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A B ST R A C T

Quantitative analysis o f 3-D flow fields by rainbow schlieren deflectometry is 

presented- The method is based on the measurement o f  the deflection o f  collimated light 

rays due to the gradients in the refractive index o f the test flow field. In this method, the 

schlieren apparatus is modified by replacing the knife edge with a computer-generated 

continuously-graded color (rainbow) filter. This modification results in the refractive 

index gradients appearing in the schlieren image as gradations in color rather than 

irradiance.

The deflections obtained from rainbow schlieren images were inverted using 

computer tomography. Tomography is a multi-angular technique which involves making 

M line o f sight measurements (deflections) at N angles. These M x N measurements are 

used to reconstruct the original two-dimensional test object. Several tomographic 

reconstruction techniques are available. The theory o f the convolution backprojection 

algorithim used in this work is presented.

The rainbow schlieren technique was used to measure temperature in an 

axisymmetric heated air jet. The Reynolds number o f the jet was 570 and the je t I.D. was 

7.1mm. The heated axisymmetric jet was chosen to demonstrate the technique by 

comparing reconstructed temperatures with thermocouple probe measurements. Because 

o f  axisymmetry of the jet, only one view was required to reconstruct the temperature field 

using the rainbow schlieren technique. The temperature reconstructions o f the jet at 

several axial locations above the jet were found to agree with the thermocouple
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measurements. This agreement demonstrated that the rainbow schlieren technique could 

be used for temperature measurements in test fields o f  various configurations.

Having demostrated the technique, the round je t was tilted to provide a test field 

which was asymmetric. The jet exit was inclined by 30 degrees to the vertical axis, which 

created an asymmetric temperature field above the jet. This necessitated the use of 

computer tomography to reconstruct the three-dimensional temperature field. The jet 

Reynolds number was 380 and the jet I.D was 5.4mm. The measurements were 

determined by recording multi-angular views o f the test field using the rainbow schlieren 

imaging technique. Thermocouple measurements were also made at two axial planes 

above the jet exit. Measurements by the two different techniques agreed with each other 

within the experimental errors.

Next, the technique was applied to investigate physical phenomena in an 

asymmetric 3-D field. The phenomenon chosen was the development o f a laminar 

rectangular heated air jet. The rectangular jet had a cross-sectional area o f 8.7mm by 

3.9mm. The Reynolds number based on the width (smaller dimension) was 500. The jet 

exit temperature was 450 K. The temperature profiles along the minor and major planes 

o f  the rectangular je t were determined at various locations downstream o f the jet. It was 

shown that the trend observed was consistent with published results on three dimensional 

jets. It was foimd that the spreading rate o f the thermal shear layer o f the jet in the plane 

o f major axis was higher than that in the plane of the minor axis. This study shows that 

the quantitative schlieren measurement technique could be useful to gain understanding 

o f the fluid/combustion dynamics.
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C h a p te r  1 

IN T R O D U C T IO N

Flows encountered in combustion and fluid dynamics involve interactions of 

complex physical and chemical processes. To understand these flows, researchers have 

used experimental methods in the past, and more recently, computational fluid dynamics 

or CFD. These computational techniques still require experimental data to validate the 

models incorporated. Because of the rapid development o f CFD, an increased need has 

arisen for new experimental techniques to provide the necessary data for validation of the 

physical models. Computational results are necessarily of high spatial and temporal 

resolutions and as such require similar experimental data for validation. So far, optical 

techniques have been proven to be quite attractive in this regard. In this work we present 

an optical technique. Rainbow Schlieren Imaging, for measurements o f temperature 

(and other physical properties) in fluid flows.

The measurement o f temperature is important in many processes and applications. 

In combustion systems, for example, the temperature provides information about 

combustion efficiency, the rates of formation o f unwanted particulates and pollutant 

species, and allows one to predict the radiant heat transfer. For this reason, several 

different techniques have been developed to measure not only temperature, but also other 

properties such as density and species concentrations.

A considerable effort has gone into the development o f adequate instrumentation 

for measuring temperature, which includes specially designed intrusive probes as well as



various optical techniques. Usually, the simplest and least costly diagnostic system 

utilizes probes such as thermocouples, and they are used if they meet the needed 

requirements. However, the temporal response of intrusive probes is poor, their size 

limits the spatial resolution, they introduce disturbance in the medium, and they survive 

with difficulty in hostile environments, for example, o f combustion systems. In addition, 

the probe may induce chemical reactions in the flow field and hence change the 

properties o f the medium.

Other techniques for temperature measurement include radiation thermometry and 

sonic thermometry. Radiation techniques make use of absorption measurements. 

Ultraviolet rays and X-rays are used as probing sources. These techniques offer good 

precision but limited spatial resolution. They are also restricted to relatively high 

temperature regions. Using X-rays as probing sources offers moderate spatial resolution; 

however, the question of safety in their use becomes important. Sonic temperature 

measurements are not widely used as they also suffer from poor spatial resolution, and 

require a prior knowledge of species present in the flow [Fristrom (1995)].

Optical measurement techniques have many advantages over other measuring 

methods. Besides being non-invasive they are also highly responsive to the transient 

phenomena and have a high spatial resolution. Depending on the measurement problem 

under study, optical techniques may be used to determine the physical parameters o f the 

process being investigated. These parameters may include the temperature distribution in 

the fluid, the concentrations o f certain substances in the flow, or the local velocity of



droplets in a combustion chamber. Many optical techniques have been developed, with 

their own special characteristics, suitable for measurements o f  these parameters.

Optical techniques to measure temperature can be classified into two groups: one 

providing local measurements o f a parameter and the other yielding integral information 

of a parameter that could be related to the temperature. The methods for local 

measurements are based on light scattering techniques, and the methods for integral 

measurements are based on the line-of-sight measurements techniques. A brief discussion 

o f these techniques is given in the following section.

1.1 Optical Techniques

Light scattering techniques: Techniques that provide local measurement of a 

parameter relating to temperature are based on scattering o f light. These techniques 

resulted from the development o f  lasers and solid state array detection devices. They 

include Rayleigh scattering , Raman scattering. Laser Induced Fluorescence (LIP) 

imaging, and methods that depend on higher order scattering such as Coherent Anti- 

Stokes Raman spectroscopy (CARS) [Fristrom(1995)]. All o f  these methods can be used 

to determine temperature. However, they are all complex in implementation and often 

require expensive laser sources.

Rayleigh scattering is the elastic (or unshifted) scattering o f light by molecules in 

the field o f study. This scattering is not specific to the molecule causing the scattering, 

and it does not require turning o f the laser source. However, it suffers from interference 

from scattering from particles (Mie scattering) and from spuriously scattered laser light.



Because of this, Rayleigh scattering is restricted to environments that are pure and free o f 

particles [Laurendeau (1991)].

LIF imaging is a highly sensitive technique for detecting population densities of 

atoms and molecules in specific exited states. In this method, a laser source is tuned to 

excite molecules o f  a specific species o f interest. In their excited states, these molecules 

can lose energy to return to their original states by two ways; collisional quenching 

(energy lost by collisions) and radiative de-excitation (or fluorescence). It is this 

fluorescence, that is collected at a right angle to the incident probing laser beam and 

filtered spectrally at a photo-detector that is used to measure the parameter o f interest. 

Fluorescence, therefore, is in competition with collisional quenching and internal 

conversions to other states. In other words, if the exited molecules lose most o f their 

acquired energy through collisions, then the fluorescence signal will be weak. The 

relative rates o f  these two competing processes, therefore, controls the usefulness o f LIF 

[Kohse-Honinghaus (1990)]. To obtain quantitative results, the molecular spectrum o f the 

field must be known and it must have absorptions compatible with tunable lasers. 

Because of this, the applicability of LIF for quantitative measurements is limited. 

Depending on the arrangement of the experimental setup, this method can be used for 

point or planar measurements of the flow field. When used for planar measurements the 

technique is termed planar LIF or PLIF.

Spontaneous Raman scattering is a non-resonant method whereby the scattered 

light undergoes a change in frequency and random alteration in phase. Raman scattering 

differs in this respect from Rayleigh scattering in which the scattered light has the same



frequency as the incident light and bears a definite phase relation to it. The scattered 

frequencies are analyzed by spectroscopic, means and a particular Raman spectrum is 

characteristic o f  the scattering medium. It does not require any turning o f  the laser to a 

particular wavelength, nor is it affected by collisional quenching. In Raman scattering, the 

frequency o f scattered light is shifted either up (anti-Stokes) or down (Stokes); because of 

mis, it is unaffected by interference from particles (Mie scattering) or from the incident 

beam. However, it requires frequency isolation using scanning monochromators (special 

filters placed in front o f detectors) [Fristrom (1995)]. A major disadvantage of this 

technique is that the signal is very weak because the vibrational Raman cross-section (a 

measure o f the intensity o f the scattered light) is about 1000 times smaller than the 

Rayleigh cross-section [Lapp and Penny (1977)]. Higher-order scattering techniques such 

as CARS require more than one laser source, and are therefore very expensive and 

complex in operation [Attal-Tretout et al. (1990)]. In general, all o f the scattering 

techniques rely on reflected light, and as such many spurious rays (light from different 

points other than the measurement volume) from different points may reach the detectors 

and can cause erroneous measurements to be recorded. This discussion leads to the other 

class o f  optical techniques in which an integral quantity o f a parameter is determined in a 

line-of-sight measurement.

Line-of-sight techniques: These techniques are based on the absorption or 

attenuation of light rays, change in path length o f the light rays, and deflection o f light 

rays by the media.



Light absorption measurements can be used to determine absorption coefficients 

along the path o f a light ray. These absorption coefficients can then be related to the 

temperature and species concentration in the flow field [Paris (1986)]. However, in most 

cases temperature is a  function o f species concentrations. Thus, it becomes necessary to 

use coherent light sources o f two different wavelengths to determine both the temperature 

and species concentrations.

In interferometry, use is made of the pathlength difference between a coherent 

beam passed through the object field and a reference beam not passed through the object. 

When these two beams are combined on a screen, an interference pattern is produced 

containing regions o f  differing optical path length. The spacing between interference 

fringes can be used to deduce the density or temperature o f the flow field. A drawback of 

this method is that, when high temperature gradients are present, fringe counting 

becomes a tedious and often an impossible task. When combined with holography, this 

technique is known as holographic interferometry, whereby a holograph is used to record 

multiple interferograms. Holography is used to record light wave patterns. Ordinary 

image recording techniques, such as photographic film, record the intensity o f light 

falling on them. Holography, on the other hand, is used to record and reconstruct light 

waves. This means that in addition to intensity, the amplitude (brightness) and phase 

position are also recorded. This is made possible because a reference beam is used in 

conjunction with the object beam to produce an interference pattern at the recorder. For 

making temperature measurements the main disadvantage o f holography is that it requires 

specialized optical components to improve the depth of field. It also requires expensive



Q-switched lasers to provide very short pulse length to avoid problems associated with 

vibrations.

The measurement o f deflection o f light rays by the media in beam-deflection 

techniques, also known as deflectometry, can provide an indication o f  the density and 

temperature o f the medium. A practical example is the light deflection through air rising 

above heated objects, which is less dense than the surrounding air. This difference in 

density alters the refractive property o f the air and, therefore, deflects light rays from their 

normal path. This effect has been used in the beam deflection techniques to qualitatively 

study normally invisible phenomena such as convection currents in air as well as the flow 

o f air around speeding objects, including bullets and wings o f modem je t airplanes. Two 

basic techniques belong to this class; schlieren and shadowgraph. The shadowgraph 

technique provides an indication of the second derivative o f the density variationfor 

refractive index), and schlieren which is the subject o f this work indicates the density or 

refractive index gradient of the field [Kanury (1975)]. Other techniques that can be 

classified as beam deflection techniques include speckle photography [Farrell and Hofeldt 

(1984)]. and Moiré deflectrometiy [Strieker (1984)]. Unlike the interferometric 

technique, beam deflection techniques do not require a highly stable, vibration free 

environment. Sharp gradients of refractive index do not present difficulties. Beam 

deflection techniques are also not affected by the size o f the object unlike the 

interferometric techniques.

In the conventional schlieren technique, light from a small source is collimated 

by a lens and focused onto a knife-edge by a second lens. The test object is placed



between these two lenses (see Figure 3.1). The knife edge is adjusted in such a way that it 

intercepts a pzirt o f  the rays. The unobstructed rays that proceed beyond the knife edge 

are focused by a camera lens onto a recording plane. When the object in the test section is 

uniformly dense, all parts of the screen are lighted equally; the intensity o f  the light that 

reaches the screen is determined by the amount o f light intercepted by the knife edge. 

When there are refractive index gradients in the test object, however, some o f  the light 

rays are displaced. The rays that could normally fall on the screen will be intercepted by 

the knife edge. Thus, the screen will appear darker or brighter (depending on the 

direction of the deflection). The magnitude o f deflection and direction o f  light rays can, 

therefore, be inferred from the measurements o f the intensity with and without the 

refractive index gradients in the test object. These deflections are then related to the 

refractive index from which the temperature can be calculated. Grids and various other 

devices have been used to measure these deflections. In this work, the rainbow schlieren 

technique, which uses variations in hue o f a rainbow filter is used to quantify light ray 

deflections. The rainbow filter is used in place o f the knife edge. Depending on the 

displacement o f  light rays, the rainbow filter will transmit different hues to the recording 

plane. In this way discrimination between colors (hue) is used as an indication o f the light 

ray o f deflection.

Shadowgraphy is the simplest method for implementing flow visualization. In 

this method, a light source illuminates the object and is intercepted on a screen placed 

ahead o f the object. A non-uniform distribution of brightness will appear on the screen 

due to the deflection o f light by the object. In contrast to the schlieren method, the image



on the screen and the object are not conjugate pairs (i.e., a point on the screen does not 

correspond to the related point in the object). The deflection o f  single lines or grids, 

images formed by parallel beams has been applied by Weinberg (1963) to determine 

density and temperature fields. This method is, however, less sensitive than the schlieren 

method.

In order to quantify the shadowgraph and schlieren methods and hence record 

signals equivalent to fringes in an interferogram, grids or “Ronchi” gratings have been 

used to measure deflections. When used in this way the grids cause a “Moiré effect” 

which has led to the development of beam deflection methods such as Moiré 

deflectrometry and speckle photography. The optical system for Moire deflectometry 

consists o f a collimated laser beam and two parallel gratings (Ronchi rulings) mutually 

rotated at an angle. The system produces a Moire pattern which is distorted when 

refractive index gradients are present in the test object In speckle photography, the 

displacement o f a speckle pattern generated by the interaction o f a coherent light beam 

with a diffusing surface is recorded photographically. These speckles are. however, 

difficult to identify and evaluate. Deflections can also be measured using a laser beam 

technique in which a laser beam is traversed through the media and the beam deflection at 

each point is measured directly by a position sensitive detector.

1.2 Line-of-sight M easurements

The methods of beam deflection, path length difference, or light absorption 

discussed above provide information about the physical observations integrated along the



path length o f the light beam. The parameter measured depends on the technique used. 

For absorption measurements the light intensity is measured before and after the ray has 

traversed the test object. In beam deflection measurements, the deflection angle o f the 

light ray as it exits the test object is measured, and in interferometry the difference in path 

length is measured. In order to infer the temperature field o f the test object from these 

measurements, it is necessary to invert an integral equation. Specifically the integral 

equation to be solved is:

P: =  I /(a;, t/, z)ds  
 ̂ ( 1 . 1 )

where the value o f f(x,y,z) is the medium characteristic that is to be determined, and p, is

the line o f sight integral measurement recorded. The field distribution function f(x,y,z)

depends upon the technique used for the measurements. In absorption measurements, it is

the attenuation constant, in interferometric measurements it is the refractive index, and in

deflectometry, it is the gradient of refractive index. The quantity p, is commonly known

as the projection for a particular light ray i. The integral is evaluated along the path s, of

the light ray as it traverses the test object.

Inversion means solving for f(x,y,z), using the measured projection data p,. 

Several techniques have been used to invert this equation. If the field is 2-D or 

axisymmetric, the projection data at a single view angle are sufficient to reconstruct the 

test object. The classic Abel inversion and the “onion peeling" techniques [Hughey and 

Santavicca (1982)] have been used to reconstruct axially symmetric objects. However, if 

the object field is 3-D (or asymmetric), projection data at a single view angle are 

insufficient to reconstruct the test object. This means that for an asymmetric object, the
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interior flow information must be obtained from the line-of-sight measurements (or 

projections), at multiple view angles. Thus, techniques are required to reconstruct 3-D 

fields from their projections.

Tomography meets this need, to allow quantitative flow measurements from a set 

of line-of-sight projection data usually in the form o f images. From the above classical 

techniques o f  interferometry, schlieren and light absorption, 3-D flow fields can be 

reconstructed using computer tomography. Several tomographic techniques have been 

developed for this purpose.

