experiment the scale factor Fo was set at low level for 

67x67x35 grid size, and set at high level “+” for 256x256x35 grid size. The other 

factors represent selected segments of the ARPS code with synthetic perturbations. In 

the other experiment the problem size scale factor Fq was set at low level for 

128x128x35 grid size, and set at high level for 256x256x35 grid size.

The data in Table 4-1, summarizes the results of the first experiment. It can be 

observed from the table that the grid size scaling factor F q had a main effect 

/%=2052.94, indicating a possible increase o f about 34 minutes (2052 seconds) in run 

time when the grid size is scaled to 256x256x35. However, there were no significant 

interaction effect between the scale factor and other factors.

The factors Fg and Fg seem to have a high effect out of the error interval. 

These two factors, Fg and Fg, represent the subroutines “BCSU” and “BCSV” which 

set the boundary conditions for the w-velocity and v-velocity components respectively. 

No other main effects seem to be real, since they are within the error margin.
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Factor Name Main Effect Interaction with Scale

F o Grid Size 2052.94 N/A

Fi ADVCTS 9.845 -10.72

F2 AD VU 2.98 -1.06

Fi A D W 13.79 9.17

F, ADVW -2.2 -5.47

Fs BCKMKH 5.03 -1.68

Fg BCS2D -1.83 -2.78

F 7 BCSCLR 13.18 -1.24

F g BCSU 175.27 -0.83

F , BCSV 178.83 3.65

F ,o BOUNDU 12.25 4.49

F u BOUNDV -0.75 -7.71

F,2 JACOB -8.06 -8.09

Table 4-1: Main and interaction effects for the CRAY experiment 

while scaling grid size from 67x67x35 to 256x256x35.

The standard error 5’£=±12.5 and the mean //=1430.71.

In the same way, the second experiment was performed where the grid size was scaled 

from 128x128x35 to 256x256x35. As can be seen in Table 4-2, the main effect of 

the grid size scaling factor was y3(^1673.28. This indicates less change of effect with 

small change in problem size. It is clear from the tables that no significant interaction 

effect between the scale factor and other factors. The effect of the factors will remain 

the same ( almost unchanged ) regardless of the problem size.
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Factor Name Main Effect Interaction with Scale

F-q Grid Size 1673.28 N/A

F, ADVCTS 11.81 -12.69

F z AD YU 4.86 -2.94

F 3 A D W 14.66 8.30

F 4 ADVW -2.34 -5.33

F ; BCKMKH 5.48 -2.12

F s BCS2D -3.89 -0.72

F 7 BCSCLR 13.76 -1.82

F g BCSU 175.51 -1.07

F , BCSV 178.78 3.70

F ,o BOUNDU 12.98 3.76

F „ BOUNDV -0.84 -7.63

F ,2 JACOB -8.15 -7.99

Table 4-2: Main and interaction effects for the CRAY experiment 

while scaling grid size from 128x128x35 to 256x256x35.

The standard error S£'=±12.52 and the mean /f=1620.55.

Following the above results, three additional experiments with full factorial design 

were performed to investigate the effect of the two factors Fg and Fg when isolated 

from other factors. These experiments will estimate the main effects as well as all the 

interactions.

The first experiment scaled the grid size from 67x67x35 to 128x128x35. Each 

treatment in this experiment was replicated twice. The results of this experiment are 

shown in Table 4-3. F l and R l are the measured wall-clock run time in seconds for 

the two replicates and R is the average of these two. The estimated main effect of
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grid size scaling factor ̂ o=39I.042, the estimated effects of the other two fectors were 

)8g=175.218 and ;%=176.022. The estimated standard error was 5£=±1.97 and the 

mean was estimated to be /f=565.47I. There were no significant interaction effects. 

The results for the other two experiments are shown in Tables 4-4 and 4-5. The 

summary of the three experiments is given in Table 4-6.

Fo “Grid Size” Fg “BCSU” Fg “BCSV” R\ R2 R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.449 545.484 545.492

+ - - 582.291 588.367 585.329

+ - + 756.036 768.746 762.391

+ + - 756.097 765.497 760.796

+ + + 931.959 938.947 935.453

Table 4-3: The full factorial design and the measured responses on CRAY when 

grid size changed from 67x67x35 to 128x128x35.

We may observe that the effect of grid size is growing linearly with the scale factor. 

Also the experimental error is getting larger with large grid size as a result of longer 

running time that allows more noise to be encountered. The estimated effects for 

factors Ft and were almost the same which confirms that the problem size has no 

interaction with these two factors. In other words no matter how the grid size 

changes, the main effect of F% and F9 are high.

5 6



Fo “Grid Size’’ Fg “BCSU” Fo “BCSV” R\ R l R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.499 545.484 545.492

+ - - 2327.574 2217.783 2272.679

+ - + 2497.128 2398.826 2447.977

+ + - 2480.403 2411.221 2445.812

+ + + 2574.366 2692.634 2633.500

Table 4-4: The full factorial design and the measured responses on CRAY when grid

size changed from 67x67x35 to 256x256x35.

Fo “Grid Size” F g  “BCSU” F , “BCSV” FI Rl R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.449 545.484 545.492

+ - - 2327.574 2217.783 2272.679

+ - + 2497.128 2398.826 2447.977

+ + - 2480.403 2411.221 2445.812

+ + + 2574.366 2692634 2633.500

Table 4-5: The flill factorial design and the measured responses on CRAY when grid 

size changed from 128x128x35 to 256x256x35.

When we compare the mean //=1409.971 in the second column of Table 4-6 with the 

mean in Table 4-1, //= 1430.71 we notice that they are very close. This emphasizes that
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the two factors F% and F9 are dominant. This is also true about the mean in the third 

column of Table 4-6 and that in Table 4-2.

Grid Size Change from 67X67X35 

to 128X128X35

from 67X67X35 

to 256X256X35

from 128X128X35 

to 256X256X35

Effect of Fo 391.042 2080.041 1689

Effect of Fj 175.218 177.750 176.796

Effect of F9 176.022 178.838 178.676

Interaction effect yS» -0.954 1.578 2.532

Interaction effect ̂ -0.162 2.655 2.817

Interaction effect ^ -1.238 2.461 2.496

Interaction effect 0.036 3.734 3.699

Standard Error (5£) ±1.97 ±29.58 ±29.60

Mean (^) 565.471 1409.971 1605.492

Table 4-6: Summary of the results obtained from the three full factorial 

experiments when scaling the grid size.

4.4 Scaling the Number of Processors

The second part of this study required scaling of the machine size. Two sets of 

experiments were performed in this part. The first set was performed at 67x67x35 grid 

size. The number o f processors in this set was scaled from one processor to two 

processors in one experiment, and from one to four processors in the other. The 

second set of experiments was performed at 128x128x35 grid size and the number o f 

processors was scaled in the same way as the first set. We noticed that the standard
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errors in the second part were smaller that allows other main and interaction effects to 

be out o f the error interval as we will see soon.

4.4.1 Scaling the Number of Processors at 67x67x35 Grid Size

The results in Table 4-7, represent the main effects and interaction effects with scale 

factor when the machine size was scaled from one to two processors at grid size 

67x67x35.

