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Abstract 

The resilience of a community is determined by its ability to withstand and 

recover from disruptions due to natural or manmade hazards. While a consensus has 

developed in disaster-related research in recent years that community infrastructure 

should be designed, managed and regulated to achieve community-specific resilience 

goals, there is currently no integrated source of quantitative tools and measurement 

technologies to support risk mitigation decisions of building owners, city planners, 

policy makers and other community stakeholders in a coordinated and risk-informed 

manner.  

The on-going efforts in the NIST-funded Center for Risk-based Community 

Resilience Planning (CRCRP) are aimed at developing a comprehensive computational 

platform, named IN-CORE, which integrates science-based models of community 

socio-economic systems and supporting interdependent physical infrastructure (i.e. 

building portfolios, transportation infrastructure, energy, water/wastewater, and 

communication networks) in several distinct modules,  with an ultimate goal of 

supporting community risk mitigation decisions and optimizing resilience planning 

activities. This dissertation work provides the essential components of the IN-CORE 

module on Community Building Portfolio Resilience Analysis.    

This work contributes to the state of the art of resilience assessment of 

community building portfolios in several aspects.  First, a new building portfolio 

functionality metric (BPFM) is proposed, which is a measureable, scalable, and 

actionable indicator of a building portfolio’s capacity to respond and recover from a 

hazard event. The BPFM enables the resilience of a building portfolio to be assessed on 
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a consistent measure at various spatial scales (e.g. parcel, block, census, zone or 

community) and throughout the time domain of interest (i.e. pre-event planning, 

immediate post-disaster response, and long-term recovery). Second, a building portfolio 

functionality loss estimation (BPLE) framework is developed, which provides a 

probabilistic and spatial loss assessment, measured by the BPFM, across an entire 

community immediately following a hazard event; this assessment also defines the 

initial post-event functionality state, which is the starting point for building portfolio 

recovery modeling. Third, a novel stochastic post-disaster building portfolio recovery 

model (BPRM) is formulated; this model characterizes the spatial and temporal 

evolution of a building portfolio’s recovery following a hazard event, resulting in 

projected recovery trajectory and recovery time of the building portfolio, as well as the 

spatial variation of the recovery outcome within the community. Finally, a building 

portfolio decision support (BPDS) framework is constructed, underlining that the 

resilience of a building portfolio (assessed by the BPLE and BPRM) can be enhanced to 

achieve risk-informed resilience goals through optimized mitigation strategies and 

recovery planning activities at a community scale.



1 

 

Chapter 1 Introduction 

1.1 Statement of the Problem 

The increasing vulnerability of communities to natural hazards, as manifested in 

recent disaster events such as Wenchuan Earthquake in 2008, Superstorm Sandy in 

2012, the Moore, OK Tornado in 2013, and Hurricane Harvey in 2017, has posed 

significant research challenges in disaster-related science and technology. While there is 

a consensus among researchers that effective hazard mitigation requires systematic and 

holistic community-level planning for disaster resilience, to date there are no science-

based tools and measurement frameworks to guide the public and private decision 

makers to assess and enhance resilience of their communities in a quantitative and 

integrated manner.  

Among existing community resilience assessment and planning methodologies 

being implemented or under development are the San Francisco Planning and Research 

Association (SPUR) Framework (Poland, 2009), the Oregon Resilience Plan 

(OSSPAC), the UNISDR Disaster Resilience Scorecard for Cities (UNISDR, 2014), the 

Rockefeller Foundation City Resilience Framework (CRF) (Arup, 2014), FEMA’s 

HAZUS Methodology (FEMA/NIBS, 2003), and the NIST Community Resilience 

Planning Guide (NIST, 2015). Each of these methodologies has a different scope of 

application, focuses on different hazard types, emphasizes different aspects and 

dimensions of community resilience, and has its own limitations in theory and practice.  

Although these methodologies have provided partial or comprehensive, qualitative or 

quantitative tools to guide community resilience planning, most of them lack an 

integration of resilience assessment models for a whole spectrum of subsystems that 
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collectively provide the technical, organizational, social and economic functions of a 

community. The on-going efforts in the NIST-funded Center for Risk-based 

Community Resilience Planning (CRCRP) are aimed at the development of 

measurement science and technology to support community resilience planning.  The 

major work product of the CRCRP is a comprehensive computational platform, named 

IN-CORE, which integrates science-based models of community socio-economic 

systems and supporting interdependent physical infrastructure (i.e. building portfolios, 

transportation infrastructure, energy, water/wastewater, and communication networks) 

in several distinct modules. The ultimate goals of the CRCRP and IN-CORE are to 

support community risk mitigation decisions and optimize resilience planning activities. 

This dissertation work provides the essential components of the IN-CORE module on 

Community Building Portfolio Resilience Analysis.  

The building portfolio within a community is essential to the day-to-day 

operation of the community as it provides infrastructure that supports critical 

community functions such as housing, education, business, health services and 

government. Physical damages and functionality losses caused by natural hazard events 

to a community building portfolio, as a system, can lead to multi-scale social-economic 

impacts that cascade throughout all sectors of the community during and long after the 

hazard event. Traditionally, the impact of natural hazards on individual buildings has 

been considered by structural engineers through codes, standards and regulations in 

building design, construction and management (NEHRP, 2009; ASCE Standard 7, 

2016). These codes and standards for individual buildings, however, were developed 

mainly to protect life safety in the events of extreme hazard events, without considering 
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the functional dependences among buildings of different occupancies or between a 

building portfolio and other infrastructure systems that together contribute to the social-

economic stability of a community. This lack of a system-level perspective in 

traditional disaster management has caused communities to experience disproportionate 

physical damages, economic losses and social disruptions in hazard events 

notwithstanding that the buildings, individually, had been designed and constructed to 

comply with codes and acceptable construction practices (Bruneau et al., 2003; Bruneau 

& Reinhorn, 2006, 2007; Cutter et al., 2008; OSSPAC, 2013; Poland, 2013).   

To facilitate community resilience planning, the current engineering practice of 

design, assessment, and risk management of buildings should move beyond the life-

safety focused consideration at the individual building level to a comprehensive 

portfolio-level approach. This portfolio-level approach must be developed through 

investigation and modeling of the functionality loss and recovery process of spatially 

distributed buildings within a community as a whole, as an integrated system, to enable 

pre-disaster mitigation decisions and post-disaster recovery planning strategies to be 

optimized under various resources and regulatory constraints in a risk-informed manner.  

 

1.2 Research Objectives and Scope 

The objective of this dissertation is twofold: 1) to develop physics-based 

analysis models that allow the functionality loss and recovery of a building portfolio as 

a whole to be predicted and assessed in a quantitative and probabilistic manner; and 2) 

to formulate a risk-informed decision methodology that allows hazard mitigation 
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strategies and recovery planning activities to be optimized to facilitate resilience goals 

of a community building portfolio to be achieved.  

The dissertation will focus on the following tasks: 

• Critically appraise the advances and limitations of existing resilience assessment 

methodologies for community building portfolios; 

• Identify or introduce, if necessary, a definition of and a metric for the functionality 

of a community building portfolio that can be assessed quantitatively as an effective 

indicator of a portfolio’s capacity to respond and recover from a hazard event.  

• Develop a framework for building portfolio functionality loss estimation (BPLE) in 

which the spatial damages and functionality losses across the geographic domain of 

a community building portfolio are quantified probabilistically.  

• Develop a building portfolio functionality recovery model (BPRM) which 

characterizes the spatial and temporal evolution of the recovery process of a 

building portfolio from its initial functionality loss, resulting in the estimates of 

portfolio recovery trajectory and recovery time as well as associated uncertainties at 

different spatial resolutions.  

• Illustrate a complete analysis procedure for building portfolio resilience assessment 

by applying the BPLE & BPRM framework to two testbed communities.  

• Formulate a building portfolio decision support (BPDS) framework which enables 

the resilience of a building portfolio to be enhanced to achieve risk-informed 

resilience goals through optimized mitigation strategies and recovery planning 

activities at a community scale. 
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1.3 Organization of Dissertation 

Consistent with the research tasks listed above, this dissertation includes eight 

Chapters.   

Chapter 2 reviews and critical appraises state-of-the art methodologies on loss 

estimation and recovery modeling of community building portfolios and identifies 

research challenges for the dissertation work. In Chapter 3, a new functionality 

definition and metric for building portfolios (BPFM) is proposed for resilience 

assessment as an effective indicator of a portfolio’s capacity to respond and recover 

from a hazard event. In Chapter 4, a probabilistic framework for building portfolio 

functionality loss estimation (BPLE) is developed in which the loss is measured in term 

of the BPFM. In Chapter 5, a novel simulation-based, two-step stochastic building 

portfolio functionality recovery model (BPRM) is developed, with the portfolio spatial 

functionality loss characterized by the BPLE framework as the initial state for recovery.  

In Chapter 6, the applications of the developed resilience assessment tools for building 

portfolios - i.e. the BPLE and BPRM - are illustrated through case studies of two 

testbed communities – one is a hypothetical community called Centerville, and the 

other is Shelby County, Tennessee, USA. In Chapter 7, a building portfolio decision 

support (BPDS) framework is formulated, highlighting that the resilience a community 

building portfolio can be quantified (e.g. using BPLE and BPRM) and subsequently can 

be enhanced through optimized mitigation strategies and recovery planning activities at 

a community scale to achieve risk-informed resilience goals. The organization of 

Chapters 3-7 is illustrated in Figure 1-1. Chapter 8 summarizes the major contributions 

of this research and suggests future lines of inquiry.   
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Chapter 2 Appraisal of State of the Art 

The concept of enhancing community resilience has evolved in the past decade 

around the notion that communities should develop strategies for mitigating the impact 

of natural hazards from the failures of the built environment and supporting social, 

economic and political institutions, and for organizing post-disaster recovery activities 

that revitalize communities and restore normalcy within a reasonable period of time. In 

this chapter, the general concept of community resilience in the context of natural 

hazards will be reviewed in Section 2.1. Existing resilience metrics relevant to 

community building portfolios will be summarized in Section 2.2. Existing methods on 

quantitative resilience assessment of building portfolios (or other physical systems) will 

be reviewed in Sections 2.3 and 2.4 for loss estimation and for recovery prediction, 

respectively. Finally, a critical appraisal presented in Section 2.5 will identify existing 

research gaps in building portfolio resilience assessment.  

 

2.1 The Concept of Community Resilience 

A community is an entity designated by geographical boundaries that functions 

under a common governance structure and has a common culture and historical heritage 

(NIST, 2015). In the event of severe natural disasters, a resilient community should be 

able to withstand the resulting physical damages and social disruptions and to facilitate 

a planned and expedited recovery. We adopt the definition of resilience given in the 

NIST community resilience planning guide (NIST, 2015) as “the ability of a community 

or a system to prepare for and adapt to changing conditions, and to withstand and 

recover rapidly from disruptions”.  



8 

 

The resilience of a community (or a system) is often expressed by functionalities 

of the community (or system) as a function of time (Bruneau et al., 2003; Bruneau & 

Reinhorn, 2006, 2007; Bruneau, 2006; Cimellaro et al., 2010a, 2010b; Bocchini & 

Frangopol, 2011; Lin et al., 2016) as illustrated in Figure 2-1. Bruneau et al. (2003) 

have identified  four essential attributes of resilience:  robustness - the ability to 

withstand an extreme event and deliver a certain level of service even after the 

occurrence of that event; rapidity - to recover the desired functionality as fast as 

possible; redundancy - the extent to which elements and components of a system can be 

substituted for one another; and resourcefulness - the capacity to identify problems, 

establish priorities, and mobilize personnel and financial resources after an extreme 

event. The assessments of these attributes require quantification and modeling of 

considerable uncertainties, as indicated by the probability density functions (PDF) in 

Figure 2-1.  

 

Figure 2-1. Illustration of resilience concept (Lin et al., 2016) 
 

Moreover, the resilience of a community, as summarized in Bruneau et al. 

(2003), can be conceptualized as encompassing four interrelated dimensions: 
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technical—the ability of physical systems (e.g. building portfolios, transportation 

systems and utility networks) to withstand and recovery from hazards; organizational—

the capacity of various organizations (e.g., government and emergency response 

agencies) that manage essential facilities to plan, make decisions and take actions prior 

to, during and following the occurrence of a hazard event; social—the ability of people 

within a community to design measures to lessen the negative social consequences of 

the disaster; and economic—the capacity of community to reduce both direct and 

indirect economic losses from hazard consequences.  

To quantify each of the four abovementioned dimensions of resilience for a 

community , one needs to identify the community-specific functionality metrics (i.e. the 

vertical axis of Figure 2-1) that must be measureable, scalable, and actionable indicators 

of the community’ capacity to respond and recover from a hazard and must be 

associated with a broad spectrum of community systems, e.g. including but not limited 

to physical damages and recovery of built environment, direct economic losses and 

recovery, and impact on social well-being (NIST, 2015). Such functionality metrics are 

indispensable elements of community resilience measurements enabling abstract 

resilience concepts to be mapped into specific actions. Several studies have provided 

comprehensive summaries of metrics for different community functions that extent to 

different attributes of resilience (Bruneau et al., 2003; Cutter, 2008, 2014; Burton, 2015; 

NIST, 2015). Beyond those, a few studies have focused on the classification and 

systemization of existing metrics in term of their applicability to communities of 

different sizes and scales, policy realms, as well as different types of hazards and shocks 

(Rodriguez-Llanes, 2013; Cimellaro, 2016). Nevertheless, most existing community 
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functionality metrics summarized in the literature are illustrative and conceptual in 

nature. 

Community resilience planning requires establishing and maintaining resilience 

of all aforementioned dimensions (i.e. technical, organizational, social, and economic 

dimensions), thus by nature is a collaborative effort that demands commitments from 

various community stakeholders, including local government officials for resilience 

planning, emergency response and social services, public and private owners of 

buildings, operators of different infrastructure systems, local business and industry 

owners, and other social and economic organizations (NIST, 2015). Effective 

community resilience planning must be supported by quantitative resilience assessment 

in all of the above dimensions, which not only requires clearly defined functionality 

metrics for each dimension but also demands robust, risk-informed tools and models 

that can support the resilience assessment in that dimension. The following review 

focuses on the existing metrics and assessment tools for community building portfolios, 

which belongs to the technical (or physical) dimension of the community resilience.  

 

2.2 Building Portfolio Metrics  

A community’s building portfolio is an essential asset of the community and 

serves as the physical foundation to support critical social and economic functions of 

the community. A community building portfolio consists of buildings of different of 

occupancies - residential, commercial, industrial, and many other critical facilities such 

as education, health care and government institutions. In addition, a building portfolio 

can represent a group of buildings at various spatial scales and resolutions, e.g. a 
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building block, a neighborhood, a group of essential facilities (e.g. hospitals and 

schools), a zone of commercial/retail buildings, or all buildings within a community. 

The resilience curve (cf. Figure 2-1) of a building portfolio is anchored by its robustness 

and rapidity of recovery, while the resourcefulness and redundancy of the portfolio as 

an integrated system affect the shape of the curve. Measuring resilience of a building 

portfolio requires functionality metrics that can be used not only to measure directly the 

robustness of a portfolio but also to track (or to monitor) the recovery of the portfolio.    

Among widely-accepted metrics that are closely tied to the performance of a 

community building portfolio are direct economic loss ratio, DLR (ratio of losses 

directly caused by building damage to the total assessed value of buildings, or other 

losses such as business interruption, rental income loss, etc.), indirect economic losses 

(such as loss of taxes, price increases, increased demand of substitutes, increased supply 

of labors, etc.), household dislocation ratio (HDR), casualty and building downtime, as 

summarized from the literature in Table 2-1. These metrics are mostly social and 

economic-based metrics. In most cases, they are estimated by regression models derived 

from empirical observations and field data including building damage as the major input 

variable along with other demographic characteristics (such as race, age, income, etc.) 

as associated building attributes, such as the approach in HAZUS (FEMA/NIBS, 2003), 

the ordinary least-squares model (Peacock et al., 2008), and the logic regression model 

(Lin, 2009) among others.  Moreover, even when field data of past events are available, 

certain metrics, such as indirect economic loss in terms of GDP, are still difficult to 

predict due to the intrinsic complexity of the operations of social and economic systems 

within a community and the various sources of uncertainties involved. Furthermore, 
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these social and economic oriented metrics in Table 2-1 in fact should be determined 

jointly by the performances of all subsystems of a community built environment, which, 

aside from building portfolios, also includes lifelines and other critical facilities; 

however the conventional methodologies to quantify these metrics (also summarized in 

the Table 2-1) are often linked solely to the damage levels of buildings, which explicitly 

neglect the impact of other physical infrastructural systems on the community’s social 

and economic functions.  

Unfortunately, a metric that is firmly rooted in the performance of a building 

portfolio and directly measures the functionality of that building portfolio could not be 

found in the literature.  

 

Table 2-1. Different social-economic loss metrics and methodologies 

Loss Metrics Methodologies 

Direct economic Loss 
Ratio (DLR) 

HAZUS approach (FEMA/NIBS, 2003); Empirical data by 
RS Means Company (2015) 

Indirect economic Loss 
Input-output model (Okuyama et al., 2004); Computable 
General Equilibrium (CGE) model (Rose & Guha, 2004) 

Household dislocation 
Ratio (HDR) 

HAZUS approach (FEMA/NIBS, 2003); Ordinary least-
squares model (Peacock et al., 2008); Logic regression model 
(Lin, 2009) 

Casualty Event tree modeling (FEMA/NIBS, 2003) 

Building downtime 

FEMA P-58 (FEMA, 2012); REDi (Resilience-based 
earthquake Design Initiative) rating system (Almufti & 
Willford, 2013) 

 

2.3 Building Portfolios Loss Estimation 

Existing models for estimating building-related losses vary with different 

metrics (such as those identified in Table 2-1) and different building types considered, 

different hazards investigated, and different resolutions and scales at which the analysis 
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is performed. Most of existing loss estimation models have incorporated a somewhat 

probabilistic approach to account for uncertainties, both aleatory and epistemic, 

associated with hazard intensities, building responses, structural capacities, and physical 

damages.  

At the individual building level, conventional building loss estimation models 

usually involve a sequence of uncertainty propagations through hazard analysis, 

structural response assessment, damage evaluation and finally to loss estimation. The 

Pacific Earthquake Engineering Research Center introduced a Performance-based 

Earthquake Engineering (PBEE) framework to quantify three loss metrics associated 

with a building - death (loss of life), dollars (economic losses), and downtime (temporal 

loss of use of the facility) (FEMA, 1997) as illustrated in Figure 2-2 and expressed as 

(Cornell & Krawinkler, 2000): 

λ 𝐷𝑉 = 𝐺(𝐷𝑉|𝐷𝑀)𝑑𝐺(𝐷𝑀|𝐸𝐷𝑃)𝑑𝐺(𝐸𝐷𝑃|𝐼𝑀) 𝑑𝜆(𝐼𝑀)                 	 (2-1) 

where	λ 𝐷𝑉  is the mean annual frequency of exceeding the decision variable, 𝐷𝑉; 

𝐺 𝐷𝑉 𝐷𝑀 	is the conditional probability that the decision variable (DV) exceeds a 

specified level given the damage measure; 𝑑𝐺 𝐷𝑀 𝐸𝐷𝑃  is the conditional probability 

that the damage measure (DM) exceeds a specified level given the engineering demand 

parameter; 𝑑𝐺(𝐸𝐷𝑃|𝐼𝑀) is the conditional probability that the engineering demand 

parameter (EDP) exceeds a specified level given the intensity measure (IM); and  

𝑑𝜆(𝐼𝑀)  is the mean annual frequency of exceeding hazard intensity IM, which is the 

derivative of the hazard curve.  

 



14 

 

 
Figure 2-2. Steps in the PBEE procedures (Whittaker et al., 2004) 

 

Eq. (2-1) is a statement of the theorem of total probability, and estimates the 

annual exceedance rate of a decision variable (death, dollar, and downtime) via 

integrating a set of sub-analysis: hazard analysis, structural analysis, damage analysis, 

and loss analysis (see Figure 2-2). In the hazard analysis, one obtains 𝜆(𝐼𝑀) through 

hazard curve which describes the annual frequency with which seismic excitation 

exceeds a set of predefined threshold levels. The seismic excitation is parametrized by 

an intensity measure such as spectral displacement or spectral acceleration.  In the 

structural analysis, a structural model of the building is created to obtain the uncertain 

response (EDP) conditioned on a seismic intensity (IM) using linear or non-linear time-

history structural analysis.  In damage analysis, a building’s physical damage is 

generally categorized into several levels (defined relative to the level of repair efforts 

needed to restore the component to its undamaged state) and the probability of 

exceeding a specific damage level (DM) conditional on a structural response (EDP) is 

calculated.  Alternatively, the structural analysis and damage analysis [i.e., the joint 

term 𝑑𝐺 𝐷𝑀 𝐸𝐷𝑃 𝑑𝐺 𝐸𝐷𝑃 𝐼𝑀	
N/O ] of Eq. (2-1) can be substituted by a fragility 

function derived from a hazard-specific vulnerability analysis. A fragility function, 

defined as the probability that the response of a building equals or exceeds a stipulated 
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damage state as a function of hazard intensity, is expressed as a lognormal distribution 

function (FEMA/NIBS, 2003), i.e.: 

P 𝑑𝑠 𝐼𝑀 = Φ[ln	(𝐼𝑀 𝐼𝑀UV) 𝛽UV]                	 (2-2) 

where 𝐼𝑀UV is the median value of seismic intensity 𝐼𝑀 at which the structure reaches 

the threshold of the damage state, ds;  𝛽UV is the standard deviation of the natural 

logarithm of seismic intensity with respect to damage state, ds. The damage states (ds) 

in HAZUS are described as slight, moderate, extensive, and complete, each being 

associated with a set of predefined quantitative performance thresholds (in terms of 

relevant structural response parameters, e.g. inter-story drift ratio). The fragility 

function obtained from hazard-specific vulnerability modeling of individual buildings 

or other structures provides an effective tool to directly relate damage of structures to 

hazard intensity at a building site. Lastly in loss analysis, the probabilistic estimation of 

decision variable (DV) conditioned on a damage measure (DM) is mostly derived from 

insurance underwriting data, or using empirical data collected from field studies or data 

suggested by engineering experts.  

The loss estimation of spatially distributed building portfolios, however, is more 

complex than building-specific loss estimation. Unlike building-specific loss estimation 

which focuses on estimating “deaths, dollars, and downtime” at a specific building site, 

the analysis of building portfolios aims at predicting losses in terms of system-level 

metrics that are most suitable for community stakeholders, as those summarized in 

Section 2.2. When loss is estimated for a building portfolio at a regional or a 

community scale, the spatial correlations between the random variables modeling the 

demands and capacities of spatially distributed buildings must be considered. Such 
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correlations are mainly due to two major sources: the correlation in building responses 

caused by a common hazard with a large footprint (referred to as site-to-site 

correlation), and correlation in structural responses caused by common structures 

materials, common structural design code and enforcement, and/or common 

construction practice (referred as structure-to-structure correlation). Both correlations 

tend to be positive in nature, and it has been found that neglecting such correlations can 

lead to unconservative estimations of losses for spatially distributed building portfolios 

(cf. Vitoontus & Ellingwood, 2013). Unfortunately, existing loss estimation platforms, 

such as HAZUS-MH (FEMA/NIST, 2003) and MAEViz (Steelman et al., 2007), have 

considered either type of correlation.   

Some studies have considered the correlation in ground motion intensity for 

earthquake events, more specifically, focusing on developing site-to-site correlation 

models for both intra- and inter-event correlations (Wang & Takada, 2005; Lee & 

Kiremidjian, 2007; Goda & Hong, 2008; Jayaram & Baker, 2009; Miller, 2011; 

Vitoontus & Ellingwood, 2013; Bonstrom & Corotis, 2014). Wang and Takada (2005) 

performed a covariance analysis using dense observation data of earthquakes occurred 

in Japan in recent years, and proposed a macro-spatial correlation model in which the 

auto-covariance at two separate points was modeled with an exponential decay function 

with respect to the separation distance between two observations (ranging from 20 to 50 

km). Goda and Hong (2008) developed empirical equations to include the spatial 

separation distance and natural period of vibration of SDOF systems while predicting 

the correlation of ground motion parameters considering both inter-event and intra-

event variability. Jayaram and Baker (2009) used observed ground motions from seven 
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past earthquakes to estimate correlation between spatially distributed spectral 

accelerations at various spectral periods and concluded that the rate of decay of the 

correlation with separation typically decreases with increasing spectral period.  

