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Abstract: The monarch butterfly (Danaus plexippus) eastern migratory population has 
experienced declines due to several factors including habitat loss. Monarchs rely 
exclusively on milkweeds as a host plant and conservation efforts are interested in 
increasing habitat resources by planting milkweed in towns and cities. Therefore it is 
important to identify factors that influence monarch use of and success (i.e., survival) in 
urban areas. I evaluated three monarch response variables to assess monarch fecundity 
and survival at multiple life stages. Monarch egg abundance, egg to 4th and 5th instar 
survival, and 4th and 5th instar to adult survival were compared to three categories of 
predictor variables: plant characteristics, invertebrate community dynamics, and 
landscape context. I established experimental plots at garden sites around Stillwater, 
Oklahoma by planting three tropical milkweed (Asclepias curassavica) plants at each 
location. Landscape characteristics for each site were quantified using the Oklahoma 
Ecosystem Mapping Project. Plant characteristics and invertebrate community variables 
such as predator species richness, aphid density, and percent herbivory were estimated by 
monitoring study sites during the fall (mid-August through October) of 2015 and 2016. 
To quantify survival rates, 4th and 5th instar monarch caterpillars were collected from 
study sites and reared individually in the lab. Plant height was the only variable that 
significantly influenced egg abundance with a positive correlation between the average 
maximum plant height and the total number of eggs at a site. Egg to 4th and 5th instar 
survival was positively influenced by predator species richness and patch richness density 
but negatively influenced by plant height, aphid density, and percent herbivory. Lastly, 
4th and 5th instar survival was positively influenced by predator species richness and 
negatively influenced by aphid density. Examining how additional landscape 
characteristics and community interactions influence monarch oviposition and survival 
will provide insights into the contribution of urban areas to support the monarch 
population, with important implications for urban wildlife ecology and conservation.
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CHAPTER I 
 

 

INTRODUCITON 

 

 

The eastern migratory population of the monarch butterfly (Danaus plexippus L. 

[Lepidoptera: Nymphalidae]) produces several generations per year on its summer breeding 

grounds east of the Rocky Mountains (Malcolm et al., 1993; Flockhart et al., 2013). The final 

generation produced each year migrates up to 4,000 km south to reach overwintering grounds in 

central Mexico (Urquhart and Urquhart, 1978; Solensky, 2004). The overwintering monarchs 

return to the United States in the spring and produce the first generation on their spring breeding 

grounds in the southern U.S., which completes their annual cycle (Cockrell et al., 1993; Malcolm 

et al., 1993).  

The monarch’s migration has been identified as an endangered biological phenomenon 

(Brower and Malcolm, 1991; Semmens et al., 2016) due to a steady decline in monarchs observed 

at the overwintering grounds. Monarchs occupied 2.91 hectares of forest at the overwintering 

grounds in Mexico during the 2016-2017 season (World Wildlife Fund, 2017). While this 

estimate is an improvement from the historic low of 0.67 hectares estimated in 2013- 2014, the 

current population size is 50 percent smaller than the historic average population size of 6 

hectares (Vidal and Rendón-Salinas, 2014). Thus, the monarch butterfly is currently being 

considered for listing as threatened under the Endangered Species Act (Center for Biological 

Diversity et al., 2014).  
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Habitat loss in the overwintering and breeding grounds has been identified as the primary 

reason for monarch decline. Forested areas in Mexico that provide shelter for overwintering 

monarchs have decreased in size due to illegal logging (Brower et al., 2002). Loss of breeding 

ground habitat has also occurred, especially in the midwestern United States where a decrease in 

milkweed abundance has been attributed to increased herbicide use in agricultural fields 

(Pleasants and Oberhauser, 2013; Pleasants, 2017). Milkweed is the only host plant fed upon by 

monarch larvae and is, therefore, crucial to the survival of the species. Finally, other factors such 

as pesticide use (Pecenka and Lundgren, 2015), extreme weather events (Calvert et al., 1984; 

Brower et al., 2004), predators (Oberhauser et al., 2015; De Anda and Oberhauser, 2015), and 

disease (Altizer and Oberhauser, 1999; Satterfield et al., 2015) have been identified as 

contributing to monarch decline.  

Monarch conservation efforts in North America have focused on increasing milkweed 

availability throughout the landscape, including urban areas. For example, the Mayors’ Monarch 

Pledge is a program promoted by the National Wildlife Federation that encourages cities to create 

habitat for monarchs and other pollinators (Mayors’ Monarch Pledge - National Wildlife 

Federation). The White House Pollinator Health Task Force issued the National Strategy to 

Promote the Health of Honey Bees and Other Pollinators (White House, 2015), which led to the 

formation of the National Pollinator Garden Network. This network is composed of organizations 

representing a range of interests from garden clubs and the garden trade to conservation and 

federal agencies (Program Partners - National Wildlife Federation). Many other organizations and 

individuals are also focused on providing monarch habitat in urban areas.  

Because of this emphasis on urban areas, it is important to identify factors that influence 

monarch use of and success (i.e., survival) in urban areas. Cutting and Tallamy (2015) examined 

the impact of urban land use by establishing study sites in native meadows (natural treatment) and 

managed lawns and gardens (urban treatment). They estimated immature monarch survival by 
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monitoring plants for eggs and larvae through the 4th instar stage. Fifth instars were excluded 

from their analyses because 5th instars often move away from milkweed plants to pupate and can 

be difficult to locate. They found that monarch survival was not significantly different between 

natural meadows and managed gardens. Another study focused on land use and immature 

monarch survival analyzed citizen science data collected at volunteer-selected sites (Nail et al., 

2015). Study locations were categorized into six possible site types: garden, natural area, crop-

based agricultural area, non-crop agricultural area, roadside, or other (city parks, backyards, golf 

courses, etc.). They found that natural and non-crop agricultural sites were correlated with higher 

immature monarch survival rates, but the remaining site types did not significantly affect survival 

in their model. Nail et al. (2015) highlighted the need for additional studies that incorporate the 

role of other factors such as predators, parasites, and plant characteristics on the interaction 

between site type and monarch survival.  

Important parasites that influence monarch survival are tachinid flies (Diptera: 

Tachinidae). These flies are parasitoids that primarily target lepidopteran larvae. Flies lay their 

eggs on the host, which upon hatching burrow into the caterpillar where the fly larvae develop 

and ultimately kill the host. Fly larvae emerge from their hosts after thee instar stages to pupate in 

the leaf litter and will enclose after 10-14 days (Oberhauser et al., 2007). Tachinid flies rely on 

nectar resources during their adult stage, with some species identified as important pollinators 

(Rader et al., 2011). 

Previous research has focused on the diversity of tachinid flies that parasitize monarchs 

as well as the impact of these parasitoids on monarch populations. A total of twelve species of 

tachinid flies including eight different genera are documented as parasitizing monarch butterflies 

(Arnaud, 1978). Lespesia archippivora (Riley) is the most well known of these species, 

accounting for 75% of the 1,146 tachinid flies recently identified from citizen scientist 

contributed specimens (University of Minnesota Monarch Lab, 2017). The remaining flies from 

this study comprised an additional six species of tachinid flies including a newly described 
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species. Tachinid flies are usually considered generalists, although Lespesia archippivora 

densities track the monarch population, with years of high monarch densities followed by years of 

high parasitism (Oberhauser, 2012). Overall, tachinid flies parasitize approximately 13% of the 

eastern monarch population but the local rate of parasitism can vary substantially (2-90%) 

(Oberhauser et al., 2007).   

The monarch is also parasitized by an obligate spore-forming protist (Ophryocystis 

elektroscirrha; OE). Ophryocystis elektroscirrha replicates inside the developing pupa, and when 

the adult butterfly emerges it is covered in thousands of dormant spores. Vertical transmission of 

OE is the most common mode of infection, with 1st instar caterpillars consuming spores deposited 

by infected adult females (Altizer et al., 2000). Once a caterpillar has consumed spores they will 

lyse in the midgut and reproduce in both the caterpillar and pupal stage of the host. Very high 

spore loads can lead to death before eclosion, while intermediate level spore loads cause 

decreased life span, decreased wingspan, decreased mass at emergence, reduced flight 

performance, and increased rate of weight loss for adults (Altizer and Oberhauser, 1999; Altizer, 

2001; De Roode et al., 2008). Previous research has shown that approximately 8% of the eastern 

North American monarch population is infected by OE in a given year (Altizer et al., 2000).  

