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POLYETHYLENE 
TEREPHTHALATE-GRAPHENE 

NANOCOMPOSITES 

CROSS REFERENCE TO RELATED 
APPLICATION 

2 
ten, or fifteen. In some embodiments it may range from 
about two percent to about fifteen percent. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1: SEM micrographs of xGnP powder sample (a) 
1000 x; (b) 11000 x. 

FIG. 2: Tensile tested samples of PET (At) and PET-15% 
xGnP Nanocomposite (B). 

This application claims the benefit of U.S. Provisional 
Application No. 61/482,048 filed May 3, 2011, herein incor-
porated by reference in its entirety for all purposes. 10 FIG. 3: SEM micrographs of (a) PET, PET-xGnP Nano

composite (b) 2% wt, ( c) 5% wt, ( d) 10% wt with micro 
voids, (e) 10% wt at 5 k x and (f) 15% wt samples. FIELD OF THE INVENTION 

This disclosure is related to polymers in general and, more 
15 

specifically, to strengthening of polymers by introduction of 
nanomaterials. 

FIG. 4: TEM micrographs showing dispersion of the 
nanoplatelets in PET-15% xGnP nanocomposite; bright field 
images (a) 10 k x, (b) 20 k x and (c) dark field image@ 60 
k X. 

FIG. 5: Comparison of XRD patterns of xGnP powder 
with PET control and nanocomposite. BACKGROUND OF THE INVENTION 

FIG. 6: Comparison of Stress-Strain curves of PET and 
20 PET-xGnP Nanocomposites. 

Polymers have become an ever-present component of 
modern life. Products that used to be made from metals and 
other heavy materials using labor and/or energy intensive 
processes can now be made less expensively, more quickly, 
and with less energy input. Automotive, medical, informa- 25 
tion technology, and health care are but a small sampling of 
the industries that make ubiquitous use of polymers. 

FIG. 7: Young's Modulus of PET Nanocomposites in 
comparison with control PET. 

FIG. 8: Modulus of PET-graphene nanocomposites from 
predictions compared with experimental results. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Base polymers may have a number of inherent charac
teristics relating to their appearance, color, hardness, 
strength, and any number of other measurable properties. In 
some cases, a base polymer is mixed with a predetermined 
amount of a material that will alter the properties of the base 
polymer. The material added to the base polymer is referred 

Making a device from a polymer generally results in an 
item that is lighter in weight than an equivalent item made 
from a structural metal or other material. However, with 30 

decrease in weight generally comes a decrease in strength. 
The decrease in strength may be a decrease in ability to 
withstand torsion, shearing, compression, pressure, or 
another force without buckling, breaking, or deforming to an 
unacceptable degree. 35 to as a masterbatch and the process of adding the master

batch to the base polymer in such a way as to alter its 
properties may be referred to as a masterbatch process. 

What is needed is a system and method for addressing the 
above, and related, issues. 

SUMMARY OF THE INVENTION 

The invention of the present disclosure, in one aspect 
thereof, comprises a nanocomposite material. The material 
contains a base polymer including polyethylene terephtha
late (PET), and a nanoparticle that increases the strength of 
the base polymer. The nanoparticle may comprise graphene 
nanoplatelets that may be prepared by exfoliation. The 
graphene nanoplatelets may have an average diameter of 5 
micrometers. They may comprise about two percent by 
weigh of the nanocomposite material. In other embodiments 
graphene nanoplatelets may comprise about five, ten, or 
fifteen percent by weigh of the nanocomposite material. In 
another embodiment the percentage by weight may range 
from about two to about fifteen. 

The invention of the present disclosure, in another aspect 
thereof comprises a method of producing a nanocomposite 
material. The method includes providing polyethylene 
terephthalate (PET) as a base polymer, and providing a 
nanoparticulate substance. The method also includes com
pounding the base polymer with the nanoparticulate material 
to form a masterbatch product, and injection molding the 
masterbatch product. The nanoparticulate substance may 
comprise graphene. The graphene may be prepared by 
exfoliation. 

In one embodiment the nanoparticulate substance may 
comprises about two percent by weight of the nanoparticle 
substance material in the masterbatch product. In other 
embodiments the percentage by weight may be about five, 

Polymers may also be prepared in a masterbatch process 
where further processing will create a completed product. 

