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Abstract: Historically, water is considered to reduce activity in zeolite-based hydrocarbon 

catalysis. Currently, there exists widespread interest in understanding synergistic impacts of water 

in catalytic transformation of non-traditional hydrocarbon feedstocks by zeolites, e.g. biomass 

feedstocks, since significant amounts of water are liberated in initial reaction stages. Questions 

regarding water’s active or passive role in solid acid catalysis have prompted our work on 

studying fundamentals of water-zeolite interactions by in-situ magnetic resonance methods. We 

have developed multiple methods of introducing water into zeolite from trace amounts to access 

amounts. The small loading results, below 0.5 water molecules per acid site, have shown 

interesting onsite interaction information at molecular level, for example, suggesting the acid site 

proton can be deprotonated by a single water molecule. In addition, the introduction of water to 

hydrophobic organosilane modified zeolites shows liquid water can be blocked outside the 

crystallites, implying potential application of the hydrophobically modified zeolite. For water’s 

positive impact on hydrocarbon reactions, we have experimentally shown that trace amounts of 

water enhance isobutane reactivity in HZSM-5 by up to an order of magnitude (ACS Catalysis 

2014, 4, 3039). Subsequently, active sites were characterized in the presence of water for 

hydrophilic and hydrophobically-modified zeolites (ACS Catalysis 2015, 5, 7480).  From that 

work, we determined that only vapor-phase water could access acid sites in organosilane 

modified catalysts, while liquid-phase water was excluded from the catalyst interior volume, 

leading to increased catalyst lifetimes in water-rich environments (JACS 2015, 137, 11810). 

Moving forward, we recognize that aromatic reaction centers are common to many important 

hydrocarbon conversions in zeolites. Specifically, alkylation-dealkylation steps have been shown 

as key steps in methonal-to-hydrocarbon (MTH) conversions. Aromatic alkylation-dealkylation 

reactions are investigated as test reactions to probe whether water can play an active role in 

lowering activation energies for the critical side-chain alkylation and dealkylation steps.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

Solid-acid catalysts are widely used in industrial hydrocarbon conversions. Zeolites, because of 

their high internal surface area, well-defined pore structure, and tunable acid density, are one of 

the most valuable catalysts in use. The majority of zeolite-based hydrocarbon conversions are in 

hydrophobic environments, e.g. FCC (fluid catalytic cracking), MTH (methanol to hydrocarbon) 

conversion. In MTH conversion, even though the starting reagent, methanol, is hydrophilic, the 

intermediates, i.e. the hydrocarbon pool molecules1, and the products are all hydrophobic. In the 

past, water was always treated as a deleterious factor for zeolite catalyzed reactions, because of 

its much higher adsorption energy than hydrophobic molecules at the acid sites. In addition, the 

appearance of condensed water appears in zeolites at high temperature, at which most 

hydrocarbon conversions take place, causes dealumination and thus catalyst deactivation. 

Interestingly, despite the major deleterious role of water, positive roles of water were reported in 

the 1990s, however, via a negative machenism.2-3 The reports indicated that water can suppress 

the secondary reaction in MTH conversion, leading to a selectively enhancement of primary 

products. So far, no report has shown that water can actively participate in zeolite-based 

hydrocarbon reactions. However, our group recently found that water is able to enhance the 
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reactivity of H/D exchange between isobutane-d10 and HZSM-5 acid site protons.4 Only a sub-

stoichiometric amount of water can increase the catalyst activity up to one order of magnitude. 

Recently, it has been reported that only a small amount of water can improve the 

performance of some heterogeneous catalysts. Hibbitts and coworkers showed that water-

mediated hydrogen transfer increases CO activity in Ru-involved Fischer-Tropsch catalysis.5 

Barron and coworkers reported small amounts of water have ‘Goldilocks effects’ on 

homogeneous acid and base catalysis.6 In 2012, Motokura and coworkers demonstrated that 

addition of water in the range of 1-5 wt% relative to the mass of the proton-exchanged 

montmorillonite catalyst increased reaction rates between bulky alkenes by over an order of 

magnitude relative to the catalyst with no water.7 

 

 

 

 

Figure 1.1. ZSM-5 crystallites shown by SEM method. 
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1.2 Zeolites 

Zeolites are crystalline aluminosilicates that contain well-defined microscopic pore systems, with 

pore diameters measuring from 0.3-1.2 nm. For comparison, mesopores generally measure from 

2-50 nm. Discovered in nature, zeolites were known as ‘boiling stones’ due to the fact that their 

micropores generate large amounts of steam from water upon heating. Zeolites have also been 

known as ‘molecular sieves’ because of their uniform pore dimensions. Even though the first 

zeolite was discovered in 1756, it was not until the early 1950s that they were synthesized in large 

quantities and commercialized; to now, over 200 types of zeolites have been registered.8-9 

However, because of the limitation of thermal and mechanical stabilities, as well as high 

synthesis costs, many zeolites are not available industrially. Actually, there are only about 10 

types of zeolites used in industrial processes, e.g. Y zeolite, ZSM-5, mordenite, MC-22, beta 

zeolite, SAPO-34.10 Zeolites for catalytic uses are typically synthesized in small crystallite sizes, 

i.e. micro- and sub-micrometers, to reduce the diffusion path lengths of reactants and products.11-

12 For the same purpose, mesopores, considered as ‘molecular highways’, are also generated 

artificially via post-synthetic modifications to enhance mass transport behavior.13 Among those 

popular zeolites, ZSM-5 is the catalyst used in this dissertation, therefore, will be used as an 

example for introductory purposes. Figure 1.1 depicts a Scanning Electron Microscope (SEM) 

picture of ZSM-5 zeolite purchased from Zeolyst, showing a general crystallite size of 0.5 m. A 

TEM picture of a ZSM-5 surface is shown in Figure 1.2a14 to illustrate the highly organized pore 

structures. A computer-simulated framework (adapted from the International Zeolite Association 

website) is displayed in Figure 1.2b, showing that the pores in Figure 1.2a are actually the 

openings of channels. Besides the pore structures, there usually exist Brønsted acid sites on the 

internal walls of the pores. Generally, the special properties of zeolite originate from the acid sites 

and special confinement of the framework structures. 
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1.2.1 Acid sites 

The Brønsted acid site is derived from the replacement of Si atoms with Al atoms in a silica-like 

structure, as shown in Figure 1.3. Each replacement generates a negative charge in the framework 

at the Al site, and the introduction of a cation, e.g. H+, NH4
+, can preserve the electroneutrality 

acts as the charge balancing cation. When it proton, the zeolite performs as a solid acid catalyst. 

However, the acidity of the zeolite acid proton is weak, with a ca. 1200 kJ/mol deprotonation 

energy estimated by the DFT method.15-16 Lewis acid sites can also be found in zeolites, 

appearing where framework Al-O bonds cleave, as demonstrated in Figure 1.4.  

b. a. 

Figure 1.2. a) TEM picture showing ZSM-5 pore structure14 b) computer-generated 

framework of the same orientation. 
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The acid density is usually characterized by the Si/Al ratio of a zeolite. For example, a 

series of zeolite catalysts will be mentioned in Chapter II, which are all ZSM-5 catalyst but at 

different Si/Al ratios. Acid densities decrease at increased Si/Al ratios, due to the fact that each Al 

site in the framework only brings in one acid site, i.e. number (Al) = number (H+). Therefore, the 

increasing of Si/Al ratios usually means decreasing of the number of Al or acid sites. However, in 

most cases, the Si/Al ratios are reported using as-synthesized values, and actual acid densities are 

usually lower, because part of the Al atoms are extraframework species, such as Al(OH)3. 

Typically, there are 3 ways to control the Si/Al ratios: 1) To control the ratios of starting 

materials, specifically the amounts of Al and Si sources used; 2) To dealuminate as-synthesized 

Figure 1.3. Illustration of origination of a Bronsted acid site.  
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zeolites by steaming, where some of the Al sites are turned from framework into extraframework 

species by hot water vapor; 3) To use chemical treatment, such as tetrachlorosilane17, which can 

substitute framework Al with Si in-situ without damaging the framework. 

 

 

1.2.2 Framework 

Acid sites reside in unique intracrystalline channels or interconnected voids, depicted in Figure 

1.5.18 Usually, each framework type is assigned with a three-letter code, e.g. MFI, FAU, TON, 

etc.19 MFI type zeolites contain straight and sinusoidal channels, FAU type contain cages and 

channels, TON zeolites contain 1-dimentional channels, etc. For example, ZSM-5 and Y zeolites 

belong to MFI and FAU framework topologies, respectively. Typically the pore sizes are 

categorized into four regime: (i) small, zeolites with eight-member-ring pores, free diameters of 

0.30-0.45 nm (e.g., zeolite A), (ii) medium, zeolites with 10-member-ring pores, 0.45-0.60 nm in 

free diameter (ZSM-5), (iii) large, zeolites with 12-member-ring pores of 0.6-0.8 nm (e.g., 

zeolites X, Y) and (iv) extra-large, zeolites with 14-member-ring pores (e.g., UTD-1).20 A 

thorough zeolite database, which includes topologies, characterization data, and synthetic 

methods of all registered zeolites, can be found at the International Zeolite Association (IZA) 

webpage, http://www.iza-online.org/. Diffusion simulated pore topologies can be found at 

ZEOMICS, http://helios.princeton.edu/zeomics/.  

  

Figure 1.4. Illustration of the formation of a Lewis acid site. 
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Figure 1.5. Diffusion simulations of different type of framework. Adapted from 

reference 18. 

Channels: medium (4-6 Å) large (> 6 Å) 

Cages: medium (6-8 Å) large (> 8 Å) 
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1.2.3 Properties and characterization 

Acidity and well-defined porosity make zeolites exceptional catalysts with respect to both activity 

and selectivity. The framework confinements are able to provide shape selectivity and even 

partial confinement that could possibly reduce the transition state energy of some intermediates.21 

Mechanistic understanding of zeolite catalysis is incomplete, even though they are used 

industrially. The acid strength, acid density and the pore confinement are the conventional 

properties considered for zeolite performances. Recently the Iglesia group has reported 

fundamental studies of acid strength and confinement influences in hydrocarbon reactions.15, 22-25 

Also, it has been noticed that the location of the acid site inside zeolites may influence the 

catalyst performances. For example, Janda et al. have shown acid sites in channels and channel 

intersections (yellow and blue in Figure 1.5) have different activity due to the different confined 

environments.18, 26-27 

The Brønsted acid site, while studied for decades, does not have its properties fully 

understood. Their acid density, strength and even their location have been and are still being 

investigated. Compared to Brønsted sites, Lewis type of acid sites are believed to have less 

impact on catalysis, because of their small amounts, i.e. 10% of framework Al27. Silanol groups, 

and extraframework Al (EFAL) are other species existing in zeolites but usually nonreactive in 

catalysis.28 Regular characterization methods for zeolites include 1H / 27Al / 29Si solid-state NMR, 

BET, X-ray diffraction, Infrared spectroscopy, Raman spectroscopy, temperature programmed 

desorption (TPD), etc. Zeolite materials can be studied in both powder and single crystal forms. 

ZSM-5 and Y zeolites, the most used zeolites in this research, are illustrated below with their 

fundamental properties.  
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1.2.4 Two specific zeolites  

ZSM-5 

ZSM-5 is an artificial zeolite by Exxon Mobil, patented in 1972.29 As mentioned above, ZSM-5 

zeolite belongs to the MFI framework type, which consists of 3-dimensional structures including 

straight, sinusoidal 10-member ring channels and channel intersections, as shown in Figure 1.6. 

The size of the channel (yellow) is 5.1-5.6 Å and the channel intersection (blue) is about 8 Å. As 

reported in the IZA database, the maximum size of a ‘sphere’ that can diffuse along and be 

included in a MFI-type catalyst is 4.46-4.70 Å and 6.36 Å, respectively.  

 

 

There is only one rule that is generally valid for the arrangement of Al atoms in a zeolite, 

which is the Loewenstein rule, stating that the formation of an Al-O-Al sequence is forbidden 

because of its low stability. For the MFI type framework, the acid site density can be varied from 

about Si/Al = 11.6 to Si/Al = +, according to the Loewenstein rule.30 ZSM-5 zeolites with 

Figure 1.6. Framework of MFI, adapted from reference 26 
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certain Si/Al ratios are noted as the following format in this dissertation: ZSM-5 (Si/Al = 15), 

ZSM-5 (Si/Al = 40), and ZSM-5 (Si/Al =140).  

Y zeolite 

Compared to ZSM-5, zeolite Y (FAU) is another 3-dimensional zeolite with large cavities, known 

as super cages (see Figure 1.7a, purple), with 11.24 Å diameter, interconnected by 12-member 

ring channels (orange), diameter of 7.35 Å. There is also another type of cage having a much 

smaller size, called the sodalite cage, shown in Figure 1.7b10. The HY zeolite is very important 

for industry, for example, it has been used as the main catalyst in fluid catalytic cracking (FCC) 

process, the main step of gasoline refinery. 

  

1.2.5 Zeolite synthesis  

Conventionally, organic structure-directing agents (SDA) are used as template in hydrothermal 

synthesis of zeolite. The size of a structure-directing agent determines a framework type. Larger-

sized templates form larger pores and vice versa, e.g. tetramethylammonium (TMA) for SOD 

type of zeolite, containing pore opening at 2.53 Å, and tetrapropylammounium (TPA) for MFI, 

a b

Sodalite 

cage 

Figure 1.7. Showing of framework of FAU: a) connection between 

cages and channels, adapted from reference 26. b) the supercage and 

sodalite cage, adapted from reference 10. 

Supercage 
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containing pore size ranged at 5.1-5.6 Å, etc.  With templates, zeolites can be synthesized via two 

routes, the hydroxide and flouro-routes. The former produces defect-rich and the latter produces 

defect-free zeolites.31-32 Recently, the Al siting has drawn significant attentions. Numerous studies 

have shown that the Al location has impacts on catalysis mechanisms.22, 27, 30, 33-34 In addition, Al 

sites are not evenly distributed in the framework.22, 35-36 Furthermore, the Al site location can be 

synthesized via the control of Na+ concentrations.33, 37-39 

1.2.6 Quantitative conversion of Si/Al ratios to acid site densities 

The acid density can be quantified by the number of acid sites per unit cell. In this dissertation, 

the amount of reagent molecules adsorbed in zeolite catalysts are noted by eqv (equivalence). For 

instance, 1 eqv of adsorbed benzene means the molar ratio of acid site numbers and benzene 

molecules is 1:1. On average, there are 96 tetrahedral atoms (T-atom) in a unit cell of MFI, thus 

the Al density can be presented in formula: Al/u.c. = 96/(1+Si/Al). In zeolite Y, there are twice as 

many T-atoms in each unit cell, resulting in the formula: Al/u.c.=192/(1+Si/Al).  

 For example, with these formula, we find for ZSM-5 catalyst at Si/Al=15, there exists ca. 

6 acid sites per unit cell. For convenience, the acid density of some common catalysts with 

varying Si/Al ratios are calculated and shown in Table 1.1. 

 

Si/Al ratio 

15 25 40 140 

Acid 
sites/u.c. 

ZSM-5 6 3.7 2.3 0.7 

Y zeolite 12 7.4 4.6 1.4 

Table 1.1. Si/Al ratios and their corresponding Al densities (per u.c.) 
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1.3 Introduction of NMR 

1925-45 was the dawn before the explosion of NMR technique. The concept was established 

during this period. In 1939, Rabi et al. found a hydrogen stream could absorb measurable 

electromagnetic energy at a sharply defined frequency in a magnetic field, while under high 

vacuum.40 Although, such studies were limited to small molecules under high vacuum. The 

method for bulk materials was not reported until 1946 by the Bloch group at Stanford41-42 and 

Purcell group at Harvard43, who observed radio frequency energy absorptions of a sample of 

water and a block of paraffin, separately. The 1952 Nobel Prize was awarded to them, and since 

then, NMR technology has undergone a great evolution. In its first few decades, the early NMR 

technique was called continuous wave (CW) spectroscopy. In this method, a NMR spectrum was 

obtained by sweeping the radio frequency in a fixed magnetic field, or vice versa, by varying the 

electromagnetic field using a fixed radio frequency. However, the continuous wave method is 

limited by its poor signal-to-noise ratio and long acquisition time and has now been replaced by a 

modern pulsed Fourier-transform NMR technique. During the 1960s, the development of FT-

NMR truly revolutionized its applications, not only due to the sensitivity enhancement, but its fast 

acquisition time that allows one to study fast chemical processes and time-dependent NMR 

phenomena (i.e., relaxation). 

1.3.1 Characteristics of a nucleus 

Table 1.2 shows the basic characteristics of 1H, 2H, 27Al, 29Si and 13C nuclei that are most 

commonly studied in zeolite-based catalysis. Spin, natural abundance and gyromagnetic ratio are 

natural characteristics of a nucleus. NMR spectroscopy originates from the fact that nuclei have 

spins, which is usually characterized by a quantum spin number, I. For example, 1H and 29Si have 

spin number of I = ½, called spin-half nuclei, while 2H and 27Al are called quadrupolar nuclei 
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because their spin number I > ½. Spin-half and quadrupolar nuclei differ greatly due to the strong 

quadrupolar coupling in the latter case. The quadrupolar couplings usually lead to strong line 

broadening and fast relaxations. The natural abundance is an important property that directly 

affects the signal-noise-ratio of a spectrum and the homo-nucleus dipolar interactions. 

Gryromagnetic ratio, , determines the Larmor frequency, ω, of a nucleus. Their relationships are 

shown in Equation 1.1. 

 

Isotope Spin 
Natural 

abundance / % 
Gyromagnetic ratio  

/ 106 rad T-1 s-1 

1H 1/2 99.985 267.522 

2H 1 0.015 41.066 

27Al 5/2 4.7 69.763 

29Si 1/2 100 -53.19 

13C 1/2 1.07 67.283 

  

 

𝜔0 = −𝛾𝐵0 = 2𝜋𝜐0 

  

Since  value is a naturally fixed, the Larmor frequency of a nucleus is determined by the 

external magnetic field, B0. Typically, in solution NMR regime, ‘The higher the Larmor 

frequency, the higher the resolution’ is a true statement, but not in solid state cases, due to the 

strong anisotropic dipolar interactions. 

 

 

Table 1.2. Characteristics of common nuclei related in zeolite-based catalysis. 

Equation 1.1 
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1.3.2 Single-90 pulse sequence 

The energy levels and selection rules can explain most kinds of spectroscopy, but not for NMR. 

For instance, the most basic pulsed NMR experiment cannot be explained by energy level 

approach. The vector model, that has been around as long as NMR itself, is an extensively used 

tool to describe NMR theory, even though it can only be applied to a small number of situations. 

Here, single pulse NMR is demonstrated by using the simplest spin ½ nuclei, e.g. 1H or 13C. 

 

 

In an NMR experiment, we do not observe just one nucleus but a large quantity (1020) of 

them, so the net magnetization should be concerned instead of single nuclear spins. In a spin ½ 

situation, each nucleus can be thought of a small bar magnet that randomly aligns to all 

directions, with the magnetic moment, 𝜇, quantified by spin number I (Equation 1.2), leading to a  

 

𝜇 = 𝛾ℏ𝛪 

Figure 1.8. Showing of external magnetic field inducing net magnetization. 

Equation 1.2 
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net magnetization of zero. However, when an external magnetic field is applied, a non-zero net 

magnetization, called the bulk magnetization, quantified by Boltzman equation (not shown), rises 

because of Zeeman interactions. The magnetization can be presented by a vector, M0, called the 

magnetization vector, displayed in Figure 1.10. A vector model is a convenient tool to explain 

and explore, not all of, but the most fundamental NMR sequences. 

 

 

 

 

 

 

 

Figure 1.9. Drawing of single pulse diagram. 
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Briefly, a pulsed NMR experiment is monitored by sending one or a series sequences of 

radiofrequency pulses to a sample material at the Larmor frequency of target nucleus, followed 

by acquiring and processing the relaxation signal generated by the material, illustrated in Figure 

1.9. Note that the same coil is used for transmitting and receiving radiofrequencies. 

If M0 is tilted away from the equilibrium position, z axis, it will rotate around B0 at the 

Larmor frequency, as displayed in Figure 1.10. The rotating is governed by the right-handed rule, 

shown in Figure 1.10b, and Equation 1.1. Figure 1.10a is an example of Larmor precession of a 

nucleus with positive gyromagnetic ratio value, such as 1H and 13C. It appears like ‘left-handed’ 

rule due to the negative sign in Equation 1.1. Once the magnetization vector is tilted away, it 

always wants to relax back to equilibrium position, and during the relaxation, a signal contains 

the nuclear information is released and will be detected by the coil. The M0 always rotates around 

B0 at Larmor frequency (in mega Hz), which is hard to manipulate. However, a rotating frame 

Figure 1.10. Drawing of a) Larmor precession, adapted from http://www-

keeler.ch.cam.ac.uk/lectures/. b) Right-handed rule, adapted from 

http://www.tpub.com/neets/book15/63b.htm. 

http://www-keeler.ch.cam.ac.uk/lectures/
http://www-keeler.ch.cam.ac.uk/lectures/
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approach can simplify the situation, by imagining putting the observer rotating around B0 along 

with M0 at Larmor frequency. In the rotating frame, M0 and B0 are relatively static to each other.   