The rate of OE infection also fluctuates seasonally and two main mechanisms have been 

identified as contributing to this pattern. Migratory culling occurs when infected individuals are 

removed from the population because they do not survive the long-distance migration to 

overwintering grounds (Bradley and Altizer, 2005). Likewise, migratory escape occurs when 

monarchs move out of areas of high parasite concentration (Loehle, 1995; Satterfield et al., 2015). 

Therefore, levels of infection at overwintering grounds are lower than levels observed on summer 

breeding grounds (Bartel et al., 2011). These mechanisms are also demonstrated by higher 

infection rates found in the non-migratory monarch population in southern Florida and the 

western migratory population that experiences a shorter seasonal migration than the eastern 

population (Altizer et al., 2000). These findings, coupled with the potential listing of the monarch 
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butterfly as threatened, have led to an increased interest in the influence of spatial and temporal 

variations on monarch-parasite interactions.   

Previous research on the relationship between site characteristics and monarch-parasite 

dynamics has focused on land use. Andreoli (2015) compared parasitism of monarch larvae 

between study sites located in rangelands, hay fields, and roadsides and found that recently 

burned rangelands had a higher percentage of monarchs parasitized by tachinid flies compared to 

those in native hay fields and roadsides. However, she observed no difference in the OE 

parasitism rate among the three land use types. An additional study found no difference in 

tachinid fly and OE parasitism rates between managed prairies and roadsides (Mueller and Baum, 

2014). 

The first objective of this study was to evaluate if monarch use of sites for oviposition 

was related to site characteristics. The number of monarch eggs at a site was compared to 

parameters of plant characteristics, the invertebrate community, and landscape context (Table 1). 

Plant height was used as the plant characteristic of interest since adult butterflies may be more 

likely to detect taller milkweed plants. Monarchs have a 5-m short-term perception distance and a 

25-m long-term perception distance (Zalucki and Kitching, 1982a). Additionally, taller plants 

may have more leaves and, therefore, height could be a measure of host plant quality. Thus, I 

expected a positive relationship between plant height and egg abundance.  

Variables indicative of the invertebrate community included aphid density per plant, 

percent herbivory, and predator species richness. Aphid density and percent herbivory could be 

possible indicators of host plant quality and I expected that plants with greater aphid densities and 

greater percent herbivory would have lower monarch egg abundance. In contrast, predator species 

richness may indicate a higher-quality milkweed patch that can support a greater diversity of 

arthropod species, and I expected higher monarch egg abundance with higher predator species 

richness. Lastly, landscape context plays an important role in how female monarchs perceive the 

landscape. Modeling efforts have demonstrated the importance of landscape configuration on 
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fecundity (Zalucki et al., 2016), and therefore I expected sites with higher patch richness densities 

to contain more monarch eggs.  

The second objective of this study was to evaluate monarch survival from egg to 4th and 

5th instar in the field, which reflects mortality due to predation. I used the same parameters 

of interest (Table 1) as the first objective to evaluate monarch larval survival (egg to 4th 

and 5th instar). Plant height may influence survival because milkweed plants that are taller 

provide more structure that could attract predators or provide refugia for caterpillars. As for 

variables that represent the invertebrate community, I predicted that sites with greater predator 

species richness would have lower egg to late instar survival rates. Additionally, aphid density 

and percent herbivory both have the potential to influence predator abundance and, therefore, 

plants with higher aphid density and percent herbivory may have lower rates of larval survival 

(De Anda and Oberhauser, 2015). The landscape context may influence predator dispersal rates 

among habitat types. Therefore, I predicted sites with higher patch richness density would have 

lower monarch survival rates because landscape heterogeneity may facilitate the movement of 

predators.   

Lastly, I evaluated monarch survival from 4th and 5th instar to adult, which reflects 

mortality due to parasitism by tachinid flies and OE. Plant height, aphid density, percent 

herbivory, predator species richness, and patch richness density were applied to this last monarch 

response variable (Table 1). Taller plants may attract tachinid flies to a study site because these 

plants are easier to detect within the landscape and, therefore, plant height could have a negative 

influence on 4th and 5th instar-to-adult survival. I predicted that two of the invertebrate community 

metrics would have a negative impact on monarch survival. Aphid density and percent herbivory 

could attract tachinid flies due to the increase in plant volatiles that are released as a consequence 

of aphid and herbivore damage to the plant. In contrast, I predicted a positive relationship with 

monarch survival and predator species richness because the presence of predators may influence 
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parasitism success by tachinids if their host (monarch caterpillar) is preyed upon by other 

arthropods. Finally, it is unclear what type of relationship patch richness density will have on late 

instar-to-adult survival because heterogeneous landscapes have the potential to benefit both 

parasitoid flies and monarch larvae.  
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CHAPTER II 
 

 

METHODOLOGY 

 

Study Sites and Experimental Plots 

 

Twelve study sites were selected in the fall of 2015 and 28 study sites were selected in 

the fall of 2016 (Figure 1). Sites were identified throughout Stillwater (population size 

approximately 47,000), which is located in the north central part of Oklahoma, based on 

participant (homeowner) interest in contributing to this project and a minimum separation 

distance of 800 m between sites (see Landscape Context methods below). Oklahoma is an area of 

special interest for monarch butterflies because of its role during both spring and fall migration 

and breeding periods (Baum and Sharber, 2012; Batalden and Oberhauser, 2015).  

An experimental plot was established at each site by planting a cluster of three tropical 

milkweed plants (Asclepias curassavica L.). This procedure followed techniques proposed by 

Tischendorf and Fahrig (2000) for sampling a single patch in the center of each site and scaling 

out from the center to compare landscape characteristics between sites. The plot of three 

milkweed plants functioned as the center of the area of interest for each location. Plants were 

established within a 5-m radius at the majority of study sites. 
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However, participant preferences for plant placement were also taken into consideration; 

therefore, in 2015 two sites were planted with milkweed plants spaced up to 10 m apart and an 

additional two sites had plants spaced up to 20 m apart. Likewise, in 2016 two sites were 

established with milkweed plants separated up to 10 m and one site separated up to 20 m. Lastly, 

participants had the option of using three potted plants instead of planting milkweed in their 

yards. Potted plants were used for the experimental plot at two study sites in 2015 and seven 

study sites in 2016.  

Landscape Context 

The spatial scale of interest was determined based on monarch and parasitoid dispersal 

abilities. Throughout their fall migration monarchs fly great distances with an overall pace of 32 

km/day (Howard and Davis, 2015). However, monarchs move shorter distances during the 

breeding season and experience briefer lifespans of two to five weeks compared to migratory 

monarchs that can live up to nine months (Oberhauser, 2004). Breeding females have an average 

birth-to-death distance of 11 km, but this may vary from 1 km to 18 km based on habitat 

composition (Zalucki, 1983; Zalucki et al., 2016). Thus, our study sites were distributed within a 

landscape of 16.8 km (north to south) by 20.8 km (east to west) to address potential movement 

distances for ovipositing females. Previous research suggests some species of tachinids can move 

100 m to 200 m, with a few individuals documented moving up to 400 m (Rader et al., 2011). 

Likewise, other parasitoids have been studied at scales up to 500 m based on their dispersal 

abilities (Bennett and Gratton, 2012). To address these diverse dispersal abilities, a nested set of 

three scales (radii of 100, 200, and 400 meters) was used to compare survival and parasitism rates 

to landscape context (Thies et al., 2003) (Figure 2).     

