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Abstract: In recent years, UAS (unmanned aerial systems) have gained improved 

functionality by integrating advanced cameras, sensors, and hardware systems; however, 

UAS still lack effective means to detect and record audio signals. This is partially due to 

the physical scale of hardware and complexity of that hardware’s integration into UAS. 

The current study is part of a larger research effort to integrate a high-gain parabolic 

microphone into a UAV (unmanned aerial vehicle) for use in acoustic surveying. Due to 

the aerodynamic interaction between a flush mounted parabolic antenna and the free-

stream grazing flow, it is necessary to fair the antenna into the aircraft using a windscreen. 

The current study develops a characterization method by which various windscreen designs 

and configurations can be optimized. This method measures a candidate windscreen’s 

normal incidence sound transmission loss (STL) as well as the increase of hydrodynamic 

noise generated by its installation at a range of flow speeds. A test apparatus was designed 

and installed on the Low Speed Wind Tunnel at Oklahoma State University. The test 

apparatus utilizes a “quiet box” attached to the wind tunnel test section floor. A pass-

through window between the wind tunnel test section and the quiet box allows candidate 

wind screens to be mounted between the two environments. Microphones mounted both in 

the wind tunnel test section, and within the quiet box record the acoustic spectrum at 

various flow speeds, ranging between 36 and 81 feet per second. A tensioned Kevlar® 

wind screen validation specimen was fabricated to validate system performance. The STL 

spectrum is measured based on comparing the signal from microphones on either side of 

the Kevlar® membrane. The results for normal incidence STL for the flow off scenario are 

compared to results presented in other studies for the same material under tension. Flow-

on transmission loss spectral data along with the increase in flow noise caused by the 

membrane is also measured at several flow speeds. The system has been shown to produce 

STL data consistent with the reference data for flow-on and flow-off test configurations, 

as well as being able to detect the increase in flow-induced noise generated by the 

validation specimen windscreen.  
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1. Background 

Unmanned Aerial Vehicles (UAVs) have gained wide functionality in recent years as 

sensor, flight control hardware, and propulsion systems have becomes more miniaturized. This has 

resulted in rapid expansion of applications that can be performed from the air using these systems, 

airborne acoustic sensing being an exception to this trend. Acoustic sensing from an UAV requires 

advances to be made in more than one technological aspect. The airframe and propulsion noise 

generated by the aircraft must be minimized so that the target frequency range is not saturated by 

the background noise, a high-gain directional microphone system such as a parabolic antenna must 

be developed to maximize aircraft stand-off distance, and an effective windscreen provided to fair 

the microphone system installation into the fuselage to minimize flow-induced noise. This study 

develops an effective means by which candidate windscreens can be characterized for normal 

incidence sound transmission loss and grazing flow self-induced noise. 
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1.1.1. Project Motivation – Airborne Detection of Acoustic Sources 

There are many applications for airborne acoustic sensors. A successful system could 

potentially be optimized to conduct search and rescue in hard to access environments, detect 

movement of troops, tanks, and other equipment on the battle field, conduct espionage missions, 

locate and detect wildfires, and many other possible applications which have yet to be considered. 

Counting the population of Greater Prairie-Chicken in a habitat is one example of a potential 

application for this technology, and an example followed throughout this study.  

Land conservation is a highly regulated, important, and costly responsibility borne by land 

developers. This includes ecological protection for at-risk and endangered species. One such species 

commonly found in the great plains region of the United States is the Greater Prairie-Chicken 

(Tympanuchus Cupido Pinnatus), which the Partners in Flight (PIF) listed on their 2000 watch list 

of extremely high-priority species1. This species has been on the decline since the late 1800s, 

probably due to habitat loss. Lek (the location of avian mating rituals) surveys are accomplished to 

provide an index for avian populations within a region slated for development. The Traditional Lek 

Survey (TLS) is accomplished is accomplished by traversing a route, stopping on regular intervals, 

to listen for the “booming” calls created by male prairie-chickens during mating. The location of 

each lek is determined based on the location and direction of calls determined during the survey. 

Once the survey is complete, the birds are flushed and counted from each lek location. This 

procedure is repeated each day for as many days is required to flush and count each lek1. This is a 

time consuming and labor intensive process. 
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Figure 1. Male Greater Prairie-Chicken displaying on lek, Ft. Pierre National Grassland, SD, 

April 14, 20072. 

 

The male Greater Prairie-Chicken creates a mating call known as “booming”, which is a 3-

syllable sound produced through the syrinx and amplified by the esophageal air sacs (brightly 

colored orange/yellow checks see in Figure 1). The primary booming frequency is between 280 and 

310 Hz (as measured from audio recording provided by Cornell Laboratory of Ornithology) 2. The 

low frequency nature of this call allows a greater detection range in air than that of a higher 

frequency call, thus making this species an ideal candidate to be detected from a UAV. Since UAV 

are already being developed and utilized for terrain mapping, there may be an opportunity to 

incorporate ecological impact surveys into the flights, thus further reducing development cost with 

this emerging technology. 

A recent study3 published by the American Ornithological Society confirmed the potential 

to count quantities of song birds from the air using a UAV. In this study, an off-the-shelf quad-rotor 

aircraft was equipped with a self-contained microphone and data recorder which was suspended 

eight meters below the aircraft using a thin cable. The aircraft was operated at a height of 28, 48, 
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and 68 meters above ground level. Standard bird counting methods were used on the area on the 

morning of the test so that the airborne detection method could be validated. It was determined that 

the number of bird detected from the air was reduced from that obtained using established standard 

count methods. A mean of 5.6 species per counting point detected by the UAV and a mean of 6.5 

species per counting point detected with standard methods (when non-audible detections are 

omitted). The aircraft used in this study is not optimized for airborne detection or low noise emission 

which caused the call of certain species to be drowned out by aircraft noise. It was noted that avian 

behavior might be affected by the presence of the aircraft. This study indicates that airborne 

detection of birds is a possible, and might be a feasible method to reduce man-hours on the grounds. 

1.1.2. Airborne Detection of Acoustic Signals 

A challenge while recording natural acoustic signals is to maintain a sufficient stand-off 

distance between the observer and source such that the observer is undetectable by the source, but 

still able to resolve acoustic signals from the source. In the case of the Greater Prairie-Chicken, the 

presence of a loud UAV might frighten the birds and disrupt the production of mating calls or cause 

them to hide altogether. Research is ongoing at Oklahoma State University, and elsewhere, to reduce 

the amplitude and shift the frequency of noise generated by special purpose UAV platforms. The 

successes achieved in these studies will greatly affect the system performance of the system 

proposed herein. 

An acoustic source’s observed intensity level is a function of the distance from the source 

and the observer. For a monopole source (a spherical fluctuating pressure wave), the intensity, I, of 

the signal measured by the observer is a function of the inverse of the square of distance, r, between 

the source and observer, as seen in Equation (1)4. 

 
𝐼 =

𝑊

4𝜋𝑟2
 

(1) 

 Where: 

I = Intensity measured by the observer (W/m2) 

W = Acoustic power of the Source (W) 

r = Distance from the source to the observer (m) 
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 Sound propagation in a continuum such as air attenuates proportionally with frequency, i.e. a 

lower frequency source will attenuate less than a higher frequency source (reference Equation (2),  

(3), and Figure 2)4. Figure 2 shows the attenuation in fully quiescent and isothermal standard air at 

various stand-off distances of an idealized broad band monopole source at an amplitude of 65 dB. 

 𝐼𝑥 = 𝐼(0)𝑒−2𝛼𝑥 (2) 

 Where: 

Ix = Acoustic intensity at distance x 

I(0) = Acoustic intensity at x = 0 

α = Absorption Coefficient (nepers/m) 

 

  

 

𝛼𝑐 = 
𝜔2

2𝜌0𝑐
3
[
4

3
𝜂 + (𝛾 − 1)

𝑘

𝑐𝑝
] (3) 

 Where: 

ω = Frequency of the sound wave 

ρ0 = Density of the gas 

c = Speed of sound in the gas 

η = Shear viscosity coefficient 

γ = Ratio of specific heats 

cp = Heat capacity of the gas at constant pressure 

k = Thermal conductivity of the gas 
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Figure 2. Sound attenuation spectrum for an idealized 65 dB broad band monopole source in 

fully quiescent isothermal standard atmosphere free from background noise at various stand-off 

distances calculated using Equation (34 

 

This model suggests that if an aircraft’s noise can be shifted up in frequency, the source 

intensity will drop off more rapidly than that of a lower frequency at the same amplitude. This also 

means target sources of higher frequencies will require detection from a shorter standoff distance, 

thus risking detection by the source. Sources such as the Greater Prairie-Chicken’s “booming” call, 

having a frequency of 280-310 Hz, will propagate well through air. Equation (3) assumes a 

monopole source propagating through a fully quiescent and isothermal gaseous continuum.  

Antenna gain is another factor that can affect required stand-off distance between a target 

source and the UAV. Parabolic antennae and phased array antennae offer good capability to collect 

sound energy from a broad area and focus it to a smaller area, in an effect similar to a magnifying 

glass. Phased array microphone antennas were not considered at this stage in the project due to the 
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number of microphones required, complexity of data processing, and cost of equipment. Acoustic 

parabolic antennas were chosen for this project because they function using a single microphone, 

and are relatively light weight, low cost, and simple to manufacture. The gain requirement for this 

project will be determined once further evaluation of the noise spectrum generated by the selected 

aircraft, as well as acoustic target detection thresholds are established. 

Integration of a parabolic microphone antenna into a UAV is a challenge due to its relatively 

large size (12 to 24-inches in diameter, depending on lower frequency limit). If the system is to be 

used simultaneously with other sensors such as for photographic surveys, it makes sense to mount 

the antenna such that its primary reception lobe is pointed downward during steady level flight, and 

is therefore positioned with its opening parallel to the flow.  This configuration requires an opening 

in the aircraft fuselage. If the opening is not screened, then separated flow is inevitable. Flow 

separation causes vortex shedding resulting in wide ranging eddy sizes within the flow (Reference 

Figure 3). Turbulent noise frequency is directly proportional to eddy size; therefore, it is useful to 

minimize the amount of large and medium size eddies present to minimize the ambient noise at the 

target frequency range. Reference Figure 4 for conceptual schematic of the proposed acoustic 

sensing UAV. 

 

Figure 3. UAV cross-section showing flow separation resulting from a non-fared parabolic 

antenna installed flush into the outer fuselage surface 
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Figure 4. Conceptual high gain airborne acoustic system 

 

Closed section aero-acoustic wind tunnels have been designed to address the flow separation 

problem using windscreens to maintain flow boundary layers. Previous research has shown light 

weight plain weave dry (i.e. non-epoxy impregnated) Kevlar® cloth held under bi-directional 

tension to be an effective means to control self-induced hydrodynamic noise with minimum 

attenuation across the membrane5,6. This approach shows promise for UAV applications; however, 

maintaining the windscreen tension, as done in the comparison studies, presents difficulty in small 

UAVs due to perimeter framing required to maintain high membrane tension. Ideally, the optimized 

windscreen will be sufficiently self-rigid without external tensioning, and possibly capable of 

carrying flight loads to avoid the need for added structural weight to redirect loads around the 

fuselage/antenna cutout. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

2.1 Counting of Birds in an Environment 

 

While remote sensing of the Greater Prairie-Chicken is only one of many examples for 

which airborne acoustic sensing may be used. Methods to improve the counting process of the 

Greater Prairie-Chicken were researched to provide insight on what challenges may face an 

acoustic sensing system on a UAV. Many methods exist by which to count the number and 

species of birds in an environment. Currently, most methods require personnel physically walking 

or driving transects to detect birds, or tagging and counting specific birds manually. This is a time 

consuming and labor intensive process which adds significant cost to development and 

conservation projects. 

Table 1. Summary of selected studies on avian counting methods 

Year Author Title and Reference Number Publication 
Significance of 

Study 

2006 A. Clifton 

Estimating Numbers of 

Greater Prairie-Chickens 

Using Mark-Resight 

Techniquies1 

Journal of 

Wildlife 

Management 

70(2): 479-

484; 2006 

Discusses reasons 

necessity to conserve 

habitat and current 

in-use methods to 

monitor populations 

2017 A. Wilson 

The Feasibility of Counting 

Songbirds Using Unmanned 

Aerial Vehicles3 

American 

Ornithological 

Society AUK-

16-216.1 

Determines the 

effectiveness airborne 

detection of song 

birds compared to 

standard methods 
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According the Clifton, et. al.1, the most common bird count method used to assess the 

GPC (Greater Prairie-Chicken) population size in a region is the TLS (Traditional Lek Survey). 

This TLS is conducted by manually listening for the “booming call” of GPC at 1.6 km intervals 

along a 16 km track. Once the track has been completed, the track is retraced, and the birds are 

flushed and counted manually counted by sight.  

The uncertainty of the count is considered to estimate the total number of birds in the 

region. An improved method to estimate GPC populations is proposed in this study; however, it 

still requires manually catching, tagging (or marking), and eventually counting animals as they 

are re-sighted. While found to be more accurate than the TLS, this method is expected to be even 

more costly and labor intensive than the TLS method. An alternate method is desired. 

With the commercialization of small affordable UAVs, many companies are looking for 

new and creative ways to utilize their capabilities. In the study conducted by Wilson, et. al.3, the 

possibility of utilizing such technology to conduct avian counting from the air is proposed. In this 

study, a quad-rotor UAV is equipped with an acoustic sensing and recording equipment package 

which is dangled from the aircraft by a thin line. Various species of song birds were counted and 

the results compared to the standard counting methods. The detection technique employed by this 

study was based on the standard methods typically used where a recording was made a several 

points throughout an environment for 3 minutes at a time. The experiment was repeated at 

altitudes of 28, 48, and 68 meters to determine the impact of the count. It was determined that the 

UAV counting method resulted in a mean detection of 5.6 species per detection point compared 

to 6.5 species per detection point, as measured using standard manual methods (with non-audible 

detections omitted). It noted that the calls of certain bird species bird species are of a frequency 

which is completely dominated by aircraft self-induced noise. Also noted in this study is the 

possible impact the presence of recording UAV might have on avian behavior.  

It is obvious from the results of this study that further work needs to be accomplished to 

reduce and/or optimize the frequency of the noise signature created by the observing UAV as 
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well as minimizing any effects the presence of the UAV may have on the detection methods. 

Increasing the stand-off distance from which a source can be detected will benefit the latter 

concern. Designing an airframe for low noise, with a self-induced noise signature sufficiently 

different from the frequency of the acoustic target source will serve both concerns. Additionally, 

it is necessary to improve the detection range of the system by increasing acoustic signal gain. 

This requires integration of a high-gain acoustic antenna which, as discussed in the introduction, 

will require fairing from a windscreen optimized for the specific application. The two acoustic 

parameters identified as critical for windscreen optimization are self-induced flow noise and 

normal incidence sound transmission loss.  

2.2 Flow Noise Reduction Methods 

 

Multiple methods were researched to determine the best approach to reduce the amount of 

self-induced flow noise detected by microphones in a flow, such as flush mounting a single 

microphone to a surface. Long range detection of acoustic sources requires signal amplification. A 

high gain antenna can be used to improve the detection range of a source. Parabolic antenna and 

microphone arrays are the preferred methods to improve signal gain; however, both methods have 

a large area which require aerodynamic fairings to prevent the signal from being dominated by self-

induced hydrodynamic flow noise. Previously accomplished research has developed means by 

which large surface area microphone components can effectively be screened from a flow within a 

wind tunnel. These studies are listed in Error! Not a valid bookmark self-reference.. 
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Table 2. Summary of design studies for acoustic wind tunnel windscreens 

Year Author Title and Reference Number Publication Significance of Study 

2000 S. Jaeger 

Effect of Surface Treatment 

on Array Microphone Self-

Noise.5 

American 

Institute of 

Aeronautics 

and 

Astronautics, 

Inc. AIAA-

2000-1937 

Demonstrated the 

effectiveness of 

tensioned Kevlar® 

panels and provides 

transmission loss test 

data 

2005 
H.E. 

Carmargo 

Evaluation and Calibration of 

a Prototype Acoustic Test 

Section for the Virginia Tech 

Stability Wind Tunnel6 

Virginia 

Tech 

Internal 

Report VPI-

AOE-294 

Modification of closed 

section acoustic wind 

tunnel using 

Tensioned Kevlar® 

Panels and provides 

transmission loss and 

insertion noise test 

data 

 

In 2000, Jaeger, et. al.5 investigated the retrofit of the NASA Ames Research Center wind 

tunnel for use as an aero-acoustic facility. Modifications included a 70-element microphone array 

recessed into one of the test section walls. Several materials were tested, and a light weight plain 

weave Kevlar®, held under tension, was determined to show the best durability and acoustic 

properties. This study also proposed a semi-novel method to measure acoustic insertion loss by 

which an acoustic source is mounted in the wind tunnel test section and sound pressure 

measurements are taken on both sides of the windscreen membrane. The difference in intensity 

between the two environments is used to quantify the insertion loss. The tensioned Kevlar® 

membrane was reported to have an insertion loss of up to 2 dB across a frequency range of 50 Hz 

to 25k Hz.  