Compared with site-to-site correlation, the structure-to-structure correlation is 

much less investigated due to its complexity and the lack of available data specific to 

the system of interest (Lee & Kiremidjian, 2007, Vitoontus & Ellingwood, 2013). Lee 

and Kiremidjian (2007) accounted for structure-to-structure damage correlations in the 

seismic risk assessment of bridges by assuming a partial correlation for bridges within a 

same class grouped by design method, contractor/construction crews, and/or design 

year; a sensitivity study was performed for the varying levels of damage correlation 

assumed. Vitoontus and Ellingwood (2013) proposed a mathematical model to estimate 

the structure-to-structure correlation for the risk assessment of spatially distributed 

buildings, in which the damage of buildings is described by the joint effects of material, 

structural type, and building code of the structure, and a noise term. 

 

2.4 Building Portfolios Recovery Modeling  

Although many communities have taken the initiative to enhance their resilience 

through proactive planning and changes to building practices (Poland, 2013, Oregon, 

2013, NIST, 2015), there are neither an integrated policy framework nor readily 

available tools to improve community recovery outcomes owing, in large part, to the 

lack of practical recovery models. The use of event-specific case studies to describe the 

recovery process at the local level dominated early research on disaster recovery 

(Quarantelli, 1982; Rubin, 1985; Rubin, 1991; Haas et al., 1997); those studies 
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emphasized how local planning and management expedited recovery, and identified 

which mitigation techniques had been adopted and incorporated in the recovery process 

successfully (Smith & Wenger, 2007). More recent studies have included the role of 

recovery in decision making regarding urban planning and policy implementation, and 

have considered other aspects of community resilience planning, risk mitigation and 

recovery optimization (Ohlsen & Rubin, 1993; Peacock et al., 1997; Olson, 2000; 

Peacock et al., 2011; May & Williams, 2012; Peacock et al., 2014; González et al., 

2015; Zhang et al., 2017). These studies have provided important insights into our 

current understanding of disaster recovery. However, a review of these studies has made 

it apparent that improvements to recovery outcomes will be difficult to achieve unless a 

quantitative model revealing the fundamentals of recovery processes is developed. 

The FEMA National Disaster Recovery Framework defined the recovery phases 

of a community as having three parts: short-term, intermediate, and long-term (NIST, 

2015). Each phase involves certain mitigation and restoration activities to recover the 

functionalities of all community systems from the consequences of a hazard event. For 

example, the short-term phase mainly focuses on rescue, stabilization, and preparing for 

recovery which is expected to last several days to weeks. The intermediate phase 

mainly focuses on restoring the neighborhoods, workforce and caring for the vulnerable 

populations, and extends for weeks to months. The long-term phase is related to 

restoring the community’s economy and all social institutions and physical 

infrastructure, which may last for years (NIST, 2015).  

At the early stage of disaster recovery research, recovery was considered in the 

literature to mainly focus on the fact of recovery itself, in terms of the roles of 
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restoration activities and restoration time required in each recovery phase (Kates & 

Pijawka, 1977; Haas et al., 1977; Quarantelli, 1982; Berke et al., 1993). More recently 

as people’s attention has shifted to the questions concerning how to achieve or improve 

community resilience, much literature has emphasized “conceptualizing disaster 

recovery as a social process, involving decision-making, institution capacity and 

conflicts between interest groups” (Berke et al., 1993; Miles & Chang, 2003). Despite 

the many case studies of disaster recovery examined, key findings and major issues 

investigated, and various conceptual frameworks proposed, very few quantitative 

methodologies have been developed to simulate recovery. Modeling the entire recovery 

process requires a comprehensive understanding of post-disaster circumstances and 

conditions, including damage and serviceability of buildings and lifelines, their 

interactions with social and economic systems, availability of human and financial 

resources for recovery activities, and decisions made by relevant stakeholders at each 

stage of the recovery (Deshmukh & Hastak, 2012).   

Miles and Chang (2003; 2007; 2011) developed a simulation method for urban 

post-disaster recovery. In this model, a community’s built environment was presented 

by three modules, namely, businesses, households, and lifelines systems, and the 

analysis was performed across individual, neighborhood and community scales. 

Functionality attributes of each module were empirically related to the community’s 

social characteristics, pre-event mitigation strategies and post-event recovery activities. 

Guided by empirical observations, the functionality dependencies within each module 

and among different modules were identified and a conceptual model simulating the 

urban disaster recovery process was established. During the simulation process, the 
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socio-economic recovery of the community was obtained by employing Markov Chains 

to represent community functions (such as the restoration of buildings and lifelines, 

business demand and supply recovery, health recovery, etc.) that are dynamic in nature 

and change over time. This method has provided numerous insights into community 

recovery modeling, especially including its potential capability to explore spatial 

decisions support for hazard mitigation and recovery planning. However, it is limited by 

the assumptions and simplifications embedded in the methodology, which stem from 

inadequate empirical data and past experience and therefore lead to difficulties in 

calibrating the necessary modeling variables and in incorporating uncertainties in the 

simulation algorithm.  

Among the various recovery dimensions within a community, the recovery of 

physical infrastructure systems (buildings, critical facilities, transportation systems, 

utility networks) serves as the foundation that supports the social and economic 

functions of a community. Existing recovery models for physical infrastructure systems 

may be grouped into three categories. 1) Empirically-based models are derived from 

empirical data of a past event gathered through surveys (Bolin & Stanford, 1991; 

Shinozuka et al., 1998; Nojima et al., 2001; Zhang & Peacock, 2009; Chang, 2010; 

Xiao & Van Zandt, 2012; Peacock et al., 2014). Such models are obtained through 

examining well-known disasters worldwide, summarizing important lessons learnt from 

post-disaster recovery, providing policy or decision recommendations, and generating 

recovery trajectories using, most often, a statistical data fitting approach. Moreover, 

empirically-based models are event- and location-specific, lack the basis for 

incorporating uncertainty in recovery modeling, and are difficult to generalize to 
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support risk mitigation decisions.  2) Simulation-based models are developed from a 

conceptual investigation of the spatial and temporal evolution of the recovery process, 

and may be guided by empirical observations from past disasters (Hoshiya, 1981; Noda 

et al., 1981; Isoyama et al., 1985; Isumi et al., 1985; Kozin & Zhau, 1990; Miles & 

Chang, 2003; Liu et al., 2007；Burton et al., 2015). For example, Kozin and Zhou 

(1990) employed a discrete-state, discrete-transition Markov Chain to simulate the 

restoration of interdependent lifelines modeled as one integrated system; the transition 

probabilities were formulated as functions of rescue resources, geographic conditions, 

and topological and structural characteristics of the lifelines. Burton et al. (2015) 

proposed a framework to incorporate probabilistic building performance in an 

assessment of community building recovery. In this model, a set of building 

performance limit states (adopted from the building performance categories defined by 

SPUR) were identified, building recovery functions were developed by quantifying the 

time spent in each of the probable performance limit states, and the expected recovery 

functions of individual buildings were then aggregated to obtain the community level 

recovery trajectory. Such simulation-based models are most compatible with “what-if” 

scenario analysis to illustrate the impact of different pre-event or post-disaster risk 

mitigation activities on the recovery of the system under investigation, thus facilitating 

the comparison between alternative strategies for resilience planning. Finally, 3) 

optimization-based models, in which recovery simulation is coupled with decision 

optimization, lead to a set of optimal recovery strategies along with a best recovery 

process and the shortest recovery time (Nojima & Kameda, 1992; Kameda, 1994; 

González et al., 2015, Zhang et al., 2017). For instance, González et al. (2015) 
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formulated an interdependent network recovery model considering both functional and 

geographical interdependencies, in which the optimal restoration sequence of damaged 

network components was determined by minimizing the overall network cost. Zhang et 

al. (2017) optimized roadway network recovery from an earthquake event by 

incorporating network topology, redundancy, traffic flow, damage states and available 

resources into a stochastic decision process. The result was an optimal schedule for 

sequencing post-disaster restoration interventions for all damaged bridges, which led to 

the fastest (in terms of time) and most efficient (in terms of indirect loss) network 

recovery process. While the simulation-based models are often used to forecast the 

recovery time and trajectory of a system probabilistically, the optimization-based 

models determine the optimal recovery trajectory and the shortest recovery time by 

searching for the best decisions through optimization regarding priorities, scheduling, 

resource allocation, etc.   

The recovery of building portfolios has been investigated far less than the 

recovery of lifelines. Lifelines in a community are usually managed by a single entity or 

a limited number of owners (e.g. the power, water and gas networks in Shelby County, 

TN, are all maintained by a municipal public utility - Memphis Light, Gas and Water 

(MLGW); bridges and roadways usually are managed by State, City or County 

agencies). Accordingly, their recovery is likely to be a top-down process governed by 

centralized decisions and resources. On the other hand, buildings in a community are 

owned by a mix of public and private stakeholders. The functionality recovery of a 

community building portfolio as a whole is determined, collectively, by the decisions 

that numerous stakeholders make over the recovery phase. Those decisions usually are 
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uncoordinated and are affected by the financial and social status and risk perception of 

individual owners, as well as by the overall resourcefulness and preparedness of the 

community (e.g. insurance coverage, FEMA emergency relief fund, small business 

loans, private loans, etc.). Consequently, the collective recovery of a community 

building portfolio is market-driven and decentralized in nature (Peacock et al., 2014).  A 

recovery model that considers a community building portfolio as an integrated system is 

not found in the literature.      

 

2.5 Critical Appraisal  

Current research on quantitative resilience assessment of building portfolios is in 

a rudimentary state of development. Conventional quantitative tools for assessing 

building losses at a regional or community scale have treated distinct buildings 

independently, without considering the functional dependences among buildings of 

different occupancies as well as dependencies between the building portfolio as a whole 

and the supporting civil infrastructure systems that together contribute to the social-

economic stability of a community. This lack of a system-level perspective in building 

portfolio analysis has led to cascading deficiencies in several critical aspects of 

resilience assessment for building portfolios, including metric identification, loss 

evaluation and recovery modeling.  

Building Portfolio Performance Metrics  

System-level metrics as clear and direct indicators of the functionality level of a 

building portfolio in its entirety are not found in the literature. Existing metrics that 

have been used in the past as indicators of the performance of building portfolios, as 
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reviewed in Section 2.2, are in fact not effective metrics specifically designed to support 

resilience assessment of building portfolios. Those metrics measure key community 

functions supported by built infrastructure, and at the same time, are affected by the 

communities’ socioeconomic infrastructure. The inability to decouple the effect of 

community social and economic characteristics from these metrics has obscured the 

ability of these metrics as effective indicators of the functionality of a building portfolio 

itself. On the other hand, these metrics are often used only as measures of “robustness” 

(i.e. only being quantified immediately following a hazard event), and are not suitable 

for “monitoring” or “tracking” the functionality of a building portfolio (or of a 

community in general) throughout the post-disaster recovery process.  First and 

foremost, a measurable and scalable metric for a building portfolio must be defined as 

the first step toward developing a comprehensive and quantitative framework for 

building portfolio resilience assessment. This metric must be firmly rooted in the 

performance of the building portfolio itself, and at the same time, explicitly reflect the 

dependence of the building portfolio as a whole on the other infrastructure systems in 

the same community. 

Building Portfolio Loss Estimation  

Regarding probabilistic loss estimation of spatially-distributed building 

portfolios, very limited studies have explicitly modeled both the site-to-site and 

structure-to-structure spatial correlations, as reviewed in Section 2.3. The neglect or 

incomplete consideration of these correlations inevitably leads to underestimation of 

spatial losses and unconservative errors in portfolio resilience assessment. Common 

deficiencies in existing correlation models include the lack of data for adequate 
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validation and extrapolation as well as the need of extensive computation efforts to 

support a fully probabilistic analysis of a large-scale building portfolio. Such 

deficiencies have confined existing correlation models to be effectively incorporated in 

even some of the well-accepted loss estimation platforms (e.g. HAZUS–HM; 

MAEViz). There is a compelling need to develop a systematic and rigorous 

methodology that is capable of propagating various uncertainties and both types of 

spatial correlations throughout the entire building portfolio resilience assessment 

process, including hazard characterization, loss estimation, and recovery modeling. 

Equally important, sampling techniques to minimize the computational effort must be 

provided to make it practical to propagate spatially correlated uncertainties through 

multiple layers of conditional events for full-sized community building portfolios. 

Building Portfolio Recovery Modeling  

Post-disaster recovery is one of the least understood components in disaster 

research and risk management. There is neither an integrated policy framework nor 

readily available tools to facilitate the improvement of community recovery outcomes 

owing, in large part, to the lack of quantitative recovery models.  A building portfolio 

traditionally is not perceived as an entity of its own; hence, its recovery is rarely 

investigated from a system perspective. The recovery of a community building portfolio 

is dependent on the resourcefulness and social-economic characteristics of the 

community at large and at the same time, is strongly affected by various decisions made 

by different public and private building owners and stakeholders.  In contrast to the 

recovery of lifeline networks, which often resembles a decision-driven process, the 

recovery of a building portfolio is essentially market-driven. Thus, the general-purpose 
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analytical recovery functions assumed in the literature (e.g., uniform cumulative 

distribution, lognormal distribution or harmonically over-damped functions) are far too 

simplistic to reflect the intrinsic complexities in the building portfolio recovery process. 

On the other hand, the empirical recovery models in the literature derived from 

historical hazard events are often event- and community-specific, making it hard to be 

generalized to support resilience planning in a quantitative manner. The above literature 

review has made it apparent that improvements to recovery outcomes of a building 

portfolio will be difficult to achieve unless quantitative models revealing the 

fundamental mechanisms of its recovery processes are developed. 

In this dissertation work, a building portfolio resilience assessment framework is 

developed to address the above-identified research gaps systematically.  
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Chapter 3 Building Functionality Definition, Metrics and Notations 

(BPFM)  

Developing quantitative models to assess building portfolio resilience, i.e.  

building portfolio functionality loss (BPLE) and building portfolio functionality 

recovery (BPRM) following a hazard event, is a necessary step toward risk-informed 

community resilience planning.  Such development must begin with clearly-defined 

metrics that can directly measure both the functionality loss and recovery of a building 

portfolio, and at the same time, can explicitly reflect the dependency of the building 

portfolio on other community infrastructure systems in maintaining its desired 

functionality level. 

 In Section 3.1, a new building portfolio functionality metric (BPFM) is 

introduced, and the major characteristics of this metric are discussed. Section 3.2 

provides a comprehensive list of notations and symbols to be used in the quantification 

of the metric using the BPLE and BPRM (detailed in Chapters 4 and 5, respectively). 

 

3.1 Building Portfolio Functionality: Definition and Metrics 

Functionality of an individual building can be defined as the availability of the 

building to be used for its intended purpose, which is a function of its structural 

integrity and availability of utilities (Almufti & Willford, 2013; Lin & Wang, 2017a). A 

main cause of building functionality loss in a hazard event is structural or nonstructural 

damages, as a building relies on its load-resistant system to provide safety and on its 

nonstructural components (e.g. lighting, heating, elevators, etc.) to provide 

serviceability. Another primary cause of building functionality loss is the disruption of 
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basic utilities, i.e., an undamaged building is not functional if critical utilities, such as 

water and power, are unavailable.   

Following an extreme natural hazard, e.g. an earthquake, professional 

inspections (including structural, nonstructural or hazardous material damage 

evaluation) will be initiated for damaged buildings, which are often followed by an 

ATC-20 placard (Green, Yellow or Red) to be tagged to each building, ascertaining the 

degree of damage and the level of building functionality prior to building restoration 

(Oaks, 1990). Considering the definition of building functionality introduced above, 

five different functionality states are defined in Figure 3-1, ranging from restricted entry 

to full functionality, each corresponding to a unique combination of building damage 

condition and utility availability (Almufti & Willford, 2013). For example, if any 

threats to life-safety are evident, including significant structural damage, exterior falling 

hazards due to damaged cladding and glazing, interior hazards from damaged 

components hung from the floor above or severely damaged partitions, a building is 

tagged with a Red (Restricted Entry, RE) or Yellow (Restricted Use, RU) placard 

following inspection, regardless of utility availability. Otherwise, a Green Tag is 

awarded, meaning that any damage to structural and non-structural building 

components is minor and does not pose a threat to life safety and that the building is 

safe to be re-occupied (Re-Occupancy, RO). Further, a building is considered as having 

Baseline Functionality (BF) when it is both structurally safe to occupy and has basic 

utility supplies (power, water, fire sprinklers, lighting, and HVAC systems) available on 

the site, or having Full Functionality (FF) when it maintains at or restores to its 

original, pre-hazard functionality level (Almufti & Willford, 2013). 
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Figure 3-1. Functionality states of individual buildings (Lin & Wang, 2017a) 
 

The building functionality state 𝑆%, 𝑗 ∈ (RE, RU, RO, BF, FF) introduced above 

serves as the functionality metric for individual buildings. This functionality metric 

explicitly expresses the dependence between buildings and other infrastructure systems 

in the community, which is not reflected in other typical building-related metrics in the 

literature, such as deaths, dollar loss, and downtime. Furthermore, this building 

functionality metric, as presented in Figure 3-1,  not only can be used to measure 

building functionality loss immediately following a hazard event (𝑡=), but also enables 

the restoration of a building to be traced throughout the time horizon of its recovery 

(𝑡	 > 𝑡=). Moreover, the definition of building functionality is engineering-centric and 

is firmly rooted in the performance of the building itself, which is uncoupled with the 

complex human-building interactions during or after occurrence of a hazard event.  We 

further define building restoration time (BRT) as the time that a building takes to 

regain its full functionality (FF) from the occurrence of the extreme event.  It should be 
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pointed out that the building functionality categorization we introduced in Figure 3-1 is 

for risk category II buildings as specified in ASCE 7, which generally includes more 

than 90% buildings in a typical community in the U.S.  

Consistent with the functionality metric for individual buildings, the building 

portfolio functionality metric (BPFM) is defined as the percentages of buildings in a 

portfolio that are in each of the five functionality states, 𝑃𝑅𝐼%, 𝑗 ∈ (RE, RU, RO, BF, 

FF).  Again, this BPFM not only allows the functionality loss of a building portfolio as 

whole to be quantified immediately following the hazard event (𝑡=), but also enables the 

functionality recovery of the portfolio to be “recorded” continuously as a function of 

time (𝑡	 > 𝑡=).  Accordingly, we define the portfolio recovery time (PRT) as the time 

required for a target percentage (e.g. 90%) of buildings in a community to regain a 

prescribed desired functionality state (e.g. FF), e.g., 𝑃𝑅𝑇\\,]=%. The PRT largely 

depends on resourcefulness as well as the social-economic characteristics of the 

community.  

In Chapter 4, the BPLE framework is developed to estimate functionality state 

𝑆	(𝑡=) for individual buildings and 𝑃𝑅𝐼%(𝑡=) for building portfolios, both at time instant 

immediately following a hazard event, i.e. 𝑡 = 𝑡=. In Chapter 5, the BPRM is 

formulated to trace the functionality state 𝑆	(𝑡	) for individual buildings and 𝑃𝑅𝐼%(t) for 

building portfolios as functions of time during the recovery, i.e.		𝑡 > 𝑡=, resulting in 

probabilistic estimations of BRT and PRT.  
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3.2 Notation of Variables in BPLE and BPRM 

For easy reference, Table 3-1 includes all the notations used in the BPLE and 

BPRM, as well as associated interpretative descriptions.  

 

Table 3-1. Notations of variables in the BPLE and BPRM 

Variable Description 

𝐵𝐹 Baseline Functionality state 

𝐵𝑅𝐹	 Building Restoration Function, defined as the probability of a building 
achieving or exceeding a predefined functionality level 𝑆% at any time	𝑡 

𝐵𝑈	=,&	 baseline utility availability at the site of building n at 𝑡= 
DS Damage State, categorizes the extent of damage to structural and 

nonstructural components by different damage levels 
𝐷𝑆2/&  hazard-induced damage to structural components of building n 
𝐷𝑆b/&  hazard-induced damage to nonstructural drift-sensitive components of 

building n 
𝐷𝑆bc&  hazard-induced damage to nonstructural acceleration-sensitive 

components of building n 

𝑑𝑠#	  predefined damage state; 𝑖 = 1,…,5 denote none, slight, moderate, 
extensive and complete damage states, respectively 

DV	 Damage Value, defined as the losses to individual buildings with respect 
to the portfolio performance metric of interest as a result of its physical 
damage 

		𝑒%&(𝑡=) probability of building n achieving or exceeding a functionality state 𝑆% 
at 𝑡= 

𝐹𝐹	 Full Functionality state 

𝐹𝑈=,&	 full utility availability at the site of building n at 𝑡= 

𝐼%& 𝑡  functionality state indicator of building n with in terms of 𝑆% 

𝐼𝑀 seismic intensity measure 

N total number of buildings in community building portfolio 
𝑝#,%& (𝑡)	 transition probability of building n upgrading to functionality state 𝑆% 

conditional on initial functionality state 𝑆# 
𝝅&(𝑡=)	 initial (pre-recovery) functionality state probability vector for building n  

𝝅&(𝑡) functionality state probability vector of building n  
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𝑃𝑅𝐼% 𝑡= 	 initial (pre-recovery) portfolio recovery index, defined as the percentage 
of building portfolio in the functionality state 𝑆% at 𝑡= 

𝑃𝑅𝐼% 𝑡 	 Portfolio Recovery Index, defined as the percentage of building portfolio 
in the functionality state 𝑆% 

	𝑃𝑅𝑇\\,h% Portfolio Recovery Time, defined as the time takes for a% of 
community buildings to regain full functionality (FF) state 

𝑅𝐸	 Restricted Entry functionality state 

𝑅𝑂 Re-Occupancy functionality state  

𝑅𝑈	 Restricted Use functionality state  

𝜌%	
k,& 𝑡 	 correlation coefficient of the functionality state indicators of building 

pair (m, n) with respect to functionality state 𝑆% 

𝜌#,%lm	 correlation coefficient of the seismic intensities of building pair (i,j) 

𝜌#,%
/2|lm correlation coefficient of the damage states of building pair (i,j) given 

seismic intensities 

𝑟#% the separation distance between building sites i and j 

𝑆& 𝑡=  hazard-induced pre-recovery functionality state of building n at 𝑡= 

𝑆& 𝑡  hazard-induced time-variant functionality state of building n 

𝑆% 	 predefined functionality state; 𝑗 = 1,… ,5 denote the RE, RU, RO, BF, 
FF functionality states, respectively 

𝑆Nr	 earthquake scenario event, characterized by a specific magnitude 𝑀s 
and epicenter distance 𝐷 

𝑇/tuhv,#&  delay time, the time takes to initiate repair for building n conditional on 
pre-recovery functionality state 𝑆# 

𝑇wt*h#x,wy#& 	 repair time, the time takes for building n to complete all repair items in 
repair class,	𝑅𝐶𝑖 

𝑇{|#u#|v& 	 utility availability, the time takes to bring utility back to building n 

𝑇lb2O,#& 	 the time takes to inspect the building n 

𝑇\lbc,#& 	 the time takes to secure funding for repair building n conditional on 
initial functionality state 𝑆# 

𝑇y}bm,#& 	 the time takes to commission architects and engineers for building n 
conditional on initial functionality state 𝑆# 

𝑇Nb~m,#& 	 the time takes to design and prepare for construction drawings for 
building n conditional on initial functionality state 𝑆# 

𝑇ONwm,#& 	 the time takes to obtain permits, and hire and mobilize contractors and 
construction crews for building n conditional on initial functionality 
state 𝑆# 
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𝑻𝑷𝑴𝒏(𝑡)	 transition probability matrix of building n 

𝑊𝑇#,%&  waiting time that 𝑆& 𝑡  stays at state 𝑆% conditional on initial 
functionality state 𝑆# 

Z portfolio performance metric, performance measure defined for 
quantifying a community building portfolio’s hazard-induced losses 

  



34 

 

Chapter 4 Building Portfolio Loss Estimation (BPLE)  

This chapter develops a probabilistic building portfolio functionality loss 

estimation (BPLE) framework for a prescribed hazard event, in which the BPFM 

introduced in Chapter 3 is used as the metric to measure the functionality loss of a 

portfolio. The building portfolio functionality loss obtained in this chapter serves as the 

initial state characterization for the portfolio recovery modeling to be discussed in 

Chapter 5.  

Section 4.1 presents the overall framework of the probabilistic BPLE model in 

three steps of analysis: (i) spatially correlated hazard demand characterization, (ii) 

spatially correlated damage assessment, and (iii) estimation of spatially correlated 

functionality loss for individual buildings and the aggregated functionality loss for a 

building portfolio. In Section 4.2, a random sampling technique is implemented to 

reduce the computational effort in the BPLE for building portfolios of large size.  

Section 4.3 summarizes the major contributions of the BPLE.  