1.3.2.1. Excitation  

A pulse of radiofrequency at Larmor frequency shows up as a magnetic field in rotating frame, 

known as the applied magnetic field, B1, and could rotate M0 off B0, with the rotating direction 

and flip angle determined by right-handed rule and pulse width, respectively. The pulse lasting 

just long enough to rotate M0 to +y axis is called a 90˚ pulse, see Figure 1.11. The experiments in 

this dissertation usually have 90˚ pulse widths as 3 ~ 5 microseconds. By applying longer pulses, 

180˚, 270˚, 360˚ flip angles can be approached, which are similar to rotating M0 to –z, -y, and 

back to +z, individually. Overall, the pulses with varying pulse widths have the ability to tilt M0 

to any angle off z-axis.    

1.3.2.2. Relaxation 

B0 is along the equilibrium direction, where M0 always tend to rotate back once tilted. As 

illustrated in Figure 1.11, M0 is tilted to x-y plane by a 90 pulse. However, after the pulse it will 

naturally relax back to z-axis, during which time, the free induction decay (FID) signal is 

generated and could be acquired and processed to a real spectrum via Fourier transform 

technique. The relaxation time, measuring the relaxing time from x-y plane to z-axis, denoted as 

T1, ranges from milliseconds to hundreds of seconds. T1 is also known as spin-lattice relaxation, 

and its value is dependent upon multiple factors, i.e. the nucleus type, the state of the material 

(solid or liquid), temperature, etc. For example, the T1 value of proton in a dry HZSM-5 catalyst 

is much longer than in its wet conditions. There is also another relaxation mechanism called spin-

spin relaxation, known as T2 relaxation.  
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1.3.2.3. Acquisition and processing 

A free induction decay (FID) signal, as mentioned above, is obtained during the relaxation. The 

FID signal is a mixture of all nuclear frequencies and must be converted to a frequency-domain 

spectrum for further analysis. The conversion is made via a mathematical method known as 

Fourier transformation, shown in Figure 1.12. (Adapted from http://mriquestions.com/fourier-

transform-ft.html) The relaxation time is called spin-lattice relaxation time, denoted as T1.  

Figure 1.11. The 90-pulse sequence 

Figure 1.12. A time-domain function (the FID, on left), which contains two 

individual frequencies, is converted into a frequency-domain function (the 

spectrum, on right). Adapted from http://mriquestions.com/fourier-transform-

ft.html 
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1.3.3 Solid-state Magic Angle Spinning (MAS) NMR 

Solution NMR spectra consist of sharp peaks because the anisotropic interactions are canceled 

out by rapid random tumbling. By contrast, solid-state NMR spectra are generally broad due to 

the strong orientation-dependent interactions (mostly contributed from dipolar interactions). 

Magic-angle spinning (MAS) is a great method to minimize the large anisotropic NMR 

interactions between nuclei. In MAS, artificial spinning is introduced by place the axis of the 

sample rotor (Figure 1.13) at magic angle (54.7⁰ ) against Bo, to mimic fast molecular motions in 

solution conditions, depicted in Figure 1.13. Several Bruker-type MAS rotors are shown in Figure 

1.13. Typically, the dipolar interactions are in the range of 1-50 kHz, which for instance, covers 

up to 170 ppm in a 300 MHz proton spectrum. Standard NMR probes spin from 7 to 35 kHz. The 

presence of broad NMR line shapes used to be considered a hindrance, but now they actually 

provide tremendous information of chemistry, structure and dynamics in solid-state materials.  

Figure 1.13. Magic Angle spinning (left), adapted from http://schmieder.fmp-

berlin.info/teaching/selenko_seminars/solids_rossum5.pdf, and Bruker-type rotors (right) 

7mm 
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1.3.4 Variable temperature NMR technique 

 A solid-state NMR can be modified to approach variable temperature (VT) demands. The 

combination of variable temperature and in-situ solid-state NMR has provided great approaches 

for heterogeneous catalysis studies. This brings the convenience of investigating the dynamics, 

kinetics, transition energies, activities, mechanisms, chemical exchanges, etc. Importantly, VT in-

situ NMR has provided a facile way to study the initial stages of catalytic reactions, for instance, 

the early products and mechanisms zeolite-based methanol to hydrocarbon conversion, which is 

always an interesting and challenging area.  

There are multiple types of techniques that can provide variable temperature needs for in-

situ NMR. The most common one is approached by flowing hot/cold gas onto the rotor inside the 

stator, illustrated in Figure 1.1444. The heating gas can be dry air at lower temperature (usually 

below 150 ℃), but has to be dry N2 above 150 ℃ to protect the electronics inside the probe from 

being oxidized. Because the hot gas flow is blown on the center of the rotor, there exists a 

temperature gradient from the center to each end. Also a thermocouple measuring the temperature 

of the gas in the stator is placed outside the rotor, so there is a deviation of the temperature 

measurements. One can run control VT experiments to have a sense of the deviation. For 

example, hexamethylbenzene (HMB), which has melting point at 165 ℃ , is usually used as a 

standard for temperature correction. A broad solid-like spectrum is dramatically changed to a 

sharp liquid-like spectrum when the temperature reaches 165 ℃ . By comparing to the 

temperature read by the thermocouple, a deviation can be estimated.  The VT method in this 

dissertation (Chapter IV) is adapted on a Chemmagnetic NMR, which provides a smooth control 

of temperature from room 25 ℃  to 250 ℃ . 
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Hot air/N
2
 

Figure 1.14. Showing of variable-temperature setup in a MAS stator. 

Hot dry air or nitrogen gas is flowed onto the center of the rotor for 

heating or cooling, reproduced from reference 44. 
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1.4 Chemical exchange 

 

 

The NMR spectroscopic methods are powerful for resolving chemical exchanges. Figure 1.15 

illustrates variable temperature NMR spectra of a two-site chemical exchange:  

At low temperatures, noted as “slow exchange” in Figure 1.1545, where the exchanging 

rate/frequency kAB is much slower than the difference of the resonant frequencies between A and 

B, i.e. Δν (= νA-νB), the peaks are well resolved. As the temperature increases, shown in the 

middle spectrum labeled as Tc, where kAB reaches the time scale of Δν, the chemical exchange is 

in coalescence with the resonance difference, the two resonances merge to an averaged 

Figure 1.15. Schematic depiction of chemical exchange 

characterized by NMR spectroscopy, reproduced from reference 45. 
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resonance. The averaged peak will get narrower by further increase of the temperature, reaching 

the condition known as the fast exchange regime. 

With fast exchange happening between the two sites A and B, the single centered average 

frequency can be found at, 

𝜐 = 𝑓𝐴𝜐𝐴 + 𝑓𝐵𝜐𝐵 

fA and fB stand for the weight population fraction of site A and B, respectively. 

The apparent T1 and T2 of the centered peak related to the original sites A and B as, 

1

𝑇1
=

1

𝑇1𝐴
+

1

𝑇1𝐵
 

1

𝑇2
=

1

𝑇2𝐴
+

1

𝑇2𝐵
 

The exchange rate at coalescence temperature is, 

𝑘𝑇𝑐
=

𝜋

√2
|𝜐𝐴 − 𝜐𝐵| 

The chemical exchange mechanism has been well studied and is powerful to reveal the water-

zeolite interaction in Chapter II.  
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CHAPTER II 
 

 

COMPREHENSIVE INSIGHTS INTO WATER INTERACTIONS IN ZEOLITE CATALYSTS 

 

 
2.1. Introduction 

Solid-acid catalysts are valuable in many existing industrial hydrocarbon conversion processes, 

the majority of which occur in the gas-phase, but are also promising for new applications in 

biomass utilization and environmental remediation.1-3 Microporous zeolites with pore diameters 

in the sub-nanometer range are the most commonly employed solid-acid catalysts, although 

variations in hydrocarbon distributions from currently available petroleum sources have generated 

interest in mesoporous aluminosilicates possessing Brønsted acid sites.4-6 In addition, new solid-

acid catalyzed upgrading of renewable feedstocks in the liquid-phase demonstrates the catalytic 

diversity of zeolite structures.7-8 Water can be incorporated in the reaction system in the feed or 

evolved as a side product inside the solid acid catalyst during reaction. For example, in biomass 

conversion processes, water is a major component of the feedstock2, 9 and in reactions involving 

oxygenates (alcohols, aldehydes, acids) water may be produced stoichiometrically in-situ. Such 

reactions include methanol-to-hydrocarbon, aldol condensation, ketonization, and alkylation 

catalyzed by zeolites and other solid acids.10-16 Multiple reports have discussed the difficulty in 

completely removing water from acidic zeolites.17-18 Therefore, zeolite catalysis is an attractive 

route for their catalytic upgrading, but traditional vapor phase chemistries pose problems for 
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cellulosic and saccharide-based feedstocks.  Due to the high internal surface area of microporous 

zeolites and their mesoporous analogues, and the hydrophilicity of Brønsted acid sites, water is 

likely to present at some level in many existing reactions,19 including gas phase chemistry at 

elevated temperatures. Recently, Resasco and coworkers have shown that zeolite catalyzed 

reactions in water is a viable route for conversion of some biomass molecules, based on 

hydrophobic modifications of zeolite crystallites designed to prevent their dealumination in an 

aqueous solvent environment.9, 20 The degree to which water positively or negatively influences 

reaction chemistries should depend upon the relative water loading present near the solid acid site 

in a zeolite under reaction conditions. In addition, the dynamics of water diffusion and the 

average distance between solid acid sites will also contribute to the impact of co-adsorbed water, 

i.e., water which is simultaneously proximate to the acid site in the presence of reagent and 

product molecules. Recent reports suggest that water provides an assisting role in stabilizing 

transition states and side-chain elimination reactions in methanol-to-hydrocarbon chemistry, 

where the origin of this water comes from acid-catalyzed methanol conversion to dimethyl 

ether.21  This stoichiometric water represents one extreme in reaction conditions, in which water 

is produced from the reagent at the active site, which can be contrasted to the case where water is 

present as a solvent or as part of a biphasic solvent system. 

The fundamental water-zeolite chemistry has been continuously studied for over three 

decades. In 2000, Olson et al. revealed a detailed isothermal study for zeolite and water 

interactions.19 While to further obtain molecular level information, solid state NMR has been 

playing important roles. The application of NMR into basic water-zeolite study started from late 

1980s. In 1996, Hunger and Freude thoroughly reviewed the previous achievements of water-

zeolite studies via solid state NMR technologies and proposed plausible molecular mechanisms.22 

Later, neutron diffraction came into this series water zeolite research, and evidently showed that 

both H2O and H3O+ are present in water loaded HSAPO-34 zeolite, led by Smith et al.23 It is well 
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accepted that water clusters are more basic than a single water molecule, which means, the former 

is easier to deprotonate the Brønsted proton than latter.24-27 Whereas it was not clear how much 

water is necessary to deprotonate the Brønsted acid site. Haw claimed one water molecule is not 

able to deprotonate an acid site, based on 27Al MAS NMR results.27 On the contrary, our results, 

with better control of water loadings and 1H MAS NMR, which is more sensitive to water-zeolite 

interactions than 27Al NMR, suggest the acid proton could possibly be deprotonated by only one 

water molecule, at least for the case of Si/Al = 15 HZSM-5 catalyst. There have been long-time 

debates about whether water can mediate the proton transfer,28-29 a recent Neutron diffraction 

experiment has revealed that water can mediate the proton transfer, even in undetectable 

amounts.30 Starting with Sauer,25, 31 the computational method has become an significant tool to 

reach molecular level interactions. Despite the variety of technologies, solid state NMR is still 

one of the most powerful methods in this series of research. For example, a calcined HZSM-5 

spectrum always has a shoulder on the downfield of acid peak at 5-7 ppm region. This broad 

signal was believed to be residual ammonium after calcination or secondary acid sites32 for 

almost two decades, whereas it is experimentally proven to be residual water by Grey group, in 

2009, via basic single pulsed NMR method.17 

In this chapter, solid state MAS and diffusion NMR techniques are used to examine the 

behavior of water in acidic HZSM-5 zeolites with different Si/Al ratio as function of water 

loading, ranging from about 0.3 water molecule per unit cell (0.05 eqv) up to ca. 500 water 

molecules per unit cell (excess amounts). The experiments were designed to (1) directly probe the 

interaction of water with the interior surface of acidic zeolites, including the acid site itself, (2) 

measure the diffusion coefficient of water inside zeolites as a function of water loading and acid 

site density, and (3) investigate whether specific chemical modifications designed to increase 

catalyst stability in water alters the molecular-level behavior of water within the catalyst particles. 

In this research, we sort the water loading-dependent interactions into three stage: 0 ~ 0.05 eqv, 
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0.05 ~ 3 eqv and 3 ~ +∞. The interaction types and possible proton species in each stage are 

discussed thoroughly. A new model, the “coverage sphere”, which is consistent with most of the 

NMR observations, is proposed. The pulsed field gradient NMR measurements and adsorption 

experiments on hydrophobically-modified catalysts have both shown consistent information to 

the regular 1H NMR results. 

2.2. Experimental     

2.2.1. Zeolite activation. Zeolite ZSM-5 samples with different aluminum content (Si/Al=15 

CBV 3024E and Si/Al= 40 CBV 8014) were obtained from Zeolyst in the ammonium-exchanged 

form. As reported by the vendor, the average crystallite size of all these samples was 1µm, the 

BET surface areas vary from 379-386 m2/g independent of Si/Al ratios.18 SEM experiments 

indicated that the average particle size was closer to 0.6-0.7 µm. Calcined and dehydrated zeolite 

samples were prepared from the ammonium form in a glass reactor body via a stepwise vacuum 

procedure. The temperature controller was a 6-zone ramp/soak controller, model CN616 

purchased from Omega Engineering, Inc. The ZSM-5 samples were heated via the following 

procedure: heat from room temperature to 110 C at 1 C/min, hold at 110 C for 1 hour, heat to 

500 C at 2 C/min, hold at 500 C for 8 hours, and then power off. High vacuum conditions with 

pressures of 2×10-5 torr during the activation were achieved with an Edwards EO4K diffusion 

pump.  Dry catalyst samples were sealed and immediately placed in a dry argon glove box 

following activation in order to facilitate transfer to zirconia MAS rotors for the in-situ 

experiments. Complete calcination and dehydration of samples was verified by 1H MAS NMR. 

Figure 2.1 displays the 1H NMR spectra before and after activation: in spectrum a), the peaks at 

7.2 ppm and 4.0 ppm respond to protons in ammonium ions and adsorbed water, respectively; in 

spectrum b) 4.2 ppm and 2.0 ppm respond to protons at acid sites and silanol groups, respectively.  
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2.2.2. Preparation of hydrophobic zeolites. Following a previous hydrophobic functionalization 

procedure,18 the organosilanes ethyltrichlorosilane (ETS) and octadecyltrichlorosilane (OTS)  

 

 

were used as reagents to increase the hydrophobicity of the zeolite crystallites, illustrated in 

Figure 2.2.  In this procedure, 1 g of NH4
+-ZSM5 (15) was dispersed in 20 ml of toluene by 

sonication with a Horn sonicator (Fisher Scientific 600 W, 20 kHz) at 25% amplitude. Then, the 

zeolite suspension was added to a 50 mL solution of ETS (0.5 mmol/g zeolite) in toluene (ETS 

and toluene provided by Sigma Aldrich). The final suspension was stirred for 24 h at 500 rpm at 

room temperature. The zeolite was then collected by filtration with a nylon filter (0.22 μm pore 

size). After washing several times with ethanol, the functionalized zeolite was dried at 100 °C 

Figure 2.2. Hydrophobic functionalization of silanol groups, using ETS as an example. 

Silanol ETS 

7.2 ppm 

Figure 2.1. 1H NMR spectra of: a) NH4
+-ZSM-5 and b) H+-ZSM-5 catalysts. 

b. a. 

2.0 ppm 

4.0 ppm 4.2 ppm 
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overnight. OTS-NH4
+-ZSM5 (15) was obtained the same way. Activation procedures for 

dehydration were identical to that of the normal H+-ZSM-5 catalysts. Figure 2.3 compares 1H 

NMR spectra of calcined regular HZSM-5 (left) and ETS modified ZSM-5 (right). The ethyl 

groups on ETS show a strong signal at 1 ppm while the acid site peak is still resolved, indicating 

the successful modification and that no involvement of acid sites in the reaction. 

 

 

2.2.3. Water adsorption.  

Water was introduced to zeolite samples from both vapor phase and liquid phase. For 

convenience, all water loading values are reported as the number of water molecules per unit cell. 

Vapor-phase adsorptions are expected for water adsorptions less than 32 molecules per unit cell, 

and liquid-phase adsorptions for >32/u.c. To adsorb water from vapor phase fast and 

qualitatively, in-situ adsorption was applied by opening the NMR rotor cap to allow catalyst 

exposure to the ambient environment. To quantitatively adsorb vapor-phase water, two methods 

are optimum: vacuum line adsorption and gravimetric adsorption. Notice that initial loosely 

packed catalysts in NMR rotor are always centrifuged to a thin and tight layer, ca. 1 mm, against 

the interior rotor wall by MAS, shown in Figure 2.4. Practically, adsorption applied before and 

Figure 2.3. Representative 1H MAS NMR spectra for calcined and dehydrated 

(left) HZSM-5 and (right) ETS-HZSM-5. 

Acid site 

Silanol 

Acid site 
ETS 
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after spinning can cause different adsorption rate, faster in the latter case, but does not affect the 

equilibrium. 

 

 

Gravimetric methods are conducted by adsorbing water vapor from ambient environment. 

Dry zeolite samples were first sealed inside the glove box in NMR rotors or plastic weigh boats 

and then taken out to the ambient environment for adsorption. The amount of water loaded from 

the vapor phase was controlled by the various exposure times to ambient environment, with 

weight changes measured by a microbalance. Via this method, real time measurements of water 

adsorptions can be obtained, as shown in Figure 2.5.  

Vacuum line adsorption methods are good for any amount of water below 32 water 

molecules per unit cell. This method has better control of water amounts, however, it takes much 

longer preparation time and only works for less than 60 mg catalyst each time. The vacuum line 

method is good for extreme small amounts of water, for instance, below 0.5 eqv. A vacuum 

adsorption was set up with a vacuum line equipped with a CAVERN type apparatus. Typically, a 

fixed quantity of catalyst was placed in a 7 mm zirconia MAS NMR rotor in the CAVERN, 

evacuated and sealed, and the adsorbate vapor introduced in the vacuum line to an initial 

Figure 2.4. Schematic diagram showing ambient water-vapor adsorption in a 

rotor after Magic Angle Spinning.  

Spinning at 5 kHz Adsorption 
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pressure. A desired pressure drop is used to control the adsorption quantity after exposure to the 

catalyst. The initial pressure and pressure drop vary with the vacuum line/CAVERN body 

volumes, the adsorbate molecules, the catalyst quantities and their Si/Al ratios. For example, to 

adsorb 1 eqv H2O onto HZSM-5 with Si/Al = 15, 40 mg of catalyst was loosely packed into the 

rotor. Subsequently, 10 torr of initial pressure and 3.2 torr of pressure drop were used to 

determine when 1 eqv of benzene was adsorbed. Brønsted acid site densities are calculated from 

Si/Al ratios (e.g. acid density = 1.04 mmol/g for Si/Al = 15), even though literature has shown 

that the acid site content is less than that predicted from Al content.33  

To adsorb higher loading of water, direct injections of liquid water are needed. Typically, 

controlled volumes of liquid water were injected to known amount of dry zeolite by a GC 

microsyringe. For convenience, all water loading values are converted and reported as number of 

water molecules per unit cell or water molecules per acid site, e.g. 1 L water adsorbed on 50 mg 

HZSM-5 (15) results in 5~6 molecule/u.c. For convenience, the relationship of the loading units 

for HZSM-5 (15) is:  6 molecules/u.c. = 1 molecule/acid site = 1 eqv, with detailed calculation 

shown in Table 1.1.  

2.2.4. NMR measurements. 1H MAS NMR data were collected on a Bruker DSX-300 MHz 

spectrometer, with spinning rate of 5 kHz, using a single 3.8 s /2 excitation pulse. Recycle 

delays were 10 seconds for dry zeolites, and 1 second for all water-exposed samples.  While 

faster MAS speeds are accessible in our laboratory, it is well known that increased MAS rates do 

not provide decreased linewidths over that obtained at 5 kHz, as protons are dilute spins in these 

zeolites.34 It is important to note that background subtractions are generally required for analysis 

of 1H MAS NMR spectra, because the proton density in zeolites are small, resulting in weak 

signals at the scale of the probe background signal.   

Diffusion measurements were taken with a Bruker Ascend 400 MHz spectrometer with 

maximum gradients of 30 T/m. The stimulated echo pulse sequence with a longitudinal eddy 



 37 

current delay of 5 ms was used to measure the attenuation.35 The diffusion coefficient, D, was 

calculated from the following equation: 

ln (
𝐼𝑔

𝐼𝑔=0
) =  −𝐷(𝛾𝛿𝑔)2 (Δ −

𝛿

3
) 

 

The intensity of a signal when a given gradient was used is represented by I, and gyromagnetic 

ratio for 1H is represented by γ. The gradient strength, g, was varied from 0 T/m to 15 T/m.  The 

gradient duration, δ, and the diffusion time, Δ, were held constant at 0.2 ms and 10 ms, 

respectively. For data sets that exhibited two diffusion coefficients, the equation was modified to 

account for the signal from each fraction, and the sum of the fractions, f, was set to 1. 

