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Abstract

A critical function of intelligent transportation systems is studying and analyzing the

e�ects of road condition variables (e.g. construction, severe weather, and the like) on

tra�c to aid in improving road designs, estimating travel time, and increasing safety. In

this thesis, Multivariate Distance Matrix Regression (MDMR), a well-studied algorithm

applied in brain research, is explored and applied in the transportation domain to assess

the relationship and the e�ects of tra�c conditions on transportation system performance.

The Multivariate Distance Matrix Regression (MDMR) is utilized to study the re-

lationship between input experimental factors and the association of response variables.

When studying transportation, input factors can be represented as any factor that may

have an e�ect on tra�c, and response variables can be represented by tra�c speed values

over time for each segment of a road. The output is represented as a probability Value

(P-Value) for each segment of the road as an indication of an e�ect of the studied fac-

tor on that speci�c segment. The National Performance Management Research Dataset

(NPMRDS), (i.e., a probe-based tra�c dataset) was used to study tra�c performance

based on speci�c factors by applying MDMR under di�erent tra�c scenarios.

Moreover, a novel clustering algorithm for time series data is proposed by optimizing

the F-statistic (i.e., a measurement metric to study the signi�cance di�erence of two or

more groups) to �nd the best segregation of time series between two or more groups. The

clustering algorithm gave promising preliminary results when compared with K-means.
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Chapter 1

Introduction

In the transportation domain, tra�c can be characterized by two parameters-travel time

and speed values over time. These parameters are greatly a�ected by several factors (e.g.,

severe weather, road conditions, accidents, time of day). Studying the impact of such

factors on tra�c is extremely important in tra�c management and planning to aid in

making decisions for improving road designs, estimating travel time, and, more impor-

tantly, increasing safety. Studying the relationship between tra�c and factors a�ecting

it requires collecting, storing, and processing various types of data by leveraging several

technologies. For example, Road Weather Information Systems (RWIS) [3] can be used

as a weather dataset for providing temperature measurements, humidity, wind speed,

and precipitation information. The con�ation of di�erent types of data (e.g., weather,

accidents, and travel time) under consideration is both complex and challenging [4]. Data

must be aggregated, and several locations must be merged to retrieve useful information

about tra�c in a speci�c location. In this thesis, the impact of factors on tra�c per-

formance is analyzed using the National Performance Management Research Dataset [5]
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(NPMRDS) and a multivariate statistical analysis framework, namely Multivariate Dis-

tance Matrix Regression (MDMR) [6].

1.1 National Performance Management Research Dataset

The emergence of the Internet of Things (IoT) and digitization of urban infrastructure

variables (e.g. transportation, weather) enables the collection of continuous data associ-

ated with many aspects of our modern life. The dataset we used in this thesis to char-

acterize tra�c is the National Performance Management Research Dataset (NPMRDS).

NPMRDS is a probe-based tra�c data collected using automobile-probes that report

location and speed at regular intervals of time to the cloud. Location is determined by

standard GPS equipment housed inside the vehicle (e.g., smart phone). Reported speed

and location values are matched with a map detailing speed values and travel time for

every segment in each roadway, where each roadway is divided into a set of segments.

When multiple speed values are reported for the same segment, speed is averaged over

all received values [5]. Data is provided by INRIX, a commercial third party, with no

smoothing, �ltering, or removing outliers [5]. Detecting anomalous points and patterns in

the NPMRDS dataset permits departments of transportation to answer important ques-

tions (e.g., what factors a�ects tra�c performance, which segments contain congestion,

and when did the congestion occur). The dataset is archived and published monthly.

Observations (like travel time and speed values) are reported for each Tra�c Message

Channel (TMC) segment in 5-minutes intervals on any given day. Figure 1.1 presents

information on each road segment on Oklahoma Interstate Highway 35 (I-35), which is

then divided into multiple segments. Following is an explanation of each �eld in the
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NPMRDS table.

� Datasource : observation value sourceâ€”passenger car, truck, or both

� TMC : roadway segment number

� Road : roadway/highway name (e.g., I-35)

� Direction : tra�c direction: northbound, southbound, eastbound, or westbound

� Latitude/Longitude location : location of each segment, speci�ed by starting

lat/long and ending lat/long

� Miles : segment length in miles

� Road order : sequence of segments

Figure 1.1: NPMRDS TMC identi�cation table

Figure 1.2 illustrates observations values represented in the following �elds:

� Measurement timestamp : reporting time represented by the day-of-the-month

and �ve-minute epoch during the day

� Speed: miles per hour

3



� Travel time in minutes : self-explained

� Data density : Data density: three possible levels that represent number of vehicles

reporting speed value (i.e., Level A represents one to four reporting vehicles; Level B

indicates �ve to nine reporting vehicles, and Level C represents 10 or more reporting

vehicles) [7].