1.3 Tomographic Reconstruction

Tomographic methods have been developed over the past 50 years in the fields of 

medicine, electron microscopy and radio astronomy [Paris (1986)]. In medicine 

tomography is widely used to obtain the density distribution within the human body from 

multiple-view projections. This process is known as Computerized Tomography (CT) in 

radiology, Single Photon Emission Computerized Tomography (SPECT) in nuclear 

medicine and Magnetic Resonance Imaging (MRI) in diagnosis. The aim o f computer 

tomography is the inversion o f the equation 1 . 1 , where the projections p, along rays in a 

direction s are recorded at multiple view angles. Various algorithms have been developed 

since Radon published his famous projection equation in 1917, and which analytically 

related projections to a cross-section image [Decker(1994)]. The actual form o f equation

1 . 1  to be inverted using tomography depends on the measurement technique.



In absorption measurements, the intensity o f the light ray before and after the test 

object is recorded. The absorption o f light as a ray traverses the test object field is 

governed by Bouguer-Lambert-Beer Law [Santoro and Semeijian (1981)].

T  —  f  lout ---

where lj„ is the intensity o f the beam as it enters the object field and lout is the intensity as 

it leaves the test object field. If the object field traversed by the ray is divided into equal 

rectangular grids or pixels, then p, are the linear attenuation constants o f the successive 

grids (traversed by a particular ray) and As is the size o f the grid. This equation is cast 

into the form o f the integral equation 1 . 1  by taking the logarithm o f the ratio o f output 

signal to input signal, resulting in;

log-— =  — (/i; + [i2 + n.i -f ...)As
( 1.2 )

This is a simple sum o f the linear attenuation coefficients in the path o f each ray. The p, 

then represent the function f(x.y,z) within the object field. The logarithms o f the ratio of 

output to input light intensity represent the projections p,. The attenuation coefficients 

once determined by inversion can then be related to the temperature o f the test object.

In interferometry, the equation representing the difference in arrival times (At) of 

the reference ray and the ray that traversed the test object at the recording plane is given 

by:

Ai = i  f {n{x,y,z) ~no))ds
C ' s,
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where c is the speed o f light in a vacuum. Do is the refractive index o f the undisturbed 

field outside the test object and n(x,y,z) is the object refractive index. The time 

difference. At, can be converted into optical path length, A<j», via the equation:

— — =  { n ~ n o ) d s  
2tt )  3. ( 1 .3 )

where 1 is the wavelength o f  the light used [Merzkirch (1987)]. From interferometric 

data, therefore, the refractive index can be obtained by direct inversion o f the integral 

equation l .l  as f(x,y,z) is equal to [n(x,y,z)-no] and p, is proportional to A<|) measured 

from the interference pattern. However, as mentioned above, the evaluation of A(j> by 

fringe counting could be tedious in some cases.

In beam deflection measurements by schlieren and similar techniques, the 

deflection angle o f a light ray as it exits the test object is related to the refractive index n, 

o f the test object via:

1  d n
as

=  /  - t)  s, Ti ut' ^  ^  (1.4)

where t is in a direction normal to the light ray path s,. In this form , f(x,y,z) represents 

the gradient o f refractive index o f the test object and e represents the projection. We shall 

show in chapter 3 how this equation can be converted to the form o f equation 1.1, where 

f(x,y,z) represents the relative refractive index directly.

When the appropriate integral form of equation 1.1 is solved for the refractive 

index distribution, the temperature field can be obtained using the Gladstone-Dale 

relationship between the refractive index and density or temperature [Goldstein (1996)].



1.4 Objectives

The objectives o f this work are to demonstrate the beam deflection technique o f  

rainbow schlieren imaging by making temperature measurements in axisymmetric and 

asymmetric objects. Computer tomography is used to invert equation 1.4 expressed in the 

form o f equation 1 . 1  to reconstruct the temperature field from the beam deflection 

measurements.

The rainbow schlieren technique, measures the deflection angles as a ray exits an 

object test section. This technique is a slight modification o f the conventional schlieren 

method. As mentioned above, discrimination between grey scales is carried out in the 

conventional schlieren method. The intensity in the schlieren image is proportional to the 

refractive index gradient and the deflections are determined from intensity measurements. 

Quantifying deflections from intensity measurements is, however, difficult. 

Quantification is possible if the knife edge is replaced by a multicolored filter (the 

rainbow filter). Then, the light rays refracted through different angles appear in different 

colors in the final schlieren image. When a color filter is used, a colored photograph is 

recorded. On this photograph discrimination between colors (or hue) is used as a measure 

of deflections. Discrimination between colors is more accurate and insensitive to 

brightness when compared to discriminations between grey scales o f the conventional 

schlieren photograph. It will be shown how the light ray deflections by a test field can be 

quantified using the rainbow filter.
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The overall optical setup in rainbow schlieren deflectometry is similar to that of 

the conventional schlieren with the knife edge replaced by a color filter. We shall 

demonstrate the rainbow schlieren technique by first making measurements in an 

axisymmetric heated laminar air jet. Next, we shall extend for measurements of 

temperature in an asymmetric test field above a heated inclined air Jet. Finally, the 

technique developed will be used to study the development o f a rectangular laminar 

buoyant (heated) air jet. In all cases, the temperatures obtained by the schlieren method 

will be compared with the thermocouple measurements at several planes.

It will be shown that the temperatures obtained by the rainbow schlieren 

deflectrometry compare well with the thermocouple measurements to within the 

experimental errors. The rainbow schlieren technique also provided insight into the 

physical development o f a rectangular heated air jet.
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Chapter 2 

BACKG RO UND AND LITERATURE REVIEW

In this chapter we shall discuss beam deflection measurement techniques with 

particular emphasis on rainbow schlieren deflectometry. We shall review pertinent 

literature on inversion techniques for axisymmetric fields as well as tomographic 

reconstruction techniques for 3-D fields. In fluid flows, the projection data for 

tomographic inversion could be obtained by three basic methods; light absorption 

techniques, interferometric techniques, and beam deflection techniques. The literature 

will be reviewed with reference to these basic techniques. Finally, we shall review the 

background and literature on rectangular heated jets.

2.1 Beam Deflection Techniques

In beam deflection measurement techniques, a beam passes through a test object 

and is deflected due to the refractive index gradients. The amount o f deflection or the 

deflection angle o f the beam as it exits the test section is related to the refractive index 

n(x,y) of the field. Consider the refractive index field shown in Figure 3.4. In this figure, 

let no = refractive index outside the object field. Then, for small deflections, the 

deflection angle e, o f a beam at an angle 0  with the x-axis is given by

1  ( d n

U o J d t  (2 .1)
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It is the measurement o f  this angle that is important in beam deflection techniques. The 

different beam deflection techniques measure this angle using different methods. Beam- 

deflection measurements may be performed using imaging techniques such as schlieren. 

Moiré deflectometry, and speckle photography. Use can also be made o f  a scarmed laser 

beam. Once this angle has been determined, an inversion procedure must be performed to 

determine the refractive index.

The schlieren technique

The schlieren technique can be described as a deflectrometric method or a beam- 

deflection optical method as opposed to the path length difference method of 

interferometry and holography. The schlieren method, whose principle was developed 

more than a century ago, is one o f the simplest and most commonly used technique for 

flow visualization. Details o f optical arrangements and applications are given by Vasil'ev 

(1971) and Goldstein and Kuehn (1996). Detailed theoretical analyses o f  the method are 

given by Schardin (1942) and Weinberg (1963). A beam o f parallel light from a slit or 

point source is passed through a region of varying refractive index gradient and brought 

to a focus on a stop (see Figure 3.1). This stop is usually a knife edge. Regions containing 

varying refractive index will deflect the light waves around the knife edge. The 

unobstructed rays that proceed beyond the knife edge are focused by a camera objective 

onto a recording plane. When the object in the test section is uniformly dense, all parts of 

the screen are lighted equally; the intensity of the light that reaches the screen is 

determined by the amount o f light intercepted by the knife edge. When a refractive index 

gradient is present in the test object, however, some of the light rays are deflected. The
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rays that could normally fall on the screen will be intercepted by the knife edge. Thus, the 

screen will appear darker or brighter (depending on the direction o f  deflection) than 

normal in the region where these rays formerly impinged. The magnitude o f deflections 

and directions can therefore be inferred from the measurements o f  intensity with and 

without the refractive index gradients in the test object. These deflections are related to 

the refractive index from which the temperature can be calculated. In actual practice, the 

determination o f  deflections via measurement o f  intensity (which is difficult to quantify 

accurately) in the recorded grey scales in the image has some limitations as discussed by, 

Dixon-Lewis (1954).

In its generic form, the difficulties associated with the practical aspects o f  the 

schlieren method have caused it to remain a qualitative tool, for flow visualization. 

Recently, Greenberg et al. (1995) demonstrated its potential for quantitative 

measurements when color is introduced as a dimension in the rainbow schlieren 

deflectometry. Color is introduced when the grey scale is changed to yield the color 

spectrum instead of shades o f grey. In this technique, the knife edge is replaced by a 

rainbow filter containing color gradations. Discriminations between deflections is 

indicated by variations in color and represented by hue instead o f variations in grey tones 

o f  the conventional schlieren photograph.

Howes (1984) first demonstrated the quantitative rainbow schlieren technique by 

replacing a typical knife edge with a filter containing a rainbow color spectrum 

(continuous spectrum, not discrete spectrum). Before this special filter was introduced, 

several filters had been used for color schlieren observations as summarized by Settles
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(1985). The problem with these other methods o f color schlieren has been mainly limited 

sensitivity due to a finite number of color bands and the deleterious effects o f diffraction 

at color boundaries which degrade the spatial resolution in the schlieren image. The filter 

introduced by Howes (1984) allowed measurements o f a flow field from observations of 

color rather than irradiance in a typical black and white schlieren method. Howe's filter 

had a transparent center and opaque surroundings.

The rainbow filters were manufactured by Howes (1984) by projecting white light 

through a slit, and then a diffraction grating, and onto a spinning color film. The resulting 

film was then reduced in size by projecting white light through them onto a screen at 

varying distances. This method of manufacturing the filters was cumbersome. Recently, 

Greenberg et al.(1995) demonstrated a far simpler method o f manufacturing the color 

filter, and, when combined with linear solid-state imaging arrays, it represented a simple 

system to quantify schlieren. The linear imaging arrays eliminated the problem 

associated with non-linear film-based methods.

Other beam deflection methods

Other beam deflection methods include scanned laser beam. Moiré deflectometry 

and speckle photography. In the laser beam technique, a laser beam is traversed through 

the media and the beam deflection at each point is measured directly by a position 

sensitive detector. This technique was used by Fairs and Byer (1986) for temperature 

measurements in a methane flame and by Davis (1989) to measure refractive index 

fluctuations in a hydrogen flame. In speckle photography, a photograph consisting of 

speckles is produced in a typical schlieren apparatus by replacing the knife edge with a
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ground glass (in a variation of the method the ground glass is placed upstream o f the 

knife edge). A micro-sized reference pattern is then generated on the recording screen. 

The recorded speckle pattern is determined by the scattering characteristics o f  the ground 

glass. A double-exposed photograph is required. The first exposure is taken in the 

undisturbed flow field. The pattern that is generated on the photograph is used as a 

reference. The second exposure is taken with the flow containing refractive index 

gradients. The pattern that is generated with the second exposure is distorted with respect 

to the reference pattern. The displacement o f individual speckles is a measure o f local 

deflection angles e(0,t). This technique has been used for temperature measurement in 

gases by Farrell and Hofeklt (1984) and in water by Lira (1995). In Moiré deflectometry 

parallel grids or Ronchi gratings are used to intercept the light beams and an essentially 

regular pattern is produced by the undisturbed flow field. The pattern is distorted in the 

presence o f refractive index gradient in the flow field. By comparing the undisturbed 

and disturbed patterns, it is possible to measure and map the deflection o f light rays by 

the test field. This technique was used by Keren et al. (1981) for temperature 

measurements in an axisymmetric flame and by Strieker (1984) to map 3-D temperature 

field above two heated cylinders.

2.2 Inversion of 2-D and Axisymmetric Fields

As indicated above the data from schlieren line o f sight measurements need to be 

inverted to reconstruct the refractive index field. For axisymmetric flow fields, the two 

methods often used are the "onion peeling" and Abel transformation mentioned in chapter
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one. Using computer simulated absorption measurements, Hughey and Santavicca (1982) 

compared onion peeling and Abel transformation for reconstructing axisymmetric non

reacting and reacting flow fields. They showed that the two techniques could yield 

different results from the same set o f data. They recommended a method o f frequency 

analysis o f  noisy data which when used to filter the data before the reconstruction yields 

good results.

In the "onion peeling" and Abel transformation methods, they found that the errors 

are related to the accuracy o f the raw and processed input data. When compared with the 

convolution backprojection method, (to be discussed below) they found that in the 

convolution method the errors are related to aliasing or under-sampling, to the choice o f 

convolution filter and to what they termed Gibb's phenomena, which is an oscillatory 

overshoot that occurs at a discontinuity in the reconstructed function.

Dasch (1992) has also compared Abel, onion peeling, and convolution back 

projection methods. Using an analytical analysis o f the method, he reported that the most 

common mistake in axisymmetric inversion is taking projection data too closely together 

or over-sampling. He reasons that if the spacing o f the projections is decreased, the real 

difference between adjacent projections becomes smaller to the point where the 

difference becomes comparable to the noise in the measurements. When this happens, 

the inversion is inaccurate. In general, he reported that the three methods are similar 

when the projection data are taken at equal spacing. Overall, however, for axisymmetric 

data, he recommended the Abel inversion method using a three-point technique because 

of its speed o f implementation.
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2.3 Tomographic Reconstruction

Tomographic methods have been developed over the past 50 years in the fields o f 

medicine, electron microscopy, and radio astronomy [Paris (1986)]. In medicine it is 

widely used to obtain the density distribution within the human body from multiple-view 

projections. Tomography has also been developed and used in several other fields 

including electrography, geology, ocean acoustic tomography, industrial imaging 

[Williams (1995)], and non-destructive testing o f materials [Hefferman and Robb

(1985)]. The computer tomography for fluid flow measurements has been used in the 

past 30 years, beginning in the late sixties and early seventies. An overview o f the use of 

tomography for fluids flow diagnostics is given by Decker (1994).

Tomographic reconstruction techniques can be classified into iterative methods 

and Fourier transform based methods [Censor (1983)]. Fourier based methods reconstruct 

the image from their projections by using each projection only once. Examples in this 

category include convolution backprojection and direct Fourier transform methods. 

Iterative methods on the other hand pass through the projection sets several times and 

find the best reconstruction under a set of constrains. Examples o f such techniques 

include algebraic reconstruction techniques (ART), series expansion methods, and 

maximum-entropy methods. By far the most popular technique has been the convolution 

backprojection technique sometimes called the “filtered backprojection reconstruction 

technique” which is also used in this work and described in detail in chapter 3.



Verhoeven (1993) discusses the various algorithms for tomographic 

reconstruction. He discusses both the transform based algorithms and the series- 

expansion algorithms. The series expansion techniques are algebraic techniques based on 

the Algebraic Reconstruction Technique (ART) first proposed by Gordon et al. (1970). 

He compares five ART-based techniques using computer simulated data, with and 

without noise. For limited-view data, he discusses a method o f filling in the missing data 

to be able to use the Fourier transform reconstruction methods.

In fluid flows, tomography has been used with line-of-sight measurements of 

absorption, holographic interferometry and beam deflection techniques. Semeijan et al. 

(1981) and Santoro et al. (1981) reported the use o f absorption tomography to diagnose 

concentration fields in a turbulent methane air je t and a laminar methane diffusion flame. 

They studied a turbulent methane-air jet expanding into ambient air under steady flow 

conditions. The jet was located away from the center line o f rotation to introduce 

asymmetry upon rotation o f the jet for acquisition o f multiple views. They used 

absorption measurements and the convolution backprojection algorithm to obtain 

excellent agreements o f the concentration profiles in the turbulent jet with previous 

workers. For the laminar flame, their concentration measurements indicated a strong 

dependence of methane absorption coefficient on temperature, and, as such, they 

concluded that for accurate reconstruction simultaneous measurements of temperature 

and concentrations were required. Emmerman et ai. (1980) describe the details of 

reconstructing flow fields from absorption tomography and multiangular scanning.



