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Abstract: The goal of this thesis is two-fold: First, to determine mixing effectiveness of 

an active mixer attachment to a three-dimensional (3D) printer by characterizing actively-

mixed, three-dimensionally printed silicone elastomers. Second, to understand mechanical 

properties of a printed lattice structure with varying geometry and composition.  

Ober et al defines mixing effectiveness as a measureable quantity characterized by two 

key variables: (i) a dimensionless impeller parameter (Ω̃) that depends on mixer geometry 

as well as Peclet number (Pe) and (ii) a coefficient of variation (COV) that describes the 

mixer effectiveness based upon image intensity. The first objective utilizes tungsten tracer 

particles distributed throughout a batch of Dow Corning SE1700 (two parts silicone) - ink 

“A”. Ink “B” is made from pure SE1700. Using the in-site active mixer, both ink “A” and 

“B” coalesce to form a hybrid ink just before extrusion.  

Two samples of varying mixer speeds and composition ratios are printed and analyzed 

by microcomputed tomography (MicroCT). A continuous stirred tank reactor (CSTR) 

model is applied to better understand mixing behavior. Results are then compared with 

computer models to verify the hypothesis. Data suggests good mixing for the sample with 

higher impeller speed.  A Radial Distrubtion Function (RDF) macro is used to provide 

further qualitative analysis of mixing efficiency.  

The second objective of this thesis utilized three-dimensionally printed samples of 

varying geometry and composition to ascertain mechanical properties. Samples were 

printed using SE1700 provided by Lawrence Livermore National Laboratory with a face-

centered tetragonal (FCT) structure. Hardness testing is conducted using a Shore OO 

durometer guided by a computer-controlled, three-axis translation stage to provide precise 

movements. Data is collected across an ‘x-y’ plane of the specimen.  

To explain the data, a simply supported beam model is applied to a single unit cell which 

yields basic structural behavior per cell. Characterizing the sample as a whole requires a 

more rigorous approach and non-trivial complexities due to varying geometries and 

compositions exist. The data demonstrates a uniform change in hardness as a function of 

position. Additionally, the data indicates periodicities in the lattice structure. 
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CHAPTER I:  INTRODUCTION 
 

1.1 Additive Manufacturing 

Additive Manufacturing (AM) is a powerful manufacturing technique capable of constructing 

models layer-by-layer from computer aided design (CAD) software using a wide variety of 

materials such as ceramics [3, 4], polymers [5,6], cellular composites [7], thermoplastics [8], and metals 

[9]. The key feature of AM is that material is selectively added to build the part rather than subtracted 

from a block of feedstock. AM can be accomplished with a variety of approaches including: voxel-

by-voxel techniques (e.g., stereolithography, laser-engineered net shaping (LENS), ink jet 

printing), filament deposition techniques (e.g., fused deposition, robocasting, direct-ink writing 

(DIW)), or complete layer-by-layer techniques (e.g., laminated object manufacturing (LOM), 

Carbon3D).  Of these techniques, LENS, ink jet printing and DIW offer the best opportunity for 

multiple materials within the same print. The work described in this thesis utilized the DIW 

technique to build structures for two separate characterization studies.  

DIW is an AM technique by which three-dimensional structures are assembled layer-by-layer 

by depositing feedstock material (ink) through a capillary nozzle of fixed internal diameter (dtip) 

onto a substrate or previously deposited layers. The layers are of finite thickness (c.a., Δz = dtip⋅π/4), 

with the filament usually considered to have a round cross section with dfilament≈dtip. Motion 

controllers, motors, amplifiers, and actuators enable DIW to accurately trace a toolpath to deposit 

ink for precise construction of any given part. The toolpath is calculated via CAD software and is 

interpreted by the motion controller. Electrical signals are then sent to axis-specific amplifiers, 

motors, and actuators located on an x-y-z translation stage. The translation stage is thus capable of 
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movement in three dimensions, x, y, and z. Because the part is built in a vertical fashion (i.e. from 

z=0 to z=(# of layers)⋅(Δz)), the ink deposition nozzle is affixed to the z-axis of the gantry robot 

(see figure 1.2). 

Toolpaths are a combination of two primary geometric objects: three-dimensional lines and two-

dimensional arcs. Lines, represented by G1 in G-code syntax, are generated by scaling the velocity 

of one or more specific axes (i.e. x, y, or z) to trace a line from start to end point at a (typically) 

constant velocity along the line segment. Such control of multiple axes is known as contoured 

motion.  For arcs, represented by G2 or G3 in G-code syntax, appropriate axes are moved to trace 

an arc such that the tangential velocity is constant. G-code is the language generated by CAD 

software and interpreted by the motion controller. A typical G-code file consists of an ordered set 

of G1, G2, and G3 motion commands coupled with print settings such as write speed and ink 

dispensing rate. The motion controller translates G-code files in a line-by-line fashion similar to 

other programming languages.  Most controllers also allow variable definition, logic and loop 

structures (i.e., flow control) as well as subroutines within the G-code. 

In DIW, syringe pumps are used to dispense ink as the robot traces the toolpath.  Some DIW 

systems use constant pressure driven pumps if the ink rheology and pressure versus flow rate 

relationship is well-understood.  A more reliable method is to use constant volume driven pumps, 

where the plunger motion of the syringe is precisely controlled by a linear actuator.  The constant 

volume method is capable of accommodating changes in ink rheology and varying pressure drop 

at the deposition nozzle exit.  In the work described in this thesis, constant volume syringe pumps 

are used. 

From DIW, a wide array of promising applications have been demonstrated such as bone and 

tissue scaffolds [11, 12], composites [7, 13], piezoelectric sensors [13, 14], and soft robots [15]. A detailed 
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process flow diagram and model is provided in figures 1.1 and 1.2 to illustrate the basic components 

of a DIW system. 

 

Figure 1.1:  Flow Diagram of DIW Process [16] 

 

 

Figure 1.2:  Schematic of a DIW System (b) robot overview, (c) multi-tip extrusion array, and 

(d) active mixer configuration [17] 
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Figure 1.1 illustrates the process flow of a DIW system. Three input operations, (1), (2), and (3), 

drive the Computer Numerical Control (CNC) System (4). The CNC system is comprised of the 

motion controllers and hardware. The first process, CAD model input (1), details model structural 

properties such as layer height, number of layers, and overall geometry and composition 

specification. Models are constructed by two methods: (i) free-hand design utilizing line drawing 

tools such as polyline and (ii) by import from a pre-existing design file (STL – Stereolithography 

File Format). Operational parameters (2) include write speed, syringe and tip diameters, and 

compositional values. From (1) and (2), all necessary calculations regarding distance, velocity, and 

acceleration for axis movement are computed. Processes (1), (2), and (3) are translated into G-code 

commands with which the CNC system (4) interprets into motion in all respective axes. This seven 

step process establishes all essential parameters for building 3D structures. Custom CAD software, 

RoboCAD, was tailored for this machine [18].  RoboCAD is discussed in-depth in section 3.2.3.1. 

1.2 Ink 

This thesis utilizes a reaction-cure, heat-activated silicone as the ink material. Silicone is a non-

diene, elastomer used in many different applications such as electronics, construction, and mold-

making [27, 28]. Elastomers are amorphous polymers in which the glass transition temperature, (𝑇𝑔), 

is well below room temperature, yielding highly viscoelastic properties. For extrusion-based, 3D 

printing approaches, the ink must to be extruded and stabilized to maintain shape after the shear 

stress is removed. The silicone used in this thesis exhibits the shear-thinning properties necessary 

with a high viscosity, which is suitable for this approach. 

1.3 Active Mixing 

Blending two or more inks in-situ, gives the desirable ability to vary composition along the 

toolpath and, thereby, tailor various material properties (i.e., chemical, mechanical, electrical, etc.). 

Microfluidic mixers exist in two forms; passive and active [19].  Passive mixing occurs when two or 
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more fluids blend to form a homogenous product by no external forces [19] while active mixing 

utilizes outside forces to induce mixing such as acoustical [20], integrated microvalves/pumps [21], 

small impellers [22], or periodic variation of flowrates [23].  Passive microfluidic mixing nearly 

always suffers from low Reynolds number (Re) despite the use of low-viscosities (i.e., water, oil, 

etc.) fluids and depends on substantial contributions from diffusion and/or long flow paths with 

many twists and turns.  For DIW, the viscosities are designed to be high for shape retention after 

deposition, further exacerbating the mixing problem.  Hence, active mixing is required for DIW of 

compositionally graded toolpaths. 

An active mixer may be viewed as a constantly stirred tank reactor or CSTR, where the residence 

time is ideally V/Q (V= reactor volume, Q=volumetric flow rate). For rapid composition change, 

the residence time of the mixer should be as small as feasible; however, for good mixing, the 

impeller should rotate some number of times per residence time in the CSTR.  

In this work, two main questions were answered:  First, given a very small active mixer with 

short residence time, how effectively can very viscous silicones be mixed to enable homogeneous 

composition of the extruded material?  Second, if two silicones that, when cured, display disparate 

elastic modulus are blended in varying ratios along a toolpath, will volumetric mixing rules apply 

for the elastic properties at any point along the toolpath?  As a corollary to the second question, can 

structural variation of the toolpath be combined with composition variation to assemble parts with 

highly variable elastic properties?  These questions are formalized as the objectives of this thesis. 

1.3.1 Mixing Effectiveness – Objective #1 

The first study observed mixing effectiveness of an active mixer by X-Ray microtomography 

(microCT) through Direct-Ink Writing (DIW). From Ober et al [24], a coefficient of variation and 

dimensionless impeller parameter define good and poor mixing. This study aimed to verify these 
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mixing characteristic definitions. Samples were constructed in the regime of “good” mixing and 

analyzed by microCT to verify mixedness. 

1.3.2 Mechanical Properties of Graded Lattice Structures – Objective #2 

This portion of the thesis sought to explore mechanical behavior and properties of three-

dimensionally printed, compositionally and geometrically graded lattice structures. Experiments 

were conducted using a durometer to measure hardness (resistance to indentation) across the 

samples. A simple supported beam model was applied to aid in understanding experimental 

results. 

1.4 Significance 

The importance of characterizing “mixedness” is two-fold: by actively mixing two or more 

materials at the microscale, one may customize and control mechanical, chemical, and electrical 

properties of printed structures. Secondly, limiting discussion of mixing effectiveness to two 

variables (coefficient of variation and a dimensionless impeller parameter) succinctly defines and 

describes active mixers. Establishing mechanical properties of graded structures requires 

application of a simple supported beam model for a single unit cell.  The significance of this study 

is the ability to explore complex structures using simplified methods. Characterizing the entire 

sample requires an extremely rigorous mathematical approach thus highlighting the necessity of a 

simplified analysis. Further, tailored sample properties acquired during printing may be verified by 

specific property experiments, such as hardness tests by durometer. 

 

 

 



6 

1.5 Thesis Organization 

This thesis is organized into six chapters.  Chapter 1 is an introduction to additive manufacturing 

as well as a brief overview of the methodologies employed.  Additionally, two hypotheses are 

formulated as objectives to be accomplished throughout the thesis.  Chapter 2 entails background 

information necessary to achieve the objectives set in chapter 1 including mixing regimes, fluid 

dynamics, and viscoelastic materials.  The third chapter details the employed methodologies for 

experimental work. Chapter 4 presents the results obtained from experimental work discussed in 

chapter 3.  Chapter 5 provides a discussion on the results and conclusions drawn from the initial 

hypotheses.  Supporting information is provided in the Appendices, Table of Figures, and List of 

Figures. 
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CHAPTER II:  LITERATURE REVIEW 
 

2.1 Introduction 

Composition change on demand for accurate rendering of real-world objects such as human 

prosthesis requires ink blending in micro-fluidic systems as the next evolutionary step in 3D 

printing [30]. Current printers deposit material in a sequential fashion by a single ink or multiple inks 

at a time. While compositional variations are achievable through multi-material (i.e., multi-tip) 

printing, the process is arduous; ensuring all tips are aligned as well as the constant starting and 

stopping of ink flow between nozzles [30]. Passive and active micro-fluidic mixers are one such 

solution to attaining sharp compositional gradients along a toolpath. Utilizing one nozzle, mixers, 

passive or active, eliminate the need to properly align multiple tips and the continuous interruption 

of ink flow.  For this discussion, passive mixing refers to mixers with no moving parts other than 

the fluids and active mixing refers to mixers with an externally driven impeller or paddle. 

Currently, passive mixers for fluids in micro-channels rely on methods such as chaotic advection 

[30]. Chaotic advection occurs when fluids are stretched and folded arising from channel geometry 

complexities or unsteady flow streams [31, 32].  The Reynold’s number (Re), the ratio of momentum 

to viscous forces, and Peclet (Pe), the ratio of convective to diffusive rates, number are two driving 

factors in passive and active micro-scale mixing.  Reynold’s number is a function of material 

density (ρ), mean velocity (u̅), pipe diameter (d), and inversely proportional to viscosity (μ) (i.e., 

𝑅𝑒 =
𝜌𝑢𝑑

𝜇
).  Low Re correlates to a laminar flow regime, typically 𝑅𝑒 < 2000.  



8 

Conversely, high Re is indicative of turbulent flow.  The Peclet number is calculated by: 𝑃𝑒 =

𝑄

𝑑𝐷
, where Q is the volumetric flow rate and D is the diffusion coefficient.  For efficient mixing, the 

ratio of channel dimensions (i.e., pipe length/pipe diameter) must be greater than Pe [24]. 

Difficulties arise when mixing yield-stress fluids at low Re (e.g., viscoelastic materials).  The 

diffusion process is resisted in viscous substances because of large molecular activation energies.  

These substances, especially in micro-scale systems, exhibit strong laminar flow regimes.  

Generating turbulence to induce mixing is therefore highly desired.  For viscoelastic materials (i.e., 

yield stress fluid), the Herschel-Buckley (HB) rheological model is applicable, 𝜏 = 𝜏𝑦 + 𝐾�̇�𝑏 , 

where 𝜏𝑦  is the yield-stress of initial motion, K is the consistency index, b is the power-law 

exponent, and �̇�  is the characteristic shear rate.  The HB model states that, for viscoelastic 

materials, a certain yield stress, (𝜏𝑦), is required to initiate flow.  As the yield stress is increased, 

the viscosity of the fluid decreases (i.e., shear-thinning) in a non-linear fashion and conversely, a 

decrease in yield stress increases viscosity (i.e., shear-thickening).  Herschel-Buckley reduces to 

Newtonian if b=1 and τy=0 or Bingham if b=1.  Another factor in viscoelastic fluids is the Bingham 

number (𝐵𝑖 =
𝜏𝑦

𝜂(�̇�)�̇�
) which emphasizes the importance of yield stress.  As Bi approaches unity, the 

material flows as a solid plug and is not conducive to mixing.  Increasing shear rate, however, 

drives fluidization of the material and thereby mixing efficiency. 

2.1.1 Passive Mixing 

Passive mixers induce chaotic advection usually by smoothed- or grooved-walled, Y- and T-

type junctions [19, 24] (see figure 2.1).  To ensure efficient mixing, the residence time (tres) must 

exceed the mixing time (tmix), both of which are dependent on channel geometry and volumetric 

flow rate.  Without chaotic advection, passive mixers with small channel dimensions suffer from 

low Reynold’s number, that is, fluids move in laminar motion and mixing must occur by diffusion 

[33, 34].  For highly viscous materials, mixing by diffusion operates on large timescales and channel 
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dimensions nonsensical for rapid composition switching.  Therefore, passive mixing of viscoelastic 

inks (i.e., low Reynold’s number) requires either complex mixer geometry or lengthy extrusion 

channels to induce mixing.  Shear rates for static mixers are a function of volumetric flow rate and 

channel dimensions (�̇� =
𝑄

𝑑
).  For better fluidization of materials, one must either increase channel 

dimensions, which are limited for the case of micro-fluids, or increase flow rate. Increased flow 

rates consequently create greater pressure drops in small channels - an undesirable side effect. 

Several implementations of passive mixers have been characterized such as the staggered 

herringbone mixer (SHM), barrier embedded micro-mixer (BEM), and the three-dimensional 

serpentine channel (3D-SC) [35].  One particular application utilized the SHM to analyze mixing 

parameters and aid in mixer designs for several flow conditions [35].  The SHM is a rectangular 

channel lined with herringbone grooves to induce chaotic mixing.  The advantage of an SHM is in 

its ease of fabrication and efficient mixing capabilities.  However, with highly viscous materials, 

an alternative to the SHM is still desired. Active mixing is the second and preferred method of 

blending viscous inks. 

2.1.2 Active Mixing 

Active mixers use moving parts or external forces to overcome the chaotic advection limits of 

passive mixing [32].  The active mixer may induce shear rates far exceeding what is achievable by 

the small flow rates seen in micro-channels despite the intricacies of the static mixer design.  The 

main advantage of an active mixer is the ability to establish high shear rates within small extrusion 

channels and simple mixer geometry by an active device (e.g., grooved impeller) thus reducing tmix 

and allowing rapid compositional change times.  Another advantage of active mixers is the ability 

to control when mixing occurs as well as the degree of mixedness at any given point.  For an active 

mixer with rotating impeller, shear rate is only dependent on channel dimensions and impeller 

rotation rate (i.e., �̇� =
∆Ω

𝛿
).  With δ (see figure 2.1) constant, shear rate is thus controlled only by 
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rotational velocities, Ω.  Faster rotation rates correlate to a more fluidized material, increased 

turbulent flow, and consequently, better mixing.  Similar to passive mixers, the residence time must 

exceed the mixing time for efficient blending.  Sharp compositional gradients depend on chamber 

dimensions, that is, a low ratio of  
𝑙

𝑑
 is desired to reduce unwanted volumes of ink [24].  