In 2005, Carmargo, et. al.6 published a report outlining the conversion of the stability wind 

tunnel at Virginia Polytechnic Institute at Blacksburg, VA to an aero-acoustics wind tunnel in a 

similar manner to the wind tunnel at NASA Ames Research Center. For this retrofit, two full-scale 

anechoic chambers were installed on opposite sides of the wind tunnel test section and are used to 

house acoustic measurement equipment such as microphone arrays. Tensioned Kevlar® 

windscreens replaced the original test section walls, and additional acoustic treatment was added 
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to the wind tunnel sections upstream and downstream of the test section. Special attention was paid 

to reducing the background noise and flow turbulence to improve the quality of acoustic 

measurement obtained by the modified wind tunnel. Carmargo, et. al.6 validated the results obtained 

by Jaeger, et. al.5 and reported on a method to measure the amount of flow induced noise caused 

by installation of the windscreens and other acoustic treatments. In this method, the overall sound 

pressure level (OASPL) generated by the flow noise is measured using a microphone equipped 

with a bullet nose cone. The OASPL is computed at multiple flow speeds, and for difference 

membrane configurations. The OASPL at each flow speed is plotted for each configuration, and 

the trend lines are compared (reference Section 3.4.5 for more information on this test method). 

Jaeger, et. al.5 and Carmargo, et. al.6 both concluded that tensioned light weight Kevlar® 

provides good STL and self-induced noise reduction; however, the tension required to prevent 

significant flow induced membrane deflection is prohibitive for light weight installation into UAV 

structures. Therefore, an alternate windscreen design is desirable, and it is necessary to be able to 

compare key characteristics of the novel windscreen designs. Methods to measure the key acoustic 

parameters were researched and are presented in the subsequent sections. The windscreen testing 

and evaluation procedures described in Jaeger, et. al.5 and Carmargo, et. al.6 were conducted in 

large and idealized facilities for acoustic testing. These facilities are cost prohibitive and out of 

reach for most research facilities. It is desirable to accomplish parabolic microphone windscreen 

characterization using a facility designed specifically for testing all acoustic parameters using a 

single full-scale sample with little-to-no configuration changes required.  

2.3 Sound Transmission Loss Measurement Techniques 

Of primary concern to screening a microphone is the amount of signal attenuated and 

reflected by the windscreen before it reaches the sensor. This is known as STL (sound transmission 

loss). Many standard measurement techniques exist to measure STL. The techniques addressed by 

the present work are listed in Table 3. 
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Table 3. Summary of standards and studies on the measurement of sound transmission loss 

Year Author Title and Reference Number Publication 
Significance of 

Study 

2009  

ASTM E2611-09 Standard test 

Method for Measurement of 

Normal Incidence Sound 

Transmission of Acoustical 

Materials Based on the Transfer 

Matrix Method7 

ASTM 

International 

Impedance Tube 

governing standard 

2010  

SAE J1400: Laboratory 

Measurement of the Airborne 

Sound Barrier Performance of 

Flat Materials and Assemblies8 

SAE 

Recommended 

Practice 

Description of Two 

Room Method for 

Acoustic 

Transmission Loss 

Testing 

2009 
K.C. 

Vengala 

Building a Modified Impedance 

Tube for Measurement of Sound 

Transmission Loss and 

Absorption Coefficients of 

Polymer Cross-Linked Aerogel 

Core Composites9 

Master's 

Thesis, 

Oklahoma 

State 

University 

Creation of 

Impedance Tube and 

math/physics behind 

it. 

2016 
J. 

Callicoat 

Composite Materials Providing 

Improved Acoustic Transmission 

Loss for UAVs10 

Doctoral 

Dissertation, 

Oklahoma 

State 

University 

Development of 

Impedance Tube and 

Other OSU 

Resources 

 

The American Society for Testing and Materials International (ASTM International) 

developed Standard E26117 which addresses the transfer matrix method for quantifying a material’s 

tendency to reflect, absorb, or transmit an acoustic wave. This standard defines a test apparatus and 

procedure utilizing 4 microphones (2 mounted on each side of the test sample) mounted within a 

heavy walled tube. Acoustic plane waves are generated by a speaker at one end of the tube, and 

impinge on the test specimen. Two back walls are described, a solid backwall providing a reflected 

wave, and an anechoic backwall to be used on samples with symmetric acoustic properties for both 

faces. Reflected waves are detected by the microphone pair by monitoring the wave phase angle. 

This method provides a relatively simple bench-top method by which small material samples can 

be characterized. 
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In 2009, Vengala9 developed and construction the 4-microphone impedance tube apparatus 

at Oklahoma State University. The MATLAB code developed by this study became the basis for 

the code used to operate the impedance tube for tested accomplished in the present work. 

The impedance tube was determined to be a viable option to establish preliminary STL 

measurements for unstiffened scale samples of candidate windscreen components; however, the 

lack of ability to test at full-scale and with flow on prevents it from being viable option to compare 

STL between candidate windscreens. The Two-Room Method is an alternate to the impedance tube 

method allows full scale STL measurements and is presented in SAE J14008. 

The International Society of Automotive Engineers (SAE International) published standard 

J14008 (originally published in 1982, most recently revised in 2010) which provides direction for 

testing full scale material samples using two adjoining chambers. A reverberant chamber containing 

an acoustic source and source room microphone(s) is connected by a pass-through window to an 

anechoic chamber which contains the receiving room microphone(s). The specimen under test is 

mounted in the pass-through window. A source signal is produced in the reverberant source room 

such that semi-omni-directional sound waves impinge on the specimen. The averaged signal from 

the reverberant source room is compared to the averaged signal from the receiving room. The 

difference between these two signals is corrected using a correction factor unique to each facility. 

The correction factor is obtained by measuring the STL a sample of known transmission loss such 

as PVC, vinyl, another limp mass material, or the suggested fiber material. The measured sample 

STL is compared to the previously established sample properties. The correction factor is the offset 

requirement to force each measured frequency bin match that of the established data. This 

correction factor is applied to every sample measured using the facility, and should be recalculated 

periodically, or any time major changes are made to the facility. 

In 2016, J. Callicoat10 published a study which developed and calibrated a two-room 

method facility at Oklahoma State University. This study also made use of the impedance tube, and 

developed the formalized impedance tube transfer matrix method MATLAB code that was used 
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for testing presented in the present work. The methods to measure transmission loss of a sample 

presented by Callicoat10 are the basis for the apparatus developed herein. 

The Two-Room Method is viable for STL characterization of full-scale parabolic 

microphone candidate windscreens; however, it provides no ability to measure STL with flow-on, 

nor does it provide any measurement of self-induced flow noise. It is desirable to develop a test 

apparatus which can compare all stated key acoustic parameters between candidate windscreen 

designs. This method will be similar to SAE J14008 in that an approximately anechoic environment 

will be attached to an approximately reverberant environment. The test sample will be placed in 

between, and STL measurements will be made on either side. The test section of the wind tunnel 

serve as the approximately reverberant environment, which will provide a means to measure STL 

with flow on and self-induced noise generation.   

2.4 Design of Anechoic Environments 

 

As discussed in SAE J14008, measurement of sound transmission loss of a material requires 

an anechoic environment to ensure all sound pressure recorded outside the source environment has 

passed through the sample material only. Anechoic chamber design is thoroughly understood and 

many textbooks and specifications have been written on the subject. Design of the anechoic 

environment required for the test apparatus utilized in the present study is based on these well-

established theories and principles; however, due to the unusually small size of the anechoic 

environment, special accommodations had to be made to ensure the internal dimensions do not 

cause a buildup of standing waves at any location.  
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Table 4. Summary of standards and studies on design of anechoic environments 

Year Author Title Publication 
Significance of 

Study 

2012  

ISO 3745: 2012: Acoustics - 

Determination of sound 

power levels and sound 

energy levels of noise sources 

using sound pressure - 

Precision methods for 

anechoic rooms and hemi-

anechoic rooms11 

BSI 

Standards 

Publications 

Provides guidelines 

and requirements for 

anechoic chambers 

2011 
J. G. 

Rodrigues 

Design and Implementation of 

Aspects of a Small Anechoic 

Room and Sound-Actuation 

System12 

Thesis, 

Public 

University 

of Navarra 

Spain 

Provides guidance for 

design of small 

anechoic 

environments. 

 

The International Organization for Standards (ISO) developed ISO 374511 which provides 

many of the criteria for anechoic environments such as background noise limits, microphone 

placement, and theoretical information on sound measurement. 

In 2011, J. Rodrigues12 published research into the challenges with creating a small scale 

anechoic environment. These challenges include interaction with standing wave frequencies and 

inability to install sufficiently sized foam wedges. Rodrigues was a primary source for the design 

of the quiet box anechoic environment developed herein.  

2.5 Gaps in Current Research 

 

The measurement of STL has been standardized, and its processes are operational in 

industry. Experimental methods have also been developed to measure self-induced flow noise 

generated by the installation of a windscreen. Currently, no research has been conducted to 

combine STL and flow-induced noise generation measurement for parabolic microphone 

windscreens into a single test method. The current study develops this method with the focus on 

acoustic sensing UAV windscreens. 
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CHAPTER III 
 

 

METHODOLOGY 

3.1 Problem Statement 

As established in the previous sections, creating a smooth surface to minimize boundary 

layer turbulence over the fuselage opening is required for proper integration of a parabolic 

microphone antenna; however, any membrane or barrier installed between the source and receiver 

will cause signal attenuation, as well as installation challenges. The focus of this study is the 

development of an apparatus and technique by which various windscreen materials and design 

configurations can be tested and characterized for key parameters. Sound Transmission Loss (STL), 

and overall self-induced hydrodynamic noise increase as a function of grazing flow speed have been 

chosen as the key controlling parameters. STL is defined as the reduction in Sound Pressure Level 

(SPL) across a membrane, or SPL on the source side of a membrane minus SPL on the receiver side 

of a membrane. The self-induced hydrodynamic noise increase is quantified by comparing the 

Overall Sound Pressure Level (OASPL) recorded near the windscreen turbulent boundary layer at a 

series of flow speeds. 

3.1.1 Goal and Objectives 

Aerial detection of the ground acoustic sources (the Greater Prairie-Chicken, for example) is the 

primary motivation of the overall research initiative to integrate high-gain acoustic sensing into 

UAV. There are many applications for this technology, all with unique target frequency ranges, 

aircraft speed requirements, and other requirements. Many methods exist by which the flow off 

sound transmission loss of a material sample can be measured. 
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Methods have also been developed which can determine the self-induced flow noise of a sample. 

All such methods require the use of high cost acoustic research facilities and equipment. No 

research has been conducted to combine these test methods into one simple apparatus and using 

common facilities and systems. The current research effort described herein is focused on the 

following goals: 

• Modify the existing wind tunnel facility at Oklahoma State University to add capabilities 

to compare candidate windscreens. 

• Allow for simultaneous characterization of STL and self-induced flow noise on full-scale 

candidate parabolic microphone windscreens using a single test apparatus.   

3.2 Previously Developed Flow-Noise Reduction Techniques 

 

Previous research conducted in the field of aero-acoustics wind tunnel development has 

led to many developments applicable the present study. Traditional aero-acoustic wind tunnel are 

open test section designs which utilizes a free jet and a collector located within an anechoic 

chamber. The microphone(s) are placed in the static air region of the anechoic chamber, outside 

the jet shear layer, to mitigate the problem of hydrodynamic noise generated by turbulence formed 

by the microphone itself. Reflection and refraction of sound waves will occur across the jet shear 

layer and must be corrected in accordance with Snell’s law, as in the field of optics13  
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Figure 5. Open-section acoustic wind tunnel configuration showing the free jet plenum (left) 

and the collector (right), all housed within an anechoic environment from which acoustic 

measurements are made.14 

 

 

Figure 6. Shear layer noise ray paths distortion for boundary layer corrections required for 

effective operation of open section aero-acoustic wind tunnels13 
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This form of wind tunnel serves little use for UAV integrated applications as there exists 

no location to mount a microphone outside of the freestream airflow. An alternative method for 

acoustic wind tunnel design is the closed acoustic wind tunnel design. The test section of a closed 

acoustic wind tunnel is ideally constructed from an acoustically transparent, aerodynamically 

opaque material. Acoustic sensing equipment is located in an anechoic environment outside the 

flow field. The Virginia Tech Stability Wind Tunnel is a large-scale example of such a design. The 

test section of a previously constructed aerodynamic wind tunnel was retro-fitted to a tensioned 

Kevlar construction and acoustic absorbers were added to a length of the tunnel forward and aft of 

the tunnel test section. Phased array microphones are placed at a specified separation distance from 

the Kevlar windows in the anechoic chamber region outside the test section6. 

 

 

Figure 7. Schematic showing arrangement of acoustic absorbers and Kevlar® acoustic 

windows in Virginia Tech Stability Wind Tunnel6 

 

Extensive modifications were required for the conversion from traditional aerodynamic to 

aero-acoustic wind tunnel which include significant acoustic treatment to regions up and down-

stream of the test section, to reduce the overall background noise of the tunnel. These modifications 

include acoustic absorption panels and improved boundary layer control. Controlling the ambient 



21 
 

noise is less important for the current work of characterizing windscreens, provided that noise is 

consistent, and the tones used to determine STL of a candidate windscreen can be generated at an 

amplitude sufficiently above the background. 

3.3 Impedance Tube Testing 

 

Preliminary STL transmission loss testing was accomplished for light weight Kevlar 

woven fabrics, similar to those used in close section acoustic wind tunnels. This is accomplished 

with the use of an acoustic Impedance Tube configured to conduct transmission loss measurements 

for this specimen. The impedance tube’s only application to this study is for measuring no grazing 

flow sound transmission loss. Furthermore, the limited size of samples which can be mounted in 

the impedance tube available for this testing will result in errors caused by critical frequency affects 

(natural vibrational frequencies of the membrane) for any stiff specimen. Impedance tube testing 

serves only as a means to generate preliminary STL data for a material prior to investing in a full-

scale test specimen 

3.3.1 Impedance Tube Apparatus 

An impedance tube consists of a circular or rectangular straight tube constructed from a 

sufficiently massive material so sound transmission through the tube wall is negligible compared 

to the sample. A sound generating source is connected to one end and a test specimen mounted in 

the tube. For transmission loss measurements, as were conducted in this preliminary experiment, 

two microphones are mounted on each side of the test specimen (four microphones total) so that 

the diaphragms are flush with the inside surface of the tube. Plane waves are generated in the tube 

via the source driver, generating broadband white noise. The resulting wave pattern is decomposed 

into transmitted, reflected, and absorbed components from signal acquired by each microphone and 

examining their relative amplitude and phase angle7.  
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Figure 8. ASTM E2611-09 impedance tube, configured to acquire transmission loss 

coefficient for a sample, as utilized in the preliminary experiment7 

The impedance tube at Oklahoma State University has multiple configurations allowing 

for transmission and reflection testing to be accomplished. For this study, only transmission testing 

was accomplished. The impedance tube was constructed to ASTM E2611-09 standards for the 4-

microphone method and has a square internal cross section measuring 2.50 by 2.50 inches. The 

apparatus consists of two equal volume rectangular tubes which hold the test sample in between. 

The Impedance Tube used in this study is limited to measurements ranging from 80 to 2500 Hz. 

The upper boundary of the measurement range is determined by Equation (4). 

𝑓𝑢 <
𝐾 𝑐

𝑑
 (4) 

The lower frequency limit of the Impedance Tube is limited by the spacing of the 

microphones and the accuracy of the analysis system. The microphone spacing is greater than 1% 

of the wave length of the lower frequency limit7. According to Callicoat10, the impedance tube 

apparatus at Oklahoma State University has a measurement uncertainty of ±3 dB, as established by 

testing. It was noted that only 4 sample data sets were compared to determine this uncertainty 
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interval; therefore, it is likely that uncertainty interval is actually less than the stated ±3 dB, but 

additional testing is required for further refinement. 

3.3.2 Impedance Tube Sample Fabrication 

A 5.0 oz. plain weave Kevlar® was selected for the test specimen since comparison results 

for this weight were presented in Jaeger, et. al.5. This study indicated that Kevlar® was found to 

have superior durability when exposed to air flow compared to the other materials tested. Wire 

mesh was observed to fail rapidly in fatigue, and fiberglass was observed to fail in shear due to 

turbulence in the boundary layer. For the impedance tube testing conducted herein, three test 

specimens were fabricated to gain insight about the effects of epoxy impregnation weight on STL. 

One sample was left dry, one was lightly impregnated, and one was heavily impregnated. The 

minimum amount of epoxy to wet the sample was used for the lightly impregnated sample, and the 

epoxy was added until the cloth was saturated, then the excess was removed for the heavily 

impregnated sample (impregnation levels were not quantitatively measure). Material specifications 

and cure cycle information are presented below: 

Table 5. Impedance tube test specimen fabrication material and processing information  

Fabric Resin Hardener Cure Method Cure Time 

Kevlar, 5.0 oz. Plain Weave, 

17 x 17 Thread Count, 0.010 

Inch thick 

Resin Services 

Inc. 

WB-400 

Resin Services 

Inc. 

SC-150-NB 

Room Temp 

Vacuum Bag 

23 in-Hg 

12 hours 
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Figure 9. Impedance tube test specimen fabrication vacuum bag configuration diagram 

 

3.3.3 Specimen Fixture and Signal Generation for Impedance Tube 

Holding the test specimen securely in the impedance tube is critical to the fidelity of 

transmission loss testing. If a consistent level tension cannot be maintained between tests, or a non-

negligible amount of acoustic energy escapes the impedance tube, test results will be erroneous. A 

specimen holder was designed and fabricated for use in this experiment. The specimen holder was 

printed from Acrylonitrile Butadiene Styrene (ABS) plastic on an Airwolf single head 3D printer. 