40 For example, a polymer or a nanocomposite polymer, as 
described below, can be prepared into masterbatch pellets 
that are later molded into a completed product (e.g., by 
injection molding or other suitable processes). 

In some embodiments of the present disclosure, nano-
45 scale particles are blended or combined with a polymer into 

masterbatch pellets that may then be injection molded into 
completed products. The nano-scale material within the 
polymer of the masterbatch will only interact to alter the 
properties of the base polymer on a nano-scale, which 

50 provides some benefit over larger reinforcement mecha
nisms. Based on the Griffith crack theory and Weibull 
analysis, smaller particles are stronger and can be more 
effective in reinforcing the matrix compared to their larger 
counter parts. Also, with their increased surface area and 

55 high aspect ratios, lower volumes of smaller reinforcements 
can provide equivalent reinforcement. 

Nanoparticle selection may be based on the required 
properties, interaction with the matrix, processing, cost, and 
application of the final composite. Several nanoparticles 

60 such as organoclays (MMT), metal nanoparticles (Al, and 
Ag), metal oxides (ZnO, silica), and carbon derivatives 
(CNT's, Fullerenes, Graphite oxide, graphene) may be use
ful in the preparation of polymer nanocomposites. In another 
embodiment, polyethylene terephthalate (PET)-graphene is 

65 utilized to create polymer nanocomposites. The material is 
appropriate for injection and blow molding, and other pro
cessing and manufacturing techniques. 
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Graphene ( comprising a mono layer of carbon atoms) has 
excellent mechanical (modulus-1060 GPa, Strength-20 
GPa) and electrical properties (50x10-6 I cm), compared 
with other nanoparticles. Graphene can disperse well in base 
polymers through the aid of surface treatments. Exfoliated 5 

Graphene Nanoplatelets (xGnP) are multiple graphene lay
ers stacked to form platelets. 

Regarding the specific combination of PET with graphene 
( e.g., as in certain embodiments of the present disclosure), 
PET is a widely used polymer but has heretofore been 10 

overlooked in the laboratory studies owning in part to the 
fact that it is relatively sticky and has a relatively high 
melting point. Furthermore, the constituent mer units of PET 
exhibit a polarity that can result in a dissolution of certain 
polar nanostructures when the products are mixed. It should 15 

be noted that graphene is a polar substance, meaning it might 
be expected to dissolve or lose its structural integrity in the 
presence of PET. However, as disclosed herein, graphene 
can and does maintain integrity sufficiently to favorably alter 
the physical characteristics of PET. 20 

In one embodiment, PET-Exfoliated graphene nanocom
posites are prepared using injection molding through a 
masterbatch process, where graphene nanoplatelets are com
pounded with PET to form masterbatch pellets. These 
experimental results were compared to theoretical perfor- 25 

mances using Halpin-Tsai and Hui-Shia models. 
Continuous fiber composites are often assessed based on 

a simplified empirical formula, referred to as the 'Rule of 
Mixtures'. In the case of nanoreinforcements, the 'Rule of 
Mixtures' either under-estimates or over-estimates the final 30 

properties. This can be because of their low volume fractions 
and often greater disparity of properties between the matrix 
and reinforcement. 

4 
Characterization Techniques 
The produced nanocomposite tensile bars (shown in FIG. 

2) were tested using a universal materials tester (Instron 
5582 model). Tests followed the ASTM D 638 standard at a 
cross-head speed of 5 mm/min. A non-contact Laser Exten
someter (Electronic Instrument Research, Model LE-05) 
was used to record displacement free of machine compli
ance. The laser extensometer records displacement of reflec
tions from the self-reflective stickers placed at the gauge 
length. 

Three composites of each kind were tested along with 
neat PET specimens for comparison. The laser displacement 
and load from the crosshead were simultaneously recorded 
at a time interval of 100 ms. 

Dispersion of the graphene nanoplatelets was observed 
using Electron Microscopy (SEM, TEM) and X-ray Diffrac
tion. SEM micro graphs of the xGnP powder and the fracture 
surfaces of the PET, and PET-Exfoliated graphene nano
composites were obtained using a Hitachi S-4800. 