Ray and Semerjan (1984) describe the measurement o f temperature and 

concentration using multiple view absorption spectroscopy. They present results for both 

computer simulated data and experimental results using two optical configurations. For 

their experimental measurements, they used a laminar axisymmetric premixed flame of 

methane seeded with sodium atoms and measured the absorption of light at 589nm 

wavelength by the seeded sodium. In this experiment a single laser beam was translated 

through the flame to obtain the required number o f rays. In a second configuration, they 

used a sheet o f  laser light and a linear array detector to obtain whole field real-time 

measurements. The measurements were performed with a repetition rate of 2 kHz and a 

temporal resolution of 10ns. In all of their reconstructions, they used the convolution 

backprojection algorithm. They report that reconstruction from noisy data could be 

improved by first filtering the data with an appropriate filter. The filtering technique was 

a spatial filtering using a priori knowledge about the flow field.

Hall and Bouczyk (1990) have recently performed absorption/emission 

tomography on an axisymmetric ethylene-air diffusion and iso-octane air diffusion flame. 

Because the flames were axisymmetric, all projections at different angles o f  incidence 

were the same and only one angle of incidence was determined experimentally. In this 

method, the deconvolution o f the projection data yields the product of absorption 

coefficient and the Planck function. Using the derived absorption coefficients, one 

calculates the Planck function from which the local temperature was determined.

Sweeney (1973) discussed interferometric reconstruction o f  3-D refractive index 

fields using Fourier transforms and series expansion techniques. He gives a direct
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inversion formula, which is the basis o f the popular convolution backprojection algorithm 

used in the present study. This algorithm was first proposed by Ramachandran and 

Lakshminarayanan (1971). Vest (1979) describes details o f the reconstruction procedure 

using interferometric data.

A widely quoted paper showing a real practical application o f interferometry is 

that o f  Snyder and Hesselink (1984). They reconstructed the density field around a 

revolving helicopter rotor blade. Because of the rotating geometry, conventional probes 

were not suited for this application. Using optical path length data, they recorded several 

interferograms over 180° viewing angle. They used the convolution backprojection 

algorithm with a Shepp-Logan filter [Shepp and Logan(1974)]. They found this algorithm 

to be the fastest among the algorithms described by Herman (1980). Snyder and 

Hesselink (1988) have studied mixing in fluids and the review paper o f  Hesselink (1988) 

describes several applications o f  interferometry with tomography.

Dufong et al.(1995) have carried out studies on fast tomographic reconstruction o f 

holographic-interferometr>' data. The reconstruction algorithm o f interferometric data is 

the same as that for absorption tomography. They demonstrated reconstruction using the 

Simultaneous Algebraic Reconstruction Technique (SART). They also mention 

reconstruction using the convolution backprojection algorithm. They reconstructed 

temperatures o f heated air above a rectangular jet and found that the reconstructed 

temperature was consistent with the temperature measured by a thermocouple at a single 

point. In the present work, temperature comparisons will be made with reconstructions 

not at a single point only but over complete crossections.
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Fans and Byer (1988) investigated a 3-D supersonic jet using the beam-defection 

method. Measurements o f  density were obtained in the supersonic expansion. They 

developed the theory o f  tomographic reconstruction for beam-deflection measurements. 

They reported good agreement between reconstructions and direct measurements. Paris

(1986) also investigated a methane-air diffusion flame using beam deflection tomography 

and found that the reconstructed temperature field compared well with the thermocouple 

temperature measurements, again at a single point. Paris (1986) also demonstrated 

absorption tomography in a supersonic Jet of chlorine and found that measurements 

based on beam-deflections (the subject o f this work) were more sensitive than those 

based on the absorption measurements.

Prom the above literature survey, it is apparent that very little work has been done 

on beam deflection tomography, which is the subject o f the present work, as compared to 

the absorption tomography or holographic interferometry for asymmetric flow fields.

The aim o f this work is to apply rainbow schlieren deflectometry, a beam 

deflection measurement technique, to reconstruct temperatures above heated flow fields. 

In addition to demonstrating the technique, we also show how the technique can be used 

to investigate a physical phenomenon. In particular we studied the development o f a 

laminar rectangular heated air jet. The rectangular jet was chosen because o f its simple 

geometry and asymmetry, necessitating the use o f the 3-D tomography for 

reconstruction. To interpret the results properly, we present a background and review of 

the literature on buoyant (heated) jets.
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2.4 Buoyant Jets

Background

The two extreme cases o f jet flows, the plume and jet have received considerable 

attention in the literature. However, little work has been directed towards the buoyant 

jets. The main reason for this is the complexity o f  the buoyant jet because of the presence 

o f  both natural and forced convection mechanisms. Most o f the buoyant jets encountered 

in nature are turbulent. As a result, the limited studies found on buoyant jets have 

considered turbulent flows. There have been few studies of laminar buoyant jets despite 

their importance in practical applications. Ltuninar flows arise at low Reynolds numbers 

in high viscosity flows such as sensible energy storage in solar energy systems, in 

lubrication systems and in wakes generated by heated bodies. In most turbulent flows, the 

flow near the jet exit location is often laminar and undergoes transition to turbulence as it 

develops downstream [Hussain (1989)]. It is. therefore, important to develop a basic 

understanding of laminar buoyant jets because they have practical application in some 

real flows.

Besides the above categories o f jets classified on the basis o f whether they are 

turbulent or laminar and whether they are buoyant or nonbuoyant. one other classification 

is widely used. This classification is based on geometry at the exit location. The jet may 

be discharged from a circular exit. The resulting flow is axisymmetric if the flow is 

discharged vertically. The other possibility, is when the jet is discharged from a long 

slender slit, giving rise to a two-dimensional flow. The slit is generally considered as a 

line source and the jet is termed a plane or two dimensional jet. Buoyant jets may also be
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classified as vertical, inclined, or horizontal. When the flow is discharged from a non- 

circular or non planar geometry, the jet is termed a 3-D jet. We study in this work the 

development o f  a laminar buoyant jet discharging from a rectangular exit o f  small aspect 

ratio-

Literature review

Turbulent round and plane jets have been the topic o f many studies [Pai (1954), 

Crow and Champagne(1971), and Evertt and Robins (1978)]. Gouldin et al. (1986) have 

presented a thorough review of nonreacting shear flows including the plane and round 

jets. Brand and Lahey (1967) and Gebhart (1986) have presented analytical solutions for 

these (axisymmetric and plane) buoyant and nonbuoyant jets. A few studies have dealt 

with non buoyant rectangular jets o f large aspect ratio [Zijnen (1958) and Krothapalli et 

al. (1981)] and elliptic jets of small aspect ratios [Chih-ming (1987) and Hussain and 

Hussain (1989)]. Buoyant jets o f rectangular crossections with large aspect ratios have 

been studied by Sfeir (1976) and Zijnen (1958). Antonia et al. (1984) have discussed the 

comparison of temperature and velocity turbulent spectra in a slightly heated plane jet. 

Numerical computations of jets issuing from non circular geometries have been reported 

by McGuirk and Rodi (1977). Miller et al. (1995). and Grinstein and Kailasanath (1995).

Pai (1954) has discussed the jet problem in details. He divided certain jet flows 

into two regions, the potential core region and the mixing region. The potential core is 

the region closer to the nozzle exit. He noted that the viscous effects are negligible in the 

potential core region, provided the jet is designed to have a flat exit velocity profile. The 

first part o f the mixing region is on the boundary of the jet near the exit o f the nozzle.
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This mixing region widens as the flow develops downstream. Far downstream, the entire 

je t evolves into a viscous mixing region. In this mixing region, there are large variations 

o f velocity and possibly density. Here it is necessary to include the viscous terms in the 

analysis, and also the heat transfer effect for buoyant jets. The jet entrains a part o f the 

fluid at rest owing to the viscous effects, thereby, sweeping an ever increasing mass 

along.

Schlichting (1968) was among the first to present an analytical solution o f the 

laminar non-buoyant je t for both two-dimensional and zixisymmetric geometries. Brand 

and Lahey(1967) and Gebhart(1986) extended the analysis to include solutions for 

buoyant jets. The theoretical analyses o f these limiting jets were studied in detail in 

1950’s and 60’s. The theoretical approach was in most cases based on the similarity 

method, in which the independent variables in the governing equations are reduced to 

only one independent variable. The boundary-layer assumptions are assumed valid in 

thin jet regions which are not influenced by rigid boundaries but in which the viscous 

stresses are important. The analyses were based on the assumption o f two dimensional 

flow. Kanury (1975) has presented a much simplified solution for both buoyant and non- 

buoyant axisymmetric and plane jet problems. He presented analytical solutions for both 

laminar and turbulent jets.

In general, extensive theoretical and experimental investigations have been 

conducted on circular jets and the literature on these jets is extensive [Kamal (1995)]. 

On the other hand very few studies have focused on jets issuing from non-circular 

geometries. Chih-ming and Gutmark (1987) in their study of small aspect ratio elliptic
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jets found that in the major axis plane, the shear layer mainly spreads into the potential 

core o f the flow, while the shear layer spreads more into the sorrounding fluid in the 

minor axis plane. They found that in some cases the growth o f the je t in the major axis 

actually decreased initially to some point; then it began to grow. In most cases the 

growth rate in the major axis remained constant before increasing. The faster growth of 

the minor axis was responsible for the axis-switching phenomena. The phenomena of 

axis switching is said to occur when the growth o f the minor axis becomes equal to the 

growth o f the major axis.

Hussain and Hussain (1989) performed a thorough experimental study of elliptic 

jets. They found that during the development o f  the jet axis switching between the minor 

and major axis can occur several times downstream of the jet. They pointed out that the 

axis-switching, which is typical of non-circular geometries, is responsible for the 

enhanced mixing that occurs in these jets and that by controlling this switching action 

passive control o f  some processes can be realized. They found that the je t spreads at a 

much higher rate in the minor axis direction than in the major axis direction causing the 

axes o f the elliptic cross section to switch at some downstream location, where the jet- 

half widths in both the major and minor axes becomes equal. They also found that for 

elliptic geometries the best scaling parameter is the equivalent diameter o f the jet, which 

they defined as the diameter of a circular jet with a momentum flux equal to that of an 

elliptic jet. Hussain and Hussain (1989) have also noted that the two dimensional plane 

jet and axisymmetric jet represent two limiting cases of elliptic jets (and possibly other 3 - 

D jets) whose spread lies in between these two limiting cases.
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Krothapalli et al. (1981) also found similar behavior o f growth rate in their study 

of rectangular jets o f various aspect ratios. They compared rectangular jets o f aspects 

ratios 5.5, 8.3 and 12.5 and found that the growth rate in the minor axis increased linearly 

for all aspect ratios but the growth rate was lower for the smaller aspect ratios.

Excellent detailed experiments with a heated rectangular jet were carried out by 

Fijnen (1958). He carried out temperature measurement in a jet from a slit o f 0.5 cm x 

10 cm at a Reynolds number o f 13300. His measurements indicated that the temperature 

profiles perpendicular to the major axis of the jet were 2-D and could be compared with 

2-D theoretical results. He also found that when temperature profiles across the plane of 

the minor axis at various downstream distances are plotted in non-dimensional similarly 

parameters, they collapse into a single curve. This fact justified the use o f simple 

similarity solution in solving the 2-D jet problem.

Follow-up work on heated rectangular jets includes that o f  Sfeir (1976), who 

measured both velocity and temperature in rectangular jets o f various aspect ratios. He 

noted that the flow field for both velocity and temperature of the rectangular jet can be 

divided into three distinct regions refereed to as the potential core, the two dimensional 

region, and the axisymmetric region. He found that the extent o f these regions depended 

on the nozzle aspect ratio. At large distances from the nozzle exit, both velocity and 

temperature profiles were found to be similar to those of a circular jet. He also found 

that the flow in the 2-D region was practically independent of the nozzle aspect ratio. He 

used rectangular nozzles of aspect ratio 10. 20. and 30 and studied flow of a Reynolds 

number of 1 2 2 . 2 0 0  based on the length (shorter side) of the rectangular nozzle.



Sfeir (1976) also found that the three main regions o f the jet flow mentioned 

above can be determined in terms o f the centerline temperature decay. In the potential 

core region, the centerline temperature Tc was constant. This was followed by the 2-D 

region where (Tc )^~ x '* and finally the region corresponding to the circular je t where Tc 

~ X Recently, Tarasov and Tclevor (1993) have presented results for a heated turbulent 

rectangular jet o f aspect ratio 2.66 . Their results are comparable to those o f Sfeir 

(1976).

In summary, it is clear that an overwhelming majority on studies o f non circular 

jets have considered turbulent flow conditions and geometry's o f large exit dimensions 

(one cm and larger). Laminar flow conditions have been studied theoretically, and 

experimental data on laminar jets are scarce. In this study, we investigate the thermal 

development o f a laminar buoyant rectangular jet.

The importance o f the study of non-circular jets lies in their role in passive 

control o f physical and chemical processes. Shadow et al. (1984) have presented a review 

on the role o f active and passive control devices on combustion dynamics. Passive control 

was obtained by changing the initial conditions o f the jet using non-circular 3-D 

geometries. Active control was achieved by an input o f energy in the form o f periodic 

waves o f known frequencies. They have reported, using 2-D imaging techniques (for 

example Planar Laser Induced Fluorescence or PLIF) the presence o f 3-D effects at low 

Reynolds numbers. They found that the effects o f these 3-D interactions between vortices 

in simple axisymmetric combustion systems are a major mechanism in the breakdown of 

2-D (axisymmetric) larger-scale structures into fine-scale 3-D turbulent structures.



Detailed understanding of these flames was possible using expensive laser based 

techniques such as PLIF and others (Chapter 1). Similar information can be extracted as 

shown in this work using the simpler rainbow schlieren technique (when extended to 

turbulence studies) in conjunction with modem image processing methods. The rainbow 

schlieren technique can be used to study the role of different passive or active control 

devices by studying the flames issuing from various geometries in the laboratory and then 

applying the results to real combustors to implement their beneficial effects. Studies on 

pollutant control are especially important. In the past it has been found that the non

circular geometries when applied to combustors suppressed pressure oscillations and 

extended the flammability limits [Shadow et al.(1984)].

Among the earlier numerical computations o f free jets was the work o f McGuirk 

and Rodi (1977) who applied the k-e turbulence model to the problem o f jets issuing 

from rectangular nozzles. Using modem CFD techniques Givi (1989) has presented 

Direct Numerical Simulations (DNS) o f reactive turbulent flows without using any 

turbulence model. Miller et al. (1995) have reported DNS of non-circular momentum jets. 

They considered elliptic, rectangular, and triangular jets of aspect ratio 1:1 and 2:1. They 

predicted axis-switching phenomenon in all non-unity aspect ratio jets. Grinstein and 

Kailasanath (1995) have presented a study on turbulent reactive square jets. The 

downstream development o f  the jet was evaluated with and without chemical reactions.. 

Once again the schlieren technique could be used to validate the models used in some 

these numerical simulations and to validate the results obtained.



Chapter 3 

TH EO RY

In this section we discuss the principles o f  the rainbow schlieren technique with 

special reference to the form of projection data required for beam deflection tomographic 

algorithms. The application of the technique to 2-D axisymmetric objects will be 

discussed followed by the application o f the technique to 3-D objects. The reconstruction 

algorithm applicable for schlieren data (beam deflection data) will be derived from the 

basic algorithm o f the ordinary projection data.

3.1 Principle of Schlieren Technique

The conventional schlieren technique depends on the deflection o f light rays 

passing through a medium with a gradient of refractive index normal to the ray. The path 

o f the ray is proportional to the refractive index gradient in the direction normal to the 

ray. Figure 3.1 shows a typical schlieren arrangement using lenses. The coordinate 

system is shown with the x-axis in the direction o f  the ray. With this coordinate system, 

the paths o f the light ray in the xz and xy planes respectively are given by Merzkirch

(1987) as

d'z  1 chi
dx- n dz

d-y I dn
9.x ̂  n  dy
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The total angular deflections in the z and y directions at the exit o f the test sections 

become (see Appendix A.4 for derivation):

I f d a

1  f d n1  f d n

^  (3.1)
dx

where no is the refractive index o f the surrounding medium. These deflections are in the 

direction o f the increasing reftactive-index gradient (i.e. towards the region o f higher 

density). In this work, displacements were detected only in the y direction (all references 

to displacement in the rest o f  this dissertation will therefore correspond to the Cy 

deflection angle and the subscript y will be dropped).

In Figure 3.1, the source S is placed at the focus o f the collimating lens C so that 

the test section is illuminated by a parallel beam of light. A second decolliminating lens 

D, placed beyond the test section, produces an image o f the source at its focal point, F, (or 

filter plane) beyond which a camera lens L is used to give an image o f the test section at 

the recording plane o f the camera. The light coming from every point in the test section 

in the yz plane gives an image o f the source at the filter plane. If no gradients of 

refractive index are present in the test section, the images o f the source formed by each 

ray from different points in the yz plane of the test section will coincide. However, if the 

the refractive index of the medium differs from that o f the surroundings, the deflection of 

the light will cause the corresponding source image at F to shift by an amount given by

d =  / ,  tan  e ~  /,e ^  2 )

where fc is the focal length of the decolliminating lens.