 

ln (
𝐼𝑔

𝐼𝑔=0
) = 𝑓1 [−𝐷1(𝛾𝛿𝑔)2 (Δ −

𝛿

3
)] + 𝑓2 [−𝐷2(𝛾𝛿𝑔)2 (Δ −

𝛿

3
)] 

 

2.2.5. TGA. Thermal gravimetric analysis (TGA) data were collected by Hi-Res TGA 2950 

Thermogravimetric Analyzer from TA Instrument. Inc. Samples were heated from room 

temperature to 900 °C, with a heating ramp of 20 °C / min. Dry air was used as the carrier gas.  
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2.3. Results and discussion 

2.3.1. Gravimetric measurement 

 

Ambient moisture is a convenient water vapor resource; its low water vapor partial pressure 

allows facile control of the water loading just by varying the exposure time. To adsorb water, 

HZSM-5 zeolites obtained from calcination and dehydration as described in section 2.2.1, were 

exposed to ambient humidity and pressure. Figure 2.5 displays water uptake curves for HZSM-5 

catalysts with Si/Al ratio ranging from 15 to 140. It is apparent from Figure 2.5a that the 

adsorption rate, as well as the maximum water uptake, is higher with an increasing acid density 

(lower Si to Al ratio). Even though the catalyst bed thickness and the ambient humidity were not 

controlled exactly from run to run, the maximum uptake should reflect the unique water loading 

dependence on each catalyst. Note that for ZSM-5 (15), the water uptake cannot reach more than 

ca. 32 molecules per unit cell, or 5-6 molecules per acid site. Olson et al. has reported the 

Figure 2.5. Gravimetrically determined water uptake rates and maximum loadings for 

dehydrated acidic HZSM-5 catalysts exposed to ambient moisture, plotted as a 

function of (a) number of water molecules per unit cell, and (b) number of water 

molecules per acid site. Different Si/Al ratios are identified in each legend. The 

catalyst particle bed thickness was 1-2 mm on average. 

a

. 
b

. 
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formation of 4-molecule water clusters on acid sites by low pressure isothermal adsorption 

analysis.19 Note the capacity varies due to differences of the amounts of extra-framework 

aluminum sites and silanol groups etc., in different catalysts. In our observation, for more than 5-

6 molecules per acid site adsorptions, liquid water must be directly introduced. Data of Figure 

2.5b were converted from the same data as in Figure 2.5a, considering that 1 eqv. H2O = 6 H2O 

molecules/u.c. The apparent water cluster size, illustrated in Figure 2.5b, increases with the 

increase of Si/Al ratio, likely due to the contribution of other sites, i.e. extra-framework Al sites 

and silanol groups, and becomes relatively higher as the acid site density decreases. In other 

words, if similar experiments were conducted using defect-free ZSM-5 catalysts at the same Si/Al 

ratios, the water cluster size should converge, for example, to 4 water molecule per acid site, in 

Figure 2.5b. 

 

 

Figure 2.6. Gravimetrically determined water uptake and maximum loadings for 

an acidic HZSM-5 catalyst (Si/Al = 15) and its hydrophobically-modified 

analogues treated with ethyl-trichlorosilane (ETS) or octyltrichlorosilane (OTS). 

Water uptake following exposure to ambient moisture is plotted as a function of 

(left) number of water molecules per unit cell, and (right) number of water 

molecules per acid site.  
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Hydrophobically modified HZSM-5, prepared using either ethyltricholorosilane (ETS) or 

octyltricholosilane (OTS), were examined by the same adsorption method as described in Figure 

2.5. In the synthesis, each organosilane reagent was in excess, thus each silanol group on the 

external surface is expected to be functionalized, forming a silyl ether group, depicted in Figure 

2.2. The TGA data, obtained by using the heating program from room temperature to 900 C at a 

heating ramp of 20 C/min, illustrate that ETS groups take up ca. 3% of weight in the 

functionalized ZSM-5 catalyst, shown in Figure 2.7. Figure 2.6 illustrates the comparisons 

between the adsoption trend of regular HZSM-5, ETS- and OTS-functionalized analagous. 

Apparently, the modified catalysts (open and closed circles) show less capacity than the regular 

catalyst (diamond). However, the ETS-modified analogue shows less capacity than the OTS-

modified catalyst, maybe due to the possibility that ETS molecules are small enough to enter into 

the zeolite pores to react with the internal silanol groups, and thus leads to a capacity of ca. 4 

molecule/acid site, which is very similar to what Olson obtained in the low pressure isothermal 

condition. 1H MAS NMR was then used as a spectroscopic tool to explore the molecular-level 

information of water interactions with these catalyst. In the following sections, the NMR 

spectrum results will be shown in the trend, where water is added from extremely small amounts 

to excess amounts. Water was adsorbed via both vapor and liquid phases, into both hydrophillic 

and hydrophobic zeolites with various Si/Al ratios.  
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2.3.2. Water interactions in zeolite investigated by 1H MAS NMR 

In this section, the solid-state NMR method was applied to investigate the interactions of water in 

zeolites as a function of water loading. To our knowledge, water loadings below 1 eqv have been 

generally overlooked in literature. However, even such small amounts of water can affect the 

catalyst activity dramatically, as shown in the following chapters. In this research, quantitative 

analysis of water in zeolites has been achieved to as low as 0.05 eqv, while even lower loadings 

have been achieved by semi-qualitative adsorption methods, see Figure 2.15. According to our 

NMR interpretation, the water-zeolite interaction as an increasing function of water loading 

described by  three stages for convenience, 0 ~ 0.5 eqv, 0.5 ~ 3 eqv, and 3 ~ +, or Stage I, II and 

III, respectively. To clarify, 0.5 and 3 eqv are just suggested values from the NMR results. - The 

water peak at 5-7 ppm identified by Grey’s group, which was controversial for two decades, 

Figure 2.7.  Thermal gravimetric analysis (TGA) curves for ETS-HZSM-5, with 

the experiment done in air.  The 8% mass loss at 100-150 C is from water, and the 

ca. 3% mass loss near 500 ⁰ C is from decomposition of the surface ETS groups. 
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should belong to Stage I. To our understanding, Stage I provides more molecular level 

information of water interactions, which could also provide better understanding for other 

adsorbate interactions with zeolites, such as methanol and hydrocarbon molecules. Stage II is a 

transition region of Stage I and III. The following results and discussion will be presented in the 

sequence of increased water loadings.  

 

 

2.3.2.1. Stage I: 0 ~ 0.5 eqv, before the general formation of water clusters 

While the gravimetric adsorption experiments revealed the adsorption behavior of water vapor 

into dry catalyst, more molecular-level information could be obtained via 1H MAS NMR. 

Theoretically, only three different types of protons should appear in a proton NMR spectrum of 

H-zeolite, which are, the silanol group at 2 ppm, the aluminum hydroxide (extra-framework Al) 

Figure 2.8. Variable NMR spectra of HZSM-5 (15) (a) without, and (b) with 

residual water shoulder, adapted from reference 17. Notice at 293K, the acid/silanol 

peak intensity ratio is apparently higher in (a) than (b). 

a. b. 
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at 3 ppm, and the acid site at 4.2 ppm. Historically, there had usually been a downfield shoulder, 

unexpected, by the acid peak after calcination treatments, in the range of 5-7, illustrated in Figure 

2.1. The unique shoulder used to be incorrectly assigned to a second type of acid site32, or 

residual ammonium after calcination36-38, until Grey’s group confirmed that it is a residual water 

peak17. Figure 2.8, adapted from Grey’s paper, clearly illustrates that the peak at 5-7 ppm, as seen 

in Figure 2.8b, was totally removed in Figure 2.8a.  

Figure 2.9 shows representative 1H MAS NMR spectra of HZSM-5 catalysts with four 

different Si/Al ratios, each of which was exposed to ambient vapor-phase water in a 7 mm rotor, 

see Figure 1.13. The spectra for the dehydrated acidic catalysts are shown as the time zero 

controls, and as expected, the Brønsted acid site signal at 4.2 ppm is decreased as the Si/Al ratio 

increases, in the sequence from Figure 2.9a to Figure 2.9d. In the cases of Si/Al = 15, 25, and 40, 

with increasing the water vapor exposure, the 4.2 ppm acid site signal decreases, and a broad 

water peak began to merge to the downfield region, similar to the data shown in Figure 2.10 

obtained by vacuum-line adsorption on ZSM-5 catalysts. However, the water peak continuously 

shifts downfield with further exposure, but then stops and starts to rise at 7.0 ppm, 7.6 ppm and 

8.0 ppm, respectively. At Si/Al = 140, shown in Figure 2.10d, the acid sites are quickly titrated up 

by water due to its low density. Then the silanol group, as the second-strongest hydrophilic site in 

the zeolite pore system, took over to control the adsorption. Note there is no downfield shift of 

water in the Si/Al = 140 case. The time-dependent MAS NMR results shown in Figure 2.9 reveal 

that 1) water vapor interaction with Brønsted acid sites appears to be the dominant interaction, 

and 2) within the limits of uncertainty of reproducibly packing catalyst particles in the MAS 

NMR rotor, water adsorption occurs more quickly for the higher acid density catalyst, evidenced 

by comparing the increasing rate of water peak formation in Figure 2.9a, 2.9b and 2.9c.  
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Figure 2.10 illustrates the quantitative adsorption results at similar water loadings with 

those presented in Figure 2.9. 1H MAS NMR spectra of different amounts of water, up to 0.4 eqv, 

Figure 2.9.  Representative 1H MAS solid-state NMR spectra of HZSM-5 catalysts 

exposed to ambient moisture: (a) Si/Al = 15, (b) Si/Al = 25, (c) Si/Al = 40, and (d) Si/Al 

= 140. The total exposure time is shown on the right.  The gray box highlights the water 

region of the spectra, and indicates the reduced water peak intensity at 22 minutes for the 

Si/Al=40 compared to the 16 or 24-minute point for the Si/Al=15 catalyst, and the dashed 

line indicates a 1 ppm difference (7.0 vs 8.0) in water chemical shift at that time for the 

two catalysts. Here, the exposure occurs when the catalyst is packed in the 7 mm MAS 

rotor, and cannot be quantitatively compared to the exposure times for the smaller bed 

depths used in Figures 2.5-2.6.  

H2O 

acid site 

 SiOH 
H2O  SiOH 

a
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loaded in HZSM-5 catalysts at Si/Al = 15 and 40, were obtain for analysis. Each water adsorption 

was approached individually by the vacuum-line method described in Section 2.2. Evidence for 

strong interaction between water and the Brønsted acid site proton is observed at as low as 0.05 

eqv, as the narrow and intense acid peak broadens due to the dynamic exchange between water 

protons and acid site protons, in both cases. As the water loading increased up to 0.4 eqv, the 

exchanged-average chemical shift moves downfield to 7 ppm. In this trace amount loading range, 

there is not enough water to cover all acid sites, and that pristine acid sites still exist, appearing as 

a hump at 3-4 ppm. By comparison, the 0.3-eqv spectrum in Figure 2.10a is similar to the 16-min 

spectrum in Figure 2.9a. Therefore, the spectra in Figure 2.9 are on the same scale of water 

loading as in Figure 2.10, but reveals more details from adsorptions lower than 0.05 eqv, i.e. 45-

second to 225-second spectra. At dry conditions, shown by the bottom spectra of Figure 2.9a and 

2.9c, Si/Al =15 catalyst has an expected larger acid/silanol peak intensity ratio than Si/Al = 40 

catalyst. Figure 2.10b was the 1H MAS NMR spectra obtained with the same method as in Figure 

2.10a, but with HZSM-5 (40). In contrast, Figure 2.10a shows a more apparent trend of the 

downfield shift of the water peak, but Figure 2.10 shows a clearer trend of reduction of the acid 

peat at 4 ppm. A proposed reason will be explained by a water “coverage sphere” model shown 

later on. From both Figure 2.9 and Figure 2.10, two spectroscopic observations were noticed: 

First, the acid peak gradually moves downfield upon adsorption, with the shifting distance 

relative to the Si/Al ratio, i.e. 7 ppm for HZSM-5 (15), and 8 ppm for HZSM-5 (40); Second, the 

acid peak loses its intensity upon the adsorption of water, clearly observed in Figure 2.9a.  
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Undoubtedly, the downfield shift of the newly formed water peak is a consequence of 

fast chemical exchange between acid protons and adsorbed water molecules. Once a water 

molecule is adsorbed on an acid site, only two types of species can be formed, a) hydrogen 

bonded water by the acid proton, noted as Z-H+···H2O; or b) hydronium ion when a water 

molecule is protonated by an acid site, noted as Z-···H3O+. An ab initio calculation of water on 

acid site has been done by Sauer, showing that the proton transfer energy (10 kJ/mol) is much 

lower than the adsorption energy (50 kJ/mol), indicating the coexistence of both structures, 

illustrated in Figure 2.11.25 Smith et al. (1996) and Alberto et al. (2010) both experimentally 

confirmed the coexistence of hydronium ions and hydrogen-bonded water via neutron diffraction 

approaches.23, 30 The chemical shifts of Z-H+···H2O and Z-···H3O+ are usually assigned to 4.8 

ppm39 and 13 ppm36, according to the literature. Only four types of proton species can be found at 

this condition: Z-H+···H2O, Z-···H3O+, the Brønsted acid proton and free H2O. Among the four 

Figure 2.10. 1H MAS NMR of solid HZSM-5 catalysts at Si/Al = 15 and 40, shown in a) 

and b), respectively, as a function of controlled water loading, as noted, in number of 

equivalents relative to the acid site concentration. The Brønsted acid site peak, appearing 

at 4.2 ppm in the dry catalyst, undergoes exchange broadening and loss of resolution 

after addition of 0.1 eqv of water, in both cases. PDMS refers to an inert 

polydimethylsiloxane standard added for chemical shift and spin counting calibrations in 

some experiments. The emerging peak at 6-9 ppm with water addition arises from water 

at the acid site. 

PDMS 

water acid 

site a. b. 
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species, only Z-···H3O+ (13 ppm) contribute to the downfield shift. Free water at this condition is 

in a negligible population. Therefore, the Stage I downfield chemical shift must be due to 

existence of Z-···H3O+ which undergoes chemical exchanges with Z-H+···H2O and Brønsted H+. 

The 5-7 ppm downfield shifting peak has been reported in ZSM-5 catalysts, but was blurrily 

assigned to “disturbed bridging OH group”.40  

 

 

At this small loading condition, where water clusters are rarely formed. Two types of 

exchanges can be addressed, noted as Exchange I and II, illustrated in Figure 2.12. “Exchange I” 

represents the two-site exchange between Z-···H3O+ and Z-H+···H2O, in close proximity to acid 

sites, with the exchanging rate k1 determined by the 10 kJ/mol energy barrier calculated by Sauer. 

“Exchange II” is not a traditional two-site exchange. It represents the adsorption and desorption 

of water molecules on acid sites, with the hopping rate, k2, determined by 50 kJ/mol energy 

Figure 2.11. Ab initio calculations for adsorption (AD) and proton transfer (PT) 

energy. And they claimed a second water molecule stabilizes both neutral and 

ion paired structures. Adapted from reference 25. 
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barrier calculated by Sauer. Note Sauer’s calculated barriers are only a guidance for the 

discussion. 

 

 

Now imagine an extreme condition, where only a few water molecules enter into a zeolite 

crystallite. Each water molecule will find an acid site at which to stay because of the large 

stabilization energy, 50 kJ/mol, benefiting from adsorption. At each adsorbed acid site, Exchange 

I takes place. However, room temperature is high enough to allow an adsorbed water molecule to 

desorb from an acid site. Haw’s group (1994)32 and Grey’s group (2009)17 had shown nice 2D 

proton NMR results showing cross peaks between the 4 ppm and the 6-7 ppm peak, which are the 

acid and adsorbed water peak at this extreme condition, even though the latter peak was not 

recognized as a water peak back in those days. From Haw’s data, the cross peak appears even at 

123 K, with a mixing time no smaller than 250 ms, indicating the exchanging rate k2 is on a time 

scale of  hundreds of milliseconds, knowing spin diffusion was not happening, because adsorbed 

water is segregated from other pristine acid protons more than a valid spin diffusion distance, i.e. 

Figure 2.12. A scheme illustrating two types of exchanges. k1 is on a much 

shorter time scale than k2 so that the hydrogen bonded and physisorbed 

water sites can be treated a single exchange site for Exchange II process. 

k1 k2 

Exchange I Exchange II 
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tens of nanometers. The prominent line broadening in Figure 2.10a at the 0.05-eqv spectrum 

suggests the fast water-hopping mechanism as well.  

 

 

 A schematic drawing in Figure 2.13 illustrates the “non-traditional” Exchange II type 

scenario. Once an adsorbed water molecule overcomes the energy barrier to cleave from acid site 

A, it becomes a gaseous molecule that have equal probability to fall back on another close acid 

site, B. In other words, it is a one-way desorption but multiple-way re-adsorption. Note even 

A 

k2 

k2 

B 

A A B 

B A 

B 

Figure 2.13. A scheme illustrating water hoppings, or Exchanging II. 
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though only hydrogen bonded water is drawn as the adsorbed species, it always undergoes fast 

exchange, which is negligible on the time scale of k2. The asymmetrical desorption and 

adsorption phenomenon results in a fact that one water molecule can cover multiple acid sites if 

the hopping rate is high enough, for example, at room temperature. There has been abundant 

evidence that indicates water molecule hops fast at room temperature. In addition to the line 

broadening occurring in Figure 2.10, the most other important evidence is the 2D proton NMR 

experiments. Haw’s32 and Grey’s17 group both had 2D proton NMR experiments on ZSM-5 at 

various temperatures, the former reached 123 K and the latter reached 183 K. Reported by Haw’s 

group, the “exchange” time scale between water and acid sites was observed on a time scale of 

250 ms, at 123 K. However, this time scale at room temperature is not clear from those data, thus, 

need to be measured in the future. As shown in Figure 2.13, we believe the ‘exchange’ is not a 

traditional two-site exchange, as for “Exchange I”. It actually has four sites: The water bonded 

acid site (including hydrogen bonded and physisorbed water sites), the acid site and gaseous 

water. However, the gaseous water is in very low population, which can be readily approached by 

Boltzman distribution using 50 kJ/mol as the energy barrier, and thus not detectable by NMR. 

The hydronium ion and the hydrogen bonded water molecule undergoes much faster exchange, so 

that can be treated as one site. As a result, the exchange peak is actually a mixed signal of the 

water-bonded acid site and the Brønsted acid site. A “coverage sphere” model is proposed and 

depicted in Figure 2.14, demonstrating the number of acid sites a water molecule can occupy in 

the 300 MHz NMR time scale (a few milliseconds, discussed in the “Chemical Exchange” 

section). Note that this scheme is not specifically assigned to any type of zeolite or water loading, 

and does not include channel intersections, which are believed to play important roles on acid site 

locations. It is just a working model to illustrate the relative number of acid sites and water 

molecules for different condition. For example, in the schematic case in Figure 2.14a, the sphere 

covers ca. 2 acid sites on average. What is convenient about this model is, first, it compiles 

multiple factors, such as the water hopping-rate, the acid density and the water loading, into a 
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simple visual picture, and second, the size of the “coverage sphere” is only determined by the 

temperature. 

 

 

Stage Ia adsorption Using this model, “Stage I” adsorption of water in zeolite can actually be 

characterized into two sub-stages, “Stage Ia” and “Stage Ib”. Figure 2.14 specifically illustrate the 

extremely low water condition, “Stage Ia”, where not only each water molecule, but also each 

coverage sphere is separated from one another. As a result, there are plenty of pristine acid site 

existing, showing as a residual acid peak in the spectrum. Figure 2.14a and 2.14b depict the cases 

of room temperature and elevated temperature, respectively. The most apparent observation of 

“Stage Ia” by proton NMR is the decrease of the acid peak. The acid peak decreases as a function 

of water loading, shown in both Figure 2.9 and Figure 2.10, due to water binding on acid sites. 

Clearly, the water titration is responsible for the acid peak intensity decreases. However, it is 

important to notice that the acid peak intensity diminishes faster than it supposed to be, upon the 

b. 

Figure 2.14. Schematic picture showing the cover-capability sphere of water 

molecules at (a) room temperature, (b) high temperature, leading to more 

coverage of acid sites due to the larger sphere. 

a. 
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adsorption of water. In Figure 2.10a, while increasing the water loading, there should be 80% and 

60% acid peak intensity left on the 0.2 and 0.4 eqv spectra, respectively. Whereas, much less 

residual acid peak intensities were observed than their theoretical values, in each loading of both 

Si/Al ratio catalysts. Using the “coverage sphere model”, we know one water molecule covers 

multiple acid sites on the NMR timescale, consequently, the acid sites are “consumed” faster than 

the number of water introduced. For example, if the sphere covers two acid sites on average, in 

the cases of 0.2 and 0.4 eqv adsorption, 60 % and 20 % acid peak intensities are expected on the 

spectrum instead of 80 % and 60 %. In Grey’s 1H NMR results in Figure 2.8, because the 

acid/silanol peak ratio is much higher in Figure 2.8a than Figure 2.8b, which is consistent with 

our control observation. Because of no overlap, the acid-occupation number of each water 

molecule is a constant. Therefore, according to the “Exchange II” model, the water peak should 

have a constant chemical shift, which can barely be seen in Figure 2.10a, when water loading is 

less than 0.2 eqv. An ambient exposure experiment with smaller exposure time increment reveals 

the constant water peak better, as seen in the water peak from 0-150 second in Figure 2.15.  