Figure 1.2: NPMRDS observations table

By linking the TMC identi�cation table with the observation table, travel time data

can be analyzed for extracting important tra�c performance knowledge. Figure 1.4

illustrates I-35 plotted on Google Maps, where location information for each segment is

taken from the TMC identi�cation table. Figure 1.3 illustrates speed values for one I-35

segment on a speci�c day between 6 AM and 1 PM.
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Figure 1.3: Speed values for one segment between 6 AM and 1 PM

Figure 1.4: Oklahoma highway I-35
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1.2 Purpose and signi�cance of the work

The work detailed in this thesis focused on exploring and applying a Multivariate Distance

Matrix Regression (MDMR) [6] algorithm in the transportation domain for studying the

e�ects and the relationship between various factors (e.g., weather status) and tra�c per-

formance. MDMR is considered a hypothesis testing method used to reject or accept the

null hypothesis based on analyzing the variance between two or more multivariate groups.

The algorithm output serves as an indication of regions or road segments where tra�c

performs di�erently in the presence of the studied factors. Knowing the e�ects of a given

factor on a speci�c segment in terms of tra�c congestion allows a state department of

transportation agency to make informed decisions for improving road designs, preventing

tra�c congestion, and increasing safety. This work also proposes the use of a novel clus-

tering tool that is based on maximizing F-statistic by applying random permutation to

cluster time series data. The proposed algorithm can be used on transportation data to

cluster normal time series for di�erentiating between normal and congested tra�c time

series.

This thesis is organized, as follows. Discussion about related works studying the

impact of factors on tra�c are detailed in Chapter 2. A multivariate distance-based

analytic framework is proposed in Chapter 3 for studying the e�ect of experimental factors

on observations. Chapter 4 introduces a novel clustering algorithm used for anomaly

detection. Chapter 5 concludes the thesis and details future works.
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Chapter 2

Related Works

Several investigations have studied the relationships and e�ects between tra�c conditions

(or factors) and tra�c performance. Most follow simple statistical approaches (e.g.,

univariate analysis of variance or comparison of the means performed manually between

di�erent groups) to make a statement about the studied factor.

Akin et al [8] studied tra�c speed as a function of weather conditions (e.g., clear, rain,

fog, or snow) and surface conditions (e.g., dry, wet, or icy). Historical weather and speed

data from two highways in an Istanbul metropolitan area were analyzed. The study

applied ANOVA (analysis of variance) to determine the signi�cance of the di�erences

between a road under adverse weather conditions and the same road under normal weather

conditions. A statistical analysis of the data was applied to calculate average tra�c speed

di�erence under various conditions. Findings demonstrated that rain reduced average

tra�c speed by 8 to 12%, while wet surface conditions reduced average tra�c speed by

6 to 7%.

The e�ect of using Variable Speed Limit (VSL) strategies on tra�c stream was studied
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by Soriguera, et al [9]. A dataset from a VSL experiment carried out on a freeway in

Spain was used. Data included vehicle count, speed, and occupancy for three days each

with a di�erent �xed speed limit (80 km/h, 60 km/h, and 40 km/h). Results revealed

that lower speed limits increase speed di�erences between lanes in a road; therefore, lane

changing rate increases.

A study conducted by Baldasano, et al. [10] assessed the e�ects of changing speed

limit on air pollution. Tra�c data collected in 2007 and 2008 in the city of Barcelona

was used to compare the e�ect of introducing a speed limit. Hourly tra�c intensity and

hourly variable speeds were used to assess air quality using an emission model. The study

showed that the speed limit enhanced air quality be 5 to 7%.

The impact of various factors (e.g., weather, choice of road, time of day, and day

of the week) on tra�c performance was also studied in [11]. Di�erent machine learning

decision tree-based algorithms (e.g., Decision Stump, M5 model tree, M5 regression tree,

RepTree, M5 rules, and linear regression) were utilized to study dependence of in�uencing

factors and tra�c performance.