 

Figure 2.1:  Mixing chamber cross-sectional view with impeller inserted [25] 

Various active mixer schemes have been implemented into microfluidic systems [24, 34, 35, 36].  One 

particular mixer design used electrohydrodynamic (EHD) convection for biochemical analysis 

systems [36].  Two electrode plates were applied above and below a micro-fluidic channel with an 

electric field induced between the plates.  The electric field generates a shear force at an interface 

layer between both fluids.  Surface charges move with the fluid creating turbulent motion and 

mixing.  Another mixer design from Ober et al sought to characterize and describe scaling 

relationships for comparing mixer efficiencies.  Both Newtonian and yield-stress fluids were 

analyzed utilizing an active mixer print-head for direct-ink writing.  The active mixer used a 

rotating impeller and various rotation rates to induce mixing just before deposition onto a substrate.  

Samples were subjected to imaging analysis to determine good and bad mixing regimes as a 

function of impeller rotational velocities.  It was determined that good and bad mixing are strongly 

coupled with impeller rate and Pe.   
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This thesis sought to build upon the work of Ober by implementing an active mixing print-head 

of impeller design to further characterize mixing effectiveness as well as to study mechanical 

properties of graded geometric and compositional lattice structures. 

2.2 Mixing Effectiveness 

Ober et al states that mixing effectiveness is characterized by two key parameters: (i) a 

dimensionless impeller variable, (Ω̃), based upon the Peclet (Pe) number and mixer geometry (eq. 

1.1), and (ii) a coefficient of variation (COV), derived from image intensity of a sample. Equation 

1.1 states that ranges of good and poor mixing are determined by material properties and the mixer 

chamber dimensions. 

 
Ω̃ ≥

1

𝛼
𝑃𝑒 (ln 𝑃𝑒 − ln(𝛼

𝑙

𝑑
)) [1.1][24] 

The dimensionless impeller value is defined as Ω̃ ≡
𝑙𝑑𝛺

𝐷
 where D is the material diffusion 

coefficient, d is the diameter of the mixing chamber (figure 2.1), l is the chamber length, and Ω is 

the impeller’s angular rotation rate [24]. By keeping 
𝑙

𝑑
 and Pe constant, “mixedness” is then 

determined simply by Ω̃  as a function of angular rotation. Further descriptions of mixing 

effectiveness utilize a coefficient of variation to determine the statistical spread based upon sample 

imaging analysis, where COV is defined as 𝐶𝑂𝑉 ≡
𝐼𝑠𝑡𝑑

𝐼𝑚𝑒𝑎𝑛
. As opposed to describing mixedness by 

many terms, one may refer to the dimensionless impeller value or COV for insightful information 

and characterization of active mixers. 

A continuously stirred tank reactor (CSTR) model was applied to better understand mixing 

behavior. Two inputs, ink “A” and ink “B”, are deposited at varying rates into a mixing tank (figure 

2.2). After a characteristic residence time, the tank enters a steady state of well-mixed contents. 

During the transient approach to steady state, both inks exit the tank partially mixed as new ink is 
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continuously deposited. Let ink “A” exhibit a certain volumetric flow rate, (�̇�1), and composition, 

[𝐶1], and ink “B” a second flow rate, (�̇�2), and composition, [𝐶2]. Therefore, the exiting product, 

(�̇�3), is the sum of both volumetric flow rates (i.e. �̇�3 = �̇�1 + �̇�2). The residence time, τ, is the time 

it takes to change from one compositional ratio to the next. For example, [𝐶1] and [𝐶2] are initially 

set to 25% and 75% respectively. The program issues a change of composition command to vary 

[𝐶1] to 50% and [𝐶2] to 50%. This change of composition occurs over the residence time. Because 

transition time is non-instantaneous, unwanted small volumes of ink are extruded during the 

change.  Minimizing residence time is related to mixing chamber geometry, 
𝑙

𝑑
 [24]. 

 

Figure 2.2:  Continuous Stirred Tank Reactor (CSTR) diagram 

This study implemented a material and active mixer of constant properties and dimensions to 

establish mixedness. With varying impeller rotational speeds, several samples were constructed in 

the regime of “good” mixing for imaging analysis.   

2.3 Mechanical Properties of Graded Lattice Structures 

The second objective of this thesis was to characterize mechanical properties of a 

compositionally and geometrically graded lattice structure comprised of two different silicone inks.  

When both inks display disparate elastic properties, it is important to determine if volumetric 
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mixing rules apply when varying ink ratios along a toolpath.  Moreover, if, in addition to 

compositional gradients along a toolpath, the lattice is graded geometrically (i.e., raster spacing 

increases or decreases over a given length), how will elastic properties vary over increasing and 

decreasing geometries.  Attaining compositional gradients was detailed in the previous sections, 

thus the subsequent sections will focus on how a geometrically graded lattice structure is built as 

well as what characterization techniques were used to answer the questions posed. 

2.3.1 Graded Lattice Structures 

For this thesis, the term “lattice” describes a three-dimensionally printed and repeated structure 

with rods of uniform spacing (i.e., road width) along an x-y plane (see figures 2.3 and 2.4).  This 

pattern is repeated vertically until the desired height is achieved. Typically, every other layer is 

rotated or offset by some degree to generate various lattice patterns such as face-centered tetragonal 

(FCT), body-centered cubic (BCC), or hexagonally-closed packed (HCP). 

 

Figure 2.3:  Two layer lattice structure with uniform road width and second layer rotated by 

90° 
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Figure 2.4:  3D lattice structures with (a) RW equal to rod diameter with no rotated layers, (b) 

RW greater than rod diameter with no rotated layers, and (c) RW greater than rod diameter with 

every other layer rotated by 90° [16] 

Geometrically grading a lattice creates non-uniform road widths across a single layer with a 

starting pitch, ending pitch, and total box width.  If starting pitch is less than the ending pitch, the 

lattice gradient increases from left to right and conversely, right to left for a greater ending pitch 

value.  There are two methods by which lattice structures are graded:  geometric and linear series.  

However, only the geometric series is discussed.  Lattice design is described in the first chapter. 

The goal here is to create a raster fill of a desired total width (W) where pitch (i.e., RW) varies 

linearly with position.  There are three initial variables set by the user: starting pitch (pst), ending 

pitch (pen), and box width (W).  A geometric series is applied to derive position and pitch for each 

raster line with i as the counting variable. Tables 2.1 and 2.2 detail the set of variables and equations 

used to obtain the final result: 

Table 2.1:  List of geometric series variables applied in Table 2.2 

Position 

Width of 

Pattern 

(Known) 

Start Pitch 

(Known) 

End Pitch 

(Known) 

Pitch at 

Position ‘x’ 

Pitch Slope 

such that 

pi=pst+mxi 

x W pst pen p m 
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Table 2.2:  Geometric series equations for starting pitch 0 to pitch N 

i xi pi 
0 0 pst 

1 pst Pst+x1m → pst+pstm → pst(1+m) 

2 pst +pst(1+m) → pst[1+(1+m)] 
pst +mpst+mpst(1+m) 

→ pst(1+m)+mpst(1+m) 

→ pst(1+m)(1+m) = pst(1+m)2 

3 
pst +pst(1+m)+ pst(1+m)2 

→ pst[1 +(1+m)+ (1+m)2] 

pst+mpst[1+(1+m)+(1+m)2] 
→ pst(1+m[1+(1+m)+(1+m)2]) 

pst(1+m+m(1+m)+m(1+m)2) 

→ pst(1+m)(1+m+m[1+m]) 

→ pst(1+m)(1+m)(1+m) = pst(1+m)3 

4 pst[1+(1+m)+(1+m)2+(1+m)3] pst(1+m)i 

N-1 

 

∑ 𝑝𝑠𝑡(1 + 𝑚)𝑖

𝑁−2

𝑖=0

 

 

pst(1+m)N-1 

N 

Geometric series: 

∑ 𝑝𝑠𝑡(1 + 𝑚)𝑖 = 𝑝𝑠𝑡

1 − (1 + 𝑚)𝑁

1 − (1 + 𝑚)

𝑁−1

𝑖=0

 
pst(1+m)N 

 

The geometric series used to produce pitch variation may not exactly match pitch to width, that 

is, the total length of the raster may exceed or fall short of box width.  Therefore, an objective 

function  (i.e., Ω = 𝛼 [
(𝑊−𝑥𝑁)

𝑊
]

2

+ 𝛽 [
(𝑝𝑒𝑛−𝑝𝑁−1)

𝑝𝑒𝑛
]

2

) with weight factors (α, β) is required to further 

match box width and pitch.  Figure 2.5 illustrates the result of a graded lattice structure produced 

by the geometric series algorithm. 
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Figure 2.5:  Graded lattice structure using the geometric series algorithm [18] 

2.3.2 Intrinsic Properties of Silicone 

Silicone is a synthetic polymer (i.e., elastomer) exhibiting viscoelastic properties.  

Viscoelasticity describes a material that exhibits both viscous and elastic behavior under 

deformation.  The material returns to its original shape if stress is removed quickly, however 

permanently deforms over time.  Similar to an elastic modulus (Young’s modulus), viscoelastic 

materials are characterized by a dynamic modulus (i.e., 𝐺∗ = 𝐺1 + 𝑖𝐺2) containing both elastic 

(storage modulus – G1) and viscous (loss modulus – G2) component. Purely elastic materials 

exhibit in-phase stress and strain (i.e., strain in response to stress occurs instantaneously) while in 

purely viscous materials, strain lags stress by a 90° phase shift.  The viscoelastic response falls 

between the purely elastic and purely viscous responses.  The storage modulus represents the in-

phase elastic component of deformation.  Elastic materials ‘store’ and release energy upon stress 

and unloading respectively [37].  The loss modulus is important for dynamic mechanical testing 

where energy is dissipated through each oscillatory cycle.  However, this study is only concerned 
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with static testing, therefore, the loss modulus is ignored.  The elastic (storage) component is the 

main focus of this study. 

Relaxation time is an important factor in characterizing viscoelastic materials.  The relaxation 

time is defined as the measured stress over time while holding strain constant.  For viscoelastic 

materials, an exponential reduction of stress occurs over the relaxation time and constant strain.  

Knowing relaxation time is important for testing a materials hardness.  For example, if hardness 

tests (e.g., durometer indentation) were conducted before stresses achieved steady-state, 

measurements would vary wildly yielding erroneous results.  Therefore, accurate results are best 

obtained after minimizing stress beyond relaxation time. 

 

Figure 2.6:  Relaxation modulus response over time [38] 

2.3.3 Durometer 

A durometer measures hardness by depth of indentation of a material.  Durometers consist of a 

spring and indenter of a specific shape based upon Shore scale.  Durometer Shore scale uses an 

alphabetic lettering system to group varying levels of hardness together and a subset of numbers 

(0-100) to further categorize specific materials.  
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Figure 2.7:  Durometer Shore scale [39] 

Shore D 50, for example, describes hardness for a shopping cart wheel.  The shopping cart wheel 

may also be characterized using other Shore letters as long as the corresponding object is within 

the 0-100 range.  For softer materials, a more rounded indenter is used. Likewise, for harder 

materials, a sharper, more conical indenter is required.  The indenter is attached to a spring which, 

when depressed in a material, retracts a specific distance relative to the material hardness.  For this 

study, a durometer is used to measure hardness of a viscoelastic, geometrically and compositionally 

graded sample.  Hardness tests provide insight into the samples elastic response.  The goal is to 

characterize the sample through mechanical testing to understand how geometry and composition 

gradients affect elasticity. 

 

Figure 2.8:  Indenter detail with Shore A and Shore D indenter styles [40] 
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CHAPTER III:  METHODOLOGY 
 

3.1 Introduction 

This chapter focuses on three specific areas of experimental effort: 3.2 Printing Setup, 3.3 

Sample Fabrication, and 3.4 Characterization Techniques.  First, Printing Setup is separated into 

three subsections: 3.2.1 SE1700 Preparation, 3.2.2 Mixer Design, and 3.2.3 Curing.  Next, sample 

fabrication briefly illustrates how parts are constructed through the DIW process using an active-

mixing deposition nozzle.  Further elaboration on sample design is provided in section 1.1.2.  

Finally, several characterization techniques (i.e., microcomputed tomography (MicroCT), flowrate 

experiments, and durometer) are detailed.  The goal of this chapter is to provide the reader with 

adequate information to reproduce the results to be presented in Chapter 4 of this thesis. 

3.2 Printing Setup 

3.2.1 SE1700 Preparation 

SE1700 (Dow Corning® SE1700) is a two-part, heat-cured polydimethylsiloxane elastomer 

consisting of a gel resin and catalyst.  The catalyst is introduced in a 10:1 (gel:catalyst) mixture by 

weight [29].  Neat SE1700 ink (i.e., no additives) is compounded by blending the appropriate weights 

of gel and catalyst into a mixing cup and homogenized using a Thinky planetary mixer (Thinky 

AR-250; Thinky, Tokyo, Japan) for one minute and de-foamed an additional minute.  For mixing 

efficiency experiments, 5-µm tungsten tracer particles (Tekna Advanced Material Inc. W-25; 

Quebec, Canada) at ~10 wt % are blended into a second batch of neat SE1700 using the Thinky 
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mixer to ensure uniform dispersal of tungsten particles.  Finally, each ink is loaded into separate 

10cc syringes and readied for printing. 

3.2.2 Mixer Design 

3.2.2.1 Mechanical 

The active mixer used in these experiments is a custom assembly consisting of a drive motor, a 

mixing chamber, and check valves [25].  By impeller rotation, two streams of ink are actively mixed 

immediately before extrusion.  Mixing is accomplished by a grooved impeller (driven by a DC 

motor) at the point of convergence of the two (or more) ink streams in the mixing chamber.  A 

detailed schematic of the mixer assembly is provided in figure 3.1; illustrating the basic 

components.  The diameter of the ink inlet channels is 1mm and the mixing impeller is fabricated 

from stainless steel rod stock of 1.19mm diameter.  The estimated volume of the mixing chamber 

is 30-50 nL.  The mixer body is made of PEEK plastic and inlet ports have a silicone rubber gasket 

to prevent leaks.  The mixer assembly is capable of receiving four separate ink streams 

simultaneously; however, this work only utilized two ports.  Additionally, specialized check valves 

are located inside each inlet port directly upstream of the mixing chamber.  The check valves consist 

of a spring-loaded needle that interferes with the outlet orifice of the ink inlet tubing coming from 

the syringe(s) to the check valve.  The check valves prevent unwanted backflow of ink (e.g., stream 

“A” bypassing the deposition nozzle and entering stream “B”).  A triple O-ring seal inside the 

mixing chamber restricts ink flow from ascending the impeller shaft during extrusion.  Figure 3.3 

shows a more detailed view of the active mixer assembly in cross section.   Both ink streams 

converge in the mixing chamber before being deposited as a single filament onto a flat ceramic 

substrate (ADS-96R, Coors Tek, Grand Junction, CO).  The grooved impeller head, residing in the 

mixing chamber, rotates at a specified rotational speed to ensure uniform mixing.  During printing, 

the mixer assembly is attached to the z-axis of the x-y-z gantry robot as pictured in Figure 3.4.   
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Figure 3.1: Schematic of mixer assembly 
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Figure 3.2:  (a) Enlarged view of cross section B-B from figure 3.1.  (b) Isolated mixer body in 

cross section, (c) Isolated mixer body showing inlet ports. 

 

 
Figure 3.3:  Digital image of mixer assembly printing and mixing two streams of ink 

 

 

(a) 
(b) 

(c) 
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3.2.2.2 Electrical 

Mixer speed is controlled through a computer interface.  The intermediate electronic connections 

required to control mixer speed are shown schematically in Figure 3.4.  The 12V DC motor 

(Faulhaber model 2342S012C-R) has a 512 line quadrature encoder (x4) and thus produces 2048 

edge transitions per revolution of the motor.  The rotational speed of the motor is regulated by a 

fast pulse width modulated (f-PWM) DC motor drive operating at a f-PWM frequency of 31 kHz.  

An Arduino Mega 2560 (using Amtel Mega 2560 microprocessor) controls the duty cycle of a 

PWM signal to a motor controller board (Pololu MC33926) that delivers current to the motor.  The 

Arduino is powered and programmed through a universal serial bus (USB) connection.  Motor 

control software is written in the Arduino integrated design environment (IDE), where properties 

such as velocity control, timer interrupts, and f-PWM setup are included.  The C++ code for 

controlling the mixer speed through the Arduino is viewable in Appendix A.  A proportional-

integral-derivative (PID) control loop algorithm is implemented to alter the f-PWM duty cycle to 

achieve the motor speed specified by the user.  An interrupt timer is assigned the task of checking 

motor feedback every 10µs (100 Hz).  With each interrupt, the setpoint speed and actual speed 

values are compared.  After each compare statement, the f-PWM duty cycle is adjusted to alter 

motor speed accordingly (i.e., accelerate or decelerate to match the setpoint value). 

Both encoder channels, A and B, are connected to the Arduino serial communication pins (20 

SDA and 21 SDC) respectively.  A software counter is written to keep track of rotations provided 

by the motor encoder.  The separate motor control board and motor are powered via a 12V, 30A 

power unit (SUPERNIGHT X-360-12 Switching Power Supply).  All major software parameters 

(i.e., PID coefficients, RPM’s, direction, etc.) are tunable through the serial monitor built into the 

Arduino IDE.   
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Figure 3.4:  Wiring diagram of mixing motor electronics 

 

The PID controller uses a negative feedback signal by continuously comparing a setpoint (e.g., 

target RPM) to a measured value (e.g, measured RPM).  The difference between both variables 

yields an error term.  It is the goal of the PID controller to minimize the error magnitude over time.  

Thus, if the measured RPM value is below the desired setpoint, a negative error is fed back to the 

controller to increase f-PWM duty cycle and match the setpoint.  Likewise, if the measured RPM 

ARDUINO MEGA 2560 

POLOLU MC33926 

MOTOR ENCODER 

(20) 

(21)  

 

 

(5) 
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output is faster than the setpoint, the motor will decrease f-PWM duty cycle to match the desired 

speed.  The control loop is tunable by three coefficients:  Kp, Ki, and Kd.  The tuning coefficients 

aid in system stabilization by reducing overshoot and other oscillatory effects.  Figure 3.5 illustrates 

the basic components of a PID system.  From RoboCAD, a desired RPM value is set thus starting 

the motor.  Motor direction is also controllable via software but is generally set to a clockwise 

(CW) rotation.   