 

4.1 Probabilistic Framework for BPLE 

4.1.1 BPLE Formulation  

While the BPLE framework developed herein is not limited to a specific hazard 

type, we use a scenario earthquake hazard to present the BPLE formulation due to its 

relatively mature development in spatial correlation modeling when compared with 

other types of hazard.  Mathematically, the earthquake-induced loss to a community 

building portfolio in terms of a predefined loss metric Z exposed to an earthquake 
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scenario event 𝑆Nr (characterized by a specific magnitude 𝑀s and epicentral distance 

𝐷) can be formulated using the total probability theorem as: 

𝑃 𝑍 ≤ 𝑧 𝑆Nr

= 𝐹� 𝑫𝑽 𝑧 𝒖 𝑓𝑫𝑽 𝑫𝑺 𝒖 𝒗
	

𝒚

	

𝒗

	

𝒖
𝑓𝑫𝑺 𝑰𝑴 𝒗 𝒚 𝑓𝑰𝑴 2��(𝒚 𝑆Nr)𝑑𝒖𝑑𝒗𝑑𝒚 

(4-1) 

where, reading from right to the left,  𝑓𝑰𝑴 2��(𝒚 𝑆Nr) is the PDF of ground motion 

intensity measure 𝑰𝑴1 at all the building sites conditioned on the scenario event 𝑆Nr;  

𝑓𝑫𝑺 𝑰𝑴 𝒗 𝒚  is the PDF of damage state 𝑫𝑺2  of all buildings conditioned on 𝑰𝑴, which 

for each building is often given by a fragility function as defined in Eq. (2-2); 

𝑓𝑫𝑽 𝑫𝑺 𝒖 𝒗  is the PDF of damage value 𝑫𝑽3 of all buildings conditioned on 𝑫𝑺; and 

𝐹� 𝑫𝑽 𝑧 𝒖  is the cumulative distribution function (CDF) of portfolio metric Z 

conditional on 𝑫𝑽. The dimensions of vectors IM, 𝑫𝑺 and 𝑫𝑽 are consistent with the 

number of buildings in the considered portfolio. Finally, 𝑃 𝑍 ≤ 𝑧|𝑆Nr , the CDF of 

𝑍|𝑆Nr, is given by the convolution of conditional probability distributions associated 

with the three intermediate variables (i.e. 𝑰𝑴|𝑆Nr,	𝑫𝑺 𝑰𝑴,	and	𝑫𝑽 𝑫𝑺),	which 

intermediately relate 𝑍	to 𝑆Nr.     

                                                
1 Ground motion intensity is the ground motion characteristic that can be related to the response of 
structural systems, nonstructural components, and building contents through engineering analysis, such as 
peak ground acceleration, peak ground velocity, peak ground displacement, or a spectral response 
quantity such as spectral displacement, velocity or acceleration.   
2 The damage state categorizes the extent of damage to structural and nonstructural components by 
different damage levels (often related to the structural system deformation or acceleration). In HAZUS-
MH (FEMA/NIBS, 2003), four damage states (i.e., slight, moderate, extensive, and complete) to 
structural and nonstructural components of a building and their relationships with building response 
threshold are identified. 
3 The damage values are defined as the losses to individual buildings with respect to the portfolio 
performance metric of interest as a result of its physical damage. The damage values can be direct dollar 
losses, downtime (or restoration time), and deaths (causalities) (FEMA, 2012). In this study, the damage 
value is the functionality loss.  
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Specifically, for quantifying functionality losses of building portfolios, in term 

of the BPFM	𝑃𝑅𝐼 as defined in Chapter 3, Eq. (4-1) can be written as: 

𝑃 𝑃𝑅𝐼 ≤ 𝑧 𝑆Nr

= 𝑓𝑺 𝑫𝑺 𝒖 𝒗 𝑓𝑫𝑺 𝑰𝑴 𝒗 𝒚 𝑓𝑰𝑴 2��(𝒚 𝑆Nr)𝑑𝒖𝑑𝒗𝑑𝒚
Owl 𝑺 ��

 
(4-2) 

where, as previously introduced in Section 3.1, 𝑺 is the functionality state (i.e.  RE, RU, 

RO, BF, FF) of all buildings; and 𝑃𝑅𝐼 is the percentages of buildings in the portfolio 

that are in any of the five functionality states of interest.  

To estimate the CDF of the 𝑃𝑅𝐼 three crucial steps of analysis are required: (1) 

Characterization of the spatially correlated seismic demands, i.e. 𝑓𝑰𝑴 2��(𝒚 𝑆Nr), in 

which uncertainties in seismic demands at all buildings sites (𝑰𝑴) as well as the spatial 

correlations among those must be modeled; (2) Assessment of spatially correlated 

building damages, i.e. 𝑓𝑫𝑺 𝑰𝑴 𝒗 𝒚 ,  in which the uncertainties in building responses 

conditional on hazard demands (𝑫𝑺 𝑰𝑴) as well as the spatial correlations among those 

must be considered;  (3) Estimation of functionality loss for both individual buildings, 

i.e. 𝑓𝑺 𝑫𝑺 𝒖 𝒗  , and for building portfolio as a whole, i.e.  𝐹(𝑃𝑅𝐼|𝑆Nr). Each of the 

three analysis steps is conditional on the previous one. These three analysis steps are 

illustrated in Figure 4-1, with each step being detailed in section 4.1.1, 4.1.2 and 4.1.3, 

respectively.  
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4.1.2 Step 1: Spatial Hazard Demand Characterization (IM) 

The scenario-based hazard modeling approach has been widely used in 

community resilience assessment, planning for emergency response/recovery, and 

developing hazard mitigation strategies, as it maintains the spatial variation in hazard 

demand for an interested event, enabling resilience metrics of spatially distributed 

systems to be assessed on the community scale in a realistic manner. A scenario 

earthquake is usually characterized by an earthquake magnitude and an epicenter 

distance. The appropriate scenario event for community resilience planning should be 

chosen based on the hazard characteristics and the risk tolerance of the specific 

community being investigated.  

For a selected scenario event, the seismic intensity characteristics of buildings 

are symbolized by a median response spectrum (spectral displacement or spectral 

acceleration) and a period-dependent dispersion calculated from the ground motion 

attenuation relationship. The hazard demand characterization must take into account the 

uncertainty in ground motion intensity at the site of a building for a given earthquake 

scenario (𝑰𝑴|𝑆Nr), as well as the site-to-site correlations in the demands resulted from 

same seismic source, similar wave propagation path, and similar soil site condition.   

The predominant studies have modeled the uncertainty of ground motion 

intensity at a site of a building (IM) with an intra-event error term 𝜉 and an inter-event 

error term 𝜂 (Jayaram & Baker, 2009); the latter is not needed for the scenario analysis 

herein. Accordingly, the ground motion intensity at building site i can be written as:  

ln 𝐼𝑀# = ln 𝐼𝑀� + 𝜏 ∙ 𝜉#                                              	 (4-3) 
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where 𝐼𝑀� is the expected value of ground motion intensity at building site i computed 

from a selected ground motion attenuation model; 𝜉# is often described by a standard 

normal distribution, and 𝜏 represents the standard deviation of	ln	(𝐼𝑀#). The joint 

probability of ground motion intensities at all building sites is a multivariate lognormal 

distribution. 

The correlation between seismic intensities (more specifically, correlation in 

random variables 𝜉) of two building sites 𝑖 and 𝑗, 𝜌#,%lm, is often defined as an exponential 

function with respect to the separation distance between the two sites. As an example to 

explore the role of correlation in building portfolio loss estimation, the correlation 

function determined by Wang & Takada (2005) is utilized: 

𝜌#,%lm = exp − x1�
w

                                              	 (4-4) 

where 𝑟#% is the separation distance between building sites i and j; and R is a parameter 

denoting the correlation distance, which is related to the characteristics of the 

earthquake and local site conditions.   

 

4.1.3 Step 2: Spatial Damage Analysis (DS) 

Building damage analysis includes evaluating structural and non-structural 

damages of buildings using existing fragility functions. Unlike assessment of an 

individual building which is often focused on detailed and accurate component-level 

analyses, in a building portfolio loss estimation the physical damage of an individual 

building is coarsely categorized into two portions: damages of structural component and 

non-structural component, with the latter being further classified as damages of non-

structural drift-sensitive component and acceleration-sensitive component. Fragility 
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curves with respect to these types of building components for different types of 

buildings can be found in literature, in existing loss estimation platform such as 

HAZUS-MH and MAEViz, or in future in the more comprehensive database of IN-

CORE.   

Such building damage analysis takes into account the uncertainties in both 

structural and nonstructural damages of a building conditional on the ground motion 

intensity. Besides uncertainty propagation, the structure-to-structure correlation in the 

damage states of buildings must be modeled. This correlation is a result of building 

design according to similar building design codes, similar engineering practices, or 

similar construction materials. The structure-to-structure correlation has been discussed 

in only a few studies due to its complexity and the lack of available data for validation. 

Vitoontus & Ellingwood (2013) modeled the damage state of building 𝑖, 𝐷𝑆#,	as the sum 

of the effects of its construction material 𝑀#, structural type 𝑇#,  and building code 𝐶#, 

and a noise term	𝜀#:  

𝐷𝑆# = 𝑀# + 𝑇# + 𝐶# + 𝜀#                                              	 (4-5) 

Further, let 

 𝑌# = 𝑀# + 𝑇# + 𝐶#                                            	 (4-6) 

and 𝑌#	is statistically independent of 𝜀# , then 𝐷𝑆# = 𝑌# + 𝜀#. The correlation between 𝑌# 

and 𝑌%and the correlation between 𝜀# and 𝜀% can be written as: 

𝜌�1.��
	 = 𝜌m 1,m � ∙ 𝜌y1,y�                                            	 (4-7) 

𝜌¡1.¡�
	 = 𝑒𝑥𝑝 − x1�

£¤
                                            	 (4-8) 
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where 𝜌m 1,m � represents the correlation in responses of building i and j introduced by 

similar construction type and material; 𝜌y1,y�, represents correlation due to the same (or 

similar) building code; and 𝛽¡ denotes the scale of the correlation due to building 

separation (buildings in proximity to one another are more likely to be highly correlated 

because of community development patterns). Accordingly, the structure-to-structure 

correlation between building i and building j becomes: 

𝜌#,%
/2|lm =

¥¦1.¦�
	 ∙§¦1∙§¦�¨©ª«	(¬x1�/£¤)∙	§¤

®

§¦1
® ¨§¤®∙ §¦�

® ¨§¤®
                                            	

(4-9) 

where 𝜎�1 , 𝜎�� and 𝜎¡	  denote the standard deviation of 𝑌# ,  𝑌% and 𝜀, respectively. 	𝜎�1 

and 𝜎�� are computed as the root mean square of the logarithmic standard deviations of 

all damage values while the 𝜎¡	  is often assumed to be a certain percentage of 𝜎�1𝜎�� in 

the literature (Vitoontus & Ellingwood, 2013).  

 

4.1.4 Step 3: Portfolio Functionality Loss Estimation 

Finally, the functionality losses for both individual buildings, i.e. 𝑓𝑺 𝑫𝑺 𝒖 𝒗  , 

and for the building portfolio as a whole, i.e.  𝐹(𝑃𝑅𝐼|𝑆Nr) are estimated in this section.  

The former is obtained by a damage-to-functionality mapping at building-level, the 

latter is then estimated by establishing a functional form that relates the building-level 

functionality losses to portfolio-level functionality losses.   
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4.1.4.1 Building-level damage-to-functionality mapping  

To link damage of an individual building (as estimated in 4.1.3) to its 

functionality state (as introduced in Figure 3-1), we develop a damage-to-functionality 

mapping through identifying the mechanism by which building components (both 

structural and nonstructural) are assembled to collectively support the building 

functionality as well as the dependencies of the building functionality on the availability 

of critical utilities.   

Damage-to-functionality mapping can be constructed by accurate building-level 

functionality assessment. For instance, Porter & Ramer (2012) identified a diverse set of 

detailed damage scenarios that can affect building functionality states and implemented 

a fault tree analysis to relate damage states of building components to a building’s post-

hazard functionality states. Such functionality assessment, however, needs to be 

supported by detailed building-specific information (such as vulnerability of roofs, 

suspended ceiling, HVAC system, etc.), which is often unattainable. Therefore, this 

method is impractical for the present analysis which is aimed at a far less granular 

community-level functionality loss estimation.   

Accordingly, a mapping using a coarser resolution based on existing studies 

(FEMA/NIBS, 2003; FEMA, 2012) is introduced in this study to link the damage states 

of building components (estimated in Section 4.1.2) to the post-disaster building 

functionality states, as shown in Figure 4-2. The Figure 4-2 depict the assumptions 

made in the damage-to-functionality mapping that: 1) buildings with no damage to all 

of the three buildings components (i.e., structural components, nonstructural drift-

sensitive components, and nonstructural acceleration-sensitive components) will 
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achieve FF; 2) buildings with no more than slight damage to all of the three 

components will achieve at least BF; 3) buildings with no more than slight damage to 

the structural components and no more than moderate damage to the two categories of 

nonstructural components will achieve at least RO; 4) buildings no exceeding moderate 

damage to all of the three building components will achieve at least RU4.  

Further, to express the damage-to-functionality mapping probabilistically to 

facilitate subsequent analysis, let 𝑆& 𝑡=  denote the functionality status of building n at 

𝑡= (𝑡= is the time when the prescribed hazard event occurs), which takes one of the five 

predefined functionality states 𝑆%, 𝑗 = 1,2, … ,5 (representing RE, RU, RO, BF, FF, 

respectively). Let 𝑒%
=,& = 𝑒%& 𝑡= , 𝑗 = 1,2, … ,5 denote the probability of building n 

achieving or exceeding functionality state	𝑆% at 𝑡=.	 The mapping in  Figure 4-2 can be 

further expressed as:  

𝑒?
=,& = 𝑃 𝑆& 𝑡= ≥ 𝑅𝐸 	= 1	 (4-10a) 

𝑒E
=,& = 𝑃 𝑆& 𝑡= ≥ 𝑅𝑈 	

= 𝑃 𝐷𝑆2/& ≤ 𝑑𝑠±,2/	 , 𝐷𝑆b/& ≤ 𝑑𝑠±,b/	 , 𝐷𝑆bc& ≤ 𝑑𝑠±,bc	 	

(4-10b) 

𝑒±
=,& = 𝑃 𝑆& 𝑡= ≥ 𝑅𝑂

= 𝑃 𝐷𝑆2/& ≤ 𝑑𝑠E,2/	 , 𝐷𝑆b/& ≤ 𝑑𝑠±,b/	 , 𝐷𝑆bc& ≤ 𝑑𝑠±,bc	 	

(4-10c) 

                                                
4 There are considerable amounts of nonstructural components suffering from severe damage (such as stairs 
and suspended ceiling) can threaten life safety and trigger an unsafe placard. However, there are also some 
nonstructural components that are unlikely to pose threat to life safety (such as elevator, most mechanical 
equipment and electronical system). In this study we don’t distinguish these two types of nonstructural 
components and assume that the overall nonstructural components with severe damage will threaten life 
safety and is in restrict entry. This will lead to conservative result in functionality losses. 
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	𝑒²
=,& = 𝑃 𝑆& 𝑡= ≥ 𝐵𝐹 =

													
𝑃 𝐷𝑆2/& ≤ 𝑑𝑠E,2/	 , 𝐷𝑆b/& ≤ 𝑑𝑠E,b/	 , 𝐷𝑆bc& ≤ 𝑑𝑠E,bc	 ,			𝐵𝑈	=,& = 1
0,																																																																																									,			𝐵𝑈	=,& = 0

																

(4-10d) 

𝑒³
=,& = 𝑃 𝑆& 𝑡= = 𝐹𝐹 						

=
𝑃 𝐷𝑆2/& = 𝑑𝑠?,2/	 , 𝐷𝑆b/& = 𝑑𝑠?,b/	 , 𝐷𝑆bc& = 𝑑𝑠?,bc	 ,				𝐹𝑈	=,& = 1
0,																																																																																									,			𝐹𝑈	=,& = 0

	

(4-10e) 

where	𝐷𝑆´& is the seismic-induced damage state to component 𝑘 of building 𝑛, 𝑘 ∈

{𝑆𝐷,𝑁𝐷,𝑁𝐴} denoting structural (SD), nonstructural drift-sensitive (ND) and 

nonstructural acceleration-sensitive (NA) components, respectively; 𝑑𝑠#,´	  represents a 

specific damage state 𝑖	, 𝑖 = 1,…,5 denoting none, slight, moderate, extensive and 

complete damage states, in terms of component 𝑘 ∈ {𝑆𝐷,𝑁𝐷,𝑁𝐴};  𝐵𝑈	=,& and 𝐹𝑈	=,& are 

binary variables representing baseline utility and full utility, respectively; the binary 

states (1- available and 0 - disrupted) of baseline utility (𝐵𝑈	=,&) or full utility (𝐹𝑈	=,&) at 

the site of building 𝑛 at	𝑡0	can be determined by an integrated interdependent utility 

network damage and cascading failure analysis which is currently performed by other 

researchers in the CRCRP (e.g. Zhang et al., 2018) or found in the literature (e.g. 

González et al., 2015).  

Let 𝝅& 𝑡= = [𝜋?& 𝑡= , 𝜋E& 𝑡= , 𝜋±& 𝑡= , 𝜋²& 𝑡= , 𝜋³& 𝑡= ] be the functionality state 

probability vector of building n at 𝑡=, in which the element 𝜋%& 𝑡= = 𝑃𝑟𝑜𝑏 𝑆 𝑡= = 𝑆%  

represents the probability of building n being in functionality state 𝑆%. Accordingly, the 

𝝅& 𝑡=  is obtained by: 

𝝅& 𝑡= = 1 − 𝑒E
=,&, 𝑒E

=,& − 𝑒±
=,&, 𝑒±

=,& − 𝑒²
=,&, 𝑒²

=,& − 𝑒³
=,&, 		𝑒³

=,&		 									 (4-11) 
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4.1.4.2 Portfolio-level functionality loss 

While the initial functionality state of any building is determined by 	𝝅& 𝑡= , the 

portfolio functionality losses can be estimated as the following.  

Let 𝐼%& 𝑡= 	be the functionality state indicator of any building 𝑛 at 𝑡=: 

𝐼%& 𝑡= =
0														𝑆& 𝑡= ≠ 𝑆%	
1														𝑆& 𝑡= = 𝑆%

 , 	𝑛	∈1, 2,…, N 	 (4-12) 

The 𝐼%& 𝑡=  is a binary variable with probability Prob 𝐼%& 𝑡= = 1 = 𝜋%& 𝑡=  and 

Prob 𝐼%& 𝑡= = 0 = 1 − 𝜋%& 𝑡= . 

Accordingly, the 𝑃𝑅𝐼% at initial time 𝑡=, denoting the percentage of buildings in a 

community that are in functionality state 𝑆% at time 𝑡=, is given by: 

𝑃𝑅𝐼% 𝑡= =
𝐼%& 𝑡=b

&Á?

𝑁
	，														𝑗 ∈ 1…5 (4-13) 

 

4.1.5 Uncertainty Propagation in BPLE  

To obtain the probabilistic distribution of portfolio functionality metric 

investigated under a scenario earthquake, 𝑃 𝑃𝑅𝐼 ≤ 𝑧 𝑆Nr , one needs to solve Eq. (4-

2), in which the three conditional probability distributions associated with the 

intermediate variables 𝑰𝑴|𝑆Nr, 𝑫𝑺|𝑰𝑴, 𝑺|𝑫𝑺 are evaluated in Section 4.1.2, 4.1.3, and 

4.1.4, respectively. Note that the relation between functionality state 𝑺 and damage state 

𝑫𝑺 is obtained from a damage-to-functionality mapping as illustrated in Figure 4-2. 

This one-to-one mapping implies that the uncertainties associated with the relation 

modeling between 𝑺 and 𝑫𝑺 is neglected. As a result, the distribution function 𝑓𝑺 𝑫𝑺 in 

Eq. (4-2) becomes a Heaviside step function.  
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Eq. (4-2), unfortunately, cannot be evaluated in closed form when a building 

portfolio consists of thousands or even millions of buildings. To handle the multiple 

layers of conditional distribution in Eq. (4-2), namely, 𝑓𝑰𝑴|2�� and 𝑓𝑫𝑺|𝑰𝑴, a numerical 

solution using Monte Carlo simulation (MCS) is employed for obtaining the distribution 

of 𝑃𝑅𝐼. In the MCS, the two layers of conditional random fields, 𝑰𝑴|𝑆Nr and	𝑫𝑺|𝑰𝑴 

[with high dimensions of correlated random variables in each layer, as formulated in 

Eqs. (4-3)-(4-9)] are simulated to obtain spatially correlated damage states of buildings.   

Further, through a damage-to-functionality mapping in  Figure 4-2, the random samples 

of functionality state of individual buildings are obtained and the probabilistic outcome, 

𝝅& 𝑡= , for each individual building can be derived. Note that the correlation in 

building damage 𝑫𝑺 will automatically be propagated into the correlated initial 

functionality states at 𝑡=, 𝑺(𝑡=), through MCS. Lastly, the portfolio-level functionality 

metric at 𝑡=, 𝑃𝑅𝐼% 𝑡=  is calculated using Eqs. (4-12) & (4-13), with its probability 

distribution obtained from the MCS samples of PRI. The numerical implementation of 

the overall BPLE using MCS is shown in Figure 4-3. Both the building level 

functionality state probability vector at 𝑡=,  𝝅& 𝑡= , and the portfolio-level functionality 

metric, 𝑃𝑅𝐼% 𝑡= , 𝑗 = 1,2, … , 5 calculated in this section will serve as inputs of the 

BPRM to be introduced in Chapter 5. 
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Figure 4-3. Flowchart of the MCS for building portfolio functionality loss estimate 
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4.2 An Implementation of Random Sampling Technique in BPLE 

Despite the MCS can be employed to solve Eq. (4-2), the required 

computational effort for BPLE is enormous. When the number of buildings (N) is large 

(e.g. Shelby County, TN, has more than 300,000 buildings), the determination of 

𝜌#,%lm	and 𝜌#,%
/2|lm, 𝑁×𝑁 correlation matrices, is onerous. To ensure the scalability of this 

BPLE framework to communities of different sizes, a random sampling technique is 

implemented, i.e., randomly select n samples of buildings to represent the entire 

building portfolio of N buildings, where n<<N. The choice of sampling size n depends 

on the size and topology of the building portfolio, as well as the level of the site-to-site 

and structure-to-structure correlations (Vitoontus & Ellingwood, 2013).  

To validate this sampling technique, a 4km × 1.5km non-homogenous 

residential zone in the U.S. of 4246 typical residential buildings of three types is 

anayzed: 2196 non-seismically designed one-story wood frames developed mainly in 

the 1950s (denoted herein as “pre-code”, W1); 2000 seismically designed one-story 

wood single family dwellings developed during the 1970–1980s (“low-code”, W2), and 

50 seismically designed wood residential buildings developed in 1990s (“moderate-

code”, W3). Buildings of the same type developed in a similar period are located in a 

cluster, representing typical urban development patterns, and within each cluster, they 

are randomly scattered modeled by Poisson random fields, as shown in Figure 4-4(a); 

the random sampling applied to each cluster is illustrated in Figure 4-4(b). The relative 

proportion of the three types of buildings is maintained during the sampling process.  

To quantify portfolio functionality losses, a portfolio-level functionality loss 

ratio (FLR) is proposed and defined as the percentage of buildings in the portfolio that 
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are non-functional (namely, RE, RU, RO) immediately following a prescribed hazard 

event. The FLR is calculated by: 

𝐹𝐿𝑅 = 𝑃𝑅𝐼% 𝑡=

±

%Á?

=
1
𝑁

[𝐼?& 𝑡= + 𝐼E& 𝑡= + 𝐼±& 𝑡= ]
b

&Á?