Most of the works in the literature do not consider a multivariate situation, where a

response variable may represented as a multivariate data. Considering only univariate

response variables provides a statement to describe the interaction between the studied

factors and the whole univariate response variable at once, without taking into account

that a factor may have an e�ect on part of the road without having an e�ect on other

parts of the road. A multivariate statistical approach (MDMR) was be explored in this

thesis in order to overcome this limitation.
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Chapter 3

Multivariate Distance Matrix

Regression

Multivariate Distance Matrix Regression (MDMR) is a hypothesis testing method [12] for

multivariate data [13] aimed at determining the relationship between inputs (i.e., predic-

tors) and observations in experiments by way of test-statistic. The algorithm originally

proposed in [14] was introduced as a new non-parametric method for multivariate analysis

of variance, wherein the test-statistic is similar to Fisherâ€™s F-ratio and is calculated

from the distance matrix. This chapter discusses the details of the multivariate distance

matrix regression method and explains its application in the transportation domain. The

case of univariate analysis of variance is detailed in section 1. Non-parametric multivari-

ate analysis of variance is explained in section 2. Section 3 provides an explanation of the

MDMR framework used in brain research. Its proposed application in the transporta-

tion domain is detailed in section 4 wherein several case studies are applied to test the

algorithm.
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3.1 Analysis of Variance

Analysis of variance (ANOVA) [15] is a statistical method to test the di�erences between

the means of two or more groups by analyzing the variance so that the null hypothesis

can be either accepted or rejected. The null hypothesis supposes all groups means are

equal (3.1).

H0 : � 0 = � 1 = ::: = � n (3.1)

When rejecting the null hypothesis, at least one group mean must be di�erent from at

least one other group mean. Before proceeding to ANOVA measurements, it is important

to mention inherent assumptions of this method of analysis: :

1. Observations are normally distributed, (i.e., experimental errors of samples are

normally distributed)

2. Independence of observations, (i.e., each observation is independent from others)

3. Variance homogeneity, (e.i., equal variances between groups)

ANOVA is based on two estimates. Notably, mean square error (MSE) estimates

population variance regardless if the null hypothesis is true. Mean square between (MSB)

is based on sample mean di�erences. MSB estimates the variance if population means are

equal. If they are not, MSB will be signi�cantly larger than the MSE, which means the

null hypothesis will be rejected. Using these two measurements F-ratio can be calculated

as in equation (3.3).

F =
V ariability � between� groups
V ariability � within � groups

(3.2)
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F =
MSB
MSE

(3.3)

MSE (i.e, variation within groups) can be calculated as the mean of sample variances

or, in other words, can be computed by taking the di�erence between each point and

its group mean, and then dividing the sum over the degree of freedom. While MSB

represents the variation between groups, it can be calculated in (3.4) by �rst computing

the means of the groups and, then computing the variance of the means. Finally, the

variance of the means multiplied by n, where n is number of observations in each group,

must be multiplied.

MSB = n � � 2
M (3.4)

F-ration can be calculated using sum of squares within groupsSSW and sum of

squares between groupsSSA as in 3.8 wheren is number of observations in theith

group, anda is number of groups.

SSW =
aX

i =1

nX

j =1

(yij � yi )2 (3.5)

SST =
aX

i =1

nX

j =1

(yij � y)2 (3.6)

SSA = SST � SSW (3.7)

11



F =
SSA =(a � 1)

SSW =(N � a)
(3.8)

The nominator and denominator are divided by the degree of freedom(a � 1) and

(N � a) Where N is total number of observationsN = a � n and a is number of groups.

Comparing MSB to MSE is considered a critical step in ANOVA for determining if

the null hypothesis should be accepted or rejected. MSB estimates a larger value than

MSE when population means are not equal. However, to reject the null hypothesis it

is important to know how larger MSB should be. Based on F-statistic (3.3), a decision

can be made about the null hypothesis using Fisher distribution [16]. F-distribution,

illustrated in �gure 3.1, is a continuous probability distribution that represents the null

distribution and is used to �nd the p-value as an indicator to reject or accept the null

hypothesis. If the F-ratio is located on the right tail of the distribution, the null hypothesis

can be rejected.

3.2 Non-parametric multivariate analysis of variance

Univariate analysis of variance, explained in the previous section, provides a powerful

hypothesis testing tool. However, a multivariate analysis of variance method that is not

restricted to stringent assumptions made by ANOVA is needed. Anderson in [14] pro-

posed a non-parametric multivariate analysis of variance as a hypothesis testing method

that does not rely on stringent assumptions and provides more intuitive formulation for

ANOVA. The test-statistic in [14] is a multivariate analogue to Fisherâ€™s F-ratio, where

the F-ratio can be calculated directly from the distance matrix. In contrast to ANOVA,

12



Figure 3.1: F-distribution

this method does not relay on speci�c distance metric to build the distance matrix. Also,

it does not follow Fisher distribution. Rather, P-value is calculated by applying per-

mutation of the observation between groups to obtain a rigorous probabilistic statement

of experimental factors. The proposed method in [14] is referred to as non-parametric

Multivariate Analysis of Variance and is accomplished, as follows:

1. Construct test-statistic

2. Calculate P-value using permutation

3.2.1 The test-statistic F-ratio

To calculate F-statistic in the case of multivariate â€” contrasted with the F-ratio in

the univariate ANOVA (3.8), the sum of squares across all variables must be determined.

