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Abstract: Outer membrane exclusionary properties of Pseudomonas aeruginosa underlie 
its intrinsic resistance to the hydrophobic biocide triclosan, but environmental bacteria 
have not been analyzed for similar properties. Bacterial communities were sampled by 
directly plating surface waters from three locations onto Reasoner's 2A agar (R2A) either 
lacking or containing triclosan. Two isolates from each plating method were chosen for 
detailed examination based on their relationships to triclosan and phylogenetic 
similarities to P. aeruginosa. Macrobroth dilution bioassays and batch cultural growth 
kinetics were initially employed to assess the degree to which isolates were intrinsically 
resistant to the mechanistically-disparate hydrophobic molecules novobiocin and 
triclosan. Minimal inhibitory concentrations (MICs) for novobiocin and triclosan for 
susceptible organisms were predictably low with the exception of LD7A being resistant 
to novobiocin. In contrast, MICs for organisms selected for with triclosan were high. 
Triclosan titrations of batch cultures revealed growth kinetics for isolates obtained in the 
absence of triclosan were inhibited in a concentration-dependent manner, while growth 
kinetics were similar to respective controls at all concentrations for resistant isolates 
selected for with triclosan. These data were confirmed by outer membrane accessibility to 
the hydrophobic probe 1-N-phenylnapthylamine (NPN) by measuring relative 
fluorescence of treated isolates. The results revealed susceptible isolate LD8B possessed 
an exceptionally accessible outer membrane in comparison to LD7A, although both 
susceptible isolates had outer membranes significantly less accessible to NPN than 
triclosan-resistant isolates. The degree to which isolates could be sensitized to novobiocin 
and triclosan in the presence of the outer membrane permeablizer compound 48/80 was 
also determined using growth kinetics. The triclosan-susceptible isolates were permeable 
to both novobiocin and triclosan regardless of compound 48/80 concentrations. 
Triclosan-resistant isolate HD33 was able to resist sensitization to novobiocin and 
triclosan in the presence of compound 48/80, whereas isolate HD36 was slightly 
sensitized to both novobiocin and triclosan. These results support the notion that outer 
membrane exclusion underlies intrinsic resistance to hydrophobic substances in some, but 
not all Pseudomonas spp. selected for on the basis of triclosan resistance from municipal 
surface waters and that multiple triclosan resistant mechanisms work in concert in these 
refractory bacteria. 
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CHAPTER I 
 

 

INTRODUCTION 

Gram-negative bacteria possess a unique feature in the outer cell envelope known as the 

outer membrane. It is composed of phospholipids lining the inner leaflet and an outer leaflet 

consisting primarily of highly negative-charged lipopolysaccharides or lipooligosaccharides, 

which preclude surface association with and permeability of nonpolar molecules (Nikaido and 

Vaara, 1985; Silhavy et al., 2010). Water-filled channels called porins restrict periplasmic entry 

to polar molecules on the basis of size, while all nonpolar molecules are excluded regardless of 

size (Nikaido, 1976; Nikaido and Vaara, 1985; Delcour, 2009). The outer membrane of gram-

negative bacteria thus confers intrinsic resistance to many antibiotics and biocides on the basis of 

outer cell envelope exclusion. 

The hydrophobic biocide triclosan (2,4,4’-trichloro-2’-hydroxydiphenyl ether) is 

increasingly utilized as an antiseptic or preservative in many common household and healthcare 

products due to its broad-spectrum antibacterial activity for both gram-negative and gram-

positive organisms (Singer et al., 2002; Dhillion et al., 2015). Despite its hydrophobic nature, it is 

atypically able to reach its cytoplasmic enoyl-acyl carrier protein (ACP) reductase target 

(McMurry et al., 1998) by passively partitioning through the outer membrane of almost all gram-

negative organisms into the periplasm. Pseudomonas aeruginosa is a ubiquitous soil organism 

that is an important opportunistic nosocomial pathogen in immunocompromised individuals. It is 

intrinsically resistant to many disparate antibacterial agents (Li et al., 2000b) including high
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concentrations of triclosan (Jones et al., 2000).  

Research in our laboratory has centered on the gram-negative cell envelope of 

opportunistic pathogens of primarily nosocomial relevance and the molecular mechanisms 

underlying their relationships with nonpolar antimicrobial agents. Champlin and coworkers 

(2005) reported that chemical modification of the P. aeruginosa outer membrane sensitized the 

organism to triclosan when using the disparate outer membrane permeabilizers polymyxin B 

nonapeptide, compound 48/80, or ethylenediaminetetraacetate (EDTA). They reasoned that 

intrinsic low-level triclosan resistance was due to the exclusionary function of the outer 

membrane for nonpolar molecules in the environment. Likewise, in vitro studies with high 

concentrations of the hydrophobic biocide implicated the same exclusionary properties in 

exceptional intrinsic resistance to triclosan.  

Subsequent work in this laboratory with research strains of P. aeruginosa (Ellison et al., 

2007) revealed synergy between compound 48/80 and triclosan to be transient, yet not due to the 

repair of a temporal diffusion pathway in the outer membrane specific for hydrophobic 

molecules. They went on to implicate the expression of triclosan-recognizing active efflux pumps 

capable of nullifying the effects of outer membrane permeabilization and subsequent biocide 

sensitization. This work established that a structurally and functionally intact outer membrane 

(Champlin et al., 2005) in concert with an active efflux pump system (Ellison et al., 2007) 

representing a second line of defense are responsible for intrinsic resistance to the hydrophobic 

biocide triclosan in P. aeruginosa. Further work showed the outer membrane of Pasteurella 

multocida, a zoonotic gram-negative opportunistic bacterium, is naturally permeable to 

hydrophobic molecules in general, and that its exceptionally high susceptibility to triclosan is 

dependent on concentration of the biocide. (Ellison and Champlin, 2007). Capsulated and 

noncapsulated variants were equally susceptible indicating that the rate of triclosan permeation 

was unaffected by the capsular phenotype.  
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Bullard and coworkers (2011) next implicated changes in cell envelope unsaturated fatty 

acid composition in response to triclosan exposure as factors possibly contributing to resistance. 