Factor Name Main Effect Interaction with Scale

F o Machine Size -97.01 N/A

F , ADVCTS 20.69 1.57

F z AD VU 4.49 -0.67

F3 A D W 4.65 -1.10

F4 ADVW 3.41 0.12

F ; BCKMKH 7.87 -0.14

F f i BCS2D 0.80 -0.66

Fn BCSCLR 14.39 0.95

F g BCSU 175.75 0.01

F , BCSV 175.40 0.13

F ,o BOUNDU 7.98 -0.95

F „ BOUNDV 7.10 0.59

F u JACOB 0.01 0.21

Table 4-7: Main effects and interactions with scale for the CRAY 

experiment when scaling machine size from 1 to 2 

processors with grid size 67x67x35. The standard error 

5£=±0.48 and the mean //=354.8.
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The scale factor effect was P(f=~91.Q\. This means on average 97 seconds decrease in 

wall-clock run time could be achieved by adding one more processor at this grid size. 

The factors F% and Fg are the highest with estimated effects /9g=175.75 and ^^175.40.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -138.87 N/A

Fx ADVCTS 20.70 1.57

F2 AD YU 4.45 -0.70

F , A D W 4.62 -1.12

F , ADVW 3.48 0.20

Fs BCKMKH 7.73 -0.28

F , BCS2D 0.89 -0.67

F i BCSCLR 14.18 0.74

F , BCSU 176.02 0.28

Fg BCSV 175.81 0.54

F,0 BOUNDU 8.15 -0.78

Fxx BOUNDV 7.17 0.65

F n JACOB 0.06 0.25

CRAY experiment while scaling machine size from 1 to 4 

processors with grid size 67x67x35. The standard error 

5£=±0.46 and the mean //=333.87.

The effect of scaling the machine size from one processor to four processors, in Table 

4-8, for the same problem size was >9o=-138.872, promising a decrease of about 139 

seconds in the run time when using four processors or we could say 46 seconds per
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additional processor. These results indicate that the code is scaling with number o f 

processors. However, this scalability is not linear to the number of processors. In both 

experiments, besides the effects o f Fg and F 9 the effects of factors Fu Fz, Fj, F«, F 5,  

F 7,  Fio, and Fu are now out o f the error interval 2SE.

4.4.2 Scaling the Number of Processors at 128x128x35 Grid Size

In the second set we used 128x128x35 grid size. Similar to the previous set of 

experiments the machine size was scaled from one processor to two, and from one 

processor to four. The results in Table 4-9, were obtained when scaling machine size 

from one processor to two processors. The effect o f the scale factor ^o=-I67.825 

promises a possible run time reduction of 168 seconds. On the other hand, when 

scaling the number of processors from one to four the effect of scale factor was 

>3o=-349.51 as we can see in Table 4-10. An average o f 117 seconds reduction in run 

time per additional processor.

The effects of scale show a good scalability of ARPS on the CRAY especially 

with the large grid size. The two factors Fg and Fg may catch our attention since they 

have much larger effect than other factors. The interactions with scale are not far out 

o f the error interval, but a closer look at these interactions is desired. The following 

section provides further analysis of the interactions appearing in Table 4-10.
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Factor Name Main Effect Interaction with Scale

Fo Machine Size -167.83 N/A

Fx ADVCTS 28.84 2.71

Fi AD YU 7.85 0.72

Fs A D W 0.68 -6.04

F, ADVW -1.25 -4.69

Fi BCKMKH 10.48 3.05

Fe BCS2D 1.60 3.58

F t BCSCLR 20.51 4.11

Ft BCSU 180.33 4.91

Fg BCSV 173.58 -2.90

F,o BOUNDU 5.18 -3.39

Fu BOUNDV 0.97 -3.52

F u JACOB -3.81 -0.88

Table 4-9: Main effects and interactions with scale for the CRAY 

experiment while scaling machine size from I to 2 

processors with grid size 128x128x35. The standard error 

5£=±0.44 and the mean //=701.34.
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Factor Name Main Effect Interaction with Scale

Fo Machine Size -349.51 N/A

F, ADVCTS 28.62 4.11

Fz ADVU 0.60 -7.20

F3 A D W -0.25 -6.61

F4 ADVW -1.84 -4.83

Fs BCKMKH 2.30 -5.29

Fe BCS2D -6.54 -3.36

Ft BCSCLR 20.54 4.95

Ft BCSU 181.42 4.83

Fç BCSV 180.60 5.52

F,o BOUNDU 13.44 4.21

Fu BOUNDV 1.99 -4.80

Fn JACOB 5.22 5.38

Table 4-10: Main effects and interactions with scale for the 

CRAY experiment while scaling machine size from 1 to 4 

processors with grid size 128x128x35. The standard 

error SE=±Q31 and the mean /f=609. IS.

4.5 Interaction Analysis

This section provides further analysis of the two factor interactions with the scale 

factor Fo at 128x128x35 grid size. The number of processors was scaled from one 

processor to four processors (see Table 4-10). The fractional factorial design used in 

that experiment was of resolution 4 with 32 treatments and assumed that some of the 

two factor interactions are negligible so they can be confounded with each other. Each
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of the two factor interaction effects estimated in the experiment with the fractional 

factorial design represents the sum of the effects for two factor interactions 

confounded with each other.

One way to find which factors are responsible for these two factor interactions 

is to use two-way tables and interaction plots. The two-way table for any two factors 

in our experiment can be obtained from the responses in the fractional factorial design. 

Each corner in the two-way table represents the average of eight runs where the levels 

of the two factors under investigation are at one of the four possible combinations.

(-,+), (+,-), (+,+)} (See 3.2.2). Let the interaction of two factors Fo and F\ be

denoted as Fo*F\. The aliasing structures for the F)*F,, Fq^Fz, ... , Fq*F\2 two factor

interactions used in the fractional experiment are;

Fo*F,= F4*Fu= Fi*Fe = F7*Fg = f^ 'F ,o  

F)*Fz = F,*F,o = F%*Fn = F6*Fg = Fo^Fn 

Fq*F3 = F<*Fg = F5*Fo = Fs^Fio = Fi*F\\

Fq*Fa = Fi*Fii = Fz*F;o = Fs*Fg = Fs^Fa 

Fo*Fs = Fi*F6 = Fz^F? = F3*Fç = F»*Fi2 

F o * F 6 =  F i * F s  =  F z * F g  =  F 3* F i o  =  F i i * F i 2  
Fq*Fi = F i * F g  = F2*Fj = F3*Fii = Fio*Fi2 

F o * F g  =  F , * F 7  =  F z * F 6  =  F i *Fa =  F ç * F i 2  
F<j*F<) = Fi*Fio = Fz*Fn = F3*Fs = F%*Fn 

Fo*F,o = F,*F9 = Fz*F4 = F3*Fs = F7*F,2 

Fo*Fn = Fx*Fi = Fz*F9 = F3*Fi = Fô*Fi2 

Fo*Fi2 = F4*Fs = F6*Fii = F7*Fio = F%*F<)
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Each of the two factor interactions in the same line above has the same columns of 

signs in the 32 treatments fractional factorial design. The interaction effect for Fo*F\, 

that appeared in Table 4-10, could be due to one or more o f the interactions in the 

same line. If we could assume all interactions but one are negligible then no further 

analysis is needed. However, we can not make this assumption with enough 

confidence so it is recommended to investigate these interactions. The two-way table 

for Fo*F\ is:

Fo a t (+) 418.031 450.764

Fo at (-) 771.654 796.161

Fi at (-) F, a t (+)

Figure 4-1; Interaction plot for the 

two factors Fo and F,.