The study sites were characterized using data from the Oklahoma Ecological Systems 

Mapping Project (10-m resolution), which defines 165 vegetation types across the state of 

Oklahoma. For the purposes of this study, the original Oklahoma Ecological Systems Mapping 
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Project vegetation types were reclassified into eight major land cover classes (see Table 2). Patch 

richness density was selected as the landscape variable of interest and this metric was estimated 

by dividing the number of reclassified land cover types at a study site by the area of the study site 

(area of 100 m scale = 31,600 m2, area of 200 m scale = 126,400 m2, area of 400 m scale = 

502,400 m2). This initial value was divided by 10,000 and then multiplied by 100 to convert to 

100 hectares (McGarigal and Marks, 1995).  

 
Site Monitoring: Plant Characteristics and Invertebrate Community Dynamics 

Sites were monitored weekly for the presence of monarchs in the fall of 2015 and 2016. 

The number of eggs and instars per milkweed plant were recorded. Structures (e.g., fences, brick 

walls, and planters) near milkweed plants were scanned for presence of monarch chrysalises. 

Plant height was recorded in cm by measuring the height of the tallest tropical milkweed branch 

above ground level and included flowers, buds, or seedpods, if present.  

The invertebrate community was quantified by recording predator species richness, aphid 

density, and percent herbivory. The presence of potential monarch predators was recorded and 

separated by order or family: ants (Formicidae), lacewing larvae and eggs (Neuroptera), lady 

beetle adults and larvae (Coccinellidae), syrphid fly pupae and larvae (Syrphidae), spiders 

(Thomisidae, Salticidae, and others), and true bugs (Hemiptera). This information was used to 

calculate predator species richness for each site. Additionally, the number of aphids was recorded 

in density categories (0, 1-10, 11-100, and 101-1000 per plant) based on the guidelines outlined 

by the Monarch Larva Monitoring Project for citizen scientists (Monarch Larva Monitoring 

Project, 2016). The aphids are tended by ants, and the ants themselves are potential monarch 

predators (Oberhauser et al., 2015).  Lastly, the percentage of leaf damage, both from herbivore 

consumption and disease, was assessed for each plant and placed into the following categories: 1 

= 0%, 2 = <5%, 3 = 5-25%, 4 = >25% (Monarch Larva Monitoring Project, 2016). Leaves with 

spider mite damage were incorporated into this parameter and received a higher score for percent 
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herbivory.  

 
Parasitism Rates  

To quantify parasitism rates, I collected fourth and fifth instar monarch caterpillars; 

collecting late instars allowed time for larvae to be exposed to parasites in the field. Once 

collected, caterpillars were reared individually in 64-ounce plastic containers with ventilated lids 

to document parasitism. Tropical milkweed leaves were collected from greenhouse-grown plants, 

sterilized in a solution of 10% bleach and 90% water, and then rinsed thoroughly before being 

given to caterpillars (Altizer and Oberhauser, 1999). Caterpillars were checked at least once a day 

and fresh leaves were provided as needed until the caterpillars pupated. Monarch chrysalises were 

also collected from study sites when detected on nearby structures (e.g., fences, brick walls, and 

planters) and separated into rearing containers for eclosion.  

 Tachinid fly larvae or pupae were recorded when they were observed in the rearing 

container. The number of fly larvae that emerged per caterpillar was recorded. Occurrence of OE 

was evaluated using the tape count method once adult butterflies emerged. The tape count method 

involves placing a piece of clear tape on the ventral side of the butterfly’s abdomen to remove 

some scales and examining the scales under a microscope for presence of OE spores (Altizer et 

al., 2000). If spores were observed the spore load or intensity of infection was estimated by 

examining the sample under 400x magnification and assigning a value based on the following 

scale: 0, no spores; 1, one spore; 2, 2-20 spores; 3, 21-100 spores; 4, 101-1000 spores; and 5, > 

1000 spores (Altizer et al., 2000).  

 

Analyses  

 A suite of independent variables was utilized in the analyses of factors influencing 

monarch oviposition, egg to 4th and 5th instar monarch survival, and 4th and 5th instar to adult 

monarch survival (Table 1). Maximum mean plant height was calculated by averaging the 
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tropical milkweed plant heights at a study site for each week and selecting the maximum mean 

value for the entire sampling season. The average number of flowers per milkweed plant was also 

estimated for each study site but was excluded from the analyses due to its high correlation with 

plant height.  

Predator species richness was calculated based on observations of six possible types of 

invertebrates (ants, lacewing larvae and eggs, lady beetle adults and larvae, syrphid fly pupae and 

larvae, spiders, and true bugs) that are documented predators of monarch eggs and larvae (De 

Anda and Oberhauser, 2015). Predator species richness was summed across all weeks within a 

sampling season, with a maximum value of six. Maximum aphid density per plant reflects the 

highest possible category of aphid density observed during the sampling season (0, 1-10, 11-100, 

and 101-1000 per plant).  Maximum percent herbivory likewise reflects the greatest level of 

percent herbivory observed across the span of the sampling season (1 = 0%, 2 = <5%, 3 = 5-25%, 

4 = >25%). Lastly, patch richness density was calculated for each study site at each scale (radii of 

100, 200, and 400 m) using the Oklahoma Ecological Systems Mapping Project reclassified land 

cover classes (Table 2). Urban class area or the percentage of urban land cover class at a study 

site was another land cover metric of interest but it was excluded from the analyses due to its high 

correlation with patch richness density.  

The program R was used to conduct all statistical analyses. Linear regression was used to 

analyze the relationship between monarch egg abundance (total abundance summed across the 

sampling season) and plant characteristics (maximum mean plant height), the invertebrate 

community (predator species richness, maximum aphid density per plant, and maximum percent 

herbivory per plant), landscape context (patch richness density), and number of years sampled 

(one or two). First instar caterpillars were also included in this parameter if it was clear that they 

were independent from egg records based on the timing of surveys and developmental periods 

(i.e., they represented individuals that were not previously recorded as eggs). This analysis was 

done for all three scales (radii of 100, 200, and 400 m) with the corresponding patch richness 
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densities for each scale. 

A logistic regression (stepwise method, both selection) was used to compare monarch 

survival (total eggs at a site and 4th and 5th instars collected) to the independent variables of 

interest (Table 3 and Table 4) at the three scales (radii of 100, 200, and 400 m). Similarly, the 

intensity of parasitism per site was compared to the explanatory variables of interest (Table 3). A 

logistic regression was conducted using the number of healthy monarchs reared from a study site 

and the number of remaining individuals (parasitized by tachinid flies or OE or died of unknown 

causes).   
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CHAPTER III 
 

 

RESULTS 

 

2015 Summary  

 

Twelve study sites were established in 2015 and monitored for monarch larvae from 

August to October. Fourth and fifth instars were collected from 11 of these sites but only 8 study 

sites were used for analyses based on a sample size threshold of at least four caterpillars (Nail et 

al., 2015). During this sampling year 92 monarch larvae were collected from these 8 sites. Sixty-

six emerged as healthy butterflies, 14 were parasitized by tachinid flies, 5 were infected with OE, 

and 7 died of other causes. The overall fly parasitism rate was 15.2% and parasitism rates per site 

varied from 5.6% to 25%. Fly parasitism was observed at 6 of the 8 study sites used for analyses. 

Parasitism by OE was observed at 3 of the 8 study sites and ranged from 9.1% to 40% at 

individual sites. Larvae collected during the 2015 field season had an overall OE parasitism rate 

of 5.4%.  
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2016 Summary 

Twenty-eight study sites were sampled in the fall of 2016 (August through October). 

Eleven of the 12 study sites used in 2015 were also sampled in 2016, and an additional 17 study 

sites were established. However, only 16 study sites met the sample size threshold of at least 4 

larvae collected throughout the field season. Therefore 16 study sites were used in the analyses of 

the 2016 data and these sites included 4 of the same study sites used in the 2015 analyses. A total 

of 267 monarch larvae were collected in 2016. Additionally, a total of eleven chrysalises were 

collected at 3 study sites from structures near the milkweed patch or on a milkweed plant. There 

were 168 healthy monarchs, 75 parasitized by tachinid flies, 6 infected with OE, and 18 that died 

of other causes. The overall fly parasitism rate was 28.1% and the overall OE parasitism rate was 

2.2%. Fly parasitism was observed at 9 of the 16 sites used for analyses and the parasitism rate 

per site ranged from 10.2% to 80% (Figure 6). Three of the 16 study sites had monarchs that were 

infected with OE and the parasitism rates at these sites ranged from 6.1% to 28.6%.  