The PET control and the nanocomposite with lower 
graphene content were Au/Pt coated using a Balzers Union 
MED 010 coater. Thin sections (thickness of70 nm) used for 
transmission imaging were microtomed using Reichert-Jung 
Ultracut E microtome. Transmission micrographs were col
lected using a JEOL JEM-2100 Microscope, with an oper
ating voltage of 200 kV. X-ray diffraction patterns were 
collected in reflection, on a Bruker D8 Discovery diffrac
tometer, using Cu Ka (!,=1.54054 A) radiation. XRD scans 
of the xGnP powder along with the PET samples were 
collected at 40 kV and 40 mA with an exposure time of 120 
sec. 

Results 
Scamiing Electron Microscopy 
SEM micrographs of the xGnP dry powder shown in FIG. For nanocomposites, the special interaction between the 

nanoplatelets and matrix is important in determining their 
elastic behavior. High aspect ratios of the nanoplatelets 
combined with complex mechanisms at the matrix-rein
forcement interface complicate nanocomposite property 
estimation. Therefore, traditional micromechanical models 
have been modified to estimate the mechanical properties for 
nanoparticles. 

35 l(b) shows an agglomerated platelet, with each platelet 
comprised of numerous graphene layers stacked together. 
These platelets were of 5 to 10 µm average diameter and 
several nanometers (5-20 nm) in thickness. 

Micrographs (FIGS. 3 (b), (c), (d), (e), and (j)) of the 

Experiment 1 

40 PET-graphene nanocomposite failure surfaces showed that 
the graphene nanoplatelets remained intact and were dis
persed into the PET matrix, with no signs of agglomeration. 
The micrographs elucidate that the failure of the nanocom
posite under tensile loading was through coalescence of 

Materials 45 brittle micro-fractures. The presence of micro voids and the 
initiation of cracks from these voids can be noticed from the In one demonstration, commercially available Polyethyl

ene Terephthalate of 0.80 dl/g (I.V.) called oZpet™ (GG-
3180 FGH, by Leading Synthetics, Australia) was used. 
Exfoliated graphene nanoplatelets, of xGnP®-M-5 grade 
(99.5% carbon) of average diameter 5 µmas shown in FIG. 50 

1, were obtained as dry powder from XG Sciences, Inc. 
(East Lansing, Mich.). Graphene nanoplatelets (xGnP) and 
the as received PET resin were compounded into PET-xGnP 
masterbatch pellets by Ovation Polymers (Medina, Ohio) 
using their ExTima™ technology. 

SEM micrographs of nanocomposite samples with 5% and 
10% graphene nanoplatelet weight fraction. SEM micro
graphs show the nanoplatelets were projecting out of the 
fracture surfaces. They appear to be deformed and mixed 
with the matrix. 

Transmission Electron Microscopy 
The performance of nanocomposites depends on disper

sion of the nanoparticles. TEM micrographs were collected 
55 from 70 nm thin sections to gain better understanding of 

nanoplatelet dispersion. The transmission micrographs 
shown in FIG. 4, revealed the graphene nanoplatelets 
remained intact as platelets and were dispersed into the 

Graphene nanoplatelets are hydrophobic in nature; effec
tive dispersion of graphene results from the interaction of 
oxygen and hydroxyl functional groups (formed due to the 
exposure of raw carbon during the fracture of platelets) on 
their surface with polar groups of PET [19]. Master batch 60 

pellets obtained from the above process were used as raw 
material for the injection molding process. PET control 
samples and PET-xGnP nanocomposite tensile bars of 
increasing weight fractions (2%, 5%, 10%, and 15%) were 
injection molded at 250° C.-260° C. temperature, following 65 

type-I specifications of ASTM D 638 (hereby incorporated 
by reference). 

polymer matrix, individual dispersion of graphene sheets 
(complete exfoliation) was not found. Micrographs were 
collected in both bright and dark field modes. As the 
nanoplatelets consist of several individual graphene sheets, 
the 70 nm thick sections used may contain layers of polymer 
and graphene platelets, therefore dark field mode was advan
tageous. Graphene is more conductive than the polymer 
matrix so, in transmission imaging, this difference provides 
contrast. 
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X-Ray Diffraction 
XRD patterns collected from the dry xGnP powder, PET 

control, and PET-xGnP nanocomposite are shown in FIG. 5. 
The diffraction pattern for the graphene nanoplatelets shows 
the graphene-2H characteristic peaks at 26.6° (d=3.35 A) 
and 54.7° (d=l.68 A) 28. Slight broadening of the peak at 
26.6° 28 indicates the presence of platelets with different 
dimensions. A broad amorphous peak from the PET control 
sample was observed around 19.2° 28. This confirms the 
control sample has an amorphous microstructure. As shown 
in FIG. 5, the intensity of the graphene peak at 26.6° 28 
increased with the weight fraction of the nanoplatelets. No 
peak shift was observed. This along with the TEM micro
graphs confirms that the nanoplatelets were not substantially 
exfoliated [20]. Further, the diffraction pattern confirms the 
PET matrix was amorphous as expected, at least within 0.2 
mm of the surface. 