 

Figure 3.5:  PID feedback control schematic 

3.2.3 Sample Fabrication 

Test samples are printed with discrete composition ratios of two-parts neat SE1700 (part A) and 

SE1700 laced with ~10 wt% tungsten tracer particles (part B).  Details of the printing process are 

explained in the following section (i.e., section 3.2.3.1).  Tungsten is chosen because of its dense 

atomic structure and good X-ray absorbance characteristics, thus yielding good visual results when 

subjected to X-ray anlaysis.  A and B streams are mixed and extruded layer-by-layer onto a ceramic 

substrate until completion.  Figure 3.8 and table 3.1 illustrates design layout and composition 

parameters of both samples.  Samples 1 and 2 are then subjected to a heat-curing regime (90°C for 

1 hour) yielding a final solid product.  Mixing efficiency is imaged by X-ray micro-computed 

tomography and is discussed at length in section 3.3.5. 

 



26 

3.2.3.1 RoboCAD 

RoboCAD is a custom software program for designing tool paths, setting print parameters, 

controlling the axes of the printer, and executing CNC/G-code programs.  Figure 3.7 details the 

graphical user interface (GUI) as seen by the user complete with workspace, design options, and 

error and design output. As designs are composed, RoboCAD updates the visual representation 

(workspace) in real-time giving the user the ability to catch possible errors before the part is 

physically constructed. 

Creating models in RoboCAD is done by one of two methods: The first method uses manual 

drawing tools such as polylines, lines, boxes, or arcs to create parameterized shapes. Models are 

defined layer-by-layer with layer thickness (Δz) being a function of dtip (i.e., Δz=f⋅dtip| f:[0,1]). 

RoboCAD creates compound objects such as polylines, filled boxes and filled arcs, or filled 

polygons from geometric primitives (i.e., lines and arcs). In G-code, arcs are defined by two 

vectors: one is directed from the start point of the arc to the center point, the other is directed from 

the start point to the end point (see figure 3.6(b)).  Note:  two possible arcs could have the same 

two vectors, so G2 is used to specify a counterclockwise arc and G3 for a clockwise arc.  Open and 

closed (e.g., polygons) polylines are defined by a set of points or nodes in a data structure.  A 

polyline is created by defining a set of nodes where a straight line connects each node. A line (edge) 

is thus generated between both nodes and may be repeated until the desired effect is achieved (see 

figure 3.6). 
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Figure 3.6:  Polyline detail with notation of ‘node’, ‘unused node’, and ‘edge’ and (b) arc 

detail with defining center and end-point vectors 

Material composition (i.e. volume percent of material for mixing) can also be defined within the 

polyline data structure using two approaches: node and edge. Composition is specified in 

RoboCAD as a normalized, m-component vector corresponding to fractional composition values 

for blending of up to m materials. The simplest form of composition vector is that of uniform 

composition (i.e. material composition is unchanging throughout the polyline). Compositional 

gradients are introduced by defining composition at both beginning and ending nodes. Edge 

compositions are uniform and may be manually set by x-y position or edge number.  

To physically achieve compositional gradients, syringe pumps are accelerated and decelerated 

over a total time (tf), using a set number of constant time increments (n), and with initial and final 

velocities (ẋ0 and ẋtf respectively). With each time-step increment, velocity changes linearly by 

�̇�𝑛−1 = �̈�𝛿𝑡 + �̇�𝑛−2  where 𝛿𝑡 =
𝑡𝑓

𝑛
 and ẍ is acceleration. Acceleration is then defined as �̈� =

�̇�𝑡𝑓
−�̇�0

𝑡𝑓
.  While inlet stream flowrates may vary to accommodate composition alterations, the output 

flowrate must remain constant to meet the deposition rate required by the toolpath.  

The second method of model creation is to import tessellated, three-dimensional geometry files 

(e.g., STL files), which are then subjected to slicing and filling processes. Slicing consists of 

intersecting the STL file with a set of planes parallel to the substrate and coincident with the desired 
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layers to be printed. This intersection creates a set of perimeter polygons that must be ordered to 

create positive (typically CCW oriented polygon) and negative (typically CW oriented polygon) 

areas.  After defining the perimeter polygons, a toolpath to fill the perimeter is generated by either: 

i) calculating a set of offset polygons of fixed distance from the perimeter (i.e., contour filling), ii) 

calculating a set of parallel lines that span the positive areas of the defining perimeter (i.e., raster 

filling), or iii) a combination of i) & ii). Figures 3.8(a)-(d) illustrate slicing and filling by contour 

and mixed (i.e., combination of i & ii) methods. One may also add supporting structures to fill 

unsupported parts of the STL geometry. Support structures are created using the same methods for 

slicing and filling.  

 

 
Figure 3.7:  Screen capture of RoboCAD Software [18] 
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Figures 3.8:  (a) Cross-sectional view of one layer within a pattern by contour, (b) the entire 

pattern after slicing and filling, (c) cross-sectional view of one layer using mixed method, and (d) 

the entire pattern sliced and filled 

Table 3.1:  Table of sample attributes as used in mixing efficiency study 
 

Sample 

# 

Layers Composition 

Ratio 

Impeller 

Velocity 

(in RPM) 

Dimensions 

(in mm) 

Filament 

Diameter 

(in mm) 

Δz (in 

mm) 
# of 

rims 

Pitch 

(in 

mm) 

1 14 [75/25] 1000 25.4 x 25.4 
x 3.6 

0.330 0.259 1 0.35 

2 14 [50/50] 2000 25.4 x 25.4 

x 3.6 

0.330 0.259 1 0.35 

 

 

 

 

 

(a) 

(a) 

(b) 

(a) (b) 

(d) (c) 
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Figure 3.9:  (a) gives an isometric view of a Simple Cubic (SC) lattice with (b) illustrating a 

side view and pitch width [41] 

3.3 Experimental and Characterization Techniques 

3.3.1 Flowrate Validation 

The SE1700 inks used in this work are highly viscous, non-Newtonian fluids that are pumped 

through a length (~200mm) of polypropylene tubing (i.d.≈2mm) from a syringe reservoir into a nL 

mixing chamber and out through an extrusion nozzle (dtip=337μm) onto either a rigid substrate or 

un-cured SE1700 in previous layers.  Hence, predicting pressure drop as a function of flow rate is 

complicated by all possible process variations and positive displacement syringe pumps are used 

rather than constant pressure driven syringes.  Assuming incompressible fluids and rigid 

mechanical connections, the flow rate from a syringe should equal the cross sectional area of the 

syringe times the plunger speed.  Therefore, both positive displacement pumps are characterized 

prior to the mixing experiment.   

First, a batch of neat SE1700 is loaded into two separate syringes and mounted for printing.  The 

ink streams are plumbed through the tubing to independent 0.337mm printing tips.  Each plunger 

is given a speed based on composition ratios (i.e., 2:1, 1:2, etc.).  For example, a 50/50 (1:1) ratio 

has both plungers extruding material at the same rate.  A 2:1 ratio doubled the rate of the first 

plunger over the second (i.e., if plunger one is moving at 0.02mm/s, plunger two is set to 0.01mm/s).  

Both materials are then extruded for one minute to achieve a steady flow state.  Empty weigh boats 

0.35mm  
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are then placed below each tip and filled for three minutes.  Once filled, the collected ink is weighed 

to determine the average mass flow rate from each syringe. With a 2:1 flowrate ratio, for example, 

the amount of material extruded from the first plunger should double that of the second plunger.   

3.3.2 Rheology 

The rheology of neat and tungsten particle laden SE1700 is characterized with a controlled 

stress-strain rheometer (Bohlin Instruments, Model C-VOR200, East Brunswick, NJ) using a cone 

and plate (d=40mm with an angle of 4°) measurement geometry under both oscillatory and steady 

shear conditions.  For oscillatory measurements, shear stress (τ) is increased from 20 to 1800Pa at 

an angular frequency of ω = 1Hz.  Steady shear viscometry is performed by increasing shear rate 

(γ̇ ) from 0.0005 to 1800(1/s) over ~40 minutes. 

3.3.3 Scanning Electron Microscopy (SEM) 

A field emission scanning electron microscope (FE-SEM) (Hitachi S-4800, Santa Clara, CA) is 

used to verify tungsten particle size as well as particle size distribution.  Graphite Conductive 

Adhesive (Electron Microscopy Sciences, Fort Washington, PA) is applied to the SEM stage and 

coated with a thin, even layer of tungsten particles.  Tungsten exhibits good conductivity so gold 

sputtering is not necessary for a working sample.  One coating of tungsten is analyzed at various 

magnifications to ascertain sizing information.  Particle sizing and distribution is done via ImageJ 

(Wayne Rasband, National Institute of Health).   

3.3.4 Particle Size Distribution 

ImageJ is used to determine size distributions.  Forty-eight random particle diameters from 

figure SEM images are estimated manually using the line tool.  Given the data set, diameter values 

are sorted into four diameter size groups (i.e., 0-5μm, 5-10μm, 10-15μm, and 15-20μm).  Diameter 
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values are initially given in pixels but are converted to µm by measuring the scale bar on the SEM 

micrograph and adjusting accordingly.   

3.3.5 Durometer 

Sample mechanical properties are obtained by durometer (CheckLine, Model DD-100-OO, 

Cedarhurst, NY).  A durometer extrapolates the value of material hardness by measuring depth of 

presser foot indentation.  Durometer testing is certified under the American Society for Testing and 

Materials (ASTM) (i.e., ASTM D2240) [42].  The durometer utilizes the Shore scale as a 

representation of material hardness.  For example, the durometer used in this thesis is a Shore OO, 

indicating its use for soft materials such as gels.  Scale hardness ranges from OOO-S to A, where 

A is applicable towards the hardest materials (e.g., rubber tires, thermoplastic elastomers, etc.).  For 

softer materials, the presser foot (indenter) is rounded so as to not penetrate the sample.  Accurate 

results require that the presser foot be completely submerged within the sample until the metallic 

base makes contact (see figure 3.10(b)). 

Three samples are constructed (50mm x 50mm x 5.8mm) using the active mixer with a tip 

size of dtip=0.337mm.  Samples consisted of various colors as well as graded geometries (see section 

2.3.1.1 for a more detailed explanation on grading geometries) given in table 3.2.  A custom 

mounting attachment is assembled allowing the durometer to be affixed against the printers Z-axis 

gantry.  Additionally, a serial cable, attached from durometer to computer, provided necessary 

communication to integrate custom testing software.  A program is written to move the durometer 

in the X and Y direction while taking measurements at set millimeter increments.  It is important 

to properly place and align the samples for consistent data collections.  Samples are placed on a flat 

ceramic substrate and aligned with one sample edge following the printer X-axis.  Alignment is 

conducted using a Dial Test Indicator (Mitutoyo Series 513-Horizontal Type) to ensure the X-axis 

matched both sample and printer.  The indicator is temporarily mounted to the Z-gantry and moved 
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laterally along the X-axis.  For this data, the durometer took readings every 1mm in X and Y starting 

from (0,0) (see figure 3.11).  The durometer begins at (0,0), moves laterally towards (50,0), moves 

longitudinally to (50,1) and laterally back to (0,1).  At each 1mm step, the durometer descends 

3mm vertically to collect measurements for a half-second and ascends back to Z=0 before moving 

to the next point.  This process is repeated until the durometer reaches (50,50).  An array of 2500 

data points is collected across each sample.  The data is visualized with a surface plot using Matlab 

where durometer hardness is plotted as a function of (X,Y) position.  Durometer measurements are 

conducted once per sample.  For future work, a statistical analysis will be done with several 

durometer tests to derive variance and standard deviation of the data. 

 
 

Figure 3.10:  Digital image of (a) the durometer mounted to the Z-axis gantry and (b) a 

close-up of the durometer presser foot (indenter) 

 

Table 3.2:  Table of sample attributes as used in durometer study 

Sample # Layers RPM Dimensions (in mm) Road Width (in mm) 

1 24 1000 50 x 50 x 5.8 0.40 – 0.80 

2 24 1000 50 x 50 x 5.8 0.40 – 0.80 

3 24 1000 50 x 50 x 5.8 0.32 – 0.90 
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Figure 3.11:  Illustration of durometer movement path for data collection 

3.3.6 Radial Distribution Function (RDF) 

Mixing efficiency/quality is characterized using image analysis of cross sections from MicroCT 

of samples printed with the active mixing chamber and inks A and B in differing ratios.  Using 

ImageJ and figures 4.8(a) and (b), the normalized radial distribution functions for both samples are 

calculated and plotted.  The RDF determines how density varies as a function of distance to a 

reference atom.  Mathematically, 

g(r) =
N(r)

4πr2ρ
  [3.1] 

Where g(r) is the probability of finding another particle at a distance r from a reference particle, 

N(r) is the number of particles within the a disc of width Δr (see figure 3.12 for a graphical 

representation), and ρ represents the number of particles per cm2.  At short distances, RDF is zero.  

However, as the radius expands beyond one particle diameter, the density of particles increases 

dramatically.  As particle homogeneity is achieved, the RDF (g(r)) converges to unity.  Figure 3.12 

graphically illustrates the basis of an RDF with a reference atom at the center and an infinitesimal 
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ring, dr, surrounding the atom.  As dr expands, so too does the density of atoms, eventually 

(assuming particle dispersion uniformity) converging to one, indicating uniform probability.  

Should homogeneity not exist, the RDF will not converge. 

An ImageJ macro (Appendix B) is applied to aid in calculating the RDF.  A noise threshold is 

first determined to find particle edges.  Through trial and error, empty spaces are eliminated from 

the threshold and subsequent derivations.  Once the majority of particles are captured, the macro is 

executed.  Figures 4.8(a) and (b) are used for RDF derivations.  For control, figure 4.8(b) is modeled 

for poor mixing (i.e., particles laden within half of a filament).  Filament rod halves are removed 

by decreasing the brightness so as to appear black.  The RDF macro is executed on the modified 

image and is presented as figure 4.17. 

 

Figure 3.12:  Graphical illustration of the RDF [43] 

3.3.7 X-ray Micro-Computed Tomography (MicroCT) 

Effectively measuring particle dispersion and mixing efficiency is done by MicroCT (Skyscan 

1172).  MicroCT is a non-destructive imaging technique based on X-ray absorbance of materials.  

It is capable of generating micron resolution 3D images of complex geometries [44, 45, 46].  Tungsten 

is a good candidate for X-ray analysis given its dense structure and thus good X-ray absorbance.  
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A tungsten X-ray source energized at 10kW (80kV and 124μA) is used to probe the sample.  A 

total of 1021 radiographs are taken at a camera resolution of 11.63μm/pixel in 0.4 degree steps and 

885ms exposure time.  Samples from figure 3.8 are cut into smaller rectangles (~3mm x 3mm x 

25mm) and mounted to the CT stage for examination.  Figure 3.13 illustrates the sample mounting 

technique.  Overall, MicroCT analysis provided significant data which is detailed in the following 

chapters. 

 

 

Figure 3.13:  MicroCT stage with sample mounted vertically and attached using putty 
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3.4 Summary 

This chapter expanded upon experimental setup and methodology.  Results are included from 

preliminary experiments such as rheological measurements and volumetric flowrate calibrations.  

Additionally, the active mixing device is discussed at length in terms of its mechanical and 

electrical properties.  The subsequent chapters provide results and a discussion of the findings.
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CHAPTER IV:  RESULTS 
 

4.1 Introduction 

This chapter presents the results from the experimental and characterization techniques 

described in Chapter 3 in the following order: 4.2 Ink Flowrate Validation (ref., 3.3.1), 4.3 Ink 

Rheology (ref., 3.3.2), 4.4 Scanning Electron Miscroscopy (ref., 3.3.3), 4.5 Micro Computed 

Tomography (ref., 3.3.6), 4.6 Radial Distribution Function (ref., 3.3.5) and 4.7 Durometer Hardness 

(ref., 3.3.4).  In this chapter, the results are presented in an organized manner with minor attention 

to interpretation of the data.  Detailed discussion of the significance of the results is reserved until 

chapter 5. 

4.2 Ink Flowrate Validation 

Figures 4.1(a), (b), and (c) illustrate the data obtained from the flowrate validation experiment.  

To represent the data, a theoretical value of mass is determined based upon volumetric flowrate 

([3.1] and [3.2]), time duration of extrusion (t=180s), volume extruded ([3.3] and [3.4]), and 

theoretical mass ([3.5] and [3.6]).  Both experimental values of material ‘A’ and material ‘B’ are 

then compared to the theoretical values [3.5] and [3.6] based on respective flowrates.  Equations 

3.1 and 3.2 yield the volumetric flowrate: 

�̇�1 = 𝐴𝑝𝑣1[3.1] 

�̇�2 = 𝐴𝑝𝑣2[3.2] 

 
where: 

𝐴𝑝 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑃𝑙𝑢𝑛𝑔𝑒𝑟 ≈ 195.5𝑚𝑚2 
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𝑣1 = 𝑃𝑙𝑢𝑛𝑔𝑒𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.01
𝑚𝑚

𝑠
 

𝑣2 = 𝑃𝑙𝑢𝑛𝑔𝑒𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.02
𝑚𝑚

𝑠
 

 

Time duration of extrusion is: 

 

𝑡 = 𝑇𝑖𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑡𝑟𝑢𝑠𝑖𝑜𝑛 = 180𝑠 

 

Calculating the volume is thus: 
 

𝑉1 = 𝑉1𝑡̇ ≈ 352𝑚𝑚3 [3.3] 

𝑉2 = 𝑉2𝑡̇ ≈ 704𝑚𝑚3 [3.4] 

 
 

 

Theoretical mass is then determined by: 
 

𝑚1 = 𝑉1𝜌 ≈ 0.388𝑔 [3.5] 

𝑚2 = 𝑉2𝜌 ≈ 0.777𝑔 [3.6] 

 
Figure 4.1(a):  Plot of material ‘A’ and material ‘B’ (1:1 flowrate ratio) against derived 

theoretical mass [3.5] 
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Figure 4.1(b):  Plot of material ‘A’ and material ‘B’ (1:2 flowrate ratio) against derived 

theoretical mass [3.5] and [3.6] respectively 

 

Figure 4.1(c):  Plot of material ‘A’ and material ‘B’ (2:1 flowrate ratio) against derived 

theoretical mass [3.6] and [3.5] respectively 
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For all three experiments, results indicate correct plunger speeds for given flow ratios.  An 

estimated propagation of uncertainty for mass (δmT) is calculated.  Factors such as plunger velocity 

(u1=0.01mm/s & δu1=0.1µm/s : u2=0.02mm/s & δu2=0.1µm/s), weigh boat insertion and extraction 

time (t=180s & δt=0.5s), and syringe diameter (d=15.78mm & δd=0.2mm) are included in the 

derivation.  The δ values indicate the individual uncertainty for velocity, time, and syringe diameter.  