390 s 
300 s 

210 s 
150 s 

120 s 
90 s 

60 s 
30 s 

20 s 
10 s 

5 s 

0 s 

Figure 2.15. 1H MAS NMR spectra of an HZSM-5 catalyst acquired at room 

temperature versus total time of exposure to ambient moisture (50-60 % relative 

humidity), starting from the dry catalyst.  After each exposure step, the rotor was re-

sealed with a grooved plug and cap and the next spectrum acquired.  
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Two high temperature 1H MAS NMR spectra are adapted from literature, shown in 

Figure 2.16. By eye, they are all on the Stage Ia level adsorption, because of the prominent acid 

Figure 2.16. High temperature 1H MAS NMR spectra adapted from 

(a) reference 32, (b) and (c) reference 18. 

b. 

a. 

c. 
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peaks at room temperatures. Figure 2.16c has more water loaded than Figure 2.16a, due to the 

more resolved water peak at 6.5 ppm. As the temperature increased, the acid peaks decrease 

dramatically in both cases, because the “coverage sphere” is enlarged, see Figure 2.15b, and thus, 

more pristine acid peaks are consumed by the same amount of water. When the catalyst is dry, 

see Figure 2.16b, temperature has no impact on the acid peak intensity.  

Stage Ib adsorption. As the water loading increases, the “coverage spheres” start to overlap, 

depicted in Figure 2.17. Stage Ib has a reflection in 1H NMR spectra as well, which is the 

downfield shift of the water peak towards 7 ppm, see the top a few spectra in both Figure 2.9a 

and 2.10a. It is because as the overlap starts to happen, some acid sites begin to be shared by two 

water molecules, which results in a decrease of the averaged “occupation number” of a water 

molecule. Losing the exchanging acid site population causes the averaged exchange peak to shift 

to the bonded-water side, i.e. 7 ppm. The prediction is consistent with the high temperature 1H 

NMR spectra for 0.5-eqv D2O adsorption, seen in the 300 K-340 K spectra in Figure 2.21. To our 

knowledge, this water dependent downfield shifting phenomenon of the water is illustrated for the 

first time.  

 

 

 

 

 

Figure 2.17. Schematic picture showing the “coverage spheres” of Stage Ib condition. 
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2.3.2.1. Chemical exchange discussion.  

Exchange II. As mentioned earlier, “a few milliseconds” is the observable time scale for 300 

MHz proton NMR. The value is obtained via conventional chemical exchange analysis, but with 

an assumption that the bonded-water on acid sites showing the NMR resonance at 7 ppm. There 

are two reasons 7 ppm is assigned to the bonded water species. First, Haw’s group had obtained 

low temperature 1H MAS NMR spectra for Stage Ia level water in HZSM-5 at 123 K, even though 

the water peak was incorrectly believed to be a second type of acid site, showing the water peak 

was resolved at 6.9 ppm. Second, at Stage Ib level adsorption, the water peak moves downfield 

but stopped at 7 ppm for ZSM-5 (15) catalyst. In other words, 7 ppm is where the bonded water 

starts to dominate over the acid site during the “Exchange II” process. Note this assignment is 

still an assumption, and there are flaws existing. For example, why does the bonded water have 

similar chemical shift at 123 K compared to 298 K? Apparently, more work need to be done to 

solve the problem. However, we can safely assign the bonded water chemical shift to the range of 

6-8 ppm. Then its difference to an acid peak (4 ppm) is in the range of 2-4 ppm, corresponding to 

600-900 Hz, or in the time scale range of of 0.8-2 ms, in the 300 MHz regime. Thus, “a few 

milliseconds” would be safe enough to address observable limit of the 300MHz NMR instrument. 

According to conventional chemical exchange theory, if the water molecules hop much faster 

than a few milliseconds, i.e. in a microsecond scale, an averaged water peak will be observed. On 

the contrary, when the hopping rate is much slower, i.e. 250 ms at 123 K reported by Haw’s 

group, the peaks will be resolved. Interestingly, the coverage sphere can now be interpreted as 

“the number of the acid sites a water molecule can hop to during the a-few-millisecond NMR 

time scale”. The ZSM-5 catalyst Haw group used in the low temperature experiment is at Si/Al = 

19, which is comparable to ours Si/Al = 15. 
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Equation 2.1 

Exchange I. Z-H+···H2O (4.8 ppm) and Z-···H3O+ (13 ppm) are always under fast exchange 

regime, even at 123 K. Using Equation 1.3, and 7 ppm for the averaged exchange peak at 123K, 

surprisingly, 27 % Z-···H3O+ and 73 % Z-H+···H2O are obtained. Consequently, applying the 

fractional values to Boltzman distribution calculation, via Equation 2.1, the energy barrier of 1 

kJ/mol is obtained, which is quite different from Sauer’s calculation, 10 kJ/mol.  

𝑝𝐼

𝑃𝐼𝐼
= 𝑒

∆𝐸
𝑘𝑇 

There has been a debate of the acid strength dependence on Si/Al ratios. Some chemists 

believe the Brønsted acid sites are more acidic in high Si/Al ratio zeolites than those in low Si/Al 

ratios. If this is true, Si/Al = 40 zeolites, as a better proton donator, would yield more Z-···H3O+ 

(13 ppm) than Si/Al = 15 zeolites, resulting in a more downfield chemical shift of the average 

exchange water peak. Admittedly, this is a plausible explanation for 8 ppm versus 7 ppm 

chemical shift for water peak in Si/Al = 40 and 17 at above 0.5 eqv water loadings. While, an 

alternative explanation can be proposed from the coverage sphere model. At higher Si/Al ratio 

conditions, each acid site is farther away separated, leading to less occupied acid sites of each 

water molecule, under the same reactive sphere. As a result, more bonded water complex, Z-

H+···H2O (4.8 ppm) and Z-···H3O+ (13 ppm), lead to the more downfield average exchange 

chemical shift. To identify the second hypothesis, 1H NMR at different Larmor frequency should 

be sufficient. At higher Larmor frequency, the apparent coverage sphere should be smaller, 

leading to an upfield shift of the water peak.   
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D2O adsorption. Deuterated water, as an analogue of water, was also used to probe the 

catalyst acid site via 1H MAS NMR. In contrast to H2O, D2O adsorption benefits from its special 

advantage in NMR analysis: no additional introduction of protons, other than the originals from 

acid sites. Because deuterium nuclei are silent in proton NMR, D2O, behaving similarly with H2O 

in zeolites, they have much less spectrum complicity. Figure 2.18 illustrates 1H MAS NMR 

results of vapor-phase adsorptions of D2O in HZSM-5 (15) at 0.5 eqv (Figure 2.18a and 2.17b) 

and 1 eqv (Figure 2.18c), respectively. Once 0.5 eqv D2O was adsorbed into zeolite through 

vacuum-line, it was immediately inspected by 1H NMR, shown as the bottom spectrum slice in 

Figure 2.18a. Then subsequent spectra were taken in course of elapse time to ensure a complete 

water 

a. b. 

Figure 2.18. 1H MAS NMR spectra of 

D2O adsorbed in HZSM-5 catalyst at 

(a), (b) 0.5 eqv and (c) 1 eqv. (b) shows 

a comparison of traces of 10 min and 

820 min from (a), and (c) is obtain from 

a similar adsorption experiment as (a) 

and (b), but with 1 eqv D2O adsorbed. 

c. 

water 

silanol 
water 

silanol 

silanol 
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intracrystalline diffusion of D2O molecules. Surprisingly, the water peak kept losing its intensity 

for at least four hours, observed from 10 min to 250 min. Then the sample was sealed overnight 

(850 min) to obtain the final spectrum with completed diffusion. The 850-min spectrum was 

plotted together with the initial spectrum, shown in Figure 2.18b, for comparison.  

It is surprising to observe that the water peak intensity does not hold constant after adsorption 

is finished, consequently, the spectrum intensity does not quantitatively indicate the amount of 

adsorbed water. Compared to 1 eqv adsorbed water in Figure 2.18b, the spectrum at 0.5 eqv 

(Figure 2.18a) shows larger intensity loss. A recommended reason can be accounted to the 

Rothwell-Waugh effect41-42, which states that the molecular motion in coherence with the Magic 

Angle Spinning rate can broaden the relative peak beyond detection. This coherent motion must 

come from the acid-water interactions, which could be molecular reorientation of water (cluster) 

on the acid site; or the “Exchange II” process, that could be on the time scale of a couple of 

hundred microseconds, comparable to 250 μs (the time scale of MAS). In the cases of Figure 

2.18, at early times after adsorption, water is concentrated on the acid sites that are close to the 

pore entrance (an extreme example shown in Figure 2.19), so not all of the acid sites are involved 

in the interactions. As water diffuses, the portion of water-acid interactions increase, causing 

more intensity loss.  
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Another noticeable observation is the long elapse time required for the D2O peak decrease. 

Surprisingly, Figure 2.18a indicates that more than 4 hours (similar for water, not shown) are 

needed to have D2O achieve complete intracrystalline diffusion. It is plausible to suggest that the 

overall diffusion is inhomogeneous, meaning that, water adsorbed at acid sites diffuses slower 

than free water off the acid sites. At Stage I, the on-site water is in a dominating population. 

Therefore, even gaseous free water diffuses significantly faster, their low population make them a 

bottleneck that reduces the overall diffusion performances. It is reported that the diffusion 

coefficient in Silicalite-1, which has the MFI framework but contains no acid site, is higher than 

in ZSM-5.43 This model explains why isobutane molecules diffuse much faster than water in 

zeolites, indicated by the entire acid peak shift from 4.2 ppm to 4.8 ppm in the 1H NMR spectrum 

within 5 min after adsorption, see Figure 3.4. The lesser attraction from acid sites results in a 

larger amount of free isobutane molecules and, consequently, enhances the overall diffusion rate. 

In the case of benzene, one could expect that benzene has a comparable adsorption enthalpy with 

Figure 2.19. 1H MAS NMR spectra of 0.2 eqv water adsorbed on HZSM-5 (15) 

very shortly after adsorption (black), showing water is locally concentrated on 

the acid sites close to the pore openings, and after diffusion equilibrium (red). 
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water, thus it should have a similar slow adsorption rate as water. However, it also takes less than 

5 min to have 1 eqv isobutane or benzene to finish a complete adsorption. Presumably, it is 

because benzene is less likely to form cluster on acid sites, leading to an enhanced overall 

diffusion rate. Note HZSM-5 at Si/Al = 15 adsorbs water much faster than Si/Al = 40, because 

the longer distances among acid sites in Si/Al =40 results in less chances of successful inter-acid 

site hopping. This model explains the reason that diffusivities of water are hard to be acquired by 

pulsed gradient NMR technique at small loadings, because the majority of water are localized at 

the acid sites.  

2.3.2.1. Pulsed-field gradient (PFG) 1H NMR for diffusion analysis 

Interestingly, the pulsed-field gradient 1H NMR method has shown supportive results to the two-

type inhomogeneous diffusion analysis, shown in Figure 2.20. At room temperature, HZSM-5 

(15) catalysts with variable amounts of water adsorbed was analyzed by PFG 1H NMR method to 

obtain the diffusivities of internal water. The diffusivities of water loaded at 5, 10, 20 and 33 

molecules/u.c., corresponding to ca. 1, 2, 3 and 5 eqv, were reported in Figure 2.14a. 1.5 × 10-10 

m2/s and 2.9 × 10-10 m2/s were respectively detected for 1 and 2 eqv condition. However, two 

individual diffusivities appear at 3 eqv, and went back to one value at 5 eqv/u.c. The larger 

diffusivity observed at 3 eqv/u.c. could be highly responsible for inter-site diffusion, and the 

lower value for intra-site diffusion. At 1 and 2 eqv, the quantity of free water is so little and may 

not be detectable, on the contrary, at 5 eqv, on-site species are in large quantity that covers the 

inter-site free water signal, even though there is considerable free water at 5 eqv. With this said, 

we can claim that in Figure 2.20a, the increasing diffusion coefficients, 1.5 × 10-10 m2/s, 2.9 × 10-

10 m2/s, and 2.6 × 10-9 m2/s measured at 1, 2, and 3 eqv are originated from intra-site diffusion. 

The values, 2.6 × 10-9 m2/s, and 2.5 × 10-9 m2/s, which are one order of magnitude higher, 

correspond to the inter-site, or free water diffusion. At 3 eq, free water is in a comparable amount 

of bonded water, where they are both measurable by the diffusion NMR. We can call 3 eq the 
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transition loading from the bonded-water dominating scenario to the free water dominating 

scenario. The diffusion coefficients between HZSM-5 with Si/Al = 15 and 40 are compared in 

Figure 2.20b, indicating the catalyst at Si/Al = 40 has an earlier transition loading, 15 

molecule/u.c. compared to 20 molecule/u.c. This makes sense because the acid sites in Si/Al = 40 

catalysts are separated farther away, resulting in less formation of inter-site free water. This 

model still need to be verified. If true, less or no transition region should be observed for 

methanol, isobutane or benzene, because they form less or no clusters at acid sites.  

 

 

Low temperature 1H MAS NMR for 0.5 eqv adsorption. By reducing the temperature enough, 

the population-weighted average chemical exchange could be slowed down and resolved by 

NMR. In order to resolve the exchanging species, spectra of 0.5 eqv D2O in HZSM-5 was 

Figure 2.20.  Diffusion coefficients for water in HZSM-5 measured via PFG 

stimulated 1H NMR experiments, in which the diffusion coefficients are plotted 

versus (a) loading-dependent exchange-weighted average chemical shift of the 

intracrystalline water peak in Si/Al = 15 catalyst, and (b) water loading for two 

different Si/Al ratios. Note that two diffusion coefficients are observed for Si/Al = 15 

at 20 water molecules/u.c. in (a) and (b).  The horizontal arrow in (b) indicates the 

known self-diffusion coefficient for water molecules in bulk liquid water. 
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examined by proton NMR in a temperature span from 190 K – 340 K, illustrated in Figure 2.21.  

0.5 eqv D2O was adsorbed into dry HZSM-5 (15) at room temperature, followed by a quick 

proton NMR examination 15 min and 19 hrs after adsorption, shown in Figure 2.21b and 2.21a, 

respectively, to ensure the completion of the D2O diffusion. The sample corresponding to Figure 

2.21a was used for in-situ variable temperature NMR experiment. By flowing cold nitrogen gas 

into the NMR probe, the catalyst was quickly brought down to 190 K and heated up to 340 K 

gradually, shown as a stack plot in Figure 2.21c. First, the temperature-dependent change of the 

water peak intensity is clearly observed. From 190 K-270 K, water peak intensities are apparently 

lower than those above 300 K. Note the intensity of water peak at 300 K is comparable to that at 

room temperature, depicted in Figure 2.21a, indicating no extra water was adsorbed into the 

system. Moreover, in this VT experiment, the catalyst was constantly sealed in a 4-mm MAS 

NMR rotor, under a dry N2 gas flow, leading to low chances of external water contaminations. 

The exact mechanism is not clear, however, it is reasonable that while lowering the temperature, 

water molecules tend to ‘condense’ on the acid sites, causing the broadness of the water peak. 

Second, the acid peak is resolved again at 190 K. It is less likely that Z-···H3O+, Z-H+···H2O and 

Brønsted H+ become resolved at this temperature, because Z-···H3O+ and Z-H+···H2O are reported 

to coexist at 10 K.23 In addition, from Figure 2.11, we know as long as water diffuses between 

acid sites, the energy is always enough for the transition between Z-···H3O+ and Z-H+···H2O. It is 

reported that water still diffuses in zeolite at least at 183 K.44 Therefore, the most plausible 

explanation is the coverage sphere proposed in Figure 2.14 shrunk, as a consequence, the number 

of acid sites a water molecule can occupy becomes less, resulting in more pristine acid sites. 
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a. 

b. 

Figure 2.21. Variable temperature 1H MAS NMR spectra of 0.5 eqv D2O 

adsorbed via vac-line method. (a) and (b) show 1H NMR spectra taken 19 hrs 

and 15 min after D2O adsorption at room temperature. (c) shows the spectra of 

variable temperature experiment: the catalyst, the same as catalyst in (a), was 

cooled down to 190 K quickly and then heated up to 340 K gradually.  

 

c. 

15 min 

19 hrs 
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2.3.2.2. Stage II: 0.5 ~ 3 eqv H2O. The building period of water clusters at acid sites. 

 

Qualitative adsorptions using the rotor-exposure method were shown in Figure 2.22 as quick 

observation experiments. To obtain quantitative results, the experiments were repeated and 

weighed at each point prior to the spectroscopic experiment in order to calculate the number of 

water molecules per unit cell present. Each proton NMR spectrum in Figure 2.22 was obtained by 

individual adsorption procedures, using a microbalance to measure the weight increase of 

adsorbed water, as described in Section 2.2.3. Figure 2.22 depicts higher water loadings than 

those previously shown in Figure 2.9 and 2.10, evidenced by the lack of acid peaks, and reveals a 

loading-dependent water chemical shift that moves upfield as the water content increases. The 

loading-dependent change of the water peak to a common 5.8-5.9 ppm value (indicated by the 

Figure 2.22.  1H MAS NMR spectra of HZSM-5 catalysts exposed to ambient gas-phase 

moisture, similar to Figure 2.9, but as a function of quantitatively determined water 

loadings for (a) Si/Al = 15, and (b) Si/Al = 40. The water loadings here are significantly 

larger than those represented by the data in Figure 2.9. Note that the loading-dependent 

shift of the water peak to a common 5.8-5.9 ppm value (indicated by the dashed line) 

requires two times as much water per unit cell in (a) compared to (b), indicating that 

interaction with acid sites is the dominant contribution to chemical shift.  Also, the water 

peak chemical shift at the lowest loadings (solid line) shown is different by ca. 1 ppm, as 

seen previously in Figure 2.9.  

a. b. 
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dashed line in Figure 2.22) requires two times as much water per unit cell in Figure 2.22a, 

compared to Figure 2.22b, indicating that interaction with acid sites is the dominant contribution 

to chemical shift. The initial chemical shift of the first formed water/acid site cluster is more 

downfield in the Si/Al = 40 (8 ppm) than the Si/Al = 15 case (7 ppm). In addition, the water peak 

linewidth during Stage II decreases upon adsorption, indication formation of more mobile water 

clusters. 

 

 

The in-situ high temperature 1H MAS NMR method was applied HZSM-5 zeolites 

injected with 2 eqv water, illustrated in Figure 2.23. By heating the catalyst from room 

temperature to 503 K, the water peak was narrowed and moved upfield to 5.6 ppm. Interestingly, 

5.6 ppm is the saturation chemical shift of water in zeolite by vapor adsorptions, see Figure 2.22 

Figure 2.23.  Variable temperature 1H MAS NMR spectra for 2 eqv water in 

HZSM-5 (15). From bottom to top, the catalyst was heated from room 

temperature to 503 K, then brought back to 433 K, heated back to 493 K again, 

and cooled to room temperature step wise. 
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and 2.27. This observation suggests that at the condition of 2 eqv and elevated temperature, the 

water species shift from clusters to free channel water. In other words, the water cluster size an 

acid site can hold is much smaller at high temperatures. This information is significant for 

understanding water’s role at usual catalytic temperatures. For instance, in methanol to 

hydrocarbon conversion conditions, even though water is produced in stoichiometric amounts, the 

amount of actual water in proximate to acid sites could be much less than that and heavily 

dependent on the temperature. Thus, even though water assist the hydrophobic carbon pool 

chemistry at room temperature, its impact at high temperatures need to be reevaluated. 

 

 

Figure 2.24. 1H MAS NMR spectra of HZSM-5 catalysts exposed to liquid water 

using a microsyringe for quantitative adsorption: (a) Si/Al = 15 and (b) Si/Al = 40.  

Note the dramatic and abrupt upfield shift for the water peak with increasing water 

loading for the Si/Al = 40 catalyst, as was similarly observed for the Si/Al = 140 

sample (not shown).  The dashed line is shown only as a guide to the eye.   

b. a. 
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2.3.2.3. Stage III: 3 eqv ~ +∞ H2O. Water peak shift from 7 ppm to 4.8 ppm. 

Adsorptions via water vapor from ambient environment are not capable of obtaining water 

loadings above 5-6 eqv. For higher loading adsorptions, the liquid water injection approach was 

need. As described in the Section 2.2.3, using a 10-L GC syringe, water can be injected from as 

low as 5 molecules per unit cell, which is at Stage II adsorption, to totally saturated amounts, i.e. 

> 300 molecules per unit cell. Figure 2.25 summarizes water loading-dependent proton NMR 

spectra as the water vapor adsorptions shown, but for catalysts exposed to liquid water by 

microsyringe. The liquid water injection results clearly illustrate the chemical shift trend of Stage 

III adsorption. Again, subsets of the exchanged-averaged loading-dependent water spectra are 

shown for the Si/Al = 15 and Si/Al = 40 systems, compared to similar loadings. Essentially 

identical conclusions are drawn from these data from the vapor-phase experiments. Initial 

chemical shifts of water (ca. 5 molecules/u.c., Stage II) are more downfield in the lower acid 

a. b. 

