
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly fiom the original or copy submitted. Thus, some

thesis and dissertation copies are in ^ew riter free, î diile others may be

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproductiotL

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, b^inning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zedb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SCALABILITY ANALYSIS OF LARGE CODES USING SYNTHETIC

PERTURBATIONS AND FACTORIAL DESIGNS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

Mohammed A. M. Al-Abdulkareem

Norman, OK

1997

UMI Number: 9722742

UVn Microform 9722742
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

SCALABILITY ANALYSIS OF LARGE CODES USING SYNTHETIC

PERTURBATIONS AND FACTORIAL DESIGNS

A Dissertation APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

' W iJu_
A

"V

© Copyright by Mohammed A. M. Al-Abdulkareem 1997

Ail Rights Reserved.

To my respected parents fo r their support and prayers.

To my wife Muna for her contiimous encouragement, sacrifice, and love.

And to my little lovely daughters Sundos, Haneen, and Shaza.

ACKNOWLEDGMENTS

I wish to record my thanks and ^ t i tu d e to my teacher and advisor Dr. S.

Lakshmivarahan, George Lynn Cross Research Professor, for his scientific guidance

and continuous encouragement. I will never forget his kindness and help during the

years I spent at the University of Oklahoma.

I thank the members of my advisory committee Professors Sudarshan K. Dhall,

Rex Page, Sridhar Radhakrishnan, and Robert Schlegel for their support, and valuable

suggestions and discussions. My thanks are also due to Dr. Gordon Lyon, NIST for

suggesting the approach described in this work and for his continued guidance.

ARPS model code used in this analysis is under development at the Center for

the Analysis and Prediction of Storms (CAPS), an NSF Science and Technology

Center at the University of Oklahoma.

Thanks to the Environmental Computing and Applications Systems at the

University of Oklahoma (ECAS) for providing the access to CRAY J90. I also thank

the Department o f Physics and Astronomy at the University of Oklahoma for

providing the access to the IBM SP2 used in this study. Mr. Jay Liang the ECAS

manager and Mr. Andy Feldt the systems and network manager for the Department of

Physics and Astronomy, were very cooperative and helpful during my work on the

CRAY J90 and DBM SP2. The author was supported by a grant from King Saud

University, Riyadh, Saudi Arabia.

CONTENTS

ACKNOWLEDGMENTS...v

LIST OF TABLES...x

LIST OF HGURES..xii

ABSTRACT.. xiii

GLOSSARY.. xiv

CHAPTER

1 INTRODUCTION... I

2 LITERATURE REVIEW... 6

2.1 Speedup as Performance Measure..6

2.1.1 Fixed Size Speedup.. 6

2.1.2 Other Fixed Size Speedup Definitions... 7

2 .1.3 Scaled Size Speedup... 8

2.1.4 Time Constrained Speedup.. 9

2.1.5 Average Speedup... 9

2.2 Efficiency and Other Measures of Performance...10

2.3 The Scalability.. 11

2.3.1 Machine Scalability..11

2.3.2 Algorithm Scalability.. 13

VI

2.3.3 Scalability of Parallel Systems.. 14

2.4 Monitoring Tools for Performance Measurement...20

2.5 Analysis of Scalability by Estimating Code’s Sensitivity..................................... 21

3 EXPERIMENTAL DESIGN___ 23

3.1 Designing an EfiRcient Experiment..23

3.2 Factorial Designs..24

3.2.1 Background and Definitions..25

3.2.2 Factorial Designs at Two Levels... 29

3.2.3 Estimating the Standard Error...33

3.2.4 Fractional Factorial Designs..36

3 .2.5 Building a Linear Model to Describe the Process.. 38

3.3 Design of Experiments to Analyze Parallel Codes...39

3 .3 .1 The Use of Synthetic Perturbations...39

3.3.2 Example of Factorial Experiment with Parallel Code.................................41

3.4 Initial Test of ARPS Code...45

3.4.1 The Advanced Regional Prediction System (ARPS).................................... 45

3.4.2 The Initial Experiment..47

3 .4.3 The Results of the Initial Experiment..48

3.5 Summary.. 49

vn

4 ANALYSIS OF ARPS CODE ON CRAY J 9 0 __________________________51

4.1 The CRAY J90 ..51

4.2 Description o f the Experiments.. 52

4.3 Scaling the Problem Size... 53

4.4 Scaling the Number o f Processors.. 58

4.4.1 Scaling the Number of Processors at 67x67x35 Grid Size.........................59

4.4.2 Scaling the Number of Processors at 128x128x35 Grid Size.....................61

4.5 Interaction Analysis..63

4.6 The Effect of Using Larger Delay... 69

4.7 Speedup and Scalability... 71

4.8 Summary...74

5 ANALYSIS OF ARPS CODE ON IBM SP2..77

5.1 The IBM SP2... 77

5.2 Description of the Experiments.. 78

5.2.1 Scaling the Problem Size..79

5.2.2 Scaling Number of Processors...80

5.3 Speedup and Scalability... 84

5.4 The Effect of Communication Network... 87

5.5 Summary...90

6 CONCLUSIONS..93

viu

REFERENCES... 98

APPENDIX A ...108

APPENDIX B ...115

IX

LIST OF TABLES

Table 3-1: Full factorial design with three factors in standard order.......................... 31

Table 3-2: An example of fractional factorial design... 37

Table 3-3: Responses of an experiment applied to a parallel program with three
factors.. 42

Table 3-4: Main and interaction effects with scale factor for the initial experiment on a
cluster o f work stations... 48

Table 4-1 ; Main and interaction effects for the CRAY experiment while scaling grid
size from 67x67x35 to 256x256x35..54

Table 4-2; Main and interaction effects for the CRAY experiment while scaling grid
size from 128x128x35 to 256x256x35..55

Table 4-3: The full factorial design and the measured responses on CRAY when grid
size changed from 67x67x35 to 128x128x35...56

Table 4-4: The full factorial design and the measured responses on CRAY when grid
size changed from 67x67x35 to 256x256x35...57

Table 4-5: The full factorial design and the measured responses on CRAY when grid
size changed from 128x128x35 to 256x256x35..57

Table 4-6: Summary of the results obtained from the three full factorial experiments
when scaling the grid size... 58

Table 4-7: Main effects and interactions with scale for the CRAY experiment when
scaling machine size from 1 to 2 processors with grid size 67x67x35..................59

Table 4-8: Main effects and interactions with scale for the CRAY experiment while
scaling machine size from 1 to 4 processors with grid size 67x67x35..................60

Table 4-9: Main effects and interactions with scale for the CRAY experiment while
scaling machine size from 1 to 2 processors with grid size 128x128x35............. 62

Table 4-10: Main effects and interactions with scale for the CRAY experiment while
scaling machine size from 1 to 4 processors with grid size 128x 128x35............. 63

Table 4-11; The expected sources of two factor interactions obtained form interaction
plots analysis...69

Table 4-12: Main effects and interactions with scale for large delay experiment, while
scaling machine size from 1 to 4 processors with grid size 128x128x35............. 70

Table 4-13: The average responses obtained from fractional factorial design............ 72

Table 4-14: The average responses o f three replicates of a full factorial design........ 74

Table 5-1: Main effects and interaction effects with scale when scaling the problem
size from 67x67x35 to 131x131x35.. 80

Table 5-2: Main effects and interaction effects with scale when scaling the system size
from one to two processors at grid size 67x67x35... 81

Table 5-3: Main effects and interaction effects with scale when scaling the system size
from one to four processors at grid size 67x67x35... 82

Table 5-4: Main effects and interaction effects with scale when scaling the system size
from one to two processors at grid size 131x131 x35... 83

Table 5-5: Main effects and interaction effects with scale when scaling the system size
from one to four processors at grid size 131x131x35...84

Table 5-6: The average responses obtained from fractional factorial design............... 85

Table 5-7: The average responses for the full factorial experiment..............................87

Table 5-8: Main effects and interaction effects with scale when scaling the system size
from one to four processors at grid size 131x131x35 using hps and IP...............89

Table 5-9: Main effects and interaction effects with scale when scaling the system size
from one to four processors at grid size 131x131x35 using Ethernet and IP 90

Table 5-10: Summary of the effects of using different communication mediums 90

XI

LIST OF ILLUSTRATIONS

Figure 3-1: The x-y decomposition, and an example of 3x3 mesh of processors with
wrap-around connections.. 46

Figure 4-1; Interaction plot for the two factors Fo and F\.. 65

Figure 4-2: Interaction plot for the two factors F» and Fw...66

Figure 4-3: Interaction plot for the two factors F; and Fe.. 67

Figure 4-4: Interaction plot for the two factors F? and F%.. 67

Figure 4-5: Interaction plot for the two factors F9 and Fio... 68

Figure 4-6: Interaction plot for the two factors F, and Fn with large delay................ 71

Figure 4-7: Interaction plot for the two factors Fs and Fe with large delay...................71

Figure 4-8: Interaction plot using speedup obtained from fractional factorial
experiment.. 73

Figure 4-9: Interaction plot using relative speedup for the full factorial experiment.. 73

Figure 5-1: Interaction plot of the speedup from the 13 factors fractional factorial
experiment.. 86

Figure 5-2: The interaction plot of the speedup for the 3 factors full factorial
experiment.. 87

XU

ABSTRACT

The issue of code's scalability is becoming more crucial with the existence o f advanced

scalable architectures. While speedup relates the reduction in time when going from

serial to parallel computation, scalability focuses on the overall performance resulting

from the increase in problem size and the number of processors.

Scalability will be limited by serial bottlenecks in the code. Locating these

bottlenecks in parallel environment is not trivial. We used factorial designs to estimate

empirically an approximation of a multivariate Taylor’s expansion for the code’s

execution response function. The first order terms in the Taylor’s expansion function

correspond to the suspected bottlenecks and scale factors. The coefficients of these

terms are estimates of the code's sensitivity to changes in these suspected locations and

scale factors. The higher order terms are utilized as informal relative indicators o f the

code’s scalability. This approach was applied to a large meteorology code running on

the CRAY J90 and the IBM SP2 scalable distributed memory machine.

A class of interaction plots using speedup is introduced in this dissertation that

will enable the investigator in comparing the scalability of two parallel systems.

X I II

GLOSSARY

e actual or real response

the estimated global mean

e uncontrolled noise

P. main effect of factor Ft

& interaction effect of factors Ft and Fj

A interaction effect of factors F, and Fj

4 efficiency

F a factor in factorial experiment

F, a factor / in factorial experiment

f level of factor F,

I number of levels o f factor F

I, number of levels o f factor F,

n number of treatments

N problem size

P number of processors

P time for parallel algorithm

P' time for parallel portion

R measured response

r number of replications

Ri the i replicate of the measured response R

Ri the measured response at treatment /

s time for serial algorithm

S{N) asymptotic speedup

s' time for serial portion

estimated sample variance

XIV

SE estimated standard error

Sp speedup

t a treatment or a combination of levels

T{N) time required by serial algorithm to solve a problem of size N

ti treatment / in a factorial experiment

Tp{N) time required by parallel algorithm to solve a problem of size N using P

processors

TpaAN) asymptotic minimum serial time

Tse<̂ N) asymptotic serial time

XV

CHAPTER 1

INTRODUCTION

One of the main goals of parallel processing is to solve large problems in time much

shorter than that for the serial processing. To achieve this goal, the eflfect o f the serial

part of the parallel program needs to be minimized. The notion of speedup, which is

defined as the ratio of the best known serial time to the given parallel time, was used

to assess parallel code. Amdahl's law 1967, see (Lakshmivarahan and Dhall 1990), was

the first step on the way to analyze parallel code. The notion of scalability is used to

measure how good a parallel system is when the system size is increased. The system

size is increased usually by using more processors to solve a problem. An ideal parallel

algorithm will have a speedup proportional to the number o f processors. However, this

is not the case in real life applications. A parallel program will reach a limit, called

parallel balance point, after which adding more processors will increase the time

taken to solve a fixed size problem (Wilson 1993).

In scalability studies, three types of scalability are often defined. One is called

the machine scalability, the second is the algorithm scalability, and the third is the

scalability o f a parallel system consisting of algorithm-machine combination. Machine

scalability was defined based on the asymptotic speedup for a given algorithm and

problem size on the architecture under study. The asymptotic speedup is the best

achievable speedup using unlimited number of processors (Nussbaum and Agarwal

1

1991). However, scalability of the machine may include many factors other than

speedup. Cost, addressing, communication, and physical attributes should be

considered to meet the machine’s scalability requirements (Gustavson 1994).

When studying the algorithm scalability the overhead related to the target

machine will be described by a general function. This function will either depend on a

general model or some specific assumptions about the hardware. In the literature many

parallel hardware models are available such as the PRAM (Parallel Random Access

Machine), BSP (Bulk-Synchronous Parallel), and LogP (Latency, Overhead, Gap, and

Processor count).

There are different approaches to quantify the parallel system scalability.

Grama et al. 1993, defined scalability as the ability of parallel system to increase

speedup as the number o f processors increases (Grama, Gupta, and Kumar 1993).

Following an analytical approach, they introduced the isoefficiency function that

relates problem size to the number of processors required to keep the efficiency fixed

The isoefficiency function provides the rate at which the problem size must increase in

order to keep the efficiency fixed as the number of processors increased. As a measure

of scalability, a system with small isoefficiency function is more scalable.

The isospeed metric was proposed by (Sun and Rover 1994). Based on this

metric the scalability of parallel algorithm-machine combination was defined. An

algorithm-machine combination is scalable if the achieved average speed remains

constant when the number o f processors is increased assuming the problem size can be

increased.

In another approach. Network latency was used to measure and evaluate the

scalability of parallel programs and architecture (Zhang, Yan, and Mia 1994). The

evaluation of the scalability can be used to predict the performance of large problems

on large machines. The scalability of a parallel system at a fixed efficiency level for

two machine sizes is the ratio of the smaller machine’s latency to the latency of the

larger machine. The efficiency is kept at fixed level by scaling the problem size.

The analytical approach proposed by (Tambouris and Santen 1995), consists of

six steps methodology to study the scalability of a parallel system. These steps include

analysis o f the parallel system, construction of asymptotic performance models, and

use of these models for first order approximation of scaling behavior.

The approach followed by Sivasubramaniam et al. 1994, used an execution-

driven simulator to study the scalability of five applications. They defined the notion of

overhead functions associated with algorithmic and architectural characteristics to

study the scalability.

A promising technique was suggested by Lyon et al. 1994, for tuning parallel

code by identifying the program bottlenecks (Lyon et. al. 1994,1995). This technique

treats the code as a black box with number of input parameters and a measured output.

An approximation of the multivariate Taylor’s expansion for the code’s execution

response function was estimated by using statistically designed experiments. While this

technique is in use for industrial processes, it was not used for computer programs

because o f the lack of natural parameters.

The new approach is to incorporate artificial parameters into the program text

(Lyon et al. 1994). These parameters can be delay routines inserted in the code to

simulate changes in code’s performance. The number of processors used to execute

the code is another parameter to be considered. We used the above approach to

analyze the ARPS (Advanced Regional Prediction System) code.

ARPS is a non-hydrostatic atmospheric prediction model appropriate for use

on scales ranging from few meters to hundreds of kilometers. The governing equations

o f the atmospheric model components of the ARPS include momentum, heat, mass,

water substances, and the equation of state. ARPS solves prognostic equations for x,

y, and z components of the Cartesian velocity, the perturbation potential temperature,

perturbation pressure, and six categories of water substance. More details about ARPS

can be found in (Droegemeier et al. 1992), (Xue et al. 1995) and (Sathye et al. 1995).

The ARPS source code consists of 300 subroutines and functions, developed over the

past six years by about 30 scientific and support personnel. The analytical approach

will be expensive and cumbersome to apply for such huge code. For this application

the reduction of overall wall-clock run time is the primary goal. For practical

operation the system should run faster than the speed of the weather.

In this study experimental design techniques were employed to measure

sensitivity of ARPS code to changes in performance. The analysis of the effects of

these changes will point out the primary locations of code to optimize. The

experiments in this work were conducted on a CRAY J90 and on IBM SP2. The

results of these experiments are covered in Chapters 4 and 5. The experiments were

classified into two major parts. The first part scales problem size and the second part

scales the machine size in terms of the number of processors. In Chapter 2, a review of

the literature related to this work is provided. A preliminary introduction to

experimental design techniques used in this study and how it was applied to computer

systems are presented in Chapter 3. Concluding remarks are contained in Chapter 6.

CHAPTER 2

LITERATURE REVIEW

In this chapter a review of literature related to the performance and scalability o f

parallel systems is presented. This chapter will give an overall view of definitions,

metrics, and approaches used to assess the parallel systems.

2.1 Speedup as a Performance Measure

The most widely used measure to characterize a parallel algorithm is the speedup ratio

that relates the required time to solve a given problem using the best known serial

algorithm to the time required to solve the same problem by parallel algorithm using P

processors (Lakshmivarahan and Dhall 1990). In the literature there exist many

variations of speedup definitions.