The specimen holder was designed to apply a slight, but consistent tension to the membrane. This 

is accomplished by stretching the membrane tightly over the aft surface of the outer ring, then 

forcing the inner ring in place. This causes a small amount of strain in the membrane is forced into 

against the fixture. Petroleum jelly was used on the interface between specimen holder assembly 

and the impedance tube to ensure an air tight seal. Reference Figure 10 for CAD three-view (top), 

manufacturing photo on 3D printer (left), and test installed in fixture on impedance tube (right). 

Note that the bluish green tint present on the Kevlar® test specimen is a result of epoxy 

impregnation. 
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Figure 10. Mounting fixture for use with Kevlar® impedance tube test specimen (all 

dimensions shown are in inches) 

A signal generator was set to 250 mV in white noise mode. This signal was fed into an 

amplifier then into a Kicker 4 Ohm coaxial speaker (Model 41KSC44) installed in an enclosure 

attached to the transmission end of the impedance tube. Data were collected over a period of 60 

seconds for each run. Three consecutive and identical tests were accomplished for each specimen. 

Additional tests were conducted using the specimen fixture, but without a specimen installed, and 

also with the two halves of the impedance tube joined together with no specimen or fixture. This 

was done to assess the effect of installing the specimen fixture. The change in transmission loss for 
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the no specimen, no fixture configuration and the fixture only configuration was determined by 

averaging the transmission loss spectral data for all three data sets for each configuration, then 

subtracting the no fixture configuration data from the fixture only configuration data. Reference 

Figure 11 for plotted data. 

(a) 

 

(b) 

 

Figure 11. Impedance tube testing error induced by addition 3D printed ABS specimen fixture. 

(a) – Measured sound transmission loss for fixture only and empty tube. (b) – Transmission 

loss difference between both configurations (STLFixture Only – STLEmpty Tube) 
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The maximum variation between the configurations over the impedance tube operating 

spectrum is 1.9 dB; however, the majority of the spectrum has a difference of less than 0.05 dB. 

This indicates only a small amount of error is introduced into the system as a result of fixture 

installation. Note that the variation for microphone spacing due to removal of the specimen fixture 

was factored into data analysis for each method, as is required for proper use of the transfer matrix 

method used in this analysis. It should be noted that the data below 500 Hz contains more error. 

The cause of this variation is not fully investigated herein, as impedance tube testing is not the 

primary means for windscreen characterization. However, it should be noted that that theoretical 

lower cutoff frequency of the anechoic backwall, facilitated by an 18-inch foam wedge, is 186 Hz. 

Also, the heavy walled steel tube is expected to attenuate more effectively at high frequencies; 

therefore, it is possible that sound energy is more capable of transmission (or “leakage”) across the 

tube walls at the lower limit of the spectrum, which would appear as an increased transmission loss 

3.3.4 Data Processing for Impedance Tube Testing 

 

Signal from all four microphones was collected in a data acquisition device (DAQ) then 

converted from electrical signal to acoustic spectral data using Labview Sound and Vibrations 

Suite. The acoustic data collected is saved in an excel format which is later analyzed a MatLab 

based Transmission Loss Code. The code utilized the One-Load Method for Transfer Matrix. This 

method is a simplified version of the Two-Load method and is adequate since it is assumed that the 

test specimen should have symmetric acoustic properties on each face. Additionally, anechoic 

termination was used for all test cases7, 9, 10. The Normal Incidence Transfer Matrix is calculated as 

shown below7. Note: Reference Figure 8 for wave direction and spatial annotations used in the 

following derivation. 
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Derivation of the transfer matrix is based on the Two-Load method where a reflecting and anechoic 

termination are both utilized. At the termination of type “a”, the acoustic pressure and particle 

velocity transfer matrix is given Equation (5. 

[
𝑝𝑎

𝑢𝑎
]
𝑥=0

= [
𝑇11 𝑇12

𝑇21 𝑇22
] [

𝑝𝑎

𝑢𝑎
]
𝑥=𝑑

 (5) 

At the termination of type “b”, the transfer matrix is given by: 

[
𝑝𝑏

𝑢𝑏
]
𝑥=0

= [
𝑇11 𝑇12

𝑇21 𝑇22
] [

𝑝𝑏

𝑢𝑏
]
𝑥=𝑑

 (6) 

The decomposed forward and backward traveling waves are represented by the following 

(reference Figure 8): 

𝐴 = 𝑗
𝐻1,𝑟𝑒𝑓𝑒−𝑗𝑘𝑙1 − 𝐻2,𝑟𝑒𝑓𝑒−𝑗𝑘(𝑙1−𝑠1)

2 sin(𝑘𝑠1)
 

(7) 

𝐵 = 𝑗
𝐻2,𝑟𝑒𝑓𝑒+𝑗𝑘(𝑙1+𝑠1) − 𝐻1,𝑟𝑒𝑓𝑒+𝑗𝑘𝑙1

2 sin(𝑘𝑠1)
 

𝐶 = 𝑗
𝐻3,𝑟𝑒𝑓𝑒+𝑗𝑘(𝑙2+𝑠2) − 𝐻4,𝑟𝑒𝑓𝑒+𝑗𝑘𝑙2

2 sin(𝑘𝑠2)
 

𝐷 = 𝑗
𝐻4,𝑟𝑒𝑓𝑒−𝑗𝑘𝑙2 − 𝐻3,𝑟𝑒𝑓𝑒−𝑗𝑘(𝑙2−𝑠2)

2 sin(𝑘𝑠2)
 

Hx, ref = corrected transfer function of microphone x relative to a reference signal 

Acoustic pressure and particle velocity on both faces of the specimen are calculated as follows: 

𝑝0 = 𝐴 + 𝐵 𝑝𝑑 = 𝐶𝑒−𝑗𝑘𝑑 + 𝐷𝑒+𝑗𝑘𝑑 (8) 
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𝑢0 =
(𝐴 − 𝐵)

𝜌𝑐
 𝑢𝑑 =

(𝐶𝑒−𝑗𝑘𝑑 − 𝐷𝑒+𝑗𝑘𝑑)

𝜌𝑐
 

The Two-Load transfer matrix is calculated as follows: 

𝑇 = [

𝑝0𝑎𝑢𝑑𝑏 − 𝑝𝑏0𝑢𝑑𝑎

𝑝𝑑𝑎𝑢𝑑𝑏 − 𝑝𝑑𝑏𝑢𝑑𝑎

𝑝0𝑏𝑝𝑑𝑎 − 𝑝0𝑎𝑝𝑑𝑏

𝑝𝑑𝑎𝑢𝑑𝑏 − 𝑝𝑑𝑏𝑢𝑑𝑎
𝑢0𝑎𝑢𝑑𝑏 − 𝑢0𝑏𝑢𝑑𝑎

𝑝𝑑𝑎𝑢𝑑𝑏 − 𝑝𝑑𝑏𝑢𝑑𝑎

𝑝𝑑𝑎𝑢0𝑏 − 𝑝𝑑𝑏𝑢0𝑎

𝑝𝑑𝑎𝑢𝑑𝑏 − 𝑝𝑑𝑏𝑢𝑑𝑎

] (9) 

For the One-Load Method, reciprocity places the following constraints on the transfer matrix 

𝑇11 = 𝑇22 𝑎𝑛𝑑 𝑇11𝑇22 − 𝑇12𝑇21 = 1 (10) 

This allows the elements of the matrix to be determined by a measurement of the microphone 

transfer function with a single termination case. In this study, an anechoic termination was utilized. 

𝑇 =

[
 
 
 
 
𝑝𝑑𝑢𝑑 + 𝑝0𝑢0

𝑝0𝑢𝑑 + 𝑝𝑑𝑢0

𝑝0
2 − 𝑝𝑑

2

𝑝0𝑢𝑑 + 𝑝𝑑𝑢0

𝑢0
2 − 𝑢𝑑

2

𝑝0𝑢𝑑 + 𝑝𝑑𝑢0

𝑝𝑑𝑢𝑑 + 𝑝0𝑢0

𝑝0𝑢𝑑 + 𝑝𝑑𝑢0]
 
 
 
 

 (11) 

The transmission coefficient, τ, for the anechoic backed case is as follows:  

𝜏 =
2𝑒𝑗𝑘𝑑

𝑇11 + (𝑇12/𝜌𝑐) + 𝜌𝑐𝑇21 + 𝑇22
 (12) 

The normal Incidence Transmission Loss, TL, is therefore computed as follows: 

𝑇𝐿 = 20 log10 |
1

𝜏
| (13) 

3.3.5 Significant Findings from Impedance Tube Testing 

The output from the Transfer Matrix method was plotted and is presented below in Figure 

12. As expected, there exists a trend between epoxy saturation level and the harmonic characteristic 

of transmission loss variation. As the mass fraction of epoxy impregnated into the specimen 
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increases, its transmission loss characteristic becomes dominated by its bending stiffness. Rigid 

structures deflect the most while under cyclic loading at the structures natural frequency and its 

associated harmonic frequencies. This deflection results in a reduction of sound energy absorbed 

at those frequencies causing a reduction in acoustic transmission loss. The high epoxy saturation 

specimen is observably more stiff than the low epoxy saturation and dry samples. As expected for 

stiffness dominated transmission loss characteristics, the first observable “valley” or local 

minimum in the STL curve is shifted to a lower frequency than the first “valley” observed for the 

low saturation sample. The dry specimen is not epoxy stiffened, and therefore, does not exhibit 

resonant behavior as was seen for the epoxy impregnated stiffened samples.  

 

Figure 12. Impedance Tube derived transmission loss spectrum for lightly tensioned 5.0 oz. 

plain weave dry, low epoxy saturation, and high epoxy saturation Kevlar® samples tested 

using a white noise source 

 

The dry test specimen was included in this study to produce validation results to be 

compared with the results obtained during evaluation of a windscreen used to cover a large 
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microphone array embedded in the wall of the large section wind tunnel at NASA Ames Research 

Center5. The dry Kevlar® sample tested in the current impedance tube is not identical in style or 

specimen mounting tension to that used for the NASA Ames sample. Additionally, the 

experimental method used at NASA Ames varies significantly; therefore, they are not expected to 

be an exact match. The STL data obtained for the dry sample and a portion of the results obtained 

for the “thick sample” 5.0 oz. Kevlar® material tested at NASA Ames Research Center are 

presented in Figure 13.The full data set obtained by the NASA experiment is presented in Figure 

145. 

 

Figure 13. Comparison between data obtained at NASA Ames Research Center5 using 5.0 oz. 

Kevlar® sample tested in large test section wind tunnel at a frequency resolution of Δf = 62.5 

Hz3 and data obtained at Oklahoma State University using 5.0 oz. Kevlar® sample tested in 

ASTM E2611-097 impedance tube at a sampling rate of Δf = 2 Hz. 
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Figure 14. Anechoic chamber incretion loss testing results for three weights of Kevlar® 

obtained at NASA Ames Research Center during study the effects of surface treatment on 

microphone array self-noise as presented in Jaeger, et. al.5 

 

It is also noteworthy that the previous study5 was conducted using a method similar to the 

Two-Room Method rather than in an impedance tube and over a much larger frequency spectrum 

than the OSU impedance tube is capable of measuring. Comparing the data presented in Figure 13, 

both experiments achieved similar results, although the transmission loss observed by the previous 

experiment is lower than that observed for the data obtained herein. This is possibly the result of a 

difference in sample mounting tension to that used for the NASA Ames experiment5, variations in 

error associated with the different test methods used, or the difference in sample size used. 

Additionally, the frequency resolution collected in the NASA Ames experiment is 62.5 Hz between 

data points whereas this study used a 2 Hz resolution. This can account for some small differences 

in plotting accuracy; however, is not likely responsible for the variation observed. Another 

noteworthy observation from Figure 14 is that a frequency dependent harmonic effect was 
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observed for a non-epoxy-impregnated test specimen, although at frequencies much higher than 

can be observed using the equipment available for the current study3. It is expected that the Kevlar® 

samples without epoxy impregnation would still exhibit the same vibrational harmonic tendencies 

as the samples which were impregnated; however, the significantly reduced stiffness will cause the 

first natural frequency to be shifted lower in the frequency spectrum, below the lower cutoff 

frequency of the test equipment. Information gained through impedance tube testing is valuable for 

the future design of candidate windscreens; however, due to the dominance of the effects of sample 

stiffness in transmission loss testing, a full scale (or near full scale) test system is desired. 

3.4 Wind Tunnel Test System Apparatus 

The characterization method developed herein involves modification to the wind tunnel 

facility at Oklahoma State University. The Low Speed Wind Tunnel at OSU’s School of 

Mechanical and Aerospace Engineering was originally configured to conduct aerodynamic testing 

on small aircraft and models, with little consideration for sound mitigation. The tunnel is housed in 

facility having concrete walls, floors, and ceilings and exposed HVAC equipment. Additionally, 

the tunnel and test section are constructed from hard materials such as fiberglass, acrylic plastic, 

and wood (Figure 15 shows the original configuration of wind tunnel prior to any modifications 

for acoustic testing). The result is a relatively high background noise level in the room of 60.3 dB 

OASPL and in the tunnel of 57.1 dB OASPL with the flow off (OASPL integrated from 200 to 

8000 Hz).  
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Figure 15. Configuration of OSU’s low speed wind tunnel prior to modifications for acoustic 

testing15 

When an acoustic pressure wave interacts with a discontinuity in a continuum, the wave’s 

energy will be reflected, transmitted, and absorbed. The amount of energy allotted to each of these 

three possibilities is dependent of the nature of the discontinuity. STL characterization is focused 

on measuring only the energy that is transmitted. Characterizing a windscreen’s STL requires 

measuring the spectra on both sides of the membrane and comparing the difference to determine 

how much of an acoustic pressure wave has been transmitted. To do this accurately, no acoustic 

energy can be allowed to “leak” around the membrane boundaries; therefore, it is necessary to 

create an environment with boundaries that outside acoustic energy cannot penetrate except through 

the transmission loss measurement specimen. For the current study, this environment was provided 

by a “quiet box” which has specially designed walls which provide a high level of acoustic 

attenuation. The quiet box was installed on the bottom side of the wind tunnel test section. A 

schematic of the modifications to the wind tunnel test section are shown in Figure 16. The quiet 

box extends from the lower surface of the test section with a specimen window open to the wind 

tunnel test section. The quiet box houses the primary microphone used recording signals 

transmitted through candidate windscreens. Additional information about the design and 

construction of the quiet box can be found subsequent chapters. The OSU wind tunnel was already 

equipped with closed-cell-foam vibration isolators at key segment junctions; however, it was 
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decided to further isolate the quiet box/acoustic test section to reduce vibrations generated by the 

fan motor and drive assembly. The sections were separated, creating a thin air gap between the 

section junctions. The gap was then sealed with aluminum tape. A controlled acoustic source driver 

was flush mounted in the test section upper panel and is used to generate noise which can be used 

to raise the ambient noise level, and to generate specific tones used in testing. A flush mounted 

reference microphone equipped with a bullet fairing nose cone is mounted in the flow on a pylon 

above the specimen window, and is used to compare the sound pressure with that recorded by the 

microphone contained within the quiet box. A 4-channel data acquisition card is connected to the 

microphones and data fed into a computer for analysis. Detailed discussion about system design, 

testing procedures, and signal analysis are contained in subsequent chapters. 

 

Figure 16. Modifications to OSU wind tunnel test section for UAV windscreen acoustic 

characterization (schematic not drawn to scale) 

Previous studies on modification of aerodynamic wind tunnels into closed section aero-

acoustic wind tunnels5, 6 have been conducted which suggest that tensioned light weight plain 

weave Kevlar® fabrics effectively produce windscreens with a low STL (ranging from 0 to 7 dB 

from 0 to 20k Hz) compared to other weights and weaves of tensioned Kevlar®. These studies 

provide STL data which is used as a validation comparison to the STL data achieved using the test 

apparatus developed herein.  
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3.4.1 Quiet Box Design 

 

Figure 17. Wind tunnel test section quiet box environment pass-through window and external 

dimensions 

 

The quiet box designed and constructed for this study utilizes sound attenuation techniques 

similar to those used in large scale anechoic and semi-anechoic chambers; however, due to the 

relatively small volume available for this installation, consideration must be given avoid the 

standing wave phenomenon. The Rayleigh formula (Equation (14)) is used to estimate Eigen-

modes for standing waves based on the internal dimensions of the chamber12. The distribution of 

the Eigen-mode frequencies was found to be sufficiently well distributed using the internal 

dimensions (without foam) of L = 42.00 inches, W = 22.00 inches, and H = 32.88 inches, which 

results in an internal volume of 17.6 square feet. The box dimensions are also limited by the space 

available within the wind tunnel test section support frame.  
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𝑓𝑘,𝑚,𝑛 = √(
𝑘

𝐿𝑥
)
2

+ (
𝑚

𝐿𝑦
)

2

+ (
𝑛

𝐿𝑧
)
2

  

 

𝑊ℎ𝑒𝑟𝑒 

𝑓 = 𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑤𝑎𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑘,𝑚, 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 1, 2, 3, … , 𝑖 

𝐿𝑥  , 𝐿𝑦 , 𝐿𝑧 = 𝑥, 𝑦, 𝑧 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐ℎ𝑎𝑚𝑏𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 

 

 

(14) 

 

An ideal quiet box would rely primarily on acoustic foam wedges to attenuate all 

environmental and reverberant noise which is present, across the entire test frequency band. The 

wedge shape foam wedge is used to minimized normal incidence surfaces which can reflect a 

pressure wave directly back at the sensors and increase the amplitude of any standing waves that 

may exist in the system. By providing angled surfaces for pressure waves to impinge on, the wave 

is reflected towards the base of the foam where it is attenuated. Reference Figure 18 for schematic 

of the reflected wave vector resulting from foam angles12.  