V is defined as the volume of ink, δV as the total volume uncertainty propagation, δV1 as the volume 

uncertainty given u1=0.01mm/s, δV2 as the volume uncertainty given u2=0.02mm/s, δm1 and δm2 as 

the mass uncertainty propagation values, and δmT is the total mass uncertainty.  Equation 4.1 is 

given below detailing the uncertainty calculation and derivation. 

𝛿𝑉 = √(
𝜕𝑉

𝜕𝑑
𝛿𝑑)

2

+ (
𝜕𝑉

𝜕𝑢
𝛿𝑢)

2

+ (
𝜕𝑉

𝜕𝑡
𝛿𝑡)

2

    ;   𝑉 =
𝜋

4
𝑑2𝑢𝑡  [4.1] 

where: 

𝛿𝑉1 ≈ 9.64𝑚𝑚3 @ 𝑢1 = 0.01𝑚𝑚/𝑠 

𝛿𝑉2 ≈ 18.3𝑚𝑚3 @ 𝑢2 = 0.02𝑚𝑚/𝑠 

𝛿𝑚1 = 𝜌𝛿𝑉1 ≈ 0.0106𝑔 

𝛿𝑚2 = 𝜌𝛿𝑉2 ≈ 0.0202𝑔 

𝛿𝑚𝑇 = 𝛿𝑚1 + 𝛿𝑚2 = 0.0308𝑔 

4.3 Ink Rheology 

Rheology for both SE1700 laden with tungsten as well as neat SE1700 is conducted.  

Figure 4.2(a) and (b) shows both viscous and elastic moduli as a function of shear stress.  For 

viscoelastic materials, the elastic modulus is dominant until a certain shear stress is achieved.  Once 

achieved, the viscous modulus becomes dominant, exhibiting liquid-like behavior.  The data is 

plotted in figure 4.3(a) and (b).  As shear rate is increased, viscosity is decreased, thus exhibiting a 

shear-thinning behavior.  The shear-thinning behavior is an optimal trait of “printable” inks.  

Additionally, tan(δ) is also plotted as a function of shear stress in figure 4.4(a) and (b).  At a certain 

shear stress level, the ink moves from elastic-dominant to viscous-dominant, further detailing the 

shear-thinning nature of the material. 
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Figure 4.2:  (a) Plot of viscous and elastic modulus over shear stress at room temperature for 

SE1700 laden with tungsten and (b) neat SE1700 
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Figure 4.3:  (a) Plot of viscosity over shear rate at room temperature for SE1700 laden with 

tungsten and (b) neat SE1700 
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Figure 4.4:  (a) Plot of tan(δ) over shear stress at room temperature for SE1700 laden with 

tungsten and (b) neat SE1700 

4.4 Scanning Electron Microscopy (SEM) 

Several tungsten SEM micrographs are acquired and are presented in figure 4.5(a)-(e).  The 

particles have a uniformly spherical morphology and a distribution of sizes.  Figure 4.6 illustrates 

particle size distributions for 48 particles with roughly 58% of particles falling between the 5-10μm 

diameter ranges.  According to the powder data sheet (see Tekna W-25 datasheet), there are fewer 

than 5% of particles greater than 25μm in diameter.   
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Figure 4.5:  SEM images of tungsten particles at (a) 15.0kV at 10,000x magnification (mixed), 

(b) 15.0kV at 10,000x magnification (lower), (c) 15.0kV at 1,000x magnification (mixed), (d) 

15.0kV at 1,000x magnification (lower), and (e) 15.0kV at 500x magnification (mixed) 

(a) (b) 

(c) (d) 

(e) 
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Figure 4.6:  Plot of particle size distributions with the majority of data points falling in the 5-

10μm category 

4.5 X-ray Microcomputed Tomography (MicroCT) 

Before subjection to MicroCT, samples from figure 3.6 (i.e., 50/50 composition at 2000 RPM 

and 75/25 composition at 1000 RPM) are cut into smaller rectangles (~3mm x 25mm x 3mm).  This 

ensures samples properly fit the CT stage for imaging.  The images are presented in figures 4.8(a)-

(d), 4.9, and 4.10.  Figures 4.8(a) and (b) depict radiographs for 75/25 composition at 1000 RPM 

and 50/50 composition at 2000 RPM respectively.  The images represent a vertically oriented cross-

section (reference figure 4.7) where the width of the image corresponds to the sample thickness.  

The white space in figures 4.8(a) and (b) indicate empty space between the filaments.  The grey 

and black indicate the filament rods and tungsten particles respectively.  Tungsten particles (black 

dots) are dispersed across the filaments with an increase seen in the 50/50 composition 
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Figure 4.7:  Sample orientation for figures 4.8(a)-(d) 

Figures 4.8(c) and (d) depict a top-down view of each sample at different layers.  The black 

sections in both figures indicates empty space while the dark grey depicts filament rods.  The white 

dots scattered across the images represent the tungsten particles.  Similar to figures 4.8(a) and (b), 

4.8(d) demonstrates an increase in tungsten concentration of 4.8(c), the 75/25 sample.  The CT 

images are combined to construct a three-dimensional image of the sample, depicted in figures 4.9 

and 4.10.  The images are enhanced to remove the silicone filaments thus leaving only tungsten 

particles.   

Image orientation for figures 

4.8(a) and (b) 

Image orientation for figures 

4.8(c) and (d) 
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(a) (b) 

(d) (c) 

0.337mm 0.337mm 
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Figure 4.8:  Cross-sectional radiographs and MicroCT reconstructed slices of pure SE1700 mixed 

with tungsten.  (a), (c), and (e) is a 75/25 mix and (b), (d), and (f) is a 50/50 mix 

(e) (f) 
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Figure 4.9:  MicroCT reconstructed 3D image of tungsten dispersion in the 75/25 at 1000 RPM’s 

sample 
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Figure 4.10:  MicroCT reconstructed 3D image of tungsten dispersion in the 50/50 at 2000 

RPM’s sample 

 
 

4.6 Radial Distribution Function (RDF) 

Figures 4.5-4.10 represent data obtained from an RDF of both 50/50 and 75/25 samples based 

on three random cross-sectional images.  Figures 4.11-4.13 show a convergence to unity with small 

fluctuations around one.  Figures 4.14-4.16 show a more gradual approach to convergence, 
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occurring around 450μm (150 pixels).  This is partly due to the empty space between the filaments.  

The 50/50 sample RDF converges more rapidly to unity over the 75/25 sample.  Distances (x-axis) 

are given in pixels but may be converted to µm by multiplying pixel value by ~3.  For control, 

figure 4.17 illustrates the “poor” mixing regime and its respective Radial Distribution Function.  

 
Figure 4.11:  Radial Distribution Function for a 50/50 composition at 2000 RPM for cross-section 

#1 
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Figure 4.12:  Radial Distribution Function for a 50/50 composition at 2000 RPM for cross-section 

#2 

 
Figure 4.13:  Radial Distribution Function for a 50/50 composition at 2000 RPM for cross-section 

#3 
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Figure 4.14:  Radial Distribution Function for a 75/25 composition at 1000 RPM for cross-section 

#1 

 
Figure 4.15:  Radial Distribution Function for a 75/25 composition at 1000 RPM for cross-section 

#2 
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Figure 4.16:  Radial Distribution Function for a 75/25 composition at 1000 RPM for cross-section 

#3 

 
Figure 4.17:  Radial Distribution Function control plotted for the poor mixing regime 
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of (X,Y) position.  The data is analyzed and plotted using Matlab. Two of the three samples 

constructed are structurally identical (figures 4.18 and 4.19).  The third sample (figure 4.20) 

incorporated a broader range of lattice spacing over the first two samples, beginning with 0.32mm 

and ending at 0.9mm.  Figures 21, 22, and 23 depict the physical samples, showing overall size as 

well as graded lattice spacing.  The graphs depict what is expected:  Hardness is at its highest value 

where lattice spacing is smallest and vice versa. 

 

Figure 4.18:  Material hardness as a function of (X,Y) position (in mm) based on the Shore OO 

scale.  Rod spacing increased from 0.4mm to 0.8mm with an FCT unit cell structure and two 

outside rims.  A color scale is provided to indicate the hardest and softest points. 
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Figure 4.19:  Material hardness as a function of (X,Y) position (in mm) based on the Shore OO 

scale.  Rod spacing increased from 0.4mm to 0.8mm with an FCT unit cell structure and two 

outside rims.  A color scale is provided to indicate the hardest and softest points 

 

Figure 4.20:  Material hardness as a function of (X,Y) position (in mm) based on the Shore OO 

scale.  Rod spacing increased from 0.32mm to 0.9mm with an FCT unit cell structure and two 

outside rims.  A color scale is provided to indicate the hardest and softest points. 
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Figure 4.21:  Digital image of the first sample with a penny for scale  
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Figure 4.22:  Digital image of the second sample with a penny for scale  
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Figure 4.23:  Digital image of the third sample with a penny for scale  

 

 

4.8 Summary 

Results from all major experiments are presented.  Tungsten SEM images showed good particle 

size and size distribution based on the Tekna datasheet.  A Radial Distribution Function is used to 

determine homogeneity amongst atoms as a function of distance.  Samples are also constructed for 

subjection to mechanical testing by durometer.  Initially, the end goal of the durometer study is to 

determine mechanical properties of a sample with varying geometry and composition.  However, 

because of time constraints, only samples with graded geometry are tested.  For future work, 

durometer tests will be conducted on samples of graded geometry and composition utilizing two 

silicones of disparate elastic moduli. 
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CHAPTER V:  DISCUSSION AND CONCLUSION 
 

5.1 Introduction 

The focus of this chapter is to analyze and discuss the results from the previous chapter.  As 

such, this chapter is separated into two major sections:  Characterizing mixing efficiency 

(Objective #1) and mechanical properties of graded lattice structures (Objective #2).  First, 

MicroCT image results (referring figures 4.3(a)-(f) and 4.11-12) are evaluated and discussed.  

Second, an elaboration on the qualitative analysis, provided by the Radial Distribution Function 

(RDF), is provided.  Finally, a discussion of the durometer data is given, expanding upon the 

results acquired. 

5.2 Discussion – Mixing Efficiency 

Two samples of varying compositional ratios (SE1700:Tungsten) and impeller velocities 

were constructed through an active mixing device via direct-ink writing.  The goal of this study 

was to characterize “mixedness”.  Do particles suspended in a viscoelastic material become well 

mixed when subjected to high shear rate?  Subsections of the samples were subjected to 

microcomputed tomography (MicroCT) evaluations to determine compositional ratios as well 

as mixing efficiency (i.e., particle dispersion throughout the sample).  If the samples were printed 

within the “poor” mixing regime, as seen in figure 5.1(a), filament rods would consist of a half-

diameter of tungsten particles and pure SE1700 as the other half [24].   
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Figure 5.1:  Graphical representation of three mixing regimes (a) poor, (b) middle, and (c) 

good mixing [24]  

Qualitative characterization of mixing effectiveness in two dimensions was done using a 

Radial Distribution Function (RDF) (discussed in section 4.2.1) based on cross-sectional images 

obtained from MicroCT analysis.  The first sample, 50/50 composition at 2000 RPM, 

demonstrated good homogeneity with few agglomeration spots (see figures 4.3(a), (c), (f), and 

4.11).  Additionally, the RDF converged to unity with little variation (see figures 4.5-4.7).  From 

this data, good mixing characteristics are seen in the 50/50 sample.  The higher impeller velocity 

may play a role in its more uniform dispersion.  The second sample, 75/25 composition at 1000 

RPM, exhibited somewhat less uniformity in terms of its RDF, radiographs, and MicroCT 

snapshots.  Tungsten particles were mostly concentrated to the center of the filaments.  This may 

be due to the lower paddle rotational velocity or paddle geometry.  More MicroCT and statistical 

analysis on similar specimens is required to prove this hypothesis.   

In terms of particle density, qualitatively, a 50/50 composition of SE1700 to tungsten is more 

pronounced over the 75/25 ratio.  This result demonstrates a good syringe pump calibration and 

follows the results obtained through the volumetric flowrate experiment.  When analyzed in 

three dimensions (figures 4.11-4.12), to the eye, both samples show particle dispersion 

uniformity.  However, quantitatively, particle dispersion in two and three dimensions was not 

verified. 

Further characterizations include mixing efficiency as a function of impeller geometry and 

spatial orientation within the mixing chamber.  That is, how does the shape of the impeller 

(a) (b) (c) 
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improve mixing; and what is the optimal impeller positioning inside the mixing chamber?  These 

questions are saved for future work. 

 

5.3 Discussion – Mechanical Properties of Graded Lattice Structures 

The second major study utilized a durometer to measure hardness of a lattice structure with 

graded geometry.  Initially, the overall goal was to construct a specimen with both graded 

geometry as well as composition of two silicones with disparate elastic moduli.  However, 

because of time constraints and software issues, only structures with graded geometry were 

analyzed.  Three samples were printed using SE1700 and measured via durometer.  The first two 

samples were structurally identical while the third sample exhibited a broader range of lattice 

spacing.  Durometer setup and measurement methodology is explained in section 3.3.4.  Data 

acquired from the study is depicted in figures 4.14-4.16.  Hardness was measured as a function 

(X,Y) position.  The graphs follow a predictable trend, that is, shorter filament spacing leads to 

a high durometer value (harder) and larger spacing corresponds with a lower hardness value 

(softer).  Occasional bumps or waves in the graphs arise from the durometer indenter submerging 

between filaments (i.e., pressing into a hole).  The first two samples overall hardness is greater 

than that of the third sample (with broader lattice spacing).  Hardness levels increase around the 

edges of the samples because of the outside rims surrounding the lattice. 

The results are characterized in terms of a simple supported beam model.  A transverse load 

(durometer foot) is being applied to the center of two-support beam (see figure 5.1).  As the 

supports move away from each other, deflection under load increases.  After a certain distance, 

the beam will succumb to deflection under its own weight. 
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Figure 5.2:  Graphical representation of a simple supported beam model with (a) no load 

and (b) transverse load 

While results indicate a straightforward conclusion, a more complex solution (i.e., relating 

material hardness as a function of position) is the next step.  Additionally, relating durometer 

not only to position but also elastic modulus.  Future work will include mixing and printing two 

silicones with different elastic moduli (graded composition) in combination with varying lattice 

geometry. 

 

5.4 Summary 

The findings of both major studies were analyzed and discussed.  It was found that mixing 

efficiency is greater for the 50/50 sample at 2000 RPM than the 75/25 specimen.  Additionally, an 

increase in tungsten concentration was evident across all radiographs and images.  Further 

characterization and statistical work must be done to evaluate impeller velocity as a key component 

in mixing efficiency.  Results from the durometer study were also presented.  As suspected, sample 

hardness increased with decreased lattice spacing and vice versa.  The data was modeled after a 

simple supported beam where deflection from a transverse load occurs with little force as beam 

supports move further apart.

(a) 

(b) 
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APPENDIX A: C++ CODE 
 

 

 

/*------------------------------------------------------------------------- 
  Arduino library to determine the Arduino models and features, 
  as well as the SDK version. 
 
  Most features can be accessed via static variables. 
  You must instantiate if you want to know if the name of the board 
  or if specific features such exist, for example multiple serial  
  connections on the Arduino Mega. 
 
  This list may be neither comprehensive nor up to date 
   
  A full list of boards and processor names are available on Wikipedia: 
  https://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems 
 
  @author Tony Gaitatzis backupbrain@gmail.com 
  @date 2015-12-10 
 
  ------------------------------------------------------------------------- 
  This file is part of the Arduino Board Manager library 
 
  NeoPixel is free software: you can redistribute it and/or modify 
  it under the terms of the GNU Lesser General Public License as 
  published by the Free Software Foundation, either version 3 of 
  the License, or (at your option) any later version. 
 
  NeoPixel is distributed in the hope that it will be useful, 
  but WITHOUT ANY WARRANTY; without even the implied warranty of 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  GNU Lesser General Public License for more details. 
 