13



Equation 3.9 represents the sum of squares within groups forp variables.

SSw =
aX

i =1

nX

j =1

pX

k=1

(yijk � yik )2 (3.9)

The formula 3.9 can be written as sum of squared Euclidean distances between each

individual and its group center as in 3.10

SSW =
aX

i =1

nX

j =1

(yij � yi )T (yij � yi ) (3.10)

Based on the fact that the sum of squared distances between points and their centroid

is equal to the sum of squared inter-point distances divided by the number of points, total

sum of square can be written as in equation 3.11

SST =
1
N

N � 1X

i =1

NX

j = i +1

d2
ij (3.11)

where N is the total number of observations, anddij is the distance between obser-

vation i and observationj . Sum of squares within groups can similarly be written as in

equation 3.12 where the variable" ij assumes a value of 1 when the observationi and j

are in the same group and otherwise assumes a value of0.

SSW =
1
n

N � 1X

i =1

NX

j = i +1

d2
ij " ij (3.12)

The sum of squares between groupsSSA = SST � SSW and the F-ratio can then be

calculated as in equation (3.9). Given that the groups have di�erent central locations then

the among-group distances will be relatively large when compared to the within-group

14



distances; F-ratio will be relatively large.

3.2.2 Obtaining P-value using permutation

P-value (i.e., probability value) provides the probability model when the null hypothesis

is true [15]. Unlike ANOVA, F-statistic does not follow Fisher's distribution, mainly

because observation variables are not required to be normally distributed. Also, there

is no restriction on using Euclidean distance for the analysis. The null distribution can

be estimated using the permutation of the observation between groups, This is so due

to the fact that if the null hypothesis is true and the groups are not actually di�erent

then observations can be shu�ed randomly between groups without a�ecting the F-ratio,

(i.e., the new F value obtained by each permutation calledF � ). The permutation and re-

calculation of F � is then repeated by keep shu�ing observations between groups, where

in a one-way test the total number of possible permutation is(an)!=(a!(n!)a). This result

will give an estimated distribution of the pseudo F-statistic under null hypothesis. P-

value can be calculated by comparing the originalF value with the original ordering

of observations in their groups, given that the distribution was created by permuting

observations, as in Equation 3.13

P =
(No: ofF � � F )

(Total no: of F � )
(3.13)
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3.3 Multivariate distance-based analytic framework for

connectome wide studies

The proposed method in the previous section can be used to analyze high-dimensional

data, provided by high-throughput technologies (e.g., DNA microarrays [17] and fMRI

[functional magnetic resonance imaging] [18]), as an alternative to traditional dimension

reduction or clustering methods. In this section, a framework based on multivariate

analysis of variance for connectome-wide association [6] [2] will be presented.

The human brain connectome represents the complete set of neural connections and

interactions in the brain [2]. One challenge for neuroscience is �nding the relationship

between variations within the connectome and environmental factors, such as disease

states. MDMR [14] [6] pursued as a multivariate approach to assess associations between

phenotypic and the multivariate connectome variations in the brain.

3.3.1 Brain voxel-wise analysis

fMRI measures brain activities by observing changes in blood oxygen level [18]. The hu-

man brain is structured into small cubic voxels (i.e., 3-dimensional units that embed the

signals in brain scans), where the total number of voxelsV is 25,000. Investigating con-

nectivity for a large number of voxels (i.e., variables) requires mass-univariate statistical

analysis. Such computations increase the potential for false positives. Multivariate meth-

ods have been explored as an alternative to univariate methods to determine associations

of connectivity-phenotype. MDMR has been chosen for the following reasons.

1. The ability to examine more than one predictor at a time

16



2. No restriction on the distance metric since the Euclidean distance is not suitable

for time series data in fMRI

Figure 3.2: Voxel-based representation of the brain [1]

The presented work in [2] provides a framework for identifying phenotypic associations

in the connectome using a two-step approach. In step one, the whole brain functional

connectivity map is calculated (i.e., correlation between the voxel and all other voxels

in same subject) for each voxel in the brain, then calculate the similarity between con-

nectivity maps of all possible parings of participants using spatial correlation. Doing so

results in an nxn matrix ( n = number of participants). MDMR is subsequently used

on each voxel to test if a variable of interest (e.g., health state) is associated with the

observations. Figure 3.4 represents data format for fMRI spatio-temporal data collected

for each voxel.