 (4-14) 

Figure 4-5 displays the empirical CDF of the FLR of this residential zone for a 

given scenario earthquake (with magnitude 𝑀s = 7.8 and epicentral distance 𝐷 =

36.5km) using different sampling sizes, n, ranging from 20 to 2000.  When n increases 

to 100, the estimated FLR gradually converges to the “exact” solution which involves 

all 4246 buildings. To measure the impact of correlation structures on the accuracy of 

the approximation using this sampling technique, Table 4-1 summarizes the relative 

error of the approximation associated with different correlation distances and sample 

sizes, with the relative error defined as: 

𝑒 =
𝑧 − 𝑧
𝑧

									 (4-15) 

where 𝑧  is the approximation while	𝑧 is the “exact”. In this particular case, the sample 

size n necessary to ensure accuracy in approximation is not much affected by the 

correlation distance when n is greater than 100. This sampling technique will be further 

implemented in comprehensive case studies for the two testbed communities 

investigated.  
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Figure 4-4. Illustration of (a) a hypothetical residential zone and (b) random 
sampling of the houses in this zone 
 

 

 
Figure 4-5. Convergence of the random sample model using FLR as a portfolio 

functionality metric  
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Table 4-1. Relative error associated with random sampling for different 
correlation distances and sample sizes 

Correlation 
distance  

Sample size, n 
20 50 100 500 1000 2000 

R=2 0.0356 0.0157 0.0138 0.0115 0.0055 0.0089 
R=10 0.0281 0.0116 0.0121 0.0136 0.0098 0.0168 
R=20 0.0192 0.0122 0.0105 0.0126 0.0148 0.0139 
R=50 0.0377 0.0096 0.0102 0.0272 0.0061 0.0122 

R=100 0.0457 0.0227 0.0084 0.0071 0.0199 0.0137 
 

4.3 Closure 

In this Chapter, a probabilistic functionality loss estimation (BPLE) framework 

has been developed for spatially distributed community building portfolios subject to 

prescribed seismic scenario events. The major characteristics of the BPLE are the 

following: 

(1) The outcome of the BPLE framework is two-fold: the functionality state of 

individual buildings denoted by the state probability vector 𝝅(𝑡=) [cf. Eq. (4-11)] 

and the aggregated portfolio-level functionality loss, 𝑃𝑅𝐼%(𝑡=) [cf. Eq. (4-13)] 

including both mean and its uncertainty. As illustrated in Figure 4-1, these PBLE 

outcomes will serve as the starting point for the BPRM developed in Chapter 5. 

(2) A building-level damage-to-functionality mapping approach [cf. Figure 4-2 and 

Eqs. (4-10)] is introduced to jointly map the physical damage condition and utility 

disruption of a building to one of the five building functionality states. The 

functionality states of individual buildings are then aggregated spatially to obtain 

the portfolio functionality loss.  
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(3) The BPLE includes a systematic and rigorous methodology that is capable of 

propagating various uncertainties and both site-to-site and structure-to-structure 

spatial correlations throughout all three steps of portfolio loss estimation (i.e. spatial 

hazard demand characterization, spatial damage analysis, and portfolio functionality 

loss estimation). This uncertainty propagation is realized through Eqs. (4-2) - (4-13), 

and implemented with a multi-layer MCS scheme (cf. Figure 4-3).  

(4) A random sampling model is implemented to relief the computational effort in 

uncertainty propagation when dealing with building portfolios of large sizes and 

scales. The tradeoff between the sampling resolution and the accuracy of estimated 

portfolio loss is also investigated.  
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Chapter 5 Building Portfolio Recovery Model (BPRM)  

This chapter focuses on developing a stochastic building portfolio recovery 

model (BPRM) to predict the functionality recovery time and recovery trajectory of a 

community building portfolio following natural scenario hazard events.  

The BPRM is developed in two steps. In Section 5.1, building-level restoration 

is formulated as a discrete-state, continuous-time Markov Chain (CTMC); and in 

Section 5.2, portfolio-level recovery is formulated as the spatial aggregation of the 

CTMC restoration processes of individual buildings over the entire recovery time 

horizon. Uncertainty propagation associated with the portfolio recovery process and the 

quantification of time-variant correlations among building functionality states are 

presented in Section 5.3. The BPRM is conceptually illustrated in Figure 5-1, and 

detailed model components are illustrated in Figure 5-2.  

 

 

Figure 5-1. Schematic representation of building portfolio recovery 
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5.1 Step 1: Building-Level Restoration 

5.1.1 Discrete-State, Continuous-Time Markov Chain (CTMC)  

Let 𝑆 𝑡  be the stochastic post-disaster restoration process of an individual 

building, denoting functionality state at any time t after hazard occurrence at 𝑡=.  𝑆 𝑡  is 

assumed to take one of the five functionality states in Figure 3-1 at any time, 

symbolized as 𝑆?, 𝑆E, …	𝑆³, representing restricted entry (RE), restricted use (RU), re-

occupancy(RO), baseline functionality (BF) and full functionality (FF), respectively.  A 

building restoration process 𝑆 𝑡  starts at time 𝑡= = 0, from its initial pre-restoration 

functionality state 𝑆 𝑡= = 𝑆 0 , and lasts until 𝑡 = 𝐵𝑅𝑇 when the building regains FF 

(i.e. 𝑆³).  An illustration of the time-dependent building-level restoration process, 𝑆 𝑡  , 

is shown in Figure 5-3 for buildings with 𝑆 𝑡= =	𝑆?. Due to the uncertainties in 𝑆 𝑡= , 

introduced by uncertain hazard intensity and structural performance, as well as the 

uncertainties in the subsequent 𝑆 𝑡 	for 𝑡 > 𝑡=, introduced by various decisions of 

building owners with different social and economic status (which ultimately are 

affected by the resourcefulness of the community as a whole), the building-level 

functionality 𝑆(𝑡) is modeled as a stochastic random process. Moreover, the next 

functionality state at any time during a building restoration is only dependent on the 

current functionality state, hence 𝑆(𝑡) is modeled as a discrete-state, continuous-time 

Markov Chain (CTMC), characterized by the five-state space (i.e. 𝑆?, 𝑆E, …	𝑆³ ) and a 

transition probability matrix, TPM.  

Let 𝜋% 𝑡  denote the probability of 𝑆 𝑡 = 𝑆% at any time 𝑡, i.e. 𝜋% 𝑡 =

Prob 𝑆 𝑡 = 𝑆% , 𝑗 = 1,… , 5, then the state probability vector at any time 𝑡 is: 
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	𝜋 𝑡 = 𝜋? 𝑡 , … , 𝜋³ 𝑡 	                                               	 (5-1) 

where 𝜋% 𝑡 = 1³
%Á?  for any time 𝑡. In particular, the initial (𝑡 = 𝑡=) functionality state 

probability vector 𝝅 𝑡= = 𝜋? 𝑡= , 𝜋E 𝑡= 	𝜋± 𝑡= , 𝜋² 𝑡= , 𝜋³ 𝑡= , can be determined 

by a mapping from the joint effect of building damage and utility disruption following a 

hazard event to building functionality states (cf. Figure 3-1).  For a specific hazard 

event, this mapping can be done through field inspections as discussed in Section 3.1. 

For a hazard scenario considered in pre-event planning, one physically-based approach 

to estimate this joint effect is through a fully coupled building portfolio functionality 

loss estimation considering utility disruptions, in which the damage-to-functionality 

mapping scheme introduced in Section 4.1.3 is utilized (Zhang et al., 2018).  

 
Figure 5-3. Discrete state, continuous time Markov Chain 𝑺 𝒕  (for buildings 

with 𝑺 𝒕𝟎 =	𝑺𝟏) 
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Let 𝑻𝑷𝑴 𝑡  be the transition probability matrix of the CTMC that represents 

the building-level restoration process	𝑆 𝑡 . The non-negative elements of 𝑻𝑷𝑴 𝑡 , 

𝑝#,%(𝑡), defined as:  

𝑝#,% 𝑡 = Prob 𝑆 𝑡 = 𝑆% 𝑆 𝑡= = 𝑆#                                             	(5-2) 

describe the probability of the restoration process 𝑆 𝑡 	transiting to state	𝑆% at any time 𝑡 

given that its initial state at 	𝑡= is 	𝑆#. Since at a given time a building’s functionality 

either remains at the present state or shifts to any of its higher states, 𝑆 𝑡  is a non-

decreasing process and the 𝑻𝑷𝑴(𝑡) takes the form: 

		𝑻𝑷𝑴(𝑡) =

𝑝?,? 𝑡 𝑝?,E 𝑡
								0 	𝑝E,E 𝑡
								0 			0

				
𝑝?,± 𝑡 𝑝?,² 𝑡 𝑝?,³ 𝑡
𝑝E,± 𝑡 𝑝E,² 𝑡 𝑝E,³ 𝑡
𝑝±,± 𝑡 𝑝±,² 𝑡 𝑝±,³ 𝑡

									0 								0
0 								0															

0	 		𝑝²,² 𝑡 𝑝²,³ 𝑡
0	 			0 1										

                                            	(5-3) 

As illustrated in Figure 5-3, let 𝑊𝑇#,% represent the waiting time that 𝑆 𝑡  stays 

at state 𝑗 (or the waiting time takes 𝑆 𝑡  to upgrade from the current state 𝑆% to the next 

state  𝑆%¨?) given 𝑆(𝑡=) =	𝑆#. 	Further, let 𝑅𝑇#,% = 𝑊𝑇#,´
%¬?
´Á# 	be the total time to restore 

the building’s functionality to 𝑆% from its initial state	𝑆#.   Accordingly, 𝑒#,%(𝑡), defined 

as the probability that 𝑆(𝑡) is equal to or exceeds 𝑆%, 𝑗 = 1,… , 5,	 at any time	𝑡 given the 

initial functionality state	𝑆# at 𝑡=, can be expressed as: 
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 𝑒#,% 𝑡 = Prob 𝑆 𝑡 ≥ 𝑆% 𝑆 𝑡= = 𝑆# 				

= Prob 𝑅𝑇#,% ≤ 𝑡

= Prob 	𝑊𝑇#,´
%¬?

´Á#
≤ 𝑡 	

= … 𝑓Í 1,Î

%¬?

´Á?

	

	s|1,Î
�ÏÐ
ÎÑ1 �|

𝑑 𝑤𝑡#,´ ，	𝑗 = 1,… ,5															  

(5-4) 

where	 𝑓Í 1� denotes the PDF of  𝑊𝑇#,%.  For a given initial state	𝑆#, 𝑊𝑇#,% are treated as 

independent random variables in Eq. (5-4) because each 𝑊𝑇#,% is determined only by a 

set of unique restoration activities that take place during that specific timeframe. The 

detailed discussion and probabilistic estimation of 𝑊𝑇#,% will be presented in Section 

5.2.2.  

Denote the exceedance probability 𝑒#,% 𝑡  as the conditional building restoration 

function (CBRF), representing the probability of a building achieving or exceeding a 

predefined functionality state 𝑆% at any post-event time	𝑡 conditional on its initial (pre-

restoration) functionality state	𝑆#  immediately following hazard occurrence at 𝑡=. 

Accordingly, the elements of the 𝑻𝑷𝑴 𝑡 	become: 

 														𝑝#,% 𝑡 = Prob 𝑆 𝑡 = 𝑆% 𝑆 𝑡= = 𝑆#

= Prob 𝑆 𝑡 ≥ 𝑆% 𝑆 𝑡= = 𝑆# − Prob 𝑆 𝑡 ≥ 𝑆%¨? 𝑆 𝑡= = 𝑆#
= 𝑒#,% 𝑡 − 𝑒#,%¨? 𝑡 ,													𝑗 = 1,… ,4 

(5-5) 

          	𝑝#,% 𝑡 = 𝑒#,% 𝑡 ,																									𝑗 = 5          (5-6) 

Finally, the restoration state probability vector 𝝅 𝑡  at any time	𝑡	is: 

𝝅 𝑡 = 𝜋? 𝑡 , … , 𝜋³ 𝑡 	 = 𝝅 𝑡= ∗ 𝑻𝑷𝑴(𝑡) 	 (5-7) 
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Define 𝑒% 𝑡  as the building restoration function (BRF), representing the total 

probability of a building achieving or exceeding a predefined functionality state 𝑆% at 

any post-event time	𝑡 regardless of its initial functionality state. The BRF can be 

estimated quantitatively as:   

     𝑒% 𝑡 = Prob 𝑆 𝑡 ≥ 𝑆% = 𝜋´ 𝑡 			³
´Á% 	 (5-8) 

Figure 5-4 presents an illustration of BRF of a building for	𝑗 = 2…5, 

respectively; when	𝑗 = 1, 𝑒% 𝑡 ≡ 1, meaning the probability that a building is in, or 

exceeds, the worst functionality state  𝑆? (i.e. RE) is always 100%. In particular, 

𝑒% 𝑡= ,	determined from 𝝅 𝑡= , represents the probability of the building at or exceeding 

functionality state 𝑆% at time 𝑡= before any restoration activity takes place.   

 
 

Figure 5-4. Illustration of building restoration function (BRF) of an individual 
building  
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5.1.2 Determination of Transition Probability Matrix (TPM)  

The key element of the CTMC building-level restoration model is the transition 

probability matrix, TPM, defined in Eq. (5-3). The elements of TPM, i.e. 𝑝#,% 𝑡 , 

estimated by Eqs. (5-4)-(5-6), ultimately are functions of waiting time 𝑊𝑇#,%. The 

	𝑊𝑇#,%	vary from building to building, are highly uncertain and are strongly influenced 

by the social-economic status of building owners as well as the post-disaster 

construction market within the community. Quantification of 	𝑊𝑇#,% has been 

challenged by the lack of systematically documented data on delay and repair time 

regarding building restoration and inadequate understanding of the uncertain factors 

involved in the restoration process, which often are outside of the domain of 

engineering (Comerio, 2006). In this study the engineering process of building-level 

restoration is examined and mapped to the theoretical continuous-time Markov Chain 

model introduced in Section 5.2.1, and a simulation-based method supported by 

empirical data is used to obtain the probabilistic distributions of 𝑊𝑇#,% which are critical 

input for estimating the TPM.   

Examining the engineering process of building reconstruction, the waiting times 

are functions of the delay time (𝑇/tuhv), repair time (𝑇wt*h#x), and the time to regain 

utility service (𝑇{|#u#|v), i.e., 

𝑊𝑇#,%& = 𝑓𝑐𝑛 𝑇/tuhv& 	, 𝑇wt*h#x& , 𝑇{|#u#|v& |	𝒙	&, 𝑿	Ù	                                             	(5-9) 

in which the superscript 𝑛 represents a specific building in a community building 

portfolio;  𝒙	& represents a vector of building-specific attributes that affect the three 

components of the waiting time, e.g., occupancy type, construction material, post-
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disaster damage and functionality loss of the building; and 𝑿	Ù represents community-

specific characteristics that have an impact on the three components of the waiting time, 

such as strength of regional economy, local regulations or policies [e.g., changes to 

planning, zoning, or construction regulations by a local jurisdiction after an extreme 

event], financing mechanisms for repair [i.e. private funding from personal savings, 

private loans, insurance, etc. public assistance from federal and state governments or 

non-profit organizations, such as the Federal Emergency Management Agency 

(FEMA), the Small Business Administration (SBA), and the Department of Housing 

and Urban Development (HUD), etc.], human resources [such as available workforce, 

construction contractors, and engineers for inspection, design and construction], and 

relevant pre- and post-event risk mitigation activities.  

The delay time (𝑇/tuhv& ), the time takes to initiate repair for building	𝑛, includes 

three specific phases, as represented by the double-dashed lines in Figure 5-5: 1) time to 

inspect the building (𝑇lb2O,#& ); 2) time to secure funding for repair (𝑇\lbc,#& ), to 

commission architects and engineers (𝑇y}bm,#& ), and to design and prepare construction 

drawings (𝑇Nb~m,#& ), all of which can occur simultaneously;  and finally 3) time to obtain 

permits, and hire contractors and construction crews (𝑇ONwm,#& ). The subscript i indicates 

that these delay time segments are conditional on a building’s initial functionality state 

𝑆#, 𝑖 = 1,2,3,4. Accordingly, the delay phase 𝑇/tuhv&  can be further expressed as 

[denoted downtime assessment methodology in the REDiTM framework (Almufti & 

Willford, 2013)]: 

𝑇/tuhv,#& = 𝑇lb2O,#& + max 𝑇\lbc,#& , 	𝑇y}bm,#& , 𝑇Nb~m,#& + 𝑇ONwm,#& 	                                            	(5-10) 
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These time segments of the delay phase are uncertain and conditional on the 

building-specific (𝒙	&) and community-specific attributes (𝑿	Ù) expressed in Eq. (5-9); as 

a result, these time segments are difficult to formulate from first principles, but can be 

efficiently represented statistically using data collected from reconnaissance efforts 

following previous major disasters in the U.S. and supported by opinions from experts, 

including engineers, building owners, contractors, cost estimators, and bankers. The 

first such restoration-focused statistical database can be found in REDiTM (Almufti & 

Willford, 2013), which is expected to be further refined and expanded as additional 

post-disaster field investigations and data collection efforts are completed (e.g. multiple 

post-event field investigations are included in the work plan of the NIST-funded Center 

of Excellence for Risk-based Community Resilience Planning).  

The repair time (𝑇wt*h#x& ) is the duration to complete all repair classes (RCs) 

necessary to restore the full functionality of building n, as represented by the solid dark 

lines in Figure 5-5.  The four RCs and the mapping between these RCs and the five 

predefined functionality states are presented in Figure 3-1. For example, the repair 

phase for a red-tagged building, i.e. RE, will need to include RCs 1-4, while a building 

with a pre-repair functionality state of RO only needs to undergo RC3 and RC4 to 

achieve FF. Denote repair class	𝑖 as 𝑅𝐶𝑖, representing the repair effort required to 

upgrade building functionality from 𝑆# to an intermediate state 𝑆#¨?, and 𝑇wt*h#x,wy#&  as 

the time takes to complete the	𝑅𝐶𝑖.   In general, once a repair construction initiates it 

will continue until the building regains its full structural and non-structural integrity. 

Accordingly, it is assumed that there are no arbitrary time breaks between RCs, 
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although the structural and non-structural components being repaired in those RCs are 

different.   

FEMA P-58 (FEMA, 2012) presented a methodology to estimate the repair time 

of a building, in which the time to repair all damaged structural and non-structural 

components was estimated by dividing the total workload per floor by the number of 

workers allocated to each floor for an assumed repair sequence (which is basically 

consistent with the sequence of RCs shown in Figure 3-1). This method is only practical 

when detailed information is available for an individual building and a probabilistic 

damage estimate can be obtained for every structural and non-structural component 

within the building. To achieve the ultimate goal of community-level building portfolio 

recovery modeling, such a detailed estimate of repair time is impractical and perhaps 

unnecessary; instead, a statistical approach to determine 𝑇wt*h#x,wy#&  based on relevant 

analytical studies and empirical data is more appealing, such as those presented in 

HAZUS (FEMA/NIBS, 2003) and MAEViz (Steelman et al., 2007). 

Utilities availability must be considered when a building’s restoration process 

moves beyond the Re-Occupancy (RO) state, as shown in Figure 5-5.  Analytically, the 

time (𝑇{|#u#|v& ) to bring utility service to building n in a community can be estimated by 

coupling probabilistic damage assessment and restoration decision optimization 

regarding resource allocation and repair sequencing within an overarching framework 

of interdependency modeling of utility networks (e.g. González et al., 2015; Zhang et 

al., 2018).  This approach requires comprehensive input information regarding 

functional and topological attributes of utility systems (water, power, gas, etc.), 

structural properties of network components (water and gas pipelines, water pumping 
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stations, power generation stations or substations, etc.), service areas of the demand 

nodes in each utility, and the available resources and characteristics of the decision 

process that leads to the restoration of utilities; such information often is not available.  

Alternatively, in a holistic manner, the 𝑇{|#u#|v&  can again be represented statistically 

using data collected from utility restoration efforts from past disaster recovery 

experiences in conjunction with observations from analytical studies reported in the 

literature. For example, RADiTM (Almufti & Willford, 2013) provides typical utility 

disruption curves for electric, water and gas systems, giving the likelihood of utility 

availability at a building site as a function of time elapsed from the occurrence of a 

hazard. 
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Figure 5-6(a)-(d) illustrate the mapping between the waiting time (𝑊𝑇&) in 

CTMC and the three major time segments (𝑇/tuhv& 	, 𝑇wt*h#x& , 𝑇{|#u#|v& ) of the building-

level restoration process, for building with initial functionality states RE, RU, RO and 

BF, respectively. It’s noteworthy that the 𝑇/tuhv& , 𝑇wt*h#x& , 𝑇{|#u#|v&  are essentially 

conditional on the pre-recovery damage state of a building, as well as the operability 

status of utility at the building site. Considering the definition of building functionality 

presented in Figure 3-1, in the present study a building’ physical damage is categorized 

into five states, from worst to the best, 𝑑𝑠?, 𝑑𝑠E,  𝑑𝑠±,  𝑑𝑠²,  𝑑𝑠³, with each including 

certain levels of structural and nonstructural damages listed in Figure 3-1; the 

availability status of utility at the building site is categorized into three states: 𝑢𝑎? (not 

available),	𝑢𝑎E (partially available), and 𝑢𝑎± (fully available), as also shown in 

Figure 3-1. Temporally, the building damage restoration and utility operability 

restoration occur in parallel, as depicted in Figure 5-7. Further, let  𝑇{|#u#|v,?&  be the time 

takes for utility at the site of building n to recover utility status from state 𝑢𝑎?	to state 

𝑢𝑎E, and  𝑇{|#u#|v,E&  be the time to recover from 𝑢𝑎E	to 𝑢𝑎± (cf. Figure 5-7).  

Regarding waiting time of the CTMC, the first waiting time (𝑊𝑇#,#& ) includes two 

segments: the time to prepare for repair, 𝑇/tuhv& , and the time to upgrade the building to 

the next functional level, 𝑇wt*h#x& .  In addition, if the initial functionality state is RO or 

BF, the waiting time 𝑊𝑇#,#&  also depends on the availability of utility service, i.e., BF or 

FF cannot be achieved unless utility service has been partially or fully restored  (as 

defined in Figure 3-1 and illustrated in Figure 5-5 and Figure 5-6). The 𝑇/tuhv& , 𝑇wt*h#x& , 
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𝑇{|#u#|v&  are conditional on building’s damage state 𝑑𝑠*, 𝑝 = 1,2,3,4,5 and utility’s 

availability state 𝑢𝑎-, 𝑞 = 1,2,3. Accordingly, the 𝑊𝑇#,#&  is: 

𝑊𝑇#,#& = 𝑇/tuhv,#& + 𝑇wt*h#x,wy#&
	
,								𝑖 = 1, 2 (5-11a)	

𝑊𝑇#,#& |𝑑𝑠*&, 𝑢𝑎-&

=
max 𝑇/tuhv,*& + 𝑇wt*h#x,*& , 𝑇{|#u#|v,-& ,			𝑖 = 𝑝;	 𝑝, 𝑞 = { 3,1 , 4,2 }
𝑇/tuhv,*& + 𝑇wt*h#x,*& ,																						𝑖 = 𝑝;	 𝑝, 𝑞 = { 3,2 , 3,3 , (4,3)}
𝑇{|#u#|v,-& ,																																																																																	𝑝 > 𝑖; 	𝑖 = 3,4

 
(5-11b)	

Similarly, the subsequent waiting time segments, 𝑊𝑇#,%, 	𝑗 > 𝑖, are:  

𝑊𝑇#,%& = 𝑇wt*h#x,wy%，& 														𝑗 = 2; 		𝑗 > 𝑖		 (5-12a)	

𝑊𝑇#,%& 𝑑𝑠*&, 𝑢𝑎-&

= max 𝑇/tuhv,*& + 𝑇wt*h#x,wy´&
%

´Á*
, 𝑇{|#u#|v,u&

%¬E

uÁ-
	

− 𝑊𝑇#,Ü&
%¬?

ÜÁ#
𝑑𝑠*&, 𝑢𝑎-&,												𝑗 = 3,4; 𝑗 > 𝑖		 

(5-12b) 

 

 

	

Table 5-1 lists all the conditional waiting times given different pre-recovery 

building damage condition 𝑑𝑠*, 𝑝 = 1,2, … ,5 and utility availability	𝑢𝑎-, 𝑞 = 1,2,3 

(superscript n is not written for simplification). Taking into account all the possibilities 

of combination of building damage and utility disruption (which affects the 

functionality states BF and FF), the waiting time 𝑊𝑇#,%&  is obtained using total 

probability theorem, i.e.,  
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𝑊𝑇#,%& =
𝑊𝑇#,%& |𝑑𝑠*&, 𝑢𝑎-& ∙ Prob 𝐷𝑆 𝑡= = 𝑑𝑠*&, 𝑈𝐴 𝑡= = 𝑢𝑎-&	

*,- ∈c1
Prob[𝑆(𝑡=) = 𝑆#]

 (5-13) 

where 𝐷𝑆 𝑡=  and 𝑈𝐴 𝑡=  represent the initial damage status of buildings and 

availability status of utility at the building site, respectively. 𝐴# denote the collections of 

the index of building and utility damage scenarios leading to functionality state 𝑆#. 

