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EXECUTIVE SUMMARY 

 

Long-term performance of asphalt pavements depends on the quality of the supporting 

subgrade, among other factors. A well designed and compacted subgrade would drain well, 

have high strength, and have adequate load bearing capacity to support the pavement layers. 

Preparation of subgrade for an asphalt pavement typically requires stabilization of soil using 

cementitious additives such as Cement Kiln Dust (CKD), fly-ash and lime, and subsequent 

compaction using vibratory rollers. Quality control during preparation of subgrade is usually 

limited to taking spot readings of density and moisture content using a Nuclear Density Gauge 

(NDG). In some instances, Dynamic Cone Penetration (DCP), Falling Weight Deflectometer 

(FWD) or similar tests are conducted to determine the quality of compaction of the compacted 

subgrade. These tests, however, need additional time and money and often do not adequately 

reveal deficiencies in the preparation of the site. Intelligent Compaction (IC) techniques have 

been proposed to continuously monitor the quality of compaction of the subgrade during the 

compaction process and to alter the machine parameters to ensure uniform compaction. These 

technologies are gaining popularity due to their ability to estimate the level of compaction of 

pavement layers continuously during construction.  

The Intelligent Compaction Analyzer (ICA) was developed at the University of 

Oklahoma. This tool was initially developed to estimate the density of asphalt pavements in real-

time during construction. During 2008-2012, the ICA was demonstrated during the construction 

of asphalt pavements at several sites across the country. The application of the ICA was also 

extended to estimate the stiffness of asphalt pavements during compaction. The application of 

the ICA to study the level of compaction of stabilized subgrades was investigated during 2010-

2012.  
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The ICA is based on the hypothesis that the vibratory roller and the underlying pavement 

form a coupled system whose response during compaction is influenced by the stiffness of the 

pavement layers. During field compaction, the ICA is first trained to recognize the vibration 

patterns and the trained ICA is then calibrated to convert these patterns into a numerical value 

indicative of the density/modulus of the layers being compacted. In previous projects (Commuri 

et al. 2013, Barman et al., 2013; Singh et al., 2011; and Commuri, 2010), the ICA was used to 

determine the quality of compaction of stabilized subgrade as well as asphalt layers during 

construction. The ICA was capable of generating as-built maps providing information on 

coverage and quality of compaction of the constructed pavement. While the use of the ICA in 

estimating the quality of compaction of asphalt layers and stabilized subgrade was investigated, 

its use in improving the quality of compaction was not studied. Several case studies are 

considered in the current project to demonstrate the use of compaction quality parameters 

(density and dynamic modulus for the asphalt layer(s), and density and modulus for stabilized 

subgrade), estimated in real-time by the ICA, to improve the quality of asphalt layers and 

stabilized subgrades during construction. 

Specifically, six case studies were undertaken in the current project to demonstrate the 

following: (i) ability of the ICA to estimate the density/modulus of stabilized subgrade and 

asphalt layers, and (ii) use the estimated density/modulus to identify and remediate 

inadequately compacted areas. In the first two case studies, in which the Intelligent Compaction 

was demonstrated on the two CKD-stabilized subgrades, Intelligent Compaction data were used 

to refine the method for estimating the ICA modulus (Mi) (Barman et al. 2014) in real-time. The 

ICA modulus is the modulus estimated from the ICA vibration data and is comparable to the 

laboratory resilient modulus (Mr) of subgrade. The ICA modulus is equivalent to the laboratory 

subgrade Mr when the stress state in the Mr test is equivalent to the stress state existing in the 

field. This refined method was then implemented in Case Studies 3 and 4 to demonstrate the 
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use of the ICA in improving the quality of compaction of CKD-stabilized subgrades. In Case 

Study 3, the use of the ICA in improving the compaction quality of CKD-stabilized subgrade was 

demonstrated during the reconstruction and widening of I-35 near the intersection of I-35 and 

Main Street in Norman, Oklahoma. In Case Study 4, the use of the ICA in monitoring 

compaction quality was demonstrated during the extension of the I-35 service Road from the 

Kohl’s shopping center to NW 24th Avenue in Norman, Oklahoma. 

In both Case Studies 3 and 4, a smooth steel drum vibratory roller equipped with the ICA 

was used for proof rolling the CKD-stabilized subgrades that were previously compacted using a 

sheep-foot roller. The compaction quality of the CKD-stabilized subgrade was recorded 

continuously in terms of Mi during the proof rolling process. Several test locations were marked 

on the compacted subgrade; the moisture content and dry density were recorded using a NDG. 

The method developed in Case Studies 1 and 2 was used to estimate the Mi values at the 

selected test locations. The respective GPS coordinates of the test locations were used to 

determine the Mi values at these locations. A comparison was made between Mi and Mr of the 

representative CKD-stabilized soil. It was found that the ICA can estimate the subgrade 

modulus with an accuracy suitable for quality control purposes in the field. As-built maps 

developed using the Mi values were used to identify areas with inadequate compaction. 

Remedial rolling was performed at these locations to investigate whether the level of 

compaction of the CKD-stabilized subgrade can be improved, and the compacted CKD-

stabilized subgrade be made more uniform. 

In the last two Case Studies, the use of the ICA in improving the quality of compaction of 

asphalt layers was demonstrated. The ICA was installed on a dual steel drum vibratory roller 

and calibrated to estimate the density of asphalt layers. During the compaction process, the 

ICA-estimated density was recorded continuously for each roller pass. After the compaction of 
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the stretch, test locations were marked on the compacted asphalt layer and the density was 

recorded at these locations using a NDG. Cores were then extracted from these test locations 

and their density was measured in the laboratory. A comparison was made between the ICA-

estimated density and the core density. It was seen that the ICA can estimate the density with 

an accuracy suitable for quality control in the field. As was done in the previous case, after the 

stretch was compacted, the as-built map generated by the ICA was used to identify under-

compacted areas. Remedial rolling was carried out on these areas; cores were extracted for 

determining core density at those test locations. A comparison between the core densities and 

ICA-estimated densities shows that the overall density improved as a result of the remedial 

rolling. Further, the variance of these densities about their mean was smaller than the variance 

observed during the traditional compaction process. 

The following are the key results from the six case studies concluded in this project: 

1. The current study was limited to the installation of the ICA on a smooth steel drum 

vibratory roller. It was found that the sensors and the computational hardware of the ICA 

used to estimate the density of asphalt layers could also be used for compaction of 

stabilized subgrade without significant modifications. The ICA software, on the other 

hand, had to be modified to account for differences in the calibration method for the 

stabilized subgrade and the analysis of the vibration data. 

2. Regression models were developed for estimation of resilient modulus for a given soil 

and stabilizing agent using laboratory data from resilient modulus tests conducted 

according to the AASHTO T 307 test method. Given the soil type and stabilizing agent, 

these models can estimate the resilient modulus of the stabilized soil for a given dry 

density and moisture content. It was found that these regression models can predict the 
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resilient modulus with less than 20% error (R2 > 0.81). These regression models provide 

a way to compare the Mi with Mr values. 

3. The regression model noted under Item 2 was used to calibrate the ICA. NDG readings 

were taken at different test locations after the proof rolling of the compacted subgrade. 

Moisture content and density obtained from the NDG readings were then used to 

estimate field equivalent resilient modulus. A comparison between the Mi and field 

equivalent Mr obtained from the regression models demonstrated that the ICA was able 

to estimate moduli of the compacted stabilized subgrade with an acceptable level of 

accuracy (R2 > 0.60).  

4. As-built maps generated during the compaction of CKD-stabilized subgrades were used 

to identify areas where the Mi values were lower than the rest of the compacted 

subgrade. In Case Study 3, two such areas were identified on the subgrade that was 

initially compacted with the traditional procedure. Immediately after the traditional 

compaction, NDG tests were performed at three random locations on each of these two 

areas. Subsequently, two remedial passes were provided on those two areas with the 

smooth drum roller that was used for the proof rolling. Following the remedial 

compaction, it was found that the average Mi improved from 202 MPa to 212 MPa. 

Further, the standard deviation Mi decreased from 12 MPa to 9 MPa. This shows that 

the use of the ICA resulted in an improvement in the subgrade modulus and at the same 

time the quality of compaction of the subgrade became more uniform. 

5. The ICA was able to estimate the density of asphalt layers with an accuracy level 

suitable for quality control purposes during construction. It was found that the ICA was 

able to estimate the asphalt layer density within 0.7% of core density (in terms of 

percentage of maximum theoretical density (MTD)) in over 99% of test locations.  
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6. The as-built map generated by the ICA was used to identify under-compacted areas 

during compaction in Case Studies 5 and 6. Remedial rolling on these areas increased 

the average density by 0.4% of MTD with a corresponding decrease in standard 

deviation from 0.6% to 0.4% of MTD. This shows that the use of the ICA enabled the 

roller operator to improve both the level and the uniformity of compaction as compared 

to that which could be achieved with the traditional rolling. 

Future Works and Recommendations 

The case studies carried out in the current project demonstrate the advantage of obtaining 

reliable and accurate estimates of the quality of compaction in real-time during the construction 

of the pavements. Such estimates can not only provide real-time feedback of the quality of 

compaction to the roller operator, but can also be used to identify and remediate under-

compacted regions and thereby improve the overall quality of compaction of both stabilized 

subgrades and asphalt layers. In the coming year, extensive contractor-led testing is planned to 

independently validate the use of ICA in improving the quality of pavement layers during 

construction. 

Some of the problems encountered during the study are: 

1)  Difficulty in coordinating field test schedules with construction schedules as IC is not a 

requirement in the project specifications.  

2)  Selection of number of test locations is constrained by project schedules and weather 

conditions. 

3) Availability of construction sites that meet project requirements such as layer thickness 

and length of the pavement for demonstration is an ongoing challenge. 
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4)  Verification of the impact of IC-based construction on the performance of pavements is 

hard to ascertain unless the entire pavement is constructed using IC techniques and 

evaluated periodically. 

6)  Contractors and pavement professionals are still unclear on the functionality and 

benefits of IC techniques. Lack of information about specifications and incentives for 

implementation of IC is also a limiting factor in the early adoption of the technology. 

Based on the experience gained from the current study, the following recommendations 

are made for studying the performance of ICA in greater detail and to further the early 

acceptance of Intelligent Compaction methods: 

1) The necessary specification or a special provision shall be developed for Intelligent 

Compaction of both the stabilized subgrades and asphalt layers; 

2) Intelligent Compaction shall be considered as a requirement in the bidding of the work; 

3) Workshops and training programs shall be conducted for providing necessary training to 

the construction crews; 

4) ICA technology shall be demonstrated on more construction sites varying with soil type, 

additive type and asphalt layer property to study the influence of these parameters on 

the ICA-estimated compaction quality parameters (ICA modulus of subgrade, density of 

subgrade, density of asphalt layer, dynamic modulus of asphalt layer); 

5) Research studies shall be carried out to study the long-term benefits of the Intelligent 

Compaction; 

6) The closed-loop control of vibratory compactors during Intelligent Compaction of 

subgrade and asphalt layers shall be considered in future projects. 
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The field demonstration presented in this report would not have been possible without 

the unparalleled support of Oklahoma Department of Transportation (ODOT), Haskell Lemon 

Construction Company (HLCC), Oklahoma City, Oklahoma and Silver Star Construction 

Company, Moore, Oklahoma. Access to HLCC's construction sites, equipment, and their 

technical staff has been vital to the success of this project. In particular, the authors wish to 

thank Jay Lemon (Chief Executive Officer, HLCC), Bob Lemon (Chief Operations Officer, 

HLCC), and Craig Parker (Vice-President, Silver Star Construction Company) for their vision 

and unqualified support of the research team. Their partnership with OU has been critical for 

the success of this project. 

The research team is working with ODOT and contractors to identify additional sites for 

demonstrating the ICA technology. In follow up work that is currently being pursued, the 

research team is assisting ODOT in the preparation and implementation of the IC specifications. 

The extension of the ICA to compaction of subgrades with lime and fly-ash additives, 

compaction of cohesive soils, compaction of granular aggregate bases, and closed-loop control 

of vibratory compactors during Intelligent Compaction of soils and asphalt pavements are topics 

planned for future projects. 
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1. INTRODUCTION 

 

Improving the quality of asphalt pavements during construction can greatly enhance their 

performance and longevity. Lack of adequate tools to determine the quality of compaction of the 

entire pavement in a non-destructive manner is a limiting factor in the construction of long 

lasting roads. Tools that can estimate the quality of compaction in real-time can help avoid 

over/under-compaction during construction. Construction of high quality roads can help 

minimize pavement distresses such as rutting, cracking, and other forms of distresses, and 

improve the long-term performance of the pavement.  