To obtain quantitative results using the conventional schlieren method, 

discrimination between grey scale levels is carried out. A schlieren photograph contains 

zones o f  grey tones varying in intensity from a maximum brightness to complete darkness 

depending upon the direction o f deflection of the light rays. To determine these 

deflections quantitatively, it is necessary to evaluate the illumination density on the grey

scale schlieren photograph by means of photometry. In addition, a quantitative 

relationship between the intensity distribution and light deflection must be determined. 

This method, as pointed out in chapter 2, has some drawbacks including the fact that the 

grey scale is difficult to calibrate and read precisely and an unknown amount o f error 

creeps in through the film processing o f the recorded image. Also, the optics of the 

system must be flawless to reproduce the same light intensity at a given point accurately.

In the rainbow schlieren technique, a rainbow color filter is placed at the focal 

point F to measure the light ray displacements. A rectangular slit o f sides a and b is used 

at the source. The image of this source of dimensions a and b is then formed at the focal 

point F. In the absence of any disturbances in the test section, the filter is adjusted such 

that the transmitted light through the filter to the recording plane is o f a uniform hue. 

This is called the background hue, and the position of this hue on the filter is arbitrarily 

denoted by y .̂ When disturbances are introduced in the test section, the image of the 

source shifts at the focal point as shown in Figure 3.1. This shifting results in the the 

transmitted hue being different from the background hue, because now the source image 

falls at a different position on the filter. Depending on the orientation of the filter, 

deflections in the y and z directions can be detected. In this work, the filter orientation
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was such that the displacements were detected only in the y (lateral) direction as 

mentioned above. Using a previously calibrated filter it is then possible to determine the 

displacement distance, d, from which the deflection angle, e, can be calculated. The 

procedure o f manufacturing the filter and its optimization will be discussed in chapter 4 

on experimental methods.

Hue, A, is a parameter describing color. The most popular model to describe color 

is the red, green, and blue (RGB) model. In the RGB model, the color is quantified in 

terms of the percentages o f  its red, green, and blue components. To describe color by a 

single parameter, instead o f  RGB, the hue, saturation, and intensity (HSl) model is used. 

In the HSl model, the hue describes a color in the c'^lor spectrum, or on a color wheel in 

degrees or radians varying from 0 to 2k . Each number represents a particular color mix o f 

the RGB. Greenberg et al.(1995) give the equation relating RGB to hue as:

0.5 [ { R - G )  +  { R - B ) ]
h =  œ s  ‘

(3 3)

In the HSl color model, a cylindrical system of coordinates is chosen for all colors. In this 

coordinate system, the radius represents saturation, the angle represents hue and the z- 

coordinate represents the intensity [William (1972)]. A filter is thus created with the hue 

linearly distributed across the width of the filter, while keeping the intensity and 

saturation at any arbitrarily fixed value. This means that a light ray falling on any point in 

the filter will transmit a unique hue. independent of the intensity and saturation on to the 

image plane. By relating this hue to displacements (via the calibration curve), the
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deflection angle e can be determined. A photograph o f the asymmetric filter is shown in 

Appendix B .l.

Sensitivity o f rainbow schlieren: The filter was created such that the hue

transmitted, h varied linearly in the operating range o f the filter. Thus:

dh 2tc
= constant = —

d x  y  max

where yn,» is the overall desired dimension o f the filter or width o f the filter region.

The sensitivity o f  the rainbow schlieren can be determined using the procedure described 

by Weinberg (1963). Let the hue transmissivity o f the filter after optimization, as 

described by Greenberg et al. (1995), be given by the equation:

h =  K y  + C

where K and C ' are constants and y is the lateral position on the filter with an arbitrarily 

chosen origin. Let the background hue be denoted by h(yo). Then, for an undisturbed 

index field the transmitted hue becomes:

With disturbance, the transmitted hue becomes

k  =  K'{y„ +  d) +  C  

The change in hue is :

A/t = K'tf

Ah = A7,e

The sensitivity o f the schlieren system is then given by:

(3 4)
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ck (3.5)

The factors that affect the sensitivity are the size o f the filter in relationship to the 

size o f  the slit source, and the focal length o f the decolliminating lens. By increasing the 

slope (K ') o f the calibration curve of the filter, the sensitivity can be increased. The 

calibration curve used in this study is shown in Figure 3.2. It had a K ' value of 261 

degrees/mm. This was determined with a least squares linear fit with a correlation 

coefficient o f 0.995.

The yo position corresponding to the undisturbed image hue h(yo) given above 

should ideally be a single point on the filter for a point source of light. Since the source is 

finite, the filter should be adjusted such that yo is within a region on the filter o f a uniform 

hue. This means that the size o f the slit source image should cover a uniform hue region 

on the filter. Therefore, the size of the source slit and the size of the filter are two 

important parameters that affect the performance o f a given filter. The design of these 

two parameters will influence the desired color contrast, color coding, resolution, 

sensitivity and measurement range of any given system [Settles(1985)].

Before discussing the inversion of schlieren data, the basic problem of inversion 

of data for a general object function f(x,y) will be discussed and the form o f the integral 

equations to be solved will be shown. The equations for the inversion of schlieren data 

will then be derived with reference to these basic integral equations.
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3.2 The Radon Transform and Line Integral Data

In Figure 3.3 an object whose property f(x,y) is to be determined is divided into 

rectangular fine grids, or pixels. The property f(x,y) is assumed constant at each grid 

(pixel) point. The property f(x,y) is to be determined from projections o f a set o f rays 

passing through the object and recorded on the image plane. The recording represents 

the total integral (or line integral) of the property interaction with the ray traversing the 

object. The data recorded for each ray are given by p(0,t) where 0 is the direction o f the 

ray and t is the distance from the origin in the object plane as shown in Figure 3.3. The 

measured data, p(0,t) like the object are given by a 2-D function. However, the 

independent variables for the projection data are different from those for the object. The 

problem o f reconstruction is complicated by the fact that the object cross-sectional field 

and projection data are defined in different coordinate systems.

The projection data are defined by a one dimensional coordinate for a given angle 

o f view, 0. The object cross sectional field is defined by a 2-D function f(x,y) in 

rectangular coordinates. Figure 3.3 also shows the schematic representation o f these two 

coordinate systems. The problem of computer tomography is to reconstruct the object 

field function values f(x,y) from projection data, p(0 ,t), taken at various viewing angles. 

The projection data are a linear combination of the object values. Therefore, the process 

o f  collecting projection data can be considered as a transform in which the object data are 

linearly combined to obtain the projection data [Dean(1983)J. This transform is termed 

as the Radon transform. The process of reconstructing the object from projection data is 

then the inverse Radon trainsform. We can say that the Radon transform, transforms a
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signal from the coordinate system of the object domain into the coordinate system of the 

projection (ray sum) domain.

In Figure 3.3, if the rays are parallel to the x-direction, i.e. 0=0, then the recording 

image plane will be in the y direction. We then have:

/ oc

f{x, y)dx
(3.6)

where x represents the ray path through the object.

If the rays are not along the x-axis but form an angle 0 with it, then the integrals 

will be computed along ‘t ’ given by

— xsinO -F ycosO = t 

where t is the distance o f the ray from the origin. Then we have

/oo /oo
p{6, t) = I I /(x, y)6{— xsinB 4- yœs9 — t)dxdy

)  -co) -oo (3 .7 )

The delta function 5 is used to account for the fact that the locations where the ray does 

not pass through will contribute zero to the integral. Analytically, the image 

reconstruction process is simply solving a set o f line integral equations at different angles 

of 0 and finding the distribution function f(x,y) within the object. A set o f p(0,t) 

functions results from obtaining many projections of the source function f(x,y) at 

incremental values o f  angular rotation 0 .

Beam deflection data: In the rainbow schlieren technique, when a beam passes 

through a test object and is deflected due to the refractive index gradients, the amount of 

deflection or the deflection angle of the beam as it exits the test section is related to the
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refractive index n(x,y) o f the field. Consider the refractive index field shown in Figure 

3.4. In this figure, let n<, = refractive index outside the object field. Then define

Thfi —— 7%

where n is the refractive index within the object, n and ny are functions o f  t, and s 

(referring to rotated coordinates o f Figure 3.4)

n =  rzj +  n„

n =  n„( h 1)

n =  no(n +  1)

where n is the normalized refractive index difference. From Figure 3.4, it can be shown 

that equation 3.1 becomes.

r ^ d s
n„J  (3 .8 )

From the above definition o f the normalized refractive index difference this equation 

becomes

dh{t, s)
ds

ck (3.9)

Interchanging the order of integration and differentiation we obtain;

f i{t,s)ds
^ (3.10)

Comparing this equation with equation 3.6 or 3.7, we note that the projection data are 

obtained by a linear combination of object values followed by its derivative in a direction
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normal to the rays. Performing the normal Radon transform, we obtain the ordinary 

projection data equation:

p{6,t)  =  r n{t, s )d t
^ (3.11)

The basic inversion problem then becomes that o f inverting equation 3.11 (which 

is similar to equation 3.6 applicable for any arbitrary object function f(x,y)) and taking the 

derivative o f the result. Inversion of equation 3.11 is the basic tomographic reconstruction 

problem which we will term the problem of ordinary projection data. The inversion of 

equation 3.10 will be called the problem o f beam deflection data. Several techniques 

have been developed for inverting equation 3.11. We shall show how the algorithms for 

inverting equation 3.11 can be modified to invert the beam deflection data. Equations 

3.10 and 3.11 are applicable for symmetric or asymmetric test objects. For axisymmetric 

objects, simpler techniques of inversion can be used.

3.3 Inversion of Axisymmetric or 2-D Fields

When equation 3.9 is written in rectangular coordinates (x,y) it becomes

^■jy)
- dy

dx

For an axisymmetric refractive index field, the inversion of this equation has the form of 

the classical Abel inversion formula. When this equation is transformed into cylindrical 

coordinates (see Figure 3.5) we obtain following. Song and Guo (1993):

' d̂fi dr
=  2 y f

’  « ( r >  -  % : ) '
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The inverse transform o f this equation is given by

C3..2,

Equation 3.12 is used in the Abel transform method. The other method used for inverting 

the axisymmetric fields is the onion peeling reconstruction technique which is a 

numerical method [Dasch (1992)]. In this method, the field is divided into concentric 

rings . Within each ring the flow field is assumed to be uniform and a group o f algebraic 

equations is set up and solved simultaneously for the unknown refractive index. The Abel 

transform and onion peeling methods are suitable only for axisymmetric fields. Actual 

implementation o f the integrations could be difficult because of the singularity of 

equation 3.12 at y=r.

3.4 Inversion of Asymmetric or 3-D Fields:

Equation 3.11 can be written in the form o f equation 3.7 as

X30 /3C
p(0, t) = I I n{x, y)6{— xsinB -f yœs9 — t)dxdy

)  -ocJ -oo (3.13)

In general, tomographic methods can be classified into four groups [Xie ( 1995)]:

1. Matrix inversion

2. Algebraic reconstruction techniques (ART)

3. Fourier Transform method

4. Convolution Backprojection method.(CBP)
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Matrix inversion involves dividing the region o f interest into ceils (pixels), setting 

up linear equations relating the object value at each cell location n(x,y) to the 

experimental projection data at each angle o f view p(9,t). The resulting equations are 

then solved by direct matrix inversion techniques. This method cannot be applied where 

there is no exact solution, such as when there are more projections than cells and the data 

contain noise. Such over-determination with noisy data is common in tomography, so 

this method is generally not used. Another disadvantage o f the matrix inversion method 

is the very large size o f  the array of the coefficients o f the unknowns.

Algebraic reconstruction techniques (ART) including series expansion techniques 

start with a set o f cell locations and linear equations, similar to the matrix inversion 

technique. However, the solution is found by iteration rather than by direct matrix 

inversion. An initial guess is made for the object values n(x,y) in each cell. The 

corresponding projection for the ray paths is then calculated and compared with the 

experimental data. The differences between the calculated and experimental projection 

data are used in calculating correction factors to be applied to the initial guesses. This 

procedure is repeated until some convergence or limit criterion is reached.

Fourier transform reconstruction takes advantage o f the relation between the 

Fourier transform o f the projection data and the object. The Fourier slice theorem 

Herman (1980) serves as a basis for direct Fourier reconstruction algorithm. This theorem 

is based on the fact that 1-D projections of an object field provide information about 

spatial frequencies present in the object. Many projections appropriately chosen may then 

be used to determine the spatial frequency representation of the entire object. Once the
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spatial frequency distribution of the object has been determined, an inverse Fourier 

transform of these frequency distributions will yield the desired reconstruction of the 

object.

The convolution backprojection (CBP) method involves taking the projections 

p(0,t), and convolving them with a suitably chosen weighting function. The weighting 

function usually depends upon the spatial coordinate. The choice o f the weighting 

function is based on the Fourier inversion formula. After convolving with the weighting 

function, the resulting “filtered” projections are backprojected onto the object plane.

The commonly used techniques for reconstruction are the ART and CBP. If the 

Nyquist sampling criteria can be met, (i.e. projections are available over all view angles), 

the CBP technique gives better accuracy and spatial resolution than do the ART 

techniques [Oppenheim (1977)]. However, for certain oscillatory functions and noisy 

measurements and in case o f limited view projections, the iterative methods produce 

more accurate reconstructions [Oppenheim (1977)]. With the direct Fourier transform 

method, a major difficulty is in the choice o f the interpolation function to convert from 

polar samples to Cartesian coordinates. In this work the CBP reconstruction technique 

was, therefore, chosen.

3.5 The Convolution Backprojection Method

The convolution backprojection (CBP) algorithm is related to the direct Fourier 

reconstruction algorithm. For this reason, we shall first describe the direct Fourier 

algorithm and then derive the convolution backprojection algorithm.
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The Radon transform [Deans (1983)] or the line integral, and the Fourier slice 

theorem serve as the basis o f  the direct Fourier reconstruction algorithm. We shall define 

the Fourier transform, briefly describe the Fourier slice theorem and then show how they 

are used in the direct Fourier reconstruction algorithm.

The 2-D Fourier transform o f an object function n(x,y) is defined by 

Weaver(1983):

(3.14)

✓ 30 ✓ oo
N { u , v ) =  I

y —oo y —oo

where u and v are the frequency components in the frequency domain.

The 2-D inverse Fourier transform is given by

/  30 /  30 _
n { x , y ) = \

J -ocJ -oo (3.15)

Equation 3.15 suggests that, if  we know the Fourier transform o f the object field, we can 

determine the unknown function n(x,y) by taking its inverse Fourier transform. The 

Fourier slice theorem helps us determine N(u,v) from projections p(0,t).

The Fourier slice theorem: The Fourier slice theorem can be stated as follows: the 

Fourier transform o f a projection through an object function n(x,y) taken at an angle 0 

with the x-axis gives a slice o f the 2-D Fourier transform, N(u,v), subtending an angle 

(0+90) with the u-axis [Dudgeon and Mersereau (1984)]. In other words, the Fourier 

transform of p(0 ,t) defined as

^ (3.16)

where
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U) =  v û ^ - \ - v ^

gives the values of N(u,v) along line AA' in Figure 3.6 at an angle o f (0+90) with the u- 

axis. Consider the Fourier transform of the object along the line in the frequency domain 

given by u=0. The Fourier transfrom integral becomes

"00 / O C/ O O  / o c  

J  — O Q /  — O O- O Q /  - O Q

The order o f  integrals may be rearranged to obtain;

/V (0,u) =  [ n  n{x ,y )dx]  e - ' ^ ^ d y
)  OO L )  —OO J

the term in brackets is the formula for a projection along lines of constant y i.e. p(0=O,y) 

as shown by equation 3.6. Substituting for these projections we obtain

iV (0,u) = p[6 =
/  -"X

The right hand side of this equation represents the 1-D Fourier transform of the projection 

p(0=O,t). Thus, the relationship between the projections and its 2-D Fourier transform of 

the object function can be expressed by the Fourier slice theorem as

Â'(0. v) =  5 (0 , v)

This proves the Fourier slice theorem. If as shown in Figure 3.3 the coordinate system is 

rotated by an angle 0, the Fourier transform of the projection is equal to the two- 

dimensional Fourier transform o f the object along a line rotated by 0 as shown in Figure 

3.6.

To reconstruct an image from projections using the direct Fourier algorithm, 

projections at a number of different angles are required to obtain the frequency samples at 

different radial lines using the 1-D Fourier transform o f each projection. By taking the 1 -
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D Fourier transform of the measured projection data p(0,t) (equation 3.16 above) one can 

determine a 2-D polar form of frequency samples in the Fourier space. At this point, the 

spatial frequency values are known along the radial lines in frequency domain. These 

frequency values, therefore, can be defined as frequency samples o f the original object. 