Mechanical Behavior 
Stress-Strain curves for the PET control and nanocom

posite were plotted as shown in FIG. 6, based on the data 
collected from the tensile tests. The addition of graphene 
nanoplatelets has increased the performance (modulus) over 
the pure PET up to 300% and follows an exponential trend 
as shown in FIG. 7. While primarily linear behavior is 
observed, a hump in the stress strain curve for the 15% 
nanocomposite, suggests an additional toughening mecha
nism for this composite over the other lower volume frac
tion. This may be due to a reinforcement-reinforcement 
interaction. 

6 
plane direction) and thickness were observed from the TEM 
micrographs. The change of particle size from the larger (5 
µm) dry graphene powder to the smaller (300 nm), size as 
observed in the TEM images (FIG. 4) can be due to shearing 

5 during the compounding and molding process. Table 1 
shows the average size of the platelets with minimum and 
maximum values. These platelet properties were then used 
in determining the performance range of the nanocompos
ites, based on the micromechanical models ( error bars 

10 shown in FIG. 8). Predicted moduli of the nanocomposite 
from the micromechanical models were plotted against the 
experimental results, shown in FIG. 8. The modulus esti
mated through the Halpin-Tsai model is higher compared to 
the experimental value. The Halpin-Tsai model estimates the 

15 modulus of the composite with platelets being aligned along 
the loading direction. However, the platelets were not gen
erally aligned in the direction of the loading. In addition, 
extremely high stiffness of the reinforcement compared with 
the matrix (>250x), make difficult accurate predictions 

20 through the Halpin-Tsai model [22]. The Hui-Shia model 
shows the best agreement. The Hui-Shia model estimates 
elastic modulus of the nanocomposite with platelets loaded 
both in parallel (axes 1 and 2) and perpendicular directions 
(along axis 3) as shown in FIG. 8. This model is valid for 

25 wide range of stiffness ratios over the Halpin-Tsai model 
[22]. 

In addition, stress transfer between the matrix to rein
forcement in composites is critical in controlling their 
mechanical behavior. For example, graphene nanocompos-

30 ites in PMMA matrix, the stress transfer between the matrix 
and graphene platelets and graphene-graphene sheets were 
shown dominated by week van der Waals forces, reducing 
the potential mechanical performance. However, microme
chanical models do not account these changes in stress 

With the objective of understanding the effectiveness of 
graphene nanoplatelets as reinforcement, micromechanical 
models such as the Halpin-Tsai and the Hui-Shia models 
were used to determine the theoretical elastic mechanical 
performance of this PET-graphene nanocomposite. Micro
mechanical models estimate the properties based on assump
tions, such as perfect reinforcements, homogenous disper
sion, or consistent orientation of the reinforcements. An 
ideal case for superior performance of the graphene nano
composite is to have defect free graphene sheets (monolay- 40 
ers) of the required length well dispersed in to the matrix and 
orientated along the direction of maximum load. 

35 transfer behavior. This results a deviation from the experi-
mental values. 

The current experimental modulus showed reasonable 
agreement with theoretical predictions. This is in spite of the 
broad range in platelet geometry (see table). The best case 
was the Hui-Shia model with the modulus parallel to the 
platelet (direction -3). This suggests reasonable effective-
ness of the reinforcement. With the reinforcement distrib
uted randomly, behavior between the two Hui-Shia predic
tions of parallel and perpendicular might be expected. 
Further investigation to the randonmess of the platelet 
distribution is needed for additional assessment. Even stiffer 