2.1.1 Fixed Size Speedup

Let T(N) denotes the time required by the best known serial time to solve a problem of

size N, and the time required to solve the same problem size on a parallel machine with

P processors by a parallel algorithm is Tp(N), then

(2 .1) Sp-JXN)/Tp(N)

It is clear that speedup is a function of M the problem size, and P, the number of

processors. Under the normal conditions, which assumes a pccracompnter consisting of

a set of identical processors each with its own memory, the speed up is bounded by the

number of processors, that is Sp < P. However, in the literature examples can be

found for Sp > P, see (Sun and Zhu 1995). This is known as superlinear speedup, that

may be encountered when the serial algorithm requires time longer than Tp(N)IP. The

cause o f this problem could be an enhancement in the parallel system that is not

available when using single processor, or using a single processor exhibits a very low

performance resulting from data access from secondary stoarge. As an example the

KSR-1 shared virtual memory show a superlinear speedups because of the longer

access time to the remote memory as reported by (Ramachandran, Shah, and

Ravikumar 1993).

2.1.2 Other Fixed Size Speedup Definitions

In the definition of speedup we used the time required the best known serial algorithm

to measure the serial time. However, the best known algorithm at the current time

could be replaced by a better serial algorithm in the future. On the other hand, many

researchers will use the serial version of the parallel algorithm instead of spending time

developing the best serial algorithm. When the same algorithm is used to measure the

serial and parallel time the speedup is called relative speedup, while the original

definition that uses the best known serial algorithm is called real speedup (Sahni and

Thanvantri 1996). Following these two definitions the absolute speedup is defined as

the ratio of the required time to solve a problem of size N by the best known serial

algorithm using the fastest processor, to the time required to solve the same problem

size by a parallel algorithm using P processors. The problem now is not only to find

the best known serial algorithm, but to use the fastest processor as well.

2.1.3 Scaled Size Speedup

The fixed size speedup may be suitable for some applications. While in other cases it is

desirable to increase the problem size with the increase of the number o f processors.

The fixed size speedup was governed by Amdahl’s law 1967.

Let s denotes the amount o f time spent by the serial portion of the algorithm,

and p denotes the amount of time spent by the parallel portion of the algorithm. Then

the speedup by Amdahl’s law

(2.2) Speedup =(s+p)/(s+p/P)

=I/(s+p/P).

Amdahl’s law bounds the speedup by 1/s, so the smaller this fraction the higher the

speedup regardless of the number o f processors used. In 1988, the definition of the

scaled speedup was introduced by (Gustafson 1988) and (Gustafson, Montry, and

Benner 1988). Let s' denotes the time spent on the serial portion, and p' denotes the

time spent on the parallel portion of the parallel algorithm using P processors, then

using one processor the time spent by the algorithm is {s'+p' P). The scaled speedup

then is given by

(y+p'P)
(2.3) Scaled _speedup =

When the problem size increased the serial portion s’ is relatively decreased. It should

be noticed that in most cases the scaled problem size can not run on single serial

processor because of memory limitations. Hence, instead o f using the measured serial

time, it is estimated by measuring interprocessor communication time and idle time on

each processor. The results presented in (Gustafson, Montry, and Benner 1988) were

derived using estimations of the serial time.

2.1.4 Time Constrained Speedup

The above definition of scaled speedup allows the problem size to scale to fill the

available memory. There was no limitations on the execution time. In some

applications there is an upper bound on execution time. Using the time constrained it

may be desirable to estimate the limit of the problem size to be solved using P

processors. Examples of deriving time constrained models for some algorithms are in

(Worley 1990). However, the analysis was not very realistic since many costs were

ignored in deriving such models.

2.1.5 Average Speedup

For randomized algorithms the case may be slightly different. The serial and parallel

running times are described by two random variables and the speedup would be the

ratio of the expected values of these two variables. Thus if T(N) and Tp(N) are the

random variables of the running time on one and P processors respectively, then the

speedup o f the average running times is given as

(2.4) Speed up o f the average running times =

The above ratio is of use only if the we have multiple runs and the total running time

of all runs is of interest. If we have only one run then the speedup will depends greatly

on the distribution of the random variables (Ertel 1994).

2.2 EfTiciency and Other Measures of Performance

While speedup measures how much faster the algorithm is capable to run on more than

one processor, the processor efficiency measures how the processor are utilized. The

efficiency is defined as the ratio of the speedup to the number o f processors so we may

write

(2.5) Ep =Sf̂ 'P

The efficiency could be used as a measure o f the wasted processor cycles. In parallel

computers not all processors are busy all the time. There will be usually a tradeoff

between speedup and efficiency. Finding bounds on such tradeoffs was presented in

(Eager, Zahoijan, and Lazowska 1989), in their work the average parallelism was

used to characterize these tradeoffs. The average parallelism could be simply defined

as the average number of processors that are kept usefully busy during the execution

time of a given algorithm using unlimited number of processors.

Another factor that can be used to characterize performance is the redundancy.

As it has been observed, the development of parallel algorithms introduce extra scalar

computations to achieve higher speedup. When the communication cost is higher than

1 0

computations extra code will replace communication code by local computations. The

redundancy factor Rp, is defined as the ratio o f the total scalar operations performed

by a f-processor parallel algorithm to the total scalar operations of serial algorithm

(Lakshmivarahan and Dhall 1990).

2.3 The Scalability

The word scalable, as explained in the dictionary, is an adjective of something that can

be scaled. However, in parallel processing it is used to describe a machine, an

algorithm, or an algorithm-machine combination. In the following sections various

definitions of scalability are presented along with a review of some approaches used to

study scalability. The approach we followed in studying scalability is introduced in this

chapter and explained in more detail in Chapter 3.

2.3.1 Machine Scalability

The designers, as well as the users, of parallel machines looked at the scalability o f the

machine and how it will affect the performance (Ramachandran et al. 1993),

(Liotopoulos 1994), (Marenzoni 1995), and (Koufaty et al. 1996). While for

sequential machines the effect of adding more memory or replacing an existing

processor with a faster one is evident. For parallel machines the effect of adding more

memory to accommodate larger problem sizes or increasing the number of processors

may not be obvious. Many aspects need to be considered in parallel environments

before scaling the parallel machine to keep the performance from decreasing. In many

cases the scalability need to be addressed for general purpose machines rather than for

11

machines designed with specific application in mind. For example in distributed

systems, partitioning the jobs and balancing the load is an important factor that affect

the scalability (Kremien 1995).

M. Hill 1990, asked the question “What is Scalability?” and addressed many

difficulties in finding a crisp definition of machine scalability. One of these difficulties

is the absence of a reference model architecture to compare the architecture under

study with (Hill 1990).

Besides the system’s performance, many other factors need to be considered

when examining scalability of parallel machines (Gustavson 1994). The cost o f scaling

the machine in the future need to be considered. The physical limitations of the

technology used is another important factor when designing parallel computers.

Addressing is another limitation problem when scaling a machines. The use of

hierarchical variable length addressing may solve this problem, however, for a tightly

coupled multiprocessors computers this may not be an efficient solution.

Nussbaum and Agarwal 1991, based their definition of parallel machine

scalability on asymptotic speedup. For a given algorithm, architecture, and a problem

size the asymptotic speedup, denoted S(N), is the best speedup that can be attained by

varying only the number of processors. Let N be the problem size, Tseq(N) is the

asymptotic serial running time, and Tpa/N) is the asymptotic minimum parallel running

time, then

(2.6) S(N) =Tseq(N)/Tpar(N).

12

The parallel time used above Tpar(N), is calculated for a given parallel algorithm using

problem size N, without limitation on the number of processors. In other words it is

the minimum achieved running time using as many processors as needed.

The scalability of parallel machine 'FCN) is then defined as the ratio of the

asymptotic speedups on the real machine (under investigation) and the ideal realization

of an EREW PRAM. Let Sr(N) and St(N) be the asymptotic speedups for the given

real architecture and for the ideal machine respectively, then

(2.7) Sh(N) =TserR(NpTparR(N)

(2.8) S ,m -Tserl(N)/TpaH(N)

(2.9) m hSp(N)/S,(N) = Tpar,(NPTp.rR(N).

2.3.2 Algorithm Scalability

When studying parallel algorithm scalability it is hard to isolate the analysis of the

algorithm from the target real or virtual machine. Analysis of sequential algorithms is

based on the von Neumann model. However, the parallel environment is lacking a

realistic widely accepted unified model. Thus before analyzing the scalability o f a given

algorithm certain assumptions about the target hardware should be stated. The work

in (Muller-Wichards and Ronsch 1995) is an example of such analysis. The timing

model they used was

(2 . 10) T{P,f̂) = aiN) + ̂ ^ + aiP,N)

1 3

where a(N) and P(N) are proportional to the sequential and parallel amount of

computation respectively. And cr denotes an overhead function of P and N.

23.3 Scalability of Parallel Systems

Probably the most common practice is to study the scalability of a parallel system

which is a combination of an algorithm and a given machine examples of such studies

can be found in (Hanebutte, Joslin, and Zubair 1994), (Johan et al. 1994), (Gupta,

kumar, and Sameh 1995) and (Barragy, Carey, and De Geun 1995). Many approaches

were presented in the literature to describe and evaluate scalability of parallel systems.

When studying the scalability of parallel systems three important factors should be

considered. The first is the parallel machine and its architecture. The second is the

algorithm, and the third is the problem size. We will use the following informal

definition of scalability for a parallel system.

Definition 2.1: A parallel system consisting of an algorithm A with problem size N

running on a parallel machine M with P processors is said to be scalable if the

performance will not decrease by increasing the number of processors to

F> P.

In the above definition the performance will be measured by the running time. It

should be noticed that all factors are kept the same except the number of processors.

In some cases the problem size may be increased to keep the performance from

decreasing. In that case the parallel system is not scalable under the above definition.

For some scientific applications the researcher may desire to increase some

parameters of the algorithm to achieve higher accuracy. In this case it could be

1 4

considered as an increase in the problem size. A methodology followed by Singh,

Hennessy, and Gupta 1993 for scaling scientific simulation programs on parallel

computers, was to scale some parameters that affect the sources of simulation errors

so their error contribution is equal when larger number of processors are used. This

requires an understanding of the relationship between the program parameters in terms

of their error contribution.

2,3.3.! IsoefTiciency

An analytical approach to measure the scalability of parallel system was introduced by

(Grama, Gupta, and Kumar 1993). They defined scalability as the system’s ability to

increase speedup as the number of processors increased. The isoefficiency function

was defined and used as a measure of scalability which relates the problem size to the

number o f processors to keep the efficiency at a fixed level. The problem size was

defined in terms of the total number o f basic operations instead of input size. Let PFbe

the total number of basic operations and 4 is the time required for each basic

operation, then the serial time

(2.16) T, =Wt,

Let To denotes the overhead time and Tp the parallel time using P processors then

(2.17) Tp-CTi^Tf/F

The speedup, as in equation (2.3), is then given by

Sp —T i/T p

(2.18) = P T ,/a i + r j

1 5

the efficiency is then computed from (2.5) by using (2.18) for speedup which yields

T.=

(2.19) ^

by replacing 7) in (2.19) by its equivalent from (2.16) we get

I
(2.20) Ep =

(2 2 ') F = K Ep y

(2.22) iV = -

or it can be written as

(2.23) W-KTo

where K=Ep/tc(l-Ep). The formula (2.23) relates the amount of work fV to the

efficiency Ep, so with some algebraic manipulation it can be used to relate iV to the

number o f processors P. As an example, the sum of n numbers will require n

operations on a sequential machine (indeed n-I operations are needed, but for large n

the difference is small) and the sequential time will be Ti=ntc. If we add n numbers on

a parallel machine using P processors, then we may assign fi/P numbers for each

processor (assuming n is divisible by P). The parallel time will be the time required to

add the numbers on each processor, that is n/P, plus the overhead time to add the

partial sums logP ignoring the communication time. So parallel time 7>=^i/P+logP

1 6

and the total overhead time 7^=logP. By substituting in (2.23) we get W=K\o§^. The

isoefficiency function for this system is 0 (logfy, that means when increasing the

number of processors form P lo P \ the problem size n need to be increased in the rate

to keep the efficiency fixed. When using two algorithms the scalability is

compared by comparing their isoefficiency functions. This approach may not be

adequate for some applications since finding an isoefficiency functions is not as simple

as in the above example. Moreover, this function will tell how the problem size should

be increased, when used to compare two algorithms will tell which one is scalable in

terms of efficiency, but ignoring which one will require longer time. In practice

changes in the number of processors and the problem size may introduce some

variations in the measured run time see (Gupta, Kumar, and Sameh 1995), (Jamieson,

Khokhar, and Patel 1995) and (Sahni and Thanvantri 1996).

2.3.3.2 Isospeed

Another analytical approach to study the scalability of a parallel system used the

isospeed metric (Sun and Rover 1994). Their definition of scalability was based on the

average unit speed or the average speed definition.

Definition 2.2; The average unit speed is the achieved speed of a given computing

system divided by P, the number of processors.

Definition 2.3: An algorithm-machine combination is scalable if the achieved average

speed of the algorithm on the given machine can remain constant with

increasing numbers o f processors, provided the problem size can be increased.

1 7

In the above definition of scalability the problem size is used equivalently to fV the

amount of work assuming a relation could be derived between the two. As it was the

case with isoefficiency the problem size need to be increased to maintain the same

average speed. Let W be the amount o f work o f an algorithm when P processors are

used, and fV' is the amount of work of the same algorithm when P’> P processors are

used to keep the same average speed then the scalability is

P W
(2.24) = —

where fV'is determined by the isospeed constraint. The ideal case when W - P 'W I P ,

the scalability y/{P,P') = \. But in practice the W> P'W! Pv/\i\ch results in

scalability < /(f ,P ')< I . One way to find required W'to keep the average speed

constant is to have a control program that run the algorithm under investigation and

increase the problem size until the desired average speed is reached. If a relation can

be found between the initial average speed and the amount of work then it can be

utilized to predict scalability under the assumption that it will hold true for larger

system sizes.

2.3.3.3 Other Approaches to Analyze Scalability

A memory-constrained scalability metric was proposed by (Fienup and Kothari 1994).

Similar to the isoefficiency function, an asymptotic function will indicate the scalability

of a parallel system. The CMP (Constant Memory per Processor) scalability is defined

as the function that describes the asymptotic growth of CMP_speedup(P) as P goes to

1 8

infinity. If the function goes to infinity as P goes to infinity then the algorithm is said

to be scalable. The CMP_Speedup(P) is defined as a function of P while the size of the

local storage used per processor is constant.

An experimental approach was followed by (Zhang, Yan, and Ma 1994). In

that approach they used a measurement o f the network latency to evaluate the

scalability. They defined the average latency L(W,P) as the average amount of

overhead time needed for each processor to complete the assigned work. This latency

is a function of the problem size W and the machine size P. On the contrast of

isoefficiency and isospeed, since different implementations of an algorithm may have

different impacts on scalability, see also (Jamieson, Khokhar, and Patel 1995), the

latency metric will consider different implementations of the algorithm. In this case it

will define the scalability of a parallel systems consisting of a parallel algorithm

implementation and a parallel machine. The scalability metric based on latency is

defined below

L (W P)
(2 25)

where Le is the average latency when the eflRciency is kept at a fixed level. In general

since more overhead is expected in scaled system the value scale{e,{P,P')) < 1. This

method may be applied in environments were the latency measurement is available.

This approach was followed to a physics simulation program on a KSR-l machine

(Zhang, Yan, and Ma 1994). The average latency was measured with the help of

special hardware monitor.

1 9

A fairly different approach used a simulation of a parallel shared memory

machine (Sivasubramaniam et al. 1994). The execution-driven simulator SPASM was

used in studying scalability by quantifying the overhead functions. The overhead was

classified into algorithmic overhead due to the nature o f the algorithm and interaction

overhead caused by the interaction between the architecture and the algorithm. The

algorithmic overhead was quantified by computing the time taken to execute the

parallel program on an ideal machine, as PRAM, and measuring the deviation from the

linear speedup curve. Furthermore, interaction overhead was separated into latency

overhead and contention overhead. Latency overhead is due to waiting for a message

to be available assuming the message did not contend on any link. The contention

overhead is the time taken by a processor waiting for a link to be available. The use of

a simulator provides more flexibility in choosing the hardware system configuration,

but the results depend greatly on the simulation parameters.

2.4 Monitoring Tools for Performance Measurement

Monitoring tools in the parallel environment face many challenges. A monitoring tool

usually is provided by hardware manufacturer to aid in the development and tuning of

parallel code. Portable tools are difficult to implement since they can not be isolated

from the specifications of the hardware. A portable toolkit named AIMS (Automated

Instrumentation and Monitoring System) that uses both simulation and measurement

to predict performance is an example of such a tool. Portability of AIMS is kept by

using a modular design of the tool components. The basic idea behind this tools is to

2 0

collect a stream of events into a trace file with consistent format across architucters.

Since the measurement at run time may perturb the execution, see (Malony, Reed, and

Wijshoflf 1992), such intrusions are removed by an intrusion-compensation module

depending on the underlying architecture (Yan, Sarukkai, and Mehra 1995).