Essentially, the spatial frequency function has been sampled in a manner determined by 

the angle 0 between individual rotation views. The value at the origin S(0, 0) will, 

however, be N times too large (because each radial line passes through it) for N being the 

number o f rotation angles or views. This can be corrected by dividing this point value by 

N. The frequency samples determined in this way are shown in Figure 3.7.

This suggests that by taking the projections o f  an object function at angles 0,, 

02,..0i ...0N and Fourier transforming each o f the projections, one determines the 

frequency values N(u,v) along radial lines as shown in Figure 3.7. If an infinite number 

of projections are taken, then N(u.v) would be known at all points in the frequency 

domain. Therefore, knowing N(u,v), the original object function n(x,y) can be recovered 

by performing a 2-D inverse Fourier transform using equation 3.15. In practice a discrete 

inverse Fourier transform of equation 3.15 is used. If we assume M to be an even integer, 

determining the size of a square image matrix, then

.V//2 M /2

n(x,y)  =  ~  ^  ^

m = —.V//2 n =  —.V//2

where A is the physical measure o f  the object. For example -A/2<x<A/2 and - 

A/2<y<A/2. This summation can be rapidly implemented by using the Fast Fourier
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Transform (FFT) technique provided the Fourier coefficients N(m/A,n/A) are known 

[Mersereau and Oppenhein(l974)].

Figure 3.8 illustrates the concept o f the direct Fourier reconstruction process. 

One o f  the difficulties in this method is the choice o f the interpolating function to 

convert the polar samples to a rectangular coordinate system. Interpolation technique, 

therefore, is an important component for implementing the direct Fourier reconstruction 

algorithm to achieve the desired imaging quality.

In general, the method involves taking the 1-D Fourier transform o f the measured 

projection data p(0,t) and interpolating the data to a rectangular grid. After interpolating 

the frequency data, a standard FFT algorithm is used to invert the frequency data to the 

object space domain values. We shall now show the relationship between this algorithm 

and the convolution backprojection algorithm (CBP).

To derive the convolution backprojection (CFB) algorithm, we begin with 

equation 3.15. Transforming the rectangular coordinate system in the frequency domain 

(u,v), to a polar coordinate system (0 ,co), by making the substitutions u=cocos0 , v=o)sin0  

and dudv=codo)d0 .

UJ =  +  V -

V
Q ---- n r c f n n [ —)

(3.17)

Then the object function is defined in polar coordinates as

/  0 /  0
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This integral can be solved in two parts by considering 0 from 0 to k and then from iz to 

27t, [Kak and Slaney, (1988)]

n(x,y) =  r
/  0  /  0

/  r  /  0 0

+  I I +  7T,
/  0 /  0

now using the property

S{6 4 - 7T, w) =  S{6, — oj)

the above equation may be written as

/  %  /  OO

n(2T, y) =  \ \ S{9. w) |w| dO
'  O'' (3.18)

At this point we have two possibilities to determining for S(0,cù). For ordinary

projections, the frequency spectrum S(0,co) is the Fourier transform o f projections p(0,t)

S (g ,w )  =  r
/  - O C

(3.19)

where. p(0,t) are given for an arbitrary object function f(x.y), by equation 3.7. For beam 

deflection data, the projection data is given by e(0,t), of equation 3.10 and repeated below

as

d  /  ^
{6.  £) ~  — J n{ t .  s ) d s

(3.10)
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Take the Fourier transform of both sides o f equation 3.10. To do this we use the 

derivative property o f  the Fourier transforms. This property states that if  f(x) has the 

Fourier transform F(s) then its derivative f(x )  has the Fourier transform i27rsF(s) 

[Bracewell (1986)], thus;

E{d,uj) = i2TTu}S{d,uj) (3.20)

where E(0,co) is the Fourier transform o f deflection angles e(0.t).

Now substituting for S(0,ol>) in equation 3.18 from equation 3.20 we obtain

f2(z,2/) = r  n  E{e,uj)ê '^̂ '̂K{uj)dujdd
/  0 /  - o o

(3.21)

where

K (w ) =  z i M  =  ( 6

27T w "-g w >  0

The inner integral in equation 3.21 is equivalent to taking the convolution o f the inverse 

Fourier transform of E(0,co) which is the projection angles e(0,t) with the inverse Fourier 

transform of K(o)).

That is;

n ( x . y ) =  ( ( e{t.6)q{ycos6 — xs in9  — t)dtd9
 ̂ (3.22)

where the function q(.) is the inverse Fourier transform of K(co). The inner integral

represents the convolution (defined next) of the deflection data with the convolving

function q(.).
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Convolution function: The convolution between two functions f(x) and g(x) is 

given by

/3C
h{x)  =  f{u)g{x  -  u)du

J  -O O

This is often denoted by

h {x )  =  f { x )  * g { x )

h, f  and g are functions o f the same variable x, which can be a time or spatial coordinate. 

For discrete functions, the convolution is evaluated as follows [Bracewell (1986)]; 

consider two functions, each representing a series in integers 

f { x )  =  X =  0 , 1 , 2 ,  m

and

g ( x )  = b ^  X =  0 , 1 , 2 ,  n

The convolution between these two functions is given by:

(3.23a)

The number o f terms in the convolution function is one less than the sums o f the numbers 

o f terms in f and g (i.e. i=0 ...m+n-2 ).

Now consider the function q(.), which is the inverse Fourier transform o f K(co).

K(cü) is not a well behaved function for its inverse Fourier transform to exist. In practice,

however, the object field is band-limited by the measuring system, i.e. the frequency 

extent o f the projection data is limited. So if the maximum frequency component of
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S(ûJ,0) is (ûmax, then K(û>) can be similarly truncated. Thus, we need the inverse Fourier 

transform q(t) o f  K(co),where

K{u}) = 0  w >  I

and

A-(w) = { t  0

or
q{t) =  f *■“ K {u)e^^cL j

Integration o f this equation gives:

q{t) = ~  sin-{irtuj,n,^)
(3.23b)

For discrete values o f t=ma, where a is the sample spacing, this equation becomes:

q{ma) = 0  m  =  0

qijna] — {n'ma)  m  =  odd
q{rna) = 0  m =  even ^

The samples must meet the Whittaker-Shannon sampling theorem [Bracewell (1986)] 

which states that a band-limited function with maximum frequency component comax can 

be completely represented by, and reconstructed from, a set o f uniform samples at spacing 

‘a \  where a<(2wmax ) ' Using a=(2o)max ) '• nta, denotes the positions along t (refer to 

coordinate system o f  Figure 3.3) at which the discrete convolution function is defined. 

The projection data are sampled at uniform intervals, so that equation 3.22 can be 

replaced by its discrete counterpart.
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N M
n  — n„ = no — - ^ ^ e { m a ,  —— -)q{yœs9 — xsin9 — Tna)a

0 = 1 ,,.=1 (3.25)

for N projections o f M rays each.

Equations 3.24 and 3.25 represent the convolution backprojection algorithm for 

beam deflection data. This last equation represents two steps: first, the convolution 

given by the inner integral and then, the backprojection at angles from 0  and n 

represented by the outer integral. Since the sampled projection data are used in the 

practical implementation, a one-dimensional interpolation is required before 

backprojection because the projection samples cannot be back projected to the exact 

Cartesian grid (see Figure 3.9).

Implementation o f the algorithm: The basic algorithm for reconstruction of the 

object function from projections, e(0 .t), at multiple views starts with convolving the 

projection data with the convolution function discussed above and given by equation 

3.25. Let the number o f rays at each projection angle be represented as

ti,t2 ,t3  t| tM where M is the number o f rays per projection. Then, the convolved

projection data become:

b{e, ti) =  ^  e{e, ti)q{ti -  tk)

^  (3.26)

which is equivalent to the inner integral of equation 3.22. This step is also known as the 

convolution step and is implemented as given by equation 3.23. Now. we wish to 

reconstruct the object values, fly from the convoluted projections b(0,t). It is seen from
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Figure 3.9 that the sampled projection data b(0,t) cannot be back projected to the exact 

Cartesian grid of the object matrix. Because of this, one-dimensional interpolation is 

required before backprojection. The interpolated values o f b(0,t) are then backprojected 

as shown in Figure 3.10. The new interpolated values o f projection b’(0,t) are calculated 

for a fixed 0  from the equation:

T

6 '(() =  ^  h{t^ -  t)b{tt) 

where h(t) is an interpolation kernel. Using linear interpolation we obtain

y {6, t) =   ------ — [(t/+i — 9) — ti)b[ti+\, Q)\
ti+i (3.27)

where a is the sample spacing and;

t i < t <

b ’(t,0 ) is the value that is backprojected to the (x,y) coordinate o f the object array for a 

particular value of t. The final reconstructed estimate o f n(x,y) is obtained by summing 

the interpolated convolutions over the viewing angles from 0  to k as given in equations 

3.22 and 3.25.

As a final step, the refractive index is related to density using the Gladstone-Dale 

constant equation

n-l = Ap (3.28)
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where n is the refractive index, K is the Gladstone-Dale constant and p is the density 

[Merzkirch (1987)]. The temperature is then related to the density using the ideal gas law.

Ordinary projection data: The convolution backprojection algorithm was 

programmed, and its performance validated by reconstruction of simple test objects 

(phantoms). The reconstruction algorithm for ordinary projections was also derived 

following similar steps with a slight modification. The starting point for the derivation is 

equation 3.18.

/ ( z ,  y) =  C { ° °  S (0 , 1 ^ 1  (fwjg
J oJ -oc (3.18)

The frequency spectrum S(0,co) can be substituted by the Fourier transform o f projections 

P(f9)

S{e,uj) = f" p(g.()e-''"̂ A
 ̂ -  (3.19)

after changing the order of integration

In the spatial domain, using the convolution theorem this is equivalent to

f(x.y) ■=■ ( ( p{6.t)q{ycosO ~ xsinO -  f.)dtdd
 ̂ -  (3.29)

where q(ycos0 - xsinO - t) is the inverse Fourier transform of |m| also called the ramp 

function. This last equation again represents two steps: first, the convolution o f the 

inner integral and then, the backprojection at angles from 0 and u. A one dimensional 

interpolation is required before backprojection because the projection samples cannot be 

back projected to the exact Cartesian grid (see Figure 3.9).
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Now consider the convolution function q(t), which is the inverse Fourier

transform of the ramp function, |co|. |o)| is not a  well behaved function for its inverse

Fourier transform to exist. In practice, however, the object field is band-limited by the

measuring system, i.e the frequency extent o f  the projected data is limited. So if the

maximum frequency component of S(0,co) is cOmax then <u can be similarly truncated.

Thus, we need the transform q(t) o f K(m), where

A'(^) =  0  w >
K{uj) =  W W <

q{t) =  \ij\e-^duj
or

Integration by parts o f  this equation gives:

9 (0  =  [2gi7ic(2wm«0 -  sinc-{uj„,^t)]

where the function sine is defined as :

sine X = sin x x / ttx 

and its properties are such that

s ine  0  =  1

s ine  n =  0  n  =  nonzero integer 

j  s ine x d x  =  I

This function contains components of all frequencies up to Wmix or the cut off 

frequency. During convolution it removes all frequency components above its cut off and 

leaves all below unaltered, [Bracewell (1986)]. The convolution ramp function used for 

ordinary projection is shown in Figure 3.11 together with the convolution function used
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with beam deflection data. These functions represent the differences between the

reconstruction algorithm for ordinary projections and for the beam deflection algorithm.

Now the practical implementation o f the convolution backprojection (CBP)

algorithm requires that the integral in equation 3.29 be replaced by a discrete summation

because the projection data are discretely sampled. Following the procedure used for

beam deflection data, the ramp function for the ordinary projection data becomes.

q{ma) = 0  m  even. 
q{ma) = — [irma] m  odd

q{rn(i) =  — (2a) m  = 0 2 qj

where, ma, denotes the position along t at which the discrete function q(.) is defined. The 

projection data are sampled at uniform intervals so that equation 3.29 can be replaced by 

its discrete counterpart.

^ .V
/(Z, y )=  -jÿYTY -  ^ s i n d  -  T T u i) a

‘ (3.31)

for N projections o f M rays each.

Backprojection: Now the outer summation o f equation 3 .31 represents the process 

o f backprojection in which convolved projections are distributed over the (x.y) space. 

From the single ray sum (projection) value, there is no information about which pixels in 

the object field along the ray contributed how much to the sum. Therefore, during 

backprojection, the value of the ray sum is distributed equally to each pixel along the ray. 

At a single projection angle, the backprojected data will vary along the l direction, but not 

along the s direction. In other words, the curve in the P-t plane (image projection plane) is 

translated along the direction of the t-axis onto the object field to create a cylindrical
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surface. The resulting surface above the object cross-section is viewed as a function o f 

two variables, x and y and is termed the backprojection. The reconstruction for each point 

(x,y) is obtained by summing the backprojetion values for ail the view angles as shown in 

equation 3.31. The backprojection for each point (x,y) is determined by interpolation as 

described above for the beam deflection algorithm.

3.6 The Phantom Test Objects

In this section, we present the test objects used to validate the reconstruction 

algorithms. The two algorithms, one for the ordinary projection data and the other for the 

beam deflection data, were validated using appropriate phantom data. To avoid 

numerical integration errors along rays through the objects, the test objects were chosen 

such that their projections could be determined analytically.

Ordinary projection data: The phantom object chosen to validate the ordinary 

projection algorithm of equation 3.31 was an elliptic cross-sectional object of uniform 

density. The projection data through the object are then simply the lengths of the rays 

inside the ellipse, normalized appropriately. For an elliptic cross-section object, the 

length o f straight rays passing through the object can be written analytically. Let g(x,y) 

describe the density o f  the elliptical object o f major axis dimension A and minor axis 

dimension B, see Figure 3.12

• P J ot T2 +  r 2 <  1
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The projection, or the length o f each ray inside the ellipse is given by Kak and Slaney 

(1988)

, [2pAS/e^ \/é -  — /or |f| <  e 

0,/or |t| :>e (3.32)

where

=  A^-cos^Q 4- B ‘̂ s in }d  

Note that, the variable e is a function o f the projection angle 0. Using these equations, the 

projections were computed and stored in a two dimensional array, p (ij) where i 

represents the ray and j represents the projection angle. These projections are shown in 

Figure 3.14a. N number of projections and M number o f samples (or rays in each 

projection) were generated for the ellipse. The projection data were read in and then 

centered about the origin as shown in Figure 3.13. The projection data were then 

convolved using the convolution function equation 3.30. The convolved projection data 

are shown in Figure 3.14a. Backprojection o f the convolved data using equation 3.31 

results in Figure 3.14b which shows the reconstruction of the ellipse o f  dimension A=30 

units and 8  = 15 units. The major steps of the reconstruction algorithm are shown in 

Appendix A.3. The number o f rays used was 64 and the number o f angles used was 96. 

As can be seen the reconstruction accurately produced the elliptical object o f a uniform 

density.

Beam Deflection algorithm: To test the algorithm for beam deflection data, a 

refractive index distribution function with an analytical expression for deflection angles 

was chosen [Rubinstein and Greenberg (1994)]. The deflection angles representing an
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axisymmetric refractive index field could also be used witfi Abel inversion formulae to 

obtain an exact analytical solution for the refractive index distribution.

Figure 3.5 shows the coordinate system for the chosen refractive index field given

by

<5(r) =  n — Tio =  Ae~'̂

such that

^ = - 2 r A e - '
dr

From the Abel formula:

dd dr 
y dr ^̂ 2 _  yiji

=  -  4yA
^ rexp{— r̂ )

Let A= 1 /7T°̂  then:

e{y) =  -  2ye - y
(3.33)

6{r) = n  —Tio =  ^ e '
7TÎ (134)

The beam deflection algorithm was validated using the deflection data from equation 

3.33. The algorithm of equation 3.25 reconstructed the relative refractive index field, 

which was then compared with the analytical solution for 5(r) given by equation 3.34.

Figure 3.15 shows the reconstructions along the y-axis using 20 and 50 views (or 

projections) and 250 rays. It is seen that the reconstructions are accurate everj-where
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except near the center where the reconstructions over predict the relative refractive index. 

As noted by Paris (1988), reconstructions with the CBP algorithm in the absence o f noise 

can be made as accurate as desired by increasing the number o f samples per projection 

and/or by increasing the number o f views. Figures 3.15 and 3.16 demonstrate the validity 

o f  this statement. The reconstructions corresponded exactly with the analytical solution 

when the number of views was increased from 100 to 300 as seen in Figure 3.16. At 50 

views, the reconstruction is reasonably accurate everywhere except near the center. In 

actual experiments, discussed in the next chapter, it was decided to use 50 views. Greater 

number o f views required more time to acquire the images as well as increased the 

storage and computational requirements.