The plot, in Figure 4-1, indicates no significant interaction between Fq and F%. An 

interaction occurs when the levels of one factor interrelate significantly with the levels 

of the second factor in influencing the response. In other words this can be thought of 

as a twist in the response surface. This is more clear in the following two-way table for 

the interaction F**F|, :
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Fi at (+) 605.18 611.28

Fi at (-) 611.14 609.0

Fn at(-) Fn at (+)

(Ü0
615

8CO 610
605
600

F4- F4+

Figure 4-2: Interaction plot for the 

two factors F4 and Fn.

The plot, in Figure 4-2, shows an interaction between F4 and Fn. The effect o f F* on

the response is not the same when the level of factor Fn is changed. So we may accept

this as a source of the interaction that appeared in Table 4-10. However, another

interaction seems to exist between Fs and Fe as we can see in Figure 4-3 and the

two-way table;

Fs a t (+) 611.52 609.09

Fs at (-) 613.32 602.68

Fs at (-) Fs a t (+)
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620
615

I 610
60S
600

F5- F5+

Figure 4-3: Interaction plot for the

two factors F; and Fs.

The two factors F? and Fg do not interact with each other as it is clear from the 

interaction plot in Figure 4-4. The two-way table was:

F t at (+) 526.65 712.19

F t at (-) 510.23 687.54

Fg at (-) Fg at (+)

I -FS-
-F8+

Figure 4-4: Interaction plot for the two 

fectors F? and Fg.
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The last interaction confounded with the above interactions is Fg*Fio. Figure 4-5 

shows the interaction plot, and the two-way table is as follows:

Fg at (+) 690.67 708.23

Fg at (-) 514.19 523.52

Fio at (-) Fio at (+)

! I 600

F9- F 9 f

-FIO- I 
-F1Q+I

Figure 4-5: Interaction plot for the two 

factors Fg and Fio.

From the above analysis it is clear that the assumed interaction between scale factor 

and F i in Table 4-10, was in fact due to the interactions ySt.ii and . The other 

interactions, in Table 4-10, were also analyzed in the same way. The summary of the 

results is in Table 4-11, that was constructed from the interaction plots for all other 

interactions appearing in Table 4-10. The table lists the interactions that are expected 

to be the real source of the interaction effects.
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Interaction Effect Source of interaction

Fo*Fi 4.11 A .1I, A .6

F o * F 2 -7.20 A .7

-6.61 A.ÎO. A n

Fo*F, -4.83 A n . Aio, A 12

Fo*Fi -5.29 A.6. A t, a . 12

Fo*F6 -3.36 A». A.io,

F o ^ F t 4.95 A i. A n ,  A o , 1 2
F o * F g 4.83 A « . A . 4,  A.12

F o * F ç 5.52 A.io, A n . A.3

Fo*F,o 4.21 A 4. A,6. Ai2

F o * F „ -4.80 a .4, A,7. A i2

Fo*F\2 5.38 A j .  A n . A 10

Table 4-11: The expected sources of two factor 

interactions obtained form interaction 

plots analysis.

4.6 The Effect of Using Larger Delay

All the previous experiments used the same amount of delay. In this section we 

examined how the change o f the delay amount affects the results. The experiment used 

a fixed grid size of 128x128x35 while scaling number of processors from I to 4, with 

a delay three times larger than what we used in the original experiments. The results 

were then compared to those in Table 4-10, which have the same conditions except for 

the amount of the delay.
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As can be seen, in Table 4-12, the significant main effects were trebled except 

for the scale factor Fo which remains almost the same. The interaction in Table

4-12, is about seven times larger than the same interaction in Table 4-10. The 

interaction plots for the large delay experiment still point to ^4.11 and as the 

expected real source of this interaction as it can be seen in Figures 6 and 7. It should 

be noticed that the interaction effects are still very small compared to the effects of 

factors Fg and F 9 .

Factor Name Main Effect Interaction with Scale

F o Machine Size -347.961 N/A

F , ADVCTS 72.97 28.99

F z ADVU -9.37 -13.97

F 3 ADW -0.92 -23.78

F , ADVW -3.81 -20.11

F s BCKMKH 4.46 -17.20

F f i BCS2D -16.72 -17.3

F , BCSCLR 61.04 18.16

F g BCSU 541.55 20.07

F g BCSV 545.83 15.92

F , o BOUNDU 45.98 11.26

F u BOUNDV 2.95 -15.16

F u JACOB 18.99 16.95

Table 4-12: Main effects and interactions with scale for large delay 

experiment, while scaling machine size from 1 to 4 

processors with grid size 128x128x35. The standard error 

5'F=±4.87 and the mean //=1043.12.
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1100

F11-
F11+I  1000

900
F4- F4+

Figure 4-6: Interaction plot for the 

two fectors Fa and Fu with 

large delay.

1100

900

-FB-
-F6+

F5- F5+

Figure 4-7: Interaction plot for the 

two factors Fs and Fg with 

large delay.

4.7 Speedup and Scalability

As we reviewed in Chapter 2, speedup is an important measure for parallel systems 

performance. The interaction plots and the analysis we saw focused on the overall 

wall-clock run time. It is highly recommended not use only one measure when 

evaluating parallel code. In this section we will look to the interaction plots from a
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different angel. The>'-axis in the interaction plots will represent the speedup instead of 

the run time. We picked the two factors Fg and Fg for this purpose. The average 

response at each row in Table 4-13 is the average of four treatments obtained from the 

13 factor fractional factorial experiment at each of the three factor combinations. The 

speedup is then obtained from dividing the average serial run time by the average 

parallel run time. The speedup in this case is called relative speedup (see Chapter 2). 

Since the run time we used is an average of four treatments we will call this the 

average relative speedup. The speedup plot is in Figure 4-8.

Fo Fg Fg Average Response

- - - 608.15

- - + 783.07

- + - 784.59

- + + 959.82

+ - - 348.82

+ - + 443.09

+ + - 429.13

+ + + 619.1601

Table 4-13: The average responses

obtained from fractional factorial 

design.

It is clear from the plot in Figure 4-8, that the speedup is less than 2. Also an 

interaction seems to exist. However, the data were obtained from a 13 factor 

experiment with serial delays inserted in different segments o f the code which might 

explain the low speedup. On the other hand, the interaction need to be investigated to
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examine if there is a real scalability problem. For this purpose a full factorial 

experiment was performed with three factors Fo, Fg, and F9 that have 8 treatments. 

The data in Table 4-14 is the average response of three replicates at each treatment. 

The speedup in this case is relative speedup which is plotted in Figure 4-9.

! . .0)
1

-F8-
-F8+

F9- F9+

Figure 4-8: Interaction plot using

speedup obtained from fractional 

factorial experiment.

Figure 4-9: Interaction plot using 

relative speedup for the fiill 

factorial experiment.
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Fo F i Fo Average Response

- - - 605.35

- - 4- 742.55

- + - 785.73

- + + 953.76

+ - - 224.87

+ - + 400.26

+ + - 400.02

+ + + 575.95

Table 4-14: The average responses 

of three replicates o f a full 

factorial design.