  You should have received a copy of the GNU Lesser General Public 
  License along with NeoPixel.  If not, see 
  <http://www.gnu.org/licenses/>. 
  -------------------------------------------------------------------------*/ 
   
#include "ArduinoBoardManager.h" 
 
ArduinoBoardManager::ArduinoBoardManager() { 
  // clear the features 
  memset(FEATURES, false, NUM_FEATURES); 
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  static const unsigned long BOARD_UNKNOWN = 0x0; 
  static const unsigned long BOARD_UNO = 0x01; 
  static const unsigned long BOARD_ZERO = 0x02; 
  static const unsigned long BOARD_DUE = 0x03; 
  static const unsigned long BOARD_MICRO= 0x04; 
  static const unsigned long BOARD_YUN_400 = 0x05; 
  static const unsigned long BOARD_LEONARDO = 0x06; 
  static const unsigned long BOARD_MEGA = 0x07; 
  static const unsigned long BOARD_NANO = 0x08; 
  static const unsigned long BOARD_NANO_3 = 0x09; 
  static const unsigned long BOARD_LILYPAD = 0x08; 
  static const unsigned long BOARD_TRINKET = 0x09; 
 
 
  switch (ArduinoBoardManager::BOARD) { 
    case ArduinoBoardManager::BOARD_UNO: 
      strcpy(BOARD_NAME, "UNO"); 
      strcpy(CPU_NAME, "ATmega328P"); 
    break; 
    case ArduinoBoardManager::BOARD_ZERO: 
      strcpy(BOARD_NAME, "Zero"); 
      strcpy(CPU_NAME, "ATSAMD21G18A"); 
      FEATURES[ArduinoBoardManager::FEATURE_ANALOG_OUT] = true; 
    break; 
    case ArduinoBoardManager::BOARD_DUE: 
      strcpy(BOARD_NAME, "Due"); 
      strcpy(CPU_NAME, "ATSAM3X8E"); 
      FEATURES[ArduinoBoardManager::FEATURE_ANALOG_OUT] = true; 
    break; 
    case ArduinoBoardManager::BOARD_MICRO: 
      strcpy(BOARD_NAME, "Micro"); 
      strcpy(CPU_NAME, "Atmega32U4"); 
    break; 
    case ArduinoBoardManager::BOARD_YUN_400: 
      strcpy(BOARD_NAME, "Yun"); 
      strcpy(CPU_NAME, "AR9331"); 
    break; 
    case ArduinoBoardManager::BOARD_LEONARDO: 
      strcpy(BOARD_NAME, "Leonardo"); 
      strcpy(CPU_NAME, "ATmega16U4"); 
    break; 
    case ArduinoBoardManager::BOARD_MEGA: 
      strcpy(BOARD_NAME, "Mega"); 
      strcpy(CPU_NAME, "ATmega1280"); 
      FEATURES[ArduinoBoardManager::FEATURE_MULTIPLE_SERIAL] = true; 
    break; 
    case ArduinoBoardManager::BOARD_NANO: 
      strcpy(BOARD_NAME, "Nano"); 
      strcpy(CPU_NAME, "ATmega168"); 
    break; 
    case ArduinoBoardManager::BOARD_NANO_3: 
      strcpy(BOARD_NAME, "Nano"); 
      strcpy(CPU_NAME, "ATmega328"); 
    break; 
    case ArduinoBoardManager::BOARD_LILYPAD: 
      strcpy(BOARD_NAME, "Lilypad"); 
      strcpy(CPU_NAME, "ATmega168V"); 
    break; 
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    case ArduinoBoardManager::BOARD_LILYPAD_2: 
      strcpy(BOARD_NAME, "Lilypad"); 
      strcpy(CPU_NAME, "ATmega328V"); 
    break; 
    case ArduinoBoardManager::BOARD_TRINKET: 
      strcpy(BOARD_NAME, "Trinket"); 
      strcpy(CPU_NAME, "ATTiny85"); 
    break; 
    case ArduinoBoardManager::BOARD_101: 
      strcpy(BOARD_NAME, "101"); 
      strcpy(CPU_NAME, "ARCv2EM"); 
      FEATURES[ArduinoBoardManager::FEATURE_BLUETOOTH_4] = true; 
      FEATURES[ArduinoBoardManager::FEATURE_ACCELEROMETER] = true; 
      FEATURES[ArduinoBoardManager::FEATURE_GYROSCOPE] = true; 
    break; 
    default: 
      strcpy(BOARD_NAME, "Unknown"); 
      strcpy(CPU_NAME, "Unknown"); 
 
  } 
 
} 
 
 
bool ArduinoBoardManager::featureExists(uint8_t feature) { 
  if ((feature < ArduinoBoardManager::NUM_FEATURES) && 
     (ArduinoBoardManager::FEATURES[feature])) 
      return true; 
  return false; 
} 
 
/*------------------------------------------------------------------------- 
  Arduino library to determine the Arduino models and features, 
  as well as the SDK version. 
 
  Most features can be accessed via static variables. 
  You must instantiate if you want to know if the name of the board 
  or if specific features such exist, for example multiple serial  
  connections on the Arduino Mega. 
 
  This list may be neither comprehensive nor up to date 
   
  A full list of boards and processor names are available on Wikipedia: 
  https://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems 
 
  @author Tony Gaitatzis backupbrain@gmail.com 
  @date 2015-12-10 
 
  ------------------------------------------------------------------------- 
  This file is part of the Arduino Board Manager library 
 
  NeoPixel is free software: you can redistribute it and/or modify 
  it under the terms of the GNU Lesser General Public License as 
  published by the Free Software Foundation, either version 3 of 
  the License, or (at your option) any later version. 
 
  NeoPixel is distributed in the hope that it will be useful, 
  but WITHOUT ANY WARRANTY; without even the implied warranty of 
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  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  GNU Lesser General Public License for more details. 
 
  You should have received a copy of the GNU Lesser General Public 
  License along with NeoPixel.  If not, see 
  <http://www.gnu.org/licenses/>. 
  -------------------------------------------------------------------------*/ 
   
#if ARDUINO >= 100 
  #include <Arduino.h> 
#else 
  #include <WProgram.h> 
#endif 
 
class ArduinoBoardManager { 
 public: 
  /** 
   * Arduino IDE/SDK Version 
   */ 
  static const uint16_t SDK_VERSION = ARDUINO;        /**< Arduino SDK Version */ 
 
  /** 
   * Board Name  
   */ 
  static const uint8_t MAX_BOARD_NAME_LENGTH = 16;  
  static const uint8_t MAX_CPU_NAME_LENGTH = 16;         
  char BOARD_NAME[MAX_BOARD_NAME_LENGTH];                       /**< When 
instantiated, this is the board name, eg "UNO" */     
  char CPU_NAME[MAX_CPU_NAME_LENGTH];                       /**< When 
instantiated, this is the cpu name, eg "__AVR_ATmega328P__" */ 
 
  /** 
   * Known Board Models  
   */ 
  static const uint8_t BOARD_UNKNOWN = 0x0; 
  static const uint8_t BOARD_UNO = 0x01; 
  static const uint8_t BOARD_ZERO = 0x02; 
  static const uint8_t BOARD_DUE = 0x03; 
  static const uint8_t BOARD_MICRO= 0x04; 
  static const uint8_t BOARD_YUN_400 = 0x05; 
  static const uint8_t BOARD_LEONARDO = 0x06; 
  static const uint8_t BOARD_MEGA = 0x07; 
  static const uint8_t BOARD_NANO = 0x08; 
  static const uint8_t BOARD_NANO_3 = 0x09; 
  static const uint8_t BOARD_LILYPAD = 0x0a; 
  static const uint8_t BOARD_LILYPAD_2 = 0x0b; 
  static const uint8_t BOARD_TRINKET = 0x0c; 
  static const uint8_t BOARD_101 = 0x0d; 
 
  /** 
   * Known Arduino Features  
   */ 
  static const uint8_t NUM_FEATURES = 1; 
  static const uint8_t FEATURE_MULTIPLE_SERIAL = 0x00; 
  static const uint8_t FEATURE_BLUETOOTH_4 = 0x01; 
  static const uint8_t FEATURE_ACCELEROMETER = 0x02; 
  static const uint8_t FEATURE_GYROSCOPE = 0x03; 
  static const uint8_t FEATURE_ANALOG_OUT = 0x04; 
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  /** 
   * CPU speed 
   */ 
  static const unsigned long MAX_MHZ = F_CPU; 
   
  boolean FEATURES[NUM_FEATURES]; 
   
  /** 
   * CPU Specifications 
   */ 
#if defined(__AVR_ATmega328P__) // uno, fio 
  static const uint8_t BOARD = 0x01;           /**< UNO board */ 
  static const uint8_t NUM_BITS = 8;            /**< 8-bit processor */ 
  static const uint16_t CPU = __AVR_ATmega328P__;     /**< 16Mhz */ 
  static const unsigned long SRAM_SIZE = 2000;       /**< 2kb of sram */ 
  static const unsigned long EEPROM_SIZE = 1000;     /**< 1kb eeprom */ 
  static const unsigned long FLASH_SIZE = 32000;     /**< 32k flash storage */ 
#elif defined(__AVR_ATSAMD21G18A__) // zero 
  static const uint8_t BOARD = 0x02 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = __AVR_ATSAMD21G18A__; 
  static const unsigned long SRAM_SIZE = 32000; 
  static const unsigned long EEPROM_SIZE = 16000; 
  static const unsigned long FLASH_SIZE = 256000; 
#elif defined(__AVR_ATSAM3X8E__) // Due 
  static const uint8_t BOARD = 0x03; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = __AVR_ATSAMD21G18A__; 
  static const unsigned long SRAM_SIZE = 96000; 
  static const unsigned long EEPROM_SIZE = 0; 
  static const unsigned long FLASH_SIZE = 512000; 
#elif defined(__AVR_Atmega32U4__) // Yun 16Mhz, Micro, Leonardo, Esplora 
  static const uint8_t BOARD = 0x04; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = __AVR_Atmega32U4__; 
  static const unsigned long SRAM_SIZE = 2500; 
  static const unsigned long EEPROM_SIZE = 1000; 
  static const unsigned long FLASH_SIZE = 32000; 
#elif defined(_AVR_AR9331__) // Yun 400Mhz 
  static const uint8_t BOARD = 0x05; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = _AVR_AR9331__; 
  static const unsigned long SRAM_SIZE = 64000000; 
  static const unsigned long EEPROM_SIZE = 0; 
  static const unsigned long FLASH_SIZE = 16000000; 
#elif defined(__AVR_ATmega16U4__) // leonardo 
  static const uint8_t BOARD = 0x06; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = __AVR_ATmega16U4__; 
  static const unsigned long SRAM_SIZE = 2560; 
  static const unsigned long EEPROM_SIZE = 1000; 
  static const unsigned long FLASH_SIZE = 32000; 
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // mega, Mega ADK 
  static const uint8_t BOARD = 0x07; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = __AVR_ATmega2560__; 
  static const unsigned long SRAM_SIZE = 8000; 
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  static const unsigned long EEPROM_SIZE = 4000; 
  static const unsigned long FLASH_SIZE = 256000; 
#elif defined(_AVR_ATmega328__) // Nano >= v3.0 or Arduino Pro, pro328, ethernet 
  static const uint8_t BOARD = 0x08; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = _AVR_ATmega328__; 
  static const unsigned long SRAM_SIZE = 2000; 
  static const unsigned long EEPROM_SIZE = 1000; 
  static const unsigned long FLASH_SIZE = 32000; 
#elif defined(_AVR_ATmega168__) // Nano < v3.0 or uno, pro 
  static const uint8_t BOARD = 0x09; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = _AVR_ATmega168; 
  static const unsigned long SRAM_SIZE = 1000; 
  static const unsigned long EEPROM_SIZE = 500; 
  static const unsigned long FLASH_SIZE = 16000; 
#elif defined(_AVR_ATmega168V__) // LilyPad 
  static const uint8_t BOARD = 0x0a; 
  static const uint8_t CPU = _AVR_ATmega168V__; 
  static const unsigned int NUM_BITS = 8; 
  static const unsigned long SRAM_SIZE = 1000; 
  static const unsigned long EEPROM_SIZE = 500; 
  static const unsigned long FLASH_SIZE = 14000 
#elif defined(_AVR_ATmega328V__) // LilyPad 2 
  static const uint8_t BOARD = 0x0b; 
  static const uint8_t CPU = _AVR_ATmega328V__; 
  static const unsigned int NUM_BITS = 8; 
  static const unsigned long SRAM_SIZE = 1000; 
  static const unsigned long EEPROM_SIZE = 500; 
  static const unsigned long FLASH_SIZE = 14000 
#elif defined(_AVR_ATTiny85__) // trinket 
  static const uint8_t BOARD = 0x0c; 
  static const uint8_t NUM_BITS = 8; 
  static const uint16_t CPU = _AVR_ATTiny85__; 
  static const unsigned long SRAM_SIZE = 500; 
  static const unsigned long EEPROM_SIZE = 500; 
  static const unsigned long FLASH_SIZE = 2500; 
#elif  defined(__AVR_ARCv2EM__) || (__CURIE_FACTORY_DATA_H_) // Intel Curie/101 
  static const uint8_t BOARD = 0x0d; 
  static const uint8_t NUM_BITS = 32; 
  static const uint16_t CPU = __AVR_ARCv2EM__; 
  static const unsigned long SRAM_SIZE = 24000; // might be 80k? 
  static const unsigned long EEPROM_SIZE = 0; 
  static const unsigned long FLASH_SIZE = 384000; 
#else 
  static const uint8_t BOARD = 0x00; 
  static const uint8_t NUM_BITS = 0; 
  static const uint16_t CPU = 0; 
  static const unsigned long SRAM_SIZE = 0; 
  static const unsigned long EEPROM_SIZE = 0; 
  static const unsigned long FLASH_SIZE = 0; 
#endif 
 
  /** 
   * Instantiate board Manager 
   */ 
  ArduinoBoardManager(); 
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  /** 
   * Ask if a specific feature exists, e.g. Arduino::FEATURE_MULTIPLE_SERIAL 
   *  
   * @param feature  an unsigned int, e.g. FEATURE_MULTIPLE_SERIAL 
   * @return true if feature exists, false if feature does not exist 
   */ 
  bool featureExists(uint8_t feature); 
   
}; 
 
#include "UserTimer.h" 
#include "QuadEncoder.h" 
#include "PID_Loop.h" 
 
#ifndef DCServoMotor_H 
#define DCServoMotor_H 
class DCServoMotor 
{ 
public: 
 volatile int n_FastPWMPin;  //the PWM control pin for the DC motor 
controlled by fast PWM on timer 3 
 volatile int n_DirPin;  //high/low to INV pin on motor driver board to 
control direction 
 volatile int n_Loops=0; 
 volatile double d_TargetRPM=0;  //set by user with "SP xx.xx" 
 volatile double d_CurrentRPM=0; 
 volatile double d_RPMErr=0; 
  volatile double d_Revs=0; 
  volatile double d_Degrees=0; 
  volatile double d_ArcMin=0; 
  volatile double d_ArcSec=0; 
 volatile bool o_ControlSpeed=true; 
 PID_Loop * PIDL_Vel; //PID control loop for velocity 
 UserTimer * PID_Clock; 
 QuadEncoder * Enc; 
 
 DCServoMotor(); 
 DCServoMotor(int EncoderPinA, int EncoderPinB, int QuadSteps, int ChAMode, 
int ChBMode, int FastPWMPin, int DirPin, double PIDClockCycle); 
 void Setup(); 
 void SetupTimers(double dDesiredPeriod); 
 void Reset(); 
 void CalcCurrentRPM(); 
 void EchoCurrentRPM(); 
 void SetTargetRPM(double dNewRPM); 
  void SetDir(int nDir); 
 void EchoTargetRPM(); 
 void EchoDir(); 
 void EchoSetupInfo(); 
 void EchoSpeedControlPin(); 
 void EchoTimerSetup(int nTimer); 
 void EchoDirPin(); 
 void EchoPID(); 
 void EchoMixerInfo(); 
 void ControlSpeed(); 
}; 
#endif 
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#include <Arduino.h> 
#include <String.h> 
#include "QuadEncoder.h" 
#include "UserTimer.h" 
#include "DCServoMotor.h" 
#include "PID_Loop.h" 
#include "MYSERIAL.h" 
 
DCServoMotor::DCServoMotor()  
{ 
 n_FastPWMPin = 9;  //the PWM control pin for the DC motor controlled by 
fast PWM on timer 3 
 n_DirPin = 10;  //high/low to INV pin on motor driver board to control 
direction 
 PID_Clock = new UserTimer(0.01); 
 Enc= new QuadEncoder(); 
 PIDL_Vel = new PID_Loop(); 
} 
 
DCServoMotor::DCServoMotor(int EncoderPinA, int EncoderPinB, int QuadSteps, int 
ChAMode, int ChBMode, int FastPWMPin, int DirPin, double PIDClockCycle) 
{ 
 Enc = new QuadEncoder(EncoderPinA, EncoderPinB, QuadSteps, ChAMode, 
ChBMode); 
 PID_Clock= new UserTimer(PIDClockCycle); 
 PIDL_Vel = new PID_Loop(); 
 n_FastPWMPin = FastPWMPin; 
 n_DirPin = DirPin;  
 Setup(); 
} 
 
void DCServoMotor::Reset() 
{ 
 Enc->Reset(); 
 PID_Clock->Reset(); 
 PIDL_Vel->Reset(); 
 Setup(); 
} 
 
void DCServoMotor::Setup() 
{ 
 //set pin as output for FastPWM 
 pinMode(n_FastPWMPin, OUTPUT); 
 //set pin as output for Direction 
 pinMode(n_DirPin, OUTPUT); 
} 
 
void DCServoMotor::CalcCurrentRPM() 
{ 
 long l_Delta_ms = PID_Clock->delta_ms(); 
 d_CurrentRPM=l_Delta_ms>0?(Enc->GetDeltaRev() / (1.0*l_Delta_ms)) * 
60000.0:d_CurrentRPM; 
 if(d_CurrentRPM!=0.0&&l_Delta_ms>0) 
 { 
  Enc->ZeroDeltaCnts(); 
  PID_Clock->st_ms = millis(); 
 } 
 d_RPMErr = d_CurrentRPM- d_TargetRPM; 
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 PIDL_Vel->d_Signal = d_CurrentRPM; 
} 
 
void DCServoMotor::EchoCurrentRPM() 
{ 
 
 MYSERIAL.print("DEC=("); 
 MYSERIAL.print(Enc->l_EncCnts); 
 MYSERIAL.print("-"); 
 MYSERIAL.print(Enc->l_PrevEncCnts); 
 MYSERIAL.print(")="); 
 MYSERIAL.print(Enc->l_DeltaCnts); 
 MYSERIAL.print("["); 
 MYSERIAL.print(Enc->GetDeltaRev(),5); 
 MYSERIAL.println("]"); 
 MYSERIAL.print("Dt=("); 
 MYSERIAL.print(millis()); 
 MYSERIAL.print("-"); 
 MYSERIAL.print(PID_Clock->st_ms); 
 MYSERIAL.print(")="); 
 MYSERIAL.println(PID_Clock->delta_ms()); 
 CalcCurrentRPM(); 
 MYSERIAL.print("Current RPM="); 
 MYSERIAL.println(d_CurrentRPM); 
} 
 
void DCServoMotor::SetTargetRPM(double dNewRPM) 
{ 
 d_TargetRPM = dNewRPM; 
 PIDL_Vel->ChangeSetPoint(d_TargetRPM); 
 //EchoTargetRPM(); 
} 
 
void DCServoMotor::EchoTargetRPM() 
{ 
 MYSERIAL.print("Target RPM="); 
 MYSERIAL.println(PIDL_Vel->d_SetPt); 
} 
 
void DCServoMotor::EchoDir() 
{ 
 MYSERIAL.print("Direction="); 
 MYSERIAL.println(Enc->o_Dir?"CCW":"CW"); 
} 
 
void DCServoMotor::EchoSetupInfo() 
{ 
 MYSERIAL.println("DC Servo Config:"); 
 MYSERIAL.print("\tFastPWMPin=:"); 
 MYSERIAL.println(n_FastPWMPin); 
 MYSERIAL.print("\tDirPin=:"); 
 MYSERIAL.println(n_DirPin); 
 Enc->EchoSetupInfo(); 
} 
 
void DCServoMotor::EchoSpeedControlPin() 
{ 
 MYSERIAL.print("FastPWMPin="); 
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 MYSERIAL.println(n_FastPWMPin); 
} 
 
void DCServoMotor::SetDir(int nDir) 
{ 
  digitalWrite(n_DirPin,nDir); 
  Enc->o_Dir=nDir; 
} 
 
void DCServoMotor::EchoDirPin() 
{ 
 MYSERIAL.print("DirPin="); 
 MYSERIAL.println(n_DirPin); 
} 
 
void DCServoMotor::EchoTimerSetup(int nTimer) 
{ 
 PID_Clock->EchoSetupInfo(nTimer); 
} 
 
void DCServoMotor::EchoPID() 
{ 
    //some feedback that is useful 
 
    MYSERIAL.print("Delta cnts = "); 
    MYSERIAL.print(Enc->l_EncCnts); 
    MYSERIAL.print(" - "); 
    MYSERIAL.print(Enc->l_PrevEncCnts); 
    MYSERIAL.print(" = "); 
    MYSERIAL.println(Enc->l_DeltaCnts); 
 