 

Figure 18. Schematic of open-cell foam wedges used in quiet box design demonstrating 

beneficial reflected wave vector resulting from foam angles12 

 

The thickness of foam wedges is directly proportional to the quarter wave length of the 

lowest frequency which will be attenuated by the foam12. The relationship is given by Equation 

(15. As an example, in order to achieve a theoretical lower cutoff frequency of 200 Hz, a foam 

wedge of at least 1.4 feet thick would be needed for every reflective surface within an environment. 
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This presents an obvious problem considering the size restrictions associated with installing the 

chamber within the existing wind tunnel support frame. 

𝑓 =
𝑐

𝜆
=

𝑐

4 ∗ 𝑙𝑐
, 𝑙𝑐 ≥

𝜆

4
 

 

𝑊ℎ𝑒𝑟𝑒: 
𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑐 = 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑 

𝜆 = 𝑊𝑎𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 

𝑙𝑐 = 𝑊𝑒𝑑𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 

 

(15) 

A commercially available 4-inch-thick open cell polyurethane foam wedge material was 

chosen as the largest practical for the available volume (a datasheet for the foam is provided in 

Appendix A: Add Foam Factory 4” wedge data sheet). This foam provides a theoretical 

minimum lower cutoff frequency of 840 Hz, which is well above the desired lower frequency range 

for this system.  

 

Figure 19. Quiet box environment cutaway schematic showing double wall configuration 

details and dimensions 

To further reduce the low frequency attenuation of the chamber, a high mass, double wall 

design was used. The chamber wall is constructed from two layers of 3/4-inch medium density 

fiberboard (MDF), with a 1/8-inch-thick, 1.0 pound per square foot mass loaded vinyl bonded to 
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the outer surface of the inner wall. On the sides and bottom of the chamber, a 1-3/8-inch-thick layer 

of fine grain sand was also included. This limp mass layer reduces the amount of low frequency 

sound energy which can pass through. A conceptual understanding of this method of attenuation is 

similar to Hook’s law for spring deflection, where a reduced stiffness and an increased mass result 

in a reduced acceleration. This tends to be more effective at lower frequencies than high. The “mass 

law” can be used as an analytical model to predict transmission loss caused by this phenomenon16. 

The chamber was constructed using lap joints, bonded in place with wood glue and screwed with 

countersunk drywall screws. After assembly, all joints on the inner and outer walls of the chamber 

were sealed with a silicon based adhesive to prevent air leakage. The foam wedges and mass loaded 

vinyl were bonded in place using the same silicon based adhesive. Two RG6 coaxial cables were 

installed in the box by creating slip fit holes through both walls and the sand layer. BNC connectors 

were attached to the wires once they were passed through the box walls, and their continuity was 

tested. Finally, signal from a microphone attached to the data cables installed through the box was 

compared to that of a known good wire to ensure a good connection exists. 

 A soft pine wood was chosen to construct the base stand of the chamber to provide a 

reduced compressive stiffness over that of a metal base. This was intended to reduce the effects of 

any vibrations transmitted by the concrete floor. A layer of vinyl mat was placed between the base 

stand and the concrete floor as a moisture barrier and additional vibration isolator. The base stand 

was designed such that a standard pallet jack can be used to position and transport the quiet box. 

This is important considering that once full of sand, the quiet box assembly weighs roughly 900 

pounds. 

Initial quiescent testing of the installed chamber using a single ½ inch condenser 

microphone (reference Section 3.4.2 for description of sound measurement equipment used) inside 

the box sealed quiet box revealed a high amplitude response in the low frequencies region (between 

60 and 70 dB with peaks ranging from 100 to 1000 Hz) when chamber sides were tapped. The 
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frequencies are well-below those expected to be attenuated viscoelastically by the foam wedges 

(below 800 Hz). This response was induced by tapping on one of the large side panels of the outer 

wall using a fingertip. This response is believed to have been associated with the panel’s natural 

vibrational frequencies, and associated harmonics. This appeared to result in a “drum head” effect 

whereby deflection of the outer chamber wall causes an increased pressure within the sealed 

chamber. The wall vibrates at its natural frequency and the tones and their harmonics are detected 

by the box microphones.  

Aluminum extrusions were added to stiffen the outer wall of the chamber and reduce the 

size of the free-vibrating panels. This stiffening shifted the natural frequencies of the chamber walls 

higher in the spectrum towards a frequency range that could be more effectively attenuated by the 

foam wedges. Replicating the tapping input on the various chamber wall panels after installation 

of the stiffeners shows a much lower response. Direct stimulation of the side walls at their 

respective natural frequencies causes a clear increase in sound pressure level within the quiet box; 

however, this phenomenon has not been shown to present a problem during testing since the 

deflection of the chamber walls is minimal without directly tapping on them, and tapping does not 

occur during testing. There is a clear correlation between the spike at approximately 200 Hz caused 

by tapping and the spike at the same frequency observed during the white noise test. This is likely 

a natural vibrational frequency or its harmonic; however, that has not been confirmed. Note that 

testing with the specimen door in place revealed the same spike in amplitude at 200 Hz, which 

further supports the theory that it is caused by a natural vibrational frequency of the box structure. 

Additional testing using a vibrometer could be used to validate this theory.  
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Figure 20. Photographs of quiet box after addition of aluminum angle stiffeners on outer wall 

panels shift natural frequency for better attenuation 

 

 

Figure 21. Frequency spectrum inside sealed box with plug door installed demonstrating effect 

of fingertip tapping on to side panel compared to ambient background noise and white noise 
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3.4.2 Experimental Acoustic Equipment 

Acoustic measurements were accomplished using four Type 40AD GRAS 1/2-inch 

diaphragm pre-polarized pressure microphones, each attached to a Type 26CA GRAS 1/2-inch 

CCP preamplifier, connected to a National Instruments NI USB-4432 24-Bit data acquisition card 

using RG6 coaxial cables and BNC connectors. During some testing, a RA0020 GRAS 1/2-inch 

nose cone was installed on the in-flow microphone. Recording and data processing was 

accomplished using National Instruments LabVIEW, Sound and Vibrations Assistant. Acoustic 

signal was generated using computer from a MATLAB code for tonal signals and .wav file for 

white noise. A Technical Pro LZ 4200 Watt amplifier was connected to a Kicker DSC693 360 Watt 

(peak) 4Ω 6-inch by 9-inch coaxial speaker mounted in a sealed MDF enclosure and connected 

through a 20 Hz high pass filer. See Figure 22 for a photograph of recording equipment, example 

microphone, and source amplifier. See Figure 23 for photo of Kicker 6-inch by 9-inch acoustic 

driver mounted in top of wind tunnel test section used to generate normal incidence sound waves 

for transmission loss testing.  

 

Figure 22. Acoustic recording and sound generation equipment used in testing 

 



43 
 

 

Figure 23. Kicker DSC693 6-inch by 9-inch 4Ω woofer used as acoustic source driver 

mounted in top of wind tunnel test section to provide normal incidence sound waves for 

transmission loss testing. 

 

The microphones used in this study are dynamically calibrated from the factory, and a 

calibration curve is provided with each one. Microphone voltage is generated by deforming the 

microphone’s diaphragm, which generates a voltage. This voltage is converted to pressure a 

pressure reading by use of a calibration factor (typically between 45 and 55 mV/Pa for the 

microphones used in this study). The calibration factor is dependent on the resistance of any 

cables, connectors, and recording equipment. The calibration factor is determined at the 

beginning of each series of testing by using a controlled acoustic source. For this testing, a piston 

phone was used. This piston phone seals around each microphone and generates controlled 1000 

Hz signal at 114 dB. The microphone sensitivity is adjusted until the recording device measures 

114 dB at 1000 Hz. This procedure is repeated for each microphone. Varying conditions can 
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cause this calibration to drift; therefore, the calibration procedure is repeated anytime a system 

change is made (such as removing a microphone), and at the start of each test series. It was noted 

that the calibration factor for each microphone typically drifted less than ±0.1 dB from day-to-

day.  

The Kline and McClintock single test method17 to determine the uncertainty of the 

measurement system was used for this study. In this method, the sum of uncertainty of all 

constituent components is computed. This method requires that the uncertainty of all the 

constituent components is known. The equations used to determine the 95th percentile (or 20:1 

odds) uncertainty intervals of the acoustic measurement equipment used for this study are shown 

in Equations (16) and (17)17. 

𝑅 = �̂�(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) ± 𝛿𝑅      (20: 1) (16) 

𝛿𝑅 = {∑(
𝜕𝑅

𝜕𝑋𝑖
𝛿𝑋𝑖)

2𝑁

𝑖=1

}

1
2⁄

 (17) 

According to the equipment manufacturer’s datasheets (reference Appendix C), the 

microphones have an uncertainty of ±0.06 dB, the preamplifiers have an uncertainty of ±0.20 dB, 

and the DAQ has an output noise of ±200 µV, and an input noise of ±240 µV. The SPL variation 

as a function of voltage uncertainty was calculated using the average calibrated microphone 

sensitivity (50 mV/Pa). The results of this analysis area shown in Table 6. Based on the method 

developed by Kline & McClintock17, the theoretical measurement uncertainty of the test 

equipment used in this study is ±0.21 dB. This calculated theoretical maximum uncertainty is 

consistent with the ±0.1 dB “drift” observed while calibrating the microphone systems at the 

beginning of each test. All sound pressure levels reported herein are assumed to maintain a 

maximum uncertainty of ±0.21 dB. This uncertainty is considered for all calculations 

accomplished using SPL measurements. 
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Table 6. Acoustic measurement uncertainties for theoretical uncertainty calculation 

System Detail Uncertainty ∂R/∂Xi (∂R/∂Xi) δXi [dB] 

Microphone ±0.06 dB 1 ±0.06 

Preamplifier ±0.20 dB 1 ±0.2 

DAQ Input Noise ±240 µV 12.0x10-5 dB-µV-1 ±2.00x10-6 

 DAQ Output Noise ±200 µV 12.0x10-5 dB-µV-1 ±1.67x10-6 

Total δR = ±0.21 dB 

 

3.4.3 Validation of Anechoic Properties 

Effective transmission loss measurements require the receiving room microphone to be 

house in an environment sufficiently free from ambient noise. Per ISO 3745:201211, this noise 

threshold for sufficiently low ambient noise requires that the signal of interest be at least 6 dB above 

any background noise, and 10 dB for all 1/3 octave frequencies with mid-range frequencies ranging 

from 250 to 5000 Hz11. It is required that the quiet box environment be able to maintain this level 

of ambient noise attenuation throughout the frequency spectrum when subjected to wind tunnel 

flow noise. 

3.4.3.1 Validation Method 

To validate the performance of the quiet box environment, baseline measurements were 

needed to determine the level of sound being transmitted into the box. These measurements were 

tested with and without the wind tunnel motor running and with and without speaker signal tones. 

Flow-on testing was used to determine if vibrations generated by the fan motor and transmitted 

through the floor and wind tunnel segments stimulate natural vibrations frequencies of the structure. 

Flow off testing was accomplished to ensure that the level of noise recorded by the in-flow 

microphone is not artificially high due to hydrodynamic noise. The testing was accomplished using 

three microphones. A boom mounted microphone was located between 15 and 16 inches above the 

test section floor, 8.5 to 9.5 inches aft of the quiet box center point, and centered in the test section 

from right to left. A microphone was mounted at the center of the box with the diaphragm between 

5 and 6 inches below the upper surface of the wind tunnel. An additional “ambient” microphone 
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was placed outside the wind tunnel test section next to the operator’s station with its diaphragm 

located between 3 and 4 feet from the test section wall. The ambient microphone was used to 

compare the noise spectrum inside the tunnel with the noise spectrum outside the tunnel. The box 

was completely sealed for the baseline testing using a plug door was constructed to seal the pass-

through window opening. 

3.4.3.2 Plug Door Design and Fabrication 

The quiet box was designed to have interchangeable doors in the interface window to 

facilitate installation of various test specimen. For the baseline validation testing, this window 

needs to be sealed. A plug door was fabricated to mimic the acoustic attenuation properties of the 

top of the box. The plug door is constructed from two layers of 3/4-inch-thick MDF bonded and 

screwed together in the same manner as the quiet box structure. A layer of mass loaded vinyl was 

bonded to the interior surface, and the 4-inch foam wedges used to line the box were bonded to the 

vinyl. All vinyl bonding was accomplished utilizing the same silicon based adhesive used to seal 

the box seams (see Figure 24. for a schematic of the plug door). The doors are sealed by a strip of 

chromate vacuum bag seal which is compressed by the attaching fasteners. Aluminum foil tape is 

used to create a smooth aerodynamic transition over the edges of the door, and as an additional air-

tight seal. 



47 
 

 

Figure 24. Schematic of plug door installed in pass-through window for testing and evaluation 

of quiet box sound attenuation characteristics 

 

3.4.3.3 Quiet Box Anechoic Properties 

It is necessary to accomplish testing to determine the background noise present within the 

quiet box when exposed to white noise signal and with the wind tunnel motor running. Two 

microphones were placed in the quiet box and the plug door was installed in the pass-through 

window. The bullet nose cone microphone was located on the pylon in the position used for flow-

on testing. The signal from the two microphones within the quiet box was averaged. Figure 25 

shows the recorded narrow band signal from the averaged quiet box microphones and the in-flow 

bullet nose cone microphone. The white noise source was generated at an amplitude more than 10 

dB above the flow noise. The wind tunnel flow was held steady at 0.8 in-H2O (59 ft/s) for this test. 

Figure 26 shows the signal attenuation spectrum for the box. This data is calculated by subtracting 

the sound pressure spectrum recorded by the internal quiet box microphones from the sound 

pressure level recorded by the bullet nose microphone. The minimum narrow band attenuation 
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recorded is 23 dB with an average of 45 dB. The industry accepted minimum noise reduction for 

acoustic testing is 10 dB11. Based on this information, the quiet box is shown to provide a sufficient 

acoustic attenuation to conduct STL measurements. 

 

Figure 25. Quiet box signal with plug door installed, white noise source, and wind tunnel 

flow at 59 ft/s. 

 

Figure 26. Quiet box noise attenuation (sound level in tunnel minus sound level in quiet box) 

measured with plug door installed, white noise source, and wind tunnel flow at 59 ft/s.  
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3.4.3.4 Specimen Door Design and Fabrication 

The validation test specimen door was created using the same style, weave, weight, and 

material used by the comparison study3. The comparison study5 found that tensioned 1.8 oz. Style-

120 plain weave Kevlar® fabric perform better in acoustic transmission loss than heavier weight 

and crow’s foot weave fabrics. The comparison study also tested fiberglass and metallic fabrics 

which were found to fail rapidly due to the shear loading and fatigue caused by turbulence in the 

boundary layer5. An elliptical specimen shape was chosen to avoid any unnecessary vibrational 

harmonics associated with square or rectangular membranes, and to most closely mimic a cutout 

window that would be used in an aircraft for a parabolic antenna which has capability to pan. The 

specimen was created using two layers of 3/4 inch MDF cut to fit the pass-through window 

(reference Figure 27 for specimen door dimensions). The two layers of MDF were assembled in a 

jig to maintain proper alignment. The layers were bonded together using standard wood glue, then 

screwed together using counter-sunk screws to hold the assembly in position during the cure. Once 

cured, the elliptic opening was cut out using a CNC controlled router. This ensured precision of the 

elliptical profile. After machining, the upper faying surface of the door panel was prepared for 

bonding. The Kevlar® material was tensioned using a custom-built tension frame (see Section 

3.3.3.5 for description of the tension device). The material was tensioned, and a comparative 

tension measurement was taken (See Section 3.3.3.6 for description of comparative tension 

measurement). The upper faying surface of the specimen door panel was coated in a general 

purpose two-part epoxy (see Appendix B for epoxy system datasheet). Due to the nearly 400 in2 

surface area available to bond the tensioned specimen material in place, a high strength resin system 

is not needed. A smooth, flat glass caul sheet was prepared and covered in release film. The loaded 

tension frame was placed on the glass caul sheet with the outer surface of the material specimen 

against the tool surface. The epoxy coated specimen door panel assembly upper faying surface was 

placed against the inner surface of the specimen material and layer of perforated release film and 
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breather cloth were placed within the elliptical cutout of the specimen door panel assembly to draw 

any excess epoxy away from the area of the specimen material that is to remain dry (not epoxy 

impregnated). The tension frame and specimen door panel assembly were covered with a vacuum 

bag, and a chromate seal was placed around the edge. A vacuum fitting medallion was installed in 

a non-critical area, and the specimen was allowed to cure for 12 hours under 22 in-HG of vacuum 

and at room temperature, as recommended by the epoxy manufacturer (see Figure 28 for layup 

template and Figure 29 for photograph of curing assembly). Once cured, the bagging material was 

removed and the excess Kevlar® was cut along the outer edge of the specimen door panel assembly 

using a razor blade. 

 

 

Figure 27. Quiet box specimen door panel assembly construction schematic (all dimensions 

are shown in inches) 
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Figure 28. Layup template for bonding tensioned Kevlar® sample specimen door panel 

assembly using general purpose epoxy cured under 22 in-HG of vacuum at room temperature 

 

 

Figure 29. Validation specimen under tension during bonding procedure 
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3.4.3.5 Specimen Tension Device 

Specimen tension for the Kevlar® panels used in the NASA Ames5 and Virginia Tech6 

wind tunnel conversion projects was maintained using a tension device integral to the tunnel wall. 