The beam deflection algorithm was successfully validated and could be used to 

reconstruct refractive index fields from actual data using the rainbow schlieren technique. 

The experimental procedures for acquiring the data will be described in chapter 4 and the 

reconstructed fields will be compared with direct measurements.
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C h a p t e r  4  

EXPERIM ENTAL M ETH O DS

In this section we describe the experimental apparatus as well as the experimental 

procedures. Also discussed are the sources o f errors in the measurements and a statistical 

analysis o f  random errors present in the measurements.

4.1 Experimental Apparatus

The overall experimental setup is shown in Figure 4.1. The basic setup consisted 

of the rainbow schlieren system, the heated air je t apparatus, and a data acquisition and 

control system. Three types of jets were investigated in this work: a vertical heated round 

jet, an inclined heated round jet and a vertical heated rectangular jet. The jet mounting 

apparatus allowed for the interchange o f the jet tubes depending on the type of jet being 

investigated. For all jets, the experimental setup and experimental procedures remained 

the same. The experimental procedures consisted o f calibrating the rainbow filter, 

measuring temperatures by a thermocouple probe, and acquiring the rainbow schlieren 

images.

The coordinate system used is also shown in Figure 4.1. The origin was at the 

intersection o f the axis of rotation and the horizontal plane at the jet exit. The z-axis was 

oriented along the axis of rotation in the downstream direction. The x-axis was parallel 

to the direction o f the light rays, and the y-axis was oriented normal to the direction of



the light rays. The inclined round jet was tilted with respect to the z-axis. For the 

rectangular jet, the major axis was along the y-axis and the minor axis was parallel to the 

x-axis.

The optical set up is also shown schematically in Figure 4.1. The light from a 

continuous xenon lamp was transmitted to the source slit by a 200pm fiber optic cable. 

The slit aperture was 50 microns in width and 2mm in height. The beam was collimated 

by an achromatic lens o f diameter 63 mm and focal length 490mm. The parallel beams 

then passed through the heated jet. A second lens similar to the collimating lens was used 

to focus the light rays. This lens produced the image o f  the slit source at its focal point. A 

rainbow filter was placed at the focal plane o f the decolliminating lens. A camera lens 

placed beyond the focal plane then produced the image o f  the test-section on a charge 

coupled device (CCD) sensor. The image was captured and digitized by a frame grabber 

installed in a 486 personal computer.

Figure 4.2a shows the round jet assembly. The jet apparatus consisted of an 

aluminum tube o f inside diameter 7.1mm. The total length o f the tube was 190mm. The 

lower half was 12mm outside diameter to fit into a pair o f 90 degree screw gears mounted 

on a rotating table. The bottom end of the tube was a 1/8" NPT machined male thread 

for connecting with a 90 degree rotating swivel fitting, whose other end was connected to 

the exit o f the air heater shown in Figure 4.2a.

The rotating mechanism consisted of a pair o f  90 degree screw gears with the 

driver gear connected to a stepper motor via a shaft and a coupler. The assembly was 

supported by an open rectangular box made of 6.35 mm thick aluminum plates. A
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rectangular particle board o f 15.2 mm thickness was placed on the holder flush with the 

jet exit (and just below the incline for the inclined jet) so as to minimize convection 

currents from the jet tube wzdls and the rotating mechanism affecting the je t flow. The 

entire holder assembly was insulated with high temperature fiber glass insulation.

The inclined jet is shown in Figure 4.2b. The jet consisted o f an aluminum tube 

o f 12mm outside diameter and inside diameter o f 6.35mm. The total length o f the tube 

was 190mm. The top end o f the tube was a machined 1/8” NPT male thread for 

connecting with a brass fitting inclined at 30 degrees to the vertical. The inside diameter 

o f the inclined standard brass fitting was 5.4mm. This inclined fitting then formed the 

exit o f the je t tube. The middle o f the tube was fitted into the pair o f  90 degree screw 

gears mounted the rotating table.

The rectangular jet apparatus is shown schematically in Figure 4.2c. The jet 

apparatus consisted of a brass rectangular tube o f crossection 8.7mm by 3.9mm inserted 

into a 12mm outside diameter tube with an inside diameter equal to the diagonal o f the 

rectangular tube crossection (Figure 4.2c). The total length o f the tube assembly was 

190mm. The lower half was 12mm diameter to fit into a pair of 90 degree screw gears 

mounted on the rotating table.

The air heater shown in Figure 4.3 consisted o f an electrical heater, which could 

heat the air to a temperature o f upto 1100 K depending on the supply voltage. This heater 

was essentially a heating element enclosed in a high temperature Pyrex glass tube o f 

10mm O.D. The glass tube was inserted into a stainless steel tube of 12.7mm. O.D. The 

heater was insulated along its length using high temperature fiber glass insulating blanket.



The heater was 133mm long and it was rated at 25 to 400 S.C.F.H air flow (0.71 to 11.31 

m^/hr.) with a power rating o f 465 watts @ 120 volts. The voltage could be varied by a 

power control module (variac) connected to a standard 120 V electrical outlet. 

Compressed air passing through a mass flow meter and a needle valve was fed to one end 

o f the heater. With an appropriate compression fitting, the other end o f the heater was 

connected to the rotating swivel at the bottom o f the jet tube in the tube holder.

A three-dimensional translating mechanism as shown in Figure 4.3 was used to 

obtain thermocouple measurements across the heated air jet. The thermocouple was 

constructed o f thin 0.013mm diameter wire o f type-K. The bead diameter was about 

0.3mm. Thermocouple measurements were taken at three heights above the jet exit at 

z=5mm, 10mm and 15mm planes. The z-axis o f the translating stage was not automated. 

At each height, temperatures were taken along the x-axis (parallel to the light rays) and 

along the y-axis (normal to the light rays) at equal intervals o f  about 1 mm using the 

stepper motors connected to the translating stage. The stepper motors were computer 

controlled and the thermocouple measurements were recorded by the same computer 

using a data acquisition card. The data were acquired at a rate o f  10 samples per second 

for a period o f 10 seconds, thereby providing 100 measurements at each point. Details of 

the data acquisition card and software are described elsewhere [Butuk and Gollahalli 

(1996)]. The temperature was measured at approximately 100 points along each axis.
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4.2 Experimental Procedures

Figure 4.4 shows a schematic o f the apparatus used to calibrate the filter before 

using it to study a particular test field. The calibration was done without disturbances in 

test field. The calibration procedure consisted o f mounting the filter on a micrometer 

translating stage operated manually. The procedure involved translating the filter across 

the focal point over the width o f the rainbow filter. The translation was done in steps o f 

0.01 mm and at each step an image of the test section with no disturbances was captured. 

This was done after carefully aligning the optical components. In all, about 120 steps 

were taken for a total o f 120 images. These images were then processed and the average 

hue over a rectangular portion of the image was computed for each image. The standard 

deviation o f the mean hue was also obtained for each image. A standard deviation o f less 

than 0.06 radians was desired for a good quality filter. This indicated a correct sizing of 

the slit in relation to the filter width. The hue o f each image plotted against translation 

across the filter produced the calibration curve shown in Figure 3.2. This filter is the 1st 

generation filter following the terminology introduced by Greenberg et al.(1995).

The 1st generation filter resulted from an optimization procedure that was 

performed to manufacture the filter. The filter was manufactured by computer generating 

the desired rainbow spectrum over the desired width. This width depended on the 

sensitivity required o f the schlieren system. The hue variation from 0 to 360 degrees was 

linearly distributed over the width of the filter. The computer output was printed by a 

35mm slide recorder. The 35mm slide was then sent for development and printing in a 

photographic shop. Once developed, the hue distribution on the printed 35mm slide
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(known as zeroth generation filter) will not be linear as desired. This is because o f the 

nonlinearities introduced by the recorder, the film developing process and the schlieren 

system. To linearize the hue distribution, a correction procedure was undertaken. In this 

procedure, the relationship between hue and filter location o f this zeroth generation filter 

was used to produce a 1st generative filter that corrected for non-linearities present in the 

zeroth generation filter. Essentially the difference between the computer generated linear 

curve and the measured curve o f the developed filter was determined. This difference was 

then used to add or subtract to the hue distribution used by computer to produce the 1st 

generation filter. This nonlinear hue distribution was sent to the slide recorder and the 

printed film subsequently developed. This procedure could be repeated to create the next 

generation filter until the desired degree of linearity was achieved. In this work it was 

only necessary to produce a 1st generation filter whose calibration curve is shown in 

Figure 3.2.

The experimental procedure involved setting the flow rate at a fixed value of 

0.004 m"/min. for the round jet ( 0.00206 m'’/min. for the inclined jet and 0.004 mVmin. 

for the rectangular jet) to provide Reynolds numbers o f 570. 380 and 500 respectively at 

the jet exit. These were based on diameter for the round and inclined jet and based on 

width for the rectangular jet. The experimental conditions are shown in Table 4.1. The 

experiment was started by turning on the heater and fixing the voltage at a predetermined 

value to give a jet exit temperature of about 450K. The jet attained steady state conditions 

after about 1.5 hr. Even after this time the fluctuations in the line voltage caused 

temperature variations of up to lOK. in the jet exit temperature.
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After attaining steady state, the experiment was begun by turning off the air flow 

rate eind by capturing the image o f the undisturbed test section. This image weis used as a 

reference zero deflection image or the background image. The average hue for this image 

was used as the reference hue. After this image was captured, the flow was turned back 

on and thermocouple point measurements were taken at the z =5mm axial plane. After 

probe measurements along the x and y axes at z =5mm and along the y axis at the 

z=lOmm plane, the experiment was half completed. At this time the schlieren images 

were acquired and stored.

For the round jet, because o f axisymmetry, images were acquired only at one view 

angle. This was done by visually capturing the most symmetric image displayed on the 

computer screen. For the inclined jet and the rectangular jet, 50 views o f the heated jet 

were acquired by rotating the jet using a stepper motor in equal angular increments over a 

360 degree angle. A Windows-based image processing program was used to acquire and 

store the images. The program had the basic processing functions for capturing, saving 

and loading the images. Each schlieren image was recorded and stored in digital form for 

later analysis.

After acquiring the schlieren images, point thermocouple measurements were 

completed for the x axis at the z=lOmm plane and for x and y axis at the z=15mm plane. 

The experiment was then shut down and the images analyzed using the convolution 

backprojection algorithm. The details o f this algorithm have been described in chapter 3. 

For accurate reconstructions in the near region o f the rectangular jet, it was necessary to
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increase the number o f views. Linear interpolation was used to increase the views from 

50 to 99 over 360 degree angle o f rotation.

4.3 Sources of Errors and Error Analysis

There are four main sources of error in the present measurements with the 

schlieren technique

(i) Random errors due to flow disturbances

(ii) Errors due to optical imperfections, misalignment o f the optical setup and 

non-uniformities in the background hue.

(iii) Experimental errors due to vibrations, imperfect jet rotation and orientation

(iv) Errors introduced by the reconstruction algorithm.

The random errors because of room air disturbances were found to be the major 

source o f error. Some causes o f these disturbances include natural room air currents 

caused by the movement of occupants and variations in room temperature, natural 

convection currents caused by the mounting system surfaces, temperature fluctuations 

because of line voltage variations and room air disturbances from unknown sources. 

These disturbances caused the jet to sway about the axis of rotation. Therefore care was 

exercised in capturing the images by visualizing the most steady jet on the computer 

screen. A statistical analysis was performed to quantify this random error. The procedure 

o f analysis is explained below.



The errors due to optical imperfections such as chromatic aberration o f  lenses and 

non-linearities in the manufacture o f lenses affected the data. These errors affect the 

accuracy o f  the instrument and are fixed for a particular schlieren optical setup.

Another source o f errors is because o f the misalignments. Since the je t tubes used 

were not manufactured to high precision there was misalignment in their vertical 

orientation. The rotating system was also not o f high precision and caused some rotation 

misalignment. These errors created difficulty in exactly matching the location o f the 

thermocouple measurements with the schlieren reconstructed temperatures in some cases. 

Even though care was exercised in measurements, the errors due to misalignments caused 

spatial resolutions to be off by ±5 pixels in some cases, which is equivalent to about 

±0.5mm.

The reconstruction algorithm could also introduce errors. Using convolution 

backprojection (CFB), Hughey and Santavicca (1982) identified four possible causes o f 

these errors:

(i) The presence o f noise in the data or the magnitude o f the signal to noise ratio (SNR)

(ii) aliasing errors caused by undersampling both in angle and space.

(iii) Gibb's phenomena, which occur when there is a discontinuity in the refractive 

index field to be reconstructed.

(iv) improper choice of the convolution or filtering function

The presence of noise in the projection data can have a profound influence on the 

reconstruction accuracy. Hughey and Santavicca (1982) have demonstrated that even a 

2% random error in the data can cause reconstruction inaccuracies of as much as 10% in

89



the center region. By performing a frequency spectrum o f the projection data they 

suggested a method o f  identifying noise data and separating it from the signal data. When 

this is done, the inaccuracies in the center region o f the reconstruction tend to be 

smoothened.

Aliasing errors are caused by undersampling the projection data per view. When 

this occurs, high frequency components appear at low frequencies; this causes under 

prediction o f the je t peak. Dash (1992) has pointed out that, if the spacing o f the 

projections is decreased (by oversampling), the real difference between adjacent 

projections becomes smaller. When this difference becomes comparable to the noise in 

the data, the CBP algorithm becomes inaccurate. It is hence recommended that noisy data 

be smoothened. Steightz (1974) gives the formula required for adequate sampling o f M 

points in a given projection it is:

A /  =  R ^ m a x / 7T

where R is the outer radius o f the flow boundary and Wmax is the maximum frequency of 

the experimental projection data. According to the sampling theorem, a function can be 

uniquely recovered from its samples if it is sampled at a rate greater than twice the 

highest frequency component o f the function. This Nyquist frequency is given by l/2a, 

where a is the sampling spacing in the projection. If the sampling criteria are not met, the 

reconstruction function will contain contributions from the under-sampled high 

frequency components which appear as low frequency contributions in the transform 

domain.
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The filter that is used in the reconstruction should filter out high frequency 

information in the experimental data. K.woh (1977) has indicated that the ideal filter has 

a bandwidth which includes all the essential information for reconstruction, but filters out 

high frequency noise.

The other source of error is the Gibbs phenomenon which occurs when there is a 

discontinuity in the refractive index o f the flow field. When this happens, an oscillating 

overshoot occurs at the discontinuity. This is the cause o f  error in the convolution 

backprojection algorithm. This phenomenon is likely to occur at je t boundaries o f the 

reconstruction region.

Experimental errors and statistical analysis

Holman (1994) discusses two types o f experimental errors, (i) systematic or fixed 

errors. These are the errors that are o f similar magnitude in all repeated measurements, 

and (ii) random errors, which are caused by human operators, environmental conditions, 

fluctuations in the voltage and other random sources o f errors.

The random errors were greater than the fixed errors in this study. Therefore, we 

shall discuss the relevant analysis procedure for these errors. Uncertainty in these errors 

are best reported in terms of statistics based on the 95% confidence level, and the 

assumption that the measurements follow the Gaussian type distributions clustered about 

the median with a common median and standard deviation independent o f sample size. 

Statistically, a value o f three times the standard deviation on both sides o f  the mean value 

(i.e, ±3ct) covers most of the euea under the Gaussian normal distribution curve. The 

95% confidence interval is covered by ±2a of the mean value. This ±2ct confidence
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level is taken as the basis of student’s t-test. The use o f the normal distribution curve 

requires many samples from a large population. Experimentally the number o f  samples 

that can be acquired is limited. Therefore, the student’s t-test modifies the spread about 

the mean by a factor depending on the number o f  samples and the required confidence 

level. With this modification fewer samples o f  varying data can be acquired and 

analyzed. When an unbiased data of n samples is acquired, the standeird deviation is 

calculated as

a  =
n  — 1

where x, is the data and Xm is the mean. For an uncertainty level o f c, the Students ‘t ’ 

distribution gives:

t is found from students t-tables for different degrees o f freedom and levels o f  confidence. 

For example for ten samples, at 95% confidence level, the Students t= 2.228 [Holman 

(1994)]. Sample calculations of error using this procedure are given in Appendix A. 1.
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T a b l e  4 . 1

Experimental Conditions:

Jet Round Inclined Rectangular

Flow rate (cold), m^/min 0.004 0.00206 0.004

Mass flow rate, kg/s 7.847X1 O'" 4.041X10'-' 7.847X10'"

Reynolds number 570 380 500

Exit temperature. K 450 450 450

Diameter or major 
dimensions, mm 7.1 5.4 8.7X3.9
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Chapter 5 

RESULTS AND D ISC USSIO NS

In this section, the discussion o f measurements in the heated round jet, the 

inclined round jet, and the rectangular jet is presented. First, we shall present the 

discussion o f the round je t which is followed by the discussion o f  the inclined jet and 

finally the discussion o f the rectangular jet.