More specifically, 𝐴wN = 1,1 , 1,2 , 1,3 ; 𝐴w{ = 2,1 , 2,2 , 2,3 ; 𝐴w} =

{ 3,1 , 3,2 , 3,3 , 4,1 , 5,1 }; and 𝐴Ý\ = { 4,3 , 4,2 , 5,2 }, as indicated in 

Table 5-1. The conditional waiting time 𝑊𝑇#,%& |𝑑𝑠*&, 𝑢𝑎-& is summarized in Table 5-1, 

while the Prob 𝐷𝑆 𝑡= = 𝑑𝑠*&, 𝑈𝐴 𝑡= = 𝑢𝑎-&  is calculated from the initial damage 

evaluation of buildings and performance assessment of the utility networks.   

Using the Eqs. (5-11)-(5-13) for calculating waiting time and the statistical or 

analytical estimation of the time segments involved in these equations, the PDFs of the 

waiting time 𝑊𝑇#,%&  can be obtained.  When substituting these PDFs into Eqs. (5-4) - (5-

6), the TPM and BRFs can be obtained for all different building types in a community 

building portfolio.  
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Figure 5-6. General restoration paths for individual buildings with initial pre-
repair functionality states of a) RE, b) RU, c) RO, and d) BF. 
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Figure 5-7. Illustration of the (a) building damage restoration and (b) utility 
availability restoration 
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5.2 Step 2: Portfolio-Level Recovery 

5.2.1 Portfolio Recovery Trajectory (PRI) 

The second step of the BPRM is portfolio-level recovery in which the CTMC 

restoration processes of individual buildings are aggregated across the geographic 

domain of the community and over the entire recovery time horizon. A community 

building portfolio includes numerous buildings of different occupancies and 

construction types that collectively support different community functions (e.g. housing, 

business, education, healthcare, government, etc.). In order to track the recovery time 

and trajectory of a building portfolio as a whole, a building portfolio recovery index, 

𝑃𝑅𝐼% 𝑡  (which is the BPFM introduced in Chapter 3, as well as the vertical axis of the 

Figure 5-1) is proposed and defined as the percentage of buildings in a community that 

are in the functionality state 𝑆% at any given time 𝑡, i.e.:  

						𝑃𝑅𝐼% 𝑡 =
l�
ç |è

çÑÐ

b
	，																					𝑗 ∈ 1…5									                                              	(5-14) 

where N is the total number of buildings in a community, and  𝐼%& 𝑡  is the functionality 

state indicator of building 𝑛, i.e.: 

						𝐼%& 𝑡 =
0														𝑆& 𝑡 ≠ 𝑆%	
1														𝑆& 𝑡 = 𝑆%

	,		𝑛	∈1,	2,…,	N										                                              	
(5-15) 

Accordingly, the Probability Mass Function (PMF) of 𝐼%& 𝑡  is: 

𝑃l�ç(𝑡) =
1 − 𝜋%&	(𝑡)												𝐼%&(𝑡)	 = 0	
𝜋%& 𝑡 																					𝐼%&(𝑡) = 1

，							𝑛 ∈ 1,	2, … ,	N										                                              	
(5-16) 
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where 𝜋%&(𝑡) is the probability of 		𝑆& 𝑡 = 𝑆% at any time 𝑡 for building 𝑛, as defined in 

Eq. (5-1) and estimated by Eq. (5-7). Moreover, the time-dependent expected value and 

variance of  𝑃𝑅𝐼% 𝑡  are: 

	𝐸 𝑃𝑅𝐼%(𝑡) = ?
b

𝜋%&b
&Á? 𝑡 ,															𝑛 ∈ 1, 	2, … , N																					                                              	(5-17) 

𝜎Owl�
E 𝑡 = ?

b®
𝜌%	k& 𝑡 𝜎%&(𝑡)𝜎%k 𝑡b

kÁ?
b
&Á? ,						𝑛,𝑚 ∈ 1,	2, … ,	N																								(5-18) 

in which,  𝜎%& 𝑡 = 𝜋%& 𝑡 1 − 𝜋%& 𝑡  is the standard deviation of 𝐼%& 𝑡  and 𝜌%k&(𝑡) is 

the correlation matrix describing correlations between functionality states of building n, 

𝐼%& 𝑡 , and that of building m, 𝐼%k 𝑡 , at any time	𝑡. Such correlations are introduced by 

the correlated initial functionality states between building pairs at 𝑡=	resulting from 

correlated damage states (which, in turn, are introduced by the similarities in design and 

construction of buildings in the same community and the correlated hazard demands, 

e.g., earthquake ground motion intensities from the same hazard event). These 

correlations are propagated through the building restoration process; temporally, these 

correlations are strongest at  𝑡=	 and decrease monotonically with	𝑡 as the buildings’ 

restorations progress, and spatially, these correlations depend on the geographical 

locations of individual buildings and other attributes that affect building’s damage state 

due to the hazard events.  A detailed approach to estimate this correlation will be 

presented subsequently in Section 5.3. 

The mean values of 𝑃𝑅𝐼%(𝑡) represented by Eq. (5-17) are illustrated in 

Figure 5-8, for 𝑗 = 𝑅𝐸, 𝑅𝑈, 𝑅𝑂, 𝐵𝐹	𝑎𝑛𝑑	𝐹𝐹, respectively, tracking the temporal 

evolution of the percentage of buildings falling into each of the five functionality states. 
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The uncertainties associated with these curves are given by Eq. (5-18). Further, define 

the curve associated with the 𝐹𝐹 state, i.e. 𝑃𝑅𝐼\\(𝑡), as the portfolio recovery 

trajectory, which represents the percentage of the buildings in the FF state at any given 

elapsed time 𝑡 from the hazard occurrence, and is monotonically increasing with time.  

In contrast, the curve that tracks the percentage of buildings at the lowest functionality 

state (RE), i.e. 𝑃𝑅𝐼wN(𝑡), is always decreasing with time because buildings that are 

initially red-tagged (with a RE state) will be gradually restored to higher functionality 

states as the portfolio recovery proceeds. The portfolio recovery trajectory 𝑃𝑅𝐼\\(𝑡) 

may not always converge to 100% and the 𝑃𝑅𝐼wN(𝑡) may not always diminish to 0, as 

shown in Figure 5-8, which could be due to the population in- and out-migration 

following an extreme hazard. The trajectories of intermediate functionality states RU, 

RO and BF can be either increasing or decreasing at early stages of portfolio recovery, 

but all will ultimately decrease and approach to zero as most buildings in a portfolio are 

ultimately restored to the FF state. The summation of the five mean trajectories at any 

given time is approximately 100%.  

 

5.2.2 Portfolio Recovery Time (PRT) 

The portfolio recovery time, 𝑃𝑅𝑇%,h%, as already defined in Section 3.1, is	the 

time takes for a% (e.g. 95%) of community buildings to regain a predetermined 

functionality state 𝑗 (e.g. FF).  Then, the CDF of 𝑃𝑅𝑇%,h% can be derived as: 

𝐹Ow �,í% 𝑡 = 	𝑃𝑟𝑜𝑏 𝑃𝑅𝑇%,h% ≤ 𝑡 = 𝑃𝑟𝑜𝑏 𝑃𝑅𝐼% 𝑡 ≥ 𝑎% 	=

𝑓Owl�(𝑥, 𝑡)
?
h% 𝑑𝑥								                                              	

(5-19) 
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where 𝑓Owl�(𝑥, 𝑡) is the PDF of 𝑃𝑅𝐼%	at time t, which	can be obtained through multiple 

layers of MCS, propagating uncertainties throughout the portfolio recovery process, 

from spatially correlated hazard intensity, to spatially correlated structural and 

nonstructural building damage, and waiting time estimates. Such MCS, however, can 

quickly become computationally unmanageable as the size of the building portfolio (N) 

increases. Alternatively, since 𝑃𝑅𝐼%(𝑡) at any given time, as defined in Eq. (5-14), is the 

summation of 𝐼%&, 𝑛 = 1,… ,𝑁 (which become uncorrelated random variables as time 

elapses because the correlations in 𝐼%& , 𝜌%	k&,	diminish with time, as discussed 

previously), the 𝑃𝑅𝐼%(𝑡) is approximated by a normal distribution when 𝑡 approaches to 

full recovery time, with mean and variance expressed in Eq. (5-17) and Eq. (5-18), as 

the building portfolio approaches its full recovery.  The normal distribution need to be 

truncated at 1.0 because 𝑃𝑅𝐼% cannot exceed 100%. Accordingly, the distribution of 

portfolio recovery time,	𝑃𝑅𝑇\\,]³%, estimated using Eq. (5-19) is also illustrated in 

Figure 5-8.   

A community building portfolio is a spatially distributed system in the 

geographic domain of the community. This spatial distribution of buildings reflects the 

community’s development pattern, zoning, demographics and social disparities. 

Therefore, the spatial variation of the portfolio recovery is also of great interest to 

community decision makers in considering, e.g. the recovery resource allocation. The 

two-step BPRM developed in this study, when applied to a real community, can provide 

insights regarding the temporal evolution of the spatial variation in recovery speed in 

different zones of the community, as conceptually illustrated in Figure 5-9.   
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Figure 5-8. Illustration of the mean trajectory of the building portfolio recovery 
 

 

 

Figure 5-9. Expected outcome of the two-step BPRM - spatial and temporal 
evolution of portfolio recovery (areas are shaded to indicate level of functionality; 
darker means lower functionality state) 
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5.3 Uncertainty Propagation and Correlation Quantification 

The quantification of uncertainty in portfolio functionality metric 𝑃𝑅𝐼% 𝑡 , as 

indicated in Eq. (5-18), requires the calculation of correlation matrix 𝜌%	k& 𝑡 , the 

information of which can be captured during uncertainty propagation from spatial 

damage states of buildings (DS) to time-variant spatial functionality states S 𝑡 .  

 As discussed in Section 4.1.4, the correlation among damage states of building 

pairs within a building portfolio will be carried over, through the damage-to-

functionality mapping, to the initial functionality states of buildings 𝑆(𝑡=). This 

correlation contributes to the uncertainty in probable portfolio functionality metric at 

𝑡=,	𝑃𝑅𝐼% 𝑡= .  Because the correlation in hazard demand and building response 

invariably is positive, neglecting such spatial correlation results in an unconservative 

estimate of uncertainty in 𝑃𝑅𝐼% 𝑡= 	and quantification of risk (Jayaram & Baker, 2009; 

Vitoontus & Ellingwood, 2013). Further, as time goes on, the correlation among 

functionality states of buildings at 𝑡= will continue to propagate all the way through the 

building portfolio recovery process until it diminishes to zero.  

To quantify the correlation among functionality states of buildings, the mean 

restoration process of building n, 𝑆&(𝑡), either conditional on its initial functionality 

state 𝑆& 𝑡= 	, or unconditional, is: 

						𝐸 𝑆&(𝑡) 𝑆& 𝑡= = 𝑆# = 𝑆% ∙ 𝑝#,%& (𝑡)			³
%Á# 							                                              	(5-20a) 

𝐸 𝑆&(𝑡) = 𝑆% ∙ 𝜋%& 𝑡³
%Á?                                                         	(5-20b) 

in which 𝑝#,%& (𝑡) is the element of TPM of building n as defined in Eq. (5-3). 
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Accordingly, the covariance of functionality states 𝑆k(𝑡) and 𝑆&(𝑡) at any time 

𝑡 > 𝑡=	for any building pair (m, n) is calculated as: 

𝐶𝑜𝑣𝑎𝑟 𝑆k(𝑡)𝑆&(𝑡) = 𝐸 𝑆k(𝑡)𝑆&(𝑡) − 𝐸 𝑆k(𝑡) ∙ 𝐸 𝑆&(𝑡)                                                         	(5-21) 

in which: 

𝐸 𝑆k 𝑡 𝑆& 𝑡 = 𝐸 𝑆k 𝑡 𝑆k 𝑡= = 𝑆´ ∙ 𝐸 𝑆&(𝑡) 𝑆& 𝑡= =³
#Á?

³
´Á?

𝑆# ∙ 𝑃 𝑆k 𝑡= = 𝑆´, 𝑆& 𝑡= = 𝑆#    	

(5-22) 

The joint PMF of initial functionality states 𝑃 𝑆k 𝑡= = 𝑆´, 𝑆& 𝑡= = 𝑆#  can be 

captured in the spatially-correlated initial functionality states obtained from the damage-

to-functionality mapping in Figure 4-2. 

Eqs. (5-20)-(5-22) calculates the correlation in time-variant functionality states 

of building pairs within a building portfolio. Further, to obtain the uncertainty 

associated with the recovery trajectory 𝑃𝑅𝐼%(𝑡) [cf. Eq. (5-18)], it requires the estimate 

of correlation 𝜌%	k& 𝑡  in functionality state indicators of any building pair (𝑚, 𝑛) at any 

time	𝑡, 𝐼k 𝑡  and 𝐼& 𝑡 , by: 

𝜌%	k& 𝑡 =
N l�

ï | l�
ç | ¬N l�

ï | ∙N l�
ç |

§�
ï | §�

ç |
=

O 2ï(|)Á2ç(|)Á2� ¬ð�
ï | ∙ð�

ç |

§�
ï | §�

ç |
                                                      	

(5-23) 

where	the probabilities 𝑃 𝑆k(𝑡) = 	𝑆&(𝑡) = 𝑆%  are the diagonal terms of the joint PMF 

of (spatially correlated) functionality states of all buildings at time	𝑡, which is described 

collectively by its marginal distributions [i.e., 𝝅k 𝑡  and 𝝅& 𝑡  obtained in Section 5.2] 

and the covariance matrix quantified by Eqs. (5-21)-(5-22).  Accordingly, the mean and 

variance of 𝑃𝑅𝐼\\(𝑡) representing the portfolio recovery trajectory can be determined 

using Eqs. (5-17)-(5-18), and the portfolio recovery time can further be derived by Eq. 
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(5-19). The probabilistic outcomes of the BPRM quantified herein can further support 

future work on risk-based community resilience planning and hazard mitigation. 

 

5.4 Closure 

In this chapter, a novel simulation-based, stochastic building portfolio recovery 

model, BPRM, is formulated to estimate portfolio recovery time and recovery trajectory 

following a natural disaster. The BPRM includes two steps of modeling: building-level 

restoration and portfolio-level recovery. The major contributions are the following: 

(1) Individual building-level restoration is modeled as a discrete-state, continuous-time 

Markov Chain (CTMC), using the five building functionality states - RE, RU, RO, 

BF, and FF – introduced in Chapter 3 as the discrete building functionality metric.  

The realistic process of building-level restoration is investigated (cf. Figure 5-5) 

and mapped onto the theoretical CTMC restoration model (cf. Figure 5-3), from 

which the TPM is obtained.  The CTMC restoration model results in the building 

restoration functions (BRF) for a building, defining the functionality state 

probabilities for the building at any elapsed time t following the occurrence of the 

hazard event. 

(2) Stochastic building portfolio recovery is modeled in both spatial and temporal 

dimensions.  Two portfolio-level recovery metrics are investigated: 1) the portfolio 

recovery index, 𝑃𝑅𝐼\\(𝑡), indicating the percentage of buildings that are in the FF 

state at any t; and 2) the portfolio recovery time, 𝑃𝑅𝑇\\,h%	, representing the time 

required to restore a% of portfolio buildings to the FF state.  Both metrics are 
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quantified probabilistically by integrating the building-level CTMC restoration 

processes across the community and over the entire recovery time horizon.  

(3) The two-step BPRM is calibrated through a review of existing recovery-related 

databases and variables known to be essential for building portfolio recovery 

analysis.  Uncertainties in these variables are propagated, and the time-variant 

spatial correlations in buildings’ functionality states are quantified throughout the 

BPRM in the estimation of the portfolio recovery trajectory and recovery time. 
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Chapter 6 Assessment of Building Portfolios in Two Testbed 

Communities  

In this chapter, the BPLE and BPRM developed in Chapters 4 and 5 are applied 

to two testbed communities: a hypothetical community – Centerville, and a real 

community − Shelby County, TN.  The case studies are targeted to assess the practical 

feasibility of the BPLE and BPRM in supporting community resilience assessment and 

in facilitating resilience-based risk mitigation.   

Section 6.1 focuses on Centerville, which includes an introduction of Centerville 

building portfolio in Section 6.1.1; portfolio demand and damage assessment in Section 

6.1.2; portfolio DLR and HDR estimation in Section 6.1.3; portfolio functionality loss 

and functionality recovery assessment, in Sections 6.1.4 and 6.1.5, respectively; and 

finally, a sensitivity study to illustrate the feasibility of BPLE and BPRM in supporting 

risk-mitigation decisions as illustrated in Section 6.1.6. The Shelby building portfolio 

resilience assessment is presented in Section 6.2, with Shelby portfolio characteristics, 

spatial seismic demand and portfolio recovery prediction presented in 6.2.1, 6.2.2, and 

6.2.3, respectively.       

 

6.1 Centerville Building Portfolio Analysis 

6.1.1 Centerville Building Portfolio Characteristics 

Centerville is a hypothetical community utilized by the NIST-Funded Center for 

Risk-Based Community Resilience Planning (CRCRP) to embody all typical features of 

a community and to allow and facilitate research teams to perform various resilience-

related analyses of physical, social and economic infrastructure systems (Ellingwood et 
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al., 2016). Centerville is designed as a typical mid-size community, with a population of 

approximately 50,000, situated in a Midwestern State in the US, and is approximately 

8km by 13km (5 miles by 8 miles) in size. As shown in Figure 6-1(a) (Lin & Wang, 

2017b), Centerville includes 7 residential zones (Z1-Z7) which are categorized and 

distributed by the income level of the residents, 2 commercial zones (Z8-Z9), 2 

industrial zones – one light industry (Z10) and one heavy industry (Z11).  Specifically, 

Z1 is a high income/low density (HI/LD) development abutting the western hills, Z2-Z4 

are mixture of middle income (MI) zones, Z5-Z6 are low-income (LI) residential areas 

around and east of the Interstate I-99, which runs north-south, and a sizeable mobile 

home park (Z7) is adjacent to one of the industrial facilities. The 2 commercial zones 

are located along major roadways. The light industrial zone (Z10) is located at the north 

of the community while the heavy industrial zone (Z11) is located at the south east of 

the community, both along a railway for easy cargo transportation.  

The Centerville building portfolio as introduced in Lin &Wang (2017b) of 

approximately 15,000 buildings consists of 16 building archetypes, including 

residential, commercial, industrial occupancies, as well as critical facilities such as 

hospitals, fire stations, schools and government offices, as tabulated in Table 6-1. The 

spatial distribution of all buildings within Centerville is shown in Figure 6-1(b). 

Particularly, the residential building portfolio accounts for nearly 98% of the Centerville 

building portfolio. All residential buildings, located in Z1-Z7, are wood frame structures 

with different occupancy types, stories, and year built (denoted as W1 – W6 in 

Table 6-1).  The number of buildings and the household (HH) income range in each of 

the residential zones are summarized in Table 6-2.   
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(a) Zoning map 

 

(b) Building portfolio 

Figure 6-1. Centerville (a) zoning map, and (b) building portfolio 
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Table 6-1. Summary of Centerville building types [data source: Lin &Wang 
(2017b)] 

Type 
ID Construction 

Occupancy 
Class Story 

Year 
Built 

Area 
(ft2) 

W1 Wood Residential, SF* 1 1945-1970 1,400 
W2 Wood Residential, SF 1 1985-2000 2,400 
W3 Wood Residential, SF 2 1985-2000 3,200 
W4 Wood Residential, SF 1 1970-1985 2,400 
W5 Wood Residential, MF* 3 1985 36,000 
W6 Wood Mobile Home NA NA NA 
S1 Steel braced frame Commercial  1 1980 50,000 

RC1 RC frame Commercial  2 1980 50,000 
RM1 Reinforced masonry Commercial  2 1960 25,000 

S2 Mix of steel and OWSJ* roof Commercial 1 NA 125,000 
S3 Steel braced frame Industrial  2 1975 100,000 
S4 Steel braced frame Industrial  1 1995 500,000 

RC2 RC frame Hospital 4 1980 120,000 
RM2 Reinforced masonry Fire Station  2 1985 10,000 
RC3 RC frame School 3 1990 100,000 
RM3 Light reinforced masonry School 1 NA 100,000 
*SF – single family 
*MF – multiple family 
*OWSJ – open web steel joist 

 
 Table 6-2. Household characteristics of residential zones (Zone 1- Zone 7) 

[Data source: Lin &Wang (2017b)] 
Zone ID Residential Zones 

Zone1 Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 

(Z1) (Z2) (Z3) (Z4) (Z5) (Z6) (Z7) 

Description High 
income/ 

Low 
density 
(HI/LD) 

Medium 
income/ 

Low 
density 

(MI/LD) 

Medium 
income/ 

Low 
density 

(MI/LD) 

Medium 
income/ 

Low 
density 

(MI/HD) 

Low  
income/ 

Low 
density 
(LI/LD) 

Low 
income  
High  

density  
 (LI/HD) 

Mobil
e 

Home
s 
 
 

Household ID HH1 HH2 HH3 HH4 HH5 HH6 HH7 

Avg. Household 
Income 

³$100k $70k-$100k $70k-$100k $40k-$70k $20k-$40k ≤ $20k ≤ $10k 

No. of Household 4,246 2,267 800 4,767 1,856 4,396 1,352 

No. of 
Buildings 

W1 0 767 300 2,567 1,856 700 0 

W2 2,000 700 300 1,000 0 0 0 

W3 50 0 0 0 0 0 0 

W4 2,196 800 200 0 0 0 0 

W5 0 0 0 1,200 0 3,696 0 

W6 0 0 0 0 0 0 1,352 
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6.1.2 Seismic Demands and Building Damages 

The determination of seismic demands propagated from earthquake source to the 

building sites requires modeling of ground motion attenuation relation, local soil 

amplification, and spatial ground motion correlation. Regarding scenario earthquake 

analysis, a hypothetical scenario earthquake with Mw 7.8 and an epicenter located 

approximately 40 km southwest of Centerville is considered for illustration. The ground 

motion attenuation model by Campbell (2003) is adopted with mean value of the 

logarithm of seismic intensity,  

ln 𝐼𝑀 = 𝑐? + 𝑐E ∙ 𝑀s + 𝑐± ∙ 8.5 − 𝑀s
E + 𝑐² ∙ ln 𝑅 + (𝑐³ + 𝑐ñ ∙ 𝑀s) ∙

𝑟 + 𝑓							                                              	

(6-1a) 

𝑅 = 𝑟E + 𝑐ò ∙ exp 𝑐ó ∙ 𝑀s
E (6-1b) 

𝑓 =

0; 																																																				𝑟 ≤ 70𝑘𝑚

𝑐ò ln
𝑟
70

; 													70𝑘𝑚 ≤ 𝑟 ≤ 130𝑘𝑚

𝑐ò ln
𝑟
70

+ 𝑐ó ln
𝑅
130

; 𝑟 > 130𝑘𝑚

 

(6-1c) 

and standard deviation of the ln 𝐼𝑀  

σõö lm 	 =
𝑐?? + 𝑐?E ∙ 𝑀s; 						𝑀s < 7.16
𝑐?±	; 																										𝑀s > 7.16 (6-1d) 

in which 𝑟 is the epicenter distance; 𝑐? through 𝑐?± are period-dependent regression 

coefficients of the attenuation model, as listed in Table 6 in Campbell’s paper (2003).  

The ground motion intensity may be amplified depending on the soil condition 

of a building site. The ASCE Standard 7-10 (ASCE, 2010) has classified six categories 
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of site classes (symbolized as A, B, C, D, E, F) and defined a site coefficient to amplify 

ground motion intensities at different site classes (using rock site, which is Site Class B, 

as the baseline). The ground motion intensities calculated from the ground motion 

attenuation models in the literature are for Site Class A. In this study, Centerville is 

assumed, for simplicity, to be situated on Site Class A soils.   

The capacity spectral method is used to determine the spectral displacement 

𝑆U		for determining damage of structural and drift-sensitive nonstructural components, 

and spectral acceleration 𝑆h  for acceleration-sensitive nonstructural components and 

building contents (FEMA/NIBS, 2003). Seismic fragility functions for the three types of 

building components are mapped from the HAZUS-MH database (FEMA/NIBS, 2003), 

based on building characteristics such as occupancy, structural type, construction 

material, number of stories, square footage area and year built, as tabulated in 

Table 6-1, to support the analysis herein. The fragility parameters with respect to 

structural component, nonstructural drift-sensitive component, and nonstructural 

acceleration-sensitive component of each of the 16 building types are listed in 

Table 6-3, Table 6-4, and Table 6-5, respectively. 