It was clear that the speedup was higher in the fiill factorial since many of the serial 

delays inserted in the code are not present in this case. On the other hand, the 

interaction o f the two factors seems to be a result o f the averaging of four treatments 

which may introduce some noise from the other factors. The isolation of the effects of 

these factors using blocking is not possible since we used fractional factorial design. 

We may conclude that the absence of interaction indicates no scalability problems of 

the investigated segments of the code.

4.8 Summary

The results obtained from the 13 factor experiments revealed very useful information 

about the possible bottlenecks in the ARPS code when executed on CRAY J90. The 

subroutines “BCSU” and “BCSV” are of great interest since they have a high effect
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on the response (overall wall-clock run time). The effect of these subroutines remained 

significant and almost the same regardless of the changes in grid size or number of 

processors. These two subroutines are a great target for future optimization of the 

ARPS code.

The effect of the scale factor, Fo, could be used as a relative measure of 

scalability as we did in sections 4.3 and 4.4. On the other hand, the absence of real 

interaction between scaling the number of processors and other factors indicates no 

scalability problems with these factors. Increasing the amount of the delay did not 

change the primary conclusions about the bottlenecks in the code as we experienced in 

Section 4.6.

We examined the interactions with scale factor, in Section 4.5, which indicates 

some other two factor interactions. The interactions between two factors representing 

segments of code in a shared memory environment could indicate some kind of 

contention. A closer look at these subroutines representing the interacting factors may 

lead to more clues about the nature of these interactions. Also a full factorial 

experiment for the interacting factors would be informative in this case. However, the 

interaction effects were not as large compared to the effects o f Fg and F9 even with 

larger delay.

In Section 4.7, we used speedup to plot the interaction of two factors as an 

indicator for scalability. The average relative speedup is not suitable in this case, as we 

experienced, the relative speedup is more appropriate for interaction plots since it
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eliminates the effects of other factors in the fractional factorial experiment with large 

number o f factors.

The next chapter will cover the experiments on a distributed memory platform. 

The ARPS code is designed to be portable, and some of the results for a shared 

memory machine may not hold on a distributed memory machine.
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CHAPTERS 

ANALYSIS OF ARPS CODE ON IBM SP2

In Chapter 4 the ARPS code was analyzed on the shared memory machine CRAY J90. 

We will present in this chapter the experiments results and analysis of the ARPS code 

on IBM SP2 which is a distributed memory machine with high performance switches 

connecting the processing elements. The effects of varying the problem size as well as 

varying the number of processors are discussed in Section 5.2. In section 5.3 we 

examine scalability by employing the speedup plots. Moreover, we examined the effect 

of changing the communication medium in Section 5.4. The following section 

describes the environment we used to run the experiments and the organization o f the 

IBM SP2.

5.1 The IBM SP2

The IBM SP2 machine we used for this analysis had 8 thin nodes (66.7 MHz) each 

with 512MB RAM of local memory. Under the current configuration only fife o f these 

eight nodes were available for parallel jobs, the other three are used by serial jobs and 

interactive jobs. When a parallel job acquires a number of processors these processors 

remain reserved for it until termination of the job. The program may use either the high 

performance switches {hps) or the slow Ethernet links as a communication hardware.
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For the experiments in this report we used the hps as communication medium unless 

otherwise stated.

We used the parallel version of ARPS which uses MPI (Message Passing 

Interface) for exchanging boundary data between processors. The details about the 

parallel version of ARPS could be found in (Sathye et al. 1995) and (Xue et al. 1995). 

The parallel code was compiled using the “mpxif’ script which links the 

communication libraries for message passing to the code. While the serial version was 

compiled using “xlf’ which does not include the message passing libraries. Since no 

communication library was specified for the parallel version at compile time, the 

proper library will be linked dynamically at run time depending on the system 

varaiables.

5.2 Description of the Experiments

Similar to the experiments we performed on CRAY J90, we used the same 13 factors 

fractional factorial design with 32 treatments. While we were able to reach 

256x256x35 grid size on CRAY J90, we were limited by the memory space of each 

individual processor on the distributed memory machine. As we did in Chapter 4, we 

will examine the effect of scaling the problem size when running on one node by 

scaling the grid size from 67x67x35 to 131x131x35. Then at 67x67x35 we will scale 

the number of processors from one to two in one experiment, and from one to four in 

the other experiment. At 131x131x35 grid size the number of processors will be 

scaled in the same manner. We were unable to reach 259x259x35 on a single node
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because of the memory limitations. The grid sizes we used on the distributed memory 

machine were slightly different from the shared memory machine. This change is 

needed just to make the grid size divisible by the number of processors along each axis 

when calculating the sub-grid sizes. In the following sections each of the experiments 

will be described in more details.

5.2.1 Scaling the Problem Size

The problem size scaling experiment was performed on one of the IBM SP2 nodes 

when the problem size was scaled from 67x67x35 to 131x131x35 grid size. The 

estimated effect of scaling the problem size was /5o=1464.86 indicating about 24 

minutes possible increase in average run time. The standard error was 5£'=±2.33 and 

the mean //=1493.47 seconds. There were no significant interactions between the scale 

factor and the other factors outside the 2 SE  interval as it appears in Table 5-1.

The other significant factors outside the 2SE interval were: Fu Fz 7^, F4, Fs, 

Fj, Fs, F<), Fio, and F\\. The factors Fg and F , are still holding the highest effects. The 

estimated effect of factor Fg was y%=217.04, and the estimated effect of F9 was 

/?9=213.00. The next two largest effects were those of the factors F\ and F? with 

estimated effects ^/=27.56 and Pf=\6.13 respectively.
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F a c t o r  N a m e  M a i n  E f f e c t  I n t e r a c t i o n  w i t h  S c a l e

Fo Grid Size 1464.86 N/A

F i ADVCTS 27.56 1.28

F2 ADVU 5.23 3.13

F i A D W 8.11 2.66

F , ADVW 4.98 0.05

F , BCKMKH 9.74 -1.47

Fe BCS2D -0.63 -0.85

F i BCSCLR 16.73 -0.44

F s BCSU 217.04 3.23

F , BCSV 213.00 -1.18

Fxo BOUNDU 7.16 -0.79

F n BOUNDV 8.24 0.47

F n JACOB -0.74 -1.35

Table 5-1: Main effects and interaction effects with scale when 

scaling the problem size from 67x67x35 to 131x131x35. 

The mean 1493.47 the estimated standard error

SE=±2.32.

5.2.2 Scaling Number of Processors

The next set of experiments scaled the system size in terms of number o f processors. 