 
Monarch Oviposition  

A multiple linear regression was used to determine the interaction between the 

explanatory variables of interest and monarch egg abundance at a location (Table 4). The 

stepwise selection of the set of variables that best fits the dataset revealed that average maximum 

plant height was the only significant variable of interest (estimate= 1.00, standard error= 0.202, p-

value= <0.001, adjusted R2= 0.553). There was a positive relationship between plant height and 

total number of eggs per site and this analysis indicates that for every 1-cm increase in plant 

height the total number of eggs per site is expected to increase by an average of 1.00 eggs (Figure 

3). Patch richness density was not selected in the best-fit model and thus landscape context did 

not significantly influence egg abundance. The other explanatory variables (predator species 

richness, aphid density, percent herbivory, and number of years sampled) were also excluded 

from the best-fit model for the total number of eggs per site.  
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Monarch Egg to 4th and 5th Instar Survival (Influence of Predation) 

While monarch egg abundance was only influenced by one of the six possible 

explanatory variables, monarch survival from egg to 4th and 5th instar was influenced by all 

variables except for the number of years sampled (Table 4). The model that best explained the 

data set for survival at the 100- and 200-m scales included average maximum plant height, 

predator species richness, and maximum aphid density of 101-1000 aphids per plant. The model 

for the analysis at the 400-m scale similarly included predator species richness and maximum 

aphid density (101-1000 aphids per plant) but also incorporated the two highest maximum 

percent herbivory categories (5-25% and >25%), and patch richness density.  

Plant height had a positive effect on oviposition (see previous section) but exhibited a 

negative effect on monarch survival. The average maximum plant height negatively influenced 

survival at the 100- and 200-m scales (estimate= -0.011, standard error= 0.005, p-value= 0.039, 

Figure 4A). Therefore, as plant height increased by 1 cm the odds of survival decreased by 0.989.   

The three variables related to the invertebrate community had varying effects on monarch 

survival from egg to 4th and 5th instar. Predator species richness had a significant positive effect 

on survival at the 100- and 200-m scales (estimate= 0.434, standard error= 0.119, p-value= 

<0.001, Figure 4B) but did not have a significant effect at the 400-m scale (estimate= 0.226, 

standard error= 0.116, p-value= 0.052). Thus, as predator species richness increased at the two 

smallest scales the odds of survival increased by a factor of 1.544. Conversely, both aphid density 

and percent herbivory had a negative effect on monarch survival. A maximum density of 101-

1000 aphids per plant decreased the odds of survival by a factor of 0.365 at the 100- and 200-m 

scales (estimate= -1.009, standard error= 0.240, p-value= <0.001, Figure 4C) and decreased the 

odds of survival by 0.454 at the 400-m scale (estimate= 0.789, standard error= 0.257, p-value= 

0.002, Figure 5A). Lastly, herbivory negatively influenced survival but only at the 400-m scale. 

The maximum percent herbivory category of  >25% decreased the odds of survival by 0.486 

(estimate= -0.722, standard error= 0.294, p-value= 0.014, Figure 5B). The maximum percent 
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herbivory category of 5-25% also had a negative impact on the odds of survival but this effect 

was not significant (estimate= -0.863, standard error= 0.560, p-value= 0.123).  

Finally, patch richness density at the 400-m scale positively influenced egg to late instar 

survival. As patch richness density increased the odds of survival increased by a factor of 1.077 

(estimate= 0.074, standard error= 0.027, p-value= 0.006, Figure 5C). This measure of landscape 

context was included in the best-fit model only at the 400-m scale and only in the context of egg 

to 4th and 5th instar survival.  

 

Monarch 4th and 5th Instar to Adult Survival (Influence of Parasitism)  

A logistic regression was used to compare the number of healthy adults to the number of 

other larvae (parasitized by OE or tachinid flies or died of unknown causes) at a site. Two of the 

six possible variables had a significant effect on monarch 4th and 5th instar to adult survival (Table 

4). Predator species richness had a positive impact on the number of healthy adult monarchs with 

an increase in one predator species category recorded at a site increasing the odds of survival by 

1.5 butterflies (estimate= 0.403, standard error= 0.181, p-value= 0.026, Figure 7A). This 

relationship was detected at the three scales of interest. Maximum aphid density was the second 

variable with a significant effect on monarch 4th and 5th instar to adult survival. The aphid density 

category of 101-1000 aphids per plant decreased the odds of the number of healthy adult 

monarchs by a factor of 0.406 (estimate= -0.901, standard error= 0.398, p-value= 0.023, Figure 

7B). Patch richness density determined for 100 m, 200 m and 400 m did not improve the model 

based on stepwise method using bidirectional elimination. Thus landscape context did not 

significantly influence 4th and 5th instar to adult survival in this study. 
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CHAPTER IV 
 

 

DISCUSSION 

 

Monarch egg abundance, egg to 4th and 5th instar survival, and 4th and 5th instar to adult 

survival were influenced differently by plant height, predator species richness, aphid density, 

percent herbivory, and patch richness density (Table 3). The number of eggs at a site was 

positively influenced by plant height and the linear regression displayed an almost one-to-one 

ratio for the increase in plant height and the corresponding number of eggs at a site. This suggests 

adults may detect taller plants more readily and these plants may provide more resources for 

developing caterpillars. Possible interactions from invertebrate community level metrics or 

landscape level metrics did not significantly impact this model and, thus, plant characteristics 

may be the most important factor for monarch oviposition.  

Zalucki and Kitching (1982b) also found that oviposition was higher on larger plants and 

plant height may be an accurate indicator of overall plant size and quality for some milkweed 

species. Different habitat types such as gardens and natural areas experienced significantly 

different oviposition rates in one study and the higher plant quality found in gardens may have 

contributed to this outcome (Cutting and Tallamy, 2015). Future research should focus on 

determining the impact of certain management practices on host plant quality and the subsequent 

influence on monarch oviposition. 
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Monarch survival from egg to 4th and 5th instar was impacted by several of the measured 

parameters, depending on spatial scale. Predator species richness positively impacted survival at 

the two smallest scales, and may be an indicator of the overall quality of the milkweed patch. 

This is supported by habitat suitability models created for monarch egg and larvae, as well as for 

monarch predators and parasitoids (McCoshum et al., 2016). Areas that are highly suitable for 

monarchs overlap with predicted occurrence locations for the greatest number of predators 

(McCoshum et al., 2016). Also, there may be interactions between the predator species 

themselves and/or with other prey at a site, which may further contribute to the observed patterns. 

Thus, monarch eggs are more likely to survive to late instars when a greater number of predator 

species are present.   

The influence of aphid density on egg to 4th and 5th instar survival may provide more 

information on the impact of one of these specific predators. Previous research found it difficult 

to separate the interaction of ants and aphids on monarch survival because ant presence is 

significantly correlated with aphid density (Prysby and Oberhauser, 2004). Ants acquire food in 

the form of honeydew from aphids and, therefore, ants may be influenced by aphid density 

(Henderson and Jeanne, 1992). Several of our study sites experienced the greatest maximum 

aphid density of 101-1000 aphids per plant, which had a negative impact on monarch egg to 4th 

and 5th instar survival. Thus, higher aphid densities at a site may lead to higher ant predation on 

monarch eggs and larvae.  