For distributed systems a tool named ZM4/SIMPLE, used a combination of

software and hardware monitoring (Hofinann et al. 1994). The hardware monitor ZM4

(abbreviation for German “Zahlmonitor 4”) is structured as master/slave system with a

CEC (Control and Evaluation Computer) that is a master, and number o f MAs

(Monitor Agents) as slaves. The MA is a PC with special hardware components to

detect and record events on the network. The software part SIMPLE is implemented

to analyze event traces collected by MAs.

2.S Analysis of Scalability by Estimating Code’s Sensitivity

The approach we followed in this work is inspired by the work of G. Lyon et al 1995,

and based on experimental design techniques to study the sensitivity o f the code to

changes in its performance with respect to changes in the number o f processors or the

problem size. This approach unlike other approaches neither needs special hardware

measurement nor it needs a deep knowledge of the code. Yet, it provides a model that

indicates how the system performance will change with the scaling o f system

parameters. Moreover, it will point out the segments of code that have high effect on

the performance. The flexibility of this approach makes it suitable for wide range of

applications. This technique was applied to some sample codes as in (Snelick et al.

2 1

1993), (Lyon, Snelick, and Kacker 1994) and (Lyon, Kacker, Linz 1995). The

following chapter will give a background on experimental design techniques we used

in this work and how it was used to estimate scalability. Our initial experiment on a

cluster o f work-stations is also presented.

2 2

CHAPTERS

EXPERIMENTAL DESIGN

Experiments are essential for scientific and engineering development. Scientists used

experiments to study an observed phenomenon and separate the effects from other

circumstances. Engineers used experiments to assist in the development of

manufacturing process. Products need to be tested and modified before reaching the

market. A well designed experiment should derive the required information at the least

expenditure of resources. This chapter introduces factorial designs and how it can be

used to obtain the required information with minimum cost. The SPT (Synthetic

Perturbation Tuning) approach is introduced with a small illustrative example on how

to utilize factorial designs to analyze computer codes. The initial experiment of the

ARPS code on a cluster of work stations is presented with the analysis of the results.

3.1 Designing an Efficient Experiment

Experimental investigation could be a long and expensive process. Experimental

design aims to obtain the required information with high accuracy and minimum cost.

An investigator with no planed experiments could end up with inaccurate information

and waste of resources. Three key elements are essential for any successful

experiment; knowledge of the process, measured response variables, and clear goals

and objectives.

2 3

A sufficient knowledge of the process is necessary, and this knowledge could

be built by a sequence of preliminary experiments before going to the full experiment

rather than studying the process deeply. These sequence of experiments aim to point

out the significant factors that have high influence on the process. Before starting any

experiment the response variable must be specified. The measurement of the response

need to be quantitative, qualitative response variables are difficult to compute, and

need to be transformed into quantitative formats before any computations can take

place. For parallel code the total run time (wall-clock time) is usually the response to

be measured (Crowl 1994) and (Lyon, Kacker, and Linz 1995). The goal of an

experiment applied to parallel system could be studying the effect of changes in some

of the systems parameters. If the parameters include the number of processors and the

problem size then it may be used to study the scalability of the parallel system. The

objective, in this case, would be to find the bottlenecks in the code that are not

scalable and enhance them. Any experimenter should keep the above three elements in

mind before starting experimentation. In the following section we will introduce the

basic aspects of factorial desings.

3.2 Factorial Designs

Unlike one factor at a time experiments, factorial designs are powerful technique to

study the effect of more than one factor at a time. As we will see, the number o f

treatments grow exponentially with the number o f factors under investigation, hence

fractional factorial designs may be used to reduce the number of treatments. We will

2 4

State some definitions before introducing factorial experiments and how they can be

used to study parallel systems.

3.2.1 Background and Definitions

Any designed experiment will consist o f several elements. The following definitions are

necessary to introduce the factorial experiments. A factorial experiment is an

experiment in which we wish to study simultaneously the effects of several factors.

Each factorial experiment will have one or more factors to which meaningful changes

can be made to observe their effect on the response variable. We will consider discrete

factors were each can have / discrete levels. We may denote these levels as 0, 1,2,

...,/-l. Also a factorial experiment will have a measured response.

Let R denote the measured response, to study the effect of factor F on the

response R we may compare the values o f R at different levels o f F. In most cases the

response R is subject to other nuisance factors not included in the study. If a nuisance

factor can be easily identified so the experiments can be classified accordingly, then

effect of this nuisance factor can be eliminated by using block designs. When the

nuisance factors are small and the experiments can not be classified under these factors

then an unknown noise will be noticed in the response. This noise will appear as

variance of R. Let the actual response without noise denoted as 6 . Then we may

express the relation between the measured response R and the actual response as

follows,

(3.1) R = e ^ e .

2 5

Where gis the noise resulting from non-controllable factors .

Definition 3.1: For an experiment with m factors, each fector F, (r=l,2,

has h levels. Let / denote the current selected level for factor F, then

we define a treatment ̂= (/ , , / 2,. . . , /*) as a combination of level

settings of factors F,, F2. ...,F„.

It is clear that the total number of treatments will be //x/^x ... x/„ Now we may rewrite

equation (3 .1) as follows

(3.2) R{t) = 9{t) + e{t).

We assume the noise is a random variable with mean zero and variance cr', that is,

£[g(r)] = 0 and V[e{t)\ = cr* , where cr* is unknown but could be estimated Now

we define one way to compare two levels of a factor F. We will denote the actual

theoretical yield at treatment t, as 6{t̂), or for short 6, .

Definition 3.2: For a factor F a t / levels t h e n i s the actual yield at treatment

t, = (/ I) . We compare two treatments t, and // by estimating the value of

{6 {J,) - 6 {tj)} or (^ - ^) that is called the contrast between the two

treatments of F.

Also we may define the contrast between all the levels of a given factor as follows.

Definition 3.3: Let 9' = (^ ,^ ,...,6)_ ,) be the actual responses for a factor F

with / treatments, with each level corresponds to one treatment and

a' = (ao ,a ,,...,a ,.,)the treatment vector of F such that = 0.

2 6

Then we say that a '9= {a^d ̂) is a contrast between

the 6 , at all the treatments of the factor F.

Before describing a factorial experiment using the above definitions we need to

introduce Hadamard matrices. This type of matrices is related to factorial designs at

two levels as we will see shortly.

Definition 3.4: Let a ' = and 6' = (6„,6, , . be two

vectors, then a and b are said to be orthogonal if the inner product of

the two vectors is equal zero, that is

a ‘b = +a,ô,+-"+a,_,6,.,) = 0 .

Definition 3.5: A squared matrix H of order n whose entries are +1 or -1 is

called a Hadamard matrix of order n if each two rows are orthogonal.

That is HH' = n l , where / is the identity matrix of order n.

We write a Hadamard matrix of order n -T ' as H„. We will use “+” and to denote

the matrix element as abbreviation of “+1” and “-1”. The following are some examples

of Hadamard matrices:

+ +

+ -

+ -h + 4*

+ — + —

+ + — —

+ - - 4 -

2 7

H, =

+ + + + + + + + '

+ - + - + - + -

+ + - - + + - -

+ - - + + - - +

+ + + +

+ - + - - + - +

+ + - - - - + +

+ - - + - + + -

Definition 3.6: Let A he a. matrix of size mxn, and B a matrix of size pxq the

direct product of the two matrices A and B written as (A0B) is defined

by;

(3.3) A<S>B =
a „ 5 a,2B

We can obtain a Hadamard matrix //„ by taking the direct product oi Him times. For

example, = H\^Hi, also H-i = We may find other methods to build

Hadamard matrices in (Hedayat and Wallis 1978) and (Drouin 1993).

Now using the above definitions we will describe a small factorial design and

how useful information can be obtained by simple calculations. Consider the case

where each factor is at two levels. The two levels are denoted as “-1” and “+1” or for

short we may write and Let F\ and Fj be two factors with /, and I2 levels,

where h = h = 2. Let a ' =(+,+,+,+), a | = (+ ,- ,+ ,-) , = (+ ,+ ,-,-), and

= (a, « flj) ' = (+ ,-,-,+), where <2, is the element by element product o f the

2 8

two vectors (also called the direct product). Let Û’ where 0. is the

actual response at treatment Then the following contrasts are defined,

P

A = 4 ^ ,

and >6(2 = ^ i2̂ -

Ignoring a constant multiplier, we will use ;0b to find the global mean which is denoted

also as //. We will use the contrasts P\ and ^ to estimate the main effects o f factors

F\ and F2 respectively. The last contrast P\2 will be used to estimate the interaction

effect of the two factors F\ and Fj. We may write this design in a matrix format using

Hadamard matrix of order 4 as follows;

(3.4)

+ -f + + ' 0 :
p + — + — p
p + + — — 0 ,

+ — — + p .

3.2.2 Factorial Designs at Two Levels

To perform a general factorial design an experimenter selects fixed number o f levels

for each factor, and then run the experiments with all possible combinations. As we

have seen before, for an experiment with m factors, where factor F has /, levels the

total number of combinations is /, When each factor has exactly two

levels it is called two level factorial design. A two level factorial design with m factors

2 9

has I” treatments. The two levels o f each factor will be denoted with for the low

setting and “+” for the high setting. The contrasts we have defined before are used to

estimate the main effects and interaction effect as we will see later.

Consider a design with three Actors, F\, F2, and F3 at two levels each. The

total number o f treatments required for a full factorial design will be 2 ̂= 8 treatments.

The design shown in Table 3-1 contains the columns corresponding to the treatment

vectors o f the main factors. The signs in each column are said to be in the standard

order. At each row representing a treatment t, a response corresponds to that

treatment. A design is said to be in standard order if the first column consists of

successive minus signs and plus signs, the second column consists o f successive pairs

of minus signs and plus signs, the third consists of four minus signs followed by four

plus signs, and so on. The following is a general definition of the standard order

Definition 3.7: A two level full factorial design with m factors is said to be in

standard order if column / consists of 2'*‘ minus signs followed by 2"'

plus signs until the column is full.

3 0

Treatment Fx Fz Fg 9
h - - -
h + - - ^2
h - + - ^3
ti + + - e.
h - - + 9,
h + - + Os
h - + + 6,
h + +

Table 3-1: Full Actorial design

with three factors in

standard order.

Consider the two treatments t\ and in Table 3-1,

t\ - - - 6̂

Î2 + - - 9̂

it is a one factor at a time experiment where we change the level of F, with contrast

^ . Also the treatments and U, and /e, and /? and /g will have the contrasts

9^-9^, 9^-9^, and 9̂ - 9 ^ These are four estimates of the effect of F\. The average

of all the estimates will be

(3 5) ^

or we may write

„ (^ 2 + ^4 + ^6 + ^8))
(3.6) A = -----------; ----------- 4----------

3 1

which is the average o f the four responses when Fi was at the high level “+” minus the

average of the four runs when the F, was at the low level The numerator in (3.5)

is the contrast between the 0̂ , while the denominator is half the number of runs. We

may now define the main effect, interaction effect, and the mean as follows.

Definition 3.8: For a factorial design the merin effect of a factor F is the

contrast between the responses of all treatments divided by half the

number o f runs. We write

a 'e
(3 7)

Where n is the number of treatments, and a ' 6 is the contrast obtained from the inner

product of a\ the transpose of the treatment vector of factor F, and 9 the response

vector.

Definition 3.9: For a factorial design with m factors and n treatments, let a

and b be the treatment vectors for factors F, and Fj respectively. Then

the interaction vector of the two factors is a new vector c obtained

from the direct product of a • 6 . That is c = (a,6%, ..., a„b„).

The above definition could be generalized for more than two factors. For example, the

interaction vector for the three factors F„ Fj, and Ft with treatment vectors a, b, and c

will be the direct product a»b»c . Now we define the interaction effect as follows

Definition 3.10: For a factorial design the interaction effect of m factors F\,

Fj, ...,F„ is the contrast o f the interaction of theses factors divided by

half the number of treatments. This interaction is said to be of order m.

The contrast of the interaction is obtained from the dot product of the

3 2

interaction vector a by the response vector 6 . We write the interaction

effect as

0 -8) A l.»

The mean, however, is defined as

Definition 3.11: For a factorial experiment with m factors and n treatments the

global mean (or the mean) is defined as the sum of all responses

divided by the number of treatments. That is

(3.9) fi =
n

The main and interaction effects will be used as indicators to the important factors.

One way to judge the importance of a factor is to pickup the factors with the highest

effects. After picking these significant factors the magnitude and sign o f the effects are

considered in the analysis. However, this method may lead to wrong conclusions.

When the uncontrolled noise is high the values of the effects could be due to the noise

effect and not a real effect of the factors. A better way to judge theses effects is to

compare them against the standard error interval. Only the effects and interactions

found to be out o f this interval will be considered significant.

3.2.3 Estimating the Standard Error

The experimenter could use the high order interaction effects as estimates of the

standard error under the assumption that the high order interactions are negligible.

This may happen when the experimenter had a high confidence that the high order

3 3

interactions does not exist in the process under study, and the values of these effects

are only due to the noise effects. Nonetheless, this assumption does not always hold,

and when the replication of the experiments is possible we could have a better estimate

of the standard error. If the experimenter could replicate each treatment r times, then

the total number o f runs would be rxn. The variation between the replicates at each

treatment is used to estimate the standard deviation for that treatment. Then we

estimate the standard error for the experiment based on the standard deviations o f the

treatments.

If we consider each replicated treatment as a set of experiments with the same

conditions then let n be the number of treatments, and r, is the number of replicates

for treatment where / = 1,2, ..., n. Let v, = r,-l denote the degrees of freedom o f

the fth set. The variances,' is an estimate of cr ̂ with v, degrees of freedom. The

pooled estimate o f all the runs variance is

(3.10) S' =
V, +v,+--+v„

When V = V, = v, =•••= , then

m l
nv

y s-
(3.11)

3 4

In equation (3.6) the main effea was represented as the difference between the

average of low runs and the high runs. We will replace the actual response^ by the

measured response /?/, then we rewrite (3.6) as follows

(3 . 1 2) A = ; -; •

If we denote the average o f responses at low level as R_ and the average of responses

at high level as , then we rewrite (3.12) as follows

(3.13) A = & - &

In general each main effect or interaction is a statistic of the form

(3.14) P = R . - R .

r x n
where each average contain —̂ ■ responses, assuming independent error the variance

is given by

2

V{p) = V(R^-R_)

2 2 "i
+

r x n r x n J

(3.15) = — O'"
r x n

where ct* is substituted by the estimate So we write

(3.16) V{p)^
r x n

and the variance for the mean

3 5

(3.17)
r x n

The standard error SE = and the mean standard error . As we

mentioned earlier, when comparing the main effects and interactions effects with the

standard error interval, denoted SE, we use 2SE corresponding to 95.45% under the

normal distribution curve or 3SE corresponding to 99.73%. According to the central

limit theorem the error noise is very close to the normal distribution when the runs are

randomized and the number of runs is reasonably large.

3.2.4 Fractional Factorial Designs

Since the number of runs of a two level factorial design increases geometrically as m

the number of factors increases, it is necessary to find a reduced set of treatments.

Half-fractional factorial design are used to obtain the required information about the

process with m factors in 2"̂ * treatments. The cost, however, is to lose some of the

high order interactions assuming they are negligible.

An example of half-fractional factorial design with m=3 factors is constructed

using H2 Hadamard matrix. Let F\, Fz, and F3 be three factors, then we rewrite (3.4)

as follows

(3.18)

f ' ’+ + + +'A'A + — + —
A + 4- - -
.A. 4- — — +A .

3 6

where the treatment vector for F3 is equivalent to the interaction vector o f the two

factors F\ and Fz . The number of treatments is 2^* which is half of the number o f

treatments in 1? full factorial design. The design is constructed by assuming the

interaction effectneg lig ib le so could be aliased with it.

Treatment Fi F2 Fs R

h + + + Ri

h - + - R2

h + - - R3

U - - + R4

Table 3-2: An example of 2^'

fractional factorial design.

The orthogonality of Hadamard matrices and the similarity between the entries o f

Hadamard matrix and two level factorial designs is the motivation to use Hadamard

matrices to construct full and fractional factorial designs. The fractional factorials are

usually described by the number of factors and the resolution of the design. For an

integer k, a fractional factorial design is said to be of resolution 2A+1 if it satisfies the

condition that all effects of order k or less are estimable whenever all effects o f order

higher than k are assumed to be zero. A fractional factorial design is said to be of

resolution 2k if all effects of order ^-1 or less are estimable whenever all effects of

order Ar+l or higher are assumed to be zero. It have been proved that the existence o f a

Hadamard matrices o f size implies the existence of orthogonal fractional design of

3 7

resolution III for Ak-\ factors each at two levels (Hedayat and Wallis 1978). The

design in Table 3-2 is of resolution III, denoted 2 ^ ', the subscript denotes the

resolution of the design. The designs of resolution HI, IV, and V are of our interest

since they are very common. For designs of resolution III no main effect is aliased with

any other main effect, but they are aliased with two factor interactions and some two

factor interactions may be aliased with each other. In the design of resolution IV no

main effects are aliased v.ith each other or with two factor interactions, but two factor

interactions are aliased with each other. Designs o f resolution V will have no main

effect or two factor interaction aliased with any other main effect or interaction, but

two factor interactions are aliased with three factor interactions.