The experiments were performed at two levels o f grid sizes. For each level the number 

of processors was scaled from one processor to two processors and from one 

processor to four processors.
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The effects and interactions in Table 5-2 were estimated when the system size 

was scaled from one to two processors at grid size 67x67x35. The effect o f  system 

scale factor /%f=-235.56 promises an average decrease o f 235 seconds when scaling to 

two processors. The estimated standard error was 5£=±0.88 and the mean was 

;f=643.26.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -235.56 N/A

F, ADVCTS 27.05 0.77

Fz ADVU 03.01 0.91

Fi A D W 5.55 0.1

F, ADVW 4.79 -0.14

Fs BCKMKH 9.77 -1.44

Ffi BCS2D -0.13 -0.36

F t BCSCLR 18.39 1.22

Fg BCSU 213.38 -0.43

F, BCSV 213.56 -0.62

F,o BOUNDU 8.78 0.82

F„ BOUNDV 8.3 0.53

F,2 JACOB 0.25 -0.37

Table 5-2: Main effects and interaction effects with scale when 

scaling the system size from one to two processors at 

grid size 67x67x35. The mean /f=643.26 and the 

estimated standard error 5£=±0.88.
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When the system size was scaled from one processor to four processors, as in Table

5-3, the effect of the scale fector was ;%=-350.02 with mean //=586.03 and estimated 

standard error 5E=±0.99. This could mean a decrease of 116 seconds per additional 

processor. In both the experiments the effects o f Fg and F9 were the highest.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -350.02 N/A

F. ADVCTS 28.02 1.74

Fz ADVU 3.17 1.07

F3 A D W 5.54 0.09

F4 ADVW 4.31 -0.62

Fs BCKMKH 10.94 -0.26

Fe BCS2D 0.57 0.34

Ft BCSCLR 17.42 0.25

Fg BCSU 214.12 0.31

F, BCSV 214.88 0.69

F.o BOUNDU 8.57 0.61

Fu BOUNDV 7.72 -0.05

Fn JACOB 0.31 -0.3

Table 5-3: Main effects and interaction effects with scale when 

scaling the system size from one to four processors at 

grid size 67x67x35. The mean //=586.03 and the 

estimated standard error SE=±0.99.

Next we examined the effect of changing number of processors at 131x131x35 grid 

size. The results in Table 5-4 are obtained when the system size was scaled from one

8 2



to two processors. The effect of scale factor Fo is ;%=-948.05 which could mean about 

IS minutes reduction in run time when using two processors. The estimated standard 

error 5£=±1.44 and the mean was /r=1747.59.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -948.05 N/A

F, ADVCTS 27.22 0.21

Fz AD VU 4.63 0.0

F^ A D W 7.2 -2.44

Fa ADVW 2.03 2.16

Fs BCKMKH 6.13 2.88

Fa BCS2D -1.45 0.84

Ft BCSCLR 18.41 1.14

Fg BCSU 212.80 0.84

F , BCSV 213.27 -0.13

F,o BOUNDU 10.19 -0.02

F „ BOUNDV 8.46 -0.56

Fn JACOB 1.28 -1.44

Table 5-4: Main effects and interaction effects with scale when 

scaling the system size from one to two processors at 

grid size 131x131x35. The mean /i=1747.59 and the 

estimated standard error 5F=±1.44.

The results of scaling the system size from one processor to four processors for the 

same grid size are in Table 5-5. The estimated effect o f the scale factor Fo was 

^o=-1431.81 that means scaling from one to four processors could result in decreasing
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the run time about 23 minutes on average. The mean was /f=I505.71 and the 

estimated standard error was 5E=±I.99. The two factors F% and F g  are still holding the 

highest effects.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -1431.81 N/A

F, ADVCTS 29.55 2.54

F i AD VU 3.44 -1.2

Fj A D W 6.68 -2.95

F4 ADVW -0.16 -0.03

Fs BCKMKH 6.74 3.49

F« BCS2D 0.28 2.57

Fn BCSCLR 18.08 0.81

F* BCSU 213.76 1.8

Fg BCSV 214.41 1.01

F,o BOUNDU 9.75 -0.46

F„ BOUNDV 7.73 -0.17

F n JACOB 0.49 -2.23

Table 5-5: Main effects and interaction effects with scale when 

scaling the system size from one to four processors at grid 

size 131x131x35. The mean /f=1505.71 and the estimated 

standard error 5£=±1.99.
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5.3 Speedup and Scalability

In this section the speedup of the code is analyzed with respect to changing two 

factors. We selected the two Actors with highest effect namely Fg and F9. The speedup 

was measured at grid size 131x131x35 when changing the system size from one 

processor to four processors. The data in Table 4-6 represent the average of four runs 

obtained from the 13 factor fractional factorial experiment at each of the three factor 

combinations. The interaction plot in Figure 5-1 shows that the speedup is about the 

same when F9 is at low level regardless of the level of Fg.

F o F g F 9 Average Response

- - - 2007.57

- - + 2223.69

- + - 2222.25

- + + 2432.93

+ - - 693.49

+ - + 790.603

+ + - 790.74

+ + + 1004.43

Table 5-6: The average responses 

obtained from fractional factorial 

design.

8 5



F8-
F8*

F9- F9+

Figure 5-1; Interaction plot of the 

speedup from the 13 factors 

fractional factorial experiment.

To eliminate the effect of other factors a separate experiment was conducted with only 

3 factors. The full factorial design appearing in Table 5-7 has 8 treatments, and the 

average response column is the average of three replicates. We noticed that the 

speedup rates in the full factorial experiment were higher due to the absence of the 

extra serial delays caused by the remaining 10 factors in the 13 factor fractional 

factorial experiment. However, the speedup rates appearing in Figure 5-2 have similar 

behavior to those plotted in Figure 4-9.

The estimated standard error for the experiment in Table 5-6 was 5£=±1.99, 

and the mean was //=1505.71, While the estimated standard error for the full factorial 

experiment in Table 5-7 was ££=±7.22 and the mean was /f=1461
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Fo Fg F, Average Response

- - - 1966.45

- - + 2173-58

- + - 2174.57

- + + 2396.68

+ - - 530

+ - + 744.87

+ + - 742.81

+ + + 960.21

Table 5-7: The average responses for 

the full factorial experiment.

4

a.3

!
3

2m
1

F9-

-F8- i
-F8+1

Figure 5-2; The interaction plot of the 

speedup for the 3 factors full 

factorial experiment.

5.4 The EfTect of Communication Network

The IBM SP2 allows the user to select the communication medium and the network 

protocol for message passing. With the use of high performance switch adapters the 

message passing subsystem interfaces with the user space protocol. The user has also
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the option to use the IP interface of the message passing subsystem. The user space 

protocol does not allow more than one process per node while the IP does. However, 

the current configuration of the machine does not allow more than one job on the 

parallel nodes. The other communication medium is the Ethernet adapters which 

allows only IP interface of the message passing subsystem.

In the previous experiments we executed the parallel ARPS using the high 

performance switches and the US interface. We picked the experiment at 131x131x35 

grid size when the number of processors was scaled from one to four processors. Then 

we repeated the same set of runs using high performance switches hps, but using the 

IP instead of the US interface. Finally we performed an experiment using Ethernet 

adapters which allows the use of the IP interface only. The results in Table 5-5, where 

obtained when running the code using hps and US interface. In Table 8, the results 

when using the IP interface with hps. The effect of scaling number of processors from 

one to four was 1416.71 with estimated mean //=I513.26 and standard error 

.9E=±2.5.
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Factor Name Main Effect Interaction with Scale

Fo System Size -1416.71 N/A

F, ADVCTS 29.17 2.16

F2 AD VU 5.26 0.63

Fj A D W 7.34 -2.29

F, ADVW 0.96 1.09

Fs BCKMKH 7.65 4.4

Fg BCS2D -1.48 0.81

Ft BCSCLR 19.54 2.26

Fg BCSU 216.70 4.75

F, BCSV 213.1 -0.3

F,o BOUNDU 8.22 -1.99

Fn BOUNDV 9.12 1.22

Fa JACOB 1.47 -1.25

Table 5-8: Main effects and interaction effects with scale when 

scaling the system size from one to four processors at grid 

size 131x131x35 using hps and IP. The mean //=I5I3.26 

and the estimated standard error,S£=±2.5.