In recent years, several equipment manufacturers have proposed Intelligent Compaction 

(IC) as a means of achieving uniformity in compaction of subgrades and asphalt layers (FHWA, 

2009). Over the last decade, the Principal Investigators (PIs) of the current project have 

developed the Intelligent Asphalt Compaction Analyzer (IACA) technology to estimate quality of 

compaction of asphalt pavements during construction (Commuri et al., 2011; Commuri, 2010; 

Commuri and Zaman, 2009 and 2008). In collaboration with industry partners, the use of this 

technology was demonstrated in estimating the density (Commuri et al., 2011; Commuri 2010) 

and dynamic modulus1 (|E*|) (Singh et al., 2011) of asphalt layers in several construction 

projects. During 2010-2012, this technology was extended to estimate the density2 and modulus 

of stabilized subgrades during construction (Barman et al. 2014; Imran et al. 2014; Barman et 

1 In this report, “modulus” is used as an indicator of “stiffness.” The stiffness of the compacted layer is a function 
of its modulus and cross-sectional properties. 
 
2 In this report, “density”, which is more commonly used in the literature, is used instead of “unit weight”. 
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al., 2013). The extended technology is called Intelligent Compaction Analyzer (ICA). This 

terminology is used in this report. 

During 2008-2012, the ICA was demonstrated to estimate the quality of compaction of 

asphalt layers (density and dynamic modulus) and stabilized subgrade (density and ICA 

modulus (Mi)) in real-time during construction. The ICA modulus is the subgrade modulus 

estimated by the ICA and is comparable to the resilient modulus obtained from laboratory test 

data. The ICA modulus is equivalent to the laboratory resilient modulus when the state of stress 

in the Mr test is equivalent to the state of stress in the field. As-built maps showing the 

compaction quality parameters (density/dynamic modulus/ICA modulus) were developed in real-

time. However, these compaction quality parameters were not employed in improving the quality 

of construction. In the current project, the aim was to demonstrate the use of the compaction 

quality parameters available in real-time to identify and remediate inadequately compacted 

regions or regions of stabilized subgrades and asphalt layers.  

1.1. INTELLIGENT COMPACTION TECHNOLOGY 

Intelligent Compaction (IC) techniques are based on the hypothesis that the roller and the 

pavement form a coupled system whose response to vibratory compaction is influenced by the 

properties of the layers being compacted. In the compaction process, the stiffness of the 

underlying layer(s) increases and as a consequence, the vibration patterns experienced by the 

roller change. The amplitude and frequency of these vibrations, therefore, can be used to 

measure the properties of the layer (asphalt, soil, aggregate, etc.) being compacted. Sandstrom 

(1998) utilized the frequency and amplitude of vibration of the roller to compute the shear 

modulus and a “plastic” parameter of subgrade. These values were then used to adjust the 

velocity, frequency and amplitude of the roller for optimal compaction of the subgrade. Thurner 

(1978) and Minchin (1999) estimated the degree of compaction by comparing the amplitude of 
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the fundamental frequency of vibration of the roller with the amplitudes of its harmonics. By 

relating the ratio of the second harmonic of the vibratory signal to the amplitude of the third 

harmonic, Minchin (1999) was able to predict the compacted density with 80% accuracy, in 

some cases.  Swanson et al. (2000) tried to correlate the properties of asphalt mix and site 

characteristics with variations seen in the vibratory responses of a compactor. Jaselskis (1998), 

on the other hand, measured the density of asphalt layer by a completely different approach 

using microwave signals. In that research, Jaselskis (1998) transmitted a microwave signal 

through the asphalt layer and estimated its density based on the transmission characteristics of 

the wave. While the above techniques have been successful in demonstrating the feasibility of 

the respective approaches, they have not been able to overcome some of the inherent 

limitations of the methods pertaining to commercial applications. 

In general, the Intelligent Compaction technology possesses the following benefits on 

the overall quality of the pavements (Chang, 2011; Maupin, 2007; Zambrano et al., 2006; 

Camargo et al., 2006; Peterson and Petersen, 2006; White et al., 2006; Petersen, 2005; Briaud 

and Seo, 2003): 

(i) A complete coverage of the compaction area; 

(ii) Uniform compaction; 

(iii) Reduced construction cost;  

(iv) Reduced life-cycle cost by increasing the service life of the pavement; 

(v) Improved management and control of  the compaction process;  

(vi) As-built map of the compaction quality parameter(s) for the constructed pavement; 

and 

(vii)  Stored information for later use in forensic analysis and pavement management. 
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1.2. UNIVERSITY OF OKLAHOMA INTELLIGENT COMPACTION ANALYZER (ICA) 

The ICA is based on the hypothesis that the vibratory roller and the underlying pavement layers 

form a mechanically coupled system. The response of the roller is determined by the frequency 

of the vibratory motors and the natural vibratory modes of the coupled system. The vibration of 

the roller varies with the stiffness of the underlying pavement layer(s). The vibration spectra of 

the roller can, therefore, be used to estimate the stiffness of the pavement layer(s). The ICA is 

mounted on a vibratory roller and is equipped with a measurement system that can continuously 

monitor and record the compaction level of the layer(s) underneath. A GPS-based 

documentation system is installed for continuous recording of the spatial location of the roller. A 

user-interface is incorporated to display the real-time operational parameters such as 

compaction level, temperature of pavement, number of roller pass, direction of roller, GPS 

location of the roller, and a color coded as-built map showing the compaction level at each 

location. 

Figure 1.1 shows a vibratory roller equipped with the ICA technology. The functional 

modules of the ICA are shown in Figure 1.2. The sensor module (SM) in the ICA consists of 

accelerometer(s) for measuring the vibrations of the roller. A user-interface for specifying the 

amplitude and frequency of the vibration motors and for recording the soil type is also a part of 

the SM. The feature extraction (FE) module computes the Fast Fourier Transform of the input 

signal and extracts the features corresponding to vibrations at different salient frequencies. The 

Neural Network (NN) classifier is a multi-layer Neural Network that is trained to classify the 

extracted features so that each class represents a vibration pattern specific to a pre-specified 

level of compaction. The Compaction Analyzer (CA) then post-processes the output of the NN 

and estimates the compaction level parameters (density/dynamic modulus/ICA modulus) in real-
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time. Further details on the components of the ICA and its installation procedure are covered in 

the User Manual as provided in Appendix. 

 

Figure 1.1. A vibratory roller equipped with the ICA technology in operation. 

 
 

 

Figure 1.2.  Flowchart of modules involved in estimation of compaction parameters by the 
ICA.  
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1.3. GOALS AND OBJECTIVES  

The main goal of this project was to demonstrate the use of the ICA in improving the quality of 

compaction of stabilized subgrades and asphalt layers during construction. The ICA technology 

was developed at the University of Oklahoma and its use in estimating compaction quality 

parameters (density/dynamic modulus/ICA modulus) in real-time was demonstrated in several 

field projects. The goal of the present study is to investigate the use of this technology in 

identifying and remediating under-compacted regions during construction of stabilized 

subgrades and asphalt layers. In this report, this particular compaction procedure, in which the 

ICA measurements are recorded and monitored throughout the compaction process, under-

compacted regions are identified using the as-built maps and then remediated with additional 

roller passes, is referred to as the ICA compaction procedure.  

The specific objectives of the current project are listed below: 

1. Demonstrate the ability of the ICA to estimate the density and/or modulus of 

stabilized subgrades in real-time; 

 

2. Utilize the as-built map of density and/or ICA modulus to manually adjust the roller 

path to improve the quality of compaction of stabilized subgrades; 

 

3. Demonstrate the ability of the ICA to estimate the density and/or dynamic modulus of 

asphalt layers in real-time; 

4. Utilize the as-built map of density and/or dynamic modulus to manually adjust the 

roller path to improve the compaction quality of asphalt layer(s); 

 

5. Compare the improvement in quality of compaction obtained through the use of the 

ICA with that obtained by conventional compaction techniques for both stabilized 

subgrades and asphalt layers; 
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6. Study the effect of improved quality on the performance of the pavement over a 

period of one year from its construction. 

 

1.4. STUDY TASKS 

In order to achieve the stated goals and objectives, the ICA technology was demonstrated at 

four different sites under the current study. Among these four sites, two sites involved 

compaction of CKD-stabilized subgrades and the other two sites involved compaction of asphalt 

layers. The following tasks were planned for the CKD-stabilized subgrades and the asphalt 

layers. 

A. Compaction of CKD-stabilized subgrades 

1. Identification of construction sites;                    

2. Characterization of natural subgrade soil and CKD-stabilized soil (mixture of soil and 

CKD) mixes; 

3. Conducting resilient modulus test; 

4. Development of regression models for resilient modulus of CKD-stabilized soil; 

5. Calibration of the ICA for compaction of the CKD-stabilized subgrade; 

6. ICA measurements;  

7. Identification and remediation of under-compacted regions;  

8. Validation of the ICA-estimated compaction parameters (density and ICA modulus); 

and 

9. Improvement of compaction quality by the use of the ICA. 

B. Compaction of asphalt layers 

1. Identification of construction sites; 
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2. Characterization of asphalt mixes;                                        

3. Calibration of the ICA for compaction of asphalt layers; 

4. ICA measurements;  

5. Identification and remediation of under-compacted regions; 

6. Validation of the ICA-estimated compaction parameters (density and dynamic 

modulus);  

7. Improvement of compaction quality by the use of the ICA; and 

8. Periodic evaluation of the pavements constructed in Year I. 
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2. METHODOLOGY FOR SUBGRADE COMPACTION WORK 

 

During subgrade compaction, the quality control is usually performed by monitoring moisture 

content and dry density at selected locations. In some cases, additional tests such as Dynamic 

Cone Penetrometer (DCP) and Falling Weight Deflectometer (FWD) are performed at randomly 

selected locations to check the quality of compacted subgrade. However, randomly selected 

locations do not adequately represent the quality of the entire compacted subgrade, and may 

leave under-compacted region(s). In order to design a long lasting pavement, Mechanistic-

Empirical Pavement Design Guide (MEPDG) (ARA 2004) recommends the use of resilient 

modulus (Mr) for characterizing the subgrade. However, this property is seldom evaluated 

during the compaction of subgrade. Therefore, it remains uncertain if the design Mr is achieved 

during the construction process. The current project investigates the feasibility of using the ICA 

in estimating the level of compaction in terms of both compacted density and ICA modulus.  

During the first six months of the project, the research team developed a methodology 

for evaluating the ICA modulus of stabilized subgrades during compaction. Field and laboratory 

test results from two previously completed projects (Commuri et al., 2013) were used to develop 

this methodology. This methodology was then used to evaluate the ability of the ICA in 

estimating the Mi throughout the remaining duration of the project. The following sections 

discuss various tasks performed for compaction of stabilized subgrades. 

2.1. IDENTIFICATION OF SITES 

Early identification of suitable sites is necessary to verify its suitability for the demonstration of 

ICA’s capability in real-time measurement of compaction quality. Establishing proper 

communication with the contractor and the project crew is also essential for coordination of on-
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site activities. Accessibility of the site is another important consideration as it can impede the 

research team’s ability to carry out the demonstration and conduct validation tests. The 

research team worked closely with the ODOT, Oklahoma Asphalt Pavement Association and 

soil and asphalt contractors such as Silver Star Construction Company and Haskel-Lemon 

Construction Company for identification of project sites.  

2.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS  

Once the site was identified, the research team coordinated with the construction company to 

obtain the construction schedule. The construction schedules were used to  plan the 

demonstration activities. After the site was prepared and the existing soil layer was graded 

during the construction process, bulk soil was collected and brought to the OU Broce Laboratory 

at the University of Oklahoma. The stabilizing agent used in the construction (CKD) was also 

collected. The processed soil was mixed with the additive  to replicate the composition of the 

stabilized soil used in the field. Tests were conducted to determine particle size distribution 

(ASTM D6913), Atterberg’s limits (ASTM D4318) and moisture–density relationship (ASTM 

D698) for the characterization of both natural and stabilized soils. 

2.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL 

Resilient modulus tests were conducted on the stabilized soil mix as per AASHTO T307-99. 

Resilient modulus tests were condcuted at different moisture contents and dry densities so that 

the variations of these two parameters in the field are covered. Resilient modulus tests were 

conducted at 15 different combinations of stress states (deviatoric stress and confining 

pressure). The test data were used to develop regression models. These models were used to 

calibrate and validate the ICA modulus.  
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2.4. REGRESSION MODELS FOR RESILIENT MODULUS 

A comparitive analysis between the ICA modulus and other measurements taken on a 

compacted subgrade requires the knowledge of the level of compaction at each location on the 

subgrade. Since conventional spot tests do not reveal the level of compaction and tests such as 

FWD may be time-consuming and expensive, regression models were first developed to relate 

moisture content and dry density, obtained from spot tests using a NDG, to the resilient modulus 

of stabilized soils determined from laboratory tests assuming conditions similar to those 

observed in the field. The state of stress in the subgrade under the roller is not easily 

measureable and is beyond the scope of the current project. Therefore, the state of stress was 

assumed based on the data in literature (Mooney and Reinhart, 2009). 