Both site-to-site and structure-to-structure spatial correlations are modeled in the 

probabilistic building portfolio analysis. The spatial correlation in seismic intensities of 

different building sites is estimated by Eq. (4-4) assuming the correlation distance	𝑅 =

10	𝑘𝑚.  This correlation distance value has been assumed to be in the range of 20-40km 

(Wang & Takada, 2005), and it is scaled down herein since Centerville is a relatively 

small community. The standard deviation of intra-event error term 𝜏	in Eq. (4-3) is 

computed using Eq. (6-1d). The spatial correlations between DVs of any two buildings 
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are determined from Eq. (4-9), assuming that  𝜌�1.��
	 = 0.35 when buildings i and j are 

of different building types, and 𝜌�1.��
	 = 0.9 if otherwise. Ideally, for a “real” 

community, these correlation coefficients should be determined based on collected 

building portfolio data coupled with professional judgement. The noise term 𝜎¡	  in Eq. 

(4-5) is neglected due to a lack of empirical data.   
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6.1.3 Building Portfolio DLR and HDR 

To illustrate the application of the BPLE, two building portfolio performance 

metrics commonly used in literature, as reviewed in Section 2.2, are examined: direct 

economic loss (economic-based metric) and household dislocation (social-based 

metric). The state-of-the-art methodologies from existing literature are adopted for 

quantifying these two metrics. 

Direct loss ratio (DLR): Monetary loss to a building portfolio due to its 

physical damage, referred as the direct loss herein, is one of the most commonly studied 

building portfolio metrics. The direct loss ratio, DLR, defined as the ratio of total direct 

loss to total assessed value (including building contents) of a building portfolio, is often 

used for community-level policy making and insurance underwriting.   

The direct loss of a portfolio can be computed as (Steelman et al., 2007):  

𝑍øùVV = 𝐿𝑜𝑠𝑠#b
#Á? 		 = 𝑀# ∙ (𝛼#2/𝐷𝑉#2/ + 𝛼#b/𝐷𝑉#b/ + 𝛼#bc𝐷𝑉#bc + 𝛼#yø𝐷𝑉#yøb

#Á?                                             	(6-2) 

where 𝐿𝑜𝑠𝑠# is the direct loss of the building 𝑖; 𝑀# is the replacement cost of the building 

𝑖; 𝛼#2/, 𝛼#b/, 𝛼#bc are the fractions of the values of structural components, and non-

structural acceleration-sensitive and drift-sensitive components, respectively; and 𝛼#yø is 

the ratio of the contents value to the replacement cost. These values of 𝛼 are usually 

determined from historical or empirical data collected by construction companies. In 

this study, these values are taken from the HAZUS-MH MR2 Technical Manual 

(FEMA/NIBS, 2003).  𝐷𝑉#2/, 𝐷𝑉#b/, 𝐷𝑉#bc and 𝐷𝑉#yø are the damage values in building 

𝑖 of the above-mentioned components, which are random variables and can be assessed 

from damage analysis.  DLR can then be calculated as: 
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DLR	 = 𝑍𝐿𝑜𝑠𝑠
m1

è
1ÑÐ

 	 (6-3) 

Household dislocation ratio (HDR): Significant household dislocation is one 

of the most undesirable outcomes to a community following an extreme hazard event; it 

may be caused by a variety of reasons, with one of the major contributors being lack of 

habitable residential buildings.   Household dislocation ratio, HDR, is defined as the 

percentage of households in a community that are displaced due to loss of housing 

habitability and short-term shelter needs (FEMA/NIBS, 2003). The HDR is an 

important metric of community social vulnerability to natural hazard.   In this study, the 

ordinary least squares (OLS) regression model (Peacock et al., 2008) is adopted to 

estimate the HDR:   

HDR = 	𝛿0ø}22×[𝑏? + 𝑏E ∙ 𝛿m#&ùx#|#tV + 𝑏± ∙ 𝛿0cy + 𝑏² ∙ 𝛿m!!l" +

𝑏³ ∙ 𝛿2\/N ] 	

(6-4) 

where 𝛿m#&ùx#|#tV is the percentage of minorities in the community; 𝛿0cy  is the 

percentage of vacant housing units;	𝛿m!!l" is the median housing income in the 

community (in $K); 𝛿2\/N  is the percentage of detached single family houses; and 

𝑏#	(	𝑖 = 1,2, … ,5)	 are regression coefficients obtained using building portfolio data, 

population demographics, post-event damage and social survey data from past hazard 

events (Girard & Peacock, 1997; Peacock et al, 2008; Lin, 2009).	𝛿0ø}22 is the fraction 

of direct losses (structural and non-structural components) of all buildings within a 

portfolio to the total portfolio replacement cost, which is a key parameter for 

determining the portfolio HDR and can be estimated from 𝐷𝑉# presented in Section 4.1. 
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The two social and economic-base resilience metrics, DLR and HDR, are 

investigated for Centerville building portfolio loss estimation.  The coefficients required 

for estimating these metrics are obtained from the original references of their 

formulation (such as HAZUS, MAEViz), which were mostly based on readily available 

data, either from collected databases or expert opinions.  For example, for assessing 

total direct loss ratio, DLR, Table 6-6 lists building appraised values 𝑀#, as well as the 

fraction of value of structural component 𝛼#2/, nonstructural drift-sensitive component 

𝛼#b/, and nonstructural acceleration-sensitive components 𝛼#bc, and the ratio of building 

contents to the replacement cost 𝛼#yø, which are the parameters in Eq. (6-2) in order to 

calculate DLR. The mean and standard deviation of repair cost ratio, defined as the 

fraction of repair cost to the building’s appraised value, are listed in Table 6-7 and 

Table 6-8. For calculating HDR, Table 6-9 lists several social characteristics of the 7 

residential zones in Centerville, namely, percentage of minorities (𝛿m#&ùx#|#tV), 

percentage of vacant housing units (𝛿0cy), median housing income	(𝛿m!!l"), 

percentage of detached single family housing (𝛿2\/N ) used in Eq. (6-4). Moreover, the 

coefficients of the OLS regression model for the HDR are: 𝑏? = 0.995,	𝑏E =

−0.00255, 𝑏± = −0.01397, 𝑏² = 0.01114, 𝑏³ = −0.00297, determined by the social 

science team of the CRCRP.  
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Table 6-6. Building appraised value and fractions of values of structural, 
nonstructural acceleration-sensitive, nonstructural drift-sensitive components, and 
building contents [data source: HAZUS-MH (FEMA/NIBS, 2003)] 

TypeID Mean Cost 
/Sq Feet ($) 

Appraised 
Value ($), 𝑀# 

Component Value  
Percent (%) 

Contents  
Percent (%) 

𝛼#2/ 𝛼#b/ 𝛼#bc 𝛼#yø 
W1 99.59 139,426 23.4 26.6 50 50 
W2 99.59 239,016 23.4 26.6 50 50 
W3 99.63 318,816 23.4 26.6 50 50 
W4 99.59 239,016 23.4 26.6 50 50 
W5 108.86 3,918,960 13.8 43.7 42.5 50 
W6 30.9 61,800 24.4 37.8 37.8 50 
S1 102.69 5,134,500 16.2 50 33.8 100 
RC1 98.96 4,948,000 16.2 50 33.8 100 
RM1 88.21 2,205,250 16.2 50 33.8 100 
S2 61.91 7,738,750 29.4 43.1 27.5 100 
S3 73.82 7,382,000 15.7 72.5 11.8 150 
S4 78.61 39,305,000 15.7 72.5 11.8 150 
RC2 144.6 17,352,000 15.7 72.5 11.8 150 
RM2 110.34 1,103,400 15.3 50.5 34.2 150 
RC3 90.22 9,022,000 18.9 32.4 48.7 100 
RM3 95.21 9,521,000 18.9 32.4 48.7 100 
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Table 6-8. Standard deviation of repair cost ratio with respect to structural (SD), 
nonstructural drift-sensitive (ND), nonstructural acceleration-sensitive (NA) 
components, and building contents (CL), 𝝈𝑫𝑽𝒊|𝑫𝑺𝒊 for DLR (unit: %) [Data source: 
MAEViz (Steelman et al., 2007)] 

Component slight moderate extensive complete 
Structural 0.333 9.67 16.7 6.67 

Nonstructural drift-sensitive 2 8 15 8.33 
Nonstructural accel.-sensitive 2 4.67 15 11.7 

Contents 1 4 7.5 4.17 
 

Table 6-9. Social characteristics of residential zones [Data source: Ellingwood 
et al. (2016); Lin & Wang (2016)] 

Parameters 
Residential Zones 

Zone1 Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 
(Z1) (Z2) (Z3) (Z4) (Z5) (Z6) (Z7) 

𝛿m#&ùx#|#tV 1.0% 16.0% 10.0% 15.0% 19.0% 37.0% 20.0% 
𝛿0cy  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
𝛿m!!l" ($K) 100 85 60 45 30 15 10 
𝛿2\/N   100% 100% 100% 52% 100% 51% 0% 

 

The mean loss distribution within the Centerville building portfolio is illustrated 

in Figure 6-2.  The heaviest losses, in terms of dollar losses, tend to occur in 

commercial/retail and industrial areas as shown in Figure 6-2(a), while in terms of 

DLR, they tend to occur in multi-family and high income residential zones.  

Aggregating these distributed losses within each zone, Figure 6-3 compares the mean 

direct dollar losses and the mean DLR between building zones. While Zone 11 (heavy 

industrial) represents the highest dollar losses, Zone 9 (retail/commercial) represents the 

highest economic impact in terms of DLR. Note in particular that Zone 7 (mobile home 

park) indicates a relatively low dollar value, but is among the highest in terms of DLR.   
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In general, for all buildings, dollar losses due to the damage to structural components 

are much less than the losses due to non-structural components and building contents.  

Figure 6-4 (a), (b) and (c) plot the complementary cumulative distribution 

functions of DLR and HDR, respectively, for Zone 1 (Z1), Zone 3 (Z3) and Zone 7 

(Z7), representing high-, medium-, and low-income household zones, respectively, for 

the considered scenario event.  The performance of Z7 with respect to DLR is much less 

favorable than that of Z1 and Z3, as shown in Figure 6-4(a). This is easily explained by 

the fact that mobile homes in Z7 generally experience more severe damage than the 

typical wood residential buildings in the other two zones; moreover, buildings in Z1, 

which are occupied by high-income households, are usually better constructed and 

likely to have better structural performance. The complementary cumulative 

distributions of DLR indicate that the median loss for Z1, Z3 and Z7 is 8.4%, 6.9%, 

10%, respectively.  Such information is most informative for insurance underwriting 

and government subsidies policy-making.   

Even with lower DLR, Figure 6-4(b) indicates, somewhat counter-intuitively, 

that the high-income Z1 exhibits a higher HDR, reflecting the fact that wealthy 

households are more apt to dislocate because they are less tolerant to building damages 

and are more likely to have the necessary resources for relocation (Peacock et al., 

2008).   
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(a) Expected direct loss 

 

(b) Expected direct loss ratio 

Figure 6-2. (a) Expected direct loss and (b) expected direct loss ratio for each 
building in Centerville  
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(a) Expected direct loss 

 

(b) Expected direct loss ratio  (DLR) 

Figure 6-3. (a) Expected direct loss and (b) expected loss ratio for each building 
zone and critical facility in Centerville  
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(a) Direct loss ratio (DLR) 

     

(b) Household dislocation ratio (HDR)       

Figure 6-4. Probability of exceeding (a) Direct Loss Ratio (DLR) and (b) 
Household Dislocation Ratio (HDR), for Centerville Zones 1, 3 and 7 for the Mw7.8 
earthquake 
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6.1.4 Building-Level and Portfolio-Level Functionality Loss 

The functionality recovery of residential building portfolio in Centerville is 

investigated following a Mw 7.8 earthquake with an epicenter located 45 kilometers 

northeast of Centerville5. Due to the lack of utility data for lifeline system performance 

assessment, it’s assumed, for simplicity, that 30% residential buildings in Centerville 

have no access to full utility service (i.e. 𝐹𝑈	=,& = 0), and of which 20% are provided 

with baseline utility to support temporary housing function (i.e. 𝐵𝑈	=,& = 1). This 

assumption implies that the correlation between building damage and utility disruption, 

originated from the common hazard source they subject to, is neglected. The pre-

recovery functionality states of individual buildings within the residential building 

portfolio are probabilistic due to the many sources of uncertainties associated with 

hazard demand and structural response; accordingly, each building’s initial functionality 

state probability vector, 𝝅(𝑡=), is estimated using a damage-to-functionality mapping 

approach proposed in Section 4.1.4.1and quantified through employing a multi-layer 

MCS (one layer for modeling hazard intensity 𝑰𝑴 and the other for modeling building 

damage DS conditional on 𝑰𝑴) .  

The spatial variations with respect to the mean damage states of structural 

components, nonstructural drift-sensitive and nonstructural acceleration-sensitive 

components are shown Figure 6-5(a), (b) and (c). In the figures, it is evident that 

buildings in the northeast area of the Centerville community (which are mostly 

medium-income and low-income zones) in average suffer more damage than that of the 

                                                
5 The scenario earthquake is different from the one examined in the loss estimation in Section 6.2. This 
scenario earthquake is chosen such that the recovery patterns of the Centerville building portfolio is 
closer to the cases in reality.  



103 

 

southwest area (which are high-income zones). The spatial variation in buildings’ initial 

functionality states at 𝑡= is shown in Figure 6-5(d). The PMF of the initial functionality 

state for each individual building, obtained by Eqs. (4-10)-(4-11), is illustrated in 

Figure 6-6(a), using W2 in Zone 4 as an example. Further, by aggregating the individual 

buildings’ initial functionality states to the portfolio level, the Centerville portfolio 

recovery index at time 𝑡=, i.e., 𝑃𝑅𝐼 𝑡=	 ,	defined as the percentage of buildings in the 

portfolio that falls in each of the five functionality states prior to restoration in Eq. (5-

14), is derived and shown in Figure 6-6(b).   

 

 
 

 
Figure 6-5. Spatial variation in the mean damage state of (a) structural 

components (SD), (b) non-structural drift-sensitive (ND), (c) acceleration-sensitive 
components (NA), and (d) the mean initial functionality state at 𝒕𝟎 . 
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Figure 6-6. Probability assessment of (a) building-level pre-repair functionality 
state PMF, 𝝅𝒏 𝒕𝟎 , (illustrated using W2 in Zone 4); and (b) portfolio-level pre-recovery 
functionality index, 𝑷𝑹𝑰𝒋(𝒕𝟎). 
 

6.1.5 Building-Level and Portfolio-Level Functionality Recovery 

6.1.5.1 Building-level Restoration 

The discrete-state CTMC, 𝑆&(𝑡), representing the restoration process of an 

individual building 𝑛, is characterized by the five building functionality states, the 

building’s initial functionality state probabilities  𝝅& 𝑡=  and its transition probability 

matrix 𝑻𝑷𝑴&(𝑡). The mathematical formulation of 𝑆&(𝑡) presented in Section 5.2.1 

requires the determination of 𝑻𝑷𝑴&(𝑡); the elements of 𝑻𝑷𝑴&(𝑡), 𝑝#,%& 𝑡 , are 

calculated using the statistics of delay time (𝑇/tuhv& ) , repair time (𝑇wt*h#x& ) and the time 

to resume utility supplies (𝑇{|#u#|v& ).  In the Centerville analysis, data in Table 6-10 and 

Table 6-11 is synthesized from the information provided in Almufti & Willford (2013) 

and HAZUS-MH (FEMA/NIBS, 2003), for 𝑇/tuhv&  and 𝑇wt*h#x& , respectively.   For 

𝑇{|#u#|v& , it is assumed that it takes buildings having no utility service at	𝑡=	(i. e. 𝐵𝑈	0,𝑛 =

0	; 	𝐹𝑈	0,𝑛 = 0	)	3 weeks on average to regain baseline utility service (i. e. 𝐵𝑈	𝑡>3𝑤𝑒𝑒𝑘𝑠,𝑛 = 1) 

(a) (b) 
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and 15 weeks to regain full utility service (i. e.		𝐹𝑈	𝑡>15𝑤𝑒𝑒𝑘𝑠,𝑛 = 1); the coefficient of 

variation (C.O.V) of 𝑇{|#u#|v&  is assumed 0.7 (Almufti & Willford, 2013).   

It is noteworthy such databases are community-specific, and should be collected 

and maintained by communities themselves to support their own resilience planning 

activities. The social-economic characteristics of a community that affect its building 

portfolio recovery are reflected and categorized in the 2nd column of Table 6-10, as well 

as in Table 6-12, which was constructed with the assistance of the social science team 

of the CRCRP. In particular, the time required to secure finance, 𝑇\lbc,#& 	, (Table 6-10) is 

dependent on the financing resources available to homeowners (Table 6-12).  In the 

United States, private insurance is the primary source for post-hazard event building 

repair and reconstruction (Comerio, 1998; Peacock, 1997), which may be included in a 

homeowner’s policy, often with an additional premium. However, the percentage of 

residential recovery financed by private insurance varies considerably from one 

community to another and across different hazard types. Public funding from federal 

and state governments, as well as from non-profit organizations, is another major 

resource for community recovery, including assistance from the Federal Emergency 

Management Agency, low-interest loans from the Small Business Administration, 

funding from the Department of Housing and Urban Development. However, certain 

populations, often low-income and racial/ethnic minority homeowners, have limited 

access to such public aid programs due to their inability to repay even subsidized loans, 

leading to delays in repair or reconstruction of their damaged properties (Quarantelli, 

1982; Bolin, 1985). For those groups, selling belongings, reconstructing household 

budgets or shrinking discretionary expenses, and loans from friends or relatives may 
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become the only options for financing repair (Bolin & Bolton, 1986). For Centerville 

analysis, it is assumed that 3% (0.6%, 0.3%, 0.9% and 1.2%, respectively, in zones Z3, 

Z5, Z6, and Z7) of damaged buildings will not be restored at all due to population 

outmigration following the earthquake event.  The CRCRP is in the process of 

collecting data such as that appearing in Table 6-10, Table 6-11, and Table 6-12 through 

post-disaster field investigations to support future community resilience-related 

research. As risk-informed community resilience planning takes hold across the nation, 

many communities will start to collect and maintain such databases to support their own 

planning activities and day-to-day risk management decisions.   

Figure 6-7 illustrates (a) the conditional mean restoration process as well as (b) 

the BRF [presenting the probability of a building achieving or exceeding a predefined 

functionality state 𝑆% at any post-event time	𝑡 as defined in Eq. (5-8)] of any building 

type in Centerville, using W2 buildings in Zone 4 as an example.   
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Table 6-10. Statistics of Delay Time [Data source: REDiTM framework (Almufti 
& Willford, 2013)] 

Delay Phases , 𝑇/tuhv,#& 	~	Lognormal(𝜃, 𝛽) (Unit: weeks) 

Sequence Delay Time  
Components  

Building specific 
conditions   

Media
n 

(𝜃) 

C.O.V  
(𝛽)  

Delay 
Phase 1 Inspection (𝑇lb2O,#& ) slight 0 0 

above slight 5 0.54 

Delay 
Phase 2 

Engineering mobilization 
& Review/Re-design 

(𝑇Nb~m,#& ) 

slight  6 0.4 
moderate/extensive 12 0.4 
complete 50 0.32 

Financing (	𝑇\lbc,#& )  

insurance 6 1.11 
private loans 15 0.68 
SBA-backed loans 48 0.57 
Not cover 48 0.65 

Contractor mobilization 
and Bid process (𝑇y}bm,#& ) 

slight 7 0.6 
above slight 19 0.38 

Delay 
Phase 3 Permitting (𝑇ONwm,#& )  slight 1 0.86 

above slight 8 0.32 
 

 
Table 6-11. Statistics of building Repair Time with respect to repair classes 

(RCs) [synthesized from HAZUS-MH (FEMA/NIBS, 2003) database] 

Repair time 𝑇wt*h#x,wy#& 	~Lognormal	((𝜃, 𝛽)	) (Unit: weeks) 

Sequence Item Occupancy Median 
(𝜃) 

C.O.V 
(𝛽) 

Repair 
class1 

(𝑇wt*h#x,wy?& ) 

Heavily damaged structural 
and nonstructural components 

threaten life-safety 

Single family 6 0.4 
Multiple family 8 0.4 
Mobile homes 2 0.4 

Repair 
class2 

(𝑇wt*h#x,wyE& ) 

Moderately to heavily 
damaged nonstructural 

components not threaten life-
safety 

Single family 6 0.4 
Multiple family 8 0.4 

Mobile homes 2 0.4 

Repair 
class3 

(𝑇wt*h#x,wy±& ) 

minor damage to structural 
components; minor to 
moderate damage to 

nonstructural components 

Single family 11 0.4 
Multiple family 15 0.4 

Mobile homes 3.5 0.4 

Repair 
class4 

𝑇wt*h#x,wy²&  

Minor cosmetic damage to 
structural and non-structural 

component 

Single family 0.5 0.4 
Multiple family 0.5 0.4 
Mobile homes 0.5 0.4 
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Table 6-12. Financing resources for Centerville buildings restoration 

Zone Insurance SBA-backed 
Loans 

Private 
loan 

Savings 
Others (personal 

resources) 
Z1(HI) 60% 5% 10% 25% 0% 
Z2(MI) 50% 10% 30% 10% 0% 
Z3(MI) 10% 10% 10% 5% 65% 
Z4(MI) 30% 15% 30% 0 25% 
Z5 (LI) 25% 30% 10% 0 35% 
Z6 (LI) 25% 30% 10% 0 35% 

Z7 (MH) 5% 5% 0 0 90% 
 

 

     
Figure 6-7. Illustration of building-level restoration: (a) conditional mean 

restoration process and (b) the building restoration function, BRF (both illustrated using 
W2 building in Zone 4 as an example). 

 
 

6.1.5.2 Portfolio-level Recovery 

The building-level restoration processes, 𝑆&(𝑡), are aggregated, temporally and 

spatially, to obtain the portfolio-level recovery trajectory 𝑃𝑅𝐼%(𝑡), and the portfolio 

recovery time	𝑃𝑅𝑇\\,]³%, as defined in Section 5.2.2.  

(a) (b) 
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The mean values of 𝑃𝑅𝐼%(𝑡), j = RE, RU, RO, BF, FF, are shown in Figure 6-8; 

the curve associated with FF, i.e.  𝑃𝑅𝐼	\\ 𝑡 , is the mean portfolio recovery trajectory.  

The time required for 95% of the building portfolio to achieve the FF state (i.e. 

𝑃𝑅𝐼	\\ 𝑡 = 95%) is defined as the portfolio recovery time and is denoted 

as	𝑃𝑅𝑇\\,]³%; the PDF of 	𝑃𝑅𝑇\\,]³%  is also illustrated in this figure. Figure 6-8 

indicates that the mean portfolio recovery time for Centerville is approximately 160 

weeks (approximately 3 years). The reason that the mean portfolio recovery 

trajectory	𝑃𝑅𝐼	\\ does not converge to 1.0 is that we assumed 3% housing units in 

Centerville are not restored due to possible population outmigration as discussed 

previously. 

 

 

 
Figure 6-8. Mean portfolio recovery trajectory and recovery time 
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Furthermore, the uncertainty associated with the mean recovery trajectory is 

shown in Figure 6-9(a), indicating significant variation in portfolio recovery, especially 

in the early phase, which is due to the uncertainties and spatial correlations in initial 

functionality states mapped from the community-wide hazard-induced damages and 

uncertainties in delay time and reconstruction time during building restorations.  The 

mean recovery trajectories for each of the residential zones (Z1-Z7) in Centerville, 

shown in Figure 6-9 (b), depict the different recovery patterns for different population 

groups: high income residential zones (Z1 and Z2) recover much faster than low income 

zones (Z6, and Z7).  Houses in Z1 and Z2 are better constructed and experience less 

damage; moreover, higher-income households in Z1 and Z2 are likely to secure the 

funding for housing repair more quickly than the households in other zones.  

Figure 6-10 depicts the spatial variation in mean building functionality states in 

Centerville at four different points in time during recovery. Notable disparities are 

observed, reflecting differences in hazard-induced damages and recovery capacities, 

both underlined by the social and economic disparities among different residential 

zones.  
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Figure 6-9. An illustration of (a) uncertainty in the portfolio recovery trajectory; 

and (b) the mean recovery trajectory for each of the seven residential zones (Zone1-
Zone7)  
 

 

 

(a) 

(b) 
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Figure 6-10. Spatial variation of functionality recovery at a)	𝒕𝟎 = 𝟎; b) 30 
weeks; c) 60 weeks; and d) 90 weeks following the hazard occurrence. 
 

6.1.6 Sensitivity Study 

The “What-if” scenario analysis is performed to the pre-disaster mitigation of 

Centerville residential building portfolio, to look at how the projected recovery 

trajectory and time might change if pre-hazard mitigation actions had taken place. 