A study by Clayborn et al. (2011) showed that triclosan methylation mitigated its ability to inhibit 

the growth of both the triclosan-susceptible gram-negative organism P. multocida, as well as 

outer membrane-permeabilized P. aeruginosa. They concluded that the ability to covalently 

inactivate the biocide might represent an additional resistance mechanism in these organisms. 

More recent work has shown that the outer membrane of the phylogenetically-related 

opportunistic pathogen Burkholderia multivorans resists the effect of outer membrane 

permeabilization and subsequent sensitization to triclosan through outer membrane modifications 

(McDonald et al., 2017) under conditions that render P. aeruginosa susceptible (Ellison and 

Champlin, 2007). 

Municipal water treatment processes incompletely remove triclosan from wastewater 

(Bester, 2005).  Due to its overuse over several decades, triclosan and its metabolic residues have 

been released into surface waters where they accumulate as components of effluent (Singer et al., 

2002; Bester, 2005). The U.S. Geological Survey performed a study on the presence of 

wastewater contaminants in U.S. streams from 1999 to 2000, which revealed triclosan to be 

among the most common organic wastewater contaminants in 57.6% of streams sampled (Kolpin 

et al., 2002). Recent studies suggest residue concentrations and exposure duration potentiate the 

impacts of triclosan on resistance selection and decreases in microbial diversity (Lubarsky et al., 

2012; Nietch et al., 2013). Moreover, selective isolation of triclosan-resistant bacteria from 

feedlot and residential soil samples revealed Pseudomonas spp. to be highly prevalent (Welsch 

and Gillock, 2011).  However, these workers did not investigate the mechanism(s) underlying 

such high-level resistance, or the possibility that surface water bacteria are triclosan-resistant by 

virtue of exclusionary properties similar to what our laboratory has shown for P. aeruginosa 

(Champlin et al., 2005; Ellison and Champlin, 2007) has not been addressed in the literature.  



4	  
	  

Several major pitfalls exist due to the indiscriminate use of triclosan. First, nonspecific 

efflux pumps are found extensively in P. aeruginosa, thereby contributing to its exceptional 

resistance to a wide variety of antibacterial molecules (Schweizer, 2001). Furthermore, a study by 

Ellison and coworkers (2007) revealed the lack of these efflux pumps resulted in more sustained 

susceptibility to the hydrophobic biocide triclosan in outer membrane-permeabilized cells. It is 

conceivable that cross-resistance could result when, for example, there is an overexpression of a 

non-specific multidrug efflux pump in response to the presence of triclosan. The second potential 

pitfall is more controversial. Triclosan has been implicated as being an endocrine system-

disrupting chemical with the potential to be harmful to a wide range of the general population 

(Wang and Tian, 2015). Triclosan exposure may result in adverse effects associated with the 

production of androgens in male rats (Kumar et al., 2007) and in disruption of responses 

regulated by estrogen in female rats (Stoker et al., 2010). Triclosan also has been implicated as 

negatively impacting thyroid hormone production, leading to abnormal levels of thyroxine in the 

blood of female rats (Crofton et al., 2007). However, a conflicting study evaluated the function of 

the thyroid in humans exposed to triclosan-containing toothpaste for an extended period of time 

and revealed toothpaste containing 0.3% triclosan does not alter thyroid function (Cullinan et al., 

2012). Finally, a major negative consequence of environmental triclosan contamination may be 

the subsequent formation of dioxin (2,8-dichlorodibenzo-p-dioxin), a toxic and even more stable 

derivative of the biocide found in wastewater produced in the presence of UV light irradiation 

from triclosan deterioration (Latch et al., 2003; Aranami and Readman, 2007). This problem was 

shown to be exacerbated in seawater when compared to the longevity of dioxin in freshwater 

(Aranami and Readman, 2007).   

More recent research in our laboratory has focused on bacteria obtained from surface 

waters in three Oklahoma locations by directly plating samples onto Reasoner's 2A agar (R2A) 

either lacking or containing triclosan (DeGear et al., 2017). Sequencing of 16S rDNA gene 
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sequences revealed diverse genera to be present in the absence of triclosan, while only 

Pseudomonas species were selected for on triclosan-containing R2A. Two isolates from each 

sampling method were chosen based on their extreme susceptibility and resistance phenotypes 

regarding triclosan and their degrees of sequence similarity to P. aeruginosa. This allowed for the 

determination of the extent to which the selected organisms shared intrinsic outer membrane 

impermeability properties with closely-related P. aeruginosa for the hydrophobic molecules 

novobiocin and triclosan. Co-resistance to other hydrophobic substances was expected if in fact 

outer membrane impermeability properties could be implicated as being responsible for intrinsic 

resistance to triclosan in surface water bacteria.    