3.3.2 MDMR-based Connectome-wide association studies

The algorithm utilized in connectome-wide association studies commences with the as-

sessment of subject-level connectivity using Pearson correlations. Participants' individual

data sets are used to calculate the correlation between each voxel and all other voxles in

the participantâ€™s brain. The output of this step is aVxV correlation matrix, where

17



Figure 3.3: Illustration of fMRI spatio-temporal data in voxels

V is the number of voxels. Pearson correlation calculated using Equation 3.14.

�X; Y =
cov(X; Y )

� X � Y
(3.14)

Next, individual di�erences in functional connectivity for each voxel must be calcu-

lated. The distance calculated for each voxelâ€™s correlation between all possible pairings

of participants is calculated using distance metric
p

2(1 � r ), where r is the Pearson cor-

relation. This metric ranges between 0 and 2. The result is annxn matrix distance for

each voxel, where, for example, element represents the dissimilar whole-brain connectivity

map between participants (e.g., i and j).

Finally, MDMR is applied to �nd the relationship between the predictor variables

and the distance between participant observations obtained in the previous calculation for

testing whether or not each voxel connectivity pattern is similar under identical conditions

(i.e., within group) than under di�erent condition (i.e., between groups). The proposed

algorithm in [14] and [6] [19], namely MDMR by Zappala, can be used as a hypothesis

testing method. The pseudo-F-statistic can be calculated based on Gowerâ€™s matrix

G = CAC where C = ( I �
1
n

11T ) -; n is total number of participants, I is the identity
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matrix of size n; and1 is a vector of n 1s.A = ( �
1
2

d2
ij ) so that matrix A is multiplied

by C to centralize the data.

A standard multivariate regression model can be written as in 3.15, where X is the

design matrix of size nxm (i.e, �rst column is 1s representing the intercept) and Y is

the response matrix of sizenxn representing the similarity matrix explained earlier and

centered using Gower's form.

Y = X� + � (3.15)

The hat matrix H can be calculated asH = X (X T X )� 1X T with size nxn. In this way,

the relationship between the predictor variables and the dissimilarities of observation can

be found using the pseudo-F statistic 3.16, where the numerator corresponds to variations

between groups and the denominator corresponds to the variationwithin groups.

F =
tr (HG)=(m � 1)

tr [(I � H )G]=(n � m)
(3.16)

To estimate null distribution, observations between groups are shu�ed and F is re-

calculated for each permutation. Then, the P-value is computed using Equation 3.13.

Figure 3.4 illustrates an overview of this framework.

3.4 Multivariate distance-based regression for tra�c

analysis

The MDMR algorithm has been applied successfully in di�erent domains that are charac-

terized by high-dimensional and multivariate data for assessing the e�ect of speci�c factors
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Figure 3.4: Illustration of MDMR-based framework for CWAS analytic [2]

or variables on observations. In transportation, studying the e�ect of speci�c conditions

(e.g., weather, tra�c hours, construction) on tra�c is considered extremely important

for discovering tra�c patterns to aid in improving road design or, more importantly,

mitigating tra�c problems in speci�c places under speci�c circumstances. Applying the

MDMR algorithm in this domain is a powerful tool for statistical tests of factors and

their e�ects on tra�c performance.

In this thesis, the MDMR algorithm is implemented on and applied to NPMRDS

for studying tra�c speed under di�erent conditions. Several scenarios were used to test

and validate the algorithm. For the �rst scenario, I-35 data from February 2017 was

selected to study the time of day during peak (6 am - 10 am) and non-peak (10 am -
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2 pm) hours. The second scenario studied the factor day of month and by comparing

tra�c performance during the same hours on di�erent days. The obtained results for

each scenario are detailed in this section.

3.4.1 Scenario 1 - peak versus non-peak tra�c hours

In this scenario, tra�c data was segregated into two sets: 1) speed values during peak

hours (6 am - 10 am) and 2) tra�c speed values during non-peak hours (10 am - 2 pm).

Tra�c data was collected during February 2017. Each set contains data for 28 days (or

56 observations). This scenario compared the e�ect of time of day on tra�c speed to

determine which road segments are a�ected during the peak hours and which remain

constant throughout the entire day.