This design requires significant design consideration to house and fair the tension frame device 

during wind tunnel operation. Since the final windscreen design for UAV acoustic sensing will 

ideally not require high tension, it is not desired to incorporate a tensioning device into the quiet 

box apparatus. Instead of the integrated tension frame device, the validation specimen door was 

designed to have the specimen bonded to the specimen door panel under tension. The adhesive 

system and door panel bear the tension loads from the specimen material. To achieve the required 

tension in the material, a tension frame was constructed. The frame utilizes ridged steel extrusions 

to minimize mid-span deflection while loaded. The fame is constructed from 1-inch by 0.5-inch 

“C” extrusions which are butt-joint welded at the junctions. 1/2 -13 threaded nuts were welded to 

the lower surface of the frame and 6-inch-long sections of threaded rod were inserted, which serve 

as lead screws for tensioning of the sample. Heavy walled (0.13-inch-thick walls) square tubing 

was used to create the sample attachment points. A heavy wall was necessary to reduce the amount 

of mid-span deflection generated while the sample is under tension to reduce the amount of non-

uniform strain in the sample. An additional tensioning nut was added to each lead screw to adjust 

the sample tension. Sample attachment is accomplished by using heavy duty adhesive tape to secure 

the material to the bar, then rolling the sample over on itself several times. Reference Figure 30 

for tension frame schematic. 
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Figure 30. Kevlar® test specimen tension frame schematic used in fabrication of validation 

specimen door (all dimensions are shown in inches) 

 

It is ideal to maintain a uniform strain in the Kevlar® membrane. Since the specimen 

length is greater than its width, it is necessary to deflect the membrane more along its length than 

its width by a ratio of 9:7. The specimen’s short sides were mounted to the frame first, and the 

slack was taken up using the lead screws. The screws were tightened one half turn at a time, 

alternated between the four screws that control tension along the specimen’s short side, until the 

membrane appeared sufficiently well tensioned to prevent flapping in turbulent flow. The number 

of turns of the lead screws were counted. After the short side had been fully tensioned, the long 

side was attached to the tension bars. This was done to prevent the membrane from bunching up 

along the long side tension bars while the short side was tensioned. The long side was tensioned 

in the same way as the long side, alternating between lead screws, except that the long side was 

deflected less to maintain bi-directionally symmetric strain, as discussed above. Reference Figure 

31 for photographs of tensioned Kevlar® specimen held by tension frame. 
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Figure 31. Photograph of tension frame with Kevlar® specimen mounted under tension (top) 

and specimen door assembly test fitted prior to bonding (bottom) 
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3.4.3.6 Comparative Tension Measurement 

To achieve a degree of repeatability for the experiments conducted herein, it is necessary 

to verify any new validation samples created are tensioned to the same level as the original sample. 

Since no direct membrane tension levels are provided by the comparison study5, the specimen 

membrane used in the current study was tensioned sufficiently to maintain a stable aerodynamic 

surface. Direct tension measurements were not captured. Instead, a comparative tension 

measurement system was devised. This method utilizes a measurement fixture to locate seventeen 

(17) locations where a weighted rod is used to deflect the tensioned membrane. The center 

deflection measurement is located at the center point of the elliptical membrane, and measurement 

locations 1, 3, 5, 9, 13, 15, and 17 align with the ellipse long axis centerline (reference Figure 32). 

The weighted rod passed through the measurement fixture and deflects the membrane below. The 

deflection is measured at each location to an accuracy of at least ±0.005 inches. The weighted rod 

is fabricated from 0.25-inch-diameter steel bar which has a 0.25-inch radius on one end. A 2.0-

pound weight is balanced on the top of the rod. The weight of the rod assembly was adjusted to 

provide a measurable amount of membrane deflection. The total weight of the rod assembly is 

2.240 pounds (combined weight of the rod, adapter, and weight). Reference Figure 32 for 

measurement fixture and deflector rod schematics.  
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Figure 32. Specimen door membrane comparative tension measurement system 
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In the un-bonded state, the tensioned specimen deflection will be the result of strain over a 

distance spanning the length of the tension frame. The deflection induced strain will not be spread 

over the same distance after the specimen has been bonded to the specimen door panel which will 

cause the deflection measurement should vary between the bonded and un-bonded conditions. 

Therefore, deflection measurements are recorded before and after bonding. The recorded deflection 

measurements for the pre-cure and post-cure conditions are presented in Table 7. A mistake in the 

bagging procedure occurred during the cure of the specimen which caused the specimen membrane 

to be temporarily unsupported while under direct vacuum. This caused the membrane to strain more 

on one side than the other, resulting in asymmetric tension on the bonded sample. While this defect 

may affect test results, the effects are believed to be negligible. The sample was used for testing 

and no additional material was available for fabrication of a new sample. 

Table 7. Pre-bond and post-bond specimen door deflection measurement data 

 

3.4.4 Method to Characterize STL of Candidate Windscreen 

 

The goal of the test procedure developed herein is to establish a reasonably simple means 

to characterize a candidate windscreen’s ability to transmit normal incidence sound while assessing 

the level of noise generated by a grazing flow over the windscreen material. Transmission loss is 

measured in a manner similar to the two-room method addressed in SAE J14008. This method 

utilizes a full scale anechoic chamber adjacent to a full scale reverberant chamber. A sample is 

mounted in a pass-through window between the two chambers. An acoustic source is placed in the 

reverberant chamber so that semi-omni-directional sound will impinge on the test sample. 

Microphones are placed in the reverberant chamber and in the anechoic chamber (reference Figure 

33 for two-room method facility schematic).  
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Figure 33. Two-Room method schematic presented in SAE J1400 for facility to measure 

STL of a material sample8 

A correction for background noise is applied to the signals from each chamber in 

accordance with(188. 

𝐿𝑠 = 10 log10 (10
𝐿𝐶
10 − 10

𝐿𝐵
10) 

 

𝑊ℎ𝑒𝑟𝑒: 

𝐿𝑆 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝑃𝐿 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑑𝐵 

𝐿𝐶

= 𝑆𝑃𝐿 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑛𝑑 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑖𝑠𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑑𝐵 

𝐿𝐵 = 𝑆𝑃𝐿 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑖𝑠𝑒 𝑎𝑙𝑜𝑛𝑒, 𝑑𝐵 

(18) 

 

Corrections are only applied when the difference between the combined background noise 

and signal and the background noise only signal (LC-LB) at each frequency is less than 15 dB. If 

the difference is less than 5 dB, a constant reduction of 1.3 dB is used instead. For the test method 

developed herein, the background noise only signal is measured with the validation specimen door 

in place, but no tunnel flow or acoustic signal generated by the tunnel source speaker. The combined 

signal is measured with tunnel flow on and/or acoustic source signal generated. The MNR 
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(Measured Noise Reduction) of the specimen under test is computed using Equation (19 where 

SPLf (source room) is the background noise corrected signal, as computed by (18), from the ½-inch 

pylon mounted in-flow microphone with the bullet nose cone installed, and SPLf (receiving room) 

is the averaged and background noise corrected signal obtained by the two adjacent 1/2-inch 

condenser microphones mounted within the quiet box environment. 

𝑀𝑁𝑅𝑓 = 𝑆𝑃𝐿𝑓(𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑜𝑜𝑚) − 𝑆𝑃𝐿𝑓(𝑟𝑒𝑐𝑖𝑒𝑣𝑖𝑛𝑔 𝑟𝑜𝑜𝑚) (19) 

The specification outlines the fabrication of a reference standard sample which is installed 

in the pass-through window and used to calibrate the system. A statistically robust sample pool of 

STL test data for the reference standard based on testing at multiple laboratories is provided in the 

specification as well. To calibrate a new STL test facility, the reference standard sample is 

fabricated and tested. A calibration factor is computed per Equation (20 by subtracting the 

provided reference STLf for the calibration standard from the MNRf measured for the calibration 

standard. An acceptable correction factors range is specified as +10/-0 dB for a well-implemented 

system and +15/-0 dB for a typical system. If the correction factor exceeds +15/-5 dB, steps should 

be taken to improve the facility. This calibration factor is then applied to all future STL 

measurements performed using the facility. 

𝐶𝑓 = 𝑀𝑁𝑅𝑓(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) − 𝑆𝑇𝐿𝑓(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (20) 

This calibration factor is applied to future MNR spectrum measured using the facility per 

Equation (21. This calibration procedure should be accomplished periodically, and any time 

significant modifications are made to the facility.  

𝑆𝑇𝐿𝑓(𝑠𝑎𝑚𝑝𝑙𝑒) = 𝑀𝑁𝑅𝑓(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐶𝐹𝑓 (21) 

The power spectrum is compared between the microphone(s) located in the reverberant 

chamber and those located in the anechoic chamber. The difference in sound pressure level (SPL) 



60 
 

from the source room (reverberant chamber) and the receiving room (anechoic chamber) is the 

uncorrected sound transmission loss (STL) 8. 

The STL measurement method presented in this study is similar to that presented in SAE 

J14008, except with the following variations. The chamber volume available for both the source 

and receiving rooms are significantly smaller than recommended. Additionally, the wind tunnel 

test section is hard walled and reflects sound well; however, the environment is not truly reverberant 

due to the sharp corners and non-uniform construction materials. The result is an environment that 

likely has highly varied local sound pressure levels caused by standing wave nodes and anti-nodes. 

Optimization of microphone placement within the source room (wind tunnel test section) is critical 

to the integrity of this system. This is addressed in detail in a subsequent section. 

The purpose of this study is not to accurately measure STL of a windscreen, but rather to 

generate qualitative and comparative data by which candidate windscreens can be evaluated. It is 

not necessary to the current scope of work to invest effort in accurate calibration; therefore, 

reference data generated in a study conducted in a large wind tunnel is used in place of the reference 

standard suggested in SAE J14008. The reference data used herein was generated in the large wind 

tunnel at the NASA Ames Research Center5. This study used a 1.8 oz./yd2 Style-120 plain weave 

Kevlar® tensioned over a large window between the wind tunnel test section and an anechoic 

environment used to house a microphone array. No data is provided regarding the level of tension 

of the sample during the test. It should also be noted that differences in the sizes of the chambers 

available at NASA Ames and those available for the present study will impact the STL measured 

for the samples. As a result, the data presented in Jaeger, et. al.5 is used only as a comparison rather 

than a statistically robust reference standard to calibrate the proposed system. The reference data 

was extracted from Jaeger, et. al. 5 is presented in Figure 34. 
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Figure 34. Reference sound transmission loss data for tensioned 1.8 oz./yd2 Style-120 

plain weave Kevlar® measured at NASA Ames Research Center as presented in Jaeger, et. 

al. 5 

3.4.5 Method to Characterize Self-Induced Hydro-dynamic Noise Increase 

Virginia Polytechnic Institute retro-fitted the Blacksburg stability wind tunnel facility into 

an aero-acoustic test facility in a similar manner to the conversion at NASA Ames Research Center, 

as presented in Jaeger, et. al.5 This test facility is intended to take accurate acoustic measurements 

of objects in the flow; therefore, a comparison of various wall treatments was made by testing each 

treatment over multiple flow speeds. The overall A-weighted sound pressure level was computed 

at each flow speed, then plotted against data provided from other established acoustic wind tunnels. 

The results presented in Carmargo, et. al.6 are shown in Figure 35. Note that some of the acoustic 

wind tunnels shown in Figure 35 are open section acoustic tunnels and do not include acoustically 

transparent test section walls6. 
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Figure 35. A-weighted in-flow noise levels as a function of flow speed for various acoustic 

wind tunnel facilities including Virginia Tech, as presented in Carmargo, et. al. 6 

 

The measurement method described in Carmargo, et. al.6 utilizes an in-flow microphone 

placed close to the tunnel treatment being studied. The characterization procedures under 

development make measurements using two different methods and compares the results to 

determine which method shows the most resolution. The first flow-induced noise measurement 

method is similar to that presented by Carmargo, et. al.6 in that the OASPL noise increase caused 

by flow over the candidate wind screen is measured by an in-flow, pylon mounted microphone as 

seen in Figure 36. The OASPL is computed for the entire spectrum at four wind tunnel flow speeds. 

Each OASPL data point is plotted versus flow speed, then compared to the measurements for the 

“clean” or plug door configuration. The results are compared to determine the increase in self-

induced hydrodynamic flow noise. The method presented herein varies from that of Carmargo, et. 

al.6 by omitting the application of the A-weighting filter. A-weighting is a method of filtering which 

gives preference to tones favorable to human hearing. Since comparison to previous test data is not 
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relevant to making qualitative measurements of candidate windscreens, there is no need to apply 

this filter to data collected in this test. The second method uses two microphones installed flush in 

the wind tunnel test section floor (reference Figure 37). One is located upstream, and the other 

downstream of the specimen door. Since these microphones are placed on the tunnel floor and 

within the boundary layer, hydrodynamic pressure fluctuations detected more readily than with the 

bullet microphone. Comparing the signals between the upstream and downstream microphones will 

provide a qualitative measurement of the increase in flow turbulence intensity created by the 

presence of the windscreen. Both methods are tested and compared to determine which can more 

effectively detect changes in self-induced flow noise. Note that the pylon microphone assembly 

used for other test procedures is removed during the flush mounted microphone tests. 

 

Figure 36. Pylon mounted microphone with bullet nose cone fairing used in flow-on wind 

tunnel OASPL testing 
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Figure 37. Forward and aft flush mounted microphone locations in wind tunnel test section 

floor used for boundary layer turbulence increase measurements 

 

3.4.5.1 Bullet Nose Cone Validation 

Originally, testing was accomplished with a 1/4-inch GRAS flush microphone. Upon 

reviewing the preliminary results, it was determined that the noise floor of this microphone was not 

sufficiently low to provide adequate spectral data. As an alternative, a 1/2-inch condenser 

microphone was flush-mounted into the test section floor ahead of the test specimen. This system 

provided better results; however, it was suspected that a large portion of the signal recorded by the 

microphone was caused by hydrodynamic pressure fluctuations in the boundary layer and wake 

shedding caused by the microphone’s protective grill. A GRAS brand 1/2-inch bullet nose cone 

(reference Appendix C: Microphone Equipment Datasheets for microphone and nose cone 

datasheets) was obtained, and a pylon mount was fabricated. The pylon consists of a symmetric 

airfoil wood pylon mounted to a metal plate base. A length of PVC pipe forms a hollow boom to 

hold the microphone at the proper location. A flow-on test was conducted with both a 1/2-inch 

flush mounted condenser microphone located directly upstream from the test specimen and a 1/2-

inch condenser microphone equipped with the bullet nose cone mounted on the pylon at 9 inches 

aft of the test specimen center point, and 9 inches above the floor plane of the test section. The 

frequency spectrum recorded during this test for both microphones is shown in Figure 38. It can 
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be seen that the signal amplitude measured by the flush mounted condenser microphone is higher 

than that of the pylon mounted bullet nose microphone. It is assumed that this difference is caused 

by the increased hydrodynamic noise detected by flush mounted condenser microphone; therefore, 

the bullet microphone was used as the primary tunnel microphone for this study. 

 

Figure 38. Flow-on (81 ft/s free-stream velocity) frequency spectrum comparison between 

flush mounted 1/2-inch condenser microphone and pylon mounted 1/2-inch condenser 

microphone equipped with bullet nose cone (Plug door installed in pass-through window) 

 

3.4.5.2 Microphone Position Optimization 

As mentioned previously, the poor reverberant quality of the wind tunnel test section is 

likely to cause a standing wave phenomenon where nodes and anti-nosed exist in close proximity. 

Preliminary testing revealed a high, possibly periodic variation in amplitude of STL as a function 

of frequency (reference Figure 39 for plot showing STL amplitude variation). The STL of 
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unstiffened light weight Kevlar® does not exhibit this periodic trait in any of the previous studies 

(Jaeger, et. al.5, and Carmargo, et. al.6) used as reference for this study; therefore, this phenomenon 

is assumed to be a condition caused by a physical attribute of the testing apparatus. In an attempt 

to reduce this variation, the position of the test section in-flow microphone was optimized. This 

optimization was accomplished by stretching a single monofilament fishing line in the wind tunnel 

test section over the quiet box pass-through window. A forward-facing microphone with bullet nose 

cone installed was attached to the fishing line and a single microphone was placed on a stand in the 

center of the quiet box. The specimen door was installed for this test. Microphone signal was 

recorded while white noise was generated from the tunnel speaker. Wind tunnel flow was not on 

for this test. Data was collected at 11 locations ranging from 15 inches ahead and 15 inches aft of 

the center of the specimen at 3 inch intervals. The sound transmission loss was calculated at each 

tunnel microphone location by subtracting the tunnel microphone signal from the quiet box 

microphone signal. The STL spectra for each wind tunnel microphone location were to the STL 

provided in Jaeger, et. al.5. The locations where these data points were closest to the reference 

spectrum occurred at locations 3, 6, and 9 inches aft of the specimen center point. The STL 

spectrum for these three locations was plotted. Trend lines computed based on a 100-point moving 

average were reviewed in lieu of the full narrow band data for better plot clarity. From these trend 

lines, it was observed that the location 9 inches aft of the specimen center point shows a reduced 

periodic tendency compared to the other locations (reference Figure 39).  
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Figure 39. STL plot used to optimize position of tunnel microphone (with bullet nose cone 

installed). Testing performed white noise source, flow-off, and specimen door installed in pass-

through window. 100 point moving average trendlines shown in lieu of narrow band data for 

clarity purposes.  