5.1 The Round Heated Jet:

The results o f  the schlieren reconstruction o f  the axisymmetric heated air jet 

temperatures are discussed. All the results presented were reconstructed using the 

convolution backprojection (CBP) algorithm discussed in Chapter 3. This algorithm 

meant for asymmetric fields can be used to reconstruct an axisymmetric jet since in this 

case the projections are independent o f the viewing angle, and as such the measured 

single projection in one direction is simply duplicated the desired number o f times to 

obtain the required number o f views. A schlieren photograph o f one view o f the round jet 

is shown in Appendix B.2

Figure 3.2 shows the calibration curve used in the reconstruction. The steps 

involved in the reconstruction are shown in Figure 5.1a,b,c and d. Sample calculations are 

shown in Appendix A.5. First of all, the hue of the captured image for a particular scan 

line is determined and is shown in Figure 5.1a. Using the calibration curve the deflections 

corresponding to the recorded hues are determined. These eue shown in Figure 5.1b.
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Using these deflections, the beam deflection tomographic algorithm is implemented in 

order to reconstruct the refractive index field which is shown in Figure 5.1c. Finally, 

using the Gladstone-Dale relation (see equation 3.26) the temperature field was 

determined as shown in Figure 5.Id. All these steps were incorporated into the 

reconstruction computer program. The asymmetry that is seen in Figures 5.1a and b was 

caused by the noise in the data. During reconstruction the backprojection algorithm 

(which is a summation process) acts as an averaging process [Faris and Byer (1988)], in 

essence reducing the noise in the data and restoring some symmetry and smoothened data 

as seen in Figure 5.1c.

To investigate the effects of unsteadiness o f the je t on the results, 10 consecutive 

images were acquired and used to reconstruct the temperature field measured 

immediately after the acquisition of the images. Figure 5.2a shows the resulting hue plots 

o f the images, and Figine 5.2b shows the mean hue with corresponding error bars 

(determined statistically as described in Chapter 4) at each point. This hue plot is the first 

step in using rainbow schlieren method to reconstruct the temperature field. Figure 5.2 

clearly shows the effects o f unsteadiness o f the jet on the results.

Now with 10 consecutive images acquired, there are two ways to proceed in 

reconstructing the temperature field. One way is to take an average o f the hue o f all the 10 

images and use this mean hue to reconstruct the temperature field. The other way is to use 

each image separately and reconstruct the temperature field corresponding to each image. 

The resulting temperature to be compared with thermocouple data, is then simply the 

average o f all the temperatures from each individual image. Both of these approaches
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were implemented using the basic 10 images and Figure 5.3 shows the results as 

compared with thermocouple data. From the figure, it is clear that both approaches are 

not the same, better comparison with experimental thermocouple data was obtained by 

averaging the hue o f the 10 images than averaging the temperatures. The reason for this is 

because of the non-linearity of the process. The reconstruction errors accumulated when 

each individual image was used for reconstruction. Hue averaging results in less 

reconstruction errors since reconstruction is performed only once. Therefore, the rest of 

the results will be presented using this method.

The errors due to jet unsteadiness were calculated statistically as described in 

chapter 4 using 95% confidence level and student’s t-distribution. Sample calculations 

are shown at the end o f chapter 4. The results indicate a maximum error in the schlieren 

reconstruction o f  about 13 % caused by room air disturbances. The same proceedure was 

used to evaluate the thermocouple errors which were found to be 2% of the mean 

temperature recorded. Other sources o f errors are analyzed in the uncertainity analysis 

shown in Appendix A.6.

Figures 5.4a, b, and c show the comparison of reconstructed temperature using the 

mean hue of 10 images with thermocouple measurements at axial locations of 5mm. 

10mm, and 15mm above the jet exit. The figures also indicate the error bars calculated 

statistically as described above. It is seen that for all locations, the reconstructions using 

the schlieren technique compare reasonably well with the thermocouple measurements. 

The reconstructions at axial locations of 10 mm and 5mm are better than that at 15mm. 

due to the unsteady nature of the jet further downstream. Figure 5.4d shows the error bars
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on both thermocouple data and schlieren data for the 5mm location. As indicated above 

the thermocouple errors were estimated at 2%.

Figures 5.5a, b, and c are comparison between temperatures obtained from single 

schlieren images taken during thermocouple measurements. The images was captured by 

visual observation o f the most steady symmetric image. The data are again for axial 

locations 5mm, 10mm, and 15mm. Again to within experimental error the data compare 

well. The same trend in data is also evident as discussed above. The instability at axial 

location z =  15mm is obvious. At station z = 10 mm, the oscillations at the center o f the 

schlieren reconstmction, may be attributed to the noise that is present. Comparing this 

figure with the corresponding Figure 5.4b, it is noticed that Figure 5.4b has less noise 

than Figure 5.5b and therefore lacks the oscillations observed in the center point data o f 

Figure 5.5b.

So far, the above discussion has focused on the reconstruction along the axis 

parallel to the light rays. When taking thermocouple measurements, it was noticed that, 

because o f the inherently intrusive nature o f the thermocouple, there were errors 

associated with thermocouple measurement. These errors were more pronounced in the 

data taken normal to the light rays. This was because when taking measurements in this 

direction, the thermocouple intruded more into the flow and disturbed the symmetry of 

the jet more in this direction, than in the direction parallel to the light rays. This is seen in 

the reconstructions for this axis shown in Figures 5.6a and b. Figure 5.6a is 

reconstruction for the 5mm axial position and Figure 5.6b is the reconstruction for axial
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position of 10 mm. Despite the asymmetry o f the thermocouple data, the reconstructions 

are good especially for the 10 mm axial position.

5.2 The Inclined Round Heated Jet

Next, we discuss the comparison between experimental thermocouple 

measurements and the schlieren technique results for the inclined jet. Thermocouple 

traverse measurement were performed at two locations downstream o f the inclined jet. 

These were at the locations z = 5 nun and 10 mm. At each location, measurements were 

performed along the axis parallel to the light rays and along the axis normal to the light 

rays. The measurements along the axis parallel to the light rays were performed along 

the x-axis (y = 0 ) with the origin centered at the axis o f rotation at the perpendicular 

plane coinciding with the jet exit. With this coordinates system(as discussed in chapter 4 

and shown in Figure 4. ), the jet exit was inclined and shifted about 10 nun from the 

origin.

Figure 5.7 shows the contours o f a vertical plane through the line y=3mm and 

parallel to the light rays. In this plane the development o f the jet vertically can be 

visualized. Appendix B.3 shows two schlieren photographs o f two views of the inclined 

jet. It is seen from figure 5.7 that in relation to the center o f the test section the visible jet 

was confined to the extreme end of the test section. A part o f the jet was outside the 

schlieren view area at heights above 5mm. This was also observed in the horizontal 

contour plots described below. The three-dimensionality o f the jet was accurately
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reconstructed by the schlieren technique. The highest temperature shown was about 380 

°K and the jet profile can be observed upto a height o f  about 17mm.

Figure 5.8 shows the contour plots o f the reconstructed temperatures at z= 5mm. 

From the figure, it is clear that the jet exit was slightly shifted to the right o f  the z-axis, 

according to the coordinate system discussed above (chapter 4). The light rays were 

parallel to the x-axis, and therefore, the direction o f inclination of the jet was away fi'om 

the center o f the test section. Figure 5.9 shows the contour plots o f  reconstructed 

temperatures at z= 10 m. It is noticed that the je t is shifted further away from the x-axis 

and that it is right at the border of the reconstructed region with a part o f the contours cut

off. Figure 5.10 shows the contour plots at z = 15 mm, where it is now clear that the jet 

has developed to outside o f the reconstruction region. These contour plots corroborate the 

vertical contour plots o f  Figure 5.7 discussed above.

Figure 5 .11 shows the comparison o f the thermocouple measurements with 

schlieren results for the axis perpendicular to the light rays at the line x = 12 mm. The 

comparison is very good, except at the center and at the left boundary. The discrepancies 

cam be explained as due to the errors inherent o f the schlieren technique and discussed in 

details, in a previous chapter. Figure 5.12 shows the reconstructions along the y = 0 axis, 

i.e. parallel to the light rays. Again, the agreement with thermocouple measurements is 

good. The slight increase in temperature to the left o f the origin between y = -5mm and 

y = -10mm is due to the convection currents rising from the bend region o f the tube and 

from the mounting system o f rotation.
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Figure 5.13 shows the reconstruction of the location z = 10 mm at the x = 15 mm 

coordinate line. The x-coordinate of the measurement axis was not the same as for the 

location z=5 mm. The thermocouple measurement location was changed in order to 

follow the jet as it shifted further away from the z-axis downstream of the jet axis. The 

agreement between the schlieren measurement and thermocouple measurements were 

good at this location. Figure 5.14 shows the reconstruction at z =10mm for the y=0 line. 

The comparisons between thermocouple and schlieren follow the same trend as above 

except that the thermocouple measurements are wider than the schlieren measurements. 

This discrepancy can be explained as due to the Gibbs phenomena present in the 

reconstruction algorithm and explained by Hughey and Santavicca (1982). This error in 

the reconstruction occurs when there is a discontinuity in the refractive index o f the flow 

field. In the contour plot o f Figure 5.9, the discontinuity is seen to occur at the upper 

boundary where the outer contour o f the jet is seen cut-off. Because of this, there is a 

discontinuity in the refractive index at this location.

5.3 The Heated Rectangular Jet:

In this section, we present results o f the development o f the heated rectangular jet. 

First of all results o f the comparison o f temperatures reconstructed using the schlieren 

technique and thermocouple measurements obtained at three x-locations along the axis of 

the jet in the downstream direction are presented. The results for the development o f  the 

jet are presented last.
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Figures 5.15a, and b show the comparison o f the thermocouple measurements 

with schlieren measurement at z= 5 mm above the nozzle height. The comparison for the 

major axis are shown in 5.15a and those for the minor axis in 5.15b. The comparison o f 

temperatures for the major axis is good except at the center. The thermocouple errors 

were determined statistically as described in chapter 4 to be +1-2%. It was found that the 

main cause o f  discrepancies is due to the jet imsteadiness caused by air currents in the 

room. In the section on the round jet, details o f the errors was pointed out to be +/- 10% 

and that this error can be minimized if  the jet is stabilized by carrying out experiment in a 

completely quiescent surroundings. When this error is eliminated the errors that are left 

are small (<3%) and are caused by other sources o f  errors discussed in Chapter 4. These 

errors including the fixed errors inherent in the schlieren technique itself have also been 

discussed and an uncertainity analysis is shown in Appendix A.6. The noise in the data 

was mainly due to convection currents rising from the heater and the rotating mechanism 

enclosure. Insulation could not completely eliminate the convection currents. Within the 

experimental error, therefore, the thermocouple measurements and schlieren 

measurements compare well.

Figures 5.16a and b show the comparisons o f data at z = 10 mm. The comparison 

here is closer than at z = 5 mm. This simply indicates that the image used for the 

reconstruction was closer to the mean value sensed by the thermocouple. The 

thermocouple readings were obtained over a 10-15 minute period as described in the 

experimental chapter. Readings at each point o f transverse were sampled for 10 s at the 

rate of 10 samples per second, from which a mean value was determined for each
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traverse point. When capturing the schlieren image to be used for the reconstruction, care 

was taken in order to capture an image that represented a mean o f the fluctuations due to 

the je t unsteadiness. These disturbances caused the jet to sway about the z -axis, the 

image that was vertical was therefore considered the mean image. The disturbances of 

the jet could o f course have been eliminated by enclosing the je t in a chamber with glass 

windows. This was not done however because we wanted a simple system to prove the 

rainbow schlieren imaging technique without introducing complications caused by 

deflections through optical glass windows. In systems with glass windows it is possible 

to incorporate this fact in the computation having demonstrated the validity o f the 

technique.

Figures 5.17a and b show reconstructions at z =15 mm. The thermocouple results 

shows while comparing the data o f  all the three x stations o f the je t’s major axis, the jet 

has spread outwards. The comparison on the minor axis, on the other hand, is not quite 

obvious. It will be shown below that the jet spreads out more in the plane of the major 

axis than in the plane of the minor axis.

Figures 5.18a, b and c show the temperature contours at z = 5, 10, and 15mm 

respectively. From the plots it is evident that the jet spreads more on the major axis than 

on the minor in this near nozzle region o f the jet. The contours closer to the nozzle at 5 

mm are less smooth than the downstream contours. This was found to be a problem of 

the reconstruction technique caused by limited number o f rotational views. To 

reconstruct the temperatures, the je t was rotated at 50 angular positions to obtain 50 

images used in the reconstruction. Because closer to the nozzle the field is more three
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dimensional, more views are required for accurate reconstructions. Improved 

reconstructions were obtained when the images were increased to 99 by linear 

interpolation. This fact suggests that the convolution backprojection algorithm is not 

suitable for limited view reconstructions. For situations where the number o f views is 

limited, algebraic techniques o f reconstruction are preferred [Dufang (1995)].

Figures 5.19 and b are plots of temperature contours in a vertical plane showing 

clearly the extent o f  the heated jet. Two schlieren photographs o f the je t at two different 

view angles are shown in Appendix B.4. Figure 5.19a is the plot o f  the je t spread in the 

major axis and 5.19b is the plot for the jet spread in the minor axis. From the plots it is 

clear that the je t spreads more in the major axis than in the minor axis.

Figure 5.20a shows a plot of jet half width distance. The je t half-widths Y 1/2 , X,# 

defined as the distances from the centerline o f the jet to the point where the axial mean 

temperature in each plane is equal to one half o f  its centerline value. The jet width in the 

major axis is denoted Y m  and the jet in the minor axis is denoted X 1/2 . Figure 5.20b and 

5.20c shows these plots non-dimensionalized by equivalent diameter Dg. Define a 

combined half-width as Ye = (Y 1/2 Xic)''^ [Hussain and Hussain (1989)]. The jet in the 

major axis spreads faster than in the minor axis and the combined half width spread lies 

in between the spreads for the major and minor axes-see Figure 5.21. The combined half

width can be used to characterize the overall behavior of the heated rectangular jet. 

Krothapalli (1981) reported a linear growth rate o f  the minor axis and a nonlinear growth 

rate o f the major axis in their study of momentum jets. Chin-ming Ho and Gutmark 

(1987) also observed the same trend.
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Figure 5.22a shows a plot o f  the decay o f centerline temperature. Previous 

investigators have identified three regions o f flow issuing out o f a heated rectangular jet; 

an initial region close to the nozzle where the center line temperature is fairly constant, 

followed by a second region where the decay o f centerline temperature is proportional to 

x '\  and then a region extending to infinity where the centerline temperature decay is 

similar to that o f  a Jet issuing from a circular crosssection. These three regions are 

termed, the potential core, the two-dimensional region and the axisymmetric region 

respectively. From Figure 5.22a the trend suggest the two dimensional region. Figure 

5.22b shows the plot o f  the two dimensional region fitted with a linear curve. In this two 

dimensional region the temperature decay profile follows the equation [Sfeir(1976)];

r . - T ,
=  k { z  — c) -I

where Tc is centerline temperature. Ta is ambient temperature. Te is jet exit temperature, k 

and c are constants and z is the dimensionless downstream distance (in this study the 

length dimensions were nondimensionalized with equivalent diameter De as defined by 

Hussain and Hussain (1989) and equal to the diameter o f a round jet with same 

momentum flux area as the rectangular jet). Figure 5.22c shows the fit of the two 

dimensional region temperature decay data to the above equation. In this figure r|=(z-c)'‘ . 

The fitting to the equation is good. A value of k = 3.1 was obtained. Zijnen(1954) 

obtained a k value o f 4 for his heated turbulent rectangular jet.
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Figures 5.23a and b show the temperature profiles at four z locations (z = 7mm, 

14.3mm, 23.4 mm and 32.5 mm) across the major axis o f the rectangle. In Figure 5.23a 

the spread o f the jet is evident. Figure 5.23b are the same profiles in nondimensional 

similarity parameters as used by Zijnen(I958). The major axis temperature deficit AT 

was nondimensionalized by centerline temperature deficit ATc , and y was 

nondimensionalized by n, where T|=y/x-Xo in which Xq is the virtual origin. The equation 

he curve fitted to the data was:

A T
—  =  [ 1 +  30t?2 +  22007)" -  300007)® ]

As found out by Zijnen(1958) the profiles seem to collapse into a single profile. This 

indicates that a similarity exists between the temperature profiles in this region. Zijnen’s 

(1958) curve fitted equation to the profiles is also shown in Figure 5.23b. The curve fits 

the data fairly well except that it is a bit wider than the data. This may be due to the fact 

that Zijnen’s data were for turbulent large aspect ratio rectangular jet as opposed to our 

laminar data. Figure 5.24a and b shows the same profiles across the minor axis 

corresponding to the same downstream z positions. In this plots the temperature jet 

spread is very small and Zijnen’s curve fitted equation do not fit the profiles.