Gong et al. [16] have determined a required length for 
graphene platelets (>30 µm) to be effective as reinforcement. 
Mechanical properties of the graphene platelets such as 45 
stiffness and Poisson's ratio decrease with increase in the 
number of comprising layers, as observed by Georgantzinos 
et al. [22] with molecular simulations. They estimated that 
the stiffness of platelet comprising five layers decreases by 
15% compared to single layer graphene, and they also 50 
noticed that the properties of the graphene differ based on 
their orientation. Modulus of the graphene platelet (flake) 
has been reported as 0.795 TPa [23]. 

modulus enhancement could be expected if the platelets 
were of higher aspect ratio as the modulus predicted are 
sensitive to the aspect ratio. This is a reasonable goal with 
continued improvement in the production of the additives 
and their processing with the matrix. Clearly, nanoscale 
reinforcement is a benefit to the enhancement of mechanical 
properties. 

Furthermore, from X-ray diffraction, the addition of gra-
TABLE 1 

Properties of Graphene and PET used for theoretical predictions 

Graphene Platelet Properties 

55 phene platelets does not show an impact on the final crys
tallization of PET. Economies of scale can improve the cost 
of any of these additives. More understanding of the effect 
nanoplatelets have on the injection molding process can help 

Average Average PET 
Length/Diameter Thickness (t) Properties 
(D) nanometers nanometers Aspect Ratio Modulus Modulus 

(min/max) (min/max) (D/t) (GPa) (GPa) 

300 (28/730) 16 (3/28) 18.75 795 2.7 

In the present work, graphene platelets with a wide range 
of length ( or diameter of the platelets present in the out of 

60 

improve the composite properties further. For example, 
many different screw types are available for injection mold
ing and need to be explored for their advantages in mixing 
and dispersion of additives. 

Conclusions from Tests 
The present disclosure demonstrates that graphene nano-

65 platelets are effective in achieving improved strength char
acteristics (such as elastic modulus) for Poly ethylene 
Terephthalate, or PET. Injection molding of masterbatch 
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pellets is one successful method for preparation of PET
Exfoliated graphene (xGnP) nanocomposites of weight frac
tions from 2-15%. Comparison with simple mechanical 
models suggests their superior performance. The stiffness 
may not only dependent on the reinforcement stiffness, but 5 

also on its aspect ratio and the dominating mechanism for 
interfacial stress transfer between matrix and reinforcement. 
There is also some indication that the reinforcement-rein
forcement interaction plays an important role as the volume 
fraction exceeds 10%. 10 
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Thus, the present invention is well adapted to carry out the 

objectives and attain the ends and advantages mentioned 
above as well as those inherent therein. While presently 
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preferred embodiments have been described for purposes of 
this disclosure, numerous changes and modifications will be 
apparent to those of ordinary skill in the art. Such changes 
and modifications are encompassed within the spirit of this 
invention as defined by the claims. 

What is claimed is: 
1. A nanocomposite material consisting essentially of: 
a base polymer including polyethylene terephthalate 

(PET); and 

10 
providing polyethylene terephthalate (PET) as a base 

polymer; 

providing an exfoliated graphene nanoparticulate mate
rial, the exfoliated graphene nanoparticulate material 
comprising from ten to fifteen percent by weight of the 
nanocomposite material; 

compounding the base polymer with the exfoliated gra
phene nanoparticulate material to form a masterbatch 
product; and 

injection molding the masterbatch product, wherein the 
graphene nanoparticulate material have an average 
diameter of 5 micrometers. 

exfoliated graphene nanoplatelets compounded into the 10 

PET to increase the strength of the base PET, the 
graphene nanoplatelets comprising from ten to fifteen 
percent by weight of the nanocomposite material, 
wherein the graphene nanoplatelets have an average 
diameter of 5 micrometers. 

5. The method of claim 4, wherein providing the graphene 
15 nanoparticulate material further comprises providing ten 

percent by weight of the nanoparticle material in the mas
terbatch product. 

2. The material of claim 1, wherein the graphene nano
platelets comprise ten percent by weight of the nanocom
posite material. 

3. The material of claim 1, wherein the graphene nano
platelets comprise 15 percent by weight of the nanocom- 20 

posite material. 
4. A method of producing a nanocomposite material 

consisting essentially of: 

6. The method of claim 4, wherein providing the graphene 
nanoparticulate material further comprises providing fifteen 
percent by weight of the nanoparticle material in the mas
terbatch product. 

* * * * * 