 

3.4.5.3 Quiet Box Microphone Signal Variation 

As seen in Figure 39, optimizing the position of the tunnel microphone alone did not 

sufficiently reduce the frequency dependent variation in the STL spectrum. To further reduce this 

phenomenon, the microphone placement within the quiet box was examined. Two microphones 

were installed to determine the effect of microphone directionality. However, it was noted that with 

both microphones diaphragms at the same angle and position, a variation between the two SPL 

spectra of up to 40 dB was occurring, even when only exposed to ambient noise. This difference in 

amplitude is extremely high, and seems unrealistic for two microphones in such close proximity. 

Both microphones were single point calibrated at the start of testing; therefore, diaphragm 

contamination and/or damage was initially suspected to play a role in the assumed faulty signal. 
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This possibility was ruled out by relocating all the test equipment (excluding microphone cables) 

to the full scale anechoic chamber at Oklahoma State University. The white noise test in the full 

scale anechoic chamber revealed a variation of less than 5 dB consistently across the spectrum, 

without the apparently periodic tendencies observed during identical testing within the quiet box 

(reference Figure 40 for anechoic chamber microphone variation spectrum). The variation is 

assumed to be electronic background noise present within the measurement equipment since the 

variation is the same amplitude with, and without microphones attached to the cables.  

 

Figure 40. Screenshot of variation between two identical microphones mounted with 

approximately 1/2 inch separation and coplanar diaphragms. Testing conducted in full-scale 

anechoic chamber measured with the same equipment and white noise source used for quiet 

box measurements (excluding microphone cables). 

 

The findings in the anechoic chamber ruled out a possible fault with equipment so it was 

reinstalled in the quiet box and further testing was accomplished. Peaks in the variation signal were 

noted at 60 Hz and 120 Hz, which is the alternating frequency and first harmonic of wall power 

(reference Figure 41 for screenshot of signal interference without acoustic source). Investigation 

of the signal conductors used to connect the microphones to the data acquisition card revealed that 

one cable had become entangled with a recently installed laptop charger attached to unrelated 

equipment in the lab. 
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Figure 41. Screenshot of variation between two identical microphones mounted with 

approximately 1/2 inch separation and coplanar diaphragms. Testing conducted within quiet 

box environment with flow-off, ambient acoustic noise only, specimen door installed, and 

unintentional electronic interference with signal cable and intermittently faulty BNC cable 

connector. 

 

The electro-magnetic interference from the laptop charger was resolved, and a faulty BNC 

type connecter was discovered and repaired in the quiet box. The tests were repeated without an 

acoustic source, and the results were found to be within the suspected electronic system noise range 

of ±5 dB observed in the full scale anechoic chamber testing. The microphone variation results are 

shown in Figure 42. This variation is considered to be acceptable for testing. Note that the wind 

tunnel test section microphone position optimization study was conducted prior to installation of 

the laptop charger which caused the EMI interference. Additionally, the quiet box microphone 

cable found to have a faulty connector was not utilized for that testing; therefore, it is assumed the 

wind tunnel test section microphone position optimization study was unaffected by these 

conditions. 
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Figure 42. Variation between two identical microphones mounted with approximately 1/2 inch 

separation and coplanar diaphragms. Testing conducted within quiet box environment with 

flow-off, ambient acoustic noise only, specimen door installed after unintentional electronic 

interference with signal cable and intermittently faulty BNC cable connector were corrected. 

 

A white noise acoustic source was broadcast from the test section driver. With the specimen 

door installed, a seemingly periodic variation was observed between the two microphones. The 

cause of this variation is not fully understood, but is expected to be caused by the standing wave 

phenomenon resulting in frequency dependent nodes and anti-nodes located in close proximity, 

causing each microphone to read a difference signal amplitude. Microphone position was adjusted, 

but little change was noted. Reference Figure 43 for signal variation under a white noise source 

with the specimen door installed, and the two quiet box microphones centered forward to aft, and 

left to right, at a height found to result in the least variation and mounted approximately 1/2 inches 

apart with their diaphragms coplanar. It should also be noted that the variation within the quiet box 

with the plug door installed was consistent with that measured in the full-scale anechoic chamber, 

further lending to the theory that the variation is a result of the direct impingement of the normal 

incidence source waves.  
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Figure 43. Variation between two identical microphones mounted with approximately 1/2 inch 

separation and coplanar diaphragms. Testing conducted within quiet box environment with 

flow-off, white noise acoustic source, specimen door installed. 

 

The microphone variation for the no acoustic source, flow-on case was investigated since 

it appeared that the normal incidence source was common to all testing where a high level of 

microphone variation was observed. The highest speed case (59 ft/s) was chosen as the most 

extreme example. The microphone variation for the flow-on, acoustic source off case is shown in 

Figure 44. It is observed that the variation without the normal incidence source is insignificant, 

even with a significant level of flow noise. 
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Figure 44. Variation between two identical microphones mounted with approximately 1/2 inch 

separation and coplanar diaphragms. Testing conducted within quiet box environment with flow-

on at 59 ft/s, ambient acoustic noise only, specimen door installed after unintentional electronic 

interference with signal cable and intermittently faulty BNC cable connector were corrected. 

 

Since it is suspected that the microphone variation is a direct result of normal incidence 

sound waves impinging on the quiet box, additional tests were conducted to determine if the 

source amplitude has an effect on the microphone variation. Two tests were conducted with 

identical setups, except the low amplitude test was conducted with the white noise source 

amplitude measured at the driver cables measuring 1.50 Volts (AC), and the high amplitude test 

was conducted at an amplitude measuring 1.9 Volts (AC). The frequency of predominant spikes 

was noted vary; however, the amplitude of variation remained approximately the same. It was 

concluded that the amplitude of the white noise has little effect on the level of variation between 

the two microphones. The low amplitude (1.5 VAC) microphone variation and spectrum 

measured in the wind tunnel by the bullet microphone are shown Figure 45, and the high 

amplitude microphone variation and spectrum measured in the wind tunnel by the bullet 

microphone are shown in Figure 46. 
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Figure 45. Variation between two identical microphones mounted with approximately 1/2 inch 

separation and coplanar diaphragms. Testing conducted within quiet box environment with flow-

off, white noise source at 1.5 VAC, and specimen door installed.  

 

Figure 46. Variation between two identical microphones mounted with approximately 1/2 inch 

separation and coplanar diaphragms. Testing conducted within quiet box environment with 

flow-off, white noise source at 2.9 VAC, and specimen door installed.  
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For final testing, two microphones were used in the quiet box, and their signals were 

averaged. The white noise acoustic source was held a 2.0 Volts (AC), as measured between the 

speaker cables. The upper cutoff frequency for the testing was be reduced 1500 Hz to avoid any 

areas where signal variation is observed at an amplitude exceeding the ±5 dB electronic noise 

limit typical throughout the measurements. This revised upper cutoff frequency is acceptable 

since high frequency signals attenuate more in air than lower frequency signals. It is not likely 

that any naturally occurring avian or human generated source above 1500 Hz will have sufficient 

range to be detected from the air at a reasonable stand-off distance (reference Figure 2 for plot of 

sound attenuation spectrum in standard atmosphere various stand-off distances). 

 

3.4.6 Wind Tunnel Boundary Layer Survey 

A boundary layer survey was conducted on the wind tunnel to determine boundary layer 

height and flow regime. A 1/4-inch traversing Pitot tube attached to an inclined water manometer 

was used to measure centerline flow velocity at multiple heights above the wind tunnel floor. The 

Pitot tube was located approximately 3-feet ahead of the leading edge of the quiet box pass-through 

window.  

The traversing Pitot tube was used to set the wind tunnel flow speed instead of the 

permanently installed free-stream Pitot tube. This was done to avoid conducting a calibration of 

the free-stream Pitot tube and manometer. Once the flow speed was established and stabilized, the 

traversing Pitot tube was retracted to its lowest obtainable position (0.369 inches from the wind 

tunnel test section floor to the centerline of the pitot tube). Flow was measured accurate to 0.001 

inches using a calibrated high-precision inclined water manometer. The traverse leadscrew was 

rotated one-quarter turn between each measurement point, resulting in a height increase of 0.25 

inches. Measurements were taken on one-quarter inch intervals until free-stream velocity was 

achieved. At that point, several more data points were measured at one-half inch intervals, then one 

inch intervals until thoroughly out of the boundary layer. This procedure was repeated at four 
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different flow speeds, approaching the maximum tunnel speed. Note that the maximum tunnel 

speed achievable during the boundary layer survey is reduced compared to the flow-on acoustic 

testing due to an artificial fan speed limits applied at the time. Tests were conducted at 36.5, 41.3, 

46.7, and 51.0 ft/s (corresponding to 0.30, 0.40, 0.50, and 0.60 in-H2O). The boundary layer was 

measured to be between 1.60 and 1.90 inches thick throughout the flow speeds tested. The shape 

of the velocity profile exhibits characteristics of a laminar flow regime, as presented in Barlow, et. 

al.18 Reference Figure 47 for velocity profile of a laminar and turbulent boundary layer. 

 

Figure 47. Velocity distribution in laminar and turbulent boundary layers, Barlow, et. al.18 

 

The velocity profiles measured at free-stream velocities of 36.5 ft/s (denoted in the plot 

as “Low Speed”) and 51.0 ft/s (denoted in the plot as “High Speed”) are charted and shown in 

Figure 48. The laminar and turbulent boundary layer velocity profiles extracted from Barlow, et. 

al.18 are superimposed with the measured velocity profiles for the speed extremes. The velocity 

profiles measured at each flow speed appear to more closely match the laminar velocity profile; 

however, it is not clear whether the boundary layer exists in laminar or turbulent state. The 

ambiguity between laminar and turbulent boundary layers could be the result of high levels of 
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free stream turbulence caused by obstacles in the flow path between the wind tunnel inflow well 

and the wind tunnel collector section. Full graphical results from the boundary layer test are 

resented in Appendix E: Boundary Layer Survey Results. 

 

Figure 48. Velocity distribution of minimum and maximum flow speeds tested in boundary 

layer survey of Oklahoma State University Low Speed Wind Tunnel with laminar and 

turbulent boundary layer profiles extracted from Barlow, et. al.18 superimposed. 

 



77 
 

CHAPTER IV 
 

 

FINDINGS 

The test procedures described in the preceding sections are designed to validate the 

experimental apparatus developed in this study and determine its usefulness for creating 

comparative data to evaluate candidate windscreen designs for applications in UAV acoustic 

measurements. Flow-off sound transmission loss (STL) testing results for the tensioned Kevlar® 

validation specimen door measurements are compared to data generated in a previous study5, 

although the results are not expected to be an exact match due to variations in testing methods. The 

flow-on testing is expected to show a trend of increasing STL with flow speed due to increased 

boundary layer turbulence. Two methods are evaluated to measure the self-induced grazing flow 

noise generated by the installation of the tensioned Kevlar® validation specimen. The superior 

method will be recommended for use in comparing candidate windscreen designs. 

4.1 Flow-Off Transmission Loss of Kevlar® Validation Sample 

 

Flow-off testing is used to validate the test system apparatus constructed in this study by 

comparing the results to data for tensioned Kevlar® panels reported in Jaeger, et. al.5. For this 

testing, the specimen door was installed in the box and white noise was generated using the source 

driver installed in the upper wall of the wind tunnel test section at an amplitude of approximately 

20 dB above the ambient (2.0 VAC, as measured on the at the amplifier output). The recording 

equipment used was as reported in Section 3.4.2. A recording was made for a duration of 30 

seconds,  
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with 300 data point averages made. As required for noise reduction data processing procedure of 

SAE J14008 shown in Equation (18, a data recording was also made without the white noise. The 

ambient noise-only recording spectrum, as measured by the pylon mounted bullet nose cone 

microphone, is shown in Figure 49, and the white noise source recording spectrum is shown in 

Figure 50. A 30-point moving average trend line (approximating a sampling rate of Δf = 60 Hz) is 

also shown due to the high level of data scatter observed while exposed to the white noise source. 

It should be noted that the comparison STL data provided in Jaeger, et. al.5 was recorded with a 

frequency resolution of Δf = 62.5 Hz; therefore, it is appropriate to use the 30 point moving average 

trend line for comparison. The white noise source shown in Figure 50 has been corrected for 

background noise in accordance with the method presented in Equation (18. 
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(a) 

 

(b) 

 

Figure 49. Sound pressure level of averaged quiet box microphones and pylon mounted bullet 

nose cone microphone mounted in tunnel test section configured with Kevlar® specimen door 

and ambient tunnel noise only. (a) – Narrow band data, (b) – 30 data point moving average 

trendlines for chart clarity 

 

The ambient noise only test shows a low level of scatter compared to the white noise source 

test. Note that the lowest sound pressure level that can be detected by the microphones used in this 

experiment is approximately 10 dB; therefore, any measurements below 10 dB will not be 

measured. The quiet box noise level reaches this minimum electronic noise floor SPL at 

approximately 1500 Hz, and the wind tunnel test section reaches it at approximately 3000 Hz. The 
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flow-off ambient environmental noise level in the wind tunnel cannot be detected beyond 3000 Hz 

without using more sensitive, and probably larger diaphragm microphones. 

(a) 

 

(b) 

 

Figure 50. Sound pressure level with of averaged quiet box microphones and pylon mounted 

bullet nose cone microphone mounted in tunnel test section configured with Kevlar® specimen 

door and white noise source. (a) – Narrow band data, (b) – 30 data point moving average 

trendlines for chart clarity 
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Recalling the quiet box microphone variation shown in Figure 42 and Figure 43, the 

ambient noise only test shows little variation throughout the entire spectrum. The white noise 

source test shows significant variation between the quiet box microphones at frequencies higher 

than 1500 Hz. The presence of significant STL variation above 1500 Hz in the white noise source 

test (Figure 49) is likely due to the quiet box microphone variation. The lack of this STL variation 

on the ambient noise-only test (Figure 50) is further evidence to this point. The spectrum measured 

in the quiet box and in the wind tunnel test section both show an increased SPL between 400 and 

900 Hz. Using Equation (14), the first 16 standing wave modes were calculated, and the 

frequencies were collected into 2 Hz bins. The bins were totaled and plotted, and it was noted that 

the highest concentrations of standing wave frequencies exist between 300 and 600 Hz. This 

analysis is based on a perfectly sealed, perfectly rigid and hard walled chamber, which is different 

than the test configuration as measured. The Kevlar® covered opening, compliant walls, and the 

foam wedges will cause the measured data to diverge from the analytical model. It is suspected that 

this concentration of standing wave frequencies could be partially responsible for the observed rise 

in measured SPL between 400 and 900 Hz.  

The MNRf (Measured Noise Reduction as a function of frequency) was calculated using 

the noise reduction formula presented Equation (18)8. This is calculated by measuring the 

spectrum in the source room and the receiving room without the noise source (background noise 

only), then repeating the test with the noise source (combined background noise and source noise). 

The background noise only amplitude is subtracted from the combined background noise for each 

frequency bin. No correction is necessary for frequencies where the background noise is 15 dB or 

less below the source noise amplitude. Due to the amplitude of white noise used for this test, most 

bins do not require noise correction. Reference Figure 51 for MNRf of tensioned Kevlar® 

specimen door. 
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(a) 

 

(b) 

 

Figure 51. Measured Noise Reduction (MNR) of Kevlar® specimen door with white noise 

source. (a) – Narrow Band Δf = 2 Hz. (b) – 30 point moving average trend line 

 

The STL (Sound Transmission Loss) spectrum for the ambient noise only case is shown in 

Figure 52. As with the SPL spectrum for the test section and the quiet box, the 30-point moving 

average trend line is presented in addition to the narrow band. For the test frequency range of 200 

to 1500 Hz, the STL of the Kevlar® sample with ambient noise only ranges between 5 dB and 15 

dB for the narrow band data. The trend line spectrum, which approximates a 60 Hz resolution, 

ranges from -1 dB to 10 dB. This is well within the correctable limits of +15/-5 dB established SAE 

J14008, when compared to the data for STL of a tensioned Kevlar® panel. 



83 
 

(a) 

 

(b) 

 

Figure 52. Sound transmission loss (SPLTunnel – SPLQuiet Box) of Kevlar® specimen door with 

ambient noise only. (a) – Narrow Band Δf = 2 Hz. (b) – 30 point moving average trend line 

 

The MNRf of the tensioned Kevlar® specimen door was measured to range from -15 dB 

to +28 dB for the narrow band data (Δf = 2 Hz) and -1 dB to +19 dB for the 30-point moving 

average trendline (approximating Δf = 60 Hz) within the test frequency range of 200 to 1500 Hz. 

This data is outside of the correctable limits of +15/-5 dB specified in SAE J14008 when compared 

to the STL data for a tensioned Kevlar® panel provided in Jaeger, et. al.5 (reference Figure 34 for 

tensioned Kevlar® STL data); however, the considerable differences in the setup, size of test 

chambers, and undoubtedly superior reverberant environment provided by the large test section 
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available at NASA Ames Research Center, these tests are not likely to compare well. Furthermore, 

the purpose of this study is to provide a comparative test method to optimize candidate windscreens. 

Exact STL data for a windscreen is not currently in the scope of this study. To calibrate this STL 

measurement facility, another STL specimen should be constructed from a limp mass material such 

as a PVC vinyl sheet having geometry for which a closed form analytical solution for sound 

transmission loss is known. 