The MDMR algorithm was applied. Number of permutations used to estimate the

null distribution was 10,000. Figure 3.5 illustrates the obtained P-value for each I-35 road

segment, where segments with a p-value less than 0.0001 (i.e., threshold for rejecting null

hypothesis) indicate that tra�c behavior is di�erent between peak and non-peak hours

(colored in red). In other words, the null hypothesis was rejected for segments with P-

value less than 0.0001. Road segments with P-value greater than 0.001 (colored in green)

indicate that tra�c behavior is similar during peak and non-peak hours.

The estimated F-distribution for I-35 Segment622 is illustrated in Figure 3.6. In

this case, the null hypothesis is rejected. P-value is 0.0001 and the original F-value is

3.573, where the obtained F-measure is positioned at the very right tail of the estimated

F-distribution. In other words, tra�c behavior on this segment is considered dissimilar

between peak and non-peak hours (See Figure 3.6). The null hypothesis for Segment 613
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is accepted, because P-value = 0.903 and F-value = 0.7749 (See Figure 3.7).
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Figure 3.5: Obtained P-value for experiment 1, rejected hypothesis colored in red
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Figure 3.6: The estimated F-distribution for segment 622. Obtained F-value in red

Figure 3.7: The estimated F-Value for segment 613, Obtained F-value in red

24



3.4.2 Scenario 2 - tra�c in di�erent days of the month

The objective the Scenario 2 was measuring tra�c speed during the same tra�c period

(i.e, 10 a.m. - 2 p.m.). Data from the �rst group was collected February 1 through

14; data from the second group was collected February 15 through 28. Highway I-35 is

composed of 185 segments (i.e., variables). The goal for this scenario was testing the

framework by observing two groups that are similar except for the range of days in a

given month. Like scenario 1, MDMR was applied on the data with 10,000 permutations.

Figure 3.8 depicts obtained p-value for each segment.

3.4.3 Discussion

Results of Scenario 1 demonstrated that tra�c performance tends to be di�erent between

peak and non-peak hours in segments located in Oklahoma City as illustrated in Figure

3.5, while tra�c on other segments located outside of Oklahoma City region tended to

have similar behavior under the studied factor (i.e., peak vs non-peak hours). To further

demonstrate these results, speed values for segments with p-value less than the chosen

0.0001 threshold were compared with segments with P-value> 0.0001. Results are plotted

in Figure 3.9 and Figure 3.10 , respectively. Figure 3.9 clearly shows a di�erence between

time series during peak hours, where most values have an anomalous (congested) pattern;

most time series during non-peak hours have a normal tra�c behavior. In contrast, Figure

3.10 depicts a segment with a high P-value = 0.9 (i.e., the null hypothesis is accepted),

showing speed values time series are superimposed over one another, which indicates no

di�erence in tra�c behavior on that particular segment during peak or non-peak hours.
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3.4.4 Choosing the threshold P-Value

The chosen threshold of P-value is used to reject the null hypothesis of a studied seg-

ment. Choosing the correct value as a threshold is subjective to the studied domain. In

the literature, Anderson, et al. [14] used the value of 0.01 to reject the null hypothesis

in the ecological multivariate data domain. Zapala et al [6] used the value of 0.001 as

a threshold to compare the obtained P-value for testing associations between gene ex-

pressions. Shehzed et al [2] studied the impact of health factors on associations between

brain neurons and chose 0.0001 as a threshold for P-value to reject the null hypothesis.

In the domain studied in this thesis (i.e., transpiration), we empirically determined the

value 0.0001 as a threshold for P-value by comparing di�erent threshold values (e.g., 0.1,

0.01, 0.001, 0.0001) and observing the speed time series under di�erent threshold values

as in Figure 3.9 and Figure 3.10 where we found using the threshold value 0.0001 is the

best value in the tra�c domain that characterized by NPMRDS dataset.

3.4.5 Calculation of complexity

Algorithmic and time complexity are considered the most important aspects of any algo-

rithm when the scale of the application is enlarged. Accordingly, the complexity for each

step of the algorithm was calculated. Correlation computation complexity wasO(V 2N )

where V is number of segments of a road and N is total number of observations. Distance

matrix for all segments can be calculated usingO(N 2V). Permutation is determined by

O(PNV ). Although the algorithm is implemented sequentially, computation time can

be signi�cantly reduced by paralleling the code to be executed in a parallel way.
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Figure 3.8: Obtained P-value for scenario 2, rejected hypothesis colored in red
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Figure 3.9: Speed values peak versus non-peak hours when P-value< 0.0001

Figure 3.10: Speed values peak versus non-peak hours when P-value' 0.9
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3.4.6 Conclusion