  
   PIDL_Vel->EchoPID(); 
 
    MYSERIAL.print("Timer 3 Period="); 
    MYSERIAL.println(PID_Clock->d_TimerPeriod, 4); 
 
    EchoSetupInfo(); 
} 
 
void DCServoMotor::EchoMixerInfo() 
{ 
 //echo a single line "," delimited information about mixer 
 //order is: CurrentRPM, AvgRPM, RPMSetPoint, Direction, KP, KI, KD, PGain, 
IGain, DGain, d_DutyCycle, n_DutyCycle, n_FPWMLevels, d_FPWMFrequency, 
d_Timer1Freq, l_Cnts, l_Pos, n_ChAPin, n_ChBPin, n_FPWMPin, n_DirPin, n_ChAMode, 
nChBMode, d_CurrentErr, d_ErrAccum, d_ErrSlope, n_CntsPerRev 
 String stOut="MixerInfo:"; 
 stOut += String(d_CurrentRPM, 2) + ", "; 
 stOut += String(PIDL_Vel->d_AvgSignal, 2) + ", "; 
 stOut += String(d_TargetRPM, 2) + ", "; 
 stOut += String(Enc->o_Dir) + ", "; 
 stOut += String(PIDL_Vel->d_KP, 6) + ", "; 
 stOut += String(PIDL_Vel->d_KI, 6) + ", "; 
 stOut += String(PIDL_Vel->d_KD, 6) + ", "; 
 stOut += String(PIDL_Vel->d_PGain, 6) + ", "; 
 stOut += String(PIDL_Vel->d_IGain, 6) + ", "; 
 stOut += String(PIDL_Vel->d_DGain, 6) + ", "; 
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 stOut += String(PIDL_Vel->d_DutyCycle, 3) + ", "; 
 stOut += String(PIDL_Vel->n_DutyCycle) + ", "; 
 stOut += String(PIDL_Vel->n_FPWMLevels) + ", "; 
 stOut += String(PIDL_Vel->d_FPWMFreq, 3) + ", "; 
 stOut += String(1.0/PID_Clock->d_TimerPeriod, 3) + ", "; 
 stOut += String(Enc->l_EncCnts) + ", "; 
 stOut += String(Enc->l_EncPos) + ", "; 
 stOut += String(Enc->n_ChA) + ", "; 
 stOut += String(Enc->n_ChB) + ", "; 
 stOut += String(n_FastPWMPin) += ", "; 
 stOut += String(n_DirPin) += ", "; 
 stOut += String(Enc->n_ChAMode) + ", "; 
 stOut += String(Enc->n_ChBMode)+ ", "; 
  stOut += String(PIDL_Vel->d_CurrentErr,6)+", "; 
  stOut += String(PIDL_Vel->d_ErrAccum,6)+", "; 
  stOut += String(PIDL_Vel->d_ErrSlope,6)+", "; 
 stOut += String(Enc->n_CntsPerRev); 
 MYSERIAL.println(stOut); 
  //stOut="["; 
  //for(int nI=0;nI<PIDL_Vel->n_PIDArrayLen;nI++){stOut+=String(PIDL_Vel-
>d_SignalArray[nI],2)+", ";} 
  //stOut+="]"; 
  //MYSERIAL.println(stOut); 
} 
 
void DCServoMotor::ControlSpeed()  //this gets triggered upon each compare of 
timer3 
{ 
  if(!o_ControlSpeed){return;} 
  CalcCurrentRPM(); 
  PIDL_Vel->d_Signal = d_CurrentRPM; 
  PIDL_Vel->Control(); 
} 
 
void DCServoMotor::SetupTimers(double dDesiredPeriod) 
{ 
 cli(); //disables global interrupts 
     //I'm using timer 3 to adjust the PWM duty cycle on timer 1 
channel A 
     //The frequency of timer 3 is about 100Hz after this setup. 
     /*About Timers:  TCCR stands for "Timer/Counter Control 
Register." 
     * TCCR's are configured by setting values in two, 8-bit registers 
A&B.  So TCCR3 is for timer 3.  TCCR3A is register A for timer 3.  TCCR3B is 
register B for timer 3. 
     * The bits of register A are labeled as follows: [bit 
num]:defined constant name,read/write,initial value 
     * [0]:WGMn0, R/W, 0 
     * [1]:WGMn1, R/W, 0 
     * [2]:COMnC0, R/W, 0 
     * [3]:COMnC1, R/W, 0 
     * [4]:COMnB0, R/W, 0 
     * [5]:COMnB1, R/W, 0 
     * [6]:COMnA0, R/W, 0 
     * [7]:COMnA1, R/W, 0 
     * For register B: 
     * [0]:CSn0, R/W, 0 
     * [1]:CSn1, R/W, 0 
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     * [2]:CSn2, R/W, 0 
     * [3]:WGMn2, R/W, 0 
     * [4]:WGMn3, R/W, 0 
     * [5]:not used 
     * [6]:ICES1, R/W, 0 
     * [7]:ICNC1, R/W, 0 
     * 
     * The timer can be set to count as fast as the CPU cycles (16MHz 
on Mega2560 chip) or slowed down by setting CS12, CS11, and CS10 bits. 
     * Timer 3 is 16bit, so it can count from 0 to 2^16=65536.  The 
count value at any time depends on how fast you are counting and if you 
     * reset at the max value or something less than that.  If you 
count at 16MHz and fill the counter it should take 65536/16x10^6=0.004096s. 
     * You can make the timer tick slower by using a prescalar: e.g. 
1024/16MHz=0.000064s cycle time.  Your prescalar can be 1, 8, 64, 256, 0r 1024. 
     * If I use a 1024 prescaler and count until 16bits is filled: 
T=65536*0.000064=4.194s 
     * If I use a 256 prescaler and count until 16bits is filled: 
T=65536*0.000016=1.0486s 
     * If I use a 64 prescaler and count until 16bits is filled: 
T=65536*0.000004=0.26214s 
     * If I use a 8 prescaler and count until 16bits is filled: 
T=65536*0.0000005=0.0327s 
     */ 
     //**** 
     //First, setup timer 3 for my motor control PID 
 TCCR3A = 0; //clear the setup register A 
 TCCR3B = 0; //clear the setup register B 
 
 //set prescalar to best match dDesiredPeriod 
 int nCase; 
  PID_Clock->d_DesiredPeriod=dDesiredPeriod; 
 nCase = dDesiredPeriod < (4.194) ? 1024 : 1024; 
 nCase = dDesiredPeriod < (1.0486) ? 256 : nCase; 
 nCase = dDesiredPeriod < (0.2621) ? 64 : nCase; 
 nCase = dDesiredPeriod < (0.0327) ? 8 : nCase; 
 nCase = dDesiredPeriod < (0.0041) ? 1 : nCase; 
 switch (nCase) 
 { 
 case 1: 
  TCCR3B |= (1 << CS30); 
  break; 
 case 8: 
  TCCR3B |= (1 << CS31); 
  break; 
 case 64: 
  TCCR3B |= (1 << CS30) | (1 << CS31); 
  break; 
 case 256: 
  TCCR3B |= (1 << CS32); 
  break; 
 case 1024: 
  TCCR3B |= (1 << CS30) | (1 << CS32); 
  break; 
 } 
 
 //Using an overflow compare method to interrupt when timer counts to this 
value. 
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 OCR3A = (int)(dDesiredPeriod / (nCase / 16000000.0)); 
 PID_Clock->d_TimerPeriod = (double)OCR3A / (16000000.0 / nCase); //Should 
be close to dDesiredPeriod 
  //set to clear timer on compare match (CTC) mode: 
 TCCR3B |= (1 << WGM32); 
 
 //turn on overflow compare interrupt in timer interrupt mask for 3 
 TIMSK3 |= (1 << OCIE3A); 
 //**** 
 
 PIDL_Vel->SetupFPWM(); 
 sei(); 
} 
 
#include "DCServoMotor.h" 
#ifndef InterruptConfig_H 
#define InterruptConfig_H 
void SetupInterrupts(); 
void Interrupt_ChA(); 
void Interrupt_ChB(); 
void do_DutyCycle(char const * Input, int Len, int Start); 
#endif 
#include <Arduino.h> 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include "InterruptConfig.h" 
#include "DCServoMotor.h" 
#include "StringFunctions.h" 
#include "QuadENcoder.h" 
#include "MYSERIAL.h" 
 
#include <stdio.h> 
#ifndef _MYSERIAL_h 
#define _MYSERIAL_h 
#ifndef MYSERIAL_H 
#define MYSERIAL_H 
#define MYSERIAL Serial 
#endif 
#endif 
 
#include "MYSERIAL.h" 
 
#ifndef PID_Loop_H 
#define PID_Loop_H 
 
class PID_Loop 
{ 
public: 
 static const int n_PIDArrayLen= 100; 
 volatile int n_DataPointer = 0;  //points to position in array of last 
input data 
 volatile int n_FPWMLevels=1024; 
 volatile double d_FPWMFreq = 1000; 
 volatile double d_SignalArray[n_PIDArrayLen];  //used in PID to calcualte 
the average signal 
  volatile double d_Sum=0.0; 
 volatile double d_AvgSignal=0.0;  //the average signal value 
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 volatile double d_CurrentErr = 0.0; 
 volatile double d_ErrArray[n_PIDArrayLen];  //used in PID loop to calculate 
the average error 
 volatile double d_AvgErr=0.0; 
 volatile double d_ErrAccum=0.0;  //the accumulated error in the PID loop 
  volatile double d_ErrSlope=0.0; 
 volatile double d_DutyCycle = 0; //0 to 100% 
 volatile int n_DutyCycle=0;  //the duty cycle value where output switches 
from high to low 
 
 volatile double d_SetPt=0.0; 
 volatile double d_Signal=0.0; 
 
 volatile double d_KP = 1;  //the proportional gain in the PID loop 
 volatile double d_KI = 0.01;  //the integral gain in the PID Loop 
 volatile double d_KD = 0.1;  //the derivative gain in the PID loop 
 
 volatile double d_PGain = 0; 
 volatile double d_IGain = 0; 
 volatile double d_DGain = 0; 
 
 volatile double d_Divider = 1.0;  //a factor to divide the PID gain 
 volatile bool o_PIDFeedback = false; 
 
 void Reset(); 
 void EchoKP(); 
 void EchoKI(); 
 void EchoKD(); 
 void EchoPID(); 
 void EchoDutyCycle(); 
  double ConstrainDouble(double val, double Min, double Max); 
 int ConstrainInt(int val, int Min, int Max); 
 void SetupFPWM(); 
 void SetDutyCycle(); 
  void ChangeSetPoint(double dNewSP); 
 void Control(); 
}; 
#endif // !PID_Loop_H 
 
#include "PID_Loop.h" 
#include "MYSERIAL.h" 
#include <arduino.h> 
 
void PID_Loop::EchoKP() 
{ 
 MYSERIAL.print("KP="); 
 MYSERIAL.println(d_KP,5); 
} 
 
void PID_Loop::EchoKI() 
{ 
 MYSERIAL.print("KI="); 
 MYSERIAL.println(d_KI,5); 
} 
 
void PID_Loop::EchoKD() 
{ 
 MYSERIAL.print("KD="); 
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 MYSERIAL.println(d_KD,5); 
} 
 
void PID_Loop::EchoDutyCycle() 
{ 
 MYSERIAL.print("DutyCycle="); 
 MYSERIAL.println(d_DutyCycle, 5); 
 MYSERIAL.print("OCR1A="); 
 MYSERIAL.println(OCR1A); 
 MYSERIAL.print("OCR1B="); 
 MYSERIAL.println(OCR1B); 
} 
 
void PID_Loop::EchoPID() 
{ 
 //some feedback that is useful 
 MYSERIAL.print("Current RPM = "); 
 MYSERIAL.print(d_Signal); 
 MYSERIAL.print("["); 
 MYSERIAL.print(d_SetPt); 
 MYSERIAL.println("]"); 
 
 MYSERIAL.print("Current Error = "); 
 MYSERIAL.println(d_CurrentErr); 
 
 MYSERIAL.print("Accumulated Error = "); 
 MYSERIAL.println(d_ErrAccum); 
 
  MYSERIAL.print("Error Slope = "); 
  MYSERIAL.println(d_ErrSlope); 
   
 MYSERIAL.print("P Gain="); 
 MYSERIAL.print(d_PGain, 5); 
 
 MYSERIAL.print(", I Gain="); 
 MYSERIAL.print(d_IGain, 5); 
 
 MYSERIAL.print(", D Gain="); 
 MYSERIAL.println(d_DGain, 5); 
 
 MYSERIAL.print("Duty Cycle = "); 
 MYSERIAL.print(n_DutyCycle); 
 MYSERIAL.print(" ["); 
 MYSERIAL.print(n_FPWMLevels); 
 MYSERIAL.println("]"); 
} 
 
double PID_Loop::ConstrainDouble(double val, double Min, double Max) 
{ 
  double dOut=val<Min?Min:val; 
  return dOut>Max?Max:dOut; 
} 
 
int PID_Loop::ConstrainInt(int val, int Min, int Max) 
{ 
  int nOut=val<Min?Min:val; 
  return nOut>Max?Max:nOut; 
} 
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void PID_Loop::SetupFPWM() 
{ 
 //Now, setup fast PWM on Timer 1 
 TCCR1B = 0; //clear register B 
 TCCR1A = 0; //clear register A 
 
 //setting up 10bit fast pwm 
 TCCR1A |= (1 << WGM10) | (1 << WGM11); //set to 10 bit fast PWM mode 
 TCCR1B |= (1 << WGM12); 
 TCCR1B |= (1 << CS10); //set prescalar to 1 so counts at full speed 
 d_FPWMFreq = 16000000.0 / (1 << 10)/1.0; //Frequency=16MHz/1024=15.6kHz; 
 TCCR1A |= (1 << COM1A1); //enable n_FastPWMPin for fast PWM (pin 9 on 
Arduino micro) 
 n_FPWMLevels = (1<<10); //set up 10 bit fast PWM, total count is 1024 (0-
1023).   
 OCR1A = 0; //I will adjust value of OCR1A to control the fast pwm on 
control pin A. 
} 
 
void PID_Loop::SetDutyCycle() 
{ 
 d_DutyCycle=ConstrainDouble(d_DutyCycle,0.0,100.0); 
 n_DutyCycle = (d_DutyCycle/ 100.0) * (n_FPWMLevels); 
 n_DutyCycle=ConstrainInt(n_DutyCycle,0,n_FPWMLevels-1); 
 OCR1A = n_DutyCycle; 
 //EchoDutyCycle(); 
} 
 
void PID_Loop::Reset() 
{ 
 n_DataPointer = 0;  //points to position in array of last input data 
 d_AvgSignal=0.0;  //the average signal value 
  d_Sum=0; 
 d_CurrentErr = 0.0; 
 d_AvgErr=0.0; 
 d_ErrAccum=0.0;  //the accumulated error in the PID loop 
 d_DutyCycle = 0.0; //0 to 100% 
 n_DutyCycle=0;  //the duty cycle value where output switches from high to 
low 
 
 d_SetPt=0.0; 
 d_Signal=0.0; 
 
 d_PGain = 0.0; 
 d_IGain = 0.0; 
 d_DGain = 0.0; 
   