In order to be able to get a rough idea o f how a heated rectangular jet develops, a 

comparison is made between the well known developments o f the heated round and plane 

je t in Figure 5.25. The round jet with an aspect ratio of one and a plane jet with an 

infinite aspect ratio, are often quoted in literature as the limiting cases of three 

dimensional geometries. Because the round and the plane jets are two dimensional.
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theoretical solutions are easy to obtain. In Figure 5.25, the plane and round jet solution 

were obtained using the simple method described by Kanury(1975). More detail analysis 

o f the equations and solution procedure can be found in Brand and Lahey ( 1967) and in 

Gebhart (1986 ). The centerline temperature o f a plane jet decay as x"'^ and for a round 

jet the decay is as x '. Plotted in Figure 5.25 are the theoretical solutions o f je t half 

widths for the round and plane jet and the schlieren experimental results o f the 

rectangular j e t . The half-jet width was calculated as discussed above. The development 

o f the jet is shown in Figure 5.25 as starting o ff as a plane jet and growing towards the 

round jet shape.
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Chapter 6 

CO NCLUSIO NS AND RECO M M ENDATIO NS

We have demonstrated an application o f the rainbow schlieren technique for 

measurements o f temperature in 3-D flow fields. The tomographic algorithm of 

convolution-backprojection modified for beam deflection measurements was successfully 

used to invert the data measured by rainbow schlieren. The technique was tested on an 

axisymmetric heated air jet. The results o f the temperature reconstructions above the 

axisymmetric jet at several axial locations were shown to agree with thermocouple 

measurements to within experimental errors. The agreement validated the technique 

which could be used for measurements in a variety o f flow processes with refractive 

index gradients.

The technique was successfully used for measurements of temperature in an 

asymmetric flow field created by an inclined heated air jet. The flow field was 3-D and 

the data acquired by the rainbow schlieren technique was successfully inverted using 

beam deflection tomography. The results were shown to agree with thermocouple 

measurements at various locations. We have also shown that the technique could be used 

to nonintrusively study the evolution of a physical phenomenon.

A discussion o f the evolution of the laminar heated rectangular jet has been 

presented. The temperature profiles along the minor and major planes o f the rectangular 

jet were shown to agree with thermocouple measurements within the experimental
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errors. We have shown that the trend o f  the development o f the laminar je t was consistent 

with published results on three dimensional Jets. It was found that the spreading rate of 

the thermal shear layer o f the jet in the plane o f  the major axis was higher than that in the 

plane o f the minor axis.

It is recommended that this work be extended to study turbulent flows. To do this 

it will be necessary to acquire multiple images simultaneously. Since the number o f these 

images will be limited, the ART algorithm (which is suitable for limited view data) could 

be used to invert the measured data. When using the ART reconstruction algorithm, the 

rays need not be parallel. The ray paths can be integrated into the algorithm via ray 

tracing techniques. In this way the normal Z configuration of the schlieren arrangement 

can be used with non off-axis mirrors.

Also, to take advantage o f higher sensitivity o f mirror based schlieren systems 

(longer focal lengths), the fan-beam reconstruction algorithm should be tested with data 

obtained from fan beam schlieren arrangements as described by Schardin (1942). With 

mirror systems, wider fields o f view are possible than with lens systems. With fan beam 

rays through a test object, it is not necessary to have specially designed off-axis mirrors 

(designed to create parallel rays).

The rainbow schlieren technique can be applied to generally asymmetric 

fields. The optical arrangement of the system is highly flexible and can be modified to 

suit a particular application. The technique can be used, for example, to study, wakes, 

mixing layers, and hostile combustion environments.

1 6 0
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APPENDIX A l

Sample Calculation of Error;

For a point the following temperatures were reconstructed from 10 images: 415, 

398, 387, 395,414, 384,421, 399,406, and 386K. From these we calculate:

mean =  400.5AT 

std. deviation^ a — 13.10

t ac = ± —=  
\/n

2.228 X  13.10

= 9.23

168



APPENDIX A.2

Calculation of Grashof Number (Gr.) of Rectangular Jet:

The Grashof number is defined as:

Gr =

where

g the gravitational constant

P coefficient o f thermal expansion

p density

z distance downstream of jet exit

AT temperature deficit

|i viscosity

The table below shows the calculation of Gr at various locations downstream o f the 

rectangular jet:
Label Z.m T m ax K Tc-Ta. K mean. T. K beta(1/T) Grashof f

1 0.00146 451 141 380.5 0 003 21.072

2 0.00511 441 131 375.5 0.003 850.581

3 0.00694 445 135 3775 0 003 2184.171

4 0.00877 449 139 3795 0 003 4514.329

5 0.01059 445 135 377.5 0 003 7760.614

6 0.01242 437 127 3735 0.003 11903.353

7 0 01425 434 124 372 0 003 17624.416

8 0.01607 425 115 3 6 7 5 0.003 23729.005

9 0.0179 421 111 365.5 0.003 31826.295

10 0.01973 417 107 363.5 0.003 41309.698

11 0.02155 408 98 359 0.003 49918.882

12 0.02338 402 92 356 0.003 60347.981

13 0.02521 399 89 354.5 0.003 73499.385

14 0.02703 395 85 3525 0.003 87014.041

15 0.02886 389 79 349.5 0.003 99279.662

16 0.03068 391 81 350.5 0.003 121942.322

17 0.03251 389 79 3 4 9 5 0.003 141913.012



APPENDIX A 3

Reconstruction Algorithm:

P(0,t) projections; b(0,t) convolved projections; n(x,y) reconstruction; N number o f  view 

angles; M number o f rays in each projection.

1. Initialize n(x,y)=0

2. For each view angle do

Begin

3. Calculate P(0,t) for t= 1 ,M 

End

4. For each view angle do

Begin

5. Pass P(0,t) through the convolution function to find b(0,t)

6. For each (x,y) do;

Begin

7. n(x,y)= fi(x,y)+b(0,ycos0-xsin0) (b found by interpolation)

End

End

8. For each (x,y) do:

Begin

9. n(x,y)=(l/N-l)* n(x,y)

End

10. Stop
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APPENDIX A 4 

Derivation of the light ray deflection angle equation

The path o f the light ray in the xy plane is given by the following equation as discussed 

in Chapter 3:

d^y _  I dn  
dx'^ n  dy

The total angular deflection in the y direction at the exit o f the test section can be 

determined as follows: For small deflections, it can be shown that the angle o f the light 

beam as it traverses the test section is the slope dy/dx [Goldstein (1996)]. If this angle is 

denoted e‘ then the above equation can be integrated within the test section limits to 

obtain

dx

Now at the interface o f the test object and the surrounding, the light ray will undergo an 

additional deflection. If e is the angle o f the light beam after it has exited the test section, 

then from Snells’s law

TiaSine =  nsine

where n  ̂is the refractive index o f the air surrounding the test object, and n that in the test 

object. Thus for small angles

ne'
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and on substituting for e‘ from above we obtain

1 (d n  
e ~  —  — dx 

n„ J du
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APPENDIX A.5

Sample Calculations

Below is shown the steps used in the calculation o f temperature of the heated jets. 

The center point o f the round jet will be used to show sample calculations. From Fig. 

5.1a, hue at the center point is 279.5 degrees. When the calibration curve (Fig. 3.2), is 

used this corresponds to a y position on the filter o f 0.97mm. The background hue is 277 

degrees which gives a y position o f 0.96mm on the filter. Therefore,

A y  =  O.Olm m

Equation 3.2 gives the relationship between deflection angle and displacement distance 

on the filter plane

d =  Ay =  fftane ~

_  A y

f c

0.01 
“  49Ô

=2.04 X 10'^ radians 

This value is the same as that shown in Fig. 5.1b. Now using equation 3.25

V  M
n  — n„ T—̂ 7T T—\ , TVK

A.5.1

—  =  n{x, y) = j^ ^ )q { y œ s 6  -  xsinû -  ma)a
n,,

«1=1 n^l A.5.2

for N=50 views and M=278 rays, the normalized refractive index difference was 

calculated by the reconstruction program. The results are shown in Fig. 5.1c. The center 

point normalized refractive index difference was evaluated as -4.8 X 10'\
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To evaluate the temperature, the Gladstone-Dale relation o f  equation 3.28 was

used.

n - l  = Kp A.5.3

where K  is the Gladstone-Dale constant and p  is the density. For background refractive 

index we have

tLq 1 =  K p o  

and for the refractive index within the jet

n — 1 = Kp

Dividing these two equations we obtain:

t I q  1 P q  

n —l p

Since

P

we have

T n„ — 1

A.5.4

To n — l

From the reconstruction equation A.5.2 we obtain n-rio/rio, this is related to n-1 by

A.5.5

n — 1 — n„ — I H ( 1 +  — 1 )
rio

For air at T=288K and 0.5097pm wavelength, the Gladstone-Dale constant is given as 

K=0.0002274 m^/kg [Merzkirch (1987)).
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n„ -  1 =  0.0002274mV%  x \.202kg/m ?  

=0.0002733

Substituting in equation A.5.5 we obtain the center temperature T as

320 X 0.0002733
r =

0.0002733 +  -  4.8 X 10->(1 +  0.0002733 

=388.2K 

This is shown in Fig. 5 .Id.
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APPENDIX A.6

Uncertainity Analysis

Given a function f  o f several experimentally measured independent variables

f=f(xi,X2 ,X3 ,...,Xn), the variables X|,X2 ,X3 .... ,x„ are subject to uncertainity. If these

uncertainities are known, then the uncertainity in the result f can be evaluated using the 

equation [Holman (1994)]:

Wf  =
A.6.1

where w/ is the uncertainity in the result and w, (i=l..n) are the uncertainities in the 

independent measured variables.

This procedure is to be applied to determine the uncertainity in temperature 

measurements obtained by the rainbow schlieren technique. To do this, we need to consider 

the equations used in evaluating the temperature. The proceedure of obtaining temperature 

was described in Chapter 3 and the results discussed in Chapter 5. The key parameter that 

was measured using the rainbow technique was the deflection angle. This was then used to 

evaluate the refractive index from which the temperature was calculated using the 

Gladstone-Dale relation of equation 3.28.

The deflection angles were measured using the hue calibration curve shown in Fig. 

3.2 and equation 3.2

d =  A y  =  fj:ari£  ~  ^  ^ 2

The refractive index was calculated from equation 3.25 written below as:
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N  Wn - n . = fi(x, y) =  ■^^)q{yœs6 -  xsinB -  ma)a
"=‘ "*=‘ A.6.3

The temperature was determined from

. r io - lT=Z
A.6.4

where

n — l = n„— 1 + n(l 4- n„ — 1)

Using equations A.6.2, A.6.3 and A.6.4, the uncertainities in the measurements of 

temperature was determined as described below.

First the uncertainity in measuring the deflection angle, using the filter calibration 

curve (Fig. 3.2) was determined. During filter calibration, the filter was translated laterally in 

the y-direction in equal increments across its entire width. At each step of translation, an 

image of the undisturbed test section was captured at the recording plane (CCD camera). The 

hue that was transmitted by the filter and recorded corresponded to the hue on the filter, 

covering an area equivalent to the size o f the slit source at that particular y position. This 

transmitted hue which is assigned to the current y position on the filter, is obtained by 

averaging the hue of all the pixels in the recorded image covering an appropriate central area 

on the image; see Fig. A.6.1 below.
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F igure A.6.1 Filter calibration showing the area o f hue averaging at the 
recording plane.

Ideally the hue that is recorded at each translation step should be uniform. In practice 

this is not so because of fluctuations attributable to the light source and also fluctuations in 

the spatial transmissivity function of the filter. When the mean of all the pixel hues in the 

recorded image covering an appropriate central area o f the image is calculated, the standard 

deviation is also calculated over the same area of the image at each y position. The standard 

deviation gives us a measure o f the non-uniformity in the hue. This standard deviation is a 

useful parameter when evaluating the performance of the rainbow schlieren apparatus. At 

each y-position on the filter the standard deviation represents the minimum distance, a light 

ray will have to be deflected in order to measure an unambiguous change in the value of the 

hue. In order words this is the least count of the rainbow schlieren apparatus [Greenberg 

(1995)].

Figure A.6.2 below is a plot of the standard deviations of the hue as a percentage of 

full scale hue at each filter y position. Also shown is the filter calibration curve with hue
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plotted in radions. An average standard deviation o f 1.11% of full scale is calculated from the 

plot data;

1.11% of full scale

=  — X5.6 
100

=0.0621 radians
6.0

5.0-

4 .0 -

@ 3.0-

2. 0 -

h(y) = 4,556029E+0*y + 4.477672E-1 
RA2 = 9.951032E-1

1.0 -

0.0
0 0.2 0.4 0.6 0.8 1 1.2

18-

Ô  1 2 -

ÇtoJ

0 0.2 0.4 0.6 0.8 1 1.2
Position on filter, y.mm

Figure A.6.2 a. Calibration curve b. Plot of standard deviations of the 
hue as a percentage of full scale hue

The spartial transmissivity function of the filter is given by
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h = K 'y  + a

where K' and C  are constants. From the calibration curve, the best least squares linear fit 

equation is given by

h  =  4.556y 4- 0.448

for a change in hue of 0.0621 radians, a change in y (Ay) is calculated as Ay=0.013mm. 

Equation A.6.2 relates deflection angles to deviations on the filter, i.e.

y  =  /cf

where fc is the focal length of the decollimating lens. The deflection angle becomes

J- A.6.5
The uncertainity in deflection angle is then:

Ae =

Ay is the uncertainity in the measurement of y, which is taken as two times the standard 

deviation evaluated above.

Ae =  — A' 2 A  0.013 
490

=0.0000531 radians 

This is then the uncertainity in determining the deflection angle.

Next consider the reconstruction equation A.6.3 above. This can be broken down into 

two steps, the convolution step and the backprojection step. The convolution step is

1 8 0



M
t) =  ^ e ( e ,  t)q{t -  k)

A.6.6
the uncertainity in b(0,t) is given as

A6 = ^-Ae 
oe

t= i

=  q{t — 1) +  q [ t  — 2) +  ...

?(t) is given by equation 3.23b as

9(0 =  - \:s in \T rtu j^ )
A.6.7

where £ûmax=l/2a and a=sampling spacing which is 1 pixel. A plot of this function is shown 

in Figure A.6.3 below. The term in the series with the maximum absolute value is used as an 

approximate uncertainity estimate [Holman (1994)]. This value is 0.1. A more accurate 

analysis will require evaluation of the entire series. Even then the value will be less than 0.1.

A6 = 0.1 % 5.31 X  10-5

=5.31 X 10"̂
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Figure A.6..3 Plot of the convolution function q(t) vs.
distance from center of object in pixels

The backprojection equation is

n = l

the uncertainity in refractive index becomes

An = ^ . A b  
do

= l X5.31 X 10"

50 100 150 200 250

A.6.8

= 5.31 X 10"̂

The temperature uncertainity can now be determined. The temperature is obtained 

from equation A.6.4 above

T = Z
tTq-1 
n—1

1 8 2



the uncertainity in temperature is determined as

dT TUrio-1)
d{n — 1) ( 72 _  1

At the center of the round jet, the calculated normalized refractive index (n) was -4.8x10'^

— 1 =  n„ — 1 4- f i( l  4- fio — 1)

=  2.733 X 10-4 +  _  4 g X io -^ ( l +  .0002733) 
=0.0002253

dT 320 X 0 .0002733
d{n -  1) 0.00022532

=-1722928

A T =  1722928 x 5.31 x  10~®

=9.148K

The temperature at the center is calculated as 388K. therefore, AT/T is about 0.023 or 2.3%. 

The uncertainities at the other temperatures were calculated as:

normalized index T ,K AT,K AT/T %

-1X10' 332 6.7 0.02 2

-2X10' 339 7.24 0.021 2.1

-3X10' 352 7.85 0.022 2.2

-4X10'^ 380 8.53 0.022 2.2

-5X10' 394 9.31 0.024 2.4
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Appendix B. I. Filter hue distribution



1 7 .9mm

Appendix B.2 Schlieren photograph of the round jet



1 7 . 9 m m

Appendix B.3 The inclined jet at view angles of 70° upper photograph and 
110° lower photograph



1 7 .9 m m

Appendix B.4 The rectangular jet at view angles of 0° upper photograph 
and 90° lower photograph