Figure 2.25.  Loading-dependent exchanged-averaged water peak chemical shifts 

from 1H MAS NMR spectra of HZSM-5 catalysts exposed to ambient gas-phase 

moisture, for (a) Si/Al = 15 versus Si/Al = 40, and (b) the complete titration 

curve for water loaded in Si/Al = 15 HZSM-5 up to 400 water molecules per unit 

cell, from liquid phase. 
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density catalysts, i.e. 7, 7.5 and 8 ppm for Si/Al= 15, 25, and 40, recall Figure 2.9. Whereas, the 

chemical shift change more quickly per unit water added to the limiting value of 4.8 ppm 

observed for pure water. At this high-loading stage, free channel water gradually takes over the 

role of on-site water clusters. From ca. 3 eqv to 5 eqv, the exchange-averaged water peak of Si/Al 

= 15 ZSM-5 shifts from 7 ppm to 5.6 ppm, due to the increasing amount of free water. Note that 

the free water at this range is vapor like, knowing the upper limit of ambient adsorption is 5-6 

eqv.  The 5.6 ppm water peak is also observed in spectra of 2 eqv water in HZSM-5 (15) at high 

temperatures (Figure 2.23) and in liquid injection to ETS-modified zeolites (Figure 2.28), highly 

suggesting that 5.6 ppm is the chemical shift of free water in HZSM-5 channels.  

At water loadings over 5 or 6 eqv, the water peak keeps moving upfield, eventually 

stopping at 4.8 ppm, the resonance of bulk liquid water. This is the range that liquid water forms 

in channel. The average-exchanged water chemical shift data over the range of water loadings are 

shown in Figure 2.25a, including the D2O results. The data in Figure 2.25a are in agreement with 

Figure 2.24, in which it appears that the lower acid density Si/Al = 40 system reaches the 

equilibrium water chemical shift value of 4.8 ppm at significantly lower water loadings than that 

of the Si/Al = 15 catalyst. The loading-dependent results for H2O and D2O are identical within 

experimental uncertainty, except D2O peak appears at 7.5 ppm at Stage II adsorption, instead of 7 

ppm for H2O.  

2.3.2.4. The role of silanol groups 

The role silanol groups play during adsorption is minor, however, evidence has shown that slow 

proton exchanges still occur between silanol groups and acid sites at Stage I.32 Even at early Stage 

II, the water interaction of silanol groups can be observed in 1H MAS NMR spectra. For example, 

the 0.4 eqv spectrum in Figure 2.10 shows clear distortion of the silanol peak by water. In Figure 

2.26, The top 1H MAS NMR spectrum describes excess liquid D2O injected to dry HZSM-5 
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(middle spectrum). Then, the wet catalyst was evacuated under < 10-5 torr pressure for a few 

hours, shown in the bottom spectrum. Apparently, the disappearance of the acid and silanol peak 

suggests that all of the protons from acid sites and silanol groups were exchanged into the liquid 

D2O phase, and then removed under vacuum.  

 

 

Figure 2.26. The top spectrum describes the 1H MAS NMR spectrum of excess liquid 

D2O injected to dry HZSM-5 (middle spectrum). The bottom spectrum depicts the 

result of the catalyst with excess D2O evacuated under < 10-5 torr pressure for a few 

hours, showing a complete exchange between D2O and silanol protons.  
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2.3.3. Adsorption using hydrophobic zeolites 

  

About 1 eqv liquid water was injected directly to hydrophobically modified HZSM-5, with the 1H 

MAS NMR spectra shown in Figure 2.27. Remarkably, organosilane (i.e. ETS) groups on the 

surface of zeolite crystallites are capable to keep the liquid water from entering into the internal 

pores of the catalyst. The shaded grey box in Figure 2.27 shows a sharp peak that appears with 

the first water adsorption step, and each subsequent steps, which comes from water in the liquid 

phase and presumably residing in any extracrystalline space. An intracrystalline water peak rises 

at 6 ppm, but shifts downfield as a function of time, coincident with the disappearance of the 

extracrystalline water peak. What Figure 2.27 suggests is that unlike the neat HZSM-5, liquid 

Figure 2.27.  1H MAS NMR spectra of ETS-HZSM-5 (Si/Al = 15) catalyst exposed 

to liquid water using a microsyringe for quantitative adsorption. In (a), the dry 

catalyst is shown in the first trace for reference, followed by exposure to 7 H2O/u.c. in 

the second trace. Subsequent traces are acquired as a function of time for the single 

liquid water exposure step. The catalyst in (b) is the same as in (a), but with the 

addition of one more 7 H2O/u.c. exposure step for a total of 14 H2O/u.c. The shaded 

box shows a previously unobserved extracrystalline liquid water peak, which 

disappears with time.  The 9-ppm peak is again noted with the double-headed arrow.  

The dashed lines are shown only as guides to the eye. 

ethyl group 

ethyl group 

5.2 ppm 5.2 ppm 

Intracrystalline 

water 
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water does not penetrate the intracrystalline zeolite ETS-HZSM-5 volume, but must first undergo 

phase transition to the vapor state.  

 

 

Figure 2.28 shows results similar to Figure 2.27, in which ETS-HZSM-5 is exposed to 

quantitative amounts of liquid water but where several hours passed between water addition and 

spectral acquisition, and where much higher water loadings were accessed. Unlike Figure 2.27, 

no extracrystalline bulk water peak is observed in Figure 2.28, and the intracrystalline water peak 

shifts upfield with increasing water loading, as expected from the vapor-phase water data. 

However, the exchange-averaged water chemical shift stops at 5.3−5.6 ppm for the ETS-HZSM-5 

between 50 and 80 waters per unit cell, and it does not change with increased water loadings. The 

time delay between acquiring the data for the last two points in Figure 2.28 was more than 24 h. 

After ∼35 water molecules per unit cell, a sharp peak is observed near 5.1−5.3 ppm, similar to 

Figure 2.28.  a) 1H MAS NMR spectra of ETS-HZSM-5 (Si/Al = 15) catalyst 

exposed to liquid water using a microsyringe for quantitative adsorption, as in Figure 

2.22, but where several hours elapsed between water exposure and spectral 

acquisition. b) The comparison of water chemical shift dependence with water 

loadings of hydrophobic ETS-HZSM-5 and normal HZSM-5 catalysts. 

5.1 ppm 5.6 ppm 

a. b. 
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that seen above in Figure 2.27, which only increases with increased liquid water exposure, even 

when up to 17 h of equilibration time exists between adsorption and spectral acquisition. This is 

confirmed with the D2O control experiment shown in Figure 2.29; a sharp extracrystalline water 

peak is observed at loadings greater than ∼35 molecules per unit cell. Interestingly, 35 water 

molecules per unit cell is consistent with the maximum water loading measured in Figure 2.5, and 

in the same range as expected from the curve inflections shown in Figure 2.28b. Thus, the clear 

picture that emerges from the data in Figures 2.24, 2.26, and 2.27, as well as that in Figure 2.29, 

is that zeolite surface hydrophobization prohibits liquid water interaction with both the exterior 

and interior surface volumes of the catalyst, and thus framework acid sites are effectively 

protected from potential liquid water solvation. Water must first vaporize from the liquid phase 

before it can diffuse into the intracrystalline channels of ETS-HZSM-5. 

 

 

Figure 2.29.  1H MAS NMR spectra for D2O in ETS-HZSM-5 as a 

function of its loading per zeolitic unit cell. 
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2.3.4 Water adsorption on HY zeolite 

Figure 2.30 illustrates the loading-dependent 1H NMR spectra of HY at Si/Al = 2.6. The bottom 

trace in Figure 2.30a shows the spectrum of a dry catalyst. It is well known that the signal at 2 

ppm is due to nonacidic silanol groups, while the sharp 3.9-ppm signal due to acid sites pointing 

into the large cages (supercages in Y zeolite). The 4.9-ppm signal, appearing as a left shoulder of 

the 3.9-ppm peak, is due to acid sites pointing into small cages (sodalite cages in Y zeolite). The 

water in Figure 2.30 was qualitatively loaded by the ambient exposure approach, as described in 

Figure 2.4, i.e. more exposure time indicating more water was adsorbed into the catalyst. With 

water loading increased, the sharp 3.9 ppm peak decreases first (from 2 min to 19 min spectra), 

indicating that only the acid sites at supercages, which is more accessible by water molecules, are 

titrated. However, it is unclear if the sodalite acid peak is interacted by water just from the 1H 

NMR inspection. In contrast to HZSM-5, HY zeolites are not a good model catalyst for 

fundamental study because of their complicated pore structures, which is the reason that ZSM-5 

Figure 2.30. 1H MAS NMR spectra for HY Si/Al = 2.6 zeolite with water 

loaded via ambient exposure method. Spectra in both (a) and (b) are plotted as a 

function of exposure time. Spectra in (b) do not have accurate exposure time 

measured, but are plotted in the increasing trend labeled by exposure numbers. 

The 17-spectrum in (b) is a continuation of the 44-minspectrum in (a). 

a. b. 
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zeolites are chosen in this contribution. What different from HZSM-5 ambient exposure results is, 

the water peak finally moved to 4.8 ppm but not 5.6 ppm, shown in the spectrum labeled as “28” 

in Figure 2.30b. The spectra in Figure 2.30b are in the ascending order of exposure time, but 

without quantified adsorption information. Spectrum “28” was obtained from the catalyst exposed 

for more than 2 days, thus must has reached the saturation condition. Why does the water vapor 

cause the HY zeolite’s water peak shift to 4.8 ppm at saturation, whereas, 5.6 ppm for ZSM-5 

zeolite? One of the possible reason is that the Si/Al ratio of HY zeolite used is 2.6, resulting in 

very short acid site distances that could favor the formation of continuous phased water. Unlike 

HZSM-5, the sidebands of “wet” HY 2.6 are significantly stronger. The spectrum “28” in Figure 

2.30b is shown in Figure 2.31 with a broader frequency range, where, the fifth fold of the water 

sidebands are still observable. It could be due to the stronger dipolar coupling caused by the 

higher acid density. 

  

Figure 2.31. 1H MAS NMR spectrum of water in HY zeolite previously 

mentioned in Figure 2.30b, labeled as spectrum 28, now shown in a larger 

chemical shift range. 

* 

* 

* * * 
* 

* * * * 
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Stage I 

Stage II 

Stage IIII 

2.4. Conclusion 

 In this chapter, a comprehensive investigation of water and zeolite interactions was approached 

by 1H MAS NMR method coupled with different types of adsorption methods. The water 

interactions in acidic zeolite has been understood to a new level, shown in Table 2.1.  

Water/eqv. Z-H+···H2O Z-···H3O+ H+ H2O 

0 ~ 0.05 Low Low High Negligible 

0.05 ~ 0.5 High High High Negligible 

0.5 ~ 3 High High Low Low 

3 ~ ∞ Low Low Negligible High 

 

 

The NMR data indicate acid sites play dominating roles at all stages, especially at Stage I and II. 

However, the numerical numbers of loading amounts in the first column are estimated numbers, 

based on observations on the Si/Al = 15 HZSM-5 catalyst. Si/Al = 25 and 40 zeolites show 

similar trends upon adsorption but have not been investigated thoroughly yet. At 0 ~ 0.05 eqv, the 

acid site decreases dramatically, and at 0.05 ~ 0.5 eqv, a downfield shifting water peak was 

observed. At Stage I, water is able to diffuse between different acid sites, and according to our 

observation, the amount of pristine acid sites is considerable. Whether a water molecule diffuses 

via hopping or reconfiguration mechanism is not experimentally investigated, but the former is 

preferred. The reconfiguration mechanism might be possible in HY 2.6 zeolites, where the acid 

sites are close enough, since water peak stops at 4.8 ppm (the resonance of bulk liquid water) by 

excess adsorption of water vapor, while the value is 5.6 ppm for HZSM-5 (15). Importantly, the 

Stage I results suggest that a single water molecule is capable to deprotonate the Brønsted acid 

Table 2.1. A summary of suggested amounts proton species at different stages of 

water adsorption. 
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sites in HZSM-5. At stage II, with water amounts further increased, the acid sites are titrated up, 

evidenced by the disappearance of the acid peak and the chemical-shift unchanged water peak, 

i.e. 7 ppm for ZSM-5 (15) and 8 ppm for ZSM-5 (40). When water is loaded up to this level, the 

water clusters are gradually formed at acid sites. The water peak, e.g. 7 ppm for ZSM-5 (15), 

intensity increases while the line-width decreases with water loading increased, indicating 

formation of water clustered ions, e.g. H5O2
+ and H7O3

+. The silanol groups do interact with 

water, however, in a slow exchange regime. It is not until two or three eqv that free water 

molecules is observable by pulsed-field gradient 1H NMR. At stage III, the water adsorbed on 

acid sites are close to saturation, resulting in abrupt increasing amount of free water. The amount 

of free water keeps increasing with increasing amount of external water additions, and gradually 

overwhelms the on-site water species.  
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CHAPTER III 
 

 

DISCOVERY OF WATER’S POSITIVE EFFECT ON C-H BOND ACTIVATIONS 

 

 

3.1 Introduction 

Most of the zeolite-catalyzed reactions, such as catalytic cracking, methanol to hydrocarbon 

conversion (MTH), etc., occur in hydrophobic environments. One may argue that methanol 

molecules are hydrophilic. However, the hydrocarbon pool molecules, the key intermediates of 

the conversions, are aromatic molecules and are totally hydrophobic. Almost all of the traditional 

zeolite based reactions are executed at high temperatures exceeding 250 °C.1 In MTH conversion, 

questions such as “What species has the first C-C bond?”, “How does the bond form?”, are the 

key questions of understanding the mechanisms. However, the early stages of the conversion are 

still not clearly revealed, because the secondary and tertiary stages form at the same time scale 

with the primary stage, and thus the primary products are usually consumed or covered by 

secondary and tertiary products.2 In 2006, the C-H bond activation in zeolite was demonstrated by 

Truitt et al. for the first time,3 shown in Figure 3.1. Truitt et al. showed that H/D exchanges take 

places when isobutane-d10 is adsorbed on zeolite HZSM-5 at extremely mild conditions: room 

temperatures, one equivalent and less than one atmosphere pressure. At such mild conditions, the 
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time scale of zeolite-catalyzed reactions can be reduced to a new level, possibly making the 

catalytic steps distinguishable. The low temperature analogous reactions can be a new approach 

to reveal early stage mechanisms of typical zeolite based catalysis. 

 

 

 

 

 

Our recent research suggest that water plays an unexpected, positive role for this room 

temperature isobutane proton exchange reaction. The discovery of water’s new positive role is 

revealed by in-situ MAS NMR method. Historically, water has always been considered to reduce 

the catalyst activity. First, water is a competitive base that strongly adsorbs at the acid site, 

thereby inhibiting proton availability for hydrocarbon reagents.4-6 Second, at high-temperatures, 

the presence of water may lead to lattice dealumination and loss of acidity. Finally, in the case of 

zeolites, the presence of condensed water causes severe losses in crystallinity and catalytic 

activity.7 In this research, we show that water can both enhance and suppress the activity of 

alkane reactivity in zeolites. When a small amount, << 1 eqv, of water is co-adsorbed, the rate of 

isobutane C-H reactivity in zeolite can be enhanced by one order of magnitude. The reactivity is 

suppressed when water appears at large loadings. 

3.2 Experimental 

3.2.1. Isobutane adsorption method. Zeolites used were activated as described in Section 2.2.1. 

Similar as the vacuum-line method for water adsorption, a vacuum-line equipped with a 

Figure 3.1. H/D exchanges between isobutane-d10 and acidic ZSM-5 take 

places at room temperature. 
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CAVERN type apparatus was used for quantitative adsorption. A fixed quantity of catalyst was 

placed in a 7 mm zirconia MAS NMR rotor in the CAVERN apparatus, evacuated and sealed, 

and the adsorbate vapor was introduced in the vacuum line to an initial pressure, illustrated 

schematically in Figure 3.2. A desired pressure drop was used to control the adsorption quantity 

after exposure to the catalyst. The initial pressure and pressure drop vary with the vacuum 

line/CAVERN body volumes, the adsorbate molecules, the catalyst quantities and their Si/Al 

ratios. For example, to adsorb isobutane-d10 (C/D/N Isotopes Inc.) onto HZSM-5 catalyst, 40 mg 

catalyst was loosely packed into the rotor. Subsequently, 20 torr of initial pressure and 3.2 torr of 

pressure drop were used to determine when 1 eqv of isobutane-d10 was adsorbed. In all stack plots 

shown, spectral traces in a single stack plot are from the same sample unless otherwise noted. 

 

3.2.2. H/D exchange experiments. In-situ solid state 1H MAS NMR methods were used to 

inspect the reactions. For dry-catalyst experiments, 1 eqv of isobutane was adsorbed into both 

ZSM-5 (15) as described above and then tested by 1H NMR. The H/D exchanges took place 

immediately after adsorptions, while the adsorption processes usually took 2-4 minutes for 

completion. The initial H/D exchange spectra were typically acquired 10-15 minutes following 

the initial exposure. The following spectra were then taken as a function of time to follow the 

reaction, as shown in Figure 3.4.  For experiments involving water, catalysts were qualitatively 

Seal 

1H NMR 

Evacuate 

HZSM-5 

Adsorbates 

Figure 3.2. Scheme of an adsorption experiment 
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exposed to ambient exposure in a 7 mm rotor to adsorb water moisture. After ambient exposure, 

the wet catalyst was characterized by 1H MAS NMR to confirm the water loadings as shown in 

Figure 3.3. After NMR characterization, they were opened inside the glove box to avoid ambient 

exposure, immediately inserted to the CAVERN body, sealed, and transferred to the vacuum line 

for subsequent isobutane-d10 co-adsorption. 

3.2.3. NMR measurements. 1H MAS (magic-angle spinning) NMR data were collected on a 

Bruker DSX-300 MHz spectrometer, with spinning rate of 5 kHz, using a single 3.8 s /2 

excitation pulse.  Recycle delays were 10 seconds for dry zeolites, as relaxation measurements 

yielded T1H value of 1.9-2.0 seconds. For catalysts exposed to any reagent or water, a 1-second 

recycle delay was sufficient for acquisition of quantitative spectra, since T1’s were reduced to 0.1-

0.2 s following adsorption. However, to be consistent, 10-second recycle delays were used for 

both dry and “wet” experiments. Typically, 64 scans were acquired per spectrum. 

 

3.3 Results and discussion 

Using the rotor-ambient-exposure method described in Chapter II, HZSM-5 catalysts with and 

without trace amount of water were prepared, and characterized by 1H MAS NMR, as displayed 

in Figure 3.3. Recall from Chapter II that the Brønsted acid site peak decreases abruptly with 

trace amount of water adsorbed, i.e. < 0.1 eqv. From the water adsorption results (Figure 2.10), 

we know that less than 0.05-eqv water was adsorbed in catalyst (b). Both catalyst (a) and (b) were 

then loaded with 1 eqv isobutane-d10, and subsequently inspected by in-situ 1H NMR. 
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 Figure 3.4 shows the time series spectra obtained following adsorption of isobutane-d10 

on catalyst (a) and (b) in Figure 3.3. The starting catalyst, i.e. prior to isobutane adsorption, 

corresponds to that shown in Figure 3.3a, and similarly, Figure 3.4b corresponds to that shown in 

Figure 3.3b. In each case, 1 eqv isobutane-d10 was adsorbed using the CAVERN-adsorption 

method. Note that the isobutane pressure started at 20 torr and ended at 16 torr, with respect to the 

pressure before and after adsorption. Therefore, the actual partial pressure of isobutane inside the 

closed rotor must be less than 16 torr, since the adsorption into the catalyst did stop even after the 

rotor was sealed. Therefore, the absolute pressure inside the sealed rotor is not measurable, but it 

must be less than 16 torr. After adsorption, 1H MAS NMR spectra were obtained as a function of 

time, plotted in Figure 3.4. Two key features are apparent in these data: 1) The Brønsted acid 

peak originally at 4.2 ppm shifts to 4.9-5.1 ppm with subsequent intensity decrease as H/D 

Figure 3.3. 1H MAS NMR spectra of identically-prepared Si/Al = 15 

HZSM-5 catalysts, in which an apparent loss of Brønsted acid site 

intensity at 4.2 ppm is observed in (b) versus (a).  The broad signal 

denoted by * is a constant-area background signal from the probe.  The 

spectra were obtained at 5 kHz MAS speeds. 

* 
b. 

a. 

Acid site 

SiOH 
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exchange occurs with isobutane-d10, and 2) a protonated peak arises at 1.1 ppm, corresponding to 

newly formed C-H species in isobutane. The silanol peak at 1.9 ppm is unaffected throughout the 

reaction.  