DeGear et al. (2017) demonstrated that the isolates obtained both in the absence or 

presence of triclosan were gram-negative organisms. Triclosan resistance was confirmed by 

streak inoculating the bacteria on R2A and R2A supplemented with triclosan (40.0 µg/ml). Only 

bacteria isolated in the presence of triclosan and one Rheinheimera sp. isolated in its absence 

were able to initiate growth at this high concentration of the hydrophobic biocide, while all other 

bacteria isolated in the absence of triclosan failed to initiate growth. Novobiocin and triclosan 

minimal inhibitory concentrations (MICs) determinations revealed bacteria isolated in the 

absence of triclosan to possess disparate relationships with novobiocin, but all were susceptible to 

triclosan with the exception of the Rheinheimera sp. mentioned above. These data suggest that 

some indigenous gram-negative bacteria have outer membranes permeable to some hydrophobic 

molecules by virtue of an innate hydrophobic diffusion pathway, thereby allowing entry of 

hydrophobic molecules into the periplasmic space. In contrast, exceedingly high MICs for both 

novobiocin and triclosan were observed in Pseudomonas spp. and the Rheinheimera sp. bacteria 

isolated in the presence of triclosan. These data are consistent with MICs for the highly triclosan-

resistant and phylogenetically-related P. aeruginosa (Champlin et al., 2005). Finally, the 

hydrophobic fluorescence probe 1-N-phenylnapthylamine (NPN) was employed to further 



6	  
	  

evaluate the relative accessibility of isolate cell surfaces to the partitioning of hydrophobic 

molecules into outer membranes (DeGear et al., 2017). Isolates obtained in the absence of 

triclosan were more permeable than isolates obtained in the presence of triclosan. Taken together, 

this work suggests that gram-negative bacteria selected for on the basis of their intrinsic 

resistance to triclosan from municipal surface waters are closely related members of the genus 

Pseudomonas. Moreover, outer membrane exclusionary properties appear to underlie their 

intrinsic resistance to hydrophobic molecules in general, and triclosan in particular, in a manner 

similar to that seen in P. aeruginosa.  

I hypothesized that Pseudomonas spp. selectively isolated for in the presence of large 

concentrations of triclosan from municipal surface waters are intrinsically resistant to the biocide 

by virtue of outer membranes which possess impermeability properties for hydrophobic 

substances in general, and triclosan specifically. Therefore, the purpose of this study is to test this 

hypothesis by determining if the chemical permeabilization of the outer membranes of selected 

Pseudomonas spp. results in sensitization to mechanistically disparate hydrophobic molecules 

novobiocin and triclosan. 
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CHAPTER II 
 

 

METHODOLOGY 

Bacterial Isolates 

Organisms used in the present study represent a model system, which are described in 

Table 1. P. aeruginosa PAO1 is retained in this laboratory as a reference organism, while 

Escherichia coli ATCC 25922 was obtained from the American Type Culture Collection 

(Manassas, VA). Environmental surface water isolates LD7A, LD8B, HD33, and HD36 were 

isolated and provided by Dr. R.V. Miller (Oklahoma State University). Surface water samples 

from three independent sites receiving treated wastewater from the Oklahoma towns of 

Holdenville, Lawton, and Weatherford, OK were aseptically plated directly onto R2A (Becton 

Dickinson Difco, Sparks, MD) or R2A containing triclosan (R2A- TCS; 20 or 40 µg/ml; Irgasan 

DP 300; Ciba Specialty Chemical Corp., High Point, NC) and incubated for 48 h at ambient 

temperature (DeGear et al., 2017). Isolates LD7A and LD8B were isolated in the absence of 

triclosan, while isolates HD33 and HD36 were isolated in the presence of triclosan and were 

therefore considered to be intrinsically resistant. Maintenance of all cultures occurred under 

cryopreserved conditions at -80°C as previously described (Darnell et al., 1987). 
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   Table 1. Control organisms and model system isolates. 

Organism Identification 
to genusa Description Reference 

Controls    

   E. coli ATCC 
25922 

n/a 
 

CLSI control strain for 
antibacterial susceptibility 

testing. 

 
American Type 

Culture 
Collection 

    P. aeruginosa 
PAO1 

n/a 

 
 

Wild-type strain; contains an 
exceptionally impermeable 

outer membrane for nonpolar 
molecules. 

Champlin et al., 
2005 

    

R2Ab    

    LD7A Pseudomonas Environmental surface 
water isolate. 

DeGear et al., 
2017 

    
    LD8B Pseudomonas Environmental surface  

water isolate. 
DeGear et al., 

2017 
    

R2A-TCSc    

    HD33 Pseudomonas Environmental surface  
water isolate. 

DeGear et al., 
2017 

    
    HD36 Pseudomonas Environmental surface  

water isolate. 
DeGear et al., 

2017 
      a Based on comparisons of 16S rRNA sequence determinations with most clearly 

related genera in GenBank. DeGear et al., 2017. 
      b Organisms isolated in the absence of triclosan. 
      c Organisms isolated in the presence of triclosan at a concentration of either 20.0 or 40.0 
µg/mL.  
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Cultivation Conditions 

Working cultures were prepared by streaking cells from cryopreserved cultures onto R2A 

or R2A-TCS (20 µg/ml) in accordance with the method of isolation, incubated at 25°C or 37°C 

(E. coli ATCC 25922 only) for 18 h (E. coli ATCC 25922 only) or 24 h, and stored at 4°C for 

later use. These cultures were employed to provide inocula for overnight starter cultures 

consisting of about 20 ml of Mueller Hinton Broth (MHB; Becton Dickinson Difco) in 125-ml 

culture flasks which were incubated in an Excella® E24 environmental shaker incubator (New 

Brunswick Scientific Co., Edison, NJ) for 15-18 h at 25°C with rotary aeration at 180 rpm. 

Chemical Solutions 

Ethanol (95%; Decon Laboratories Inc., King of Prussia, PA) was used as solvent to 

prepare triclosan stock solutions in order to potentiate its solubility in aqueous test solutions. 