In this chapter, a powerful tool was explored and successfully applied in the transporta-

tion domain for analyzing the e�ect of conditional factors (e.g., weather) on tra�c perfor-

mance, based on a MDMR. NPMRDS was used to apply and test the algorithm on tra�c

data. Two scenarios were used to observe the e�ect of di�erent factors (i.e., time of day,

day of month) on tra�c performance. A threshold of P-value was chosen to reject the

null hypothesis, which implies a relationship between the studied factor and the observed

response variables.
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Chapter 4

Clustering Time Series Using Analysis

of Variance

In Chapter 3, a multivariate distance matrix regression (MDMR) algorithm was intro-

duced; its use in the transportation domain demonstrated the ability to �nd similari-

ties/dissimilarities of tra�c performance in road segments under di�erent factors. In this

chapter, a novel clustering algorithm based on the permutation of F-statistic calculation

is proposed. The algorithm can be used to cluster time series data for �nding anomalous

patterns.

4.1 Methodology

The foundation of the MDMR algorithm, explained in Chapter 3, is primarily based on

calculating the F-statistic. Since the null distribution is unknown, random permutations

are applied between groups to estimate the F distribution so that the null hypothesis can

be rejected or accepted. The proposed clustering algorithm uses F-statistic to objectively
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maximize the similarities within groups and maximize di�erences between di�erent groups

by shu�ing elements between clusters to reach a maximum (i.e., desired) F-statistic

value that represents the best segregation of elements that gives maximum variance. The

following steps illustrate the algorithm.

1. Create two (or more) groups that represent desired clusters and randomly assign

data elements to each group.

2. Calculate the distance matrix between elements, where dynamic time warping

(DTW) [20] is used as a distance metric (i.e., measure similarities between two

temporal sequences).

3. Obtain F-statistic value, as illustrated in Equation 3.16

4. Apply permutation between elements in the groups to �nd the solution that max-

imize the F-statistic. Brute-force search 1 and Integer Non-Linear Programming

(INLP) are applied to �nd the optimal solution for maximum F-value.

5. The solution for highest F-statistic value is considered the optimal clustering of

given elements

4.1.1 Integer Nonlinear Programming

The proposed brute-force algorithm 1 comes at an extremely high computational cost,

and is, frankly, impractical. To overcome this issue and increase algorithm performance,

optimization techniques are applied to facilitate a search for the optimal separation and

to group elements so that maximum F-statistic is an objective function. This problem is

classi�ed as 4.1 integer nonlinear programming (INLP) and formulated, as follows:
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Algorithm 1 MDMR clustering - Brute force search

Input: A set of of N data vectors where each vectorV = f v1; :::; vN g
Number of clusters K

Output: Data vectors partitioned into clusters
1: Fmax = 0; X max = 0
2: d = calculate_ distance_ matrix (V)
3: for <i = 1 to 2n � 1> do
4: x = create_design_matrix (i )
5: F = calculate_ F _ statistic (x; d)
6: if F > F max then
7: Fmax = F
8: X max = x
9: end if

10: end for
11: return Fmax ; X max

max
x

f (x) =
tr (HG)=(m � 1)

tr [(I � H )G]=(n � m)

x i 2 [1; m]; 8i 2 n:

(4.1)

The problem described in 4.1 is considered a nonlinear integer problem due to the

non-linearity nature of the objective F-statistic function and the decision variables or the

design matrix X takes integer values. Genetic algorithm [21] is applied as an optimization

solver to search for the optimal solution that maximizing the objective function.

Notably, di�erent libraries and algorithms (e.g., Pyomo, PuLP, APmonitor and Mat-

lab optimization tool) have previously been explored to solve the optimization problem.

To date, only Matlab was able to solve the stated problems. Because other options have

limitations, INLP problems were solved using only the Matlab optitool library [22].

4.1.2 Validation

To evaluate the quality of a clustering algorithm several scalar measurements can be used.

These are typically categorized in two categories:
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� External Index: a ground truth data set is used to compare the obtained clustering

results by the algorithm with the labeled data to evaluate results [23] (e.g., Cluster

purity [24], Rand index (RI) [25], F-measure [26], Entropy [26])

� Internal Index: quality of clustering structure is determined without the need for

a ground truth dataset [23] (e.g., Sum of Squared Error [SSE] [27] [28] [23], Root-

Mean-Squared Standard Deviation [RMSSTD] index [27]).

In this thesis, the Sum of Squared Error was used as an internal index to evaluate clus-

tering results. The Sum of Squared Error is given in Equation 4.2. Sum of Squared Error

represents the intra-cluster variance, the smaller SSE, the more consistent of clustering

results.