Another significant trend that emerged from analyses of the survival of eggs to 4th and 5th 

instars was the impact of landscape heterogeneity on monarch survival. Patch richness density 

was used as the metric of interest to examine the influence of landscape context on monarch 

oviposition and survival. However, patch richness density only had a significant effect on egg to 

4th and 5th instar survival and only at the 400-m scale. This finding demonstrates the importance 

of scale when detecting the impact of landscape context on community interactions such as 
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predation (Levin, 1992). Additionally, areas along the urban-rural gradient can be viewed as 

providing similar benefits expected from other heterogeneous landscapes (Pereira-Peixoto et al., 

2016). A higher diversity in habitat types may facilitate more diverse insect communities and 

reduce predation pressures on monarch eggs and caterpillars (Tscharntke et al., 2012). Other 

studies observed landscape context as influencing host-parasite interactions (Thies et al., 2003;	
  

Bennett and Gratton, 2012), but this effect was not detected for my analyses of late instar to adult 

survival.    

Invertebrate community level effects were the only metrics that were significant for 

monarch 4th and 5th instar to adult survival. Of these metrics, aphid density had a negative impact 

on survival and predator species richness had a positive impact on survival. Survival from late 

instar to adult primarily reflects parasitoid mortality in this study since we removed 4th and 5th 

instars from the field to study parasitism. These results suggest tachinid flies may be more likely 

to parasitize monarch caterpillars at locations with high densities of aphids, and less likely to 

parasitize monarch caterpillars at locations with more predator species. Natural enemies such as 

tachinid flies may be able to locate prey based on plant volatiles that are released through 

herbivore damage (Paré and Tumlinson, 1999). Thus tachinid flies may be able to detect 

milkweed plants with higher aphid densities because of the presence of increased volatiles. While 

higher aphid densities increased tachinid fly parasitism, tachinids were less likely to parasitize 

monarchs in areas with a high diversity of other predators. Monarch caterpillars parasitized by 

tachinid flies may also be vulnerable to predation by other invertebrates and thus parasitism rates 

may be influenced by the diversity of monarch predators at a site (Oberhauser et al., 2015).  

Future studies should estimate predator abundance in addition to diversity to further evaluate the 

relationship between tachinid fly parasitism rates and other invertebrate community dynamics.  

These findings have important implications for monarch conservation. Additional 

research should evaluate whether managing for beneficial insects such as predators as well as 
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reducing aphid densities in garden environments could reduce monarch mortality due to tachinid 

flies. These two factors explained more of the survival of 4th and 5th instars to adults than 

variables related to plant characteristics or landscape context. Thus, it is possible that 

management practices affecting the invertebrate community could reduce monarch mortality due 

to tachinid flies in gardens and other green spaces.  

Parasitoid wasps and other pupal predators may also influence monarch survival from 4th 

and 5th instar to adult, but would not have been observed for the 4th and 5th instars that we 

collected for this study since they were removed from study sites prior to pupation.	
  Pteromalus 

cassotis (Hymenoptera: Pteromalidae) is a notable pupal parasitoid of monarchs and has been 

observed parasitizing up to 100% of chrysalises at a study site (Stenoien et al., 2015). 

Additionally, monarch chrysalises are susceptible to other predators such as paper wasps and ants 

(Oberhauser et al., 2015; McCoshum et al., 2016). I collected eleven chrysalises from our study 

sites, but I did not observe any pupal parasitoids, although a tachinid fly did emerge from one of 

the field-collected chrysalises. Thus, survival rates from 4th and 5th instar to adult observed for 

this study may be an overestimate if pupal parasitism would have occurred. Pupal parasitism and 

predation may play an important role in monarch survival and future research should incorporate 

this mortality factor into assessing habitat suitability for monarchs (McCoshum et al., 2016).  

Recent research suggests that the region including Oklahoma and Texas contributes, on 

average, about 11% of the monarchs inhabiting overwintering grounds (Flockhart et al., 2017). 

While the Midwest contributed the largest mean percentage (38%) of the six possible regions 

(Midwest, North-central, Northeast, Northwest, Southeast, and Southwest), the annual variability 

in regional contributions is high, emphasizing the need for conservation efforts that support the 

entire breeding range. The south central U.S. has traditionally been viewed as important for 

monarchs for providing nectar resources during spring and fall migration, and milkweed for 

spring reproduction. However, not much is known about monarchs that reproduce in the southern 
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region late in the year. These reproductively active monarchs are referred to as pre-migrants, fall-

breeding monarchs, or late-breeding monarchs (Baum and Mueller, 2015), and the offspring 

produced by these monarchs are referred to as the “5th generation”. I tagged (with Monarch 

Watch tags) and released all individuals that emerged as healthy adult butterflies in 2015 and 

2016. Two of the 66 butterflies tagged in 2015 were recovered on the overwintering grounds in 

Mexico, representing a 3.03% tag recovery rate. Tag recoveries have not been released for 2016 

yet. These tag recoveries indicate that 5th generation monarchs successfully migrate to Mexico 

and contribute to the number of monarchs observed on the overwintering grounds.   

The impact of predators and parasitoids will vary across the monarch’s spring, summer, 

and fall breeding grounds and, thus, impact conservation efforts differently (McCoshum et al., 

2016). Similar assessments of factors influencing monarch survival at different stages should be 

conducted throughout the monarch’s breeding grounds as well as across land use types. 



23	
  
	
  

REFERENCES 
 

 

 

Altizer, S. M., and K. S. Oberhauser. 1999. Effects of the Protozoan Parasite Ophryocystis 

elektroscirrha on the Fitness of Monarch Butterflies (Danaus plexippus). Journal of 

Invertebrate Pathology 74:76–88. 

Altizer, S. M., K. S. Oberhauser, and L. P. Brower. 2000. Associations between host 

migration and the prevalence of a protozoan parasite in natural populations of adult 

monarch butterflies. Ecological Entomology 25:125–139. 

Altizer, S. M. 2001. Migratory behaviour and host–parasite co-evolution in natural 

populations of monarch butterflies infected with a protozoan parasite. Evolutionary 

Ecology Research 3:567–581. 

Altizer, S. M., K. S. Oberhauser, and K. A. Geurts. 2004. Transmission of the protozoan 

parasite Ophryocystis elektroscirrha in monarch butterfly populations: implications 

for prevalence and population-level impacts. Pages 203 to 218 In Oberhauser, K. S., 

and M. Solensky (eds.). The monarch butterfly: biology and conservation. Ithaca, 

NY: Cornell University Press.  

 



24	
  
	
  

Arnaud, P. H. 1978. A host-parasite catalog of North American Tachinidae (Diptera). 

Washington, DC: U.S. Department of Agriculture. (Ch. 6).   

Baum, K. A., and W. V. Sharber. 2012. Fire creates host plant patches for monarch 

butterflies. Biology Letters 8:968–971. 

Baum, K. A., and E. Mueller. 2015. Grassland and roadside management practices affect 

milkweed abundance and opportunities for monarch recruitment. Pages 197 to 202 

In Oberhauser, K. S., K. R. Nail, and S. M. Altizer (eds.). Monarchs in a changing 

world: biology and conservation of an iconic insect. Ithaca, NY: Cornell University 

Press. 

Batalden, R. V., and K. S. Oberhauser. 2015. Potential changes in eastern North American 

monarch migration in response to an introduced milkweed, Asclepias curassavica. 

Pages 215 to 224 In Oberhauser, K. S., K. R. Nail, and S. M. Altizer (eds.). 

Monarchs in a changing world: biology and conservation of an iconic insect. Ithaca, 

NY: Cornell University Press. 

Bartel, R. A., K. S. Oberhauser, J. C. de Roode, and S. M. Altizer. 2011. Monarch butterfly 

migration and parasite transmission in eastern North America. Ecology 92:342–351. 

Bennett, A. B., and C. Gratton. 2012. Local and landscape scale variables impact parasitoid 

assemblages across an urbanization gradient. Landscape and Urban Planning 

104:26–33. 

Bradley, C. A., and S. Altizer. 2005. Parasites hinder monarch butterfly flight: implications 

for disease spread in migratory hosts. Ecology Letters 8:290–300. 

Brower, L. P., D. R. Kust, E. Rendon-Salinas, E. García-Serrano, K. R. Kust, J. Miller, C. 