2.5. CALIBRATION OF THE ICA 

The ICA measures and analyses the roller vibrations to provide continuous, real-time estimates 

of subgrade modulus during compaction. Therefore, the ICA has to be calibrated for the specfic 

roller and for the field conditions before it can be used to estimate the modulus of the subgrade. 

In the current project, this calibration was carried out on a 10-meter long test stretch. The 

calibration was carried out during the proof rolling of this stretch. The subgrade was initially 

compacted by a pad-foot roller and then by a smooth drum vibratory roller equipped with the 

ICA. According to general calibration procedure, several readings were taken using the NDG 

prior to proof rolling, to determine the initial and the target Mr. The vibrations and the spatial 

locations of the roller were recorded during the proof rolling process. A preliminary calibration 

was performed using the vibration measurements and the initial and target Mr values. After 

proof rolling of the calibration stretch by the smooth drum vibratory roller, dry densities and 

moisture contents were measured by an NDG at three selected locations, 3 meters apart, along 
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the centerline of the lane being compacted. The moisture contents and dry densities measured 

at these three points were used to compute the resilient moduli at these points. The final 

calibration was done by comparing the estimated and the measured moduli at the three test 

locations (similar to the process described in the ICA User Guide in Appendix). 

2.6. ICA MEASUREMENTS 

The calibrated ICA was used to record compaction data such as spatial location and vibrations 

of the roller, the speed and operational settings of the roller, and the ICA modulus of the 

subgrade during the entire proof rolling of the subgrade. Degree of compactions were also 

recorded whenever it was required. The degree of compaction is the ratio of the dry density 

measured at a point (γd) to the maximum dry density (γdmax), obtained by the standard Proctor 

test. The data was geo-referenced using the GPS coordinates of the roller collected during the 

compaction process. The ICA utilities were used to study the roller path, Mi achieved during 

each pass, and the overall stiffness achieved for each stretch. The as-built maps were used to 

determine under-compacted regions for remedial rolling. 

2.7. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS 

One of the key objectives of the current project is to evaluate the ability of the ICA to identify 

under-compacted regions during the proof rolling process in the traditional compaction 

procedure. In order to identify the under-compacted regions with the traditional compaction 

procedure, the roller operator initially followed the compaction process that is normally used. 

During the traditional compaction process, the compaction level was monitored by the ICA in 

real-time, and the under-compacted regions were identified. The under-compacted regions were 

the regions where the Mi values were significantly lower than the average Mi observed on the 

entire stretch. After the completion of the traditional compaction procedure, as-built maps were 
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generated to determine the location of the under-compacted regions. The GPS coordinates of 

these locations were used to plan additional roller passes to improve the level of compaction. 

Remedial rolling was performed at these locations until target Mi values were achieved and the 

variations of the Mi on the entire compacted subgrade became low. 

2.8. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL 

The ICA-estimated compaction levels were validated by comparing them with the compaction 

levels measured by spot-test devices such as NDG, DCP and FWD. In this project, NDG 

measurements (moisture contents and dry densities) were recorded right after the traditional 

compaction. NDG readings were taken at randomly selected locations along the compacted 

subgrade. The NDG measurements were also taken in the vicinity of the areas that were initailly 

identified as under-compacted regions. In such regions, NDG measurements were taken before 

and after the remedial compaction.   

DCP and FWD testing were conducted on the finished subgrade when feasible for 

validating the ICA-estimated compaction levels. The test locations were selected at random on 

the compacted subgrade and their GPS coordinates were recorded. The recorded GPS 

coordinates were then used to determine the corresponding Mi  values at these locations. While 

the DCP test was conducted on the same day of the subgrade compaction, FWD test was 

usually conducted at a later date depending on the availability of the FWD. The validation of the 

Mi values was performed by comparing the Mi values with the Mr, FWD moduli (Mf) and DCP 

indices. 
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3. CASE STUDY 1: SUBGRADE COMPACTION (60TH STREET) 

 

3.1. IDENTIFICATION OF SITE 

The ability of the ICA in estimating the density and ICA modulus of a subgrade was studied 

during the construction of a 3.4-kilometer (2.127-mile) long full-depth asphalt pavement on 60th 

Street, Norman, OK. This stretch is located between Tecumseh Road and Franklin Road in 

north-west Norman. The subgrade soil was stabilized by mixing 10% CKD to a depth of 202 mm 

(8 inches). A smooth drum vibratory roller was used for proof rolling. This roller is a single 

smooth drum roller. The base layer over the subgrade was constructed with two separate 

asphalt layers. The thickness of each layer was 90 mm (3.5 inch). The first layer was 

constructed using a S3 mix with P G64-22 OK binder. The second layer was also constructed 

using a S3 mix with PG 76-28 OK binder. The surface course was a 51-mm (2-inch) thick layer 

comprising of a S4 mix with PG 76-28 OK binder. The construction at this site was carried out 

by Silver Star Construction, Moore, OK between May, 2012 and June, 2012. 

 

3.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS 

Bulk subgrade soil (unstabilized) and CKD samples were collected from the construction site. 

The liquid limit (LL), plastic limit (PL) and plasticity index (PI) of the subgrade soil were found to 

be 23%, 19% and 4%, respectively. Based on the Unified Soil Classification System (USCS), it 

was classified as a CL-ML soil. As per the AASHTO classification, it was an A-4 soil. The 

optimum moisture content (OMC) and the maximum dry density (γdmax) of the CKD-stablized 
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mix were found as 4.6% and 17.3 kN/m3, respectively. RESILIENT MODULUS TEST ON 

STABILIZED SOIL 

Resilient modulus tests were performed on five specimens. Test specimens were prepared by 

mixing processed subgrade soil with 10% CKD, by weight of the soil. The test parameters were 

selected so as to closely replicate typical moisture contents and dry density range observed in 

the field. Table 3.1 lists the moisture content and degree of compaction for each of the five 

compacted specimens.  

In accordance with the AASHTO T307-99 specifications, each specimen was tested with 

15 different combinations of deviatoric stresses (σd) (13.78, 27.56, 41.34, 55.12 and 68.9 kPa) 

and confining pressures (σ3) (13.78. 27.56 and 41.34 kPa). Specimens were tested at both 0- 

and 28-day curing periods. In this report, the Mr at 0- and 28-day curing periods are referred to 

as Mr-0 and Mr-28, respectively.  

Table 3.1. Moisture content, dry density and degree of compaction values for the five resilient 
modulus test specimens for the 60th Street project. 

Specimen No. Moisture 
content (%) 

Dry density 
(kN/m3) 

Degree of 
compaction 
(% of γdmax) 

k1, k2 and k3 based on Mr-0 

k1 k2 k3 
1 12.1 17.26 98 6511.07 0.082 -0.154 
2 12.4 17.12 97 5830.80 0.091 -0.194 
3 12.1 17.20 97 6310.23 0.082 -0.163 
4 14.7 17.43 99 5926.52 0.173 -0.257 
5 14.8 17.56 99 6346.92 0.177 -0.241 

 

3.3. REGRESSION MODELS FOR RESILIENT MODULUS 

Regression models were developed based on the laboratory resilient modulus test results as a 

function of moisture content (Mc), dry density (γd) and stress state (σd and σ3). A 

comprehensive discussion on the procedure for the Mr regression models can be found in 

Commuri et al. (2013). Regression models were developed using 80% of the test data. These 
15 

 

 

 



data were randomly selected. The developed models were then validated using the remaining 

20% of the test data.  

A number of models are available in the literature for predicting Mr (AASHTO 1993). The 

following model (AASHTO 1993) was used to predict Mr in this study.  

 

                                                       
(3.1) 

where k1, k2 and k3 are regression coefficients; pais the atmospheric pressure; θ is the bulk 

stress (sum of the principal stresses) and σd  is the deviatoric stress.  

Since the coefficients (k1, k2 and k3) are functions of Mc and γd and are different for 

different specimens, one regression model was developed for each of these coefficients so that 

these can be derived for any appropriate combinations of Mc and γd. The k1, k2 and k3 

coefficients (Table 3.1) were backcalculated using the Minitab® numerical analysis tool. Mr-0, 

Mc, γd  and the applied stress state of each specimen were utilized to backcalculate these 

coefficients. The regression models are given in Equations 3.2 to 3.4.  

k 1 = −53060.478− 482.317(M𝑐) + 3790.046(γd)                        
(3.2) 

k 2 = −0.467 + 0.034(M𝑐) + 0.008(γd)                        
(3.3) 

k 3 = −2.553 − 0.052(M𝑐) + 0.175(γd)                        
(3.4) 
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Figure 3.1. Comparison between laboratory and predicted Mr-0 values.  

 

Figure 3.1 shows a comparison between the laboratory and predicted Mr-0 values. The 

resilient modulus data (80%) used to develop the model as well the rest of the data (20%) used 

to validate the model are both included in the figure. It is seen that the predictability of the 

models is quite good (R2 = 0.81 for the data used to validate the model). Further, the model can 

predict the Mr-0 within a ±15% error limit. 

3.4. CALIBRATION OF THE ICA  

During the field work, the ICA was calibrated first following the standard calibration procedure 

described in Commuri et al. (2013). Figure 3.2 shows a schematic of locations of different test 

points in the 60th Street project. The three calibration points (Points 1 to 3 in Figure 3.2) are 

located on the south-bound 60th Street near the intersection of 60th Street and West Rock Creek 

Road. Moisture contents and dry densities were measured at these locations. A preliminary 
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calibration of the ICA was performed using the vibration measurements and the NDG-measured 

degree of compaction values.  

After resilient modulus tests and development of the regression model, the moisture 

contents and dry densities measured at the calibration points were used to compute the Mr-0 at 

the three selected points. The stress state of the soil was assumed according to the procedure 

by Mooney and Rinehart (2009). The magnitude of the vertical normal stress was approximately 

100 kPa, while the stresses in the transverse and longitudinal directions were approximately 25 

to 40 kPa. These values led to a deviatoric stress between 60 and 75 kPa. Hence, in the 

estimation of field resilient modulus, the deviatoric, confined and bulk stresses were assumed 

as 69, 41 and 192 kPa, respectively. This stress state was similar to that of the last sequence in 

the resilient modulus test, i.e. σd = 68.9 kPa and σ3 = 41.34 kPa.  

 

Figure 3.2. Schematic of different test points at the 60th Street project. 

 

3.5. ICA MEASUREMENTS 

After the preliminary calibration, the ICA was used to record the vibration data and GPS 

coordinates during the proof rolling of the remaining sections of the south-bound 60th Street. 
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These vibration data and the GPS readings were processed in real-time to estimate the degree 

of compaction. 

3.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL 

After proof rolling of the entire stretch, nine additional test locations on the compacted subgrade 

were selected at random (Points 4 through 12) and properly referenced for validating the ICA 

modulus. An NDG was used to measure moisture content and dry density at each of these 

locations. At this site, the study was limited to the verification of the regression models and the 

ICA-estimated modulus. Consequently, identification or remediation of under-compacted 

regions was not pursued at this site.  

The degree of compaction at each test location was determined using the laboratory 

determined γdmax  for CKD-stabilized soil (i.e., 17.3 kN/m3) and the dry density measured using 

a NDG. The measured field moisture content, dry density and degree of compaction at each of 

the twelve test locations are presented in Table 3.2. It can be seen that the degree of 

compaction ranged from 96 to 101.7%, while the moisture content ranged from 12.3 to 17.1%. It 

should be noted here that the OMC of CKD-stabilized soil was determined as 14.6%, but the 

measured field moisture contents at some test locations were above the OMC while it was 

below the OMC at other test locations. Table 3.3 presents the estimated resilient modulus at 12 

test points on the compacted subgrade. 
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Table 3.2 Field measured moisture content, dry density and degree of compactions at 
the twelve test points. 

 

Test point Moisture content 
(%) 

Dry density 
(kN/m3) 

Degree of compaction 
(% of γdmax) 

1 14.2 16.6 96.0 
2 13.2 16.8 97.1 
3 12.3 17.6 101.7 
4 13.2 17.2 99.4 
5 13.9 16.9 97.7 
6 13.8 16.7 96.5 
7 15.1 17.3 100.0 
8 13.7 17.0 98.3 
9 16.0 17.1 98.8 
10 16.7 16.9 97.7 
11 17.1 16.6 96.0 
12 15.1 17.1 98.8 

   

Table 3.3. ICA-estimated moduli (Mi) at the twelve test points. 