4.2 Flow-On Transmission Loss of Kevlar® Validation Sample 

 

For the flow-on test case, it is desirable to be able to simultaneously interrogate both sound 

transmission loss and flow-induced noise caused by the windscreen. The flow induced noise 

characterization results are addressed in subsequent sections. In order to discern flow noise from 

the normal incidence acoustic source, tones were generated using a MATLAB code (reference 

Appendix G) and the amplifier and speaker system installed in the wind tunnel. The MATLAB 

code generates tones at 200, 300, 400, 500, 600, 700, 800, 900, 1000, and 1500 Hz, which fully 

encompass the frequency range of interest. The code is written such that the amplitude can be 

adjusted for each tone, thus providing a source at least 10 dB above the flow-induced background 

noise, except for the 400 Hz tone at the highest flow speed. This tone was only 9 dB above the 

background flow noise. Data were collected at free-stream velocities of 36.3, 46.8, 55.4, and 59.2 

ft/s (corresponding to 0.30, 0.50, 0.70, and 0.80 in-H2O). Additional higher frequency tones are 

seen in the spectrum at a lower amplitude than the primary tone frequencies. These harmonic 

frequencies are an artifact of having multiple primary frequencies generated simultaneously. These 

harmonic frequencies are not included in the sample noise reduction calculations. Reference Figure 

53 for wind tunnel spectra showing flow noise only and flow noise + source tones measurements 

demonstrating amplitude of tones above the flow noise. The spectra measured for each flow speed 

are shown in Appendix F: Acoustic Test Data. Note that the “Source Room”, as references 
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in SAE J14008, is the wind tunnel test section and the “Receiving Chamber” is the quiet box internal 

volume. 

(a) 

 

(b) 

 

Figure 53. Bullet Mic measured tunnel noise spectrum contrasting flow noise only from flow 

noise + source tones recordings. Tones generated at 200, 300, 400, 500, 600, 700, 800, 900, 

1000, and 1500 Hz. (a) – Minimum free-stream flow velocity test (36.3 ft/s), (b) – Maximum 

free-stream flow velocity test (59.2 ft/s). 

 

The noise reduction method of Equation (18) was utilized for the wind tunnel source room 

and the quiet box receiving chamber, as done for the flow-off transmission loss case8. The wind 
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tunnel and quiet box spectra at the highest and lowest flow speeds are shown in Figure 54. The full 

spectral data for all flow speeds are shown in Appendix F. As expected, the spectrum amplitude 

tends to increase with increased flow speeds due to increases in flow noise. The variation between 

quiet box microphones was observed to be nearly undetectable across the test frequency spectrum 

of 200 to 1500 Hz. The microphone variation is shown in Figure 55. The absence of wide spectrum 

white noise is expected to be partially responsible for the decreased microphone variation. 

(a) 

 

(b) 

 



87 
 

Figure 54. Bullet Mic measured tunnel noise and quiet box averaged microphone spectra with 

Kevlar® validation specimen flow noise + source tones testing. (a) – Minimum free-stream 

flow velocity test (36.3 ft/s), (b) – Maximum free-stream flow velocity test (59.2 ft/s). 

 

 

Figure 55. Quiet box microphone variation during flow-on tone source testing at 36.2 ft/s free-

stream velocity 

 

The MNRf was calculated using Equation (19) at each primary tone, for each flow speed. 

No reference data for flow-on sound transmission loss is currently available for tensioned Kevlar® 

panels; therefore, no conclusions can be made about calibration limits. The minimum observed 

MNR of -0.6 dB was measured with a free-stream flow velocity of 46.8 ft/s, and the maximum 

observed MNR of 19.9 dB was measured with a free-stream velocity of 59.2 ft/s. Reference Figure 

56 for tone source MNR for the Kevlar® validation specimen. 



88 
 

(a) 

 

(b) 

 

Figure 56. Source tone-only, flow on, specimen door configuration Measured Noise Reduction 

specturm (MNR) measured by correcting for background noise then subtracting receiving 

chamber SPL from source room SPLf. (a) – Free-stream flow velocity of 36.3 ft/s, (b) – Free 

stream flow velocity of 59.2 ft/s (Note: MNR for all measured flow speeds shown in Appendix 

F) 

It is noted that the sample’s sound transmission loss amplitude tends to increase with 

increased flow velocity. The overall integrated sound pressure level, maximum STL, and minimum 

STL for all flow speeds are shown in Table 8. This is the expected result. As flow speed increases, 

so does boundary layer turbulence intensity. When sound propagating through a continuum 
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interacts with a discontinuity, portions of its energy will be transmitted, reflected, and absorbed. 

The portion of the energy to undergo each of these three possibilities is dependent on the intensity 

of the discontinuity in the continuum19. When sound waves interact with flow turbulence, it is 

expected that waves will tend to be scattered and absorbed in a similar manner to an open cell foam; 

therefore, increasing the absorption component of the energy transfer and decreasing the energy 

available to be transmitted4. Full spectral results for flow-on testing are provided in Appendix F. 

Table 8. Flow-on OASPL measurements for all tested free-stream flow velocities over the 

frequency range of 200 to 1500 Hz with a tone  

 

4.3 Bullet Microphone Method for Overall Flow-Induced Noise Increase for Kevlar® 

Validation Sample  

 

Any candidate windscreen must be optimized to have minimum normal incidence 

transmission loss and minimum flow-induced noise generation over it surface. The test apparatus 

developed in this study can be utilized to provide comparative flow-induced noise generation data. 

Two methods were proposed to measure this characteristic, and both were tested on the tensioned 

Kevlar® validation specimen door. The first method utilizes the same pylon mounted bullet 

microphone utilized in the transmission loss testing. The results for testing with this method are 

addressed in this section. The second method installs two 1/2-inch condenser microphones flush 

mounted in the wind tunnel test section floor. One forward, and one aft of the specimen door. The 

results for testing with this method are addressed in the next section. 

The pylon mounted bullet nose cone microphone is located along the wind tunnel test 

section centerline, mounted 9 inches aft of specimen door center point. The boundary layer survey 
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accomplished for the wind tunnel in its current configuration concluded that this microphone is 

well out of any boundary layer turbulence. The wind tunnel acoustic spectrum was measured with 

the smooth plug door installed using this microphone at the same four flow speeds (36.2, 46.8, 55.4, 

and 59.2 ft/s). This test was repeated with the tensioned Kevlar® specimen door installed as well. 

Special attention was paid to ensure the smoothest aerodynamic transitions possible, using 

aluminum foil tape to blend any steps and/or gaps between the test section floor and the quiet box 

door panels. The spectrum for flow speed of 36.3 for both pass-through door panels are presented 

in Figure 57. The spectra for all flow velocities are shown in Appendix F. 

 

Figure 57. Typical sound pressure spectrum measured in wind tunnel test section by pylon 

mounted bullet nose cone microphone for plug door and specimen door configurations, free-

stream velocity shown: 36.3 ft/s free-stream velocity (spectrum for all flow velocities shown in 

Appendix F) 
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It was noticed that most amplitude difference between the flush (plug door) and tensioned 

Kevlar® validation specimen door configurations occurs between 100 and 1000 Hz. Note that 

previously defined test frequency range for quiet box testing does not apply to this test since the 

attenuation factors driving the lower cutoff frequency and the microphone variation phenomenon 

are both dependent on measuring spectra within the quiet box. No quiet box measurements are 

made during this test procedure. Extreme effort was placed into ensuring no difference occurred in 

ambient noise and other variable factors except the pass-through door configuration between test 

runs. Assuming no other variations exist, it is reasonable to attribute any increase in acoustic 

amplitude levels between the plug door and specimen door to either increased hydro-dynamic 

pressure fluctuations or turbulence induced flow noise increase. Either cause is likely the result of 

the increased surface roughness of the tensioned Kevlar® specimen door, compared to the smooth 

surface of the plug door; therefore, it is reasonable to assess the OASPL integration over only the 

frequencies showing the highest variations, 100 to 1000 Hz. 

It was noted that a broad increase in amplitude of 8 to 20 dB, at 2000 to 2500 Hz was 

present throughout all flow speeds, and both pass-through door configurations. The cause of this 

spike is not known, although it is suspected to be electronic interference with the test equipment. 

This spike does not affect the results of the OASPL integration since it is outside the frequency 

region of interest (100 to 1000 Hz). 

The OASPL was calculated for the above-mentioned frequency range for each flow speed 

and pass-through door configuration. The results were plotted and a trend line computed. The 

results are shown in Figure 58. 
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Figure 58. Overall sound pressure level integration from 100 to 1000 Hz for bullet 

microphone method at various flow speeds for the plug door and tensioned Kevlar® 

specimen door configurations with trend lines shown 

 

The difference in OASPL between the plug door and specimen door is low, but not 

statistically insignificant. The 36.3 ft/s free-stream velocity run resulted in a difference of 2.5 dB, 

and the 55.2 ft/s free-stream velocity run resulted in a difference of 4.4 dB, the other two flow 

speeds resulted in OASPLs within 0.2 dB between the two configurations, which is below the test 

equipment’s ability to discern. The test equipment has been theoretically determined to have an 

OASPL uncertainty of 0.21 dB (uncertainty analysis covered in Section 3.4.2), which proves that 

the 36.3 and 55.2 ft/s data points are statistically different, and the 46.8 and 55.4 are not statistically 

different. The resulting trend lines are separated by approximately 2.5 dB, which is sufficient to 

conclude a measurable increase in OASPL for the specimen door. It is also worth noting that the 

surface roughness of the tensioned Kevlar® specimen door does not significantly higher than that 

of the plug door (quantitative roughness measurements not currently available for either surface). 
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It is assumed that future candidate windscreen designs will either be significantly more porous than 

the Kevlar® panel, or the parameter will be irrelevant, and other factors such as normal incidence 

transmission loss or ease of structural integration will dominate the decision. 

4.4 Flush Microphone Method for Turbulence Increase for Kevlar® Validation Sample 

 

Based on the microphone comparison data obtained during the testing described in Section 

3.3.5.1, it is suspected that pressure fluctuations detected by the microphone flush-mounted on the 

wind tunnel test section floor are likely caused, at least in part, by boundary layer turbulence-

induced hydro-dynamic, rather than acoustically induced, pressure fluctuations. This idea is the 

basis for the method to quantify self-induced hydro-dynamic noise presented in this section. 

For this test, two 1/2-inch condenser microphones with standard protective grill installed 

were mounted so that the top of the microphone grills were flush with the wind tunnel test section 

floor surface (reference Figure 37 for a photograph of the installation). One microphone was 

mounted 13.5 inches upstream of the leading edge of the quiet box pass-through window, and the 

other was mounted 13.5 inches downstream of the trailing edge of the quiet box pass-through 

window. Measurements were made for the flow-on, acoustic source off configuration at flow 

speeds of 36.3, 46.8, 55.4, and 59.2 ft/s. The spectra were compared for the upstream and 

downstream microphones for plug door configuration and for the specimen door configuration at 

each flow speed with the hope of seeing a measurable difference between the upstream and 

downstream microphones, indicative of changes in the boundary layer caused by the specimen door 

configurations. Reference Figure 59 for upstream and downstream microphone SPL for plug door 

configuration at flow speed extremes and Figure 60 for upstream and downstream microphone 

SPL for specimen door configuration at flow speed extremes. The spectra for all tested flow speeds 

are shown in Appendix F. 
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(a) 

 

(b) 

 

Figure 59. Sound pressure spectrum measured by flush mounted downstream microphones in 

wind tunnel test section for plug door configuration. (a) – 36 ft/s free-stream velocity, (b) – 59 

ft/s free-stream velocity (spectra for all flow speeds shown in Appendix F) 
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(a) 

 

(b) 

 

Figure 60. Sound pressure spectrum measured by flush mounted downstream microphones in 

wind tunnel test section for specimen door configuration. (a) – 36 ft/s free-stream velocity, (b) 

– 59 ft/s free-stream velocity (spectra for all flow speeds shown in Appendix F) 

 

Unlike the bullet microphone method discussed in the preceding section, there appears to 

be no measurable difference between the signal recorded for each configuration. To further validate 

this point, the difference between the upstream microphone SPL was subtracted from the 

downstream microphone SPL. There exist two notable spikes in these spectra, one at approximately 

195 to 225 Hz and another at 2000 to 2500 Hz; however, these spikes do not appear to be caused 
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by detection of turbulence increase due to the spikes having amplitudes which are equally positive 

and negative. A true hydro-dynamic pressure fluctuation frequency would likely span more than 

one frequency bin. It would also be expected that if the downstream microphone were detecting a 

signal different from that of the upstream, the amplitude variation would be positive only when 

subtracting the upstream from the downstream microphone. Another notable feature in the data is 

a gradual rise in the difference between the upstream and downstream mics between 5000 and 8000 

Hz, resulting in a 4-dB average difference. This is also not believed to be a result of added 

turbulence caused by the specimen door configuration since both the plug door and specimen door 

configurations show this spectral feature at the same frequency and amplitude for their respective 

flow speeds. It is likely this variation is the result of a difference in dynamic response between the 

microphones at high frequencies. Reference Figure 61 for the difference between the downstream 

and upstream microphones for the flow velocity extremes (spectra for all flow speeds shown in 

Appendix F). 
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(a) 

 

(b) 

 

Figure 61. Difference between flush mounted microphones (downstream mic – upstream mic) 

for plug door and specimen door configurations. (a) – 36 ft/s free-stream velocity, (b) – 59 ft/s 

free-stream velocity (spectra for all flow speeds shown in Appendix F) 

 

Figure 62 shows the difference between two spectra presented in Figure 61 (specimen door – plug 

door) for the flow extremes (spectra for all flow speeds shown in Appendix F). This difference 
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demonstrates that no significant variation exists between the two spectra for any of the unexplained 

frequency spikes addressed above. 

(a) 

 

(b) 

 

Figure 62. Downstream – upstream microphone SPL for specimen door configuration 

subtracted from downstream – upstream microphones SPL for plug door configuration. (a) – 

36 ft/s free-stream velocity, (b) – 59 ft/s free-stream velocity (spectra for all flow speeds shown 

in Appendix F) 
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No clear and/or measurable turbulence frequencies were shown to exist between the plug 

door and specimen door configurations. Since the downstream microphone is located where any 

added turbulence due to the specimen door would be present, the overall sound pressure level 

(OASPL) integration for the downstream microphone was computed at each flow speed for both 

door configurations. The integration was accomplished from 100 to 1000 Hz since this is the 

frequency range determined to predominately change as a result of changing between the plug door 

and specimen door configurations in the bullet microphone method discussed in the preceding 

section. The OASPL values are shown in Figure 60. The separation between the OASPL data 

points for each configuration are observed to be within the theoretical ±0.21 dB uncertainty limit 

of the test equipment, with the exception of the 36 ft/s flow speed which has a difference just outside 

the theoretical uncertainty limits at 0.7 dB. Therefore, it is concluded that this method does not 

provide useful and statistically different data regarding turbulence increase for the test specimen. 

While it is worth noting that the tensioned Kevlar® validation specimen is not particularly rough 

compared to the wind tunnel test section floor or other surfaces exposed to the flow (quantitative 

surface roughness measurements for the Kevlar® specimen or the plug door are currently 

available), and a difference should be measurable. One possibility is that any hydro-dynamic 

pressure fluctuation differences detected by the microphones are the result of flow shedding caused 

by the microphone grills. This would depend on the installation angle, and other highly sensitive 

factors. This method for measuring turbulence increase would be better accomplished by measuring 

boundary layer turbulence intensity with a hot wire probe to determine any changes in boundary 

layer thickness caused by the specimen door. 
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Figure 63. Overall sound pressure level integration from 100 to 1000 Hz for downstream flush 

mounted microphone at various flow speeds for the plug door and tensioned Kevlar® specimen 

door configurations with trend lines shown 
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CHAPTER V 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The purpose of this study is to develop and validate a method by which candidate 

windscreen designs can be compared. The quiet box apparatus constructed for this study was found 

to be capable of sufficient sound attenuation for quality acoustic testing. The STL measurement 

method was used to generate uncalibrated STL measurements for the tensioned Kevlar® validation 

specimen, which were determined to be sufficiently accurate for comparative evaluation of 

candidate windscreen designs. The flow-on testing showed the expected trend of increasing sample 

STL with flow speed. The bullet microphone method to compare flow-induced noise increase was 

shown to have sufficient resolution to measure the difference between the plug door and specimen 

door configurations. The flush mounted added turbulence method to compare flow-induced noise 

increase was not shown to be able to resolve the difference between the plug door and specimen 

door configurations. 
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5.1 Impedance Tube Testing 

 

Impedance tube testing provides good reference data for material samples despite its short-

comings for application in the scope of the current study. Obviously, the impedance tube cannot 

provide any insight in to flow-on transmission loss or grazing flow self-induced noise generation 

and any stiffened samples will have their normal incidence sound transmission loss affected by 

natural resonance frequencies that will not translate directly to the full scale. However, the 

impedance tube has been shown to generate accurate results, and its ease of use makes it an 

attractive option for first pass evaluation of material samples prior to more involved development 

and testing. The samples tested as part of this study proved that standard methods of epoxy 

impregnation result in stiffened structures which have undesirable acoustic transmission loss 

characteristics. Future work should avoid stiffening and sealing membrane materials in this manner. 

A more robust mounting fixture could be developed with the capability to tension samples for 

improved testing versatility as well. 