They were prepared to desired concentrations, sealed tightly in Teflon-lined screw-capped tubes, 

and stored at 4°C for later use. Novobiocin (Sigma- Aldrich Chemical Co., St. Louis, MO) and 

compound 48/80 (Sigma-Aldrich Chemical Co.) stock solutions were dissolved in MHB to obtain 

desired concentrations, sterilized with the aid of a filter (Fisherbrand 0.22-µm syringe filter 

assemblies; Thermo Fisher Scientific Inc., Pittsburgh, PA), and stored at 4°C for later use. 

MIC Susceptibility Bioassay 

Susceptibilities to the hydrophobic antibacterial agents novobiocin and triclosan were 

determined using a conventional two-fold macrobroth dilution bioassay (Darnell et al., 1987) per 

the modified method by Ellison et al. (2007). Sterile novobiocin and triclosan stock solutions 

were prepared as described above to final concentrations of 1,024 µg/ml and 128 µg/ml, 

respectively. Overnight starter cultures were prepared as described above. Test cultures were 

prepared in culture tubes (18 x 150 mm; Kimax) by aseptically inoculating 5.0 ml of sterile MHB 

with starter culture cells in stationary phase to an initial OD620 of 0.05 with the aid of a Spectronic 
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20D+ optical spectrophotometer (Thermo Fischer Scientific Inc., Waltham, MA) and employing 

incubation methods as described above until an OD620 of 0.1 was reached. A 50-ml polypropylene 

centrifuge tube (Corning® disposable centrifuge tubes; Sigma-Aldrich Co.) containing 31.1 ml of 

sterile MHB was used to dilute 0.1 ml of a test culture cell suspension to yield approximately 5.0 

x 105 CFU/ml as the final cell density. Twofold serial dilutions of novobiocin and triclosan were 

performed using MHB as diluent in culture tubes (13 x 100 mm, Pyrex). Each culture tube in the 

dilution series was inoculated with 1.0 ml of test culture cell suspension to obtain a final volume 

of 2.0 ml and final cell density of 2.5 x 105 CFU/ml. Cultures were incubated for 24 h at 25°C 

with rotary aeration at 180 rpm (Excella® E24 environmental shaker incubator) and visually 

scored for turbidity to determine MICs on the basis of the lowest antibacterial agent concentration 

to completely inhibit growth initiation. 

Effect of Triclosan Titration on Cultural Growth Kinetics 

The effect of different concentrations of triclosan on growth of the environmental isolates 

was determined by titration of batch cultures using a 10-fold dilution series and monitoring total 

cultural cell density turbidimetrically to determine growth kinetics as previously described by 

Ellison and Champlin (2007). For a representative photo taken at 6 h post inoculation for each 

experiment, see Figure 1. Starter culture cells in stationary phase were used to inoculate about 50 

ml of sterile MHB to an initial OD620 of 0.05 using a Spectronic 20D+ optical spectrophotometer 

(Thermo Fischer Scientific Inc.). Test cultures were acquired by distributing 5.0 ml aliquots of 

inoculated MHB into each of six sterile culture tubes (18 mm x 150 mm, Kimax) and 

immediately adding experimental treatments by aseptically pipetting 20 µl of appropriate 

triclosan stock solutions in ethanol (95%) into each culture tube such that final concentrations of 

0.02, 0.2, 2.0, and 20.0 µg/ml were obtained after brief mixing with vortex agitation. Control 

cultures received either no treatment or 20 µl of ethanol (95%), the maximal volume used which 

yielded a final concentration of less than 0.4%. Cultures were incubated using the above method 
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and growth was measured by reporting OD620 at 30-minute intervals for 6 hours. Resultant OD620 

measurements were plotted semi-logarithmically as a function of time to visualize triclosan 

titration effects on batch cultural growth kinetics.  

NPN Uptake Chemical Assay 

The hydrophobic fluorescent probe 1-N-phenylnapthylamine (NPN; Sigma-Aldrich 

Chemical Co.) was employed to assess the degree of accessibility of cell surface hydrophobic 

regions to nonpolar substances using modifications (Ellison and Champlin, 2007; McDonald, et 

al., 2017) of the Helander and Matilla-Sandholm (2000) method. Starter culture cells in stationary 

phase were used to inoculate MHB (control) to an initial OD620 of 0.025 as determined using a 

Spectronic 20D+ optical spectrophotometer and incubated in an Excella® E24 environmental 

shaker incubator at 25°C with rotary aeration at 180 rpm until late exponential-phase was reached 

(OD620 of approximately 0.3 to 0.4). Cells were harvested by centrifugation at 12,000 x g and 4°C 

for 15 minutes (Sorvall Legend XRT Centrifuge; Thermo Fisher Scientific, Waltham, MA) and 

resuspended in HEPES buffer (5.0 mM) (pH 7.2; Sigma-Aldrich Chemical Co.) to an OD620 of 

0.5. An acetone solution (Certified ACS; Fisher Scientific, Fair Lawn, NJ) of NPN (500 µM) was 

diluted in HEPES buffer (5.0 mM) to a final concentration of 40 µM (NPN stock solution). 

Experimental treatments consisted of 100 µl of cell suspension, 50 µl of HEPES buffer, and 50 µl 

of NPN, each loaded into the appropriate wells of a 96-well microtiter plate (Costar 96-well 

black, clear bottom microtiter plates; Corning Inc., Lowell, MA). The wells were loaded as 

follows: 200 µl of HEPES buffer (HEPES blank), 150 µl of HEPES buffer plus 50 µl of NPN 

(NPN control), 100 µl of HEPES buffer plus 100 µl of cell suspension (organism control), and 50 

µl of HEPES buffer plus 50 µl of NPN and 100 µl of cell suspension (organism with NPN). 