Fernández del Rey, and K. Pape. 2004. Catastrophic winter storm mortality of 

monarch butterflies in Mexico during January 2002. Pages 151 to 166 In 



25	
  
	
  

Oberhauser, K. S., and M. Solensky (eds.). The monarch butterfly: biology and 

conservation. Ithaca, NY: Cornell University Press. 

Brower, L. P., G. Castilleja, A. Peralta, J. Lopez-Garcia, L. Bojorquez-Tapia, S. Diaz, D. 

Melgarejo, and M. Missrie. 2002. Quantitative changes in forest quality in a 

principal overwintering area of the monarch butterfly in Mexico, 1971–1999. 

Conservation Biology 16:346–359. 

Brower, L. P., and S. B. Malcolm. 1991. Animal migrations: endangered phenomena. 

American Zoologist 31:265–276. 

Calvert, W. H., W. Zuchowski, and L. P. Brower. 1984. Monarch butterfly conservation: 

interactions of cold weather, forest thinning and storms on the survival of 

overwintering monarch butterflies (Danaus plexippus L.) in Mexico. Atala 

(Portland) 9:2–6. (Ch. 9)  

Center for Biological Diversity, Xerces Society, Brower L. P. 2014. Petition to protect the 

monarch butterfly (Danaus plexippus plexippus) under the Endangered Species Act. 

Submitted to Secretary of the US Department of the Interior by The Center for 

Biological Diversity and Center for Food Safety, joined by The Xerces Society and 

Dr. Lincoln Brower, on August 26th, 2014.  

Cockrell, B. J., S. B. Malcolm, and L. P. Brower. 1993. Time, temperature and latitudinal 

constraints on the annual recolonization of eastern North America by the monarch 

butterfly. In Malcolm, S. B. and M. P. Zalucki (eds.). Biology and conservation of 

the monarch butterfly. Natural History Museum of Los Angeles County, California.  



26	
  
	
  

Cutting, B. T., and D. W. Tallamy. 2015. An evaluation of butterfly gardens for restoring 

habitat for the monarch butterfly (Lepidoptera: Danaidae). Environmental 

Entomology 44:1328–1335. 

De Anda, A., and K. S. Oberhauser. 2015. Invertebrate natural enemies and stage-specific 

mortality rates of monarch eggs and larvae. Pages 60 to 70 In Oberhauser, K. S., K. 

R. Nail, and S. M. Altizer (eds.). Monarchs in a changing world: biology and 

conservation of an iconic insect. Ithaca, NY: Cornell University Press. 

De Roode, J. C., A. J. Yates, and S. Altizer. 2008. Virulence-transmission trade-offs and 

population divergence in virulence in a naturally occurring butterfly parasite. 

Proceedings of the National Academy of Sciences 105:7489–7494. 

Flockhart, D. T. T., L. P. Brower, M. I. Ramirez, K. A. Hobson, L. I. Wassenaar, S. Altizer, 

and D. R. Norris. 2017. Regional climate on the breeding grounds predicts variation 

in the natal origin of monarch butterflies overwintering in Mexico over 38 years. 

Global Change Biology doi:10.1111/gcb.13589. 

Flockhart, D. T. T., L. I. Wassenaar, T. G. Martin, K. A. Hobson, M. B. Wunder, and D. R. 

Norris. 2013. Tracking multi-generational colonization of the breeding grounds by 

monarch butterflies in eastern North America. Proceedings of the Royal Society of 

London B: Biological Sciences 280:20131087. 

Henderson, G., and R. L. Jeanne. 1992. Population biology and foraging ecology of prairie 

ants in southern Wisconsin (Hymenoptera: Formicidae). Journal of the Kansas 

Entomological Society 65:16–29.   

Howard, E., and A. K. Davis. 2015. Tracking the fall migration of eastern monarchs with 

Journey North roost sightings. Pages 207 to 214 In Oberhauser, K. S., K. R. Nail, 



27	
  
	
  

and S. M. Altizer (eds.). Monarchs in a changing world: biology and conservation of 

an iconic insect. Ithaca, NY: Cornell University Press. 

Levin, S. A. 1992. The problem of pattern and scale in ecology: The Robert H. MacArthur 

award lecture. Ecology 73:1943–1967. 

Malcolm, S. B., B. J. Cockrell, and L. P. Brower. 1993. Spring recolonization of eastern 

North America by the monarch butterfly: successive brood or single sweep 

migration? Pages 253 to 267 In Malcolm, S.B. and M. P. Zalucki (eds.). Biology and 

conservation of the monarch butterfly. Natural History Museum of Los Angeles 

County, California.  

Mayors’ Monarch Pledge - National Wildlife Federation. [Online], Available:  

http://www.nwf.org/Garden-For-Wildlife/About/National-Initiatives/Mayors-

Monarch-Pledge.aspx Accessed [1 December 2016]. 

McGarigal, K., and B. J. Marks. 1995. Fragstats: spatial pattern analysis program for 

quantifying landscape structure. US Department of Agriculture, Forest Service, Pacific 

Northwest Research Station, Portland, OR. 

McCoshum, S. M., S. L. Andreoli, C. M. Stenoien, K. S. Oberhauser, and K. A. Baum. 2016. 

Species distribution models for natural enemies of monarch butterfly (Danaus 

plexippus) larvae and pupae: distribution patterns and implications for conservation. 

Journal of Insect Conservation	
  20:	
  223–237. 

Monarch Larva Monitoring Project. 2016. Homepage. [Online], Available:  

http://www.mlmp.org/ Accessed [1 February 2016].  

Mueller, E. K., and K. A. Baum. 2014. Monarch–parasite interactions in managed and 

roadside prairies. Journal of Insect Conservation 18:847–853. 

Nail, K. R., C. Stenoien, and K. S. Oberhauser. 2015. Immature monarch survival: effects of 

site characteristics, density, and time. Annals of the Entomological Society of 



28	
  
	
  

America 108:680–690. 

Oberhauser, K. S. 2004. Overview of monarch breeding biology. Pages 3 to 7 In 

Oberhauser, K. S., and M. Solensky (eds.). The monarch butterfly: biology and 

conservation. Ithaca, NY: Cornell University Press. 

Oberhauser, K., I. Gebhard, C. Cameron, and S. Oberhauser. 2007. Parasitism of monarch 

butterflies (Danaus plexippus) by Lespesia archippivora (Diptera: Tachinidae). The 

American Midland Naturalist 157:312–328. 

Oberhauser, K. S. 2012. Tachinid flies and monarch butterflies: citizen scientists document 

parasitism patterns over broad spatial and temporal scales. American Entomologist 

58:19–22. 

Oberhauser, K. S., M. Anderson, S. Anderson, W. Caldwell, A. De Anda, M. Hunter, M. C. 

Kaiser, and M. J. Solensky. 2015. Lacewings, wasps, and flies—oh my: insect 

enemies take a bite out of monarchs. Pages 71 to 82 In Oberhauser, K. S., K. R. 

Nail, and S. M. Altizer (eds.). Monarchs in a changing world: biology and 

conservation of an iconic insect. Ithaca, NY: Cornell University Press.  

Paré, P. W., and J. H. Tumlinson. 1999. Plant volatiles as a defense against insect 

herbivores. Plant Physiology 121:325–332. 

Pecenka, J. R., and J. G. Lundgren. 2015. Non-target effects of clothianidin on monarch 

butterflies. The Science of Nature 102:1–4. 

Pereira-Peixoto, M. H., G. Pufal, M. Staab, C. F. Martins, and A. M. Klein. 2016. Diversity 

and specificity of host-natural enemy interactions in an urban-rural interface. 

Ecological Entomology 41:241–252. 

Pleasants, J. M., and K. S. Oberhauser. 2013. Milkweed loss in agricultural fields because of 

herbicide use: effect on the monarch butterfly population. Insect Conservation and 

Diversity 6:135–144. 



29	
  
	
  

Pleasants, J. 2017. Milkweed restoration in the Midwest for monarch butterfly recovery: 

estimates of milkweeds lost, milkweeds remaining and milkweeds that must be 

added to increase the monarch population. Insect Conservation and Diversity 10:42–

53. 