5.2 Quiet Box Design and Installation 

 

The quiet box environment designed and build as part of this study proved to be a cost-

effective means of reducing ambient sound for high precision acoustic testing. The materials cost 

between $500 and $700 to purchase, and the construction methods are sufficiently easy such that a 

person with reasonable skill could replicate the fabrication. The available volume was not sufficient 

to provide attenuation through foam wedges alone; therefore, a high-density double wall design 

was used in addition to 4-inch open-cell polyurethane foam wedges. Qualification testing resulted 

in a sealed box attenuation of 25 to 45 dB from 100-10000 Hz, which is well above the minimum 

requirements of ISO 3745: 201211. It was determined upon initial installation and testing that any 

deflection of the outer wall would be transmitted directly into the chamber where it would be 

detected as a pressure wave. Stiffeners were added to the quiet box walls; however, this was a 
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reactive solution. A better solution may be to an additional wall layer and airgap to further decouple 

outer wall vibrations from the air volume internal to the quiet box environment. The quiet box 

internal volume is small compared to the guidelines set forth in ISO 3745:201211 and SAE J14008, 

which was expected to create challenges for accurate testing. It is believed that the high level of 

variation observed between adjacent microphone locations within the quiet box is a result of this 

reduced volume. The observed variation resulted in a reduction of the test range upper cutoff 

frequency to 1500 Hz. If a full re-design were to be undertaken, it would be advisable to maximize 

the internal volume to separate standing wave locations as much as possible.  

The reverberant behavior of the wind tunnel test section is also an area which should 

undergo improvement if a redesign/rebuild were attempted. The MDF, which comprises most of 

the test section construction material, provides a relatively hard boundary for acoustic reflection; 

however, this material does provide some level of acoustic absorption. Cox, et. al.20 reports an 

absorption coefficient of up to 0.3 for fiberboard material. To achieve the more effective 

reverberant environment recommended for testing, the test section walls could be lined with sheet 

metal or similar very low absorption material. Sharp corners are also problematic for reverberant 

environments, and should probably be addressed for any future rework. Addressing corner 

reflections by changing corner geometry will affect airflow characteristics in the test section. The 

impact these changes have on flow noise and other wind tunnel testing operations should be 

considered. As an alternate to improving reverberant chamber qualities of the test section, the test 

section could be modified to improve anechoic properties instead. This is the approach used by 

Virginia Tech while modifying their stability wind tunnel into an aero-acoustic facility6. For this 

modification, test section walls and the section walls immediately upstream and downstream from 

the test section were replaced with large panels filled with a sound absorbent batting material such 

as fiberglass insulation. These panels were streamlined to the airflow with tensioned Kevlar® 

windscreens similar to those used on the test section6.  
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5.3 Wind Tunnel Flow-Off STL Measurement 

 

The test method developed herein has been shown to produce comparative data which can 

be used to optimize windscreen design. This comparative data does not require the system 

calibration outlined in SAE J14008. If quantitative STL data is desired for a candidate windscreen, 

a reference sample with known STL characteristics would need to be constructed and tested, then 

the difference between the measured noise reduction (MNR) and the theoretical STL would be 

determined and used as the calibration factor. This calibration factor would be applied for any STL 

testing. 

The no acoustic source test configuration of the tensioned Kevlar® validation specimen 

resulted in sound transmission loss values within the calibration limits (+15/-5 dB) provided in 

SAE J14008 when compared to the STL data for tensioned Kevlar® provided by Jaeger, et. al.5. 

The white noise source STL data showed more frequency dependent variation than the no source 

configuration. This is believed to be a function of standing was frequencies caused by the normal 

incidence white noise. Reducing the frequency resolution of the test data provides a smoother curve 

with less variation. It was noted that the STL data provided in Jaeger, et, al.5 was recorded with a 

frequency resolution of Δf = 62.5 Hz. When comparing both spectra at this resolution, the STL data 

measured for tensioned Kevlar® validation specimen constructed herein is only just outside the 

calibration limits prescribed in SAE J14008 over the target frequency of 200 to 1500 Hz. There is 

reason to suspect the measurement method used in Jaeger, et. al.5 will produce a notably different 

tensioned Kevlar® STL spectrum due to differences in source and receiving chamber size and an 

increased number of microphones. Also, minimum data is available on how the STL values were 

determined and how the system was calibrated.  
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5.4 Wind Tunnel Flow-On STL Measurement 

 

As expected, the flow-on transmission loss measurements showed a tendency of slightly 

increased STL with higher flow speeds for the tensioned Kevlar® validation sample. This is 

believed to be caused by increased boundary layer turbulence intensity as a result of higher flow 

energy over the sample. This increased turbulence will cause greater absorption and reflection of 

sound waves, resulting in higher STL amplitude. 

Tones generated by the normal incidence acoustic source driver in the top of the wind 

tunnel test section were shown to provide results consistent with those obtained testing with white 

noise. Use of specific tones allows higher signal amplitudes compared to a white noise source by 

providing the full available power to specific frequencies. This allows measurements to be made in 

the presence of higher background noise. Furthermore, the use of source tones in lieu of white noise 

allows STL and self-induced flow noise to be measured simultaneously by focusing only on the 

generated tones for STL measurement and the frequency regimes where tones are not present for 

self-induced flow noise measurements. One drawback to testing with multiple tones is presence of 

secondary harmonic tone created by the combination of multiple primary tones. The number of 

these secondary tones can be reduced by reducing the number of primary tones; however, this will 

cause a reduced STL frequency resolution. The tone source method also resulted in a reduced 

microphone variation within the quiet box. This is likely caused by the lack of normal incidence 

frequency saturation which occurs during testing with a white noise source. 

The test results obtained for flow on testing revealed a minimum Measured Noise 

Reduction (MNR) of -0.6 dB, and a maximum MNR of 19.9 dB across all test frequencies. No 

calibration method for flow on testing currently exists. Development of a calibration reference 

standard would require a statistically robust sample set of test data from multiple well established 

testing facilities since no closed form analytical solution for any material currently exists. It is not 
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necessary to calibrate the test apparatus developed herein since comparative data is sufficient for 

evaluating and comparing candidate windscreens. 

5.5 Bullet Microphone Method for Flow-On OASPL Increase 

 

The bullet microphone method was shown to be viable for detecting changes in self-

induced noise caused by the installation of the test specimen. The spectrum generated for each test 

configuration was measured and studied. It was noted that most of the variation between the spectra 

for the two configurations was contained between 100 and 1000 Hz; therefore, the OASPL 

integration was performed on this frequency region. This reduced frequency band also prevented 

inclusion of an amplitude spike occurring between 2000 and 2500 Hz, depending on flow speed. 

The source of this spike is not known; however, it is expected to be the result of some form of 

electrical interference on the test system. This spike was observed in other flow-on test spectra; 

however, it is outside the test frequency range so it was not included in the OASPL integration.  

The OASPL as a function of flow speed showed measurable and statistically unique 

differences between the test configurations for tests conducted at the free-stream velocities of 36 

and 55 ft/s. This level of resolution is believed to be sufficient for windscreen comparison purposes 

during the design phase of a project. It is also noted that the tensioned Kevlar® validation specimen 

is likely to have a low surface roughness compared to future candidate windscreen designs. A 

candidate windscreen with an increased surface roughness should result in a higher level of noise 

generation by the windscreen, which will be more easily detectable. 

5.6 Flush Mounted Microphone Added Turbulence Method 

 

Flush mounting microphones has not been shown to provide a clear detection of surface 

differences in self noise generation between the plug and specimen door configurations. The spectra 

generated for each flow speed indicated a difference between the two door configurations which 
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falls within the measurement uncertainty limits of the system. OASPL integration was 

accomplished from 100 to 1000 Hz, which was found to be the frequency range most influenced 

by the configuration change in the bullet microphone testing. The OASPL values were plotted 

versus flow speed for the aft microphone only since this is the location the most change was 

expected. The variation between the configurations was measured at less than 0.5 dB decibel at 

each flow speed except for the 36 ft/s flow speed which was measured to have a difference of 0.7 

dB. These variations are fall within the theoretical uncertainty limits of the acoustic test equipment; 

therefore, the data points cannot be deemed statistically different. It is likely that the pressure 

fluctuations recorded by the flush mounted microphones are dominated by flow over the 

microphone grills. If this method of measurement is to be viable for future testing, work should be 

done to protect the microphone diaphragms without minimal effect on flow over them. In its present 

state, this method should not be favored over the bullet microphone method for flow noise 

measurement. Any future work towards characterizing the boundary later turbulence intensity 

caused by the windscreen should probably focus on hot wire flow speed measurements rather than 

hydrodynamic pressure fluctuation measurement. 

5.7 Overall Conclusions and Recommendations 

 

The test apparatus developed herein has proven to be a viable means by which comparative 

data can be generated to compare candidate windscreen designs for use in UAV acoustic sensing 

applications across frequency spectrum expected to be desirable for airborne detection. No attempt 

has been made to generate a calibration curve to be used for sound transmission loss testing. This 

calibration is not necessary to generate comparative data between candidate windscreens tested in 

the same facility. The test facility has been shown fully qualified, using the methods developed 

herein, to characterize windscreen designs. Future work will focus on windscreen design. The 

tensioned Kevlar® membrane has been shown by this study and others5,6 to be an effective option; 

however, the structure required to maintain the membrane tension is prohibitive for its installation 
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in small aircraft. The goal of this research will be to develop a light-weight windscreen with 

sufficient strength to be self-rigid without the need for a tensioning mechanism, minimized normal 

incidence sound transmission loss, and minimized grazing-flow-induced self-generated turbulence 

noise. Consideration has been given to a structure using a shallow non-metallic honeycomb core 

material bonded to a light weight dry PEEK® cloth outer skin, with a possible open weave carbon, 

fiberglass, or Kevlar® inner skin. An open weave inner skin should be used to reduce any resonator 

effect that may be caused by partially closing the honeycomb core cells.  

Once a candidate windscreen is shown to be sufficiently optimized for the specific 

application, further research will be required to optimize the aircraft itself. It is necessary to 

understand how an acoustic source is most likely to detect the aircraft. Most biological target 

sources are capable of optically and acoustically detecting the aircraft. For the example of the 

Greater Prairie-Chicken, if the UAV resembles one of bird’s natural predator, it is likely to hide or 

change its behavior which would impact the accuracy of the population count. Proper camouflage 

such as painted patterns on the aircraft’s lower surface could be used to disrupt any hawk-like shape 

a fixed-wing aircraft might have. The frequency response of the Greater Prairie-Chicken’s hearing 

is another area that warrants further investigation. It would be ideal that any airframe used for 

counting this species would avoid frequencies of high hearing sensitivity.  
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Appendix A: Add Foam Factory 4” wedge data sheet 
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Appendix B: Laminating resin system used to fabricate samples 
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Appendix C: Microphone Equipment Datasheets 

C.1 GRAS 1/2-Inch Condenser Microphone Typical Datasheet 
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C.2 Microphone Pre-amplifier Typical Datasheet 
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C.3 Microphone Nose Cone Datasheet 
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C.4 National Instruments DAQ Datasheet 
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Appendix D: Wind Tunnel Source Speaker information 
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Appendix E: Boundary Layer Survey Results 

Reference Section 3.4.6 for boundary layer survey discussion and methodology. 
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Figure 64. Boundary layer velocity profiles at all flow speeds measured with 1/4-inch 

traversing pitot probe connected to high precision water manometer  
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Appendix F: Acoustic Test Data 

F.1 Flow-off White Noise STL Data 

 

Figure 65. Tunnel specturm for specimen door configuration with ambient noise-only measured by bullet mic and quiet box spectrum 

averaged signal with flow off 
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Figure 66. Tensioned Kevlar® validation specimen STLf with ambient noise-only measured by bullet mic and quiet box spectrum 

averaged signal with flow off 
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Figure 67. Tunnel specturm for specimen door configuration with white noise source measured by bullet mic and quiet box spectrum 

averaged signal with flow off 
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Figure 68. Tensioned Kevlar® validation specimen STLf with white noise source measured by bullet mic and quiet box spectrum 

averaged signal with flow off 
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F.2 Flow-on Tone Source STL Data 

 

Figure 69. Tunnel specturm measured by bullet mic and quiet box spectrum averaged signal for flow speed of 36.3 ft/s 
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Figure 70. Tunnel specturm for background noise only and background noise + tone signal measured by bullet mic for flow speed of 

36.3 ft/s 

  



143 
 

 

Figure 71. Flow noise + source tones Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then 

subtracting receiving chamber SPLf from source room SPLf for flow speed of 36.3 ft/s 
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Figure 72. Source tone only Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then subtracting 

receiving chamber SPLf from source room SPLf for flow speed of 36.3 ft/s 

  



145 
 

 

Figure 73. Tunnel specturm measured by bullet mic and quiet box spectrum averaged signal for flow speed of 46.8 ft/s 
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Figure 74. Tunnel specturm for background noise only and background noise + tone signal measured by bullet mic for flow speed of 

46.8 ft/s 
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Figure 75. Flow noise + source tones Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then 

subtracting receiving chamber SPLf from source room SPLf for flow speed of 46.8 ft/s 
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Figure 76. Source tone only Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then subtracting 

receiving chamber SPLf from source room SPLf for flow speed of 46.8 ft/s 
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Figure 77. Tunnel specturm measured by bullet mic and quiet box spectrum averaged signal for flow speed of 55.4 ft/s 
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Figure 78. Tunnel specturm for background noise only and background noise + tone signal measured by bullet mic for 

flow speed of 55.4 ft/s 

  



151 
 

 

Figure 79. Flow noise + source tones Measured Noise Reduction specturm (MNRf) measured by correcting for background 

noise then subtracting receiving chamber SPLf from source room SPLf for flow speed of 55.4 ft/s 
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Figure 80. Source tone only Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then subtracting 

receiving chamber SPLf from source room SPLf for flow speed of 55.4 ft/s 
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Figure 81. Tunnel specturm measured by bullet mic and quiet box spectrum averaged signal for flow speed of 59.2 ft/s 
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Figure 82. Tunnel specturm for background noise only and background noise + tone signal measured by bullet mic for flow speed of 59.2 

ft/s 
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Figure 83. Flow noise + source tones Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then 

subtracting receiving chamber SPLf from source room SPLf for flow speed of 59.2 ft/s 
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Figure 84. Source tone only Measured Noise Reduction specturm (MNRf) measured by correcting for background noise then subtracting 

receiving chamber SPLf from source room SPLf for flow speed of 59.2 ft/s 
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F.3 In-flow Bullet Microphone Method for Noise Increase Measurement 

 

Figure 85. Tunnel specturm measured by bullet microphone comparing plug door and specimen door configurations for flow speed of 

36.3 ft/s 
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Figure 86. Tunnel specturm measured by bullet microphone comparing plug door and specimen door configurations for flow 

speed of 46.8 ft/s 
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Figure 87. Tunnel specturm measured by bullet microphone comparing plug door and specimen door configurations for flow speed of 

55.4 ft/s 
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Figure 88. Tunnel specturm measured by bullet microphone comparing plug door and specimen door configurations for flow speed of 

59.2 ft/s 
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A7.5 In-flow Flush Mount Microphone Method for Noise Increase Measurement 

 

Figure 89. Tunnel specturm measured by flush mounted upstream and downstream microphones for plug door configuration for flow 

speed of 36 ft/s 
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Figure 90. Tunnel specturm measured by flush mounted upstream and downstream microphones for plug door configuration for flow 

speed of 47 ft/s 
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Figure 91. Tunnel specturm measured by flush mounted upstream and downstream microphones for plug door configuration for flow 

speed of 55 ft/s 

  



164 
 

 

Figure 92. Tunnel specturm measured by flush mounted upstream and downstream microphones for plug door configuration for flow 

speed of 59 ft/s 
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Figure 93. Tunnel specturm measured by flush mounted upstream and downstream microphones for specimen door configuration for 

flow speed of 36 ft/s 
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Figure 94. Tunnel specturm measured by flush mounted upstream and downstream microphones for specimen door configuration for 

flow speed of 47 ft/s 
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Figure 95. Tunnel specturm measured by flush mounted upstream and downstream microphones for specimen door configuration for 

flow speed of 55 ft/s 
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Figure 96. Tunnel specturm measured by flush mounted upstream and downstream microphones for specimen door configuration for flow 

speed of 59 ft/s 
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 Figure 97. Downstream microphone – upstream microphone specturm measured by flush mounteds for plug door and specimen door 

configurations for flow speed of 36 ft/s 
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Figure 98. Downstream microphone – upstream microphone specturm measured by flush mounteds for plug door and specimen door 

configurations for flow speed of 47 ft/s 
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Figure 99. Downstream microphone – upstream microphone specturm measured by flush mounteds for plug door and specimen door 

configurations for flow speed of 55 ft/s 
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Figure 100. Tunnel specturm measured by flush mounted upstream and downstream microphones for specimen door configuration for 

flow speed of 59 ft/s 
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Figure 101. Downstream – upstream microphones for specimen door configuration subtracted from downstream – upstream microphones 

for plug door configuration for flow speed of 36 ft/s 
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Figure 102. Downstream – upstream microphones for specimen door configuration subtracted from downstream – upstream 

microphones for plug door configuration for flow speed of 47 ft/s 



175 
 

 

Figure 103. Downstream – upstream microphones for specimen door configuration subtracted from downstream – upstream microphones 

for plug door configuration for flow speed of 55 ft/s 
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Figure 104. Downstream – upstream microphones for specimen door configuration subtracted from downstream – upstream microphones 

for plug door configuration for flow speed of 59 ft/s 
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Appendix G: Tone Generation MATLAB Code 
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Appendix H: Impedance Tube Transfer Matrix Method MATLAB Code  

 

(Developed by J. Callicoat10) 
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