For the third experiment we used the Ethernet adapters with the IP interface. The 

results in Table 5-9 show the estimated effect of the scale factor /?o=-1289.45 with 

mean/y= 1576 88 and5£=±1.5.
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Factor Name Main Effect Interaction with Scale

Fo System Size -1289.45 N/A

F, ADVCTS 26.80 -0.21

F2 AD VU 4.7 0.08

F, A D W 7.86 -1.77

F, ADVW 3.32 3.45

Fs BCKMKH 6.72 3.47

Fo BCS2D -1.49 0.8

F- BCSCLR 17.76 0.49

Fs BCSU 218.17 6.21

Fç BCSV 219.02 5.62

F,o BOUNDU 9.71 -0.5

Fn BOUNDV 7.76 -0.14

F,2 JACOB 2.34 -0.39

Table 5-9: Main effects and interaction effects with scale when 

scaling the system size from one to four processors at grid 

size 131x131x35 using Ethernet and IP. The mean 

//=1576.88 and the estimated standard error 5£=±1.5.

Communication

Medium

Mean (//) Effect of Scale {fio) Standard Error {SE)

hps with US 1505.71 -1431.81 ±1.99

hps with IP 1513.26 -1416.71 ±2.5

Ethernet with IP 1576.88 -1289.45 ±1.5

Table 5-10: Summary of the effects of using different communication mediums.
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We may notice that the effect of scaling the number o f processor is reduced slightly in 

magnitude when using IP interface instead of US interface, that was about 15 seconds. 

While the effect o f scale with the use of Ethernet limits the scalability of the code by 

about 150 seconds which is ten times the difference when using the hps and IP.

5.5 Summary

In this chapter the ARPS code was analyzed when running in a distributed memory 

environment. We used the MPI parallel version of ARPS on IBM SP2. The results are 

in the same line with the shared memory version on CRAY J90. The two factors 

“BCSU” and “BCSV” are still holding the highest effect. Their was no interaction 

between these two factors and the scale factor. The two factor interactions that were 

noticed in some of the results obtained from running ARPS on CRAY J90 are within 

the error margin in the IBM SP2 case.

We noticed that the wall-clock running time of CRAY J90 almost twice that of 

IBM SP2 when comparing the estimated mean. For grid size 67x67x35 and when 

scaling from one to two processors the mean was //=354.8 on CRAY J90 while it was 

//=643.26 on IBM SP2. For the same grid size when scaling from one to four 

processors the estimated mean on CRAY was //=333.87 while it was //=586.03 on 

IBM SP2. Similar results noticed on larger grid size. Nevertheless, the effect of scale 

factor was higher on the IBM SP2 than on CRAY J90. For example, the effect of scale 

factor Fo at grid size 67x67x35 when scaling the number of processors from one to
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four processors was y%=-350.02on IBM SP2, while it was >55)=-138.87 on CRAY J90, 

that is more than twice the effect.

The speedup rates were plotted when changing two factors to study the effect 

of synthetic perturbations on speedup and use this as an indication of scalability. This 

way could be used to predict how the code will scale when the code is optimized at 

specific segments of code.

While the experiments in this chapter were conducted when using the high 

performance switches with user space communication library (US), we also examined 

the effect of the change in communication medium on the scalability of ARPS.
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CHAPTER 6 

CONCLUSIONS

The research work for this dissertation aimed to fill a gap in the process of evaluating 

and tuning parallel systems. Unlike sequential code, parallel code is highly dependent 

on the underlying architecture and the decomposition of the problem. It is a challenge 

to find an approach that will assess the parallel system without extra hardware and 

software components that will increase the cost of evaluation process and limit its 

portability. On the other hand, the complex nature of parallel systems requires the 

consideration of more than one factor at a time. Factorial designs were a good tool for 

studying simultaneously the effects of more than one factor. While the use of 

experimental design techniques existed in various scientific and engineering fields, 

factorial designs were only recently introduced to the evaluation process of parallel 

systems. The approach we followed was suggested by Gordon Lyon and his 

colleagues at NIST. The approach uses synthetic perturbations to simulate changes in 

the code and capture the response sensitivity to these changes by employing factorial 

designs. We applied this approach to a large code on different platforms, and 

estimated the scalability of the code based on the measured sensitivity. We further 

analyzed the interaction between different factors that will appear as a twist in the 

response surface. Moreover, we introduced a class of interaction plots that uses 

speedup ratio. Then we used these plots for comparing the scalability of two systems.
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The use of speedup provided a normalized value that can be compared among different 

architectures rather than the effects that may have no direct meaning on different 

architectures.

In Chapter 2, we reviewed the literature related to the evaluation process of 

parallel systems. The speedup with its different versions was reviewed as well as 

efficiency and other measures of performance. In that chapter we looked to the 

scalability from three points of view: machine scalability, algorithm scalability, and 

scalability of machine-algorithm combination. The later was of our interest because of 

the nature of parallel systems. We also introduced our definition of a parallel system. 

Two major approaches: isoefficiency and isospeed, were explored besides some other 

approaches.

Our approach was introduced in Chapter 3. In that chapter a brief background 

of the experimental design with a focus on factorial designs. We provided the 

necessary definitions to introduce factorial designs. The fractional factorial designs 

were introduced since it will reduce the number of treatments needed. Also we show 

how the computed effects can be used to build a linear model describing a relation 

between the investigated factors and the response. The link between factorial designs 

and parallel systems was introduced in Section 3.3, followed by an illustrative 

example. Then we briefly gave a description of ARPS followed by the initial 

experiment on a cluster of workstations.

We performed more detailed experiments on the CRAY J90 to explore the 

power of the statistical approach in estimating the scalability of the parallel system,
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these results are described in Chapter 4. We scaled the problem size as well as the 

number o f processors. The effects of scale were used to assess the scalability of the 

parallel system. The existence of interactions with the scale factor that may affect our 

conclusion about main effects, was investigated by analyzing these interactions using 

interaction plots. The speedup interaction plot was used in this chapter to estimate 

scalability of some code segments as well as the machine. We further examined the 

effect of the amount of delay by comparing the results o f two experiments designed for 

this purpose.

The next Chapter 5 described the experiments performed on the IBM SP2. 

Similar experiments were performed within the limitations of memory space on each 

node. The problem size and the number of processors were both scaled. The results 

confirmed the primary conclusions about the code.

The comparison between the results obtained on the two machines: CRAY J90 

and IBM SP2, show that the former has better performance as it is clear from the 

estimated means, while the later show better scalability as we observed from the 

speedup interaction plots. This could be due to the difference in the single processor 

performance between the two machines, were CRAY J90 uses vector processor and 

IBM SP2 uses RISC processor. Also the parallel version was decomposed by the 

programmer, along the x-axis and y-axis of the grid space, on the IBM SP2 that 

provided a scalable structure, while it was done by the compiler on the CRAY J90. 