 SetDutyCycle(); 
} 
 
void PID_Loop::ChangeSetPoint(double dNewSP) 
{ 
 d_SetPt=dNewSP; 
 d_ErrAccum=0.0; 
} 
 
void PID_Loop::Control() 
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{ 
 d_CurrentErr = (d_Signal-d_SetPt);  //calculates error 
  d_CurrentErr*=abs(d_SetPt)>0.0?1.0/d_SetPt:1.0; //calculate error as fraction of 
setpoint 
  double d_AbsErr=abs(d_CurrentErr); 
 double d_KPMult=d_AbsErr>0.2?1.0:0.1; //multiplies Kp by 10 if error 
greater than 10% 
  d_KPMult=d_AbsErr>0.4?10.0:d_KPMult; //multiplies Kp by 100 if error greater 
than 25% 
  double d_KIMult=1.0/1000.0; 
 //double d_KDMult=abs(d_CurrentErr)>0.02?1.0:0.1; 
  
 d_ErrAccum+=d_CurrentErr; 
  
 d_ErrArray[n_DataPointer] = d_CurrentErr; 
  d_Sum+=d_Signal-d_SignalArray[n_DataPointer]; 
 d_AvgSignal= d_Sum / n_PIDArrayLen; 
 d_SignalArray[n_DataPointer] = d_Signal; 
 
 double d_PrevErr = n_DataPointer == 0 ? d_ErrArray[n_PIDArrayLen-1] : 
d_ErrArray[n_DataPointer - 1]; 
  d_ErrSlope=d_CurrentErr-d_PrevErr; 
 n_DataPointer == (n_PIDArrayLen-1) ? n_DataPointer = 0 : n_DataPointer++; 
 
 double dPID = 0; 
 //proportional gain 
 d_PGain = d_KP*d_CurrentErr*d_KPMult; 
 //integral gain 
 d_IGain = d_KI*d_ErrAccum; 
 //dirivitive gain 
 d_DGain = d_KD*d_ErrSlope; 
 //a scale factor 
 dPID = -(d_PGain + d_IGain + d_DGain); 
  
  dPID=ConstrainDouble(dPID,-1.0,1.0); 
 d_DutyCycle += dPID; 
 SetDutyCycle(); 
} 
 
#include "DCServoMotor.h" 
 
#ifndef ProcessSerial_H 
#define ProcessSerial_H 
class SerialProcessor 
{ 
public: 
 char c_MYSERIALInBuffer[128]{}; 
 int n_BytesRead = 0; 
 
 void SerialProcessor::Echo(char * c_array); 
 void SerialProcessor::Echo(char * c_bytesRead, int nLen); 
 void SerialProcessor::LookForRCADCmds(char * InBuf, int nLen, DCServoMotor 
* DCSM); 
 void SerialProcessor::ProcessSerial(DCServoMotor * DCSM); 
}; 
#endif 
 
#include "StringFunctions.h" 
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#include "InterruptConfig.h" 
#include "string.h" 
#include "MYSERIAL.h" 
#include "ProcessSerial.h" 
#include "ArduinoBoardManager.h" 
#include <Arduino.h> 
 
void SerialProcessor::Echo(char * c_bytesRead, int nLen) 
{ 
      if(nLen<=0){return;} //zero length 
      MYSERIAL.print("Echo["); 
      MYSERIAL.print(nLen); 
      MYSERIAL.print("]:"); 
      for(int nI=0;nI<nLen;nI++) 
      {MYSERIAL.print(c_bytesRead[nI]);} 
      MYSERIAL.println(""); 
} 
 
void SerialProcessor::Echo(char * c_array) 
{ 
 int nL = 0; 
 while (nL<65) 
 { 
  if (c_array[nL] == '\0') { break; } 
  nL++; 
 } 
 Echo(c_array, nL); 
} 
 
/* 
 * Commands: 
 * Timer - Echo TimerSetup 
 * Hand - Echo "Shake" 
 * Enc - Echo Encoder Setup Info 
 * SC - 0 or 1 to turn off or on speec control 
 * Type - Echo ABM.BOARD_NAME 
 * DW - digital write (pin, value) 
 * DR - digital read (pin) 
 * AW - analog write (pin, value) 
 * DC - set duty cycle on fast PWM pin 
 * KI - set KI value; ?KI - echo KI value 
 * KD - set KD value; ?KD - echo KD value 
 * KP - set KP value; ?KP - echo KP value 
 * CP - set FastPWM pin; ?CP - echo FastPWM pin; 
 * PID - echo PID information 
 * SP - set RPM; ?SP - echo current RPM 
 * DCSMConfig - echo some setup information 
 * DIR - echo direction 
 * MI - echo mixer information 
 */ 
void SerialProcessor::LookForRCADCmds(char * InBuf, int nLen, DCServoMotor * DCSM) 
{ 
     //Echo(InBuf,nLen); 
 
  //Look for mixer info 
  int n_MI = InStr("MI", InBuf, 2, nLen); 
  if (n_MI >= 0) 
  { 
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   DCSM->EchoMixerInfo(); 
  } 
 
     //Look for timer info 
     int n_Timer=InStr("Timer", InBuf,5,nLen); 
     if(n_Timer>=0) 
     { 
      DCSM->EchoTimerSetup(3); 
     } 
      
     
    //Look for Hand 
    int n_Hand=InStr("Hand",InBuf,4,nLen); 
    if(n_Hand>=0) 
    { 
      MYSERIAL.println("Shake"); 
      SetupInterrupts(); 
    } 
 
    //echo encoder setup 
    int n_Enc=InStr("Enc",InBuf,3,nLen); 
    if(n_Enc>=0) 
    { 
      DCSM->Enc->EchoSetupInfo(); 
    } 
 
    //turn on/off PID loop 
    int n_SC=InStr("SC",InBuf,2,nLen); 
    if(n_SC>=0) 
    { 
      DCSM->o_ControlSpeed=(bool)GetNextInt(InBuf, nLen, n_SC); 
      MYSERIAL.print("Speed Control On=");MYSERIAL.println(DCSM->o_ControlSpeed); 
    } 
 
    //echo board name 
    int n_Type=InStr("Type", InBuf,5,nLen); 
    if(n_Type>=0) 
    { 
     ArduinoBoardManager ABM = ArduinoBoardManager(); 
      MYSERIAL.println(ABM.BOARD_NAME); 
    } 
     
    //look for digital write command 
    int n_DW=InStr("DW", InBuf,2,nLen); 
    if(n_DW>=0) 
    { 
      do_dw(InBuf, nLen, n_DW+2); 
    } 
 
    //look for digital read command 
    int n_DR=InStr("DR", InBuf,2,nLen); 
    if(n_DR>=0) 
    { 
      do_dr(InBuf, nLen, n_DR+2); 
    } 
     
    //look for analog write command 
    int n_AW=InStr("AW", InBuf,2,nLen); 
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    if(n_AW>=0) 
    { 
      do_aw(InBuf, nLen, n_AW+2); 
    } 
 
    //set duty cycle on FPWM pin 
    int n_DC=InStr("DC", InBuf,2,nLen); 
    if(n_DC>=0) 
    { 
      do_DutyCycle(InBuf, nLen, n_AW+2); 
    } 
     
    //set KI for PID control of servo 
    int n_KI=InStr("KI", InBuf,2,nLen); 
    if(n_KI>=0&&InBuf[n_KI-1]=='?') 
    { 
    DCSM->PIDL_Vel->EchoKI(); 
    } 
   else if(n_KI>=0) 
    { 
      double d_NewKI=GetNextDouble(InBuf, nLen, n_KI); 
   DCSM->PIDL_Vel->d_KI = d_NewKI; 
    } 
     
    //set FPWM Control Pin for PID control of servo 
    int n_CP=InStr("CP", InBuf,2,nLen); 
    if(n_CP>=0&&InBuf[n_CP-1]=='?') 
    { 
  DCSM->EchoSpeedControlPin(); 
    } 
   else if(n_CP>=0) 
    { 
      int n_NewCP=GetNextInt(InBuf, nLen, n_CP); 
      DCSM->n_FastPWMPin=n_NewCP; 
    } 
 
    //set dir Control Pin 
    int n_DP=InStr("DP", InBuf,2,nLen); 
    if(n_DP>=0&&InBuf[n_DP-1]=='?') 
    { 
    DCSM->EchoDirPin(); 
    } 
    else if(n_DP>=0) 
    { 
      int n_NewDP=GetNextInt(InBuf, nLen, n_DP); 
      DCSM->n_DirPin=n_NewDP; 
    } 
 
    //set enc CHA Pin 
    int n_CHA=InStr("CHA", InBuf,3,nLen); 
    if(n_CHA>=0&&InBuf[n_CHA-1]=='?') 
    { 
     
    } 
    else if(n_CHA>=0) 
    { 
      int n_NewCHA=GetNextInt(InBuf, nLen, n_CHA); 
      DCSM->Enc->n_ChA=n_NewCHA; 
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      DCSM->Enc->Reset(); 
    } 
 
    //set enc CHB Pin 
    int n_CHB=InStr("CHB", InBuf,3,nLen); 
    if(n_CHB>=0&&InBuf[n_CHB-1]=='?') 
    { 
     
    } 
    else if(n_CHB>=0) 
    { 
      int n_NewCHB=GetNextInt(InBuf, nLen, n_CHB); 
      DCSM->Enc->n_ChB=n_NewCHB; 
      DCSM->Enc->Reset(); 
    } 
     
    //set KP for PID control of servo 
    int n_KP=InStr("KP", InBuf,2,nLen); 
    if(n_KP>=0&&InBuf[n_KP-1]=='?') 
    { 
  DCSM->PIDL_Vel->EchoKP(); 
    } 
   else if(n_KP>=0) 
    { 
      double d_NewKP= GetNextDouble(InBuf, nLen, n_KP); 
   DCSM->PIDL_Vel->d_KP = d_NewKP; 
    } 
     
    //set KD for PID control of servo 
    int n_KD=InStr("KD", InBuf,2,nLen); 
    if(n_KD>=0&&InBuf[n_KD-1]=='?') 
    { 
  DCSM->PIDL_Vel->EchoKD(); 
    } 
   else if(n_KD>=0) 
    { 
      double d_NewKD= GetNextDouble(InBuf, nLen, n_KD); 
     DCSM->PIDL_Vel->d_KD = d_NewKD; 
    } 
     
    //get PID feedback 
    double n_PID=InStr("PID", InBuf,3,nLen); 
    if(n_PID>=0) 
    { 
        DCSM->EchoPID(); 
    } 
 
    //change speed 
   int n_SP=InStr("SP", InBuf,2,nLen); 
    if(n_SP>=0&&InBuf[n_SP-1]=='?') 
    { 
    DCSM->EchoCurrentRPM(); 
    } 
    else if(n_SP>=0) 
    { 
    double d_NewRPM=GetNextDouble(InBuf, nLen,n_SP); 
      if(DCSM->PID_Clock->d_DesiredPeriod>0.001){DCSM->SetupTimers(0.001);} 
    DCSM->SetTargetRPM(d_NewRPM); 



90 

    } 
 
    //set direction 
    int n_DIR=InStr("DIR", InBuf,2,nLen); 
    if(n_DIR>=0&&InBuf[n_DIR-1]=='?') 
    { 
   DCSM->EchoDir(); 
    } 
    else if(n_DIR>=0) 
    { 
      int nDir=GetNextInt(InBuf, nLen, n_DIR); 
      DCSM->SetDir(nDir); 
    } 
 
    int n_DCSMConfig=InStr("DCSMConfig", InBuf,10,nLen); 
    if(n_DCSMConfig>=0&&InBuf[n_DCSMConfig-1]=='?') 
    { 
  DCSM->EchoSetupInfo(); 
    } 
 
} 
 
void SerialProcessor::ProcessSerial(DCServoMotor * DCSM) 
{ 
    bool o_EOL=false; 
    char byteRead; 
    while(MYSERIAL.available()) 
    {     
      byteRead=MYSERIAL.read(); 
      if(byteRead=='\n'||byteRead=='\r') 
      { 
        o_EOL=true; 
        break; 
      } 
      c_MYSERIALInBuffer[n_BytesRead]=byteRead; 
      n_BytesRead++; 
    } 
    if(!o_EOL){return;} 
    LookForRCADCmds(c_MYSERIALInBuffer,n_BytesRead, DCSM); 
     
    n_BytesRead=0; 
} 
 
// QuadEncoder.h 
#ifndef QuadEncoder_H 
#define QuadEncoder_H 
class QuadEncoder 
{ 
public: 
 //FIELDS 
 //define the encoder channel pins 
 volatile int n_ChA=0; 
 volatile int n_ChB=0; 
 volatile int n_CntsPerRev=1024; 
 volatile int n_Divider=1; 
 volatile int n_QuadCounts=1024; 
 volatile int n_ChAMode=0; //(0=off, (1<<0)=RisingEdge, (1<<1)=FallingEdge, 
(1<<2)=Rising&Falling Edges 
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 volatile int n_ChBMode=0; //(0=off, (1<<0)=RisingEdge, (1<<1)=FallingEdge, 
(1<<2)=Rising&Falling Edges 
 
 volatile bool A_Set=true; 
 volatile bool A_Change=true; 
 volatile bool B_Set=false; 
 
 volatile long l_EncPos=0;  //the encoder position in counts (+ or -) 
 volatile long l_EncCnts=0;  //the total encoder counts in the current timer 
interval 
 volatile long l_PrevEncCnts=0;  //the total encoder counts in the last 
timer interval  
 volatile long l_DeltaCnts=0; 
 volatile bool o_Dir=true; 
 
 //unsigned long l_StartMS;  // 
 //unsigned long l_ElapsedMS;  // 
 
enum ChMode { ChM_None = 0, ChM_Rising = (1 << 0), ChM_Falling = (1 << 1), 
ChM_Both = (1 << 2) }; 
  
 //CONSTRUCTOR 
 QuadEncoder(); 
 QuadEncoder(int EncoderPinA, int EncoderPinB, int QuadSteps, int ChAMode, 
int ChBMode); 
 
  //METHODS 
 void Setup(int EncoderPinA, int EncoderPinB, int QuadSteps, int ChAMode, 
int ChBMode); 
 void Reset(); 
 void EchoSetupInfo(); 
 void doEncA(); 
 void doEncB(); 
 void ZeroDeltaCnts(); 
 double GetDeltaRev(); 
}; 
#endif 
 
#include <Arduino.h> 
#include "QuadEncoder.h" 
#include "MYSERIAL.h" 
 
QuadEncoder::QuadEncoder() 
{ 
 //define the encoder channel pins 
 Setup(4, 5, 512, (1<<0), 0); 
 A_Change = true; 
} 
 
QuadEncoder::QuadEncoder(int EncoderPinA, int EncoderPinB, int QuadSteps, int 
ChAMode, int ChBMode) 
{ 
 Setup(EncoderPinA, EncoderPinB, QuadSteps, ChAMode, ChBMode); 
 A_Change = true; 
} 
 
void QuadEncoder::Setup(int EncoderPinA, int EncoderPinB, int QuadSteps, int 
ChAMode, int ChBMode) 
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{ 
 n_ChA = EncoderPinA; 
 n_ChB = EncoderPinB; 
 n_QuadCounts = QuadSteps; 
 n_ChAMode = ChAMode; 
 n_ChBMode = ChBMode; 
 Reset(); 
} 
 
void QuadEncoder::Reset() 
{ 
 int n_Edges=0; 
 n_Edges+=(n_ChAMode&ChM_Rising)>0?1:0; 
 n_Edges+=(n_ChAMode&ChM_Falling)>0?1:0; 
 n_Edges+=(n_ChAMode&ChM_Both)>0?2:0; 
 n_Edges+=(n_ChBMode&ChM_Rising)>0?1:0; 
 n_Edges+=(n_ChBMode&ChM_Falling)>0?1:0; 
 n_Edges+=(n_ChBMode&ChM_Both)>0?2:0; 
   
 n_CntsPerRev = n_QuadCounts*n_Edges/4.0;  
 MYSERIAL.print("n_Edges="); 
  MYSERIAL.println(n_Edges); 
 MYSERIAL.print("b_QuadCounts="); 
  MYSERIAL.println(n_QuadCounts); 
  MYSERIAL.print("n_CntsPerRev="); 
  MYSERIAL.println(n_CntsPerRev); 
 //configure encoder channels for input 
 pinMode(n_ChA, INPUT); 
 pinMode(n_ChB, INPUT); 
 
 A_Set = digitalRead(n_ChA); 
 B_Set = digitalRead(n_ChB); 
 
 l_EncPos = 0; 
 l_EncCnts = 0; 
 l_PrevEncCnts = 0; 
 //EchoSetupInfo(); 
} 
 
//interrupt for channel A of encoder 
//A: HHHHLLLLHHHHLLLLHHHHH 
//B: LLHHHHLLLLHHHHLLLLL 
void QuadEncoder::doEncA() 
{ 
 l_EncCnts++; 
  switch (n_ChAMode) 
  { 
    case ChM_Rising: 
      A_Set=1; 
    break; 
    case ChM_Falling: 
      A_Set=0; 
    break; 
    case ChM_Both: 
      A_Set=!A_Set; 
    break; 
  } 
  o_Dir?l_EncPos++:l_EncPos--; 
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} 
 