Program Partners - National Wildlife Federation. [Online], Available: 

http://www.nwf.org/Garden-For-Wildlife/About/Program-Partners.aspx Accessed [1 

December 2016]. 

Prysby, M. D., and K. S. Oberhauser. 2004. Temporal and geographic variation in monarch 

densities: citizen scientists document monarch population patterns. Pages 9 to 20 In 

Oberhauser, K. S., and M. Solensky (eds.). The monarch butterfly: biology and 

conservation. Ithaca, NY: Cornell University Press. 

Rader, R., W. Edwards, D. A. Westcott, S. A. Cunningham, and B. G. Howlett. 2011. Pollen 

transport differs among bees and flies in a human-modified landscape. Diversity and 

Distributions 17:519–529. 

Satterfield, D. A., J. C. Maerz, and S. Altizer. 2015. Loss of migratory behaviour increases 

infection risk for a butterfly host. Proceedings of the Royal Society of London B: 

Biological Sciences 282:20141734. 

Semmens, B. X., D. J. Semmens, W. E. Thogmartin, R. Wiederholt, L. López-Hoffman, J. 

E. Diffendorfer, J. M. Pleasants, K. S. Oberhauser, and O. R. Taylor. 2016. Quasi-

extinction risk and population targets for the Eastern, migratory population of 

monarch butterflies (Danaus plexippus). Scientific Reports 6. 

Solensky, M. J. 2004. Overview of monarch overwintering biology. Pages 117 to 120 In 

Oberhauser, K. S., and M. Solensky (eds.). The monarch butterfly: biology and 

conservation. Ithaca, NY: Cornell University Press. 



30	
  
	
  

Stenoien, C., S. McCoshum, W. Caldwell, A. De Anda, and K. Oberhauser. 2015. New 

reports that monarch butterflies (Lepidoptera: Nymphalidae, Danaus plexippus 

Linnaeus) are hosts for a pupal parasitoid (Hymenoptera: Chalcidoidae, Pteromalus 

cassotis Walker). Journal of the Kansas Entomological Society 88:16–26. 

Thies, C., I. Steffan-Dewenter, and T. Tscharntke. 2003. Effects of landscape context on 

herbivory and parasitism at different spatial scales. Oikos 101:18–25. 

Tischendorf, L., and L. Fahrig. 2000. On the usage and measurement of landscape 

connectivity. Oikos 90:7–19. 

Tscharntke, T., J. M. Tylianakis, T. A. Rand, R. K. Didham, L. Fahrig, P. Batáry, J. 

Bengtsson, Y. Clough, T. O. Crist, C. F. Dormann, R. M. Ewers, J. Fründ, R. D. 

Holt, A. Holzschuh, A. M. Klein, D. Kleijn, C. Kremen, D. A. Landis, W. Laurance, 

D. Lindenmayer, C. Scherber, N. Sodhi, I. Steffan-Dewenter, C. Thies, W. H. van 

der Putten, and C. Westphal. 2012. Landscape moderation of biodiversity patterns 

and processes - eight hypotheses. Biological Reviews 87:661–685. 

University of Minnesota Monarch Lab. 2017. MLMP updates: An e-newsletter of the 

Monarch Larva Monitoring Project, Winter 2016-2017. [Online], Available: 

http://monarchlab.org/images/uploads/mlmp_newsletters/Winter_2016-

2017_MLMP_Update_FINAL.pdf Accessed [20 March 2017].  

Urquhart, F. A., and N. R. Urquhart. 1978. Autumnal migration routes of the eastern 

population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; 

Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau 

of Mexico. Canadian Journal of Zoology 56:1759–1764. 

Vidal, O., and E. Rendón-Salinas. 2014. Dynamics and trends of overwintering colonies of 

the monarch butterfly in Mexico. Biological Conservation 180:165–175. 



31	
  
	
  

White House Pollinator Health Task Force. 2015. National Strategy to Promote the Health of 

Honey Bees and Other Pollinators.  

World Wildlife Fund. 2017. Superficie forestal ocupada por las colonias de hibernación de la 

mariposa monarca en México - temporada 2016-2017. [Online], Available: 

http://www.wwf.org.mx/?292030/Superficie-forestal-ocupada-por-las-colonias-de-

hibernacion-de-la-mariposa-monarca-en-Mexico-2016-2017 Accessed [10 February 

2017]. 

Zalucki, M. P., and R. L. Kitching. 1982a. The analysis and description of movement in 

adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–197.    

Zalucki, M. P., and R. L. Kitching. 1982b. Dynamics of oviposition in Danaus plexippus 

(Insecta: Lepidoptera) on milkweed, Asclepias spp. Journal of Zoology 198:103–

116.  

Zalucki, M. P. 1983. Simulation of movement and egglaying in Danaus plexippus 

(Lepidoptera: Nymphalidae). Researches on Population Ecology 25:353–365. 

Zalucki, M. P., H. R. Parry, and J. M. Zalucki. 2016. Movement and egg laying in monarchs: 

to move or not to move, that is the equation. Austral Ecology 41:154–167. 



32	
  
	
  

APPENDICES 
 

 

 

Table 1: The predicted interactions between explanatory variables of interest and the monarch 
response variables (egg abundance, egg to 4th and 5th instar survival, and 4th and 5th instar to adult 
survival).  

Category Variable 

Predicted 
Effect on Egg 

Abundance 

Predicted Effect on 
Survival (Egg to 4th 

and 5th Instar) 

Predicted Effect on 
Survival (4th and 5th 

Instar to Adult) 

Plant 
Characteristic 

Plant 
Height Positive Unsure Negative 

Invertebrate 
Community 

Predator 
Species 

Richness Positive Negative Positive 

 

Aphid 
Density Negative Negative Negative 

 

Percent 
Herbivory Negative Negative Negative 

Landscape 
Context 

Patch 
Richness 
Density Positive Negative Positive 

Other 
Years 

Sampled None None Unsure 
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Table 2: Oklahoma Ecological Systems Mapping Project vegetation types that were prevalent 
within the study area and the reclassified land cover classes used in calculating patch richness 
density.  

 

Vegetation Types Reclassified Land 
Cover Class 

• Urban High Intensity 
• Urban Low Intensity 

Urban 

• Ruderal Deciduous Woodland 
• Ruderal Deciduous Shrubland and Young Woodland 
• Ruderal Eastern Redcedar Woodland and Shrubland 
• Ruderal Mixed Deciduous-Eastern Redcedar Woodland 

Ruderal 

• Crosstimbers: Pasture/Prairie 
• Crosstimbers: Post Oak- Blackjack Oak Forest and 

Woodland 
• Crosstimbers: Young Post Oak- Blackjack Oak Woodland 
• Crosstimbers: Post Oak- Eastern Redcedar Forest and 

Woodland 
• Crosstimbers: Post Oak- Eastern Redcedar Slope Forest 
• Crosstimbers: Post Oak- Blackjack Oak Slope Forest 
• Crosstimbers: Eastern Redcedar Woodland and Shrubland 

Crosstimbers 

• South Central Interior: Riparian Hardwood Woodland 
• South Central Interior: Riparian Herbaceous Wetland 
• South Central Interior: Riparian Barrens 
• South Central Interior: Bottomland Shrubland and Young 

Woodland 
• South Central Interior: Bottomland Mixed Evergreen- 

Hardwood Forest 
• South Central Interior: Bottomland Hardwood Forest 
• South Central Interior: Bottomland Barrens 

South Central 

Interior 

• Barren 
• Open Water 

Other 

• Disturbed Soil Pasture Disturbed Soil 

Pasture 

• Row Crops Row Crops 

• Central Mixedgrass: Prairie/Pasture Central 

Mixedgrass 
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Table 3: The observed interactions between explanatory variables of interest and the monarch 
response variables (egg abundance, egg to 4th and 5th instar survival, and 4th and 5th instar to adult 
survival). Significant effects are noted in bold font.  