Moreover, there is a possibility of memory contention in the shared memory case as it 

appeared in some of the interactions in Section 4.5. However, the magnitudes of these
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interactions were small and the existence of such contention can be verified by using 

hardware monitoring tools.

The use of designed experiments with synthetic perturbations in assessing 

parallel systems is portable, economic, and simple. However, the results will depend 

on how the investigator will pickup the factors. While the problem size and the number 

of processors are the two important factors to study the scalability of parallel system, 

the selection of other factors representing segments of codes is crucial and requires a 

certain level of knowledge about the code as it was mentioned in Chapter 3. Screening 

will help in the selection of these significant factors. A study of the code and its 

structure without going deep in the details of each component was of great help in 

our case. Before selecting the factors to be included in our experiments a calling tree 

was constructed. Also we studied the general function and communication patterns for 

each subroutine involved in our experiments.

The investigation process is iterative and the results of one experiment may 

lead to other experiments. Therefore the screening experiments will include a large 

number o f factors requiring a large number of treatments. The number of treatments 

can be reduced by using fractional designs in the screening phase, then for the 

significant factors a full design is used to obtain more details.

For the experiments in this research we used two level factorial and fractional 

factorial designs. Each factor has exactly two levels this limits the study of the 

scalability to fit linear models only. As we noticed in the different experiments the 

effect of changing the number of processors was not linear. To build a quadratic model
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at least three levels are needed. However, when using more than two levels the levels 

should be equally spaced from one another. The future work will consider using three 

or more levels for the scale factors allowing building non-linear models.

The scale of problem size and number o f processors were considered 

separately in this research. Our future trend is to consider two or more scale factors in 

one experiment. This may include the number of processors, the problem size, the 

algorithm instant, and the communication medium. The number of factors and the 

levels at each factor, however, will vary depending on the goals and objectives o f the 

investigation.
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APPENDIX A



OVERVEIW OF ARPS

The Advanced Regional Prediction System (ARPS) was developed by group of 

researchers at the Center for Analysis and Prediction of Storms (CAPS), University o f 

Oklahoma. ARPS model is one of six major areas under CAPS program. The 

development of the ARPS model started in July, 1990 with ARPS version 1.0, but the 

first formal release was version 3.0 in September, 1992.

A.l Description of ARPS

The ARPS model is a three-dimensional, non hydrostatic code designed for the 

prediction of small scale, short duration events like thunderstorms, snow bands, and 

downslope windstorms. The numerical model developed by CAPS has been designed 

to predict the above events with the following general prediction goals;

• Mesoscale Phenomena: Prediction duration ranging from 0 to 12 hours. 

Location of events to within 50 km and timing of events to within 1 

hour.

• Stormscale Phenomena. Prediction duration ranging from 0 to 6 hours. 

Location of events to within 10 km and timing of events to within 15 

min.

• Microscale Phenomena: Prediction duration ranging from 0 to I hours. 

Location of events to within 1 km and timing of events to within 5 min.
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The developed model included governing equations for momentum, heat, mass, 

water substances, turbulent kinetic energy, and the equation of state. The model was 

developed at CAPS with three main goals; sufficient adaptability to new data 

assimilation strategies, ease of use, and suitability for variety of computing platforms. 

Moreover, the model was designed to be suitable for scalable parallel processors, 

which makes it a good target for the scalability study. Because the code is huge (more 

than 280 subroutines distributed in 30 files) and was developed by more than 30 

scientific and support personnel over the last six years, the approaches mentioned in 

Chapter 2 are difficult to apply if not impossible. The approach described in this 

dissertation is the best economical way to test scalability of this code. The ARPS code 

and documentation are available via the anonymous FTP site 

"ffpcaps.ou.edu/pub/ARPS" or the CAPS home page "wwwcaps.ou.edu".

A.2 The ARPS Code Structure

The system consists of three stages, the main ARPS model stage plus preprocessing 

and postprocessing stages. The main ARPS model stage has fife major functions: 

INITIAL, EXTBDTINI, INIOUT, CORDINTG, OUTPUT, and CHKSTAB. The 

model has variety of initialization options. The simplest initialization does not require 

any external data except a single sounding. We used the "may20 snd" sounding file for 

our experiments. However, for applications that require real terrain and surface data, 

preprocessors are needed to extract these data from data bases. The output of the 

ARPS model is in the form of history data written into one or more files. The history
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data can be later accessed by postprocessor for graphical output, data conversion or 

formatted printing. In this study we concentrated on the main ARPS model.

A 3 The Calling Tree

The following calling tree was constructed for the PVM version of parallel ARPS. The 

numbers show how many times each subroutine was called during two time steps of 

model run. We used;

(w) the subroutine was called n times.

(} the subroutine was not called in the first step ( see the file "tintegSd.f ).

[] the sub-tree number is used if the same sub-tree was called in another place.

■WS4 0 ( 1 ) <-SEITJPE\M ( 11
■ - C H E E K P ^ ^ K ' . d )

t - I N r n . < \ L (  1  )  < ~ n ' f I T F . O f i A (  1  )  ♦ - r K r L C G (  1  )  < - E N V E 3 » l ( l  ;

I  I  ' - G C T J m T ( l )

1 ^STRlMIW'19-^19)
! '-RER.NITdl

I  * - s a Æ i _ i N r r _ D i 5 r  1 1 1

I  REIXIVE_!NIT_DIST(ll

' - D C T R D ;  1  )  (  1 1  — S E I M a f R  (  1  !

I  I  * - L L ' ? 3 C i ' ( l l

I  * ~ s E n m G [ i j — a i - t o l l c )
—eCS2D( 1 )+-INCI7>G ( 4 1
* - j ? < x e (  1 ) 4 1 

— D H T .w  11 ) * - : n i b a e e  i i  ) ’ i  ;
—2FWFTL i 1 ■ —3n.mr; ( 11 <-GCTJurr ( I !

; I  i « - s T R m r H ( i )

! »-fEn.WTT(l)
I  I  * - £ E N D _ 9 n j l D n ‘ C i l )

! : I RETIEVE_SOjMC.IÎG(11
: «-GEMOT'S (10!

I I ‘ -S )D I? O T P (l)* ~ 0 m iD (5 1
I — !ii.A\G3jr.i--A\G:<iii
I : —scsu(i)*-aJCTPG(2i
I  I

*-r2i.AVGS'/(;)—A '.w d !
— E C ? > - (  I I  * - r î C I 7 i G ( r !

1 — 3 r > - N I T ( l l

I  ^ - R E l l . T d T d  !

* - n f r r t v R (  1 1  * - e c 3 d f i (  1 1 — r M r r » G ( 61

‘- I M T O K I B C l
I

'^-niTK L TI 1 1 ‘ -\3[>P:<0 ( 0 2 | *~I1CI7>G( 1 ! 