Fluorescence was measured immediately (Ellison and Champlin, 2007) with the aid of a Synergy 

2 Multi-Detection Microplate Reader (BioTek Instruments, Inc., Winooski, VT) with excitation 
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wavelength at 340 nm and emission wavelength at 420 nm. Relative fluorescence (X) was 

calculated using the following equation:  

X= 
Organism with NPN  - (Organism control)

NPN control  - (HEPES blank)
. 

Statistical Analysis 

Microsoft® Excel® for Mac 2011 and GraphPad Prism 7 for Mac OS X (GraphPad 

Software; La Jolla, CA) were employed for the statistical analysis of the NPN relative 

fluorescence of the environmental isolates. A bar graph was constructed to visually represent the 

mean of the relative fluorescence ± standard error. Each mean represented the value of triplicate 

data (n=3). A one-way ANOVA with Tukey’s post-hoc comparison was applied to determine the 

outer membrane accessibility to NPN (α= 0.05). 

Outer Membrane Permeabilization Bioassay  

The ability of the outer membrane permeabilizer compound 48/80 (Sigma-Aldrich 

Chemical Co.) to sensitize cells to the hydrophobic antibacterial agents novobiocin and triclosan 

was determined turbidimetrically by measuring batch cultural growth kinetics as described above 

(Champlin et al., 2005 as modified by Ellison and Champlin, 2007). Slight modifications of this 

protocol included supplementation of compound 48/80 such that its final concentration ranged 

from 5.0 µg/ml to 20.0 µg/ml in the indicated test cultures. The final concentrations of novobiocin 

and triclosan were 10.0 µg/ml and 2.0 µg/ml, respectively.   
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CHAPTER III 
 

 

FINDINGS  

Susceptibility to Antibacterial Agents 

MICs were obtained for the mechanistically-disparate hydrophobic molecules novobiocin 

and triclosan in order to initially ascertain the potential role of outer membrane impermeability in 

high-level intrinsic resistance of environmental isolates to triclosan (Table 2). E. coli ATCC 

25922 and P. aeruginosa PAO1 were employed as control strains for comparative purposes. E. 

coli ATCC 25922 was susceptible to triclosan but resistant to novobiocin, whereas P. aeruginosa 

PAO1 was highly resistant to both molecules. Isolates LD7A and LD8B, which were isolated in 

the absence of triclosan selection, were both predictably susceptible to triclosan. However, they 

differed with regard to their relationship with novobiocin in that LD7A was resistant, while 

LD8B was atypically susceptible given its gram-negative nature. In contrast, isolates HD33 and 

HD36, which were selected for with triclosan, were highly resistant to both hydrophobic 

molecules suggesting their respective outer membranes are intrinsically impermeable to 

hydrophobic molecules in a general manner.
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Table 2. Susceptibility of control organisms and model system isolates to 
the hydrophobic antibacterial agents novobiocin and triclosan. 

Organism MIC (µg/ml)a 

Novobiocin Triclosanb 

Control   

E. coli ATCC 25922 512.0 0.5 
   

P. aeruginosa PAO1c 512.0 >64.0 
   
R2A   

    LD7Ac >512.0 2.0 
   
    LD8Bc 4.0 2.0 
   
R2A-TCS   

    HD33c 256.0 >64.0 
   
    HD36c 512.0 >64.0 
aValues obtained from three-to-six individual twofold serial dilutions. 
bEthanol (95%; <0.4% final concentration) was used to facilitate triclosan 
solubilization and no effect on control growth was observed (data not 
shown). 
cValues taken from DeGear et al., 2017. 
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Effect of Triclosan Titration on Cultural Growth Kinetics 

In order to determine the effect of triclosan on total cell density cultural growth kinetics, 

turbidimetric growth curves of batch cultures were constructed for controls E. coli ATCC 25922 

and P. aeruginosa PAO1, and surface water isolates LD7A, LD8B, HD33, and HD36 (Figures 1 

and 2). Growth kinetics of E. coli ATCC 25922 revealed a concentration-dependent susceptibility 

over four orders of magnitude as the triclosan concentration was increased from 0.02 to 20 µg/ml. 

It should be noted that triclosan may have precipitated out of solution at the highest concentration 

(20 µg/ml of triclosan) resulting in an immediate increase in initial turbidity, however, biomass 

remained inhibited throughout the 6 h bioassay period. In comparison, P. aeruginosa PAO1 was 

not affected by triclosan with the exception of a slight decrease in final biomass obtained at the 

highest concentration (20 µg/ml).  

As can be seen in Figure 2, the growth kinetics for organisms isolated in the absence 

(LD7A and LD8B) and presence (HD33 and HD36) of triclosan were drastically different. 

Maximal growth inhibition was observed at 20 µg/ml for the susceptible isolates LD7A and 

LD8B with inhibition appearing to be concentration-dependent from 0.2 to 20 µg/ml. Resistant 

isolates HD33 and HD36 remained largely unaffected by all concentrations of triclosan with the 

exception of slightly decreased biomass yield at the highest concentration (20 µg/ml). The 

concentration of ethanol required for the initial solubilization of triclosan (0.4%) did not affect 

growth kinetics in any case when compared with the growth kinetics of the MHB control.
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Figure 1. Representative triclosan titration bioassays. E. coli ATCC 25922 (A), P. aeruginosa 
PAO1 (B), LD7A (C), LD8B (D), HD33 (E), and HD36 (F). Culture numbers: growth control (1), 
0.4% ethanol control (2), 0.02 µg/ml triclosan (3), 0.2 µg/ml triclosan (4), 2.0 µg/ml triclosan (5), 
and 20.0 µg/ml triclosan (6). 
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Figure 2. Total cell density growth kinetics when titrated with triclosan. E. coli ATCC 25922 (A), 
P. aeruginosa PAO1 (B), LD7A (C), LD8B (D), HD33 (E), and HD36 (F). Each value represents 
the mean of at least three independent determinations. Symbols: , growth control; , ethanol 
control (0.4%); n, triclosan (0.02 µg/ml); u, triclosan (0.2 µg/ml); , triclosan (2.0 µg/ml); and 