 Once isobutane molecules are adsorbed, protons on acid sites and deuteriums on 

isobutane molecules undergo reversible exchange immediately, see Figure 3.4. However, the 

excess amount of deuterium over proton, i.e. D:H = 10:1 at 1 eqv loading, leads to almost 

complete transfer of protons from acid sites to the methyl groups. Because deuterium nucleus is 

silent in 1H NMR, the exchange extension can be greatly followed by observing the reduction of 

the acid peak and the increment of the methyl peak, which are labled in Figure 3.4 for clarity. The 

H/D exchange between isobutane-d10 and HZSM-5 is not new, but the suprising observation in 

Figure 3.4 is. That is, the exchange rate is much higher with the presence of water than without 

water, considering that water typically inhibits solid acid activities. The difference is clearly seen 

by comparisons of individual time points in Figure 3.4a to the relative points in Figure 3.4b, e.g. 

165 min versus 174 or 45 versus 44 min, where the former methyl peak intensities are much 

higher than the latter ones. 

While not shown here, the exchange reactions shown in Figure 3.4a were also measured 

after twelve days of reaction to ensure isotopic equilibration. The integrated area ratio of the 

isobutane CH3 peak to the acid site signal ranged from 8.5-10:1, which is near the expected 9:1 

ratio for the targeted 1 equivalent isobutane loading. This control experiment demonstrates that 

our MAS rotor system is sealed and no loss of isobutane or ingress of water occurs, and that 

within reasonable error, we can control the intended isobutane adsorption amount. The results 

depicted in Figure 3.4 are representative of results observed in multiple experiments. 

Comparisons of the spectral differences in Figure 3.3, the first spectra in each of the time series 

shown in Figure 3.4, and the water interactions observed in Chapter II, i.e. Figure 2.9 and 2.10, 

lead us to propose that the key difference between these two catalysts is the co-adsorbed water at 
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Equation 3.1 

Stage I level. For the sake of discussion, we will call the catalyst in 3.3a/3.4a the “dry” catalyst, 

and the one in 3.3b/3.4b the “wet” catalyst.   

 

 
Kinetic analysis The time dependent spectra in Figure 3.4 provide abundant information for 

kinetic analysis. Peak deconvolutions were approached by using OriginLab software, via a 

combined Gaussian-Lorentzian simulation method, see Equation 3.1, where y0 = baseline, xc = 

peak center, A = amplitude, w = width (full width at half maximum), s = shape.  

𝑦 = 𝑦0 +
𝐴

1 + 𝑒
0.5(1−𝑠)(

𝑥−𝑥𝑐
𝑤

)
2

𝑠 (
𝑥 − 𝑥𝑐

𝑤 )
2
 

 

Using this method, the acid (4.8 ppm), silanol (3 ppm) and methyl (1 ppm) peaks can be well 

resolved. A deconvolution example, adapted from the 134-min spectrum in Figure 3.4a, is shown 

in Figure 3.5. Note there are always strong sidebands of the acid peak, marked with stars in 

Figure 3.5, because acid sites rarely undergo exchanges between each other, leading to strong 

Figure 3.4. 1H MAS NMR exchange stack plots at 296 K of (a) a catalyst 

corresponding to that shown in Figure 3.3a and (b) a catalyst corresponding to that 

in spectrum 3.3b, in which 0.94 and 1.0 equivalent of isobutane-d10 are adsorbed, 

respectively.  The total elapsed time following isobutane adsorption, in minutes, is 

indicated. The very sharp peak at 0.2 ppm in (a) is from an inert 

polydimethylsiloxane (solid) chemical shift and intensity standard, which verifies 

the ca. 1-ppm change in chemical shift for the acid site following adsorption, and 

the constant silanol signal intensity.  

208 

174 

154 

134 

116 

94 

64 

44 

14 

b. 

165 

135 

105 

75 

45 

15 

a. 
acid 

acid 

i-CH3 
i-CH3 
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anisotropic dipolar interactions.8 To ensure quantitative analysis, the sidebands must be counted 

and added up to their relative main peak intensity. Note the small acid peak in this dry condition 

compared to a regularly calcined catalyst in Figure 2.1b. 

 

 

Since the NMR signal is quantitative, the intensity of each resolved peak can be used as 

‘concentration’ for kinetic analysis. Using “CD” as a short term for isobutane-d10, the exchange 

reaction can be simplified as 

 

 

 

Using ‘m, n, o, p’ to represent the partial reaction order of each specie, the overall reaction rate 

can be obtained, 

 𝑅𝑎𝑡𝑒 = 𝑘1[𝐶𝐷]𝑚[𝐻+]𝑛 − 𝑘−1[𝐶𝐻]𝑜[𝐷+]𝑝 = −
𝑑[𝐻+]

𝑑𝑡
=  

𝑑[𝐶𝐻]

𝑑𝑡
 

Figure 3.5. An example showing peak deconvolution result using the combined 

Gaussian-Lorentzian method. Note: solid black line = original spectra, dashed red 

line = convoluted spectra, green lines = resolved peaks. 

* * 
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Equation 3.2 

 

Because deuterium is in excess, especially at initial conditions, the reverse reaction can be 

ignored, thus the term k-1 [CH]o [D+]p ≈ 0. Also, simplify k1 [CD]m to k’, got  

 

𝑅𝑎𝑡𝑒 = 𝑘1[𝐶𝐷]𝑚[𝐻+]𝑛 = 𝑘′[𝐻+]𝑛 = −
𝑑[𝐻+]

𝑑𝑡
=

𝑑[𝐶𝐻]

𝑑𝑡
 

 

Normally, only one acid site is believed to be involved in each exchange, so n = 1. Then the 

consumption rate of the acid proton can be derived as 

 

𝑘′[𝐻+] = −
𝑑[𝐻+]

𝑑𝑡
 

𝑙𝑛 (
[𝐻+]

[𝐻+]0
) = −𝑘′𝑡 

 

Using [H+]0 and [CH]∞ as notations for the moles of initial acid site and final  

 

[𝐻+] = [𝐻+]0 − [𝐶𝐻] = [𝐶𝐻]∞ − [𝐶𝐻] 

 

Where [H+]0 = [CH]∞. Thus, the rate of the formation of [CH] can be expressed as 

 

𝑙𝑛 (
[[𝐻+]0 − [𝐶𝐻]]

[𝐶𝐻]∞
) = −𝑘′𝑡 

 

𝑙𝑛 (
[[𝐶𝐻]∞ − [𝐶𝐻]]

[𝐶𝐻]∞
) = −𝑘′𝑡 
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Equation 3.3 𝑙𝑛 (1 −
[𝐶𝐻]

[𝐶𝐻]∞
) = −𝑘′𝑡 

 

Equation 3.2 and 3.3 were used as the basic functions to convert 1H NMR spectra to kinetic plots. 

k’ is the rate reported rate constant, in unit s-1.  

The quantitative treatment, via Equation 3.2 and 3.3, of the data shown in Figure 3.4, is 

summarized in Figure 3.6. Integrated peak areas for the isobutane CH3 (1.1 ppm) and the acid site 

(4.2 ppm) signals are plugged into Equation 3.2 and 3.3 separately, then plotted versus the 

reaction time for the initial rate region of the exchange. The positive slope corresponds to the 

growth of CH3 signal from H/D exchange, while the negative slope is from the decreasing acid 

site signal. The “dry” versus “wet” results, corresponding to the experiments in 3.4a versus 3.4b, 

are denoted by open and closed symbols, respectively. Usually, the acid peak of a “wet” catalyst 

is broadened because of the water-acid site, thus, the deconvolution is less accurate than for a 

“dry” spectrum. However, the CH3 peak is generally sharp and well resolved, and thus more 

dependable for analysis. There are two important conclusions from this data. First, the reaction 

with the dry catalyst exhibits equal rate constants for the loss of the acid site signal and the gain 

of the isobutane CH3 signal, as expected for a two-site H/D exchange process between the 

catalyst and the reactant. Second, the exchange rate constant for the growth of the CH3 proton 

signal in the “wet” catalyst is an order of magnitude larger than in the dry system, and it is larger 

than its corresponding acid site signal change (solid points). The observation that the growth of 

the “wet” CH3 signal is faster than the loss of the Brønsted acid site signal is consistent with our 

proposal that this catalyst has some residual water. The residual water can exchange with the acid 

site, serving as a secondary proton source to replenish the acid signal following a deuterium 

exchange event with the isobutane-d10 through a three-site exchange process.  
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Control experiments of which water at different amounts were adsorbed onto dry HZSM-

5 via ambient exposure, followed by 1 eqv isobutane adsorption. A graphical summary of the 

relationship between the reaction rate for isobutane C-H activation reaction and catalyst water 

content is shown in Figure 3.6, with reduced exchange rates occurring once the water content 

increases above the ca. 0.3 eqv level.   

Figure 3.6. Semilogarithmic plot for the room-temperature exchange data shown in 

Figure 3.4, with areas taken from the 1.1 ppm isobutane CH3 (positive points) and 5.0 

ppm acid site (negative points) peaks.  Note that the rate constants provided in the 

figure indicate identical exchange rates for the reaction in the dry catalyst, but 

inequivalent methyl and acid proton signal intensity changes for the less dry, or “wet”, 

catalyst.  

1.7×10-4 s-1 

-7.5×10-5 s-1 

2.8×10-5 s-1 

-2.8×10-5 s-1 
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3.4. Conclusion 

Zeolite-catalyzed alkane C-H bond activation reactions carried out at room temperature, low 

pressure, and low reagent loadings demonstrate that water can act either to increase or to suppress 

the observed reaction rates.  Isobutane reaction rate constants are increased by a factor of 10 at 

water loadings in the range of ca. ≤ 0.1 water molecule per catalyst active site relative to the dry 

catalyst.  Conversely, too much water, i.e. > 0.2 eqv, retards isobutane reaction, which can be 

Figure 3.6. Linearized single-exponential growth plots of the isobutane 

CH3 peak area in the 1H MAS exchange spectra as a function of reaction 

time, for four different water loadings in equivalents. The dashed lines 

are simply drawn as guides to the eye through the raw data points. The 

corresponding spectra for the first time point in the exchange series are 

shown near their trend line, ordered from top to bottom.  Note that the ca. 

≤ 0.1 eqv loading corresponds to a spectrum with clear acid site peak but 

no obvious water peak (shaded box inset). The water loading of the 

bottom two catalysts were not quantified, while, one has neither a well-

defined water nor acid peak, and the other has a well-defined water peak 

but no acid site peak. Rough loadings can be obtained by comparing 

Figure 2.10. 

≤ 0.1 eqv 

dry 

≈ 0.2 eqv 

> 0.3 eqv 
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understood based on the much higher proton affinity of water clusters compared to single water 

or isobutane molecules. These results indicate that water can be an active participant in reactions 

involving hydrophobic molecules in solid acid catalysts. Such conditions exist in well-known 

catalytic reactions, e.g., methanol-to-hydrocarbon and biomass-generated ethanol-to-hydrocarbon 

chemistries, since stoichiometric water is a first-formed byproduct. Further experiments with 

better control of water loadings using aromatic reagents will be presented in Chapter III. 
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CHAPTER IV 
 

 

WATER’S IMPACT ON THE REACTIONS OF AROMATIC MOLECULES IN ZEOLITES 

 

 

4.1. Introduction 

The results of isobutane experiments have taught us a remarkably unexpected role that water 

plays in zeolite catalysis. However, isobutane, containing only C-H and C-C bonds, poses the 

consequent questions: Is the water’s positive effect on zeolite catalyzed reactions more general 

than isobutane? Aromatic molecules, known as the star molecules in carbon pool mechanism, are 

chosen to be test molecules for water’s effect. 

 

 

 

 

 
Figure 4.1. Carbon pool mechanism in zeolite based Methanol to Hydrocarbon 

(MTH) conversion, adapted from reference 7. 
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Methanol to Hydrocarbon conversion and carbon pool mechanism 

 

The methanol to Hydrocarbon (MTH) process over acidic zeolites, first discovered by Exxon 

Mobil in 1976,1 has regained interest in recent years as the global energy demand increases and 

the conventional energy resources decrease. In addition, methanol is renewable from feedstocks 

such as natural gas2, coal3-4, and biomass5-6. Dahl (1994) pointed out that certain types of 

chemicals, now known as carbon pool species, have to form first to initiate the MTH conversion, 

illustrated in Figure 4.1.7 However, it was not until 2000 that Xu and White uncovered the 

aromatic nature of the carbon pool species.8-9 To date both the carbon pool identifications and 

mechanisms are well developed, shown in Figure 4.2.10 Despite the type of zeolite catalyst used, 

or the type of product targeted (Figure 4.2a), the carbon-pool molecules have to be built up for 

further conversion. Figure 4.2b shows the two well-known catalytic cycles of the carbon pool 

mechanism. In the aromatic cycle, side chain alkylation and dealkylation reactions are the most 

common chemistry occuring. Usually, the formation of carbon pool is the rate-limiting step in 

MTH conversions.  

 

 

 

  

Methanol + zeolite Light olefins Products 

Aromatic 

carbon pool 

Olefin 

carbon pool 

k1, rate limiting k2 
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Even though water has been historically considered as deleterious reagent, there are a few 

instances in which water has been found to exhibit a positive effect on selectivity by virtue of its 

ability to prevent secondary reactions from occuring by strongly adsorbing at Brønsted acid sites 

and reducing product readsorption events. For example, selectivity enhancements for methanol-

b. 

Figure 4.2. Modern insights into carbon pool mechanism (adapted from reference 

10). (a) An overview of Methanol to Hydrocarbon conversion via zeolites showing 

the carbon pool species are mostly aromatic molecules. (b) Scheme showing side 

chain alkylation and dealkylation reactions are the basic chemistry occurring in the 

carbon pool mechanism.  

a. 
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to-hydrocarbon conversions through water co-addition have been reported for many years,11-12 

and even very recently the origin of this effect has been attributed to water’s competitive 

adsorption properties.13 Interestingly, for an alcohol reagent like methanol, which generates water 

in the condensation step to dimethyl ether, the addition of even more water leads to increased 

selectivity to primary products like small olefins.   

However, none of the cases mentioned above have shown if water can improve the 

catalyst’s intrinsic activity.  More interesting, and only recently recognized, are cases in which 

the catalytic activity is actually promoted by the presence of water. For example, in a gas-phase 

Fischer-Tropsch study involving Ru catalysts, Hibbitts et al.14 showed that CO activation is 

increased through water-mediated hydrogen transfer. Similarly, Yoon et al.15 demonstrated that 

activity in Rh-catalyzed biphasic conversions of lignin-derived molecules increased in the 

presence of co-fed water by enhancing a key hydrodeoxygenation step on the bifunctional 

catalyst. Water’s role in each of these cases proceeded only through interaction with the metal, 

not a solid acid function. A few reports in the literature suggest that introduction of small 

amounts of water can increase reactions rates in pure solid-acid catalysts. For example, Zhao et 

al.16 reported an enhancement in rates over zeolite catalysts, showing increased methylpentane 

isomerization rates upon introduction of small amounts of water over HY zeolites. More recently, 

Motokura et al. demonstrated that addition of water in the range of 1-5 wt% relative to the mass 

of the proton-exchanged montmorillonite catalyst increased reaction rates between bulky alkenes 

by over an order of magnitude.17 Finally, computational studies suggest that water might enhance 

ring alkylation/dealkylation steps in the critical carbon-pool mechanism in MTH chemistry 

through stabilizing the transition state.18  

 In this chapter, benzene activation in acidic HZSM-5 catalysts was investigated in the 

presence of controlled water addition. Benzene was chosen due to the fact that single-ring 

aromatics are germane to so many hydrocarbon processes in zeolites, for its critical role in the 
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carbon pool mechanism in MTH chemistry, and perhaps most significantly its role as a precursor 

to large polycyclic aromatics that ultimately lead to zeolite deactivation at high temperature.  

Reactions between benzene and the zeolite HZSM-5, carried out at low pressure, room 

temperature, and equimolar benzene-to-acid site stoichiometry, revealed that controlled addition 

of sub-stoichiometric amounts of water, i.e., less than one equivalent, increases the rate of 

isotopic 1H/2H exchange between benzene-d6 and the surface acid site by almost an order of 

magnitude relative to the control case in which dry zeolite is used.  This result is unexpected, 

given that water is typically viewed as lowering zeolite activity and is utilized in that manner to 

help improve selectivity to primary reaction products. Importantly, water’s activity promotion 

effect was only observed with high acid density catalysts, i.e., at Si/Al = 15, but was not observed 

for catalysts with Si/Al = 40. The fact that sub-stoichiometric water addition significantly 

increased reaction rates for aromatic hydrocarbons in acidic zeolites is not anticipated from the 

literature, and potential mechanisms to explain these surprising results as well as their 

dependence on the acid site density are discussed. 

4.2. Experimental 

Benzene-d6 H/D exchange experiments. Catalysts HZSM-5 at Si/Al = 15 and Si/Al = 40 were 

activated as demonstrated in Section 2.2.1. The calcined zeolite catalysts were always inspected 

by 1H MAS NMR to confirm the calcination quality before further use. Benzene-d6 was 

quantitatively adsorbed via the vacuum-line-CAVERN method, similar as quantitative water and 

isobutane-d10 adsorption. The initial pressure of the vacuum line adsorption is 10 torr for benzene-

d6, noticing 20 torr was used for isobutane adsorption. For water coadsorbed experiments, 

catalysts with water loadings ranging from 0.05 to 1.0 eqv were prepared via exposure to 

controlled amounts of water vapor on a vacuum line. Each catalyst with water loading was sealed 

overnight to allow water diffusion and equilibration within the catalysts, and then characterized 

by 1H MAS NMR to confirm the water loadings. After NMR characterization, they were opened 
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inside the glove box to avoid exposure to any additional water, immediately inserted to the 

CAVERN body, sealed, and transferred to the vacuum line for subsequent Benzene-d6 adsorption. 

 

Aromatic alkylation and dealkylation experiments. High temperature 1H MAS NMR and a 

specially designed batch reactor method, coupled with cumene cracking and ethylbenzene 

dealkylations have been used to examine the water’s impact to the catalyst activity. The high 

temperature NMR setup is shown in Figure 1.14. The batch reactor design is shown in Figure 

4.18, using a 125 mL Parr acid digestion bomb. Note the valid volume of the reactor is 

determined by the Teflon insert, which is 100 ml. The designed upper temperature limit for this 

reactor is 250 C.  

 

NMR measurements. For benzene-d6 experiments, 1H MAS NMR data were collected on a 

Bruker DSX-300 MHz spectrometer, with spinning rate of 5 kHz, using a single 3.8 s /2 

excitation pulse. Recycle delays were 10 seconds for dry zeolites, as relaxation measurements 

yielded T1H value of 1.9-2.0 seconds. For catalysts exposed to any reagent or water, a 5-second 

Figure 4.3. A 125 mL Parr reactor. 
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recycle delay was sufficient for acquisition of quantitative spectra, since T1’s were reduced to 0.1-

0.2 s following adsorption. Typically, 16 scans were acquired per spectrum, resulting in a 90 s 

acquisition period.  Unless otherwise noted, all spectra were acquired at room temperature. 

For high temperature in-situ experiments, 1H MAS NMR data were collected on a 

Chemmagnetic 300 MHz spectrometer, with spinning rate of 5 kHz, using a single 4 s /2 

excitation pulse. 

4.3. Results and discussion 

4.3.1. In situ 1H MAS NMR investigation of water’s effect on the H/D exchange between 

Benzene-d6 and HZSM-5. 

 

The in situ 1H MAS NMR spectra of 1-eqv benzene adsorbed on dry HZSM-5 (15) in course of 

reaction time is shown in Figure 4.4. The Brønsted acid site peak is centered at 4.8 ppm, and 

broadened because of H-π bonding between acid protons and benzene rings. From Figure 

4.4, one observes that the total area of the benzene peak at 7.5 ppm increases as 

Figure 4.4. Representative in-situ 1H MAS NMR spectra as a function of 

time following adsorption of 1 eqv benzene-d6 on dry HZSM-5 (Si/Al = 

15). 

benzene 

silanol 
acid site 
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proton/deuterium exchange occurs, with a concomitant decrease in the overall area of the 

acid site resonance.   

 

 

Figure 4.5 shows comparable experimental results, but in the presence of co-adsorbed 

water.  Two different acid site density catalysts were investigated; Si/Al = 15 shown in 4.5a, and 

Si/Al = 40 in 4.5b.  From Figure 4.5, it is evident that the relative area of the benzene peak (7.5 

ppm) compared to the non-reactive silanol peak (2.0 ppm) is much larger in 4.5a than in 4.5b, as 

might be expected for first-order kinetics in relation to the number of acid sites.  In addition, it is 

also evident that a resolved acid site still exists after 18 h for the Si/Al = 40 case, while it is 

essentially consumed after 17 minutes in the Si/Al = 15 reaction.   

Figure 4.5. Representative in-situ 1H magic-angle spinning (MAS) NMR spectra as a 

function of time following adsorption of 1 eqv benzene-d6 on (a) HZSM-5 at Si/Al = 

15 with 0.1 eqv water, and (b) HZSM-5 at Si/Al = 40 with 0.06 eqv water.  Note the 

much longer timescales in (b). The narrow peak near 0.2 ppm in each case is an inert 

chemical shift standard added to the experiment (polydimethylsiloxane/PDMS). 

a. b. 