3.2.5 Building a Linear Model to Describe the Process

The computed effects can be utilized to build a linear model for predicting the

performance with change of the factors. Let F\, F2, F„ be the factors involved in

the study with estimated effects P\, P2, Pm\ and interaction effects fin, Pn, ...,

P \2 .m- Let d(t) be the actual response at treatment t = ft be the estimated

global mean, and SE the estimated standard error, then

(319) m * s e

This similar to Taylor’s expansion when the second and higher order derivatives in the

Taylor's series are assumed to be zero.

3 8

3.3 Design of Experiments to Analyze Parallel Codes

The full and fractional factorial designs at two levels were introduced in the previous

sections, this section explains how these factorial designs can be used to tune parallel

code. The goal of the experiment is find out how to increase the performance of the

parallel code when the number of processors increased. However, increasing the

performance can be done if the bottlenecks of the code are identified, and then

minimized or eliminated. The question is what factors could be used when analyzing

parallel codes.

3.3.1 The Use of Synthetic Perturbations

The technique used by Snelick et al. 1993, is a promising approach to identify the

sources of the poor performance in the parallel code. The SPT (Synthetic Perturbation

Tuning) technique introduces the notion of inserting artificial delays into the source

code and apply experimental design techniques to capture the effects of these delays

on the performance (Lyon, Snelick, and Kacker 1994) and (Lyon, Kacker, and Linz

1995). The logic is that if a delay decrease the performance then improvements of the

code will result in improved performance. The main problem here is choosing these

segments of the code where delays should be inserted. Screening is used to identify the

segments o f code that have a significant effect on the performance. The knowledge

about the structure of the code will help, also, in choosing the suspected segments of

code. For large code the investigator may need to do some preliminary experiments

3 9

(screening), followed by experiments that focus on the factors that appeared to have

significant effect on the performance.

The synthetic perturbations and factorial designs will be used together to

provide an economical way for tuning the code. We need a set of factors that affect

the performance, also we need a measured response. Most of parallel codes lack

adjustable parameters to be used as experiment factors, synthetic perturbation is a

good economical alternative to simulate local adjustable efficiency changes. The

inserted delay can be easily inserted and removed without changing the original code.

Each synthetic perturbation is an extra code that causes delay and should have no

effect on the computations. The inserted delay should be large enough to be

distinguished from the background noise, yet the delay should not be significantly large

to slow the system. The amount of delay needed could be determined after some initial

small experiments.

Since scalability is related to the measured performance when the size of the

machine or the problem size are scaled, the experiment should be designed with the

machine size and problem size as a factors along with the other factors representing

segments of the code. The factorial design will be used to isolate important factors,

and to map a relation between the input factors and the output response using a linear

model

4 0

3.3.2 Example of Factorial Experiment with Parallel Code

Given a parallel program we want to test its scalability. First, we find which segments

o f the program are potential bottlenecks. At each segment a delay is inserted which

can be switched on or off. Each artificial delay will be associated with a factor. The

factor may be set at one of two levels, low level denoted when no delay is applied

and high level denoted when delay is applied. The number o f processors used to

run the parallel program and the problem size are factors as well. For the factor

associated with number of processors, the sitting of this factor to low will

correspond to P processors, and setting to high “+” corresponds to F' processors,

where P < P' . If the scale factor is associated with the problem size the low setting

will represent small problem size N and high setting will represent the scaled

problem size FT, where N < N\ After running the experiment the investigator selects

the significant factors, and perform more experiments to find which parts of the code

affects scalability.

Let Fi, and be three factors where the factors F\ and Fz corresponds to

two different segments of the code with inserted delay, and the factor Fs corresponds

to the number of processors. Table 3-3 shows the 2̂ full factorial design, with r = 2,

for two replicates.

4 1

F, Fi Fs R\ F2 Total Average R

- - - 19 20 39 19.5

- - + 10 8 18 9

- + - 17 21 38 19

- + + 9 8 17 8.5

+ - - 18 20 38 19

+ - + 9 9 18 9

+ + - 19 18 37 18.5

+ + + 9 9 18 9

Table 3-3: Responses o f an experiment applied to a

parallel program with three factors.

The settings of factors Fi and F2 to represents no delay is applied, and the sitting

to represents applied delay at that segment of code. The settings of the third factor

F3 at low when the number of processors P = 4, and at high “+” when F ' = 8

processors were used. Each row of the Table 3-3, corresponds to one treatment of the

experiment. The first row means to run the program without delay and using 4

processors, while the second row means to run the program without delay using 8

processors and so on. The order in which the experiments were performed is not the

same as it appears in the table. The experiments were run in random order to ensure

the normality o f noise. The response to be measured is the total elapsed (wall clock)

time. The average response of each treatment is in the last column of the table. We

now estimate the effects of the factors following the definitions given earlier and using

the average response at each treatment instead of the actual response.

4 2

^ 19 + 9 + I8 i + 9 - 1 9 .5 - 9 - 1 9 - 8 i
A = --------------- :---------------

= -0.125

19 + 8.5+183 + 9 - 1 9 5 - 9 - 1 9 - 9
A =

= -0375

^ 9 + 8 3 + 9 + 9 - 1 9 3 -1 9 - 1 9 -1 8 3
 ; ------------------------

= -10.125

The interaction effects were estimated in the same way

193 + 9 + 183 + 9 - 1 9 - 8 3 - 1 9 - 9
Az =

= 0.125

193+19 + 9 + 9 - 9 - 8 3 - 1 9 - 1 8 3
i ---------------------

= 0375

19.5 + 8.5+19 + 9 - 9 - 1 9 - 9 - 1 8 3

= 0.125

9 + 19 + 19 + 9 -1 9 .5 -8 3 -9 -1 8 .5
Azs = --------------- ; ---------------

= 0.125

The estimated mean will be

19.5 + 9 + 19 + 83 + 19 + 9 + 183 + 9
--------------------- i ---------------------

- 13.938

The above effects and interactions are compared against the standard error. If the

value is out of the standard error interval 2SE, then the factor is considered significant.

4 3

otherwise it could be a result of the background noise. The standard error was

estimated by estimating

4(1.688)
2 x 8

= 0.422

then the estimated standard error

SE = VO.422
= ±0.65

Similarly the estimates for the mean

(1.688)
2 x 8

= 0.106

V{M) =

then the estimated standard error is Vo.106 = ±0326.

The above estimates does not show any significant interaction out o f the error

interval 2SE. The high order interactions (as the interaction m Ihis example) could

be used as an estimate of the standard error if there is no replications. It is important to

check if there is an interaction before interpreting the main effects. The main effects of

factors F\ and are within the error interval. The effect of F-i, the scale factor, is

large and out of the error interval. The negative sign indicates that scaling the number

of processors will decrease the response that is the run time in this case. The linear

model corresponding to the above process

6 {t) = 13.94 - 0.13fj -0.38F, - lO.OFj +01.3f;, +038f;^+0.13/^ + 0.13/^^ ±0.65.

4 4

3.4 Initial Test of ARPS Code

This section explains how initial experiments were applied to ARPS and the

preliminary results of the initial study on a cluster of work stations. We start with

some information about ARPS. More detailed information can be found in

(Droegemeier et al. 1992), (Xue et al. 1995) and (Sathye et al. 1995).

3.4.1 The Advanced Regional Prediction System (ARPS)

The Advanced Regional Prediction System (ARPS) was developed by group of

researchers at the Center for Analysis and Prediction of Storms (CAPS), University o f

Oklahoma. ARPS model is one of six major areas under CAPS program. The

development o f the ARPS model started in July, 1990 with ARPS version 1.0, but the

first formal release was version 3.0 in September, 1992.

The ARPS model is a three-dimensional, non hydrostatic code designed for the

prediction of small scale, short duration events like thunderstorms, snow bands, and

downslope windstorms. The location of the events range from 1 to 50 kilometers, and

timing of events ranging from 5 minutes to 1 hour. The developed model included

governing equations for momentum, heat, mass, water substances, turbulent kinetic

energy, and the equation of state. The model was developed at CAPS with three main

goals: sufficient adaptability to new data assimilation strategies, ease of use, and

suitability for variety of computing platforms. Moreover, the model was designed to be

suitable for scalable parallel processors, which makes it a good target for the

scalability study. Because the code is huge (more than 280 subroutines distributed in

4 5

30 files) and was developed by more than 30 scientific and support personnel over the

last six years, the approaches mentioned earlier (see Chapter 2) are difficult to apply if

not impossible. The SPT approach is the best economical way to test scalability of this

code.

Figure 3-1: (a) The x-y decomposition with light shade representing

the inner border grid point to be send to neighboring

processors, and the darker shade represents the grid points to

be received from the neighboring processors, (b) An example

of 3x3 mesh of processors with wrap-around connections.

The parallel version of ARPS uses two dimensional domain decomposition where the

grid space was partitioned along the x and ^ axis, as in Figure 3-1. The shaded region

is the data shared with other neighboring processors. The shared region need to be

exchanged after each time step (Johnson et al. 1994) and (Sathy et al. 1995).

4 6

3.4.2 The Initial Experiment

The parallel version of ARPS was run on a cluster of HP9000 model 715/64

workstations connected with 10 mb/sec Ethernet network. The processors are

assumed to be arranged in a mesh with wraparound connections as in Figure 3-1(b).

Each processor is assigned a subset of the grid points of the whole domain, after each

time step the boundary values are exchanged with the neighboring processors. For this

experiment we used the PVM (Parallel Virtual Machine) version of ARPS.

Five factors where selected for this initial study plus the scale factor. The scale

factor, denoted Fq, was set to for 2x2 mesh, and set to “+” for 3x3 mesh. The

other factors Fu F2, F3, F4, and F5 represent different segments of the ARPS code

which are believed to be representative o f other similar segments. The factors are set

to low level when no delay was applied to that segment o f code and to high level

“+” when delay was applied. The experiment was run in random order with r = 5

replicates and m = 6 factors with total of 5x2* = 320 runs.

Since the ARPS model has many adjustable parameters to be set before

running the code, these parameters were fixed during this study to the default values,

except for the model run time and the grid size which are set to values within the time

and memory space limits. Before selecting the factors the calling tree o f the system

was obtained to aid in selecting the code segments to work as factors for this

experiment (see Appendix A). The communication patterns of the subroutines

exchanging the boundary conditions were considered also in selecting the factors. All

4 7

the selected factors except F; represent subroutines that were executed (called) during

the current runs of the system. The subroutine where Fs was located was not called

under the current settings of ARPS parameters. We expect that the effect o f this factor

will be insignificant. For these set o f experiments we set the model run time to 120

seconds.

3.4.3 The Results of the Initial Experiment

Table 3-4, shows the main effects when running on 2x2 and 3x3 meshes along with

the main effects of the overall runs. The last column show the interaction between the

scale factor and other factors, this column should be examined first before the main

effects can be examined. It is clear that all interactions are within the error interval.

Factor Name

Main Effect
at 2x2

mesh size

Main effect
at 3x3

mesh size
Overall

Main Effect
Interaction
with Scale

F, AD VU 3.35 3.91 3.63 0.28

Fz ADVCTS 6.77 6.06 6.42 -0.35

F] BCSU 68.92 67.24 68.08 -0.84

F, BOUNDU 9.9 10.46 10.18 0.28

F; SLOVTKE -3.5 0.89 -1.33 2.22

Table 3-4: Main and interaction effects with scale factor for the initial experiment

on a cluster of work stations with fi = 113.71 and SE = ±1.34.

The mean ft = 113.71 and the standard error estimated to be SE = ±1.34. The

main effect of Fo was)0o=-12.46 is out of the error interval 2SE. However, the

4 8

average decrease gained in run time from using five more processors is no more than

13 seconds indicating no point o f using larger size mesh without modifying the code to

be more scalable or enhance the underlying architecture, the change in response is

within the experimental noise margin.

The same may be said about the effects of remaining factors except F3 which

have high effect ;%=68.08 which is out of the standard error interval and much larger

than other effects. The high effect of F3 (subroutine BCSU) suggest that any

enhancement for this subroutine may decrease the overall response time. The next

factor was F , with effect ^4=10.18. The factor F5 corresponding to subroutine

"SOLVTKE" is within the 2SE error interval as expected.

3.5 Summary

In this chapter the experimental design technique used in this research is explained.

The factorial designs are used to study the effect of more than one factor at a time.

The fractional factorial designs could be used when the number of factors involved in

the study grows and hence the number of treatments grows exponentially.

The Hadamard matrices were used to generate factorial designs because of the

similarity in the entries and their orthogonal design. We presented a small example on

how to estimate the effects and to map a relation between these effects an the response

via a linear response model.

4 9

Also, we introduced ARPS and our initial experiment on a cluster of work

stations. The next two chapters will present the results o f our experiments on a shared

memory machine CRAY J90 and a distributed memory machine the IBM SP2.

5 0

CHAPTER 4

ANALYSIS OF ARPS CODE ON CRAY J90

At the end of Chapter 3 an initial experiment on a cluster of work stations was

introduced. The experiments in this chapter were conducted on the shared memory

machine the CRAY J90. We classified the experiments in this chapter into two major

parts. In the first part we scaled the problem size, that is covered in Section 4.3, and in

the second part we scaled the machine size which is covered in Section 4.4. We further

analyzed the interaction in section 4.5, and examined the effect of using large delay in

section 4.6. In section 4.7 we linked the speedup to scalability using interaction plots.

Before going into the details o f the empirical work and the analysis of the results, we

will give a brief background about the environment under which we conducted the

experiments, and the CRAY J90 used in this study.

4.1 The CRAY J90

The study was performed on the CRAY J90 with eight vector processors, and 2GB

global shared memory divided into 64 interleaved memory banks. Under the current

configuration of the system a parallel job is not guaranteed a fixed number of

processors if other jobs are running in the system. To ensure that a parallel job will get

the required number of processors until its completion, and to get accurate

measurements of the running time we used a special exclusive queue to run our

5 1

parallel jobs that require more than one processor. This queue will allow only one job

at a time, and all jobs on the other queues will be suspended while the exclusive queue

is running.

To perform the experiments we used both the serial and parallel versions of

ARPS. The serial version was compiled using CRAY FORTARN 77 compiling system

“cf77’ with the option “-Zv”, while the parallel version was compiled with the “-Zp”

compiler option. The first option will compile the code for maximum level of

vectorization but with out auto multitasking that is known as autotasking. The second

option will compile for both maximum level of vectorization and autotasking that will

automatically enable the code to run on more than one processor Details about the

compiling system are in (Cray 1993).

4.2 Description of the Experiments

This study consisted of two major parts. We analyzed the effect of scaling the problem

size while using one vector processor in the first part, and the effect of scaling the

machine size by changing the number o f processors in the second part. In each of the

two parts, 13 factors were involved where Fo is the scale factor as in Table 1. As it

was mentioned earlier the measured response was the wall-clock running time. For all

the experiments a fractional factorial design of resolution 4 was used with 32

treatments, each treatment was replicated three times. The fractional design is shown

in Appendix B.

5 2

4.3 Scaling the Problem Size

In the first part the scale factor Fo represented the scaling o f the problem size (the grid

size in this case) while running on one vector processor. This part involved two

experiments. In the first experiment the scale factor Fo was set at low level for

67x67x35 grid size, and set at high level “+” for 256x256x35 grid size. The other

factors represent selected segments of the ARPS code with synthetic perturbations. In

the other experiment the problem size scale factor Fq was set at low level for

128x128x35 grid size, and set at high level for 256x256x35 grid size.

The data in Table 4-1, summarizes the results of the first experiment. It can be

observed from the table that the grid size scaling factor F q had a main effect

/%=2052.94, indicating a possible increase o f about 34 minutes (2052 seconds) in run

time when the grid size is scaled to 256x256x35. However, there were no significant

interaction effect between the scale factor and other factors.

The factors Fg and Fg seem to have a high effect out of the error interval.

These two factors, Fg and Fg, represent the subroutines “BCSU” and “BCSV” which

set the boundary conditions for the w-velocity and v-velocity components respectively.

No other main effects seem to be real, since they are within the error margin.

5 3

Factor Name Main Effect Interaction with Scale

F o Grid Size 2052.94 N/A

Fi ADVCTS 9.845 -10.72

F2 AD VU 2.98 -1.06

Fi A D W 13.79 9.17

F, ADVW -2.2 -5.47

Fs BCKMKH 5.03 -1.68

Fg BCS2D -1.83 -2.78

F 7 BCSCLR 13.18 -1.24

F g BCSU 175.27 -0.83

F , BCSV 178.83 3.65

F ,o BOUNDU 12.25 4.49

F u BOUNDV -0.75 -7.71

F,2 JACOB -8.06 -8.09

Table 4-1: Main and interaction effects for the CRAY experiment

while scaling grid size from 67x67x35 to 256x256x35.