, triclosan (20.0 µg/ml). 
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Outer Membrane Accessibility to NPN 

The degree to which the hydrophobic probe NPN was able to partition into hydrophobic 

regions of the outer membrane of surface water isolates was measured as a function of relative 

fluorescence intensity (Figure 3). Pasteurella multocida ATCC 11039 was employed as a positive 

control, because its outer membrane has been shown to be markedly permeable to hydrophobic 

molecules in general (Ellison and Champlin, 2007). In contrast, E. coli ATCC 25922 and P. 

aeruginosa PAO1 provided negative controls by virtue of their refractory outer membrane 

permeability properties for hydrophobic molecules (Nikaido, 1976; Nikaido and Vaara, 1985; 

Champlin et al., 2005; Ellison and Champlin, 2007; Delcour, 2009; Silhavy et al., 2010). No 

statistical significant difference was observed between E. coli ATCC 25922 and P. aeruginosa 

PAO1 with a p value = 0.9888 (p value > 0.05). The outer membrane of P. multocida ATCC 

11039 was significantly more accessible than those of E. coli ATCC 25922 and P. aeruginosa 

PAO1 with a p value < 0.0001. 

The outer membranes of the environmental isolates LD7A, LD8B, HD33, and HD36 

exhibited different permeability properties reflecting their relationships to the disparate 

hydrophobic molecules novobiocin and triclosan (Table 2). Statistical analysis revealed isolate 

LD8B to have an outer membrane significantly more accessible to NPN than LD7A in a manner 

consistent with their respective novobiocin resistance and susceptibility (p value < 0.0001). In 

contrast, statistical analysis of resistant isolates revealed no significant difference between 

isolates HD33 and HD36 (p value = 0.9967; p value > 0.05). Overall, NPN was able to partition 

into the outer membranes of the susceptible isolates to a greater degree than the outer membranes 

of the resistant isolates (p value < 0.05).   
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Figure 3. Cell surface accessibility to NPN. P. multocida (Pm) 11039 (taken from Boyina et al., 
unpublished data) (positive control), E. coli (Ec) ATCC 25922 (negative control), and P. 
aeruginosa (Pa) PAO1 (negative control) were employed as control strains for comparative 
purposes. Each value represents the mean of three independent determinations ± standard error. *, 
P < 0.0001 between positive control strain P. multocida and negative controls E. coli and P. 
aeruginosa. **, P < 0.05 between triclosan-susceptible isolates LD7A and LD8B and triclosan-
resistant isolates HD33 and HD36. Determined using a one-way ANOVA with Tukey’s post-hoc 
pairwise comparisons.
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Outer Membrane Permeabilization  

In order to more conclusively implicate involvement of outer membrane exclusivity as 

the cellular property underlying intrinsic resistance to triclosan, the effect of outer membrane 

permeabilizer compound 48/80 on intrinsic novobiocin and triclosan resistance was investigated 

using turbidimetric measurements of batch cultural growth kinetics per the methods of Champlin 

et al., 2005 (Figures 4-11). The control strain E. coli ATCC 25922 can be seen to be moderately 

susceptible to both novobiocin and triclosan sensitization alone with further sensitization 

occurring in the presence of compound 48/80 at a concentration of 2.5 µg/ml (Figures 4 and 5). 

Synergy was seen between compound 48/80 and both novobiocin and triclosan in the control 

strain P. aeruginosa PAO1 in a manner consistent with that seen previously (Champlin et al, 

2005) (Figures 6 and 7).  

Environmental isolates LD7A and LD8B, which were respectively resistant and 

susceptible to novobiocin (Table 2), were susceptible to both novobiocin and triclosan 

sensitization in the presence of compound 48/80 at a concentration of 2.5 µg/ml (Figures 8 and 9). 

In contrast, HD33 was resistant to novobiocin and triclosan sensitization in the presence of 

compound 48/80 at concentrations ranging up to 20.0 µg/ml, while HD36 was moderately 

sensitized to novobiocin and triclosan in the presence of compound 48/80 at concentrations 

ranging up to 15.0 µg/ml (Figures 10 and 11). Growth was unaffected by ethanol required for the 

initial solubilization of triclosan when compared to the MHB control in all control strains and 