Benzene Benzene 

PDMS 
silanol 

Acid 

Silanol 
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From the raw data acquired over multiple experimental runs, differences in reactivity 

with varying Si/Al in the absence and presence of different water loadings are apparent, and are 

summarized in Figure 4.6.  Results for Si/Al = 15 are shown in 4.6a, and Si/Al = 40 in 4.6b, with 

the selected spectra shown taken after a fixed reaction time following adsorption of 1 eqv of 

benzene-d6 on the catalysts.  All spectra in 4.6a were acquired 17 min after adsorption, while 

those in 4.6b at 45 minutes after adsorption.  As a reminder, the sharp peak at 0.2 ppm is the inert 

solid chemical shift standard PDMS, used as a reference to help interpret adsorbate or reaction-

induced chemical shift changes.   

Two conclusions are apparent from the data in Figure 4.6.  First, Figure 4.6a shows that 

the rate of hydrogen/deuterium exchange between benzene and the Brønsted acid site is 

significantly larger in all cases where water is adsorbed relative to the dry Si/Al = 15 catalyst, 

with the exception of the 0.4 eqv experiment. While the 0.4 eqv results appears comparable to the 

a. b. 

Figure 4.6. In-situ 1H MAS NMR spectra acquired at a fixed reaction time after 

adsorption of 1-eqv benzene-d6 on HZSM-5 catalysts, with the indicated water 

loadings by color, on (a) Si/Al = 15 at 17 minutes after adsorption, and (b) Si/Al 

= 40 at 45 minutes after adsorption. Note the significant increase in reaction rate 

in (a) with water addition compared to the dry catalyst, particularly at 0.05-0.1 

eqv water, but reaction rate reduction in (b) with water addition. 
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dry catalyst result after 17 minutes of reaction, increasing the water loading above 0.4 eqv 

resulted in decreased reaction rates relative to the dry HZSM-5. The exchange reaction is much 

faster when ca. 0.1 eqv of water is co-adsorbed on the catalyst versus the completely dry catalyst, 

with little acid site signal in the 4 to 6 ppm region remaining after 17 minutes. Secondly, Figure 

4.6b indicates that reaction in the presence of water always reduced the reaction rate compared to 

the dry Si/Al = 40 catalyst, even for water loadings in excess of 0.14 eqv (not shown).   

 

 

Raw data from which the reaction rates were calculated are shown in Figure 4.7 for three 

of the high acid density experiments, with a complete summary of rate constants as a function of 

water loading shown in Figure 4.7. Note from Figure 4.7 that the rate of benzene signal growth 

exactly equals the rate of Brønsted acid site signal decay for the dry HZSM-5.  However, once 

Figure 4.7.   Representative rate plots for the total integrated areas of the benzene 

(positive slope) and zeolite acid site (negative slope) peaks in the in-situ NMR 

experiments, as a function of reaction time and water loading, in the Si/Al=15 catalyst.  

Linear regression fits are plotted through the positive benzene points, while the lines 

through the negative acid site points are drawn only as guides to the eye. 



106 
 

water is added, the Brønsted signal is no longer clearly resolved due to its interaction/exchange 

with water protons, as shown in Figure 2.10.  Therefore, reaction rate constants in the presence of 

water were extracted via regression analysis of only the benzene signal growth, as it is well 

resolved. Figures 4.7 and 4.8 indicate that the addition of about 0.1 eqv of water increases the 

benzene H/D exchange reaction by almost an order of magnitude relative to the dry catalyst.   

 

Figure 4.8 indicates that maximum reaction rates were obtained when 0.05-0.1 eqv of 

water was present on the catalyst when benzene-d6 was adsorbed, in excess of 8 times that 

measured in the dry catalyst experiments. Figure 4.8 suggests that at room temperature and low 

pressures (ca. 0.01 atm), water should be present in sub-stoichiometric amounts, specifically 

Stage I adsorption, for maximum hydrocarbon reactivity in a static reaction. However, this 

conclusion is only appropriate at the room temperature and low-pressure conditions used for 

those experiments, and may not apply for zeolite/hydrocarbon reactions at high temperatures, or 

under flow reactor conditions.  

Figure 4.8.  Rate constant versus water loading for the reaction obtained from the 

full kinetic rate plots on each sample. Individual points were calculated by time-

dependent analysis of peak integrals of rising benzene 1H signal following isotopic 

exchange with the acid site. 
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4.3.2. Mechanism discussion. What is the reason for the reactivity enhancement? Why does it 

only require such small amounts of water?  

1200, Brandle 1998, 

Jones 2015 

118, Ryder 2000; 

52-98, Sauer 2001;     

17-20* Baba 1998 

? 

50, Sauer 1996 

d. 

e. 

c. 

a. 

Figure 4.9.  Five possible types of protonic specie conversions at Stage I 

adsorption. The bolded numbers on the right of each conversion is the relative 

energy barrier reported in the literature. 

b. 

10, Sauer 1996; 

16, Ryder 2000; 

30, Zhu 1999 

Energy barrier 

(kJ/mol) 
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The first reason is that water is capable to significantly mediate the on-site proton transfer 

at very small loadings. Figure 4.9 summarizes the energy barriers of the most possible protonic 

specie conversions, excluding silanol interactions, in zeolites at Stage Ia level of water adsorption. 

Even though uncertainties are present due to the computational limitations, the values are 

accurate enough to be ranked in an increasing sequence from (a) to (e). The energy of the 

dehydroniumation of bonded water (Figure 4.9d) has not been seen in literature, but it should be 

higher than the on-site proton jumps (Figure 4.9c), because the separation of charges is required. 

By comparison, it is quite possible that the dry acid site is not the most reactive site because of its 

strong H-O bond. Either deprotonation (Figure 4.9e, 1200 kJ/mol)19-20 or on-site jump (Figure 

4.9c, ca. 100 kJ/mol)19, 21 has high energy barrier to overcome. However, water molecules can 

significantly mediate the on-site proton transfer (Figure 4.9a), by reducing the energy barrier to ca. 

10 kJ/mol, which is even lower (1 kJ/mol) from our NMR measurements. Note that Baba et al. 

reported low energy barriers, i.e. 17-20 kJ/mol, for proton on-site jumps, however, by looking at 

their 1H NMR spectra, it is obvious that their catalysts contain residual water, presented as 

downfield shoulders by acid peaks. Thus, their values actually respond to the energy barrier in 

Figure 4.9a. Interestingly, Ryder’s DFT calculation suggests “even as little as 1 ppm of water per 

acidic proton, an amount indistinguishable by most experimental means, will reduce the apparent 

activation energy from 118 kJ/mol for completely dry H-ZSM-5 to ∼17 kJ/mol”.21 Their 

calculation also showed that the on-site jumping frequency of a proton is mediated from 10-8 s-1 to 

109 s-1, by introductions of water. Alberti et al. also proposed that “undetectable amounts” of 

water is important in the zeolitic catalyst in catalytic processes, concluded from their neutron 

diffraction results.22 

The most efficient loadings of water for enhancing the benzene H/D exchange are 

observed at very small amounts, such as 0.05 eqv and 0.1 eqv. Apparently, water loadings above 
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stage II, i.e. the loadings that water clusters start forming, are not synergistic conditions for the 

catalyst’s performance. Because, a) the water clusters strongly stabilize the proton due to their 

high proton affinities, and b) the clusters block the catalyst pores. However, at small loadings, for 

example, Stage Ia, since the acid sites are in excess, each water molecule resides on the acid site 

undergoing on-site jumps and occasionally hops to neighbor acid sites. The free water in the 

channels is rare, therefore, does not influence the accessibility of the channels. We do not have 

the computational data of the residence time (or weighted population fraction) for either water 

bonded on acid sites or free channel water, however, it is believed that the former is much longer 

than the latter. Estimated values of the fraction of acid site-bonded water, illustrated in Table 4.1, 

as guidance, can be obtained by calculation via the adsorption energy, e.g. 50 kJ by Sauer and 4-

10 kJ/mol (very rough) from our NMR results. The NMR data in Chapter II suggest Z-···H3O+ 

and Z-H+···H2O exist simultaneously before water clusters are formed. The calculation of 

chemical exchange theory coupled with the partition function shows the fraction of hydronium-

formed water is 27 % at 123 K, 40 % and 298 K, tabulated in Table 4.1. Note the Z-···H3O+ 

fraction shows strong temperature dependence using Sauer’s results (10 kJ/mol), but not with our 

NMR based results (1 kJ/mol).  

Again, the deprotonation energy of the Brønsted acid site is 1200 kJ/mol, see Figure 4.9e. 

However, the deprotonation energy of a hydronium ion is only ca. 700 kJ/mol. Theoretically, the 

latter should be more acidic and thus more reactive. The question is how much energy is needed 

to deprotonate “a single water molecule bonded on an acid site”. As mentioned before, it is well 

accepted that water can deprotonate the zeolite acid proton at large loadings. However, our group 

is the first showing the best evidence of one-water-molecule deprotonation. It is possible that the 

hydronium ions play important roles in enhancing the activity of the catalyst, by enhancing the 

acidity of the acid site, however, only at very small loadings.  
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Sauer’s ab initio data 

∆E1 = 10 kJ/mol, ∆E2 = 50 kJ/mol 

Our data 

∆E1 = 1 kJ/mol, ∆E2* = 4-10 

kJ/mol 

Temp/K 
Fraction of 
Z-···H3O

+ 

Fraction of free 

H2O 

Fraction of 
Z-···H3O

+ 

*Fraction of free 

H2O 

120 4.4E-05 3.9E-18 2.7E-01 2.3E+04 

198 2.3E-03 2.8E-11 3.5E-01 4.3E+02 

298 1.7E-02 9.8E-08 4.0E-01 5.7E+01 

398 4.6E-02 5.6E-06 4.3E-01 2.1E+01 

498 8.2E-02 6.4E-05 4.4E-01 1.1E+01 

598 1.2E-01 3.2E-04 4.5E-01 7.5E+00 

 

 

 

 

The discussion above explains the water has positive impact to the catalyst activity only 

at small loadings. However, it does not explain why water has no synergistic impact on the Si/Al 

=40 catalyst. If the water’s positive effect is due to the enhancement of the intrinsic acidity on the 

Brønsted acid site, the synergistic effect should be observed on Si/Al = 40 ZSM-5 as well. The 

Si/Al ratio influence on the water impact is not only seen in this room temperature in-situ 

condition, it is as well observed in a flow reactor condition above 200 ˚C, from an unpublished 

work of a collaborator, Dr. Crossley group (Oklahoma University). The Si/Al = 40 experiments 

Table 4.1.  Boltzmann distribution based on Sauer’s computational results and our 

experimental results.  ∆E1 is the energy barrier between Z-H+···H2O and Z-···H3O+, and 

∆E2 is the energy barrier between Z-H+···H2O and free water. The fraction of each 

specie is calculated based on chemical exchange equation and the partition function, 

shown as Equation 2.1. Note the starred values are not as accountable as the rest values. 
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need to be repeated to attain solid confirmation of the effect, because it could provide key 

information of understanding the main mechanism. Therefore, what properties in low-density 

zeolites that could eliminate the water’s synergistic impact? Si/Al ratio pose attentions to the Al 

site distance, and the location of the acid site, i.e. acid sites at straight channels vs. channel 

intersections.23-27 It is also believed that the confinement environment has impact on the activity, 

due to the entropy benefits.28-31 Usually, channel-protons are more reactive than intersection-

protons. Jones et al showed the evidence that Si/Al =40 ZSM-5 does not contain channel acid 

sites.25 Is the channel confinement required for the water enhancement? Control experiments 

using one dimensional 10-member ring zeolites, such as ZSM-22, could be interesting. The 

proposed hydronium ion mechanism, though not conflict with, does not support the Si/Al effect 

directly. 

4.3.3. High temperature in situ 1H MAS NMR investigation of water’s effect on dealkylation 

of ethylbenzene and cumene 

It is clear that water facilitates the C-H bond activations for isobutane and benzene, i.e. aliphatic 

and aromatic molecules, despite their molecular differences. Water could facilitate other zeolite-

catalyzed reactions more generally. How does water perform on a real hydrocarbon reaction at 

high temperatures? As mentioned in the introduction, the side chain alkylation and dealkylation 

of aromatic molecules are the most important types of reactions in zeolitic chemistries. 

Ethylbenzene dealkylation and cumene cracking are well-known as test reactions for probing 

catalyst efficiency.32-34 Ethylbenzene, cumene and butylbenzene reactivity increases with the 

increase of the side chain size, i.e. butylbenzene > cumene > ethylbenzene.35 Butylbenzene and 

those aromatic derivatives containing side chains larger than butyl group are not considered as 

test molecules, because they are not only too reactive, but also too big to fit in ZSM-5 zeolite 

pores. A simple comparison between the dealkylation reaction of either ethylbenzene or cumene 

at conditions with and without water could reveal the water’s effect. 
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4.3.3.1. Ethylbenzene dealkylation. 

 

Alkylation and dealkylation both happen when ethylbenzene is present in zeolite at reaction 

temperature, usually above 150 C.32, 36 Most of the ethylbenzene reactions in zeolites were 

conducted by flow reactors coupled with the GC-MS detection. However, reports of in-situ NMR 

results are rare. At high temperature, neither flow reactor nor in-situ NMR method can stop the 

reaction at the dealkylation step. Note that scheme 1 in Figure 4.10 is the most probable pathway 

in ZSM-5 catalysts37, because of shape selectivity. However, 1H NMR is not able to elucidate the 

aliphatic protons among ethylbenzene, diethylbenzene or multi-ethylbenzene. A representative 

result of high temperature in-situ 1H NMR spectra of ethylbenzene adsorbed on HZSM-5 (15) is 

illustrated in Figure 4.11. 1 eqv liquid ethylbenzene was injected into dry HZSM-5 (15) catalyst, 

sealed in a Chemagnetics 7 mm MAS rotor, elevated to 230 C stepwise. However, no obvious 

dealkylation was observed, due to the low resolution in the aliphatic region. A flow reactor 

coupled with GC-MS is recommended to replace the ethylbenzene test. 

Figure 4.10.  Probable reactions occur for ethylbenzene catalyzed by acidic 

zeolites. Adapted from reference 28. 
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4.3.3.2. Cumene cracking. In addition to ethylbenzene dealkylation, cumene cracking was also 

investigated by the in-situ high temperature NMR method. At desired temperatures, cumene first 

cracks into benzene and propylene, demonstrated in Figure 4.12. Propylene is much more reactive 

than ethylene. Thus, propylene, once formed, is immediately adsorbed on acid sites, undergoing 

oligomerization reactions. However, ethylene does not oligomerize in zeolites at room 

temperature. The high reactivity of propylene can prevent alkylation from taking place; thus, 

providing obvious dealkylations for 1H NMR detection.  

Figure 4.11.  High temperature in-situ 1H MAS NMR spectra of 1 eqv 

ethylbenzene in HZSM-5 (15). 
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PDMS was used as an inert internal reference for convenient peak calibrations, especially for 

high temperature spectra. However, the PDMS intensity decreases with increasing the 

temperature, by a comparison between Figure 4.13a and 4.13d, where the 1H NMR spectra were 

acquired on a same sample at 200 ˚C and room temperature. By changing the delay time d1, it is 

observed that 20 seconds was required for a complete T1 relaxation. In short, PDMS is not 

appropriate for quantitative analysis for cumene cracking experiments in the absence of long T1-

relaxation delays, since PDMS is on high-temperature side of its minimum; however, it is still 

sufficient and necessary for peak calibration. 

  

Figure 4.12.  Cumene cracking in zeolites 
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Once liquid cumene is injected into zeolites, it is necessary to wait for the cumene 

molecules to diffuse into the catalyst pores. The 1H NMR spectra in Figure 4.14 shows the 

difference before and after diffusion, as well as the influence of co-adsorbed water upon cumene 

adsorption. Figure 4.14a and 4.14c were acquired immediately after the injection of cumene, 

showing sharp liquid-like cumene peaks, in which the aromatic peak centered at 7.2 ppm, the 

methine (CH) at 2.7 ppm, and the methyl (CH3) at 1.1 ppm. Again, the sharp peak at 0.2 ppm is 

from the inert internal reference PDMS. In Figure 4.14, (a) and (b) were in the dry condition, (c) 

and (d) were exposed to 1-eqv water before cumene. Although Figure 4.14a and 4.14c are the 

same, Figure 4.14b and Figure 4.14d show obvious differences after letting the systems reach 

diffusion equilibrium. An up-field shift of the entire cumene peak occurred after diffusion without 

the presence of water. However, a down-field shift observed in the presence of 1-eqv water. The 

difference of chemical shift change suggests that water and cumene must coexist in proximity of 

acid sites, leading to a change of the electronic environment around cumene.  

Figure 4.13.  (a) and (d) shows the intensity of PDMS decreases with the increase of 

temperature. (a), (b) and (c) the intensity increases with the increase of delay time, 

d1, indicating at least 20 seconds needed for a quantitative analysis of PDMS. 

a 

d 

c 

b 
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A representative 1H MAS NMR spectra of an in-situ high temperature experiment for 

cumene cracking is demonstrated in Figure 4.15. Clearly, the dealkylation occurred after the 13-

min-heating at 200 C. The spectra from 13-min to 60-min show aliphatic peaks that are clearly 

changed. However, both the catalyst and the organic reagent are sealed in the closed rotor, which 

is a closed reaction system. Again, like the ethylbenzene system, the 1H NMR spectrum is not 

sufficient to distinguish the isopropyl group of cumene and the scrambled aliphatic products 

formed after cracking. Once the rotor was cooled back to temperature after the reaction, the cap 

was taken off for a few minutes, and then placed back for another spectrum, shown as the top 

spectrum in Figure 4.14. The aliphatic peak, which was prominent in of the other spectra, almost 

disappeared, because the aliphatic products diffuse out while the cap was taken off.  

a. 

Figure 4.14.  1H MAS NMR spectra of 1 eqv cumene adsorbed in HZSM-5 (15) 

at room temperature. The condition of each catalyst is labeled in the figure. 

aromatic 
CH 

CH3 

PDMS 

b. 

c. 

d. 
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With the problem caused by the closed system, reactions were also tested in a newly 

designed open system by replacing the traditional rotor cap with a bored cap (a grooved Teflon 

cap but bored through the center). Figure 4.16a shows spectra of a HZSM-5 (15) catalyst loaded 

with 1 eqv cumene at elevated temperatures in an open system. Even though the cumene escapes 

from the system as well, it is obvious that the cracking reactions took places at 120 C, which is 

lower than in a closed system. The bottom spectra labeled as “Closed system” in Figure 4.16b 

show the comparable experiment in a closed system, where the catalyst loaded with 1 eqv cumene 

was heated up to 120 C, however, with no obvious changes observed. Interestingly, by replacing 

the bored cap (open system) with a traditional cap (closed system), and then reheating it stepwise 

to 120 C, the reaction occurred, shown in the spectra labeled as “Open system”, evidenced by 

the down-field shift of the aromatic peak and the decreased aliphatic/aromatic ratio. 

 

Cumene 

C
ra

c
k

in
g

 

Benzene+ Aliphatics 

Aromatic 
Aliphatic 

Figure 4.15.  In-situ 1H MAS NMR spectra of cumene, with 1 eqv water co-

adsorbed, in HZSM-5, heated to 220 C. 
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Conclusion high temperature in-situ NMR experiments. The water effect is not clearly 

observed by the high temperature in-situ NMR experiments yet. More modifications of the 

method are required for further study. However, useful information is attained. First, water and 

cumene can coexist in proximities of acid sites. Second, the cracking and aliphatic product 

scrambling are the major reactions for in-situ cumene cracking. Thus, it is a potential test reaction 

for evaluating the water effect. Third, the reaction occurs at 120 C in an open system, but at 

higher temperature in a closed system, presumably due to Le Chatelier's principle. 

4.3.4 Batch reactor test on cumene cracking and toluene disproportionation 

 

 

 

 

Figure 4.16.  1H NMR spectra of cumene cracking at variable temperatures in 

(a) an open system, using a bored-through Teflon cap, and (b) a closed system 

for one heating-cooling cycle and an open system for a subsequentialheating 

cycle.  

a. b. 

Open 

system 

Closed 

system 
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4.3.4.1. Toluene disproportionation. Zeolites have been extensively used for toluene 

disproportionation (Figure 4.14) and transalkylation processes to obtain more useful benzene, 

which is a key raw material of many petrochemical intermediates, and xylene, an important 

starting material for synthesizing fibers, plasticizers and resin.38-40 The toluene disproportionation 

can be used to test the water effect on aromatic dealkylation reactions. As reported, the 

disproportionation temperature for a fixed-bed reactor is usually carried out in the temperature 

range 300 C - 400 C.38 In addition, the desired products, benzene and xylene, are distinct in 

GC-MS detections. A special batch reactor setup was designed for this reaction, depicted in 

Figure 4.18.  

  

Figure 4.17.  Scheme of toluene disproportionation catalyzed by acidic zeolites. 
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4.3.4.2. The batch reactor design. In this design, the catalyst is placed in a glass vial separated 

from the liquid reagent toluene, illustrated in Figure 4.18a. Consequently, the system is sealed 

and protected by argon gas throughout the reaction. Oxygen is very reactive, therefore must be 

completely removed before heating to reaction conditions, otherwise, unnecessary oxidation 

reactions will take place. Figure 4.19 shows a GC result of a reaction containing 2 ml Toluene 

and 100 mg HZSM-5 (15) catalyst, heated at 200 C for 4 hours, however, without argon 

protection. The 100-ml Teflon cup, which is in direct contact with the reactants, must be cleaned 

Figure 4.18.  The batch reactor designed for toluene disproportionation tests. 

a. 

b. 
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completely to avoid the effects from the residual contaminants. According to experiences, 70 ml 

nitric acid solution sealed in the reactor and heated at 150 C for a few hours will decompose 

most of the organic contaminants. A following procedure using deionized water to replace nitric 

acid, at 170 C for another few hours should be sufficient to remove all of the residual 

contaminants.   