The standard error 5’£=±12.5 and the mean //=1430.71.

In the same way, the second experiment was performed where the grid size was scaled

from 128x128x35 to 256x256x35. As can be seen in Table 4-2, the main effect of

the grid size scaling factor was y3(^1673.28. This indicates less change of effect with

small change in problem size. It is clear from the tables that no significant interaction

effect between the scale factor and other factors. The effect of the factors will remain

the same (almost unchanged) regardless of the problem size.

5 4

Factor Name Main Effect Interaction with Scale

F-q Grid Size 1673.28 N/A

F, ADVCTS 11.81 -12.69

F z AD YU 4.86 -2.94

F 3 A D W 14.66 8.30

F 4 ADVW -2.34 -5.33

F ; BCKMKH 5.48 -2.12

F s BCS2D -3.89 -0.72

F 7 BCSCLR 13.76 -1.82

F g BCSU 175.51 -1.07

F , BCSV 178.78 3.70

F ,o BOUNDU 12.98 3.76

F „ BOUNDV -0.84 -7.63

F ,2 JACOB -8.15 -7.99

Table 4-2: Main and interaction effects for the CRAY experiment

while scaling grid size from 128x128x35 to 256x256x35.

The standard error S£'=±12.52 and the mean /f=1620.55.

Following the above results, three additional experiments with full factorial design

were performed to investigate the effect of the two factors Fg and Fg when isolated

from other factors. These experiments will estimate the main effects as well as all the

interactions.

The first experiment scaled the grid size from 67x67x35 to 128x128x35. Each

treatment in this experiment was replicated twice. The results of this experiment are

shown in Table 4-3. F l and R l are the measured wall-clock run time in seconds for

the two replicates and R is the average of these two. The estimated main effect of

5 5

grid size scaling factor ̂ o=39I.042, the estimated effects of the other two fectors were

)8g=175.218 and ;%=176.022. The estimated standard error was 5£=±1.97 and the

mean was estimated to be /f=565.47I. There were no significant interaction effects.

The results for the other two experiments are shown in Tables 4-4 and 4-5. The

summary of the three experiments is given in Table 4-6.

Fo “Grid Size” Fg “BCSU” Fg “BCSV” R\ R2 R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.449 545.484 545.492

+ - - 582.291 588.367 585.329

+ - + 756.036 768.746 762.391

+ + - 756.097 765.497 760.796

+ + + 931.959 938.947 935.453

Table 4-3: The full factorial design and the measured responses on CRAY when

grid size changed from 67x67x35 to 128x128x35.

We may observe that the effect of grid size is growing linearly with the scale factor.

Also the experimental error is getting larger with large grid size as a result of longer

running time that allows more noise to be encountered. The estimated effects for

factors Ft and were almost the same which confirms that the problem size has no

interaction with these two factors. In other words no matter how the grid size

changes, the main effect of F% and F9 are high.

5 6

Fo “Grid Size’’ Fg “BCSU” Fo “BCSV” R\ R l R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.499 545.484 545.492

+ - - 2327.574 2217.783 2272.679

+ - + 2497.128 2398.826 2447.977

+ + - 2480.403 2411.221 2445.812

+ + + 2574.366 2692.634 2633.500

Table 4-4: The full factorial design and the measured responses on CRAY when grid

size changed from 67x67x35 to 256x256x35.

Fo “Grid Size” F g “BCSU” F , “BCSV” FI Rl R

- - - 191.305 194.967 193.136

- - + 371.223 369.963 370.593

- + - 370.869 370.249 370.582

- + + 545.449 545.484 545.492

+ - - 2327.574 2217.783 2272.679

+ - + 2497.128 2398.826 2447.977

+ + - 2480.403 2411.221 2445.812

+ + + 2574.366 2692634 2633.500

Table 4-5: The flill factorial design and the measured responses on CRAY when grid

size changed from 128x128x35 to 256x256x35.

When we compare the mean //=1409.971 in the second column of Table 4-6 with the

mean in Table 4-1, //= 1430.71 we notice that they are very close. This emphasizes that

5 7

the two factors F% and F9 are dominant. This is also true about the mean in the third

column of Table 4-6 and that in Table 4-2.

Grid Size Change from 67X67X35

to 128X128X35

from 67X67X35

to 256X256X35

from 128X128X35

to 256X256X35

Effect of Fo 391.042 2080.041 1689

Effect of Fj 175.218 177.750 176.796

Effect of F9 176.022 178.838 178.676

Interaction effect yS» -0.954 1.578 2.532

Interaction effect ̂ -0.162 2.655 2.817

Interaction effect ^ -1.238 2.461 2.496

Interaction effect 0.036 3.734 3.699

Standard Error (5£) ±1.97 ±29.58 ±29.60

Mean (^) 565.471 1409.971 1605.492

Table 4-6: Summary of the results obtained from the three full factorial

experiments when scaling the grid size.

4.4 Scaling the Number of Processors

The second part of this study required scaling of the machine size. Two sets of

experiments were performed in this part. The first set was performed at 67x67x35 grid

size. The number o f processors in this set was scaled from one processor to two

processors in one experiment, and from one to four processors in the other. The

second set of experiments was performed at 128x128x35 grid size and the number o f

processors was scaled in the same way as the first set. We noticed that the standard

5 8

errors in the second part were smaller that allows other main and interaction effects to

be out o f the error interval as we will see soon.

4.4.1 Scaling the Number of Processors at 67x67x35 Grid Size

The results in Table 4-7, represent the main effects and interaction effects with scale

factor when the machine size was scaled from one to two processors at grid size

67x67x35.

Factor Name Main Effect Interaction with Scale

F o Machine Size -97.01 N/A

F , ADVCTS 20.69 1.57

F z AD VU 4.49 -0.67

F3 A D W 4.65 -1.10

F4 ADVW 3.41 0.12

F ; BCKMKH 7.87 -0.14

F f i BCS2D 0.80 -0.66

Fn BCSCLR 14.39 0.95

F g BCSU 175.75 0.01

F , BCSV 175.40 0.13

F ,o BOUNDU 7.98 -0.95

F „ BOUNDV 7.10 0.59

F u JACOB 0.01 0.21

Table 4-7: Main effects and interactions with scale for the CRAY

experiment when scaling machine size from 1 to 2

processors with grid size 67x67x35. The standard error

5£=±0.48 and the mean //=354.8.

5 9

The scale factor effect was P(f=~91.Q\. This means on average 97 seconds decrease in

wall-clock run time could be achieved by adding one more processor at this grid size.

The factors F% and Fg are the highest with estimated effects /9g=175.75 and ^^175.40.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -138.87 N/A

Fx ADVCTS 20.70 1.57

F2 AD YU 4.45 -0.70

F , A D W 4.62 -1.12

F , ADVW 3.48 0.20

Fs BCKMKH 7.73 -0.28

F , BCS2D 0.89 -0.67

F i BCSCLR 14.18 0.74

F , BCSU 176.02 0.28

Fg BCSV 175.81 0.54

F,0 BOUNDU 8.15 -0.78

Fxx BOUNDV 7.17 0.65

F n JACOB 0.06 0.25

CRAY experiment while scaling machine size from 1 to 4

processors with grid size 67x67x35. The standard error

5£=±0.46 and the mean //=333.87.

The effect of scaling the machine size from one processor to four processors, in Table

4-8, for the same problem size was >9o=-138.872, promising a decrease of about 139

seconds in the run time when using four processors or we could say 46 seconds per

6 0

additional processor. These results indicate that the code is scaling with number o f

processors. However, this scalability is not linear to the number of processors. In both

experiments, besides the effects o f Fg and F 9 the effects of factors Fu Fz, Fj, F«, F 5,

F 7, Fio, and Fu are now out o f the error interval 2SE.

4.4.2 Scaling the Number of Processors at 128x128x35 Grid Size

In the second set we used 128x128x35 grid size. Similar to the previous set of

experiments the machine size was scaled from one processor to two, and from one

processor to four. The results in Table 4-9, were obtained when scaling machine size

from one processor to two processors. The effect o f the scale factor ^o=-I67.825

promises a possible run time reduction of 168 seconds. On the other hand, when

scaling the number of processors from one to four the effect of scale factor was

>3o=-349.51 as we can see in Table 4-10. An average o f 117 seconds reduction in run

time per additional processor.

The effects of scale show a good scalability of ARPS on the CRAY especially

with the large grid size. The two factors Fg and Fg may catch our attention since they

have much larger effect than other factors. The interactions with scale are not far out

o f the error interval, but a closer look at these interactions is desired. The following

section provides further analysis of the interactions appearing in Table 4-10.

6 1

Factor Name Main Effect Interaction with Scale

Fo Machine Size -167.83 N/A

Fx ADVCTS 28.84 2.71

Fi AD YU 7.85 0.72

Fs A D W 0.68 -6.04

F, ADVW -1.25 -4.69

Fi BCKMKH 10.48 3.05

Fe BCS2D 1.60 3.58

F t BCSCLR 20.51 4.11

Ft BCSU 180.33 4.91

Fg BCSV 173.58 -2.90

F,o BOUNDU 5.18 -3.39

Fu BOUNDV 0.97 -3.52

F u JACOB -3.81 -0.88

Table 4-9: Main effects and interactions with scale for the CRAY

experiment while scaling machine size from I to 2

processors with grid size 128x128x35. The standard error

5£=±0.44 and the mean //=701.34.

6 2

Factor Name Main Effect Interaction with Scale

Fo Machine Size -349.51 N/A

F, ADVCTS 28.62 4.11

Fz ADVU 0.60 -7.20

F3 A D W -0.25 -6.61

F4 ADVW -1.84 -4.83

Fs BCKMKH 2.30 -5.29

Fe BCS2D -6.54 -3.36

Ft BCSCLR 20.54 4.95

Ft BCSU 181.42 4.83

Fç BCSV 180.60 5.52

F,o BOUNDU 13.44 4.21

Fu BOUNDV 1.99 -4.80

Fn JACOB 5.22 5.38

Table 4-10: Main effects and interactions with scale for the

CRAY experiment while scaling machine size from 1 to 4

processors with grid size 128x128x35. The standard

error SE=±Q31 and the mean /f=609. IS.

4.5 Interaction Analysis

This section provides further analysis of the two factor interactions with the scale

factor Fo at 128x128x35 grid size. The number of processors was scaled from one

processor to four processors (see Table 4-10). The fractional factorial design used in

that experiment was of resolution 4 with 32 treatments and assumed that some of the

two factor interactions are negligible so they can be confounded with each other. Each

6 3

of the two factor interaction effects estimated in the experiment with the fractional

factorial design represents the sum of the effects for two factor interactions

confounded with each other.

One way to find which factors are responsible for these two factor interactions

is to use two-way tables and interaction plots. The two-way table for any two factors

in our experiment can be obtained from the responses in the fractional factorial design.

Each corner in the two-way table represents the average of eight runs where the levels

of the two factors under investigation are at one of the four possible combinations.

(-,+), (+,-), (+,+)} (See 3.2.2). Let the interaction of two factors Fo and F\ be

denoted as Fo*F\. The aliasing structures for the F)*F,, Fq^Fz, ... , Fq*F\2 two factor

interactions used in the fractional experiment are;

Fo*F,= F4*Fu= Fi*Fe = F7*Fg = f^ 'F ,o

F)*Fz = F,*F,o = F%*Fn = F6*Fg = Fo^Fn

Fq*F3 = F<*Fg = F5*Fo = Fs^Fio = Fi*F\\

Fq*Fa = Fi*Fii = Fz*F;o = Fs*Fg = Fs^Fa

Fo*Fs = Fi*F6 = Fz^F? = F3*Fç = F»*Fi2

F o * F 6 = F i * F s = F z * F g = F 3* F i o = F i i * F i 2
Fq*Fi = F i * F g = F2*Fj = F3*Fii = Fio*Fi2

F o * F g = F , * F 7 = F z * F 6 = F i *Fa = F ç * F i 2
F<j*F<) = Fi*Fio = Fz*Fn = F3*Fs = F%*Fn

Fo*F,o = F,*F9 = Fz*F4 = F3*Fs = F7*F,2

Fo*Fn = Fx*Fi = Fz*F9 = F3*Fi = Fô*Fi2

Fo*Fi2 = F4*Fs = F6*Fii = F7*Fio = F%*F<)

64

Each of the two factor interactions in the same line above has the same columns of

signs in the 32 treatments fractional factorial design. The interaction effect for Fo*F\,

that appeared in Table 4-10, could be due to one or more o f the interactions in the

same line. If we could assume all interactions but one are negligible then no further

analysis is needed. However, we can not make this assumption with enough

confidence so it is recommended to investigate these interactions. The two-way table

for Fo*F\ is:

Fo a t (+) 418.031 450.764

Fo at (-) 771.654 796.161

Fi at (-) F, a t (+)

Figure 4-1; Interaction plot for the

two factors Fo and F,.

The plot, in Figure 4-1, indicates no significant interaction between Fq and F%. An

interaction occurs when the levels of one factor interrelate significantly with the levels

of the second factor in influencing the response. In other words this can be thought of

as a twist in the response surface. This is more clear in the following two-way table for

the interaction F**F|, :

6 5

Fi at (+) 605.18 611.28

Fi at (-) 611.14 609.0

Fn at(-) Fn at (+)

(Ü0
615

8CO 610
605
600

F4- F4+

Figure 4-2: Interaction plot for the

two factors F4 and Fn.

The plot, in Figure 4-2, shows an interaction between F4 and Fn. The effect o f F* on

the response is not the same when the level of factor Fn is changed. So we may accept

this as a source of the interaction that appeared in Table 4-10. However, another

interaction seems to exist between Fs and Fe as we can see in Figure 4-3 and the

two-way table;

Fs a t (+) 611.52 609.09

Fs at (-) 613.32 602.68

Fs at (-) Fs a t (+)

6 6

620
615

I 610
60S
600

F5- F5+

Figure 4-3: Interaction plot for the

two factors F; and Fs.

The two factors F? and Fg do not interact with each other as it is clear from the

interaction plot in Figure 4-4. The two-way table was:

F t at (+) 526.65 712.19

F t at (-) 510.23 687.54

Fg at (-) Fg at (+)

I -FS-
-F8+

Figure 4-4: Interaction plot for the two

fectors F? and Fg.

6 7

The last interaction confounded with the above interactions is Fg*Fio. Figure 4-5

shows the interaction plot, and the two-way table is as follows:

Fg at (+) 690.67 708.23

Fg at (-) 514.19 523.52

Fio at (-) Fio at (+)

! I 600

F9- F 9 f

-FIO- I
-F1Q+I

Figure 4-5: Interaction plot for the two

factors Fg and Fio.

From the above analysis it is clear that the assumed interaction between scale factor

and F i in Table 4-10, was in fact due to the interactions ySt.ii and . The other

interactions, in Table 4-10, were also analyzed in the same way. The summary of the

results is in Table 4-11, that was constructed from the interaction plots for all other

interactions appearing in Table 4-10. The table lists the interactions that are expected

to be the real source of the interaction effects.

6 8

Interaction Effect Source of interaction

Fo*Fi 4.11 A .1I, A .6

F o * F 2 -7.20 A .7

-6.61 A.ÎO. A n

Fo*F, -4.83 A n . Aio, A 12

Fo*Fi -5.29 A.6. A t, a . 12

Fo*F6 -3.36 A». A.io,

F o ^ F t 4.95 A i. A n , A o , 1 2
F o * F g 4.83 A « . A . 4, A.12

F o * F ç 5.52 A.io, A n . A.3

Fo*F,o 4.21 A 4. A,6. Ai2

F o * F „ -4.80 a .4, A,7. A i2

Fo*F\2 5.38 A j . A n . A 10

Table 4-11: The expected sources of two factor

interactions obtained form interaction

plots analysis.

4.6 The Effect of Using Larger Delay

All the previous experiments used the same amount of delay. In this section we

examined how the change o f the delay amount affects the results. The experiment used

a fixed grid size of 128x128x35 while scaling number of processors from I to 4, with

a delay three times larger than what we used in the original experiments. The results

were then compared to those in Table 4-10, which have the same conditions except for

the amount of the delay.

6 9

As can be seen, in Table 4-12, the significant main effects were trebled except

for the scale factor Fo which remains almost the same. The interaction in Table

4-12, is about seven times larger than the same interaction in Table 4-10. The

interaction plots for the large delay experiment still point to ^4.11 and as the

expected real source of this interaction as it can be seen in Figures 6 and 7. It should

be noticed that the interaction effects are still very small compared to the effects of

factors Fg and F 9 .

Factor Name Main Effect Interaction with Scale

F o Machine Size -347.961 N/A

F , ADVCTS 72.97 28.99

F z ADVU -9.37 -13.97

F 3 ADW -0.92 -23.78

F , ADVW -3.81 -20.11

F s BCKMKH 4.46 -17.20

F f i BCS2D -16.72 -17.3

F , BCSCLR 61.04 18.16

F g BCSU 541.55 20.07

F g BCSV 545.83 15.92

F , o BOUNDU 45.98 11.26

F u BOUNDV 2.95 -15.16

F u JACOB 18.99 16.95

Table 4-12: Main effects and interactions with scale for large delay

experiment, while scaling machine size from 1 to 4

processors with grid size 128x128x35. The standard error

5'F=±4.87 and the mean //=1043.12.