‘-xFDiwir,! r I ‘-.''FTFi;';! ; i
I * -T T IT O l 11 . — ! 1 3 1 RKIJVW( 11 , 11
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I -t-A^CSV-SEE [21
I <-(14|A\CSW f-AVGZ(l)
I -t-K S W d )
< -( 20 1WCCNTRA ( 1 ) -t-VBCWXNr ( 1 )
<-fTCuvw( 1 )+-MDajvw( 1 )+-TMixuvw( 1 )+-sDoisQ( 1 )+-sr»« ( 11

+-ŒKFM (11+-RUGSU(4)-SEE [1]
I +-flflM JU(6)
I + -n iE X (3 )
I <-AVGSV(41-SEE (21
I -M K P fO )
I < - 0 tE 2 (3 )
I « ~ B a jN IV (2 )t- IN C rP G (2 )
I + -e o o N a j(2 )+ - iN 2 r p G ( 2 )
I f-A M 3 W (4 )-S E E  (141
I <-eO JN tW (2)
I
- I -C T M X  ( 1 ) + -eC m < H  ( I  ) * - INCrPG ( 4 ) 
'•-S T O E S S d  ) f-AJiMJLTf 10)
1 i-A V GEU{2)-SEE H ]
I «-AVGSV(2)-SEE; (21
I W W GSW (2)-SEE; [141
I
‘--'J-CCTFMdlt-OrFrflt

■•-AM-ULTd)
' 4-OIKIl)

<-A\i3Sv;i;-sEE:
4-DIF:'tl)

*-VMTXTPM( 1 ) * -D IF 2 1 1 )
‘-AVGsu(i)-3s:
■ i-A T O 'd :

I ■‘-W IT L T IC )
t -D iE > ;( i)

I * - D i r f t i ;

« -ID T F M d  1 t - D I r l  ( 1)
W \M 3S U (1)-SE E  Hi 
*-AVGZ(2)
*~APMILT(2)
♦ -D IE X d )
t-AVGSV(ll-5EE '2 ! 
< - D i r i ' ( l )

+-Q4DC21W'4(1)
<-CMIX4UVW(l)

- S a i j W l  1 ) < -U V M «3( 1 ) -^-SHaLTiMl 1 1-SEE 
I
♦ -A £ M Jd )+ -A V 3 < (4 )
! * -D IF X (l)

^-AAM ILTO) 
+-D IF Y (H  
+-A\Ofd)
<~D IF2(1! 
+-AV2Z(1)

* -A £ W d )f -A M 2 f(4 )  
t -D IF X ( ! i  
*-APM JLT(3l 
+-AV3-;d)
» -D IfY ( l )
• - D IF Z ( l )
< -A V C 2(l)

*-A CV W d)<-A V 3Z(4)
-̂DIFXdl 

«~APMJLT(3) 
«-AVOtd)
«■-DIFYd)
‘-Arardi
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I  I  + - D I E 2 ( 1 )
I -̂BJOrcifd)
+-ERCP(I)+-«J/P(l)<~»njVW(X)-SEE (131

*-(32)«> C rS ( I )+-OIEX{ I)
+-W K1U{3)
W M 3 C ( 1 )
• M E E Y d )
t - A l d f d )
*-DIEZd)
♦ - A V G Z d )

ET«:Pr(I)WVCVFT(l)-MTOJVW(l)-SEE (13|
*TiMVrrSd)-SEE [32]
*-A V G 3id)-SE E  (141 
'- D I F Z d l  
+-AVGZd)

—Wn-ÏT d  ) ‘-IM KPr (1 )+-( 281TR8EIXS d  ) *-W llLT ( 51 
I  l < ~ D I F X d )
I l + - A \ Q C d )

l + - D I E Y d )
I  < - A V G l f d )  
l + - D I E 2 d )  
l - ^ - A V G Z d )

^3C X IW -1( 1 ) ‘ -A '.IK! 1 1 
*-A?MJLTi:; 
— D IF X lii 
*-A V 3ï(l!

—̂D IF 2 (I )

I

—IC'XSd)
‘ -34LSIEP( 11 '- m iA W O - S E E  ( 13| 

*-vrrïmîA.(2i-sEE (:o;
—3X V FT I1 ) —9C EC dld)-t~IN :T PG (8)

* -T n L T (l!* -A S E L IW (5 )

I
*-anwT(2)
<~a®CKsrpe(2)
*~E X rTE W d)

• - T F I I P  d  ) +-TSW\P ( 5  )
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A.4 The Configuration Parameters

ARPS provides the user with flexible control over many of the configuration 

parameters. Some o f the parameters are set at run time while other parameters are set 

before compilation. The program will read the run time parameters from an input file 

in NAMELIST format. We used the same default input parameters in the file 

"arps40.input" provided with the code except for the grid size and the model time 

which are set depending on the experiment. The change of grid size requires 

recompiling the code, while the change of model time does not. We added our 

parameters that represent the factors to the input file in the NAMELIST format. The 

number of processors was decided at run time for the CRAY J90 by sitting the 

environment variable NCPUS. On the other hand, the number of processors was 

predetermined before compilation on the IBM SP2 because it uses the message 

passing version.
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APPENDIX B



THIRTEEN FACTOR FRACTIONAL FACTORIAL DESIGN

The following table is the fractional factorial design we used in Chapters 4 and 5. 

Since the runs were performed in random, the treatment number is used for 

identification only and does not represent the order in which the experiments were 

actually performed.

Treatment
Number

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32

F, Fj F, F, Fi Fg Fg Fio F, 12
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The above design was obtained using the "FACTEX" procedure available with 

the SAS package. This procedure will generate orthogonally confounded designs 

including factorial and fractional factorial designs. After constructing a design, it can 

be printed, saved to file, or used as SAS data set. The factor confounding rules for the 

above design are as follows;

Fi=Fo*Fi*F2*Fi*F,

F6=F2*F3*Fa 

Ft = Fx*F3*F^

Fg = Fo*F3*Fi 

Fg = Fi*F2*Fi 

F̂ o = Fo*F2*F,

Fu=Fo*F^*F^ 

Fx2 = F,*F2*F3

with the following aliasing structure:

Fo

Fi

F2

F3

F,

F,

F,

Fy

Fg

F,

F,o
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Fn

Fil

Fo*Fi = Fi*Fx\ = Fs*Fe = i*7*Fg =

Fo*Fj = F<*Fio = Fi*Fi = F6*Fg = F9*F,i

F o * F 3  =  F » * F g  =  F s * F 9  =  F s ^ F i o  =  F 7 * F u  
Fo*F4 = Fi*Fii = F2*Fio = Fs*Fg = Fs^Fu 

Fo*Fs = Fi*F6 = F2*F? = Fs*F9 = F,*F,2 

Fo*Ffi = F,*F5 = Fz'Fg = F3*F,o = F„*Fi2

F o * F 7  =  F , * F g  =  F 2 * F s  =  F 3 * F „  =  F , o * F i 2
F o * F g  = F i * F ?  = F z ^ F s  = F-i*Fi = F ^ * F ,2 

Fo*F9 = Fi*Fio = Fz*F;| = F3*Fs = Fg*Fi2 

Fo*Fio = Fi*F9 = Fz*F( = F3*Fe = Fi*Fi2 

Fo*F] I = F| *F( = F2*Fç = F-i*Fi = Fe*Fi2 

F o * F i 2  =  F 4 * F s  =  F 6 * F i i  =  F 7 * F i o  =  F g * F g  
F i * F z  =  F 3 * F i 2 =  Fa*F<) =  F s * F g  =  F 6 * F 7  =  F , o * F | ,  

F i * F 3  =  F z * F i 2  =  F , * F z  =  F s ^ F i o  =  F e * F 9  =  F g * F n  
F i* F n  =  F 2 * F j  =  F 4 * F «  =  F i*F n  =  F 7 * f ^  =  F g * F , o
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