 

 

 For toluene, the vapor pressure at varying temperature41 from 110 C to 257 C, as well 

as the critical volume for the 100-ml Parr reactor is tabulated in Table 4.2. The critical volume, 

obtained via idea-gas-law calculation, is the minimum amount of toluene required to form liquid 

phase at correlated temperature in a 100-ml Parr reactor. A similar table for cumene is presented 

in Table 4.3, in which the Vapor-liquid equilibrium (VLE) data are calculated by the Antoine 

eqution.42 The critical volume provides a good rule of thumb of the amount of reagent to be 

loaded at selected temperatures. For example, the best situation is that at desired temperatures all 

reagents are vaporized, to reach a dynamic solid-gas heterogeneous condition. Once the reaction 

Figure 4.19.  2 ml toluene and 100 mg HZSM-5 (15) in Parr reactor at 200 C for 

4 hrs with air. 
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is finished, the whole reactor is quenched by room-temperature water. While quenching, the 

vapor gas will condense on the cold interior wall of the reactor, leaving the catalyst dry in the 

glass vial. As a result, the liquid organic reagent and the solid catalyst are isolated after the 

reaction, allowing convenient GC-MS detections.   
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4.3.4.3. Tabulated Vapor-liquid equilibrium (VLE) data of toluene and cumene. 

T/⁰C P/torr 
Critical 

volume/ml 

110.7 760.0 0.34 

129.5 1276.8 0.54 

149.5 2128.0 0.86 

161 2926.0 1.15 

175.5 3936.8 1.49 

186.5 4651.2 1.72 

194 5304.8 1.93 

203.5 6277.6 2.24 

214.4 7516.4 2.62 

226 9028.8 3.07 

234.5 10070.0 3.37 

246 12160.0 3.98 

250 12958.0 4.21 

253.5 13269.6 4.28 

257.2 13444.4 4.31 

 

 

  

Table 4.2. The vapor pressure (adapted from reference 41) of toluene at varying 

temperatures and their correlated critical volume for the Parr reactor.  
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T/⁰ C P/torr 
Critical 

volume/ml 

130 409.8 0.23 

132 434.8 0.24 

134 460.9 0.25 

136 488.3 0.27 

138 517.0 0.28 

140 547.1 0.30 

142 578.5 0.31 

144 611.4 0.33 

146 645.7 0.34 

148 681.5 0.36 

150 719.0 0.38 

152 758.0 0.40 

154 798.7 0.42 

156 841.2 0.44 

158 885.4 0.46 

160 931.4 0.48 

162 979.3 0.50 

164 1029.2 0.53 

166 1081.0 0.55 

168 1134.8 0.57 

170 1190.7 0.60 

172 1248.8 0.63 

174 1309.1 0.65 

176 1371.6 0.68 

178 1436.4 0.71 

 

  

Table 4.3. The vapor pressure of toluene at varying temperatures and their 

correlated critical volume for the Parr reactor.  
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4.3.4.4. Representative GC-MS spectra of toluene disproportionation and cumene cracking. 

Toluene disproportionation 

 

Using the experimental setup shown in Figure 4.18, 0.5 ml toluene and 100 mg HZSM-5 (15) 

catalyst were sealed in a Parr reactor, heated and held at 210 C for 2 hrs. According to Table 4.2, 

0.5 ml toluene will be completely vaporized in the 100-ml reactor at 210 C. A representative Gas 

Chromatography spectrum is shown in Figure 4.20. Surprisingly, ethylmethylbenzene instead of 

xylene was obtained as the major product. However, co-loadings of 1, 2 or 3 eqv H2O did not 

show obvious change to ethylmenthylbenzene intensity.  

 

 

 

Figure 4.20.  0.5 ml toluene and 100 mg HZSM-5 (15) in Parr reactor at 210 C 

with Ar protected. The peak assignment is approached from Mass Spectroscopy 

analysis. 
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Cumene cracking. Since cumene is more reactive, it is used to in the Parr reactor test. By 

experience, the experimental condition is optimized to 0.5 ml cumene, 50 mg HZSM-5 (15) at 

170 C. Figure 4.21a, 4.21b and 4.21c show the GC spectra of the reactions held at the desired 

condition for 1, 1.5 and 2 h without extra water. Figure 4.21d, 4.21e and 4.21f show the spectra of 

analogous reactions as the in (a), (b) and (c), but with 4 eqv H2O loaded in the system. The time 

dependence of the spectra is apparent, i.e., the longer the reaction time, the more products are 

formed. Peak assignments, representatively shown in Figure 4.21c, are approached by Mass 

Spectroscopy analysis. Obviously, not only side chain crackings, but also transalkylations 

happened. It is interesting that the very first product formed is not benzene, but toluene. In 

addition to 4 eqv, the water loading has been controlled to 0.2 eqv, 1 eqv, 2 eqv and 3 eqv, 

however no significant impact, as in the room temperature benzene reaction was seen. 
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Overall, the Parr reactor method shows more promising results than the high temperature 

in-situ NMR method. In addition, the GC spectra of both toluene and cumene both show greatly 

Dry 

Figure 4.21. From (a) to (f), each experiment was conducted with 0.5 ml cumene 

and 50 mg HZSM-5 (15), heated to 170 C. (a), (b) and (c) were reacted without 

water for 1, 1.5 and 2 hours, respectively. (d), (e) and (f) were reacted with 4 eqv 

water for 1, 1.5 and 2 hours, respectively. The peak assignment is approached 

from Mass Spectroscopy analysis, labeled in (c). 

a. 

b. 

d. 

e. 

f. 
c. 

4 eqv H2O 
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resolved product peaks which are convenient for quantitative analysis. As learned from chapter II 

or Table 4.1, at high temperature, the fraction of effective water, the water bonded on acid sites, is 

low due to the low desorption energy, i.e. 10 kJ/mol calculated by Sauer. Thus, at same loadings 

of water, the impact is higher at low temperature. The high temperature spectra of 2 eqv water in 

ZSM-5, shown in Figure 2.23, clearly indicate that the fraction of water species in zeolite shift 

toward the free water, causing a upfield shift of the water peak, i.e., from 7 ppm at room 

temperature to 5.6 ppm at 220 ˚C.  

4.4. Conclusion 

In-situ MAS NMR experiments indicate that appropriate amounts of water can actually 

increase hydrocarbon reactivity in solid acid catalysts like zeolites. The unexpected activity 

enhancement afforded by water only occurs at low water loadings, and more specifically at sub-

stoichiometric amounts relative to the hydrocarbon reagent and acid site concentration. In 

addition, reaction rates are only enhanced by water for the high acid density catalyst with Si/Al = 

15, and not observed for the catalyst with Si/Al = 40.  These unexpected results suggest that water 

can actively participate in hydrocarbon reactions inside zeolites, even for completely non-polar 

hydrocarbons like simple aromatics. Probable mechanisms for this enhancement are proposed, 

which is the hydronium ion formed on the acid site, but not the clusters. At loadings higher than 

ca. 0.4 eqv., the formation of water clusters definitely will kill the acid site activity. Water’s 

impact on aromatic alkylation/dealkylation reactions at high catalytic temperatures, for example, 

toluene disproportionation, cumene cracking, etc., are still under investigation. In addition, these 

unexpected results suggest that existing applications involving solid acid catalysis could 

potentially realize benefits in catalyst reactivity, catalyst lifetimes, and less severe operating 

conditions by investigating water as an active component of the reaction. 

  



129 
 

4.5. References 

1. Chang, C. D.; Silvestri, A. J., The Conversion of Methanol and other O-Compounds to 

Hydrocarbons over Zeolite Catalysts. Journal of Catalysis 1977, 47 (2), 249-259. 

2. Hickman, D. A.; Schmidt, L. D., Production of Syngas by Direct Catalytic Oxidation of 

Methane. Science 1993, 259 (5093), 343-346. 

3. Laurendeau, N. M., Heterogeneous Kinetics of Coal Char Gasification and Combustion. 

Progress in Energy and Combustion Science 1978, 4 (4), 221-270. 

4. Wen, W.-Y., Mechanisms of Alkali Metal Catalysis in the Gasification of Coal, Char, or 

Graphite. Catalysis Reviews 1980, 22 (1), 1-28. 

5. Asadullah, M.; Ito, S.-i.; Kunimori, K.; Yamada, M.; Tomishige, K., Biomass Gasification 

to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-

Bed Reactor. Journal of Catalysis 2002, 208 (2), 255-259. 

6. Sutton, D.; Kelleher, B.; Ross, J. R. H., Review of Literature on Catalysts for Biomass 

Gasification. Fuel Processing Technology 2001, 73 (3), 155-173. 

7. Dahl, I. M.; Kolboe, S., On the Reaction Mechanism for Propene Formation in the MTO 

Reaction over SAPO-34. Catalysis Letters 1993, 20 (3), 329-336. 

8. T. Xu, J. L. White, U. S. Patent 6,743,747 (2004), priority filing and PCT published 

February 24, 2000 

9. T. Xu, J. L. White, U. S. Patent 6,734,330 (2004), priority filing and PCT published July 13, 

2000. 

10. Ilias, S.; Bhan, A., Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. 

ACS Catalysis 2013, 3 (1), 18-31. 

11. Marchi, A. J.; Froment, G. F., Catalytic Conversion of Methanol to Light Alkenes on 

SAPO Molecular Sieves. Applied Catalysis 1991, 71 (1), 139-152. 



130 
 

12. Wu, X.; Anthony, R. G., Effect of Feed Composition on Methanol Conversion to Light 

Olefins over SAPO-34. Applied Catalysis A: General 2001, 218 (1–2), 241-250. 

13. De Wispelaere, K.; Wondergem, C. S.; Ensing, B.; Hemelsoet, K.; Meijer, E. J.; 

Weckhuysen, B. M.; Van Speybroeck, V.; Ruiz-Martı́nez, J., Insight into the Effect of 

Water on the Methanol-to-Olefins Conversion in H-SAPO-34 from Molecular Simulations 

and in Situ Microspectroscopy. ACS Catalysis 2016, 6 (3), 1991-2002. 

14. Hibbitts, D. D.; Loveless, B. T.; Neurock, M.; Iglesia, E., Mechanistic Role of Water on the 

Rate and Selectivity of Fischer–Tropsch Synthesis on Ruthenium Catalysts. Angewandte 

Chemie International Edition 2013, 52 (47), 12273-12278. 

15. Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B. S.; Chu, B., High Flux Ultrafiltration 

Membranes Based on Electrospun Nanofibrous Pan Scaffolds and Chitosan Coating. 

Polymer 2006, 47 (7), 2434-2441. 

16. Zhao, Y. X.; Wojciechowski, B. W., The Consequences of Steam Dilution in Catalytic 

Cracking. Journal of Catalysis 1996, 163 (2), 365-373. 

17. Motokura, K.; Matsunaga, S.; Noda, H.; Miyaji, A.; Baba, T., Water-Accelerated 

Allylsilylation of Alkenes Using a Proton-Exchanged Montmorillonite Catalyst. ACS 

Catalysis 2012, 2 (9), 1942-1946. 

18. De Wispelaere, K.; Hemelsoet, K.; Waroquier, M.; Van Speybroeck, V., Complete Low-

barrier Side-chain Route for Olefin Formation during Methanol Conversion in H-SAPO-34. 

Journal of Catalysis 2013, 305, 76-80. 

19. Brändle, M.; Sauer, J., Acidity Differences between Inorganic Solids Induced by Their 

Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio 

Study on Zeolites. Journal of the American Chemical Society 1998, 120 (7), 1556-1570. 

20. Jones, A. J.; Iglesia, E., The Strength of Brønsted Acid Sites in Microporous 

Aluminosilicates. ACS Catalysis 2015, 5 (10), 5741-5755. 



131 
 

21. Ryder, J. A.; Chakraborty, A. K.; Bell, A. T., Density Functional Theory Study of Proton 

Mobility in Zeolites:  Proton Migration and Hydrogen Exchange in ZSM-5. The Journal of 

Physical Chemistry B 2000, 104 (30), 6998-7011. 

22. Alberti, A.; Martucci, A., Proton Transfer Mediated by Water: Experimental Evidence by 

Neutron Diffraction. The Journal of Physical Chemistry C 2010, 114 (17), 7767-7773. 

23. Dědeček, J.; Sobalík, Z.; Wichterlová, B., Siting and Distribution of Framework 

Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catalysis Reviews 

2012, 54 (2), 135-223. 

24. Janda, A.; Bell, A. T., Effects of Si/Al Ratio on the Distribution of Framework Al and on 

the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of 

the American Chemical Society 2013, 135 (51), 19193-19207. 

25. Jones, A. J.; Carr, R. T.; Zones, S. I.; Iglesia, E., Acid Strength and Solvation in Catalysis 

by MFI Zeolites and Effects of the Identity, Concentration and Location of Framework 

Heteroatoms. Journal of Catalysis 2014, 312 (0), 58-68. 

26. Vjunov, A.; Fulton, J. L.; Huthwelker, T.; Pin, S.; Mei, D.; Schenter, G. K.; Govind, N.; 

Camaioni, D. M.; Hu, J. Z.; Lercher, J. A., Quantitatively Probing the Al Distribution in 

Zeolites. Journal of the American Chemical Society 2014, 136 (23), 8296-8306. 

27. Perea, D. E.; Arslan, I.; Liu, J.; Ristanovic, Z.; Kovarik, L.; Arey, B. W.; Lercher, J. A.; 

Bare, S. R.; Weckhuysen, B. M., Determining the Location and Nearest Neighbours of 

Aluminium in Zeolites With Atom Probe Tomography. Nat Commun 2015, 6. 

28. Bhan, A.; Gounder, R.; Macht, J.; Iglesia, E., Entropy Considerations in Monomolecular 

Cracking of Alkanes on Acidic Zeolites. Journal of Catalysis 2008, 253 (1), 221-224. 

29. Gounder, R.; Iglesia, E., The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at 

Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research 2012, 45 (2), 

229-238. 



132 
 

30. Gounder, R.; Jones, A. J.; Carr, R. T.; Iglesia, E., Solvation and Acid Strength Effects on 

Catalysis by Faujasite Zeolites. Journal of Catalysis 2012, 286, 214-223. 

31. Gounder, R.; Iglesia, E., The Catalytic Diversity of Zeolites: Confinement and Solvation 

Effects within Voids of Molecular Dimensions. Chemical Communications 2013, 49 (34), 

3491-3509. 

32. Tsai, T.-C.; Liu, S.-B.; Wang, I., Disproportionation and Transalkylation of Alkylbenzenes 

over Zeolite Catalysts. Applied Catalysis A: General 1999, 181 (2), 355-398. 

33. Ivanova, I. I.; Nesterenko, N. S.; Fernandez, C., In Situ MAS NMR Studies of 

Alkylaromatics Transformations over Acidic Zeolites. Catalysis Today 2006, 113 (1–2), 

115-125. 

34. Ivanova, I. I.; Brunel, D.; Nagy, J. B.; Derouane, E. G., An In Situ 13C MAS NMR Study of 

Benzene Isopropylation over H-ZSM-11: Cumene Formation and Side-reactions. Journal 

of Molecular Catalysis A: Chemical 1995, 95 (3), 243-258. 

35. Song, W.; Haw, J. F.; Nicholas, J. B.; Heneghan, C. S., Methylbenzenes Are the Organic 

Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American 

Chemical Society 2000, 122 (43), 10726-10727. 

36. Huang, J.; Jiang, Y.; Marthala, V. R. R.; Hunger, M., Insight into the Mechanisms of the 

Ethylbenzene Disproportionation: Transition State Shape Selectivity on Zeolites. Journal of 

the American Chemical Society 2008, 130 (38), 12642-12644. 

37. Karge, H. G.; Ladebeck, J.; Sarbak, Z.; Hatada, K., Conversion of Alkylbenzenes over 

Zeolite Catalysts. I. Dealkylation and disproportionation of ethylbenzene over mordenites. 

Zeolites 1982, 2 (2), 94-102. 

38. Odedairo, T.; Balasamy, R. J.; Al-Khattaf, S., Toluene Disproportionation and Methylation 

over Zeolites TNU-9, SSZ-33, ZSM-5, and Mordenite Using Different Reactor Systems. 

Industrial & Engineering Chemistry Research 2011, 50 (6), 3169-3183. 



133 
 

39. Das, J.; Bhat, Y. S.; Halgeri, A. B., Selective Toluene Disproportionation over Pore Size 

Controlled MFI Zeolite. Industrial & Engineering Chemistry Research 1994, 33 (2), 246-

250. 

40. Wu, J.-C.; Leu, L.-J., Toluene Disproportionation and Transalkylation Reaction over 

Mordenite Zeolite Catalysts. Applied Catalysis 1983, 7 (3), 283-294. 

41. Krase, N. W.; Goodman, J. B., Vapor Pressure of Toluene up to the Critical Temperature. 

Industrial & Engineering Chemistry 1930, 22 (1), 13-13. 

42. Gregorowicz, J.; Kiciak, K.; Malanowski, S., Vapour Pressure Data for 1-Butanol, Cumene, 

n-Octane and n-Decane and Their Statistically Consistent Reduction with the Antoine 

Equation. Fluid Phase Equilibria 1987, 38 (1), 97-107. 

 



134 
 

CHAPTER V 
 

 

FUTURE WORK 

 

 

5.1. Water interaction 

Apparently, water adsorbed at substoichiometric level, i.e. Stage I, is more interesting, therefore, 

should be emphasized in the future. However, it is important to notice that categorization of the 

adsorption levels strongly depend upon the temperature. Questions like, can the acid site be 

deprotonated by a single water molecule? For future, a few suggestions and important questions 

that need to be explored are stated below.  

1. The “coverage sphere” need to be verified by further experiments. For example, methods like 

varying temperature, and using other adsorbates, such as methanol, H2S, isobutane, benzene, 

etc., can be helpful. The adsorption should be controlled at Stage I or, more specifically, 

Stage Ia level. For such adsorbates like isobutane and benzene, there should not be Stage II 

range, due to the lack of adsorbate-adsorbate interaction.  

2. What are the time scales of “Exchange I”, between Z-···H3O+ and Z-H+···H2O; and 

“Exchange II”, between Z-H+···H2O and Z-H+ + H2O, at room temperature? 2D NMR 

techniques are highly recommended. 
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3. Following question 2, what are the energy barrier of water-acid adsorption and desorption, in 

other words, of “Exchange II”? 

4. Variable temperature NMR inspections of Stage I adsorption. 

5. As mentioned in P55, quick NMR inspections of water loaded at Stage II at different Larmor 

frequencies would be interesting. The water peak, for example 7 ppm for Si/Al = 15 ZSM-5, 

should shift downfield for larger Larmor frequency. 

6. Computational chemistry should be applied to obtain accountable activation energies for 

mentioned in Figure 4.19.  

7. Defect-free and Al-siting-controlled zeolites have not been investigated in this research yet. 

However, it would be interesting to conduct control experiments on these special zeolites. In 

addition, the synthetic methods for making these special catalysts are well developed, as seen 

in the literature cited in Section 1.2.5. At high Si/Al ratios, where the effect of silanol groups 

cannot be neglected anymore (Figure 2.9d), it is hard to address the water interactions with 

acid sites. Therefore, defect-free high Si/Al ratio catalysts can be very interesting and useful. 

The effect of pairing acid sites, which is the situation that two aluminum tetrahedrals are only 

separated by one silicon tetrahedral, has could be evaluated. For example, CuII can be used to 

titrate the pairing Al site, leaving the single Al site alone. 

5.2 Hydrocarbon reactions 

Finding out the mechanism of the water impact on zeolite activity is long time goal. Temperature, 

the Al siting, and the acid density should be the key factors.  

1. The batch Parr reactor and the toluene disproportionation, cumene cracking systems are still 

useful. The challenging part is to exclude undesired contaminations. 

2. Temperature at 200 C or 300 C seems too high for testing water effect in a batch reaction 

system. However, it is not a problem for flow reactor systems. Nevertheless, in a flow system, 
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which is an open system, the exact amounts of water or reagent adsorbed on acid site (or their 

residence time) is not possible to be measured. While the fundamental studies mentioned in 

section 5.2, such as the exchanging rate, the activation energy, can provide enough 

information of picturing the situation in flow reactor systems. High temperatures do not favor 

the batch reactor, however, slightly high temperature range, i.e. room temperature to 100 C, 

could be interesting. The next step is to find out a test reaction that is slow enough for 

observation. Apparently, isobutane and benzene exchanges are too fast at these temperatures. 

What about benzene derivatives, such as chlorobenzene? 

3. We have seen the water impact on zeolite activity. What about a weaker base, methanol? 

Changing analogous molecules with water could be another route for the long-term run. 

5.3 Outlook  

By exploring this research, numerous natural properties of zeolite are and will be further revealed.  

The water’s positive impact, though does not have instant applications, is instructive for 

understanding the zeolite intrinsic activity from the molecular level. Once the mechanism is 

resolved, it may lead to a new pathway for catalyst design. 
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