environmental isolates. 
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Figure 4. Total cell density growth kinetics of E. coli ATCC 25922 in the presence of compound 
48/80 and novobiocin (NOV). Each value represents the mean of at least three independent 
determinations. (A) Symbols: , growth control; , compound 48/80 (2.5 µg/ml); n, NOV (10.0 
µg/ml); u, compound 48/80 (2.5 µg/ml) plus NOV (10.0 µg/ml). (B) Representative batch 
cultural kinetics bioassay results.  
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Figure 5. Total cell density growth kinetics of E. coli ATCC 25922 in the presence of compound 
48/80 and triclosan (TCS). Each value represents the mean of at least three independent 
determinations. (A) Symbols: , growth control; , ethanol control (0.4%); n, compound 48/80 
(2.5 µg/ml); u, TCS (2.0 µg/ml); , compound 48/80 (2.5 µg/ml) plus TCS (2.0 µg/ml). (B) 
Representative batch cultural kinetics bioassay results.  
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Figure 6. (A)	  Total cell density growth kinetics of P. aeruginosa PAO1 in the presence of 
compound 48/80 and novobiocin (NOV). Each value represents the mean of at least three 
independent determinations. (A) Symbols: , growth control; , compound 48/80 (5.0 µg/ml); 
n, NOV (10.0 µg/ml); u, compound 48/80 (5.0 µg/ml) plus NOV (10.0 µg/ml). (B) 
Representative batch cultural kinetics bioassay results.  
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Figure 7. Total cell density growth kinetics of P. aeruginosa PAO1 in the presence of compound 
48/80 and triclosan (TCS). Each value represents the mean of at least three independent 
determinations. (A) Symbols: , growth control; , ethanol control (0.4%); n, compound 48/80 
(5.0 µg/ml); u, TCS (2.0 µg/ml); , compound 48/80 (5.0 µg/ml) plus TCS (2.0 µg/ml). (B) 
Representative batch cultural kinetics bioassay results.  
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Figure 8. Total cell density growth kinetics of environmental Pseudomonas spp. isolates LD7A 
and LD8B in the presence of compound 48/80 and novobiocin (NOV). Each value represents the 
mean of at least three independent determinations. (A) LD7A. Symbols: , growth control; , 
compound 48/80 (2.5 µg/ml); n, NOV (10.0 µg/ml); u, compound 48/80 (2.5 µg/ml) plus NOV 
(10.0 µg/ml). (B) Representative batch cultural kinetics bioassay results. (C) LD8B. Symbols: , 
growth control; , compound 48/80 (2.5 µg/ml); n, NOV (10.0 µg/ml); u, compound 48/80 (2.5 
µg/ml) plus NOV (10.0 µg/ml). (D) Representative batch cultural kinetics bioassay results.  
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Figure 9. Total cell density growth kinetics of environmental Pseudomonas spp. isolates LD7A 
and LD8B in the presence of compound 48/80 and triclosan (TCS). Each value represents the 
mean of at least three independent determinations. (A) LD7A. Symbols: , growth control; , 
ethanol control (0.4%); n, compound 48/80 (2.5 µg/ml); u, TCS (2.0 µg/ml); , compound 
48/80 (2.5 µg/ml) plus TCS (2.0 µg/ml). (B) Representative batch cultural kinetics bioassay 
results. (C) LD8B. Symbols: , growth control; , ethanol control (0.4%); n, compound 48/80 
(2.5 µg/ml); u, TCS (2.0 µg/ml); , compound 48/80 (2.5 µg/ml) plus TCS (2.0 µg/ml). (D) 
Representative batch cultural kinetics bioassay results. 
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Figure 10. Total cell density growth kinetics of environmental Pseudomonas spp. isolates HD33 
and HD36 in the presence of compound 48/80 and novobiocin (NOV). Each value represents the 
mean of at least three independent determinations. (A) HD33. Symbols: , growth control; , 
compound 48/80 (15.0 µg/ml); n, NOV (10.0 µg/ml); u, compound 48/80 (15.0 µg/ml) plus 
NOV (10.0 µg/ml). (B) Representative batch cultural kinetics bioassay results. (C) HD36. 
Symbols: , growth control; , compound 48/80 (15.0 µg/ml); n, NOV (10.0 µg/ml); u, 
compound 48/80 (15.0 µg/ml) plus NOV (10.0 µg/ml). (D) Representative batch cultural kinetics 
bioassay results.
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Figure 11. Total cell density growth kinetics of environmental Pseudomonas spp. isolates HD33 
and HD36 in the presence of compound 48/80 and triclosan (TCS). Each value represents the 
mean of at least three independent determinations. (A) HD33. Symbols: , growth control; , 
ethanol control (0.4%); n, compound 48/80 (15.0 µg/ml); u, TCS (2.0 µg/ml); , compound 
48/80 (15.0 µg/ml) plus TCS (2.0 µg/ml). (B) Representative batch cultural kinetics bioassay 
results. (C) HD36. Symbols: , growth control; , ethanol control (0.4%); n, compound 48/80 
(15.0 µg/ml); u, TCS (2.0 µg/ml); , compound 48/80 (15.0 µg/ml) plus TCS (2.0 µg/ml). (D) 
Representative batch cultural kinetics bioassay results.
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CHAPTER IV 
 

 

DISCUSSION 

Unlike other gram-negative bacteria, which are typically susceptible to the hydrophobic 

biocide triclosan, P. aeruginosa is resistant intrinsically due to its marked outer membrane 

exclusionary properties for nonpolar substances (Champlin et al., 2005; Ellison et al., 2007) and 

active multidrug efflux pumps (Schweizer, 2001). Environmental isolates examined in the present 

study have been identified as members of the genus Pseudomonas, thereby suggesting that similar 

outer membrane impermeability properties may be at play with regard to hydrophobic molecules 

in general. The purpose of this study was to determine if the outer membrane impermeability 

properties of Pseudomonas spp. selected for with triclosan from Oklahoma surface waters 

underlie intrinsic resistance to hydrophobic substances in general, and triclosan specifically. 

The MICs for isolates LD7A and LD8B, which were obtained in the absence of triclosan, 

revealed variable permeability properties for low concentrations of the disparate hydrophobic 

molecules novobiocin and triclosan. Interestingly, LD7A was resistant to novobiocin, but 

susceptible to triclosan, whereas LD8B was susceptible to both hydrophobic substances. These 

data suggest the outer membrane of LD7A contains a mechanism(s) that allows for triclosan to 

permeate into the periplasmic space, but not novobiocin in a manner similar to that seen for the 

control strain E. coli ATCC 25922 and most other gram-negative bacteria. In contrast, isolate 

LD8B has an outer membrane possessing atypical permeability for hydrophobic molecules in 
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general. In comparison, the MICs for isolates HD33 and HD36, which were selected for in the 

presence of triclosan, were able to initiate growth at high concentrations of both novobiocin and 

triclosan, thereby supporting the hypothesis that their outer membranes are impermeable to 

disparate hydrophobic molecules in general and, atypically triclosan.  