Building retrofit has long been regarded as one of the most cost-effective engineering 

mitigation strategies to improve community resilience against natural hazards. In 

addition, well-designed policy incentives that stimulate builders, developers, or property 

owners to engage in practices that are consistent with community-level objectives with 

respect to hazard mitigation are often regarded as effective non-engineering risk 

mitigation strategies (Holmes, 2016). Accordingly, two pre-hazard mitigation scenarios 

are considered below, to investigate how these scenarios will affect the BPRM-

projected Centerville recovery.  
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• Case 1- A community-wide residential building retrofit program was conducted 

prior to the Mw 7.8 earthquake to upgrade all buildings in Centerville that were built 

prior to 1980 (Table 6-1) to a current seismic design level, represented by shifting 

the fragilities of these buildings to a target level that represents current seismic 

design practice (Bruneau & Reinhorn, 2007).  

• Case 2 – Community-wide insurance incentives were introduced in Centerville prior 

to the Mw7.8 earthquake, which caused more homeowners to purchase earthquake 

insurance and led to the updated financing resources for post-earthquake recovery. 

The redistribution of financing resources for Centerville building 

repair/reconstruction after applying the insurance incentives is demonstrated in 

Table 6-13. A comparison between the past and updated recovery resources is 

shown in Figure 6-11, indicating 50% of housing reconstruction funds now coming 

from insurances as opposed to 38% in the past.   

Figure 6-12 plots the Centerville portfolio recovery trajectories when the above 

pre-hazard mitigation scenarios are implemented. There are two major observations: (1) 

retrofitting buildings (Case 1) results in less damage and therefore less functionality loss 

at the pre-recovery stage (𝑡	 = 0), leading to smaller delays and repair/reconstruction 

times during building restoration. Consequently, the overall mean portfolio recovery 

time for Case 1 is reduced significantly to 97 weeks from the 160 weeks without pre-

hazard retrofitting.  (2) The Centerville portfolio with the updated makeup of recovery 

resources stimulated by insurance incentives recovers 51 weeks faster (with a mean of 

109 weeks) than the original recovery path without the pre-hazard insurance incentives, 
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indicating that community recovery can be influenced significantly and positively by 

implementing non-engineering strategies.  

 

Table 6-13. Financing resources for Centerville buildings restoration after 
applying insurance incentives 

Zone Issuance SBA-backed 
Loans 

Private 
loan 

Savings 
Others (personal 

resources) 
Z1(HI) 70% 0% 5% 25% 0% 
Z2(MI) 65% 10% 15% 10% 0% 

Z3(MI Rental) 30% 10% 10% 5% 45% 
Z4(MI) 45% 15% 30% 0 10% 
Z5 (LI) 35% 30% 10% 0 25% 
Z6 (LI) 35% 30% 10% 0 25% 

Z7 (MH) 15% 5% 0 0 80% 
 

 
Figure 6-11. Comparison between recovery resources with and without 

insurance incentive 
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Figure 6-12. Updated Centerville portfolio recovery trajectory and recovery 

time respectively for Case 1 and Case 2 
 

6.2 Shelby County Building Portfolio Analysis 

6.2.1 Shelby Building Portfolio Characteristics   

In this section, the proposed BPRM is further applied to a real world case study 

− the residential building portfolio (RBP) in Shelby County, TN for a likely scenario 

earthquake. The RBP accounts for approximately 90% of the Shelby building inventory 

(which consists of nearly 300,000 buildings) and is distributed spatially across 221 

census tracts. Similar to most small and midsized communities in the U.S., the RBP in 

Shelby consists mainly of wood frames. Table 6-14 summarizes the Shelby RBP by 

structural types and seismic design code levels, which are consistent with those defined 
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in HAZUS (FEMA/NIBS, 2003). In particular, the W1 Type wood buildings designed 

by “low” seismic code (FEMA/NIBS, 2003) account for 93% of the RBP in Shelby.  

Fragility functions of these building types are adopted from HAZUS-MH for the 

damage evaluation.  Figure 6-13(a) shows the 221 census tracts and the associated RBP 

spatial distribution.    

 

Table 6-14. Residential building portfolio by structural type and seismic design 
code [Data Source: MAEViz (Steelman et al., 2007)] 

Str_ type* Pre code Low code Moderate code High code Total   
C1L 6 21 2 0 29 
C1M 4 1 1 0 6 
C2H 4 17 8 0 29 
C2L 1 1 0 0 2 
C2M 0 1 2 0 3 
MH 4 32 6 1 43 
PC1 0 13 0 1 14 
RM1L 0 0 1 0 1 
S1H 7 12 6 1 26 
S1L 3 286 80 54 423 
S1M 0 11 38 25 74 
S3 1 4 6 23 34 
URML 4,042 3,338 0 0 7,380 
URMM 5 0 0 0 5 
W1 0 267,958 0 0 267,958 
W2 185 4719 7,166 0 12,070 

Total 4,262 276,414 7,316 105 288,097 
*Description of the structural type: C1—concrete moment frame; C2—concrete shear walls; MH—
mobile homes; PC1—precast concrete tilt-Up walls; RM1—reinforced masonry bearing walls with 
wood or metal deck diaphragms; S1—steel moment frame; S3—steel light frame; URM—unreinforced 
masonry bearing walls; W1—wood, light frame; W2—wood, greater than 5,000 Square Feet. The 
character following the abbreviation describing structural type, if present, represents building height 
class: L—low, M—medium, or H—high. 
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(a) Residential building portfolio (RBP) in Shelby 

 

(b) Annual household income in Shelby 

Figure 6-13. Distribution of (a) the residential buildings in census tracts of 
Shelby County (Data source: MAEViz, Steelman et al., 2007); (b) annual household 
income in 2015 inflation-adjusted dollars (Data source: 
https://censusreporter.org/profiles/05000 US47157-shelby-county-tn/) 
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6.2.2 Seismic Demands   

Significant earthquakes in Shelby are likely to initiate from the New Madrid 

seismic zone (NMSZ), which consists of three fault segments (New Madrid North, 

Reelfoot, and Cottonwood Grove). The buildings in Shelby are subjected to a scenario 

earthquake with  𝑀s=7.7 and an epicenter located at 35.3N and 90.3W, which is one of 

the most probable extreme level scenarios with a 2475-year return period based on the 

disaggregation analysis by United States Geological Survey (USGS: 

https://earthquake.usgs.gov/hazards/hazmaps/). Detailed information on soil condition 

at building sites is unavailable, and the soil is assumed to be Category D over the entire 

region (Building Seismic Safety Council, 2003). The Atkinson and Boore (1995) 

attenuation relationship is used to calculate the ground motion intensity (in terms of 

spectral acceleration) at the building site, as well as the ground motion intensity (in 

terms of PGA shown in Figure 6-14 and PGV) for both engineered facilities and 

distributed line segments. The standard deviation used for seismic intensity is 0.32. The 

spatial correlation in ground motion intensity is simulated using Wang and Takada 

(2005)’s model, in which the correlation distance equals to 30km.  
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Figure 6-14. Median peak ground acceleration (PGA) with soil amplification  
 

6.2.3 Building Portfolio Recovery    

The spatial distribution of annual household income in Shelby is plotted in 

Figure 6-13(b). Since specific social-economic characteristics of the community 

required to determine building delay time, repair time and financing resources for 

building reconstruction are not available, we constructed Table 6-15, Table 6-16, and 

Table 6-17, for illustration, to support the Shelby RBP recovery simulation performed 

herein. The percentage of each financing resource for the Shelby RBP reconstruction is 

shown in Figure 6-15.  
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Figure 6-15. Financing resources percentage in Shelby RBP 
 

Table 6-15. Statistics of delay time used in Shelby RBP recovery 

Delay Phases, 𝑇/tuhv,#& 	~	Lognormal(𝜃, 𝛽) (Unit: weeks) 
Sequence Item Building condition Median c.o.v 

Phase 1 Inspection (𝑇lb2O,#& ) 
Slight 0 0 
Moderate 1 0.54 
Extensive/Complete 4 0.54 

Phase 2 

Engineering mobilization& 
Review/Re-Design (𝑇Nb~m,#& ) 

Slight 0.5 0.4 
Moderate 3 0.4 
Extensive/Complete 15 0.32 

Financing 
(𝑇\lbc,#& ) 

Insurance 
Slight 3 1.11 
Above slight 6 1.11 

private loans 
slight 7 0.68 
Above slight 15 0.68 

SBA-backed 
loans 

slight 10 0.57 
Above slight 30 0.57 

Not covered 
slight 15 0.65 
Above  slight 40 0.65 

Contractor Mobilization and Bid 
Process (𝑇y}bm,#& ) 

Slight 3 0.6 
Moderate 6 0.6 
Extensive/Complete 12 0.38 

Phase 3 Permitting (𝑇ONwm,#& ) sight/moderate 0 0 
Extensive/Complete 6 0.32 
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Table 6-16. Statistics of repair time used in Shelby RBP recovery 

Repair time, 𝑇wt*h#x,wy#& 	~Lognormal	((𝜃, 𝛽)	) (Unit: weeks) 

Sequence Item Occupancy Median 
(𝜃) 

C.O.
V 

(𝛽) 
Repair 
class1 

(𝑇wt*h#x,wy?& ) 

Heavily damaged structural 
and nonstructural components 

threaten life-safety 

Single family 8 0.4 
Multiple family 11 0.4 
Mobile homes 3 0.4 

Repair 
class2 

(𝑇wt*h#x,wyE& ) 

Moderately to heavily 
damaged nonstructural 

components not threaten life-
safety 

Single family 13.5 0.4 
Multiple family 17 0.4 

Mobile homes 3.5 0.4 

Repair 
class3 

(𝑇wt*h#x,wy±& ) 

minor damage to structural 
components; minor to 
moderate damage to 

nonstructural components 

Single family 1.5 0.4 
Multiple family 3 0.4 

Mobile homes 1 0.4 

Repair 
class4 

𝑇wt*h#x,wy²&  

Minor cosmetic damage to 
structural and non-structural 

component 

Single family 0.5 0.4 
Multiple family 1 0.4 
Mobile homes 0.5 0.4 

 

Table 6-17. Distribution of financing resources in different income levels in 
Shelby 

Income level Number of 
Buildings Issuance 

SBA-
backed 
Loans 

Private 
loan Savings Not 

covered 

>$150,000 24733 70% 0% 0% 30% 0% 
$100,000-$150,000 32502 60% 10% 0% 30% 0% 
$60,000-$100,000 56597 50% 10% 10% 25% 5% 
$40,000-$60,000 46510 40% 25% 30% 0 5% 
$20,000-$40,000 63909 25% 30% 30% 0 15% 
$10,000-20,000 35919 20% 20% 20% 0 40% 

<$10,000 27904 5% 5% 0 0 90% 
 

The utility disruption at the initial pre-recovery stage (𝐹𝑈	=,&, 𝐵𝑈	=,&) and the time 

required to restore utility services (𝑇{|#u#|v& ) are derived from an interdependent lifeline 

network recovery model developed by Zhang, et al. (2018), which is one of the 
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modules of the IN-CORE being developed in CRCRP. The recovery analysis of the 

utility networks from the same earthquake scenario provided the water and power 

availability across Shelby as a function of time following the earthquake event. 

Figure 6-16 shows the spatial variations of expected recovery in terms of power 

service, water service, and functionality of RBP in Shelby, respectively, for the first 50 

days following the event. It can be visualized that at the initial pre-recovery stage (Day-

0) almost all buildings in Shelby are rendered non-functional due to the lack of either 

water or power supplies in those regions. This phenomenon reflects the fact that the 

cascading effect of utility network disruption on the functionality of building portfolio 

can be devastating, and therefore considering dependence of buildings and utility 

networks during recovery modeling is significant for quantifying community resilience 

and implementing hazard mitigation plans. Moreover, Figure 6-16 reveals the temporal 

evolution of the three systems’ recovery patterns at the short-term recovery phase (from 

Day-0 to Day-50). It is found that, at the early stage of community recovery, building’s 

functionality is governed by the restoration of lifelines since most severely damaged 

buildings in this period are in the process of inspection, securing funding for repair, and 

obtaining permit, thus the vitalization of building functionality, despite slow, is aligned 

with the restoration of water and power networks. 

Figure 6-17(a) shows the spatial variation and temporal evolution of the RBP 

functionality during a longer phase of recovery (until week-70) from the same event. 

After the first 50 days of recovery, utility networks have fully recovered and the 

functionality of RBP is now governed by the buildings’ own reconstruction progress, 

which is in turn determined by the resourcefulness and social economic characteristics 
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of the community, relies on the governmental recovery programs and plans, as well as 

various decisions made by different public or private building owners. It can be 

observed that the long-term recovery pattern of the RBP in Shelby is consistent with the 

hazard intensity pattern as shown in Figure 6-14, as well as the distribution of annual 

household income displayed in Figure 6-13(b). This spatial variation in recovery speed 

in different income groups indeed reflects the disparities in resourcefulness and 

recoverability of homeowners with different social and economic status. Further, the 

recovery process of the RBP subjected to a less intense scenario earthquake (correspond 

to a 475-year return period) with 𝑀s=7.76 and an epicenter located at 35.9N and 90.8W 

is shown in Figure 6-17(b), indicating less functionality losses and more speedy 

recovery when compared with the damage and recovery in Figure 6-17(a) due to a more 

intense event. Figure 6-18 shows the overall mean recovery trajectory of RBP in Shelby 

and it is concluded that the RBP takes around 2 years (96 weeks) to regain full 

functionality.  
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Figure 6-18. Mean recovery trajectory of RBP in Shelby 
 

 
6.3 Closure 

In this chapter, the BPLE and BPRM have been applied to two testbed 

communities – Centerville and Shelby County, TN.   

First, two typical social and economic-based resilience metrics, DLR and HDR, 

are examined for Centerville building portfolio by utilizing the BPLE framework 

developed in Chapter 4. Spatial variation in the disaster losses of buildings located in 

different building zones is examined in the analysis, as shown in Figure 6-2. The DLR 

indicates that monetary loss due to nonstructural damage and content damage in the 

building portfolio on average is much greater than that of the structural damage in 

different building zones, as shown in Figure 6-3. Nevertheless, vulnerability of 

nonstructural components is much less understood and investigated than that of 

structural components.  
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Second, using the BPRM, the spatial variation in the recovery rapidity of 

different residential zones in the Centerville is projected, which reflects the disparities 

in resourcefulness and recoverability of homeowners with different social and economic 

status. Furthermore, there are significant uncertainties associated with the building 

portfolio recovery trajectories [as shown in Figure 6-9(a)], the neglect of which can lead 

to unconservative characterization of recovery for risk-informed decisions.  

Third, two “what-if” scenario analyses are performed on the Centerville building 

portfolio to demonstrate the effectiveness of the BPRM in quantifying the impact of the 

pre-hazard mitigation strategies on the overall portfolio recovery outcome (trajectory 

and time). Such analysis can facilitate the comparison between alternative risk 

mitigation strategies and support risk-informed community resilience planning. 

Fourth, the recovery prediction of Shelby residential building portfolio reveals 

that 1) the restoration of utility networks governs the short-term portfolio functionality 

recovery; neglecting the impact of utility on the functionality of buildings will lead to 

underestimation of portfolio recovery time. 2) in the long-term recovery phase, the 

portfolio functionality recovery process is mainly determined by the resourcefulness 

and social economic characteristics of the community. 

Lastly, implementing BPLE and BPRM framework requires a core collection of 

data, as those presented in in Table 6-10, Table 6-11, and Table 6-12. As communities 

start to implement risk-based resilience planning, they must maintain their own 

databases to support resilience-related decisions regarding hazard mitigation and 

recovery. The case studies have provided insight for establishing community-specific 

databases to support their own community-specific resilience planning.  
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Chapter 7 Building Portfolio Decision Support (BPDS) 

The ultimate purpose of developing quantitative, physics-based resilience 

assessment models, such as the BPLE and BPRM developed in previous chapters, is to 

guide and support community planning decisions toward achieving community-specific 

resilience goals.  In this chapter, a preliminary formulation of building portfolio 

decision support (BPDS) is presented. The research hypotheses are that the BPLE and 

BPRM can indeed support the quantitative decision formulation regarding building 

portfolio risk mitigation and recovery strategies, and that such decisions can be 

optimized to enable community resilience planning efforts to be conducted in a risk-

informed and cost-effective manner.  

In Section 7.1, an array of possible pre-hazard community actions is identified 

that can effectively mitigate the risk and enhance the resilience of community building 

portfolios. Then with a special focus on building portfolio retrofit as one of the most 

effective and commonly used mitigation actions, in Section 7.2 the BPDS is formulated 

as a multi-objective optimization problem to support the decisions involved in 

designing a building portfolio retrofit plan.  In Section 7.3, a case study in presented to 

illustrate the potential implementation of the BPDS.  

 

7.1 Pre-Event Risk Mitigation Strategies for Building Portfolios 

Effective community resilience planning should include both pre-event risk 

mitigation strategies aimed at enhancing community resilience and preparing 

community for the future hazards, and post-event response and recovery plans aimed at 

limiting hazard impact in a most time and resource-efficient manner. Decisions (of 
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building owners, policy makers and other stakeholders) regarding effective resilience 

planning often are desired to achieve multiple objectives and goals and, at the same 

time, constrained by limited time, human, and financial resources. Resilience planning 

for community building portfolio might include pre-event risk reduction measures (e.g. 

building portfolio retrofit strategies, land use regulations, etc.) and risk spreading 

control mechanisms (e.g. housing insurance policies, government subsidies, etc.), as 

well as post-event recovery actions (e.g. resource allocation, recovery prioritization and 

scheduling, etc.).  

Pre-event hazard mitigation strategies refer to those activities and actions take                                                                                                                                          

place before an extreme event strikes a community with the objective of providing 

protections to the community if an extreme event actually occurs (Lindell et al, 2006). 

In the predominant literature, mitigation strategies have been classified into engineering 

and non-engineering solutions (Godschalk et al., 1999; Lindell et al., 2006; Peacock et 

al., 2011; Baxte, 2013). Engineering mitigation involves the use of engineered safety 

features to provide disaster protection, such as structural retrofit, and construction of 

levees and dams. Non-engineering mitigation refers to a broad set of mitigation s                                     

trategies, such as real estate development regulation, land use management, incentive 

policies, public risk awareness and risk communication. The FEMA (FEMA Training, 

Chapter 3: mitigation) enumerates several types of hazard mitigation strategies, as 

summarized in Table 7-1. 
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Table 7-1. Community disaster mitigation tools  

Mitigation tools Example 
Hazard identification 
and mapping 

Detailed flood maps by FEMA’s National Flood 
Insurance Program (NFIP); earthquake maps by the U.S. 
Geological Survey (USGS) 

Design and construction 
application 

building codes, architecture and design criteria, and soils 
and landscaping considerations 

Land use planning Acquisition, easements, storm water management, 
annexation, environmental review, and floodplain 
management plans 

Financial incentives Insurance incentives; creation of special tax assessments; 
passage of tax increases or bonds to pay for mitigation; 
relocation assistance and targeting of Federal community 
development or renewal grant funds for mitigation 

Structural controls Levees, sea walls, bulkheads, breakwaters, groins and 
jetties 

 

Mitigation strategies that are directly relevant to community building portfolio 

include: structural retrofit, financing incentives, land use planning, and many other 

alternative actions taken to reduce the building restoration time. The REDi downtime 

assessment methodology (Almufti & Willford, 2013) has provided several actions that 

private building owners can take to reduce building recovery time. For example, the 

building owners can either pre-arrange for a qualified professional to inspect their 

buildings or sign up for programs such as the Building Occupancy Resumption Program 

(BORP) or other equivalents to reduce time delay due to inspection (Almufti & 

Willford, 2013). To reduce delay time due to engineering or contract mobilization, 

building owners can arrange contractual agreements with engineers immediately 

following the hazard. A possible mitigation for reducing time to financing is to obtain a 

secured credit line as a contingency plan such that funds will be readily available in the 

event of a disaster.  
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Besides decisions made by private building owners, planners for community 

development can improve the disaster resilience of building portfolios by establishing 

and implementing resilience-based building design criteria; by retrofitting an existing 

building portfolio to enhance its robustness; or even indirectly by reducing the 

vulnerability of the lifeline systems in the community, the disruption of which can 

disable functionality of buildings and produce cascading effect throughout a building’s 

restoration phase. 

While extensive studies on disaster research and risk management have 

examined past disaster events as case studies, effective and intelligent decision 

framework to guide and inform decision makers of a community toward achieving 

disaster resilience is scarcely explored. The reason is twofold: (1) many quantitative 

assessment models that underline risk-informed decision for community resilience 

planning are yet to be developed. For instance, the post-disaster recovery of a 

community is complex and highly uncertain; yet a simulation-based recovery model 

capable of incorporating different types of hazard mitigation strategies is rare; (2) Both 

the process in which such decisions (mitigation strategies) are made and implemented 

and the regulatory and resource constrains that community decision-makers must 

consider are poorly understood by researchers. The situation is exacerbated by the lack 

of data of various kinds, ranging from physical system inventory and topology, social 

and economic characteristics of a community, regional human and construction 

resources, to regulations and policies regarding disaster mitigation.  

In Section 7.2, a risk-informed decision framework is developed to obtain the 

optimal resilience-driven decisions in terms of building retrofit (more specifically, an 
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optimal portfolio retrofit plan). This study is expected to articulate the concept of risk-

informed decision making in supporting community resilience planning and risk 

mitigation, as well as the need to develop multi-objective optimization algorithms for 

obtaining optimal decisions with an ultimate goal of achieve community disaster 

resilience.  

 

7.2 Decision Support for Building Portfolio Retrofit Planning  

7.2.1 Problem Description and Assumptions 

Ideally, resilience-driven decisions should achieve targeted community-level 

resilience goals that reflect the preferences and risk tolerance of the community as a 

whole, and at the same time produce desired outcomes (or minimize undesired 

outcomes) pursuit by different stakeholders of the community, which is often fulfilled 

by solving a multi-objective decision problem.  

To formulate the multi-objective decision problem, the decision makers should 

first identify possible mitigation strategies that can be fulfilled pre- and post-disaster, 

depending on the hazard event of interest, geographic location and topology of the 

community, resource accessibility, regional economy, local regulations or policies, etc. 

Structural retrofit, acknowledged as one of the most effective means to address risk, is 

chosen herein as a preliminary study for developing risk-informed decision framework6. 

Although building retrofit decisions usually are made by individual building owners, 

                                                
6 In reality, multiple hazard mitigation strategies are often taken into account and the tradeoff among 
alternative risk mitigation strategies can be investigated through “what-if” scenario analysis (as 
demonstrated in Section 6.1.6), cost-benefit analysis, or more advanced multi-objective optimization 
algorithms.   
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government agencies and the insurance industry have a significant role to play in 

designing and employing incentives and effective risk mitigation policies such as 

government subsidies, tax incentives or insurance products, to stimulate stakeholder 

actions towards achieving the desired level of community resilience. For example, the 

Mandatory Soft Story Retrofit Program (MSSP) in San Francisco, CA was created in 

2013 as a multi-year community-based effort by the Earthquake Safety Implementation 

Program and enforced by the Department of Building Inspection to ensure the safety 

and resilience of San Francisco's housing stock through the retrofit of older, wood-

framed, multi-family buildings (Porter & Cobeen, 2012).  An effective community 

resilience-based portfolio retrofit plan should specify: 1) the overall portfolio resilience 

objective that the retrofit plan is trying to achieve; 2) the minimum number of buildings 

that must be retrofitted; 3) the target building performance level for retrofitting; and 4) 

the overall cost associated with the retrofit plan.  These four aspects are necessary for 

government agencies to design effective community risk mitigation policies.  

A community building portfolio can be modeled as a series of development 

areas or “zones” that are related to the structural characteristics of the dominant 

buildings found in each zone (Mahsuli & Haukaas, 2013), as those in Centerville 

Community (cf. Figure 6-1).  It is defined that a community has 𝑚 zones, 𝐼 =

{𝑛?, 𝑛E, …	, 𝑛k}, where 𝑛# is the total number of buildings in zone 𝑖	 ∈ 1,𝑚  and 

𝑛# = 𝑁k
#Á? . For buildings in each of the m zones, the building’s pre-retrofit design 

code level is 𝛽#, 𝑖 ∈ 1,𝑚 . Further, define a building portfolio retrofit plan decision 

variable	(	𝒛,𝜷	𝑻) = {(𝑧?, 𝛽? ), (𝑧E, 𝛽E ), … , (𝑧k, 𝛽k  )}, where 𝑧# is the number of 

buildings to be retrofitted in zone 𝑖	 ∈ 1,𝑚 ; 𝛽# is the target pre-event retrofit level 
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(which is discrete and may use those existing code levels in the standard or a new 

designed code level) for zone 𝑖	 ∈ 1,𝑚 . Under these assumptions, the pre-disaster 

building portfolio retrofit plan can be formulated as a multi-objective optimization 

problem, in which a set of near-optimal retrofit plans 	𝒛,𝜷	𝑻  is determinated, which 

achieves a prescribed target building portfolio performance goal (detailed in section 

7.2.2) with minimum portfolio retrofit cost (PRC)	and fastest expected portfolio 

recovery time (PRT)	given the occurrence of the considered hazard scenario.  