Test point ICA modulus, Mi (MPa) 

1 429 
2 453 
3 408 
4 344 
5 312 
6 228 
7 314 
8 420 
9 380 

10 374 
11 334 
12 363 

 

At this site, the ICA modulus values were  validated by comparing them with the FWD 

modulus values. FWD test was performed at each of the 12 test points 28 days after the 

compaction of the subgrade. As the asphalt layers were already laid by then, FWD tests were 

performed on top of the asphalt surface layer. The FWD deflection values and the thicknesses 

(measured from cores) of different layers were used to backcalculate the asphalt layer moduli 

and subgrade resilient moduli at these locations. Outliers reflecting unreasonably low/high 
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moduli were observed at test locations 2, 4, and 8 and were excluded from the analysis. Since 

the FWD moduli (Mf-28) were obtained at 28 days, the values were converted to an equivalent 0-

day FWD moduli (Mf-0). It may be noted here that all the samples that were tested for resilient 

modulus were tested both at 0-day and 28-day curing periods. A relationship between the Mr-0 

and Mr-28 was then developed as described by Commuri et al. (2013). It was assumed that the 

relationship between Mf-0 and Mf-28 is similar to the relationship between the Mr-0 and Mr-28. 

Table 3.4 presents the Mf-0 and Mf-28 values at the nine test points. 

 Table 3.4 FWD moduli at selected test points. 

Test point Mf-0 (MPa) Mf-28 (MPa) 

1 451 1384 
3 519 1707 
5 358 993 
6 174 380 
7 333 894 
9 391 1125 

10 363 1012 
11 244 586 
12 246 593 

 

 

Figure 3.3. Correlation between Mf-0 and Mi for the 60th Street project. 
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A comparison between the Mf-0 and Mi is shown in Figure 3.3. A reasonably good 

correlation (R2 = 0.63) between Mf-0 and Mi can be seen. It is evident that the ICA can predict 

the subgrade resilient modulus with a reasonable accuracy. 
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4. CASE STUDY 2: SUBGRADE COMPACTION (APPLE VALLEY PROJECT) 

 

4.1. IDENTIFICATION OF SITE  

This site was located at Apple Valley, Edmond, OK.  Two lanes of a 1.126-meter (0.7-mile) long 

stretch of East Hefner Road were constructed in this project. The road was constructed with a 

full-depth asphalt pavement. The subgrade was stabilized by mixing 10% CKD to a depth of 

304.8 mm (12 inches). The base layer was constructed in two separate layers. Each layer was 

76.5 mm (3 inches) thick and consisted of an S3 mix prepared with a PG 70-28 OK binder. The 

surface course was a 50.8 mm (2 inches) thick asphalt layer consisting of a S4 mix prepared 

with a PG70-28OK mix. The construction at this site was carried out by Haskell Lemon 

Construction Company, Oklahoma City, OK on September, 2011. 

4.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS 

The subgrade soil was silty sand, SM-type according to the USCS classification and A-2-4 as 

per AASHTO classification. The OMC and γdmax of the CKD-stabilized soil were 12.7 % and 

18.3kN/m3, respectively. 

4.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL 

In this project, six Mr specimens were tested. The Mc, γd and degree of compaction for the six 

specimens are given in Table 4.1. The degree of compactions achieved in these six specimens 

varied between 97 and 100%. The combinations of deviatoric stresses and confining pressures 

were kept similar to that of the 60th Street project, discussed in Section 3. Mr tests were 

conducted after at 0-day and 28-day curing periods. For two specimens (Numbers 5 and 6 in 
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Table 4.1), the test results were outliers when tested after 0-day curing period. Therefore, these 

Mr-0 values were not used for developing the regression models. These values were used 

indeveloping the correlation between the Mr-0 and Mr-28 values. 

Table 4.1 Moisture content, dry density and degree of compaction values for the six resilient 
modulus specimens. 

Specimen 
No. 

Moisture 
content (%) 

Dry density 
(kN/m3) 

Degree of 
compaction 
(% of γdmax) 

k1, k2 and k3 based on Mr-28 

k1 k2 k3 
1 10.8 18.1 97.3 43609.1 0 -0.0327 
2 10.8 18.3 98.3 43347.8 0.04376 -0.07368 
3 10.6 18.3 98.1 39877.5 0 -0.1692 
4 12.6 18.5 99.2 37817.5 0.045445 -0.05661 
5 12.8 18.3 98.1 41754 0.100398 0.014232 
6 11.4 18.6 99.9 41798.9 0.050764 -0.12664 

 

4.4. REGRESSION MODELS FOR RESILIENT MODULUS 

The Mr regression models were developed using the Mr-2 8 values. The coefficients k1, k2 and k3 

(Table 4.1) were determined following the procedure similar to that of the West 60th Street 

project, but using the 28-day Mr values. The regression model is given in Equations 4.1 to 4.3.  

 k 1 = 127792.503− 835.980(M𝑐)− 4183.115(γd)                        (4.1) 

 k 2 = −0.880 + 0.035(M𝑐) + 0.028(γd)                        (4.2) 

 k 3 = 3.662 + 0.055(M𝑐)− 0.238(γd)                        (4.3) 

Figure 4.1. shows the predictability of the developed regression models. It is seen that 

these models can predict the resilient modulus with good accuracy (error less than ± 20%). 

Further, the predicted modulus has good correlations with experimentally obtained values (R2 = 

0.84).  
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Figure 4.1.Predictability of the regression models for Mr. 

 

4.5. CALIBRATION OF THE ICA 

The calibration procedure for the ICA in this project was similar to the procedure used in the 60th 

Street project (Section 6.5). Three calibration points were selected on a 9.14 m (30 ft) long 

stretch on the west bound East Hefner Road, as shown in Figure 4.2. 

 
Figure 4.2. Location of different test points in Apple Valley project. 
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4.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL 

Validation of Mi was performed by comparing the Mi values with the Mr-0 values. In order to 

obtain Mr-0 values, moisture contents and dry densities were first measured at seven randomly 

selected test points on the subgrade after the proof rolling was completed (Figure 4.2). The 

regression models developed in Section 4.5 were then used to predict Mr-0 values at these test 

points. 

Figure 4.3 shows the relationship between the Mi and Mr-0. The correlation is good with 

R2 = 0.60. It is encouraging that the ICA can predict the subgrade resilient modulus with 

reasonable accuracy.  

 

 

Figure 4.3. Correlation between the Mi and Mr-0.  
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5. CASE STUDY 3: SUBGRADE COMPACTION (I-35 PROJECT) 

 

5.1. IDENTIFICATION OF SITE 

The ability of the ICA to estimate resilient modulus of a stabilized subgrade during compaction 

was studied during the construction of a 640-meter (2100-ft) long full-depth asphalt pavement 

on the north-bound section of I-35 near Main St., Norman, OK(Figure 5.1). The construction at 

this site was carried out by Allen Construction, Oklahoma City, OK between April, 2013 and 

August, 2013. 

The subgrade soil was stabilized by mixing 12% CKD to a depth of 202 mm (8 inches). 

Figure 5.2 shows a photographic view of mixing of CKD with the natural subgrade  soil. 

Subgrade compaction was initially performed with a pad-foot roller and then by a single drum 

smooth vibratory roller. The ICA was installed on the vibratory roller, which was used for the 

proof rolling. The subgrade compaction work was performed on two separate 396-meter long 

(1300-feet) sections adjacent to each other. These sections are referred to as Test Section 1 

and Test Section 2. Test Section 1 was compacted using a traditional compaction procedure, 

i.e., ICA measurements were taken and monitored throughout the compaction but under-

compacted regions were neither identified nor remedied. The ICA compaction procedure was 

followed on Test Section 2. The ICA measurements were recorded and monitored throughout 

the compaction process, and under-compacted regions were identified as well. Under-

compacted regions were then compacted using additional roller passes.  
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Figure 5.1. Location of the I-35 Project site.  
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Figure 5.2. Mixing of CKD with soil at the I-35 project in Norman, OK.  
 

5.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS  

Bulk soil and CKD samples were collected from the construction site during the subgrade 

compaction. Figure 5.3 demonstrates the particle distribution of the collected soil. Atterberg’s 

limits test showed that the LL and PI of the natural subgrade soil are of 25% and 9, respectively. 

The soil was classified as CL (low plastisity clay), according to the USCS classification system. 

According the AASHTO soil classification, the subgrade soil type is A-4. The moisture-density 

content relationship for the CKD-stabilized soil, obtained through the standard Proctor test, can 

be seen in Figure 5.4. The OMC and γdmax of the stabilized soil were found as 14.8% and 17.3 

kN/m3, respectively. 
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Figure 5.3. Particle size distribution of natural subgrade soil.  

 

 

Figure 5.4. Proctor test results for CKD-stabilized soil.   
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5.3. CALIBRATION OF THE ICA 

A preliminary calibration of the ICA was performed on a 10-m (33-ft) long stretch in Section 1 as 

shown in Figure 5.5. NDG measured densities and moisture contents were recorded at three 

selected locations (C1 to C3 in Figure 5.5). The NDG readings were taken both before and after 

the compaction by the smooth drum vibratory roller. Changes in project schedule prevented 

completion of resilient modulus test in the laboratory prior to field compaction. Therefore, the 

initial and target modulus values were estimated using previously developed regression models 

and the NDG readings (moisture contents and dry densities). The modulus values were then 

used to perform raw calibration of the ICA as specified in the IACA User Guide, as provided in 

Appendix. The calibration parameters were adjusted later on after the completion of the resilient 

modulus tests and development of regression models for this project site. 

Table 5.1 presents dry densities and moisture contents for the three calibration points. It 

was observed that the NDG measured density at test locations C2 and C3 increased after the 

compaction by the smooth drum vibratory roller, whereas it remained virtually unchanged at test 

location C1.  

Table 5.1. NDG measurements in calibration stretch. 

Test 
points 

Before compaction by smooth drum 
vibrator 

After compaction by smooth drum 
vibrator 

Dry density (kN/m3) Moisture content (%) Dry density (kN/m3) Moisture content 
(%) 

C1 16.51 16.8 16.45 17.9 
C2 16.12 17.1 16.40 18.2 
C3 15.82 19.4 16.23 18.2 
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Figure 5.5. Locations of different test points for the I-35 project. 
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5.4. COLLECTION OF ICA MEASUREMENTS 

After preliminary calibration was performed, ICA measurements  were taken during the 

compaction of Test Section 1. Figure 5.6 shows collection of ICA measurements during proof 

rolling. Six random points (R1 to R6) were marked on Test Section 1 and the NDG 

measurements were taken after the compaction. The GPS readings of these locations were also 

recorded. Table 5.2 shows the dry density and moisture content at each of the test locations. It 

may be noted that accurate geo-referenced ICA measurements could not be recorded on the 

Point ‘S1-R4’ due to loss of satellite connection in the GPS unit of the ICA system. Hence, the 

ICA modulus could not be determined at this test location. 

 

Figure 5.6. ICA compaction in progress. 

In Test Section 2, seven additional test points were selected at random. NDG (Figure 

5.7) and GPS readings were taken at these locations at the end of the entire compaction 

process. The densities and moisture contents measured at those points are given in Table 5.3. 
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Table 5.2. NDG readings in six randomly selected test points on Test Section 1. 

Test points Dry density (kN/m3) Moisture content (%) 

S1-R1 15.36 16.8 
S1-R2 15.68 16.1 
S1-R3 16.09 16.3 
S1-R4 15.14 17.6 
S1-R5 15.85 17.8 
S1-R6 16.31 16.8 

 

 

Figure 5.7. Moisture content and dry density measurements with NDG test. 

 
Table 5.3. NDG readings at seven randomly selected points on Test Section 2. 

Test points Dry density (kN/m3) Moisture content (%) 

S2-R1 15.41 15.5 
S2-R2 16.37 15.3 
S2-R3 16.78 16.4 
S2-R4 17.20 15.2 
S2-R5 16.68 15.3 
S2-R6 15.77 16.8 
S2-R7 16.59 15.7 
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5.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS 

In Test Section 2, the emphasis was given on identifying the under-compacted regions and 

remediating them through additional compaction. Test Section 2 was initially compacted using 

traditional rolling process similar to that employed on Test Section 1. Immediately following the 

compaction, the as-built map generated by the ICA was used to determine under-compacted 

regions if any. Two regions were identified as under-compacted, SP1 and SP2 in Figure 5.5. 

NDG tests performed at three different points (1-m apart) at each of these two under-compacted 

regions (SP1-A, SP1-B, SP1-C on SP1 and SP2-A, SP2-B, SP2-C on SP2). The roller operator 

was then requested to perform additional passes on the identified under-compacted regions in 

order to improve the level of compaction. NDG readings were taken again at those six points 

after the remedial passes. The vibration data and NDG readings taken before and after the 

remedial passes were compared to determine the improvement achieved. Table 5.4 presents a 

comparison of the NDG readings taken before and after the additional passes. It can be seen 

that the density of the under-compacted regions increased with the additional passes, as 

expected. The standard deviation of the dry density measurements also decreased slightly, 

indicating a more uniform compaction.  