7 0

1100

F11-
F11+I 1000

900
F4- F4+

Figure 4-6: Interaction plot for the

two fectors Fa and Fu with

large delay.

1100

900

-FB-
-F6+

F5- F5+

Figure 4-7: Interaction plot for the

two factors Fs and Fg with

large delay.

4.7 Speedup and Scalability

As we reviewed in Chapter 2, speedup is an important measure for parallel systems

performance. The interaction plots and the analysis we saw focused on the overall

wall-clock run time. It is highly recommended not use only one measure when

evaluating parallel code. In this section we will look to the interaction plots from a

7 1

different angel. The>'-axis in the interaction plots will represent the speedup instead of

the run time. We picked the two factors Fg and Fg for this purpose. The average

response at each row in Table 4-13 is the average of four treatments obtained from the

13 factor fractional factorial experiment at each of the three factor combinations. The

speedup is then obtained from dividing the average serial run time by the average

parallel run time. The speedup in this case is called relative speedup (see Chapter 2).

Since the run time we used is an average of four treatments we will call this the

average relative speedup. The speedup plot is in Figure 4-8.

Fo Fg Fg Average Response

- - - 608.15

- - + 783.07

- + - 784.59

- + + 959.82

+ - - 348.82

+ - + 443.09

+ + - 429.13

+ + + 619.1601

Table 4-13: The average responses

obtained from fractional factorial

design.

It is clear from the plot in Figure 4-8, that the speedup is less than 2. Also an

interaction seems to exist. However, the data were obtained from a 13 factor

experiment with serial delays inserted in different segments o f the code which might

explain the low speedup. On the other hand, the interaction need to be investigated to

7 2

examine if there is a real scalability problem. For this purpose a full factorial

experiment was performed with three factors Fo, Fg, and F9 that have 8 treatments.

The data in Table 4-14 is the average response of three replicates at each treatment.

The speedup in this case is relative speedup which is plotted in Figure 4-9.

! . .0)
1

-F8-
-F8+

F9- F9+

Figure 4-8: Interaction plot using

speedup obtained from fractional

factorial experiment.

Figure 4-9: Interaction plot using

relative speedup for the fiill

factorial experiment.

7 3

Fo F i Fo Average Response

- - - 605.35

- - 4- 742.55

- + - 785.73

- + + 953.76

+ - - 224.87

+ - + 400.26

+ + - 400.02

+ + + 575.95

Table 4-14: The average responses

of three replicates o f a full

factorial design.

It was clear that the speedup was higher in the fiill factorial since many of the serial

delays inserted in the code are not present in this case. On the other hand, the

interaction o f the two factors seems to be a result o f the averaging of four treatments

which may introduce some noise from the other factors. The isolation of the effects of

these factors using blocking is not possible since we used fractional factorial design.

We may conclude that the absence of interaction indicates no scalability problems of

the investigated segments of the code.

4.8 Summary

The results obtained from the 13 factor experiments revealed very useful information

about the possible bottlenecks in the ARPS code when executed on CRAY J90. The

subroutines “BCSU” and “BCSV” are of great interest since they have a high effect

7 4

on the response (overall wall-clock run time). The effect of these subroutines remained

significant and almost the same regardless of the changes in grid size or number of

processors. These two subroutines are a great target for future optimization of the

ARPS code.

The effect of the scale factor, Fo, could be used as a relative measure of

scalability as we did in sections 4.3 and 4.4. On the other hand, the absence of real

interaction between scaling the number of processors and other factors indicates no

scalability problems with these factors. Increasing the amount of the delay did not

change the primary conclusions about the bottlenecks in the code as we experienced in

Section 4.6.

We examined the interactions with scale factor, in Section 4.5, which indicates

some other two factor interactions. The interactions between two factors representing

segments of code in a shared memory environment could indicate some kind of

contention. A closer look at these subroutines representing the interacting factors may

lead to more clues about the nature of these interactions. Also a full factorial

experiment for the interacting factors would be informative in this case. However, the

interaction effects were not as large compared to the effects o f Fg and F9 even with

larger delay.

In Section 4.7, we used speedup to plot the interaction of two factors as an

indicator for scalability. The average relative speedup is not suitable in this case, as we

experienced, the relative speedup is more appropriate for interaction plots since it

7 5

eliminates the effects of other factors in the fractional factorial experiment with large

number o f factors.

The next chapter will cover the experiments on a distributed memory platform.

The ARPS code is designed to be portable, and some of the results for a shared

memory machine may not hold on a distributed memory machine.

7 6

CHAPTERS

ANALYSIS OF ARPS CODE ON IBM SP2

In Chapter 4 the ARPS code was analyzed on the shared memory machine CRAY J90.

We will present in this chapter the experiments results and analysis of the ARPS code

on IBM SP2 which is a distributed memory machine with high performance switches

connecting the processing elements. The effects of varying the problem size as well as

varying the number of processors are discussed in Section 5.2. In section 5.3 we

examine scalability by employing the speedup plots. Moreover, we examined the effect

of changing the communication medium in Section 5.4. The following section

describes the environment we used to run the experiments and the organization o f the

IBM SP2.

5.1 The IBM SP2

The IBM SP2 machine we used for this analysis had 8 thin nodes (66.7 MHz) each

with 512MB RAM of local memory. Under the current configuration only fife o f these

eight nodes were available for parallel jobs, the other three are used by serial jobs and

interactive jobs. When a parallel job acquires a number of processors these processors

remain reserved for it until termination of the job. The program may use either the high

performance switches {hps) or the slow Ethernet links as a communication hardware.

7 7

For the experiments in this report we used the hps as communication medium unless

otherwise stated.

We used the parallel version of ARPS which uses MPI (Message Passing

Interface) for exchanging boundary data between processors. The details about the

parallel version of ARPS could be found in (Sathye et al. 1995) and (Xue et al. 1995).

The parallel code was compiled using the “mpxif’ script which links the

communication libraries for message passing to the code. While the serial version was

compiled using “xlf’ which does not include the message passing libraries. Since no

communication library was specified for the parallel version at compile time, the

proper library will be linked dynamically at run time depending on the system

varaiables.

5.2 Description of the Experiments

Similar to the experiments we performed on CRAY J90, we used the same 13 factors

fractional factorial design with 32 treatments. While we were able to reach

256x256x35 grid size on CRAY J90, we were limited by the memory space of each

individual processor on the distributed memory machine. As we did in Chapter 4, we

will examine the effect of scaling the problem size when running on one node by

scaling the grid size from 67x67x35 to 131x131x35. Then at 67x67x35 we will scale

the number of processors from one to two in one experiment, and from one to four in

the other experiment. At 131x131x35 grid size the number of processors will be

scaled in the same manner. We were unable to reach 259x259x35 on a single node

7 8

because of the memory limitations. The grid sizes we used on the distributed memory

machine were slightly different from the shared memory machine. This change is

needed just to make the grid size divisible by the number of processors along each axis

when calculating the sub-grid sizes. In the following sections each of the experiments

will be described in more details.

5.2.1 Scaling the Problem Size

The problem size scaling experiment was performed on one of the IBM SP2 nodes

when the problem size was scaled from 67x67x35 to 131x131x35 grid size. The

estimated effect of scaling the problem size was /5o=1464.86 indicating about 24

minutes possible increase in average run time. The standard error was 5£'=±2.33 and

the mean //=1493.47 seconds. There were no significant interactions between the scale

factor and the other factors outside the 2 SE interval as it appears in Table 5-1.

The other significant factors outside the 2SE interval were: Fu Fz 7^, F4, Fs,

Fj, Fs, F<), Fio, and F\\. The factors Fg and F , are still holding the highest effects. The

estimated effect of factor Fg was y%=217.04, and the estimated effect of F9 was

/?9=213.00. The next two largest effects were those of the factors F\ and F? with

estimated effects ^/=27.56 and Pf=\6.13 respectively.

7 9

F a c t o r N a m e M a i n E f f e c t I n t e r a c t i o n w i t h S c a l e

Fo Grid Size 1464.86 N/A

F i ADVCTS 27.56 1.28

F2 ADVU 5.23 3.13

F i A D W 8.11 2.66

F , ADVW 4.98 0.05

F , BCKMKH 9.74 -1.47

Fe BCS2D -0.63 -0.85

F i BCSCLR 16.73 -0.44

F s BCSU 217.04 3.23

F , BCSV 213.00 -1.18

Fxo BOUNDU 7.16 -0.79

F n BOUNDV 8.24 0.47

F n JACOB -0.74 -1.35

Table 5-1: Main effects and interaction effects with scale when

scaling the problem size from 67x67x35 to 131x131x35.

The mean 1493.47 the estimated standard error

SE=±2.32.

5.2.2 Scaling Number of Processors

The next set of experiments scaled the system size in terms of number o f processors.

The experiments were performed at two levels o f grid sizes. For each level the number

of processors was scaled from one processor to two processors and from one

processor to four processors.

8 0

The effects and interactions in Table 5-2 were estimated when the system size

was scaled from one to two processors at grid size 67x67x35. The effect o f system

scale factor /%f=-235.56 promises an average decrease o f 235 seconds when scaling to

two processors. The estimated standard error was 5£=±0.88 and the mean was

;f=643.26.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -235.56 N/A

F, ADVCTS 27.05 0.77

Fz ADVU 03.01 0.91

Fi A D W 5.55 0.1

F, ADVW 4.79 -0.14

Fs BCKMKH 9.77 -1.44

Ffi BCS2D -0.13 -0.36

F t BCSCLR 18.39 1.22

Fg BCSU 213.38 -0.43

F, BCSV 213.56 -0.62

F,o BOUNDU 8.78 0.82

F„ BOUNDV 8.3 0.53

F,2 JACOB 0.25 -0.37

Table 5-2: Main effects and interaction effects with scale when

scaling the system size from one to two processors at

grid size 67x67x35. The mean /f=643.26 and the

estimated standard error 5£=±0.88.

8 1

When the system size was scaled from one processor to four processors, as in Table

5-3, the effect of the scale fector was ;%=-350.02 with mean //=586.03 and estimated

standard error 5E=±0.99. This could mean a decrease of 116 seconds per additional

processor. In both the experiments the effects o f Fg and F9 were the highest.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -350.02 N/A

F. ADVCTS 28.02 1.74

Fz ADVU 3.17 1.07

F3 A D W 5.54 0.09

F4 ADVW 4.31 -0.62

Fs BCKMKH 10.94 -0.26

Fe BCS2D 0.57 0.34

Ft BCSCLR 17.42 0.25

Fg BCSU 214.12 0.31

F, BCSV 214.88 0.69

F.o BOUNDU 8.57 0.61

Fu BOUNDV 7.72 -0.05

Fn JACOB 0.31 -0.3

Table 5-3: Main effects and interaction effects with scale when

scaling the system size from one to four processors at

grid size 67x67x35. The mean //=586.03 and the

estimated standard error SE=±0.99.

Next we examined the effect of changing number of processors at 131x131x35 grid

size. The results in Table 5-4 are obtained when the system size was scaled from one

8 2

to two processors. The effect of scale factor Fo is ;%=-948.05 which could mean about

IS minutes reduction in run time when using two processors. The estimated standard

error 5£=±1.44 and the mean was /r=1747.59.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -948.05 N/A

F, ADVCTS 27.22 0.21

Fz AD VU 4.63 0.0

F^ A D W 7.2 -2.44

Fa ADVW 2.03 2.16

Fs BCKMKH 6.13 2.88

Fa BCS2D -1.45 0.84

Ft BCSCLR 18.41 1.14

Fg BCSU 212.80 0.84

F , BCSV 213.27 -0.13

F,o BOUNDU 10.19 -0.02

F „ BOUNDV 8.46 -0.56

Fn JACOB 1.28 -1.44

Table 5-4: Main effects and interaction effects with scale when

scaling the system size from one to two processors at

grid size 131x131x35. The mean /i=1747.59 and the

estimated standard error 5F=±1.44.

The results of scaling the system size from one processor to four processors for the

same grid size are in Table 5-5. The estimated effect o f the scale factor Fo was

^o=-1431.81 that means scaling from one to four processors could result in decreasing

8 3

the run time about 23 minutes on average. The mean was /f=I505.71 and the

estimated standard error was 5E=±I.99. The two factors F% and F g are still holding the

highest effects.

Factor Name Main Effect Interaction with Scale

Fo Machine Size -1431.81 N/A

F, ADVCTS 29.55 2.54

F i AD VU 3.44 -1.2

Fj A D W 6.68 -2.95

F4 ADVW -0.16 -0.03

Fs BCKMKH 6.74 3.49

F« BCS2D 0.28 2.57

Fn BCSCLR 18.08 0.81

F* BCSU 213.76 1.8

Fg BCSV 214.41 1.01

F,o BOUNDU 9.75 -0.46

F„ BOUNDV 7.73 -0.17

F n JACOB 0.49 -2.23

Table 5-5: Main effects and interaction effects with scale when

scaling the system size from one to four processors at grid

size 131x131x35. The mean /f=1505.71 and the estimated

standard error 5£=±1.99.

8 4

5.3 Speedup and Scalability

In this section the speedup of the code is analyzed with respect to changing two

factors. We selected the two Actors with highest effect namely Fg and F9. The speedup

was measured at grid size 131x131x35 when changing the system size from one

processor to four processors. The data in Table 4-6 represent the average of four runs

obtained from the 13 factor fractional factorial experiment at each of the three factor

combinations. The interaction plot in Figure 5-1 shows that the speedup is about the

same when F9 is at low level regardless of the level of Fg.

F o F g F 9 Average Response

- - - 2007.57

- - + 2223.69

- + - 2222.25

- + + 2432.93

+ - - 693.49

+ - + 790.603

+ + - 790.74

+ + + 1004.43

Table 5-6: The average responses

obtained from fractional factorial

design.

8 5

F8-
F8*

F9- F9+

Figure 5-1; Interaction plot of the

speedup from the 13 factors

fractional factorial experiment.

To eliminate the effect of other factors a separate experiment was conducted with only

3 factors. The full factorial design appearing in Table 5-7 has 8 treatments, and the

average response column is the average of three replicates. We noticed that the

speedup rates in the full factorial experiment were higher due to the absence of the

extra serial delays caused by the remaining 10 factors in the 13 factor fractional

factorial experiment. However, the speedup rates appearing in Figure 5-2 have similar

behavior to those plotted in Figure 4-9.

The estimated standard error for the experiment in Table 5-6 was 5£=±1.99,

and the mean was //=1505.71, While the estimated standard error for the full factorial

experiment in Table 5-7 was ££=±7.22 and the mean was /f=1461

8 6

Fo Fg F, Average Response

- - - 1966.45

- - + 2173-58

- + - 2174.57

- + + 2396.68

+ - - 530

+ - + 744.87

+ + - 742.81

+ + + 960.21

Table 5-7: The average responses for

the full factorial experiment.

4

a.3

!
3

2m
1

F9-

-F8- i
-F8+1

Figure 5-2; The interaction plot of the

speedup for the 3 factors full

factorial experiment.

5.4 The EfTect of Communication Network

The IBM SP2 allows the user to select the communication medium and the network

protocol for message passing. With the use of high performance switch adapters the

message passing subsystem interfaces with the user space protocol. The user has also

8 7

the option to use the IP interface of the message passing subsystem. The user space

protocol does not allow more than one process per node while the IP does. However,

the current configuration of the machine does not allow more than one job on the

parallel nodes. The other communication medium is the Ethernet adapters which

allows only IP interface of the message passing subsystem.

In the previous experiments we executed the parallel ARPS using the high

performance switches and the US interface. We picked the experiment at 131x131x35

grid size when the number of processors was scaled from one to four processors. Then

we repeated the same set of runs using high performance switches hps, but using the

IP instead of the US interface. Finally we performed an experiment using Ethernet

adapters which allows the use of the IP interface only. The results in Table 5-5, where

obtained when running the code using hps and US interface. In Table 8, the results

when using the IP interface with hps. The effect of scaling number of processors from

one to four was 1416.71 with estimated mean //=I513.26 and standard error

.9E=±2.5.

8 8

Factor Name Main Effect Interaction with Scale

Fo System Size -1416.71 N/A

F, ADVCTS 29.17 2.16

F2 AD VU 5.26 0.63

Fj A D W 7.34 -2.29

F, ADVW 0.96 1.09

Fs BCKMKH 7.65 4.4

Fg BCS2D -1.48 0.81

Ft BCSCLR 19.54 2.26

Fg BCSU 216.70 4.75

F, BCSV 213.1 -0.3

F,o BOUNDU 8.22 -1.99

Fn BOUNDV 9.12 1.22

Fa JACOB 1.47 -1.25

Table 5-8: Main effects and interaction effects with scale when

scaling the system size from one to four processors at grid

size 131x131x35 using hps and IP. The mean //=I5I3.26

and the estimated standard error,S£=±2.5.