 

7.2.2 Building Portfolio Performance Goal 

Fulfilling building portfolio performance goals serves as one of the constraints 

of the current risk-informed decision framework. Community planning for resilience 

has identified a set of community-level goals to instruct stakeholders of the community 

in terms of developing and prioritizing strategies in order to achieve the stipulated 

goals, such as minimizing functionality losses and recovery time (NIST, 2015). Such 

community goals are usually high levels of performance that community is desired to 

achieve; the gap between the desired community performance and anticipated 

community performance needs to be identified while effective risk mitigation strategies 

and optimal mitigation plans or policies are expected to fill this gap.   

Considering the uncertainties associated with the performance of an earthquake-

stricken building portfolio of interest, the building portfolio performance goal to be 

achieved by planners responsible for community development can be expressed in the 

following form: 
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𝑃𝑟𝑜𝑏 𝑍 < 𝐺|𝑆Nr = 𝛼 (7-1) 

in which 𝑍 is the portfolio functionality metric of interest; 𝐺 is the stipulated building 

portfolio performance goal while α is the confidence level for the probable event. The 

value of G and 𝛼 are set in pairs to represent the building portfolio performance goal, 

which reflects the preferences and risk tolerance of the community.  

For building retrofit plan, we use portfolio robustness goal (i.e., an acceptable 

level of functionality loss due to immediate impact of a hazard) as the performance 

goal, as it is the most direct and sensitive measure of the collective performance of 

individual buildings, and is not complicated by any social-economic characteristics of 

the community.  For example, considering a Mw 7.5 earthquake, a portfolio robustness 

goal for the residential building portfolio can be “less than 10% of housing units are in 

the functionality states of RE and RU immediately following the hazard with a 90% 

confidence level”. This objective to be achieved, in turn, needs the individual dwellings 

within the community to meet certain strength requirements, which can be fulfilled 

through designing optimal building portfolio retrofit plans to be formulated in the 

following section.  

 

7.2.3 Formulation of Portfolio Retrofit Plan Optimization  

The optimal pre-disaster portfolio retrofit plan is obtained by minimizing the 

total PRC and the expected PRT (as estimated by BPRM in Chapter 5) subject to the 

constraint imposed by the stipulated portfolio robustness goal (𝐺, 𝛼) (as discussed in 

7.2.2). The complete optimization problem formulation is summarized in                 

Table 7-2.  Local constraints 1 and 2 are dictated by the resources available to the 
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community and its building portfolio configuration.  Multi-objective optimization 

problems can be solved by a number of different algorithms, including exhaustive 

enumeration, exact solution approaches (e.g. branching and bound), or metaheuristic 

techniques (e.g. genetic algorithm), depending on the characteristics of the problem 

(Bocchini & Frangopol, 2011; Zhang & Wang, 2016).  
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7.3 Case Study 

The risk-informed decision framework developed in Section 7.2 is applied to a 

small existing community with two residential zones, in which community resilience 

under an earthquake scenario event is considered.  Zone I contains 50 non-seismically 

designed one-story wood frames developed mainly in the 1950s, while Zone II consists 

of 50 seismically designed one-story wood single family dwellings developed during 

the 1970-1980s. For illustration, consider these 100 houses as being uniformly scattered 

in Zones I and II. It is further assumed that the correlations among performance of 

buildings (more specifically, correlation in functionality states) in the same zone is 

described by Eq. (4-4). For buildings located in different zones, the correlation due to 

common code and construction practices is weak, but the portion of the correlation that 

results from common hazard demand may still exist unless the considered building 

zones are very further apart. In this illustration, performances of buildings located in 

different zones are assumed to be uncorrelated, for simplicity; this assumption can be 

easily relaxed when analyzing realistic building portfolios. A scenario earthquake with a 

magnitude Mw of 7.5 and epicenter of 25 km from the center of the community is 

considered for this study. The ground motion attenuation proposed by Campbell (2003) 

is used to simulate the seismic intensity measure for each individual building within the 

community. Seismic fragility functions and appraised values for buildings in both Zone 

I and Zone II are adopted from HAZUS-MH (i.e., FEMA/NIBS, 2003 for building type 

W1): Zone I buildings are “pre-code” according to the HAZUS definitions (β? = 1), 

while Zone II buildings are “low-code” (βE = 2). The total appraised value of the 100 

buildings is approximately $15 million.   
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The portfolio robustness goal is defined as “the probability that less than 10% 

buildings in the community become unoccupiable (corresponds to RU and RE) after a 

particular hazard is 90%”, namely: 

𝑃𝑟𝑜𝑏 𝑃𝑅𝐼? 𝑡= + 𝑃𝑅𝐼E 𝑡= < 10% = 90%                                           	(7-2) 

In Eq. (7-2), the distribution of 𝑃𝑅𝐼? 𝑡= + 𝑃𝑅𝐼E 𝑡=  is calculated using the 

PBLE, which essentially defines the relation between building portfolio performance 

PRI and individual building performance [denoted by building’s code level 𝛽 ∈

1,2,3,4 ,	  representing pre-code, low-code, moderate-code, and high-code level, 

respectively].  

For simplicity, this case study has made several assumptions for the portfolio 

retrofit plan optimization: (1) because the portfolio investigated is hypothetical, and 

there is no detailed information regarding building’s nonstructural components and 

utility availability (cf. Figure 4-2), the building performance is quantified solely by its 

structural capacities when calculating PRI  using BPLE; (2) there is no information 

regarding the social- economic characteristics and political response of the community, 

the delay time is neglected and the building restoration time is equal to its 

repair/reconstruction time when calculating expected PRT using BPRM. 

To investigate the gap between current performance of the building portfolio 

and the anticipated performance to be achieved, we define portfolio system reliability 

(PSR) as 𝑃𝑆𝑅 = 𝑃𝑟𝑜𝑏 𝑃𝑅𝐼? 𝑡= + 𝑃𝑅𝐼E 𝑡= < 10%  . The building portfolio 

functionality losses calculated using BPLE reveal that the probability that no more than 

10% of buildings will become unoccupiable (RE and RU) after the scenario event is 
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79%, i.e., 𝑃𝑆𝑅 = 79%, which is lower that the desired confidence level associated with 

the prescribed portfolio robustness goal (𝛼 = 90%). Identifying this gap is the first step 

in considering alternative hazard mitigation strategies (code improvements, targeting 

investments on rehabilitation, etc.) to meet prescribed resilience goals. Based on this 

assessment, a decision to seismically retrofit certain residential building structures to a 

higher seismic code level is implemented; the optimization process leading to the 

optimal seismic retrofit plan is described below. 

Since both Zone I (pre-code) and Zone II (low-code) buildings can be retrofitted 

to either moderate-code level or high-code level, three alternative retrofit schemes7 (RS) 

are considered, as summarized in Table 7-3 together with the mean retrofit cost [based 

on empirical recommendations from Yoshikawa and Goda (2013)] associated with each 

RS. The damage state probabilities with respect to the considered scenario hazard event 

are summarized in Table 7-4 for pre-, low-, moderate- and high code-compliant levels, 

respectively.  Moreover, based on the mean restoration time of 2, 64, 270 and 360 days, 

corresponding, respectively, to slight, moderate, extensive and complete damage levels 

(FEMA/NIBS, 2003), the expected building restoration time with each code-compliance 

level is tabulated in Table 7-4.   

 
 
 
 
 

 

                                                
7 Since Zone II buildings are more vulnerable than Zone I buildings, the option of retrofitting type I 
building to high-code level and retrofitting type II building to moderate-code level is not considered. 
Therefore, the following results only consider three alternatives. 
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Table 7-3. Alternative portfolio retrofit schemes (RS) for Zone I and Zone II 
buildings 

Retrofit scheme, 
RS 

(β? , βE ) 

Target retrofit level β? 	for 
Zone I (pre-code) buildings 
(associated mean 
cost/bldg.)  

Target retrofit level βE  for 
Zone II (low-code) 
buildings (associated mean 
cost/bldg.)	 

RS 1  Moderate-code ($5,500) High-code ($6,500) 
RS 2 High-code ($8,000) High-code ($6,500) 
RS 3 Moderate-code ($5,500) Moderate-code ($4,000) 

 

Table 7-4. Damage state probabilities for residential buildings (building type: 
W1) (FEMA/NIBS, 2003) 

 Performance levels of 
existing buildings 

Candidate target levels 
for retrofit 

Zone I 
(Pre-code) 

Zone II 
(Low-code) 

Moderate-
code 

High-
code 

Damage 
state 
probability  

None 0.3018 0.373 0.5301 0.5316 
slight 0.3437 0.3619 0.3426 0.3939 
moderate 0.2768 0.2213 0.1184 0.0719 
extensive 0.0663 0.0399 0.007 0.0023 
complete 0.0114 0.0039 0.0019 0.0003 

Mean restoration time 40 days 27 days 11 days 6 days 
 
 

Consistent with the decision framework presented in Section 7.2, a portfolio 

retrofit plan is sought that should fulfill the prescribed portfolio robustness goal, and at 

the same time minimize the total PRC and expected PRT.   Because the solution space 

for this particular problem is limited, a naïve exhaustive enumeration method can be 

used to identify the optimal solutions.  While both PRC and PRT can be modeled as 

random variables if the uncertainties in the retrofit cost and restoration time for each 

building are known, the optimal solution in this example is obtained by minimizing the 

mean of the objective functions.  Figure 7-1(a), (b) and (c) illustrate the solution space 

for the three retrofit schemes RS1, RS2 and RS3 (Table 7-3), respectively, when the 
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portfolio robustness goal 𝑃𝑆𝑅 < 𝛼 is not yet considered as a constraint. Figure 7-1(d) 

displays the comparison of the optimal solution sets with respect to the three different 

retrofit schemes when minimizing PRC is considered as the dominant objective. From 

Figure 7-1, it is clear that: (1) larger PRC usually results in higher PSR and shorter 

expected PRT; and (2) with the same level of PRC, RS3 on average achieves higher 

PSR than the other two retrofit schemes due to the fact that, with a fixed amount of 

resources, the total number of buildings that can be retrofitted under RS3 is greater than 

that of the other two retrofit schemes. This observation reveals that for the portfolio 

robustness goal defined in this study, when the financial resources for seismic 

retrofitting are limited, retrofitting more buildings to a relatively lower performance 

target level is more effective than retrofitting fewer buildings to a relatively higher 

performance level.  

Figure 7-2 shows the number of buildings that must be retrofitted in Zone I and 

Zone II to achieve the targeted portfolio robustness goal α = 90%. Note that 𝑧? and 𝑧E 

are negatively correlated.   Moreover, considering the total number of buildings 

required for retrofit (i.e. 𝑧?+𝑧E), RS2 requires fewer buildings on average than the other 

two RSs because the target performance levels for individual buildings in both Zones I 

and II are the highest in RS2. Figure 7-3 shows the range and median of the total 

number of buildings required for retrofit to achieve the target portfolio robustness goal 

with the three retrofit schemes. The minimum numbers of buildings required for retrofit 

are 43, 39 and 43 for RS1, RS2 and RS3, respectively. Such information would be 

useful for public policy makers who might prefer a mitigation policy in which fewer 

buildings are retrofitted to achieve the same resilience goal.  
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Figure 7-4 shows the tradeoff between the competing objectives PRT and PRC 

when the target portfolio robustness goal 𝛼 = 90% is achieved.  It is obvious that the 

PRT and PRC are negatively correlated for all three retrofit schemes.  RS3 generally is 

associated with lower PRC but longer PRT, while RS2 often results in higher PRC but 

shorter PRT.  This observation is also reflected in the histograms of PRT and PRC for 

the three retrofit schemes. The optimal solutions (described by the Pareto front) under 

the competing objectives are presented with solid markers, which reveals the minimum 

PRC required to achieve the community resilience objective for a given expected PRT, 

and vice versa.  For example, if the portfolio recovery time is targeted to be within 250 

days, then the minimum portfolio retrofit cost is $ 0.34 million.  

Table 7-5 and Table 7-6 tabulate the optimal solutions that achieve the target 

portfolio robustness goal 𝛼 = 90%	with minimized PRC and minimized PRT, 

respectively. The following observations can be made: (1) the optimal solutions 

associated with minimum PRC as shown in Table 7-5 all require that the focus of 

retrofit should be buildings in Zone I regardless of the RS; (2) the optimal solutions 

associated with minimum PRT as shown in Table 7-6 all imply that the number of 

retrofitted buildings in Zones I and II need be balanced almost equally in order to 

ensure fastest post-disaster recovery.  

In summary, if the targeted portfolio robustness goal is to be satisfied, the 

optimal portfolio retrofit plan depends on the objective of interest, which reflects the 

preferences of policy-makers and other stakeholder within the community.   If the 

retrofit cost is of a compelling preference, then the optimal policy is to retrofit most of 

the buildings in Zone I to moderate-code level (𝑧? = 43, 𝑧E = 0, RS1	or	RS3). On the 
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other hand, if the portfolio recovery time is of most concern, then the optimal retrofit 

plan is to retrofit a nearly identical number of buildings in Zones I and II to high-code 

level (𝑧? = 𝑧E = 29, RS2).  

 

 

Figure 7-1. Portfolio system reliability (PSR) versus portfolio retrofit cost 
(PRC) 
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Figure 7-2. Number of buildings in Zones I (𝒛𝟏) and II (𝒛𝟐) that require retrofit 
(for target portfolio robustness goal 𝜶 = 𝟗𝟎%) 
 

 

Figure 7-3. Boxplot of total number of buildings require retrofit (for target portfolio 
robustness goal 𝜶 = 𝟗𝟎%) 
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Figure 7-4. Portfolio recovery time (PRT) versus portfolio retrofit cost (PRC) 
(for target portfolio robustness goal 𝜶 = 𝟗𝟎%) 
 

Table 7-5. Optimal solutions to achieve the target portfolio robustness goal 
(𝜶 = 𝟗𝟎%) with minimized PRC  

Retrofit 
scheme 

(Table 7-
3) 

No. of buildings 
to be retrofitted in 

Zone I, 𝑧? 

No. of buildings 
to be retrofitted 
in Zone II, 𝑧E 

Minimized 
portfolio 

retrofit cost 
(PRC) 

Corresponding 
portfolio 

recovery time 
(PRT) 

RS 1 43 0 $237,000 278 days 
RS 2 40 2 $333,000 259 days 
RS 3 43 0 $237,000 278 days 

 

Table 7-6. Optimal solutions to achieve the target portfolio robustness goal 
(𝜶 = 𝟗𝟎%) with minimized PRT 

Retrofit 
scheme 

(Table 7-
3) 

No. of buildings 
to be retrofitted in 

Zone I, 𝑧? 

No. of buildings 
to be retrofitted 
in Zone II, 𝑧E 

Minimized 
portfolio 

recovery time 
(PRT) 

Correspondi
ng portfolio 
retrofit cost 

(PRC) 
RS 1 29 33 245 days $374,000 
RS 2 29 29 238 days $421,000 
RS 3 33 31 258 days $303,000 
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7.4 Closure 

In this chapter, a preliminary BPDS is presented. The purpose of this study is 

not yet set to develop a comprehensive decision tool for hazard mitigation and 

resilience planning, rather, we explore a feasibility path forward by proving the 

following hypotheses: 1) the BPLE and BPRM can indeed support the quantitative 

decision formulation regarding building portfolio risk mitigation and recovery 

strategies, and 2) such decisions can be optimized to enable community resilience 

planning efforts to be conducted in a risk-informed and cost-effective manner.  

Community-scale hazard mitigation strategies for building portfolios can be 

largely categorized into engineering measures (such as building retrofit, elevating a 

building, basement protection, etc.) and non-engineering measures (financial incentives, 

zoning, etc.).  The BPDS is formulated in this chapter for designing an effective 

building portfolio retrofit plan for illustration, in which the number of buildings to be 

retrofitted as well as the design code level for retrofitting are specified in a way to 

ensure the target portfolio robustness goal is achieved, and at the same time the total 

PRC and the expected PRT are minimized. 

In the BPDS, the robustness (the constraint) and recovery (the objective) of the 

building portfolio under investigation are quantified using BPLE and BPRM, 

respectively.  The BPLE and BPRM are highly quantitative, which enable the BPDS to 

be modeled as a rigorous multi-objective optimization problem; the BPLE and BPRM 

both include a comprehensive uncertainty propagation, which enables the resilience 

goals in the BPDS to be specified probabilistically in a risk-informed manner; and the 
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BPLE and BPRM are both physics-based models with a building-level modeling 

resolution, which enables the BPDS to support engineering mitigation decisions at 

building scales.  It is the characteristics of the assessment models underlying a decision 

that ultimately determine the key characteristics of a decision model.  In another word, 

what resilience planning decisions one trying to support determine the approach, the 

resolution, and the simplifications of the supporting resilience assessment models. 
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Chapter 8 Conclusions and Future Work 

8.1 Summary 

Resilience is often regarded as an attribute of communities rather than a property 

of individual civil infrastructure facilities. Conventional quantitative tools for building 

portfolio analysis have treated topologically discrete buildings independently, without 

considering the functional dependences among buildings of different occupancies as 

well as dependencies between the building portfolio as a whole and other infrastructure 

systems that together contribute to the social-economic stability of a community. To 

facilitate community resilience planning, the current engineering practice of design, 

assessment, and risk management of buildings should move beyond the individual 

building-level to a comprehensive portfolio-level approach. This portfolio-level 

approach must be developed through investigation and modeling of the functionality 

losses and recovery process of spatially distributed buildings within a community as a 

whole, as an integrated system, to enable pre-disaster mitigation decisions and post-

disaster recovery planning strategies to be optimized under various resources and 

regulatory constraints in a risk-informed manner.  

Toward that goal, this research has been conducted in four steps: 1) a new 

building portfolio functionality metric (BPFM) was proposed as an effective indicator 

of a building portfolio’s capacity to respond and recover from a hazard; 2) a building 

portfolio functionality loss estimation (BPLE) framework was developed to estimate the 

spatial functionality loss across a community building portfolio immediately following 

a hazard event; 3) a novel stochastic post-disaster building portfolio recovery model 

(BPRM) was formulated to characterize the spatial and temporal evolution of a building 
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portfolio’s recovery following a hazard event; and 4) a building portfolio decision 

support (BPDS) framework was constructed to facilitate communities to achieve risk-

informed resilience goals through optimized mitigation strategies and recovery planning 

activities at a community scale.  

 

8.2 Conclusions 

The risk-based framework for resilience assessment of community building 

portfolios developed in this dissertation has made several distinct contributions, as 

compared with approaches that appear in the recent literature: 

First, the newly introduced BPFM includes a building-level functionality metric 

(RE, RU, RO, BF, and FF) and a portfolio-level functionality metric (PRI, defined as 

the percentage of buildings in a portfolio that are in any of the five pre-defined 

functionality states). The BPFM explicitly reflects the dependency of the building 

portfolio on other community infrastructure systems in maintaining its desired 

functionality level, which is not reflected in other typical building-related metrics in the 

literature.  Furthermore, it enables the performance of a building portfolio to be 

assessed on a consistent measure at various spatial scales (e.g. parcel, block, census, 

zone or community) and to be tracked throughout the time domain of resilience 

assessment (including pre-event planning, immediate post-disaster response, and long-

term recovery).  

Second, the BPLE framework provides a probabilistic and spatial depiction of 

functionality losses across a community building portfolio. The major contributions of 

the BPLE are manifested in the following aspects. The uncertainties associated with 
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hazard demands and building vulnerabilities as well as the spatial correlations among 

demands and within building responses due to common design and construction 

practices are propagated through the analysis through multiple-layers of Monte Carlo 

Simulation of conditional events coupled with proposed sample techniques.  In contrast 

to widely-used existing loss estimation platforms (e.g. HAZUS-HM and MAEViz), this 

rigorous and consistent uncertainty modeling scheme enables the uncertainty in the 

spatial loss of distributed building portfolios to be estimated realistically. Furthermore, 

a damage-to-functionality mapping is proposed to relate the building functionality states 

to the joint status of building’s physical damage and utility disruption of a building; this 

mapping, distinguished from some existing building-level functionality assessments 

supported by detailed building-specific information, effectively facilitates the portfolio 

functionality loss estimation at regional or community scale.  The outcomes of BPLE 

characterize the initial functionality state for recovery modeling, which is the starting 

point of the BPRM. 

Third, the novel BPRM is constructed in two critical steps: i) modeling 

individual building restoration as a discrete state, continuous time Markov Chain 

(CTMC); and ii) modeling building portfolio recovery through aggregating the CTMC 

restoration processes of individual buildings across the domain of the community and 

over the entire recovery time horizon. The two-step BPRM was calibrated through a 

review of existing recovery-related databases and variables known to be essential for 

building portfolio recovery analysis.  Uncertainties in these variables were propagated, 

and the time-variant spatial correlations in buildings’ functionality states were 

quantified throughout the BPRM in the estimation of the portfolio recovery trajectory 
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and recovery time. The BPRM is capable of quantifying the impact of different pre-

hazard mitigation strategies on the overall portfolio recovery process, and as a result can 

facilitate community recovery planning.  The coupled BPLE and BPRM framework 

together can be used to quantify both the robustness and recovery of community 

building portfolios in a rigorous, probabilistic and consistent manner, as illustrated 

through the testbed communities assessed – Centerville and Shelby County, TN. 

Finally, the BPDS framework can guide and support community planning 

decisions. The BPDS is formulated for designing an effective building portfolio retrofit 

plan.  As an illustration, the number of buildings to be retrofitted as well as the design 

code level for retrofitting can be specified to ensure that the target portfolio robustness 

goal is achieved and, at the same time, the total portfolio retrofit cost and the expected 

portfolio recovery time are minimized. The BPDS framework has proven that the BPLE 

and BPRM can indeed support the quantitative decision formulation regarding building 

portfolio risk mitigation and recovery strategies, and that such decisions can be 

optimized to enable community resilience planning efforts to be conducted in a risk-

informed and cost-effective manner. 

 

8.3 Future Work 

The present work has identified some issues that should be addressed and 

improved in the future research: 

Conceptually, the resilience assessment framework proposed in this study can be 

applied to different natural hazards. For illustration purpose, the developed 

methodologies are applied to scenario earthquakes. Nevertheless, its application to other 
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types of hazards needs to be completed, which will require hazard-specific adjustments 

in the framework in both loss estimation and recovery modeling. Moreover, efforts need 

to be devoted to the validation of the proposed methodologies, preferably using 

observed data from historical events.  

In this study, a random sampling technique to increase computational efficiency 

of the BPLE was implemented at the expense of computational accuracy. The practical 

implementation of the method, however, depends on the size and topology of the 

building portfolio, as well as the level of the site-to-site and structure-to-structure 

correlations in hazard demand and structural response. Additional sensitivity studies 

should be performed to explore the efficiency of the sampling technique when applied 

to building portfolios of different sizes and topologies. Moreover, advanced sampling 

techniques aimed at reducing the computational efforts of MCS should be explored, to 

quantify the uncertainties of all spatially correlated intermediate random variables 

associated with building functionality loss and recovery analysis and to minimize 

computational effort for large size community building portfolios.  

Community building portfolios, by nature, interconnect with other infrastructure 

systems within a community. On the one hand, the functionality of buildings relies on 

lifeline systems to provide services (say, power, water). On the other hand, the building 

portfolios of different occupancies provide functionality to support social and economic 

activities of a community. The BPLE and BPRM have considered the effect of utility 

disruption resulting from cascading failures of the community’s utility networks.  

Nevertheless, the effect of other infrastructure systems (e.g., transportation) and the 

effect of social-economic recovery on building functionality recovery have not been 
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adequately explored.  Future work should include “re-couple” social science into the 

building portfolio recovery model, for example, capturing the effect of social 

vulnerability during recovery of building portfolios. To be specific, future research 

should develop a community recovery model that integrates the recovery models of the 

community built environment and socioeconomic systems through well-designed 

information flow among these models at appropriate spatial and temporal resolutions 

throughout the time horizon of community recovery process.  

A well-defined risk-informed decision framework should be formulated to 

facilitate multiple hazard mitigation strategies, identify optimal resource allocation 

plans, reflect the values and risk tolerance of the community, and balance needs and 

interest of different community stakeholders. Such studies will require advance multi-

objective optimization algorithms and a collection of data to support framework 

modeling.  Future studies should identify effective disaster mitigation strategies and 

develop comprehensive risk-informed decision tools to guide stakeholder of the 

community in terms of hazard mitigation and community resilience planning. 
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