It may be mentioned that a good level of compaction was already achieved throughout 

the entire length in Test Section 2 during the traditional compaction process. The under-

compacted regions identified by the ICA were not significantly below the target compaction 

level. Therefore, while resilient modulus values for regions SP1 and SP2 increased, the 

improvement  was not significant. However, this demonstration showed the ability of the ICA in 

identifying the under-compacted regions and the feasibility of improving the level of compaction  

by applying remedial passes during the construction of subgrade. The improvement in resilient 

modulus values is presented later in this Chapter.  
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Table 5.4.Comparison of densities and moisture contents between the traditional and the ICA 
compaction.  

Test points 
Traditional compaction ICA compaction 

Dry density 
(kN/m3) 

Moisture content 
(%) Dry density (kN/m3) Moisture content 

(%) 
SP1-A 15.98 16.4 16.07 15.9 
SP1-B 16.12 15.6 16.16 17 
SP1-C 15.63 17.9 16.20 15.8 
SP2-A 16.29 15.4 16.48 17.4 
SP2-B 16.32 15.9 16.40 16 
SP3-C 16.26 16.1 16.32 15.6 

Average 16.10 - 16.22 - 
Std. dev. 0.24 - 0.14 - 

COV 1.49% - 0.87% - 
Note: Std. dev. = Standard deviation; COV- Coefficient of variation  

 

5.6. RESILIENT MODULUS TEST ON THE STABILIZED SOIL 

Resilient modulus tests were conducted on specimens for five different combinations of 

moisture contents and dry densities. These combinations were selected based on the 

magnitudes of dry densities and moisture contents measured at test locations on Test Section 1 

and Test Section 2 (Table 5.2, Table 5.3 and Table 5.5). The range of moisture content and dry 

density measured in the field can be seen in Figure 5.8. The moisture-density relationship for 

the stabilized soil is also depicted in Figure 5.8 to help characterize the variability of field 

measured moisture and dry density with respect to OMC and γdmax 2T. Table 5.5 shows the target 

moisture content and degree of compactions for each of the five combinations. These five 

combinations were selected so that a reasonable range of field moisture and dry density 

combinations could be studied in the laboratory. Three specimens were prepared for each 

combination and the resulting 15 specimens were tested with 15 different combinations of stress 

of states. The same test procedure, as described in Section 2, was used here. 
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The resilient modulus tests were conducted immediately after the compaction of the 

specimen (i.e., 0-day curing period) to simulate the conditions on the day of compaction in the 

field. Resilient modulus tests were also performed after curing specimens for 28 days after 

compaction.    

 
 

Figure 5.8. Comparison of field measured moisture contents and dry densities with moisture 
contents and dry densities of the Mr test specimens. 

 
 

Table 5.5. Description of selected combinations of moisture contents and dry densities for Mr 
test. 

Combination # Combination 
designation 

Moisture content 
(%) 

Degree of compaction 
(% of γdmax) 

Comb. 1 I-35-R-C1-14.8-100 14.8 100 
Comb. 2 I-35-R-C2-14.8-88 14.8 88 
Comb. 3 I-35-R-C3-16.2-94 16.2 94 
Comb. 4 I-35-R-C4-17.8-88 17.8 88 
Comb. 5 I-35-R-C5-17.8 17.8 Max. possible 

Note: I-35: Interstate 35, R- Resilient modulus, C- combination, 14.8- moisture content, 100- 
degree of compaction. 
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Table 5.6. Actual moisture contents, dry densities and degree of compaction of the Mr test 
specimens. 

Combination 
designation 

Specimen 
code 

Moisture content 
(%) 

Dry density 
(kN/m3) 

Degree of 
compaction (%) 

I-35-R-C1-14.8-100 
1 13.9 17.1 98.8 
2 14.4 17.2 99.5 
3 14.4 17.0 98.0 

I-35-R-C2-14.8-88 
1 14.7 15.3 88.5 
2 15.0 15.2 87.6 
3 14.9 15.5 89.6 

I-35-R-C3-16.2-94 
1 15.9 16.3 94.5 
2 16.1 16.3 94.0 
3 15.9 16.2 93.5 

I-35-R-C4-17.8-88 
1 17.8 15.4 89.0 
2 17.8 15.2 87.6 
3 17.8 15.3 88.4 

I-35-R-C5-17.8-100 
1 17.9 16.9 97.6 
2 17.8 16.9 97.9 
3 17.8 17.0 98.0 

 

5.7. REGRESSION MODELS FOR RESILIENT MODULUS 

Mr regression models were developed using Mr- 0 values following the procedure described in 

Section 2. The developed regression models are given in Equations 5.1 to 5.3.  

k 1 = −4653.4− 309.0(M𝑐) + 706.5(γd)                        (5.1) 

k 2 = −0.232 + 0.045(M𝑐)− 0.023(γd)                        (5.2) 

k 3 = −0.057− 0.043(M𝑐) + 0.033(γd)                        (5.3) 

 

Figure 5.9 shows the predictability of the developed regression models. The eighty 

percent resilient modulus data used to develop the model and the remaining 20% data used for 

validation are included in Figure 5.9. It can be seen that the predictability of the models is 

excellent with a R2 = 0.90 (for the data used to validate the model). Also, the model could 

predict the resilient moduli within ± 25% error limit.  
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Figure 5.9. Predictability of the developed Mr models for the I-35 project. 

 

5.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL  

Figure 5.10 shows the relationship between the ICA-estimated modulus Mi and laboratory 

predicted modulus Mr-0 (obtained using regression models in Equations 5.9 - 5.11). It can be 

seen from Figure 5.10 that the ICA-estimated modulus values are accurate within 25% of the 

modulus estimated using laboratory test procedure and correlate well with the Mr values of 

similar soil specimen tested in the laboratory (R2 = 0.62).  
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Figure 5.10. Relationship between Mi and Mr-0. 

 

5.9. IMPROVEMENT IN THE RESILIENT MODULUS AFTER THE REMEDIAL 

COMPACTION 

As mentioned before, two under-compacted regions, SP1 and SP2 were identified in Test 

Section 2 and additional compaction was provided using the same steel drum roller. Figure 5.11 

presents the Mi values before and after the remedial passes at six test points on the two under-

compacted regions. It can be seen that the average Mi at those six points increased from 163 

MPa to 180 MPa. More importantly, the standard deviation of estimated modulus at these 

locations decreased from 12 MPa to 8.3 MPa, thereby indicating a more uniform compaction of 

the subgrade layer.  The error bars in the graph also indicate that the stiffness of the subgrade 

achieved during the ICA compaction was significantly higher and more uniform than that 

achieved through traditional compaction. 
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Figure 5.11. Improvement in ICA modulus (Mi) with the remedial compaction. 

5.10. RELATIONSHIP BETWEEN THE Mr-0 AND Mr-28 

A regression model was developed to correlate the resilient moduli values for two different 

curing periods (0-day and 28-day). Figure 5.12 shows the correlation between the Mr-0 and Mr-

28. It may be mentioned that when CKD-stabilized subgrade is used in the pavement 

construction, the resilient modulus at 28-day curing period is important information from the 

mechanistic pavement design point of view. A correlation between Mr-0 and Mr-28 can be used to 

verify if the ICA can be used to predict the ICA modulus at 28-day curing period during the 

construction of the subgrade itself. The following equation presents the relationship between the 

Mr-0 and Mr-28 values. 
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x = −2.4612
M𝑐

𝑂𝑀𝐶
+ 13.4185

γd
γdmax

− 0.0152861(M𝑟−0) (5.4) 

where, 

x = the ratio of Mr-28 to Mr-0; other variables were previously mentioned. The coefficient 

of determination, R2, for the correlations is found to be excellent (R2 = 0.94).The Mr-28 values 

were intended for a comparison of the ICA-estimated modulus with the modulus backcalculated 

from FWD tests. Unfortunately, the site was not accessible to the FWD trailer and the 

comparison could not be carried out, as previously planned. 

 

 

Figure 5.12. Predictability of the regression model developed for relating  
the Mr-0 and Mr-28. 
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6. CASE STUDY 4: SUBGRADE COMPACTION (I-35 SERVICE ROAD) 
 

 

6.1. IDENTIFICATION OF SITE 

The Intelligent Compaction was demonstrated on a 300-m long stretch on the I-35 Service 

Road. This site is located at the University Park area of North-West Norman, Oklahoma. The 

location of the site is shown in Figure 6.1. The north-bound I-35 Service Road is being extended 

from the Kohl’s store to NW 24th Avenue. This Service Road is located on the east side of the I-

35, and it connects I-35 to NW 24th Avenue. The ICA technology was used during the 

construction of the stabilized subgrade. This project comprised of one east-west stretch and one 

north-south stretch. The construction at this site was carried out by Silver Star Construction 

Company, Moore, OK on August, 2014. 

The natural subgrade soil was highly plastic clay. Therefore, the subgrade was pre-

treated by adding 3% quick lime. The average moisture content of the soil during the mixing of 

quick lime was 22%. The ‘quick lime’ is referred to as ‘lime’ in this report. The lime-treated soil 

was subsequently stabilized by mixing 12% CKD to a depth of 202 mm (8 inches) after a 14-day 

curing period, under ambient conditions. 

The subgrade soil was compacted using both traditional and the ICA compaction 

procedures at different sections, as shown in Figure 6.2. Traditional compaction was performed 

in Sections A and C, whereas, Sections B and D were compacted following the ICA compaction 

procedure. In all the sections, the subgrade was initially compacted by a pad-foot roller. The 

proof rolling was performed using a single smooth drum vibratory roller. The ICA measurements 

were taken during the proof rolling. In Sections B and D, under-compacted regions were 

identified and remediated. NDG measurements were taken both before and after remedial 
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passes. The ICA-estimated densities and moduli were validated by conducting DCP and FWD 

tests, in addition to the NDG tests. 

 
 
 

Figure 6.1. Location of the I-35 Service Road project site. 
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Figure 6.2. Location of test points at the I-35 Service Road project. 
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6.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS 

Bulk samples of soil and lime were collected from the field during the construction work. CKD 

was collected from the plant of the construction company (Silver Star Company). Figure 6.3 

shows the particle distribution (ASTM D422) of the natural subgrade soil. It can be seen that 

about 79% of the particles were finer than sieve No. 200. The LL and PI of  this soil were found 

as 40% and 21, respectively. The soil was classified as CL (low plastisity clay) according to the 

USCS classification system. According to the AASHTO classification, the subgrade soil was A-6 

type.  

Standard Proctor tests were conducted on the soil-lime-CKD mix. This soil-lime-CKD mix 

was prepared simulating the curing procedure adopted in the field. In order to simulate the field 

condition, first the natural subgrade soil was air dried, processed and passed through ASTM 

sieve No. 4. Then, lime (3%) was added to the soil and mixed to uniformity under dry conditions. 

After that  water (22% by weight of soil) was added to the dry soil-lime mix. It may be noted that 

the moisture content of the soil during the soil-lime mixing process in the field was measured by 

an NDG at several locations. The average moisture content was 22%. Figure 6.4 shows the 

soil-lime mixing process in the field. Figure 6.5 shows a photoghraphic view of the measurement 

of moisture contents and dry densities in the field. 

The moist soil-lime mix was collected from the field and transferred to OU Broce 

Laboratory in ten plastic bags (approximately 50 Kg per bag). Since the soil-lime mix in the field 

was exposed to ambient conditions, the plastic bags were kept untied as shown in Figure 6.6a. 

The plastic bags allowed moisture exchange only from the top surface. Also, the depth of the 

moisten soil-lime mix in each plastic bag was around 280 mm to simulate the thickness of the 

loose soil-lime mix in the field before compaction. The plastic bags containing the mixes were 
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left open inside an environmental chamber where the relative humidity and temperature were 

controlled (Figure 6.6b). The average day and night temperature and humidity of the project 

location were collected for over a 14-day period from the website of National Oceanic and 

Atmospheric Administration (NOAA). The environmental chamber was programmed in such a 

way that the daytime ambient condition lasts for 15 hours and the nighttime ambient lasts for 9 

hours.   

 
Figure 6.3. Particle size distribution of natural soil. 
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Figure 6.4. Pre-treatment of existing soil by 3% lime at the I-35 Service Road Project. 
 
 

 

Figure 6.5. Measurement of moisture content and dry density during pre-treatment of existing 
soil with lime at the I-35 Service Road project. 
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Figure 6.6. Conditioning of soil-lime mix in the laboratory. 