SSE =
mX

i =1

nX

j =1

k x ij � Ci k2 (4.2)

m: is number of clusters

n: number of elements in a cluster

x ij is a time seriesj in cluster i

Ci : the centroid of clusteri , the centroid of a cluster can be found using Algorithm 0

Algorithm 2 Find the centroid of a cluster

Input: Set of of n data vectors that represents a cluster where each vectorV = f v1; :::; vng
Output: Vector of points represents the centroid time series

1: distancematrix = Calculatedistancematrixbetweenalltimeseries
2: totaldistance = []
3: for <i = 1 to n> do
4: totaldistance:append(sum(distancematrix [i ])
5: end for
6: Return time series with minimum distance between all other time series in the same

cluster as the centroid time series
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4.2 Results

The proposed algorithm was implemented in Python and tested on NPMRDS. Several

scenarios were performed on I-35 road segments data. This section discusses several

scenarios and results after applying the proposed MDMR clustering algorithm on the

data.

4.2.1 Scenario 1 â€“ Peak and non-peak Hours

In Scenario 1, the proposed algorithm was applied to cluster time series values taken

from road segment 642 of I-35. Data was collected during peak tra�c hours and non-

peak hours during the �rst 10 days of February 2017. Total number of time series is 20.

To compare results, a K-Means algorithm [29] was used to cluster the data. Figures 4.1

and 4.2 depict the results of MDMR and K-Means clustering results, respectively.

Figure 4.1: MDMR-based clustering for segment 642

Comparing Figure 4.1 and 4.2, we see that the two clustering algorithms gave identical

34



Figure 4.2: K-Means clustering for segment 642

results. To evaluate the quality of clustering algorithm the Sum of Squared Error was

applied, as explained in Equation 4.2, as an internal index. The obtained Sum of Squared

Errors for both the proposed clustering algorithm and K-means isSSE = 9102, where

Centroids for both algorithms are obtained using Algorithm 2.
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4.2.2 Scenario 2 â€“ Whole Day Clustering Over a Month

In the previous scenario, time series data were collected over speci�c hours (peak and

non-peak) each time series comprised of 48 points. In Scenario 2, grouping data over a

time frame of the day was substituted for time series as a whole day of a speci�c month.

Figure 4.3 depicts the results of clustering 28 time series taken over February, each time

series represent one day of February (i.e., 288 points).

Figure 4.3: MDMR clustering for one segment over 24 hours over February

For comparison, identical data were clustered using K-means algorithm, as illustrated

in Figure 4.4. Results provided by the proposed clustering algorithm gave comparable

results to the results obtained by K-means revealing the applicability of this algorithm for

clustering time series data. We evaluated the clustering algorithm using Sum of Squared

Error (SSE). The obtained SSE for the proposed algorithm 64551.0, same SSE obtained

for K-means 64551.0.

The same data was clustered into three groups instead of two. We obtained clustering
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Figure 4.4: K-means clustering for one segment over 24 hours over February

results as shown in Figure 4.5 and by using K-Means as in Figure 4.6. The obtained

SSE for our algorithm is 66416, while K-Means with SSE = 61023, meaning the K-means

clustering results were better than our algorithm in this case.
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Figure 4.5: MDMR clustering to three clusters. One segment over 24 hours over February

Figure 4.6: K-Means clustering to three clusters. One segment over 24 hours over Febru-
ary
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4.2.3 Scenario 3 - Clustering of concatenated multiple days

Scenario 3 was based on clustering time series tra�c data taken from NPMRDS. Each

time series represents the concatenation of three subsequent days during February and

March 2017. Total number of observations were 20 time series. Figure 4.7 depicts cluster-

ing for the aforementioned data. Data were collected only during weekdays. Congestion is

periodic for all time series, where a clear separation between clusters is harder to obtain.

Obtained Sum of Squared Error is 101478. Figure 4.8 illustrates the clustering result for

the same data using K-means, wherein all time series are clustered into one cluster with

SSE = 106806

Another scenario was conducted using the same data in addition to weekends days.

Figure 4.10 depicts clustering results, where a more accurate separation between con-

gested time series and normal time series was made. The obtained SSE for the porposed

algorithm is equal to 147013.0 outperforming K-means Figure 4.9 with SSE = 152132.

Figure 4.7: Clustering for one segment over February and March for three concatenated
days per time series, weekends are not considered
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Figure 4.8: K-means clustering for one segment over February and March for three con-
catenated days per time series, weekends are not considered

Figure 4.9: K-means Clustering for one segment over February and March for three
concatenated days per time series, weekends are considered
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