Data obtained from titrations of the model system organisms with triclosan confirm 

conclusions reached for the MIC data in that isolates obtained in the absence of triclosan are 

permeable to the hydrophobic biocide resulting in concentration-dependent growth inhibition. In 

contrast, environmental isolates obtained from surface waters and selected for on the basis of 

intrinsic triclosan resistance exhibited no growth inhibition except for isolate HD36, which was 

slightly susceptible at only the highest concentration (20 µg/ml). These results, in combination 

with the above MIC data, strongly support the hypothesis that the triclosan-susceptible isolates 

have outer membranes which allow for permeation of hydrophobic substances through their outer 

cell envelopes, whereas the outer membranes of the intrinsically resistant isolates contribute at 

least a degree of impermeability for disparate hydrophobic molecules in general, and triclosan 

specifically. 

The examination of outer membrane accessibility to the hydrophobic probe NPN 

revealed significantly higher relative fluorescence values for the susceptible isolates than for the 

resistant isolates. These data support the conclusion that the outer membranes of triclosan-

susceptible isolates LD7A and LD8B are more permeable to nonpolar substances in general, 

while the outer membranes of HD33 and HD36 are more refractory. It can be concluded from 

these data that the susceptible isolates LD7A and especially LD8B have outer membranes that 

allow passive diffusion of disparate hydrophobic molecules into the periplasmic space and 

susceptibility, through the cytoplasmic membrane. In comparison, hydrophobic molecules cannot 

readily partition through the outer membrane of the resistant isolates HD33 and HD36 in a 

manner similar to that seen for the control organism P. aeruginosa PAO1.   
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Disruption of outer membrane exclusion properties for hydrophobic molecules using 

outer membrane permeabilizer compound 48/80 revealed further sensitization to both 

hydrophobic molecules novobiocin and triclosan in the already susceptible isolates LD7A and 

LD8B. This suggests an active role for the outer membrane as a rate-limiting step for the 

diffusion of disparate hydrophobic substances. In stark contrast, clear, cogent sensitization was 

not seen with compound 48/80 for either novobiocin or triclosan in isolate HD33, thereby 

suggesting that factors other than outer membrane impermeability may be contributing to intrinsic 

novobiocin and triclosan resistance, unlike what has been previously reported for P. aeruginosa 

(Champlin et al., 2005; Ellison et al., 2007). However, slight compound 48/80 sensitization was 

observed for both novobiocin and triclosan in isolate HD36, thereby suggesting a more prominent 

role for the outer membrane in their intrinsic resistance. These data suggest that the outer 

membrane functionally contributes as a protective barrier to hydrophobic compounds in general 

and triclosan specifically in the intrinsically resistant isolate HD36, but not for isolate HD33.   

While these data strongly suggest that the outer membrane regulates entry of hydrophobic 

substances in general and triclosan specifically into the periplasmic space in some, but not all 

Pseudomonas spp. isolates, it is clear that outer membrane impermeability is not the sole 

mechanism at play. Other mechanisms most likely work in concert with outer membrane 

impermeability to confer the ability of environmental Pseudomonas spp. isolates to grow in the 

presence of high concentrations of triclosan. These may include (a) expression of an enzyme(s) 

which covalently modifies the biocide, thereby further inactivating it (Clayborn et al., 2011); (b) 

constitutive and inducible active multidrug efflux systems capable of removing any incoming 

biocide, thereby inhibiting bactericidal or growth-inhibitory effects (Schweizer, 2001); or (c) 

catabolic processes that deactivate the molecule, and possibly converting it into a useable energy 

source, thus supporting intermediary metabolism (DeGear et al., 2017).  
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Future directions of this work should include the use of other outer membrane 

permeabilizers such as EDTA or polymyxin B nonapeptide (Champlin et al., 2005) to confirm the 

conclusions reached in the present study. Efflux pump inhibitors can be employed along with the 

analysis of spent culture media for triclosan-inactivating factors to determine the ancillary 

mechanism(s) at work to supplement the exclusionary capabilities of the outer membranes in 

these environmental isolates. Furthermore, because of the recent ban of triclosan in many 

consumer products (U.S. Food and Drug Administration, 2016), the replacement of triclosan by 

equally or more harmful substances on our health and the environment is possible. An extension 

of this study could evaluate the outer membrane of these environmental isolates in the presence of 

other wastewater contaminants using similar methodologies.   

Conclusions 

Some, but not all environmental Pseudomonas spp. isolated from surface waters using 

triclosan selection in three disparate locations in Oklahoma appear to be intrinsically resistant to 

hydrophobic substances in general, and triclosan specifically, by virtue of outer membrane 

exclusion in a manner similar to that seen in the phylogenetically closely-related nosocomial 

opportunist P. aeruginosa. However, this property was unable to be shown to be due exclusively 

or even in large part to outer membrane impermeability. It is likely that it is working in concert 

with multidrug efflux systems and/ or triclosan-modifying enzymes to confer intrinsic resistance 

in some Pseudomonas spp. This research facilitates a better understanding of the cellular and 

molecular physiology of environmental isolates selected for on the basis of intrinsic triclosan 

resistance, and contributes to our appreciation of the impacts of environmental triclosan 

contamination. Moreover, it is anticipated that the data collected from this research will be useful 

for elucidating mechanisms underlying biocide resistance in Pseudomonas spp. These strategies 

could lead to comparison of environmental Pseudomonas isolates and the nosocomial opportunist 
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P. aeruginosa to facilitate the discovery of more efficient techniques for treating infections 

associated with the bacterium.  
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