 

After 14 days, 12% CKD (by weight of dry soil-lime mix) was mixed with the soil-lime 

mix. This soil-lime-CKD mix was used for the standard Proctor test and also for the resilent 

modulus test. Figure 6.7 shows the  moisture-density relationship for the soil-lime-CKD mix. The 

optimum moisture content and maximum dry density were obtained as 21.4% and 15.4 kN/m3, 

respectively. 

 

 

Figure 6.7. Standard Proctor test result for the soil-lime-CKD mix for I-35 Service Road 
project. 

(a) (b) 
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6.3. CALIBRATION OF THE ICA 

The soil was pre-treated with lime and stabilized with CKD and then compacted using a pad-foot 

roller (Figure 6.8). The subgrade was then proof rolled using a single drum vibratory roller. This 

vibratory roller was equipped with the ICA. The ICA was calibrated on a 10-meter long 

calibration stretch prior to the proof rolling operation (Figure 6.9). The ICA measurements were 

recorded on the calibration stretch during proof rolling. The location of the calibration stretch is 

shown in Figure 6.2. Three points (C1, C2 and C3) spaced at three meter intervals were marked 

on the calibration stretch. The calibration points were on the east side of the east-west stretch 

(Section A). Moisture content and dry density were measured at these calibration points (Table 

6.1). Initial and target Mr values were estimated using the regression models developed for this 

particular soil type and used to calibrate the ICA according to the procedure outlined in Section 

2.  

 

Figure 6.8. Initial compaction of soil-lime-CKD mix with pad-foot roller at the I-35 Service Road 
project. 
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Figure 6.9. ICA compaction of soil-lime-CKD mix with smooth drum vibratory roller at the I-35 
Service Road project. 

 

6.4. COLLECTION OF THE ICA MEASUREMENTS 

The east-west and north-south sections were compacted on two separate days. Traditional 

compaction procedure was followed on Sections A and C. ICA compaction was carried out in 

Sections B and D. On Sections B and D, under-compacted regions were identified using the as-

built maps generated by the ICA and remedial roller passes were applied to improve the level of 

compaction of the subgrade. ICA measurements were recorded throughout the entire 

compaction process on all sections.  

6.4.1. East-west Stretch 

In Section A, moisture content and dry density were recorded at three randomly selected points 

(R1, R2 and R3) right after the compaction of the stabilized subgrade by a smooth drum 

vibratory roller. Table 6.1 presents the degree of compaction and moisture content measured at 

the specified points in Section A. It can be seen that the degree of compaction varies between 

95.5% and 101.3% in Section A. 
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In Section B, first traditional compaction was applied and the ICA measurements were 

recorded. The level of compaction was also monitored during the compaction process. After 

compaction, as-built maps were used to study the compaction achieved in Section B. It was 

found that several regions in Section B had a lower degree of compaction as compared to the 

target compaction. The moisture contents and dry densities that were measured at six test 

points (S1 to S6 shown in Figure 6.10 and Table 6.2) had low degree of compaction (92 - 

96.7%). The dry density values are reported as degree of compaction in Table 6.2. Two 

additional roller passes were then performed over the entire length of Section B. The moisture 

content and dry density measurements were repeated at the six test points (S1 to S6). 

However, a minimal improvement in the ICA-estimated degree of compaction was observed 

(degree of compaction increased from 92% - 96.7% to 92.7% - 97.1%). While the ICA could 

accrurately estimate low/indequate compaction, the degree of compaction could not be 

improved with two additional roller passes. A possible reason for this could be the high level of 

moisture in the subgrade during compaction and probably two passes were not sufficient. 

Table 6.1. Moisture content and dry density values at different test points on Section A in 
I-35 Service Road project. 

Test points Degree of compaction (%) Moisture content (%) 

C1 101.3 19.4 
C2 99.9 20.6 
C3 95.5 22.4 
R1 100.1 21.2 
R2 96.4 20.2 
R3 97.4 18.4 

Average 98.4 20.4 
Std. Dev. 2.1 1.3 
COV (%) 2.2% 6.2% 
Note: Std. dev. = Standard deviation; COV- Coefficient of variation  
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Figure 6.10. NDG measurements on compacted subgrade at the I-35 Service Road project. 
 
 

 
Table 6.2. Moisture content and dry density at different test points on Section B in I-35 Service 

Road. 

Test 
points 

Before remedial compaction After remedial compaction 

Degree of 
compaction (%) 

Moisture content 
(%) 

Degree of 
compaction (%) 

Moisture content 
(%) 

S1 95.0 23.4 96.1 24.0 
S2 92.0 26.2 92.7 25.5 
S3 96.7 22.1 97.1 21.5 
S4 95.4 20.5 93.9 21.0 
S5 96.3 22.5 96.2 23.7 
S6 94.8 24.4 93.6 23.9 

Average 95.0 23.2 94.9 23.3 
Std. Dev. 1.5 1.8 1.6 1.5 
COV (%) 1.6% 7.8% 1.7% 6.7% 

Note: Std. dev. = Standard deviation; COV- Coefficient of variation  
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6.4.2. North-south Stretch  

Traditional compaction was performed in Section C. Immediately after the compaction by proof 

roller, moisture content and dry density values were measured at eight randomly selected points 

(R4 to R10). Table 6.3 presents the degree of compaction and moisture content measured at 

the test points in Section C. It can be seen that the degree of compaction was between 91.0% 

and 97.7%. 

In Section D, traditional compaction was first performed and the ICA measurements 

were recorded. The level of compaction was monitored during the compaction process. A total 

of seven under-compacted regions were identified. Test points (S7 to S13) were selected in 

these regions for further investigations. The moisture content and dry density were then 

measured at these locations (Table 6.4). The degree of compaction was between 82.5% and 

93.1%. 

Since it was observed in Section B that the two additional passes did not improve the 

degree of compaction by a considerable margin, four additional passes were provided on the 

entire length of Section D. The moisture content and dry density values were measured again at 

these seven locations (Table 6.4). It can be seen from Table 6.4 that the average degree of 

compaction increased by 1.5%. The range of degree of compaction in Section D improved from 

82.5% - 93.1% to 87.0% - 98.1%. The degree of compaction in a severely under-compacted 

location, S14, improved from 82.5% to 93.1%, an increase of approximately 10%. Such severely 

under-compacted points otherwise could result in localized distresses and lead to premature 

failure of the pavement structure. 
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Table 6.3. Moisture content and dry density at different test points in Section. 

Test points Degree of compaction (%) Moisture content (%) 

R4 95.9 20.7 
R5 91.0 21.8 
R6 94.0 23.0 
R7 94.7 21.5 
R8 97.7 21.6 
R9 97.0 19.8 
R10 91.5 21.0 

Average 94.5 21.3 
Std. Dev. 2.39 0.92 
COV (%) 2.5% 4.3% 

 
 

Table 6.4. Moisture content and dry density at different test points on Section D in I-35 Service 
Road. 

Test points 

Before remedial compaction After remedial compaction 

Degree of 
compaction (%) 

Moisture content 
(%) 

Degree of 
compaction (%) 

Moisture content 
(%) 

S7 93.4 22.2 87.0 20.7 
S8 89.5 20.7 93.4 21.9 
S9 92.0 21.4 89.8 23.1 

S10 93.1 21.9 89.5 20.8 
S11 89.8 21.9 89.4 21.4 
S12 82.5 20.8 93.1 23.0 
S13 89.4 17.0 98.1 21.9 

Average 90.0 20.84 91.5 21.8 
Std. Dev. 3.42 1.66 3.41 0.89 
COV (%) 3.8% 7.9% 3.7% 4.0% 

  

6.5. RESILIENT MODULUS TEST ON THE STABILIZED SOIL 

Based on the maximum dry density, optimum moisture content, and moisture content and dry 

density measured at test locations in the field (Table 6.1, Table 6.2, Table 6.3 and Table 6.4), it 

was planned to conduct resilient modulus tests at five different combinations of dry density and 
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moisture content. A graphical depiction of the range of moisture content and dry density 

measured in the field is shown in Figure 6.11. The moisture–density relationship for the 

stabilized soil is also shown in Figure 6.11 in order to compare the scatter of the field measured 

moisture content and dry density with the optimum moisture content and maximum dry 

density. Table 6.5 shows the target moisture content and degree of compaction for each of the 

five combinations. These combinations were selected so that a reasonable range of field 

moisture content and dry density could be captured in the laboratory. Three specimens were 

prepared for each combination and each specimen was tested with 15 different combinations of 

deviatoric stresses and confined pressures, as similar to the previously discussed projects. The 

resilient modulus tests were conducted immediately after the compaction of the specimen to 

simulate the field condition. Also, similar samples were tested after 7-day and 28-day curing 

periods.    

 
Figure 6.11. Comparison of field measured moisture content and dry density with 

moisture content and dry density of the Mr test specimens. 
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Table 6.5. Description of five different combinations for Mr test. 

Combination designation 
Degree of 

compaction 
(%) 

Moisture content 
range 

Moisture content  
(%) 

Dry density  
(kN/m3) 

I35SR-R-C1-21.4-100 100 OMC 21.4 15.4 
I35SR-R-C2-19.4-100 100 OMC-2% 19.4 15.4 
I35SR-R-C3-21.4-90 90 OMC 21.4 13.9 
I35SR-R-C4-18.4-95 95 OMC-3% 18.4 14.6 
I35SR-R-C4-18.4-95 95 OMC+3% 23.4 14.6 
Note: I-35: Interstate 35, R- Resilient modulus, C- combination, 14.8- moisture content, 100- 

degree of compaction. 
 
 

6.6. REGRESSION MODELS FOR RESILIENT MODULUS 

6.6.1. 0-day Curing Period 

The Mr regression models were developed using the Mr- 0 values following a similar procedure 

adopted for the previously discussed projects. The developed regression models are given in 

Equations 6.1 to 6.3.  

k 1 = −3121.68− 108.733(M𝑐) + 432.5896(γd)            (6.1) 

k 2 = 1.803884 + 0.030014(M𝑐) − 0.14429(γd)            (6.2) 

k 3 = −0.84907− 0.01073(M𝑐) + 0.050347(γd)            (6.3) 

 

Figure 6.12 shows the predictability of the developed regression models. As before, 80% 

resilient modulus values were used to develop the regression models and the remaining data 

(20%) were used to validate the model. It can be seen that the predictability of the models is 

excellent with a R2 = 0.95 (for the data used to validate the model). Also, the model was seen to 

predict the resilient moduli with error within ± 10%.  
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Figure 6.12. Comparison between regression model predicted Mr-0 and laboratory Mr-0 values. 
 

6.6.2. 7-day Curing Period 

To compare the ICA modulus with the FWD modulus, and since the FWD test was conducted 

seven days after compaction, a regression model was developed to convert 7-day FWD 

modulus (Mf-7) to 0-day equivalent FWD modulus (Mf- 0). Regression models were developed 

using resilient modulus test results at 7-day curing period (Mr-7) and Mr-0. The following equation 

was used to convert Mr-7 to Mr-0. The same equation was used to convert Mf-7 to Mf-0. 

Mr−7

Mr−0
= −6.105(Mc) + 24.319

γd2

MDD2 − 0.047(Mr−0) 
                   (6.4) 

Figure 6.13 shows the predictability of the developed regression model. It can be seen that the 

predictability of the models is excellent with a R2 = 0.95 (for the data used to validate the 

model). Also, the model was found to predict the resilient moduli with error within ± 20%.  
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Figure 6.13. Comparison between Mr-0 predicted by the regression model developed for 

converting Mr-7 to Mr-0 and laboratory Mr-0 values. 

 

6.7. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE Mr 

The ICA modulus values were validated by comparing them with the Mr values predicted using 

the regression models. First, the resilient modulus values were computed using the dry density 

and moisture content information from the 26 test points on Sections A to D at the test site (3 

calibration points (C1- C3), 10 random points (R1 to R11) and 13 points in the under-compacted 

regions (S1 to S13)). The ICA calibration parameters were then adjusted using the modulus 

values predicted at locations C1 to C3. The ICA modulus was then estimated for the remaining 

23 test locations. Table 6.6 presents a comparison between the Mr-0 and the Mi for all 26 test 

points. 

Figure 6.14 shows the relationship between the Mr-0 and Mi values. It may be noted that 

densities and moisture contents measured at some points were outside the range of the 
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densities and moisture contents considered in the laboratory testing and regression model 

development. So, those points were not considered in the correlation as shown in  Figure 6.14. 

A reasonably good correlation was found between Mr-0 and Mi, with R2 = 0.63. 

 
Table 6.6. Comparison between the Mr-0 and Mi values for the I-35 Service Road project. 