//interrupt for channel B of encoder 
void QuadEncoder::doEncB() 
{ 
  /* 
 l_EncCnts++; 
 if (B_Set) 
 { 
  if ((n_ChBMode&ChM_Falling)>0) //caught a falling edge of ChB 
  { 
   B_Set = !B_Set; 
   A_Set = digitalRead(n_ChA); 
   A_Set ? l_EncPos-- : l_EncPos++; 
   o_Dir = !A_Set; 
  } 
 } 
 else 
 { 
  if ((n_ChBMode&ChM_Rising)>0) //caught a rising edge of ChB 
  { 
   B_Set = !B_Set; 
   A_Set = digitalRead(n_ChA); 
   A_Set ? l_EncPos++ : l_EncPos--; 
   o_Dir = A_Set; 
  } 
 } 
 */ 
} 
 
double QuadEncoder::GetDeltaRev() 
{ 
 l_DeltaCnts = (l_EncCnts - l_PrevEncCnts); 
 return l_DeltaCnts*1.0/n_CntsPerRev; 
} 
 
void QuadEncoder::ZeroDeltaCnts() { l_PrevEncCnts = l_EncCnts; } 
 
void QuadEncoder::EchoSetupInfo() 
{ 
    MYSERIAL.println("\t<Encoder Config>"); 
    MYSERIAL.print("\tEncoder Pins: A="); 
    MYSERIAL.print(n_ChA); 
    MYSERIAL.print(", B="); 
    MYSERIAL.println(n_ChB); 
    MYSERIAL.print("\tQuadrature Counts per rev="); 
    MYSERIAL.println(n_QuadCounts); 
    MYSERIAL.print("\tChAMode="); 
    MYSERIAL.print(n_ChAMode); 
    MYSERIAL.print(", ChBMode="); 
    MYSERIAL.println(n_ChBMode); 
    MYSERIAL.print("\tn_CntsPerRev="); 
    MYSERIAL.println(n_CntsPerRev); 
    MYSERIAL.print("l_EncCnts=");MYSERIAL.println(l_EncCnts); 
    MYSERIAL.print("l_PrevEncCnts=");MYSERIAL.println(l_PrevEncCnts); 
    MYSERIAL.print("l_EncPos=");MYSERIAL.println(l_EncPos); 
    MYSERIAL.println("\t</Encoder Config>"); 
} 
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#include <Arduino.h> 
#include <String.h> 
#ifndef  StringFunctions_H 
#define StringFunctions_H 
#define CharArrayLen(array) (sizeof(array)/sizeof(char)) 
int InStr(char const * Sought, char const * Input, int nLenSought, int nLenInput); 
int InStr(char const * Sought, char const * Input, int nStart, int nLenSought, int 
nLenInput); 
double GetNextDouble(char const * Input, int Len, int Start); 
int GetNextInt(char const * Input, int Len, int Start); 
int FindDelimeterPos(char Delim, char const * Input,int Len, int Start); 
void do_dw(char const * Input, int Len, int Start); 
bool do_dr(char const * Input, int Len, int Start); 
void do_aw(char const * Input, int Len, int Start); 
#endif // ! StringFunctions_H 
 
#include <avr/io.h> 
#include <Arduino.h> 
#include <String.h> 
#include "MYSERIAL.h" 
#ifndef StringFunctions_CPP 
#define StringFunctions_CPP 
bool SameLtr(char c1, char c2, bool CaseSensitive) 
{ 
  if(CaseSensitive){return c1==c2;} 
  if(c1<97 )//capital letter 
  { 
    return c1==c2||(c1+32)==c2; 
  } 
  return c1==c2||(c1-32)==c2; 
} 
 
 
int InStr(char const * Sought, char const * Input, int nLenSought, int nLenInput) 
{ 
/*Look for the first element of Sought in Input. 
If found, compare remaining elements of Sought to Input  
after the initial location in Input. 
*/ 
 int nInput=nLenInput; 
 int nSought=nLenSought; 
 int nLocation=-1; 
 for (int nJ=0;nJ<nInput;nJ++) 
 { 
  if(SameLtr(Sought[0],Input[nJ],false)) 
  { 
    nLocation = nJ; 
    break; 
  } 
 } 
 if(nLocation<0){return -1;} 
 for(int nJ=1;nJ<nSought;nJ++) 
 { 
  if(!SameLtr(Sought[nJ],Input[nJ+nLocation],false)){return -1;} 
 } 
 return nLocation; 
} 
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int InStr(char const * Sought, char const * Input, int Start, int nLenSought, int 
nLenInput) 
{ 
 int nInput=nLenInput; 
 int nSought=nLenSought; 
 int nLocation=Start-1; 
 for (int nJ=0;nJ<nSought;nJ++) 
 { 
  for(int nI=nLocation+1; nI<nInput;nI++) 
  { 
   if(SameLtr(Sought[nJ],Input[nI],false)) 
   { 
    if(nJ>0&&nI>nLocation+2) 
    {return -1;} 
    nLocation = nJ; 
    break; 
   } 
  } 
 } 
 return nLocation>Start?nLocation:-1; 
} 
 
double GetNextDouble(char const * Input, int Len, int Start) 
{ 
  double d_Whole=0.0; 
  double d_Fract=0.0; 
  bool o_Radix=false; 
  double d_Sign=1.0; 
  bool o_Sign=false;  //can only have one sign character in a number and it must 
be first character 
  int n_Rad=1; 
  int n_Start=-1; 
   
 for(int nI=Start;nI<Len;nI++) 
 { 
  //check for negative sign 
  if(Input[nI]=='-') 
  { 
   if(!o_Sign) 
   { 
    o_Sign=true; 
    d_Sign=-1.0; 
   } 
   else 
   {return d_Sign*(d_Whole+d_Fract);} 
  } 
  //find a radix; there can be only one 
  else if(Input[nI]=='.') 
  { 
   if (!o_Radix) 
   { 
    o_Radix = true; 
   } 
   else 
   {return d_Sign*(d_Whole + d_Fract);} 
  } 
  //see if input is a number; ASCII characters 47 to 58 are 0-9 
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  else if(Input[nI]>47&&Input[nI]<58) 
  { 
   if (!o_Sign) { o_Sign - true; } 
   if(n_Start<0){n_Start=nI;} 
   if(!o_Radix){d_Whole=10.0*d_Whole+Input[nI]-48.0;} 
   if(o_Radix) 
   { 
    d_Fract=d_Fract+(Input[nI]-48.0)/(pow(10.0,n_Rad)); 
    n_Rad++; 
   } 
  } 
  else if(Input[nI]==' '||Input[nI]=='='||Input[nI]==',') 
  {} 
  else if(n_Start>=0) 
  { 
   return d_Sign*(d_Whole+d_Fract); 
  } 
 } 
 //MYSERIAL.print("d_Whole="); 
 //MYSERIAL.print(d_Whole,0); 
 //MYSERIAL.print("d_Fract="); 
 //MYSERIAL.println(d_Fract,5); 
 return d_Sign*(d_Whole+d_Fract); 
} 
 
int GetNextInt(char const * Input, int Len, int Start) 
{ 
    int n_Whole=0; 
    int n_Sign=1; 
    bool o_Sign=false;   
    bool o_Start=false; 
    for(int nI=Start;nI<Len;nI++) 
    { 
      //check for negative sign 
      if(Input[nI]=='-') 
      { 
        if(!o_Sign) 
        { 
          o_Sign=true; 
          n_Sign=-1; 
        } 
        else{return n_Sign*n_Whole;} 
      } 
      else if(Input[nI]>47&&Input[nI]<58) 
      { 
  if (!o_Sign) { o_Sign = true; } 
  n_Whole=10*n_Whole+Input[nI]-48; 
        o_Start=true; 
      } 
      else if(o_Start) 
      { 
        MYSERIAL.println("non-numeric found"); 
        return n_Sign*n_Whole; 
      } 
      else if(!o_Start) 
      { 
        n_Sign=1; 
        o_Sign=false; 
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      } 
    } 
   n_Whole = n_Sign*n_Whole; 
    //MYSERIAL.println(n_Whole); 
    return n_Whole; 
} 
 
int FindDelimeterPos(char Delim, char const * Input,int Len, int Start) 
{ 
  for(int nI=Start; nI<Len;nI++) 
  { 
    if(Input[nI]==Delim){return nI;} 
  } 
  return -1; 
} 
 
void do_dw(char const * Input, int Len, int Start) 
{   
    int n_Pin=GetNextInt(Input,Len, Start); 
    int Start2=FindDelimeterPos(',',Input, Len, Start)+1; 
    int n_State=GetNextInt(Input, Len, Start2); 
    if(n_State==0){digitalWrite(n_Pin,LOW);} 
    if(n_State>0){digitalWrite(n_Pin,HIGH);} 
    MYSERIAL.print("digitalWrite("); 
    MYSERIAL.print(n_Pin); 
    MYSERIAL.print(","); 
    MYSERIAL.print(n_State); 
    MYSERIAL.print(")");  
} 
 
bool do_dr(char const * Input, int Len, int Start) 
{   
    int n_Pin=GetNextInt(Input,Len, Start); 
         
    MYSERIAL.print("digitalRead("); 
    MYSERIAL.print(n_Pin); 
    MYSERIAL.print(","); 
    bool o_State=digitalRead(n_Pin)   ; 
    MYSERIAL.print(o_State); 
    MYSERIAL.print(")");  
    return o_State; 
} 
 
void do_aw(char const * Input, int Len, int Start) 
{   
    int n_Pin=GetNextInt(Input,Len, Start); 
    int Start2=FindDelimeterPos(',',Input, Len, Start)+1; 
    int n_State=GetNextInt(Input, Len, Start2); 
    analogWrite(n_Pin,n_State); 
    MYSERIAL.print("analogWrite("); 
    MYSERIAL.print(n_Pin); 
    MYSERIAL.print(","); 
    MYSERIAL.print(n_State); 
    MYSERIAL.print(")");  
} 
 
#endif // !StringFunctions_CPP 
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// UserTimer.h 
#ifndef UserTimer_H 
#define UserTimer_H 
class UserTimer 
{ 
 
public: 
 volatile double d_TimerPeriod=0.01;  //the period of the PID loop in timer 
1 
 volatile double d_DesiredPeriod = 0.01; 
 volatile long st_ms; 
    
 UserTimer(double dDesiredPeriod); 
 UserTimer(); 
 
 long delta_ms(); 
 void Reset(); 
 void EchoSetupInfo(int nTimer); 
}; 
#endif 
 
#include <Arduino.h> 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include "UserTimer.h" 
#include "MYSERIAL.h" 
/* 
Timers are somewhat complicated to setup.  They can be configured to just count 
and cause an interrupt or 
to control fast pulse width modulation for controlling devices. 
I am using Timer 3 for counting for the PID control of a DC servo motor. 
I am using Timer 1 for fast PWM. 
 
Arduino Mega2560has the following pins controlled by the various timers: 
timer 0 (controls pin 13, 4) 
timer 1 (controls pin 12, 11)  
timer 2 (controls pin 10, 9) 
timer 3 (controls pin 5, 3, 2) 
timer 4 (controls pin 8, 7, 6) 
 
Arduino Micro (Atmel mega32u4 chip) has the following pins controlled by the 
various timers: 
timer 0 (controls pin A=11, B=3) 
timer 1 (controls pin A=9, B=10, C=11)  
timer 2 (controls pin A=?, B=?) 
timer 3 (controls pin A=5, B=?) 
timer 4 (controls pin A=13, B=?) 
*/ 
UserTimer::UserTimer(const double dDesiredPeriod) 
{ 
 d_DesiredPeriod = dDesiredPeriod; 
 st_ms = millis(); 
} 
 
UserTimer::UserTimer() 
{ 
 d_DesiredPeriod = 0.1; 
 st_ms = millis(); 
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} 
 
long UserTimer::delta_ms() { return millis() - st_ms; } 
 
void UserTimer::Reset(){EchoSetupInfo(3);} 
 
void UserTimer::EchoSetupInfo(int n_Num) 
{ 
 switch (n_Num) 
 { 
 case 1: 
  break; 
 case 2: 
  break; 
 case 3: 
  MYSERIAL.print("Timer"); 
  MYSERIAL.print(n_Num); 
  MYSERIAL.println(" Setup:"); 
  MYSERIAL.print("\tTCCR3A="); 
  MYSERIAL.println(TCCR3A); 
  MYSERIAL.print("\tTCCR3B="); 
  MYSERIAL.println(TCCR3B); 
  MYSERIAL.print("\tOCR3A="); 
  MYSERIAL.println(OCR3A); 
  MYSERIAL.print("\td_TimerPeriod="); 
  MYSERIAL.println(d_TimerPeriod,5); 
  break; 
 } 
} 
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APPENDIX B: RADIAL DISTRIBUTION FUNCTION MACRO 
 

 

 

// ImageJ macro to calculate the Radial Distribution Function (RDF) of particle centers 

// 

// Version 2011-08-22  

// 

// Input: Binary or 8-bit input image/stack with dark particles on light background. 

// Grayscale/RGB images are OK as long as "Find Maxima" works reliably on them. 

// For binary images/stacks, the macro does not care whether "black background"  

// is selected in Process>Binary>Options. 

// 

// Output: Normalized RDF plot with distance in pixels. For stacks the mean is plotted.  

// 

// Known Issues, Updates and Examples at: 

// http://imagejdocu.tudor.lu/doku.php?id=macro:radial_distribution_function 

// 

// Requirements: A working install of "Radial Profile" plugin is required. Get it at 

// http://rsb.info.nih.gov/ij/plugins/radial-profile.html 

// 

// Limitations: 

// - Particle positions are rounded to full pixel nearest to particle intensity maximum 

http://imagejdocu.tudor.lu/doku.php?id=macro:radial_distribution_function
http://rsb.info.nih.gov/ij/plugins/radial-profile.html
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// - RDF output distances are in pixels, irrespective of any spatial calibration of the image 

// - RDF range is 0.3x the smallest dimension of the image 

// - Particles touching the edge will be ignored; this will limit the accuracy 

//    if the particles are not much smaller than the image size. 

// - Do not extend the image size for avoiding edge effects; the macro takes care of this. 

// 

////////////////////////////////////////////////////////////////////////////////// 

 

macro "Radial Distribution Function [f5]" { 

 run("Select None"); 

 doStack=false; 

 //User dialog 

 Dialog.create('RDF Options'); 

 Dialog.setInsets(0,0,0) 

 Dialog.addMessage("Radial Distribution Function Macro \nby Michael Schmid & Ajay 
Gopal \n(v.2011-08-21)"); 

 if (nSlices()>1) { 

  Dialog.addMessage("Selected file is a stack. \nUncheck below to analyze \nonly 
the current slice."); 

  Dialog.addCheckbox("Use all slices in stack?", true); 

 } 

 Dialog.addMessage("Particle Detection Noise Threshold \nHint: test image/s first with 
\nImageJ>Process>Find Maxima \nto verify that below threshold \ngives accurate particle 
centers."); 

 Dialog.addNumber("     Noise Threshold", 10); 

 Dialog.addMessage("Default output is RDF plot with \noptions to list, save & copy data. 
\nCheck below to output extra \nwindow with RDF data table."); 

 Dialog.addCheckbox("Output RDF data table ", false); 

 Dialog.show; 

  //Preliminary checks 
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 if (nSlices()>1) {doStack = Dialog.getCheckbox;} 

 noiseThr = Dialog.getNumber; 

 showList = Dialog.getCheckbox; 

 setBatchMode(true); 

 firstSlice=getSliceNumber(); 

 lastSlice=getSliceNumber(); 

 if (doStack) { 

  firstSlice=1; 

  lastSlice=nSlices(); 

 } 

 width=getWidth; 

 height=getHeight; 

 //maxRadius may be modified, should not be larger than 0.3*minOf(width, height); 

 maxRadius=0.3*minOf(width, height); 

 minFFTsize=1.3*maxOf(width, height); 

 title=getTitle(); 

 size=4; 

 while(size<minFFTsize) size*=2; 

 //Main processing loop 

 for (slice=firstSlice; slice<=lastSlice; slice++) { 

  //Make autocorrelation of particle positions 

  if (doStack) setSlice(slice); 

  run("Find Maxima...", "noise="+noiseThr+" output=[Single Points] light 
exclude");   

  tempID=getImageID(); 

  tempTitle="temp-"+random(); 

  rename(tempTitle); 

  run("Canvas Size...", "width="+ size+" height="+ size+" position=Center zero"); 
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  run("FD Math...", "image1=["+tempTitle+"] operation=Correlate 
image2=["+tempTitle+"] result=AutoCorrelation do"); 

  psID=getImageID(); 

  selectImage(tempID); 

  close(); 

  //Make autocorrelation reference to correct finite image size effects 

  newImage("frame", "8-bit White", width, height, 1); 

  run("Set...", "value=255"); 

  tempID=getImageID(); 

  rename(tempTitle); 

  run("Canvas Size...", "width="+ size+" height="+ size+" position=Center zero"); 

  run("FD Math...", "image1=["+tempTitle+"] operation=Correlate 
image2=["+tempTitle+"] result=AutoCorrReference do"); 

  refID=getImageID(); 

  imageCalculator("Divide", psID,refID); 

  selectImage(refID); 

  close(); 

  selectImage(tempID); 

  close(); 

  //Prepare normalized power spectrum for radial averaging 

  selectImage(psID); 

  makeRectangle(size/2, size/2, 1, 1); 

  run("Set...", "value=0"); 

  run("Select None"); 

  circleSize=2*floor(maxRadius)+1; 

  run("Specify...", "width="+circleSize+" height="+circleSize+" x="+(size/2+0.5)+" 
y="+(size/2+0.5)+" oval centered"); 

  getRawStatistics(nPixels, mean); 

  run("Select None"); 
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  run("Divide...", "value="+mean); 

  run("Specify...", "width="+circleSize+" height="+circleSize+" x="+(size/2+0.5)+" 
y="+(size/2+0.5)+" oval centered"); 

  run("Radial Profile", "x="+(size/2+0.5)+" y="+(size/2+0.5)+" 
radius="+floor(maxRadius)-1); 

  rename("RDF of "+title); 

  rdfID=getImageID();  

  selectImage(psID);  

  close(); 

  //Averaging of RDFs for stacks  

  if (doStack) { 

   selectImage(rdfID);    

   Plot.getValues(x, y); 

   if (slice==firstSlice) ySum = newArray(y.length); 

   for (i=0; i<y.length; i++) 

   ySum[i]+ = y[i] / lastSlice; 

   close(); 

  } 

 }//End Processing Loop  

 

 //Create output plots with annotated titles and options 

 if (doStack) { 

  Plot.create("RDF of "+title+" (stack)", "Distance (pixels)", "RDF", x, ySum); 

  if (showList) { 

   run("Clear Results"); 

   for (i=0; i<x.length; i++) { 

    setResult("R", i, x[i]); 

    setResult("RDF", i, ySum[i]); 
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   } 

   updateResults(); 

  } 

 }  

 else { 

  selectImage(rdfID); 

  Plot.getValues(x, y); 

  Plot.create("RDF of "+title+" (slice"+lastSlice+")", "Distance (pixels)", "RDF", x, 
y); 

  if (showList) { 

   run("Clear Results"); 

   for (i=0; i<x.length; i++) { 

    setResult("R", i, x[i]); 

    setResult("RDF", i, y[i]); 

   } 

   updateResults(); 

  } 

  close();   

 }//End Output 

 setBatchMode("exit and display");// Comment this out if you get duplicate RDF outputs 

} //End Macro 
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