For the third experiment we used the Ethernet adapters with the IP interface. The

results in Table 5-9 show the estimated effect of the scale factor /?o=-1289.45 with

mean/y= 1576 88 and5£=±1.5.

8 9

Factor Name Main Effect Interaction with Scale

Fo System Size -1289.45 N/A

F, ADVCTS 26.80 -0.21

F2 AD VU 4.7 0.08

F, A D W 7.86 -1.77

F, ADVW 3.32 3.45

Fs BCKMKH 6.72 3.47

Fo BCS2D -1.49 0.8

F- BCSCLR 17.76 0.49

Fs BCSU 218.17 6.21

Fç BCSV 219.02 5.62

F,o BOUNDU 9.71 -0.5

Fn BOUNDV 7.76 -0.14

F,2 JACOB 2.34 -0.39

Table 5-9: Main effects and interaction effects with scale when

scaling the system size from one to four processors at grid

size 131x131x35 using Ethernet and IP. The mean

//=1576.88 and the estimated standard error 5£=±1.5.

Communication

Medium

Mean (//) Effect of Scale {fio) Standard Error {SE)

hps with US 1505.71 -1431.81 ±1.99

hps with IP 1513.26 -1416.71 ±2.5

Ethernet with IP 1576.88 -1289.45 ±1.5

Table 5-10: Summary of the effects of using different communication mediums.

9 0

We may notice that the effect of scaling the number o f processor is reduced slightly in

magnitude when using IP interface instead of US interface, that was about 15 seconds.

While the effect o f scale with the use of Ethernet limits the scalability of the code by

about 150 seconds which is ten times the difference when using the hps and IP.

5.5 Summary

In this chapter the ARPS code was analyzed when running in a distributed memory

environment. We used the MPI parallel version of ARPS on IBM SP2. The results are

in the same line with the shared memory version on CRAY J90. The two factors

“BCSU” and “BCSV” are still holding the highest effect. Their was no interaction

between these two factors and the scale factor. The two factor interactions that were

noticed in some of the results obtained from running ARPS on CRAY J90 are within

the error margin in the IBM SP2 case.

We noticed that the wall-clock running time of CRAY J90 almost twice that of

IBM SP2 when comparing the estimated mean. For grid size 67x67x35 and when

scaling from one to two processors the mean was //=354.8 on CRAY J90 while it was

//=643.26 on IBM SP2. For the same grid size when scaling from one to four

processors the estimated mean on CRAY was //=333.87 while it was //=586.03 on

IBM SP2. Similar results noticed on larger grid size. Nevertheless, the effect of scale

factor was higher on the IBM SP2 than on CRAY J90. For example, the effect of scale

factor Fo at grid size 67x67x35 when scaling the number of processors from one to

9 1

four processors was y%=-350.02on IBM SP2, while it was >55)=-138.87 on CRAY J90,

that is more than twice the effect.

The speedup rates were plotted when changing two factors to study the effect

of synthetic perturbations on speedup and use this as an indication of scalability. This

way could be used to predict how the code will scale when the code is optimized at

specific segments of code.

While the experiments in this chapter were conducted when using the high

performance switches with user space communication library (US), we also examined

the effect of the change in communication medium on the scalability of ARPS.

9 2

CHAPTER 6

CONCLUSIONS

The research work for this dissertation aimed to fill a gap in the process of evaluating

and tuning parallel systems. Unlike sequential code, parallel code is highly dependent

on the underlying architecture and the decomposition of the problem. It is a challenge

to find an approach that will assess the parallel system without extra hardware and

software components that will increase the cost of evaluation process and limit its

portability. On the other hand, the complex nature of parallel systems requires the

consideration of more than one factor at a time. Factorial designs were a good tool for

studying simultaneously the effects of more than one factor. While the use of

experimental design techniques existed in various scientific and engineering fields,

factorial designs were only recently introduced to the evaluation process of parallel

systems. The approach we followed was suggested by Gordon Lyon and his

colleagues at NIST. The approach uses synthetic perturbations to simulate changes in

the code and capture the response sensitivity to these changes by employing factorial

designs. We applied this approach to a large code on different platforms, and

estimated the scalability of the code based on the measured sensitivity. We further

analyzed the interaction between different factors that will appear as a twist in the

response surface. Moreover, we introduced a class of interaction plots that uses

speedup ratio. Then we used these plots for comparing the scalability of two systems.

9 3

The use of speedup provided a normalized value that can be compared among different

architectures rather than the effects that may have no direct meaning on different

architectures.

In Chapter 2, we reviewed the literature related to the evaluation process of

parallel systems. The speedup with its different versions was reviewed as well as

efficiency and other measures of performance. In that chapter we looked to the

scalability from three points of view: machine scalability, algorithm scalability, and

scalability of machine-algorithm combination. The later was of our interest because of

the nature of parallel systems. We also introduced our definition of a parallel system.

Two major approaches: isoefficiency and isospeed, were explored besides some other

approaches.

Our approach was introduced in Chapter 3. In that chapter a brief background

of the experimental design with a focus on factorial designs. We provided the

necessary definitions to introduce factorial designs. The fractional factorial designs

were introduced since it will reduce the number of treatments needed. Also we show

how the computed effects can be used to build a linear model describing a relation

between the investigated factors and the response. The link between factorial designs

and parallel systems was introduced in Section 3.3, followed by an illustrative

example. Then we briefly gave a description of ARPS followed by the initial

experiment on a cluster of workstations.

We performed more detailed experiments on the CRAY J90 to explore the

power of the statistical approach in estimating the scalability of the parallel system,

9 4

these results are described in Chapter 4. We scaled the problem size as well as the

number o f processors. The effects of scale were used to assess the scalability of the

parallel system. The existence of interactions with the scale factor that may affect our

conclusion about main effects, was investigated by analyzing these interactions using

interaction plots. The speedup interaction plot was used in this chapter to estimate

scalability of some code segments as well as the machine. We further examined the

effect of the amount of delay by comparing the results o f two experiments designed for

this purpose.

The next Chapter 5 described the experiments performed on the IBM SP2.

Similar experiments were performed within the limitations of memory space on each

node. The problem size and the number of processors were both scaled. The results

confirmed the primary conclusions about the code.

The comparison between the results obtained on the two machines: CRAY J90

and IBM SP2, show that the former has better performance as it is clear from the

estimated means, while the later show better scalability as we observed from the

speedup interaction plots. This could be due to the difference in the single processor

performance between the two machines, were CRAY J90 uses vector processor and

IBM SP2 uses RISC processor. Also the parallel version was decomposed by the

programmer, along the x-axis and y-axis of the grid space, on the IBM SP2 that

provided a scalable structure, while it was done by the compiler on the CRAY J90.

Moreover, there is a possibility of memory contention in the shared memory case as it

appeared in some of the interactions in Section 4.5. However, the magnitudes of these

9 5

interactions were small and the existence of such contention can be verified by using

hardware monitoring tools.

The use of designed experiments with synthetic perturbations in assessing

parallel systems is portable, economic, and simple. However, the results will depend

on how the investigator will pickup the factors. While the problem size and the number

of processors are the two important factors to study the scalability of parallel system,

the selection of other factors representing segments of codes is crucial and requires a

certain level of knowledge about the code as it was mentioned in Chapter 3. Screening

will help in the selection of these significant factors. A study of the code and its

structure without going deep in the details of each component was of great help in

our case. Before selecting the factors to be included in our experiments a calling tree

was constructed. Also we studied the general function and communication patterns for

each subroutine involved in our experiments.

The investigation process is iterative and the results of one experiment may

lead to other experiments. Therefore the screening experiments will include a large

number o f factors requiring a large number of treatments. The number of treatments

can be reduced by using fractional designs in the screening phase, then for the

significant factors a full design is used to obtain more details.

For the experiments in this research we used two level factorial and fractional

factorial designs. Each factor has exactly two levels this limits the study of the

scalability to fit linear models only. As we noticed in the different experiments the

effect of changing the number of processors was not linear. To build a quadratic model

9 6

at least three levels are needed. However, when using more than two levels the levels

should be equally spaced from one another. The future work will consider using three

or more levels for the scale factors allowing building non-linear models.

The scale of problem size and number o f processors were considered

separately in this research. Our future trend is to consider two or more scale factors in

one experiment. This may include the number of processors, the problem size, the

algorithm instant, and the communication medium. The number of factors and the

levels at each factor, however, will vary depending on the goals and objectives o f the

investigation.

9 7

REFERENCES

Alabdulkareem, M.; S. Lakshmivarahan; and S. K. Dhall. 1997. “A Scalability Analysis

of Large Code of Interest in Meteorology Using Experimental Design

Techniques.” Proceedings of the High Performance Computing ’97 (Atlanta,

Georgia, April 6-10).

Barragy, E.; G. Carey; and V. De Geun. 1995. “Parallel Performance and Scalability

for Block Preconditioned Finite Element {p) Solution of Viscous Flow.”

International Journal for Numerical Methods in Engineering 38, no. 9 (May);

1535-1554.

Box, G. and J. Hunter. 1961. “The 2*'̂ Fractional Factorial Designs.” Technometrics

3, no. 3 (Aug.): 311-352.

Box, G.; W. Hunter; and J. S. Hunter. 1978. Statistics for Experimenters. John Wiley

& Sons Inc., New York.

Brachini, A.; A. Marconi; M. R. Nazzarelli; and S. Sabina. 1995. “An Integrated

Approach to Performance and Testing Analysis for Parallel Systems.”

Proceedings o f the High Performance Computing and Networking

International Conference and Exhibition (Milan, Italy, May 3-5).

9 8

Carey, G. 1994. “A Prototype Scalable, Object Oriented Finite Element Solver on

Multicomputers.” Journal o f Parallel and Distributed Computing 20, no. 3

(Mar.): 357-379.

Cray Research Inc. 1993. CF77 Commands and Directives. SR-3771 6.0, Cray

Research Inc., Mendota Heights, MN.

Crowl, L. A. 1994. “How to Measure, Present, and Compare Parallel Performance.”

IEEE Parallel & Distributed Technology 2, no. 1 (Spring): 9-25.

Dhekne, P. S.; K. Rajesh; S. M. Mahajan. 1995. “Performance of ANUPAM system

for Large Scale Parallel Computations.” Proceedings o f the International

Conference on High Performance Computing (New Delhi, India, Dec. 27-30).

Droegemeier, K., M. Xue; K. Johnson; K. Mills; M. O’keefe. 1992. “Experiences with

the Scalable-Parallel ARPS Cloud/Mesoscale Prediction Model on Massively

Parallel and Workstation Cluster Archtectures.” Proceedings o f the Fifth

ECMWF Workshop on the Use o f Parallel Processors in Meteorology

(Reading, UK, Nov. 23-27).

Drouin, N. 1993. “Building Hadamard Matrices in Steps of 4 to order 200.” Technical

Report NISTIR-5121. U. S. Department of Commerce, Technology

Administration, National Institute of Standards and Technology, Gaithersburg,

MD 20899.

9 9

Eager, D.; J. Zahoijan; and E. Lazowska. 1989. “Speedup Versus Efficiency in Parallel

Systems.” IEEE Transactions on Computers 38, no. 3 (Mar.): 408-423.

Ertel, W. 1994. “On the Definition of Speedup.” In the Proceeding o f the (f*

International PARLE Conference (Athens, Greece, July 4-8).

Fienup, A. and S. Kothari. 1994. “A Memory Constrained Scalability Metric.”

Proceedings o f the 23'"̂ International Conference on Parallel Processing

(Aug. 15-19). CRC Press, Boca Raton, PL.

Grama, A. Y.; A. Gupta; and V. Kumar. 1993. “Isoefficiency: Measuring the

scalability of parallel algorithms and architectures.” IEEE Parallel &

Distributed Technology 1, no. 3 (Aug.): 12-21.

Gunter, B. 1993. “How statistical design concepts can improve experimentation in the

physical sciences.” Computers in Physics 7, no. 3 (May): 262-272.

Gupta. A. and V. Kumar. 1993. “ Scalability o f Parallel Algorithms for Matrix

Multiplication.” Proceedings o f (he 1993 International Conference on

Parallel Processing Vol. ///(Syracuse, NY Aug. 16-20).

Gupta, A. and V. Kumar. 1993. “The Scalability o f FTT on Parallel Computers.”

IEEE Transactions on Parallel and Distributed Systems 4, no. 8 (Aug.):

922-932.

1 0 0

Gupta, A.; V. Kumar, and A. Sameh. 1995. “Performance and Scalability of

Preconditioned Conjugate Gradient Methods on Parallel Computers.” IEEE

Transactions on Parallel and Distributed Systems 6, no. 5 (May): 455-469.

Gustafson, J. 1988. “Reevaluating Amdahl’s Law.” Communications o f the XCM 31,

no. 5 (May): 532-533.

Gustafson, J.; G. Montry; and R Benner. 1988. “Development of Parallel Methods for

A 1024-Processor Hypercube.” SIAM Journal on Scientific and Statistical

Computing 9, no. 4 (July): 609-638.

Gustavson, D. 1994. “The Many Dimensions of Scalability.” Digest o f Papers from

the COMPCON 94 (San Francisco, California, Feb. 28 - Mar. 4). IEEE

Computer Society Press.

Hanebutte, U.; R. Joslin; and M. Zubair. 1994. “Scalability Study of Parallel Spatial

Direct Numerical Simulation Code on IBM SPl Parallel Super Computer.”

Technical Report No. 94-80. ICASE, NASA Langley Research Center,

Hampton, VA 23681-0001.

Hedayat, A. and W. Wallis. 1978. “Hadamard Matrices and Their Applications.” The

Annals o f Statistics 6, no. 6 (Sep.); 1184-1238.

Hill, M. 1990. “What is Scalability?” Computer Architecture News 18, no. 4 (Dec.):

18-21

1 0 1

Hofmann, R.; R. Klar, B. Mohr, A. Quick; and M. Siegle. 1994. “Distributed

Performance Monitoring: Methods, Tools, and Applications.” IEEE

Transactions on Parallel and Distributed Systems 5, no. 6 (June): 585-598.

Jamieson, L.; A. Khokhar, and J. Patel. 1995. “Algorithm Scalability: A Poly-

Algorithmic Approach.” Challenges fo r Parallel Processing: Proceedings o f

the International Conference on Parallel Processing, edited by D. P. Agrawal.

CRC Press, Boca Raton, FL.

Johan, Z.; K. Mathur; S. L. Johnsson; T. Hughes. 1994. “Scalability of Finite Element

Applications on Distributed Memory Parallel Computers.” Computer Methods

in Applied Mechanics and Engineering 119, no. 1,2 (Nov.): 61-72.

Johnson, K.; J. Bauer, G. Riccardi; K. Droegemeier, and M. Xue. 1994. “Distributed

Processing of A Regional Prediction Model” Monthly Weather Review 122,

no. 11 (Nov.); 2558-2572.

Justo, G. R. 1995. “A Graphical Approach to Performance Oriented Development of

Parallel Programs.” Proceedings o f the International Conference on High

Performance Computing (New Delhi, India, Dec 27-30).

Koufaty, D.; X. Chen; D. Poulsen; and J. Torrellas. 1996. “Data Forwarding in

Scalable Shared Memory Multiprocessors.” IEEE Transactions on Parallel

and Distributed Systems 1, no. 12 (Dec.); 1250-1264.

1 0 2

Kremien, O. 1995. “Scalability in Distributed Systems, Parallel Systems and

Supercomputers.” Proceedings o f the International Conference and

Exhibition on High Performance Computing and Networking (Milan, Italy,

May 3-5).

Lakshmivarahan, S. and S. K. Dhall. 1990. Analysis and Design of Parallel Algorithms.

McGraw-Hill Inc., New York.

Liotopoulos F K. 1994. “Sparse Generalized Hyper Grids for Performance

Scalability.” Proceedings o f the 6** International PARLE Conference (Athens,

Greece, July 4-8, 1994).

Lyon, G.; R. Kacker; and A. Linz. 1995. “A scalability test for parallel code.”

Software Practice and Experience 25, no. 12 (Dec.); 1299-1314.

Lyon, G.; R. Snelick; and R. Kacker. 1994. “Synthetic perturbation tuning of MIMD

programs.” The Jounial o f Supercomputing no. 1 (Mar.): 5-27

Malony, A. D.; D A Reed; and H. A. G. Wijshoff. 1992. “Performance Measurement

Intrusion and Perturbation Analysis.” IEEE Transactions on Parallel and

Distributed Systems 3, no. 4 (July): 433-450.

Marenzoni, P. 1995. “Performance Analysis of Cray T3D and Connection Machine

CM-5: a Comparison.” Proceedings o f the High Performance Computing and

Networking International Conference and Exhibition (Milan, Italy, May 3-5).

1 0 3

Muller-Wichards, D. and W. Ronsch. 1995. “Scalability of Algorithms; An Analytical

Approach.” Parallel Computing 1\, no. 6 (June): 937-952.

Nussbaum, D. and A. Agarwal. 1991. “Scalability of Parallel Machines.”