Test points Mr-0 (MPa) Mi (MPa) 
C1 186.4 147 
C2 167.9 150 
C3 117.1 93 
R1 162.1 131 
R2 150.3 133 
R3 175.1 179 
R4 141.8 111 
R5 89.5 72 
R6 97.8 110 
R7 122.5 115 
R8 143.2 119 
R9 158.3 172 

R10 104.6 106 
S1 109.3 118 
S2 34.3 120 
S3 133.1 117 
S4 129.7 115 
S5 121.2 85 
S6 72.4 95 
S7 44.3 157 
S8 123.0 150 
S9 83.4 115 
S10 74.2 144 
S11 72.5 178 
S12 120.4 120 
S13 192.0 164 
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Figure 6.14. Comparison between Mi and Mr-0 for I-35 Service Road project. 

 
 

6.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE DCP INDEX 

In order to validate the ICA-estimated moduli with respect to DCP indices, DCP tests were 

conducted at randomly selected 15 (out of 26) points after the completion of the ICA 

compaction. Figure 6.15 shows DCP testing on the compacted subgrade. DCP indices were 

calculated using the 'penetration vs number of blows' relationships obtained at each point. 

Figure 6.16 presents the correlation between the inverse of DCP index (1/DCP index) and the 

ICA-estimated modulus. A reasonably fair correlation (R2 = 0.50) was observed between the 

DCP index and Mi. 
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Figure 6.15. DCP test on the compacted subgrade at the I-35 Service Road project. 
 
 

 
Figure 6.16. Correlation between the DCP indices and the ICA modulus. 

 

y = 115.39x + 52.792 
R² = 0.50 

0

50

100

150

200

250

0.00 0.20 0.40 0.60 0.80 1.00

 M
i (

M
Pa

) 

1/(DCP index) (Blows/mm) 

62 
 

 

 



6.9. COMPARISON OF ICA-ESTIMATED COMPACTION LEVEL WITH FWD MODULUS 

In order to validate the ICA-estimated moduli with the FWD moduli, FWD tests were conducted 

at several test points on the compacted subgrade. The FWD tests were conducted seven days 

after the compaction (Figure 6.17). It should be noted that when the research team and the 

ODOT personnel visited the site after 7 days of compaction, several previously marked test 

points were found to be considerably wet and the remaining points were found to be very dry. 

FWD tests could not be performed at many wet points. The exact reasons for the source of this 

water were not known. Construction work related to water pipes was a possible reason. Also, a 

localized rainfall at the site could be another reason. Relatively smooth surface texture of the 

subgrade and the piles of dirt on the side of the subgrade seen in Figure 6.18 suggests water 

run-off during the 7-day curing period, a possible reason for localized wet spots. 

 

 

Figure 6.17. FWD test on the compacted subgrade at the I-35 Service Road project. 
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Figure 6.18. Evidence of water run-off on the compacted subgrade before the FWD test. 
 

Figure 6.19 presents a comparison between the ICA modulus Mi and FWD modulus Mf-

7. It can be seen that no correlation exists between the Mi and Mf-7 (R2 = 0.1). The FWD 

modulus was found to be varying significantly. Because of this poor correlation, further analysis 

was not conducted on the FWD test results. 

 

 
 

Figure 6.19.Comparison between ICA modulus and Mf-7. 
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6.10. IMPROVEMENT IN ICA-ESTIMATED MODULUS WITH REMEDIAL COMPACTION 

As mentioned earlier, a total of 13 test points (S1 to S13) were identified as under-compacted 

regions in the two sections (Sections B and D). ICA moduli were estimated at these locations 

before  and after remedial compaction. Table 6.7 presents a comparison between the ICA 

moduli estimated before and after remedial compaction. The average moduli calculated over a 

1-meter vicinity of each test point and the corresponding standard deviation are presented in 

Table 6.7.  

An important finding of this study is that the ICA was found to be able to identify under-

compacted regions where the average modulus was below the target modulus (120 MPa). 

Figure 6.20 shows the improvement in moduli after remedial compaction. Significant 

improvement in the mean modulus and a decrease in the variation about the mean were 

observed in a majority of the test points. The improvement was significant at locations where the 

moduli were very low and where the remedial compaction was performed for a longer period of 

time (4 passes in Section D vs to 2 passes in Section B). 

 

Table 6.7. Comparison of the ICA moduli before and after the remedial compaction. 

Test Points Before remedial compaction  After remedial compaction 
Average (MPa) Std. Dev Average (MPa) Std. Dev 

S1 76 13 118 22 
S2 75 12 120 10 
S3 150 12 117 11 
S4 143 10 115 7 
S5 130 19 85 6 
S6 110 12 95 17 
S7 130 15 157 18 
S8 86 20 150 6 
S9 95 15 115 14 
S10 107 9 144 10 
S12 90 14 156 12 
S13 110 17 178 8 
S14 85 5 120 12 
S15 110 9 164 4 
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Figure 6.20. Bar chart showing improvement in the ICA moduli with 2 and 4 roller passes. 
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7. METHODOLOGY OF INTELLIGENT COMPACTION FOR ASPHALT LAYERS 

 

Conventional quality control of asphalt pavement layers during compaction is usually performed 

by conducting volumetric analysis of cores collected from randomly selected locations. 

However, randomly selected locations do not adequately represent the entire compacted area 

and could leave under-compacted regions undetected. The feasibility of using the ICA in 

monitoring the level of compaction during construction of different asphalt layers was 

investigated in this project. The feasibility of performing remedial compaction to improve the 

compaction quality of the identified under-compacted regions was also investigated. The 

compaction quality was monitored by measuring the ratio (in percentage) of the compacted 

density to the maximum theoretical density, in real-time. This ratio, which is actually the relative 

density, is referred to as density (%) in this report. Under this scope of the study, the Intelligent 

Compaction was demonstrated at two different sites. The methodology adopted for the 

Intelligent Compaction on the asphalt layers is described below.  

7.1. IDENTIFICATION OF SITE 

The research team worked with the ODOT, Oklahoma Asphalt Pavement Association and other 

contractors for the site identification. As per the proposal, two projects were identified to 

demonstrate the capability of the ICA in improving the compaction quality of asphalt layers. The 

first demonstration deals with the compaction of asphalt base layer during reconstruction and 

widening of north-bound I-35, in Norman. The other project site involved the compaction of base 

and surface layers of a rural road in Shawnee, OK. The details of the sites are described under 

case studies in Section 8 and 9, respectively. 
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7.2. CHARACTERIZATION OF ASPHALT MIX 

Representative bulk samples of asphalt mixes used in the construction were collected from the 

project site. In addition, information on the design of the asphalt mix used in the construction 

was collected from the plant. Depending on the type of construction, the collected asphalt mix 

was used to perform dynamic modulus test in the laboratory according to the test method 

AASHTO TP 79-09. 

7.3. CALIBRATION OF THE ICA 

The ICA was installed on the smooth drum vibratory roller. In both projects, a 9.14-m (30 ft) long 

stretch was marked as the calibration stretch. The paving contractor was requested to pave this 

calibration stretch first. Vibration and GPS data were collected during several roller passes over 

the calibration stretch. The vibration data were then used to train the ICA to recognize the power 

features in the vibratory signal. A preliminary calibration of the ICA was performed considering 

an approximate laydown density and a maximum final density based on the mix design 

information obtained from the contractor.  

In order to adjust the calibration parameters, three core locations were marked on the 

calibration stretch at the end of the compaction work. Roadway cores were extracted from the 

marked locations and their densities determined in the laboratory according to the AASHTO T-

166 test method. Final calibration of the ICA was performed by comparing the ICA-estimated 

density at the test locations with the density of the three cores. Further details  of the calibration 

procedure can be found in the IACA User Manual in Appendix. 
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7.4. ICA MEASUREMENTS 

During the compaction of the asphalt layer, the calibrated ICA was used to record the estimated 

densities and the GPS locations of the roller in real-time. After the compaction of each stretch, 

the as-built map displayed by the ICA was used to study the overall compaction achieved.  

7.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS 

During this traditional compaction, the density values were monitored in real-time, and as-built 

maps were generated after each stretch was compacted. The as-built maps were then used to 

study the compaction quality achieved and to detect under-compacted regions, if any. Additional 

roller passes with appropriate amplitude were applied to under-compacted regions to improve 

the level of compaction until the target density was achieved. 

7.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL 

The ICA-estimated density was validated by comparing the estimated density at select test 

locations with the density of the cores extracted from these location on the compacted layer(s). 

In addition, the ICA-estimated densities were compared with the NDG measured densities, 

wherever possible.   
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8. CASE STUDY 5: COMPACTION OF ASPHALT LAYERS (I-35 PROJECT) 

 

8.1. IDENTIFICATION OF SITE 

The ability of the ICA to estimate the density of asphalt pavements during compaction and its 

ability to improve compaction quality were demonstrated during the reconstruction and widening 

of north-bound I-35 in Norman, OK. A 640-m (2100-ft) long stretch was reconstructed as a full-

depth asphalt pavement on the north-bound ramp of I-35 North near Main Street in Norman, 

OK. Two lanes and an access ramp were reconstructed. The location of the project site is 

shown in Figure 8.1. The construction at this site was carried out by Allen Construction, 

Oklahoma City, OK on September, 2013. 

Intelligent Compaction was performed during the construction of an 89 mm (3.5-in) thick 

lift of the asphalt base layer. Figure 8.1 shows the cross-section of the constructed pavement . 

The asphalt base layer on which the Intelligent Compaction was performed is highlighted in 

Figure 8.1. During this demonstration, it was shown that real-time density measurements can be 

used to identify and remediate under-compacted regions of the asphalt layer.  

8.2. CHARACTERIZATION OF ASPHALT MIX  

The base layer on which the Intelligent Compaction was performed was constructed using an 

asphalt mix having a 19-mm nominal maximum aggregate size and a PG 64-22 OK binder. The 

asphalt mix also contained 25% reclaimed asphalt pavement (RAP). The properties of 

aggregates, asphalt binder and asphalt mix used in this project are provided in Table 8.1. 
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Figure 8.1. Cross-section of the pavement (north-bound I-35).  

Table 8.1. Properties of aggregate, asphalt binder and asphalt mix. 

Parameters Value 
Nominal maximum size aggregates 19 mm 

Flat and elongated aggregates 0% 
Los Angeles abrasion (%) 25.3% 

Bulk specific gravity of aggregates 2.684 
Type of asphalt binder  PG 64-22 OK 

Specific gravity of asphalt binder 1.010 
Asphalt binder content 4.3% (total); 3.2% (virgin) 

Maximum theoretical specific gravity of 
asphalt mix 

2.530 

Voids in mineral aggregates 13.5% 
Voids filled with asphalt binder  68.9% 

 

8.3. CALIBRATION OF THE ICA   

A double drum vibratory roller instrumented with the ICA was used for compaction of the base 

layer of the asphalt pavement. Calibration of the ICA was performed on a 9.14-m (30 ft) long 

stretch on the outermost lane. Three calibration cores (C-1, C-2 and C-3) were extracted after 

the pavement cooled down and their densities were determined, as explained in Section 7. 

Locations of these cores and other test points are shown in Figure 8.2. Table 8.2 presents the 

volumetric analysis of the cores and the corresponding ICA-estimated densities for the three 

calibration points. The density of the asphalt layer was also measured by a nuclear density 

gauge (NDG) and these readings are also shown in Table 8.2.  
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Figure 8.2. Locations of different test points in I-35 asphalt layer compaction project.  
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Table 8.2. Volumetric properties of cores and comparison of different densities at the calibration 
stretch for the I-35 project. 

Calibration 
points 

Core thickness 
(mm) 

Air voids (%) Density                                                  
(percentage of maximum theoretical density) 

Core ICA  NDG 
C-1 97 5.91 94.1 94.5 93.2 
C-2 102 5.93 94.1 93.7 92.5 
C-3 100 5.51 94.5 94.9 93.4 

 

8.4. ICA MEASUREMENTS 

The ICA measurements were recorded throughout the compaction process. The compaction of 

each stretch of the pavement was performed according to the rolling pattern established at the 

beginning of the project. The ICA records the roller vibrations, spatial locations of the roller, the 

surface temperature of the mat, and the estimated density throughout the compaction process. 

Verification of the ICA estimates was carried out by comparing the estimated density with the 

density of cores extracted from the compacted pavement at randomly selected locations.  

8.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS 

The use of the ICA in identifying and remediating under-compacted regions was studied at this 

site. The ICA-generated as-built maps were used to identify a region with inadequate 

compaction. In order to increase the compaction level, this region was compacted with 

additional passes and ICA measurements were collected again during these additional passes. 

Three points (S-1 to S-3 in Figure 8.2) were marked in this region after the completion of 

compaction. Twelve more random points were marked in the rest of the section. NDG tests 

were performed in all the 18 points (3 calibration points, 12 random points, and 3 soft points).  

On the following day, a total of eight cores were extracted (3 calibration points (C-1 to C-

3), 2 random points (R-9 and R-10), and 3 soft points (S1 to S-3)) for measurement of density. 
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Table 8.3 presents a comparison of the densities determined by different methods at each of  

the 18 test points. Figure 8.3 shows the improvement in density with the additional compaction. 