Category Variable 

Observed 
Effect on Egg 
Abundance 

Observed Effect on 
Survival (Egg to 4th 
and 5th Instar) 

Observed Effect on 
Survival (4th and 5th 
Instar to Adult) 

Plant 
Characteristic  

Plant 
Height 

Positive (all 
scales) 

Negative (100- and 
200-m scale) None 

Invertebrate 
Community 
Dynamics 

Predator 
Species 
Richness None 

Positive (100- and 
200-m scales)  Positive (all scales) 

 

Aphid 
Density None 

Negative: 101-1000 
per plant (all scales)  

Negative: 101-1000 
per plant (all scales)  

 

Percent 
Herbivor
y None 

Negative: >25% (400-
m scale) None 

Landscape 
Context 

Patch 
Richness 
Density None Positive (400-m scale) None 

Other 
Years 
Sampled None None None 
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Table 4: Results of step-wise model selection in R for three separate monarch response variables  
(egg abundance, egg to 4th and 5th instar survival, and 4th and 5th instar to adult survival). 
Significant p-values are noted in bold font.  
 

Response 
Variable 

Scale 
(m) 

Regression 
Model 

Parameter 
Estimate 

Std 
error 

z value p-value 

Egg 
abundance 
(Total eggs 

per site) 

100, 
200, 
and 
400 

Linear 
Average 

Maximum Plant 
Height 

1.00 0.202 4.949 <0.001 

Survival 
(Egg to 4th 

and 5th 
Instar) 

100 
and 
200 

Logistic 

Predator Species 
Richness 

0.434 0.119 3.634 <0.001 

Maximum Aphid 
Density (101-

1000 aphids per 
plant) 

-1.010 0.240 -4.212 <0.001 

Average 
Maximum 

Height 
-0.011 0.005 -2.065 0.039 

400 Logistic 

Predator Species 
Richness 

0.226 0.116 1.945 0.051 

Maximum Aphid 
Density (101-

1000 aphids per 
plant) 

-0.789 0.257 -3.069 0.002 

Maximum 
Percent 

Herbivory 
(5-25%) 

-0.863 0.560 -1.542 0.123 

Maximum 
Percent 

Herbivory  
(>25%) 

-0.722 0.294 -2.454 0.014 

Patch Richness 
Density 

0.074 0.027 2.724 0.006 

Survival (4th 
and 5th Instar 

to Adult) 

100, 
200, 
and 
400 

Logistic 

Predator Species 
Richness 

0.402 0.180 2.228 0.026 

Maximum Aphid 
Density (101-

1000 aphids per 
plant) 

-0.901 0.398 -2.262 0.024 
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Figure 1: Study sites for 2015 and 2016 field seasons. The black squares indicate 2015 study sites 
and the red circles indicate 2016 study sites. Study sites marked with both a black square and a 
red circle were sampled both years. 
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Figure 2: Example of a single study site analyzed at three radii (100, 200, and 400 meters) using 
the reclassified land cover classes from the Oklahoma Ecological Systems Mapping Project. The 
black point in the center represents the milkweed patch that was sampled during the field season. 
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Figure 3: Linear regression comparing the total number of eggs at a site and the average 
maximum plant height at a site (estimate= 1.00, standard error= 0.202, p-value= <0.001, adjusted 
R2= 0.553).   
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Figure 4A: Predicted values for average maximum plant height and egg to late instar survival at 
100- and 200-m scales. The predicted values were derived from the logistic regression model that 
included predator species richness (estimate= 0.434, standard error= 0.119, p-value= <0.001), 
maximum aphid density of 101-1000 aphids per plant (estimate= -1.00, standard error= 0.240, p-
value= <0.001), and average maximum height (estimate= -0.011, standard error= 0.005, p-value= 
0.039). The best-fit line was derived using the predicted values. 
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Figure 4B: Predicted values for predator species richness and egg to late instar survival at 100- and 
200-m scales. The predicted values were derived from the logistic regression model that included 
predator species richness (estimate= 0.434, standard error= 0.119, p-value= <0.001), maximum 
aphid density of 101-1000 aphids per plant (estimate= -1.00, standard error= 0.240, p-value= 
<0.001), and average maximum height (estimate= -0.011, standard error= 0.005, p-value= 0.039). 
The best-fit line was derived using the predicted values. 
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Figure 4C: Predicted values for maximum aphid density and egg to late instar survival at 100- and 
200-m scales. The two highest categories for maximum aphid density are represented on the x-axis 
(11-100 aphids per plant and 101-1000 aphids per plant). The predicted values were derived from 
the logistic regression model that included predator species richness (estimate= 0.434, standard 
error= 0.119, p-value= <0.001), maximum aphid density of 101-1000 aphids per plant (estimate= -
1.00, standard error= 0.240, p-value= <0.001), and average maximum height (estimate= -0.011, 
standard error= 0.005, p-value= 0.039).  
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Figure 5A: Predicted values for maximum aphid density and egg to late instar survival at the 400-
m scale. The two highest categories for maximum aphid density are represented on the x-axis (11-
100 aphids per plant and 101-1000 aphids per plant).  The predicted values were derived from the 
logistic regression model that included predator species richness (estimate= 0.226, standard 
error= 0.116, p-value= 0.051), maximum aphid density of 101-1000 aphids per plant (estimate= 
0.789, standard error= 0.257, p-value= 0.002), maximum percent herbivory (estimate= -0.722, 
standard error= 0.294, p-value= 0.014), and patch richness density (estimate= 0.074, standard 
error= 0.027, p-value= 0.006). 
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Figure 5B: Predicted values for maximum percent herbivory and egg to late instar survival at the 
400-m scale. The three highest categories for maximum percent herbivory are represented on the 
x-axis (less than 5% leaf damage, 5-25% leaf damage, and greater than 25% leaf damage). The 
predicted values were derived from the logistic regression model that included predator species 
richness (estimate= 0.226, standard error= 0.116, p-value= 0.051), maximum aphid density of 
101-1000 aphids per plant (estimate= 0.789, standard error= 0.257, p-value= 0.002), maximum 
percent herbivory (estimate= -0.722, standard error= 0.294, p-value= 0.014), and patch richness 
density (estimate= 0.074, standard error= 0.027, p-value= 0.006). 
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Figure 5C: Predicted values for patch richness density and egg to late instar survival at the 400-m 
scale. The predicted values were derived from the logistic regression model that included predator 
species richness (estimate= 0.226, standard error= 0.116, p-value= 0.051), maximum aphid 
density of 101-1000 aphids per plant (estimate= 0.789, standard error= 0.257, p-value= 0.002), 
maximum percent herbivory (estimate= -0.722, standard error= 0.294, p-value= 0.014), and patch 
richness density (estimate= 0.074, standard error= 0.027, p-value= 0.006). The best-fit line was 
derived using the predicted values. 
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Figure 6: Overall tachinid parasitism rates at study sites in 2016 that met the minimum threshold 
of a sample size of four larvae collected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.80 
0.75 

0.53 
0.48 0.45 

0.21 0.20 0.20 
0.14 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1 2 3 4 5 6 7 8 9 

Pa
ra

si
tis

m
 R

at
e 

 

Location 



46	
  
	
  

Figure 7A: Predicted values for predator species richness and 4th and 5th instar to adult survival at 
all spatial scales. The predicted values were derived from the logistic regression model that 
included predator species richness (estimate= 0.403, standard error= 0.181, p-value= 0.026) and 
maximum aphid density of 101-1000 aphids per plant (estimate= -0.901, standard error= 0.398, p-
value= 0.024). The best-fit line was derived using the predicted values. 
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Figure 7B: Predicted values for maximum aphid density and 4th and 5th instar to adult survival at 
all spatial scales. The two highest categories for maximum aphid density are represented on the x-
axis (11-100 aphids per plant and 101-1000 aphids per plant). The predicted values were derived 
from the logistic regression model that included predator species richness (estimate= 0.403, 
standard error= 0.181, p-value= 0.026) and maximum aphid density of 101-1000 aphids per plant 
(estimate= -0.901, standard error= 0.398, p-value= 0.024).  
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