Communications o f the ACM 34, no. 3 (Mar.): 56-61.

Panwar, R. and G. Agha. 1994. “A Methodology for Programming Scalable

Architectures.” Journal o f Parallel and Distributed Computing 22, no. 3

(Sep.): 479-487.

Ramachandran, U., G. Shah, and S. Ravikumar. 1993. “Scalability Study of the KSR-

I Proceedings o f the 1993 International Conference on Parallel Processing

Vol. I (Syracuse, NY Aug. 16-20).

Ramachandran, U.; G. Shah; S. Ravikumar; and J. Muthukumarasamy. 1993

“Scalability Study of the KSR-1.” Proceedings o f the 1993 International

Conference on Parallel Processing Vol. / (Syracuse, NY Aug. 16-20)

Sahni, S. and V. Thanvantri. 1996. “Performance Metrics: Keeping the Focus on

Runtime.” IEEE Parallel & Distributed Technology A., no. I (Spring). 43-56

Sarukkai S.; P. Mehra; and R. Block. 1995. “Automated Scalability Analysis of

Message Passing Parallel Programs.” IEEE Parallel and Distributed

Technology 3, no. 4 (Winter): 21-32.

1 0 4

Sathye, A.; G. Bassett; K. Droegemeier, and M. Xue. 1995. “Towards operational

severe weather prediction using massively parallel processors.” Proceedings o f

the International Conference on High Performance Computing (New Delhi,

India, Dec. 27-30).

Shank, C.; G. Craig; and D. Lea. 1996. “A Path to Scalability and Efficient

Performance.” In Languages. Compilers and Run-Time Svstems for Scalable

Computers, ed. Boleslaw Szymanski and Balaram Sinharoy, KLUWER

ACADEMIC PUBLISHERS, Boston.

Singh, J P.; J. L. Hennessy; and A. Gupta. 1993. “Scaling Parallel Programs for

Multiprocessors: Methodology and Examples.” IEEE COMPUTER 26, no. 7

(July): 42-50.

Sivasubramaniam, A.; A. Singla; U. Ramachandran; and H. Venkateswaran. 1994.

“An approach to scalability study of shared memory parallel systems.”

Proceedings o f the 1994 ACM SIGMETRICS Conference on Measurement

and Modeling o f Computer Systems (Nashville, Tennessee, May 16-20). ACM

Press.

Snelick, R.; J. Jaja; R. Kacker; and G. Lyon. 1993. “Using Synthetic-Perturbation

Techniques for Tuning Shared Memory Programs.” Proceedings o f the 1993

International Conference on Parallel Processing Vol. II (Syracuse, NY Aug.

16-20).

1 0 5

Srivastava, J. N. 1990. “Modem Factorial Design Theory for Experimenters and

Statisticians.” In Statistical Design and Analysis o f Industrial Experiments, ed.

Subir Ghosh, 311-406, MARCEL DEKKER, INC., New York.

Sun, X. and D. Rover. 1994. “Scalability of Parallel Algorithm-Machine

Combinations.” IEEE Transactions on Parallel and Distributed Systems 5, no.

6 (June); 599-613.

Sun, X. and J. Zhu. 1995. “Performance Considerations of Shared Virtual Memory

Machines.” IEEE Transactions on Parallel and Distributed Systems 6, no. 11

(Nov.): 1185-1194.

Sun, X. and L. Ni. 1993. “Scaleable Problems and Memory-Bounded Speedup.”

Journal o f Parallel and Distribiited Computing 19, no. 1 (Sep.): 27-37.

Tambouris, E. and P. Santen. 1995. “A Methodology for Performance and Scalability

Analysis.” Proceedings o f the 22"‘̂ Seminar on Current Trends in Theory and

Practice o f Informatics (Milovy, Czech Republic, Nov. 23 - Dec. I).

Wilson, G. 1993. “A Glossary of Parallel Computing Terminology ” IEEE Parallel &

Distributed Technology 1, no. 1 (Feb.): 52-67.

Worley, Patrick 1990 “The Effect of Time Constraints on Scaled Speedup.” SIAM

Jourtml on Scientific and Statistical Computing 11, no. 5 (Sep.): 838-858.

1 0 6

Xue, M.; K. Droegemeier, V. Wong; A. Shapiro; and K. Brewster. 1995. ARPS

Version 4.0 User’s Guide. Center for Analysis and Prediction of Storms, The

University of Oklahoma, Norman, Oklahoma.

Yan, J.; S. Sarukkai; and P. Mehra. 1995. “Performance Measurement, Visualization

and Modeling of Parallel and Distributed Programs using the AIMS Toolkit.”

Software-Practice and Experience 25, no. 4 (Apr.): 429-461.

Zhang X. and Zhichen Xu. 1995. “A Semi-Empirical Approach to Scalability Study.”

Proceedings o f the 1995 ACM SIGMETRICS Joint International Conference

on Measurement and Modeling o f Computer Systems (May 1995).

Zhang X.; Y. Yan; and Q. Mia. 1994. “Measuring and Analyzing Parallel Computing

Scalability.” Technical Report TR-94-03-02. High Performance Computing

and Software Laboratory, The University of Texas at San Antonio, San

Antonio, Texas.

107

APPENDIX A

OVERVEIW OF ARPS

The Advanced Regional Prediction System (ARPS) was developed by group of

researchers at the Center for Analysis and Prediction of Storms (CAPS), University o f

Oklahoma. ARPS model is one of six major areas under CAPS program. The

development of the ARPS model started in July, 1990 with ARPS version 1.0, but the

first formal release was version 3.0 in September, 1992.

A.l Description of ARPS

The ARPS model is a three-dimensional, non hydrostatic code designed for the

prediction of small scale, short duration events like thunderstorms, snow bands, and

downslope windstorms. The numerical model developed by CAPS has been designed

to predict the above events with the following general prediction goals;

• Mesoscale Phenomena: Prediction duration ranging from 0 to 12 hours.

Location of events to within 50 km and timing of events to within 1

hour.

• Stormscale Phenomena. Prediction duration ranging from 0 to 6 hours.

Location of events to within 10 km and timing of events to within 15

min.

• Microscale Phenomena: Prediction duration ranging from 0 to I hours.

Location of events to within 1 km and timing of events to within 5 min.

1 0 9

The developed model included governing equations for momentum, heat, mass,

water substances, turbulent kinetic energy, and the equation of state. The model was

developed at CAPS with three main goals; sufficient adaptability to new data

assimilation strategies, ease of use, and suitability for variety of computing platforms.

Moreover, the model was designed to be suitable for scalable parallel processors,

which makes it a good target for the scalability study. Because the code is huge (more

than 280 subroutines distributed in 30 files) and was developed by more than 30

scientific and support personnel over the last six years, the approaches mentioned in

Chapter 2 are difficult to apply if not impossible. The approach described in this

dissertation is the best economical way to test scalability of this code. The ARPS code

and documentation are available via the anonymous FTP site

"ffpcaps.ou.edu/pub/ARPS" or the CAPS home page "wwwcaps.ou.edu".

A.2 The ARPS Code Structure

The system consists of three stages, the main ARPS model stage plus preprocessing

and postprocessing stages. The main ARPS model stage has fife major functions:

INITIAL, EXTBDTINI, INIOUT, CORDINTG, OUTPUT, and CHKSTAB. The

model has variety of initialization options. The simplest initialization does not require

any external data except a single sounding. We used the "may20 snd" sounding file for

our experiments. However, for applications that require real terrain and surface data,

preprocessors are needed to extract these data from data bases. The output of the

ARPS model is in the form of history data written into one or more files. The history

1 0

data can be later accessed by postprocessor for graphical output, data conversion or

formatted printing. In this study we concentrated on the main ARPS model.

A 3 The Calling Tree

The following calling tree was constructed for the PVM version of parallel ARPS. The

numbers show how many times each subroutine was called during two time steps of

model run. We used;

(w) the subroutine was called n times.

(} the subroutine was not called in the first step (see the file "tintegSd.f).

[] the sub-tree number is used if the same sub-tree was called in another place.

■WS4 0 (1) <-SEITJPE\M (11
■ - C H E E K P ^ ^ K ' . d)

t - I N r n . < \ L (1) < ~ n ' f I T F . O f i A (1) ♦ - r K r L C G (1) < - E N V E 3 » l (l ;

I I ' - G C T J m T (l)

1 ^STRlMIW'19-^19)
! '-RER.NITdl

I * - s a Æ i _ i N r r _ D i 5 r 1 1 1

I REIXIVE_!NIT_DIST(ll

' - D C T R D ; 1) (1 1 — S E I M a f R (1 !

I I * - L L ' ? 3 C i ' (l l

I * ~ s E n m G [i j — a i - t o l l c)
—eCS2D(1)+-INCI7>G (4 1
* - j ? < x e (1) 4 1

— D H T .w 11) * - : n i b a e e i i) ’ i ;
—2FWFTL i 1 ■ —3n.mr; (11 <-GCTJurr (I !

; I i « - s T R m r H (i)

! »-fEn.WTT(l)
I I * - £ E N D _ 9 n j l D n ‘ C i l)

! : I RETIEVE_SOjMC.IÎG(11
: «-GEMOT'S (10!

I I ‘ -S)D I? O T P (l)* ~ 0 m iD (5 1
I — !ii.A\G3jr.i--A\G:<iii
I : —scsu(i)*-aJCTPG(2i
I I

*-r2i.AVGS'/(;)—A '.w d !
— E C ? > - (I I * - r î C I 7 i G (r !

1 — 3 r > - N I T (l l

I ^ - R E l l . T d T d !

* - n f r r t v R (1 1 * - e c 3 d f i (1 1 — r M r r » G (61

‘- I M T O K I B C l
I

'^-niTK L TI 1 1 ‘ -\3[>P:<0 (0 2 | *~I1CI7>G(1 !

‘-xFDiwir,! r I ‘-.''FTFi;';! ; i
I * -T T IT O l 11 . — ! 1 3 1 RKIJVW(11 , 11

11

I -t-A^CSV-SEE [21
I <-(14|A\CSW f-AVGZ(l)
I -t-K S W d)
< -(20 1WCCNTRA (1) -t-VBCWXNr (1)
<-fTCuvw(1)+-MDajvw(1)+-TMixuvw(1)+-sDoisQ(1)+-sr»« (11

+-ŒKFM (11+-RUGSU(4)-SEE [1]
I +-flflM JU(6)
I + -n iE X (3)
I <-AVGSV(41-SEE (21
I -M K P fO)
I < - 0 tE 2 (3)
I « ~ B a jN IV (2)t- IN C rP G (2)
I + -e o o N a j(2)+ - iN 2 r p G (2)
I f-A M 3 W (4)-S E E (141
I <-eO JN tW (2)
I
- I -C T M X (1) + -eC m < H (I) * - INCrPG (4)
'•-S T O E S S d) f-AJiMJLTf 10)
1 i-A V GEU{2)-SEE H]
I «-AVGSV(2)-SEE; (21
I W W GSW (2)-SEE; [141
I
‘--'J-CCTFMdlt-OrFrflt

■•-AM-ULTd)
' 4-OIKIl)

<-A\i3Sv;i;-sEE:
4-DIF:'tl)

*-VMTXTPM(1) * -D IF 2 1 1)
‘-AVGsu(i)-3s:
■ i-A T O 'd :

I ■‘-W IT L T IC)
t -D iE > ;(i)

I * - D i r f t i ;

« -ID T F M d 1 t - D I r l (1)
W \M 3S U (1)-SE E Hi
*-AVGZ(2)
*~APMILT(2)
♦ -D IE X d)
t-AVGSV(ll-5EE '2 !
< - D i r i ' (l)

+-Q4DC21W'4(1)
<-CMIX4UVW(l)

- S a i j W l 1) < -U V M «3(1) -^-SHaLTiMl 1 1-SEE
I
♦ -A £ M Jd)+ -A V 3 < (4)
! * -D IF X (l)

^-AAM ILTO)
+-D IF Y (H
+-A\Ofd)
<~D IF2(1!
+-AV2Z(1)

* -A £ W d)f -A M 2 f(4)
t -D IF X (! i
*-APM JLT(3l
+-AV3-;d)
» -D IfY (l)
• - D IF Z (l)
< -A V C 2(l)

*-A CV W d)<-A V 3Z(4)
-̂DIFXdl

«~APMJLT(3)
«-AVOtd)
«■-DIFYd)
‘-Arardi

1 1 2

I I + - D I E 2 (1)
I -̂BJOrcifd)
+-ERCP(I)+-«J/P(l)<~»njVW(X)-SEE (131

*-(32)«> C rS (I)+-OIEX{ I)
+-W K1U{3)
W M 3 C (1)
• M E E Y d)
t - A l d f d)
*-DIEZd)
♦ - A V G Z d)

ET«:Pr(I)WVCVFT(l)-MTOJVW(l)-SEE (13|
*TiMVrrSd)-SEE [32]
*-A V G 3id)-SE E (141
'- D I F Z d l
+-AVGZd)

—Wn-ÏT d) ‘-IM KPr (1)+-(281TR8EIXS d) *-W llLT (51
I l < ~ D I F X d)
I l + - A \ Q C d)

l + - D I E Y d)
I < - A V G l f d)
l + - D I E 2 d)
l - ^ - A V G Z d)

^3C X IW -1(1) ‘ -A '.IK! 1 1
*-A?MJLTi:;
— D IF X lii
*-A V 3ï(l!

—̂D IF 2 (I)

I

—IC'XSd)
‘ -34LSIEP(11 '- m iA W O - S E E (13|

*-vrrïmîA.(2i-sEE (:o;
—3X V FT I1) —9C EC dld)-t~IN :T PG (8)

* -T n L T (l!* -A S E L IW (5)

I
*-anwT(2)
<~a®CKsrpe(2)
*~E X rTE W d)

• - T F I I P d) +-TSW\P (5)

13

A.4 The Configuration Parameters

ARPS provides the user with flexible control over many of the configuration

parameters. Some o f the parameters are set at run time while other parameters are set

before compilation. The program will read the run time parameters from an input file

in NAMELIST format. We used the same default input parameters in the file

"arps40.input" provided with the code except for the grid size and the model time

which are set depending on the experiment. The change of grid size requires

recompiling the code, while the change of model time does not. We added our

parameters that represent the factors to the input file in the NAMELIST format. The

number of processors was decided at run time for the CRAY J90 by sitting the

environment variable NCPUS. On the other hand, the number of processors was

predetermined before compilation on the IBM SP2 because it uses the message

passing version.

1 1 4

APPENDIX B

THIRTEEN FACTOR FRACTIONAL FACTORIAL DESIGN

The following table is the fractional factorial design we used in Chapters 4 and 5.

Since the runs were performed in random, the treatment number is used for

identification only and does not represent the order in which the experiments were

actually performed.

Treatment
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

F, Fj F, F, Fi Fg Fg Fio F, 12

1 1 6

The above design was obtained using the "FACTEX" procedure available with

the SAS package. This procedure will generate orthogonally confounded designs

including factorial and fractional factorial designs. After constructing a design, it can

be printed, saved to file, or used as SAS data set. The factor confounding rules for the

above design are as follows;

Fi=Fo*Fi*F2*Fi*F,

F6=F2*F3*Fa

Ft = Fx*F3*F^

Fg = Fo*F3*Fi

Fg = Fi*F2*Fi

F̂ o = Fo*F2*F,

Fu=Fo*F^*F^

Fx2 = F,*F2*F3

with the following aliasing structure:

Fo

Fi

F2

F3

F,

F,

F,

Fy

Fg

F,

F,o

1 1 7

Fn

Fil

Fo*Fi = Fi*Fx\ = Fs*Fe = i*7*Fg =

Fo*Fj = F<*Fio = Fi*Fi = F6*Fg = F9*F,i

F o * F 3 = F » * F g = F s * F 9 = F s ^ F i o = F 7 * F u
Fo*F4 = Fi*Fii = F2*Fio = Fs*Fg = Fs^Fu

Fo*Fs = Fi*F6 = F2*F? = Fs*F9 = F,*F,2

Fo*Ffi = F,*F5 = Fz'Fg = F3*F,o = F„*Fi2

F o * F 7 = F , * F g = F 2 * F s = F 3 * F „ = F , o * F i 2
F o * F g = F i * F ? = F z ^ F s = F-i*Fi = F ^ * F ,2

Fo*F9 = Fi*Fio = Fz*F;| = F3*Fs = Fg*Fi2

Fo*Fio = Fi*F9 = Fz*F(= F3*Fe = Fi*Fi2

Fo*F] I = F| *F(= F2*Fç = F-i*Fi = Fe*Fi2

F o * F i 2 = F 4 * F s = F 6 * F i i = F 7 * F i o = F g * F g
F i * F z = F 3 * F i 2 = Fa*F<) = F s * F g = F 6 * F 7 = F , o * F | ,

F i * F 3 = F z * F i 2 = F , * F z = F s ^ F i o = F e * F 9 = F g * F n
F i* F n = F 2 * F j = F 4 * F « = F i*F n = F 7 * f ^ = F g * F , o

1 1 8