The average density at the three initially under-compacted points was increased by 

approximately 0.5%. This increment may not be large enough, but this project certainly verified 

the fact that the under-compacted regions can be identified and remediated using the ICA.  

 

Table 8.3. Comparison between the densities determined by different methods. 

Test points 
Density   (percentage of maximum theoretical density) 

Core ICA before remedial 
compaction 

ICA after remedial 
compaction NDG 

R1 NA 95.70 NA 93.62 
R2 NA 94.20 NA 94.73 
R3 NA 95.20 NA 93.91 
R4 NA 93.20 NA 92.57 
R5 NA 93.30 NA 92.92 
R6 NA 93.60 NA 93.37 
C1 94.1 94.50 NA 93.18 
C2 94.1 93.70 NA 92.51 
C3 94.49 94.90 NA 93.37 
R7 NA 93.60 NA 92.80 
R8 NA 94.10 NA 92.23 
S1 94.2 93.5 94.20 92.86 
S2 94.7 94.6 94.80 93.30 
S3 94.6 93.7 94.00 93.40 
R9 NA 93.00 NA 91.18 

R10 95.1 95.80 NA 93.21 
R11 95.3 94.80 NA 94.06 
R12 NA 95.40 NA 94.10 

Lay-down 
density 

86.3 86.1 NA 88 

Note: NA- Not available or not applicable 
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Figure 8.3. Improvement in the density with the ICA compaction. 

 

8.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL 

The correlation between the core densities and the ICA-estimated densities is shown in Figure 

8.4. The R2 and the standard error of estimate (SEE) for this correlation are  0.98and0.48% , 

respectively. The correlation can be considered as excellent with a low SEE and very high R2. 

Figure 8.5 presents a comparison between the NDG-measured densities and the ICA-estimated 

densities. The  R2 and SEE values are 0.95 and  1.44%, respectively. It may be noted that the 

lay-down densities, which are significantly lower than the compacted densities, were also 

considered in the above-mentioned correlations. This consideration hypothetically increases the 

R2. So comparing the SEE between the different correlations would be more appropriate. Since 

the ICA was calibrated with the core densities, a better correlation between the ICA-estimated 

density and core density than that between the ICA-estimated density and the NDG density was 

expected. Figure 8.6 shows the correlation between core density and NDG density. For this 

case the SEE was found to be 1.60%. As anticipated, this correlation is not as good as the 
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correlation between the ICA-setimated density and the core density. Thus it can be concluded 

that  the ICA can provide a better estimation of the level of compaction of the asphalt layer than 

that which can be provided by an NDG. 

 

Figure 8.4. Comparison between core densities and ICA-estimated densities. 
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Figure 8.5. Comparison between the NDG measured densities and ICA-estimated densities. 
 

 

Figure 8.6. Comparison between the NDG measured densities and ICA-estimated densities. 
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8.7. APPLICATION OF THE ICA IN ESTIMATING DYNAMIC MODULUS 

The ICA can be calibrated to estimate the dynamic modulus in real-time (Singh et al., 2011). In 

a previously conducted research project, it was concluded that the Light Weight Deflectometer 

(LWD) does not provide reliable measurements of pavement moduli (Commuri et al., 2013). 

Therefore, the ICA-estimated density was compared with the dynamic modulus estimated using 

core densities and dynamic modulus master curves that were developed for the mix used in the 

I-35 project.  

 In order to calibrate the ICA and estimate the dynamic moduli in real-time, it was 

necessary to obtain the equivalent dynamic modulus values at different test points in the field. 

Laboratory dynamic modulus tests were conducted according to the AASHTO TP 79-09 test 

method on specimens prepared using asphalt mixes collected from the I-35 project site. The 

test specimens were prepared by compacting them to air voids measured at different cores 

collected from the field. Results of the volumetric analyses of the cores collected from the 

project site are given in Table 8.4. It can be seen that the air void of the field cores range from 

4.75 to 7.65%. Based on the volumetric analysis of the cores collected from the sites, it was 

decided to prepare dynamic modulus specimens for four different percentages of air voids. The 

selected air voids (target air voids) for dynamic modulus tests are 4%, 5.5%, 7% and 8.5% with 

a ±0.5% tolerance. Three specimens were tested for each air void. It may be noted that initially 

a large number of trial specimens were prepared and the test specimens were selected based 

on the target air voids. Each specimen was tested at 4 different temperatures (4, 21, 37 and 54 

°C) and 6 different loading frequencies (25, 10, 5, 1, 0.5 and 0.1 Hz.), as specified in the test 

procedure. 
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Table 8.4. Volumetric analysis of cores collected from the I-35 project. 

Test points C-1 C-2 C-3 S-1 S-2 S-3 R-9 R-10 
Gmb 2.381 2.380 2.391 2.383 2.396 2.394 2.406 2.410 
Gmm 2.530 2.530 2.530 2.530 2.530 2.530 2.530 2.530 

Relative density (%) 94.09 94.07 94.49 94.21 94.71 94.62 95.09 95.25 
Air void (%) 5.91 5.93 5.51 5.79 5.29 5.38 4.91 4.75 

 

The dynamic modulus test results were used to develop four dynamic modulus master 

curves, one for each target air void. The results from the three specimens tested for each target 

air void were averaged.  

Dynamic modulus master curves were then constructed using the principle of time–

temperature superposition. The reference temperature was specified as 21°C. The dynamic 

moduli results at various temperatures were shifted with respect to loading frequency until the 

curves merged into a single smooth curve. The dynamic moduli master curve as a function of 

frequency describes the loading rate dependency of the material. The amount of shifting at each 

temperature required to form the master curve describes the temperature dependency of the 

material (Bonaquist and Christensen, 2005). The following sigmoidal function (Equation 8.1) 

was fit to construct the master curves. 

log(𝐸∗) =  𝛿 + 𝛼
1+𝑒𝛽+𝛾(𝑙𝑜𝑔𝜔𝑟)                                                                                (8.1) 

where E* = dynamic modulus;  𝜔𝑟= reduced frequency; 𝛿 = minimum value of E*; 𝛿 + 𝛼 = 

maximum value of E*; and β, γ = parameters describing the shape of the sigmoidal function. 

The developed master curves are presented in Figure 8.7. The shift factors and other 

fitting parameters for the master curves as a function of temperatures and air voids percentages 

are given in Table 8.5. As anticipated, the dynamic modulus decreases with the increase in air 

voids percentage. The master curves were then used to determine the asphalt layer dynamic 
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moduli at different locations on the compacted pavement. Figure 8.8 presents the comparison 

between the ICA-estimated dynamic moduli and laboratory dynamic moduli. It can be seen from 

Figure 8.7 that the ICA is effective in estimating layer modulus of the pavement during 

compaction. Further, the ICA-estimated modulus correlates well with the dynamic modulus of 

the pavement layer (R2
 = 0.73). 

 
Figure 8.7. Master curves for four different target air voids for the I-35 project. 

 

Table 8.5. Shift factors and fitting parameters used in developing the master curves for I-
35 project. 

 
Shift factors for different air voids and temperatures 

Temperature 4% AV 5.5% AV 7% AV 8.5% AV 
4°C 2.00 2 1.9 2 

21°C 0 0 0 0 
37°C -0.1 -1.2 -1.5 -1.4 
54°C -2.8 -2.6 -2.6 -2.2 

Fitting parameters     
𝛼 21990 16990 14990 11990 
β 1.7 1.6 1.5 1.59 
γ 0.6 0.61 0.63 0.75 
𝛿 10 10 10 10 

Note: AV = air voids percentage 
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Figure 8.8. Correlation between the ICA-estimated dynamic moduli and the laboratory 
measured dynamic moduli for the I-35 project. 
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9. CASE STUDY 6: COMPACTION OF ASPHALT LAYER (ACME ROAD PROJECT) 

 

9.1. IDENTIFICATION OF SITE 

This site is located on Acme Road (between NS Co Road 339 and Franklin Road) near Highway 

177 in Shawnee, Oklahoma (Figure 9.1). Two lanes of Acme Road were paved with asphalt 

pavement. Intelligent Compaction was performed on the 76-mm (3-inch) asphalt base layer and 

also on the 51-mm (2-inch) surface layer. This project was selected as a representative of a low 

volume rural road in Oklahoma, and the asphalt layer was placed on the unstabilized granular 

layer, as shown in Figure 9.2. The construction at this site was carried out by Haskell Lemon 

Construction Company, Oklahoma City, OK on June, 2014. 

9.2. CHARACTERIZATION OF ASPHALT MIX  

The properties of aggregates, binder and asphalt mixes used in the base and surface layers are 

summarized in Table 9.1 and Table 9.2, respectively. The asphalt mixes of both layers 

contained  a PG 64-22 OK binder. The nominal maximum aggregate size (NMAS) for the base 

layer was 25.4 mm (1 inch). The NMAS value for the surface layers was 12.7 mm (½ inch). Both 

the layers also contained a significant percentage of RAP. The base layer mix contained 25% 

RAP and the surface layer mix contained 35% RAP.  

9.3. CALIBRATION OF THE ICA   

A double drum smooth vibratory roller was used for compaction of both the base and surface 

layers. The ICA was calibrated separately for each layer. Calibration procedures for the two 

layers were identical and similar to the procedure discussed in Section 7. The ICA was 

calibrated on a  9.14-m (30 ft) long stretch on the base layer as well as on the surface layer. The 
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locations of the calibration stretches for both the layers are shown in Figure 9.3. Three cores 

(C1, C2 and C3) were extracted from the calibration stretch of each layer, on the following day 

after compaction (Figure 9.4).   

 

 
 

Figure 9.1. Location of the Acme Road project.  
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Figure 9.2. Unstabilized granular layer to support the asphalt base layer.  
 

 
Table 9.1. Properties of aggregate, asphalt binder and asphalt mix used in the base layer. 

Parameters Value 
Nominal maximum aggregate size 25.4 mm 

Los Angeles abrasion (%) 23.7% 
Effective specific gravity of aggregates 2.707 

Type of asphalt binder  PG 64-22 OK 
Proportion of RAP in the asphalt mix 25% 

Specific gravity of asphalt binder 1.010 
Asphalt binder content 4.0% (total); 3.0% (virgin) 

Maximum theoretical specific gravity of asphalt mix 2.535 
Voids in mineral aggregates 13.6% 

 

Table 9.2. Properties of aggregate, asphalt binder and asphalt mix used in the surface layer. 

Parameters Value 
Nominal maximum aggregate size 12.5 mm 

Los Angeles abrasion (%) 23.4% 
Effective specific gravity of aggregates 2.693 

Type of asphalt binder  PG 64-22 OK 
Proportion of RAP in the asphalt mix 35% 

Specific gravity of asphalt binder 1.010 
Asphalt binder content 4.7% (total); 3.5% (virgin) 

Maximum theoretical specific gravity of asphalt mix 2.495 
Voids in mineral aggregates 15.2% 
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Figure 9.3. Location of test points on base and surface layers of Acme Road. 
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Figure 9.4. Extraction of roadway cores from Acme Road project. 

 

9.4. ICA MEASUREMENTS 

The ICA measurements were taken throughout the compaction of both the base and surface 

layers. The ICA recorded the roller vibrations, spatial locations of the roller, the surface 

temperature of the mat, and the estimated density throughout the compaction process. 

Verification of the ICA-estimated densities was carried out by comparing the estimated density 

with the density of cores extracted from the compacted base and surface layers at randomly 

selected test locations. Figure 9.5 and Figure 9.6 show compaction of the base layer and 

surface layer, respectively, using a smooth drum vibratory roller equipped with the ICA.  

87 
 

 

 



 

Figure 9.5. Recording ICA measurements during the compaction of the base layer. 
 

 

Figure 9.6. Recording ICA measurements during the compaction of the surface layer. 
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9.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS 

The performance of the ICA in identifying and remediating the under-compacted regions was 

tested on both the base and surface layers of this project. Under-compacted regions were 

identified at multiple regions both on the base and surface layers, as shown in Figure 9.3. 

Additional roller passes were provided to improve the level of compaction in those regions, 

wherever possible. ICA measurements were taken both before and after the remedial passes. 

In the base layer, six under-compacted regions (S1 to S6) were identified. Remedial 

roller passes were applied on first 5 regions (S1 to S5). The roller operator could  not provide 

additional passes on the last region (S6) because of time constraint. In the surface layer, four 

under-compacted regions were identified. However, remedial passes could only be applied on 

first two regions (S1 and S2) because of time constraint. It may be noted that as the Intelligent 

Compaction was not specified as a requirement, roller operator showed reluctance in applying 

additional passes outside the traditional procedure. 

Figure 9.7 presents a comparison of the ICA density measured before and after the 

remedial passes. It is seen for the base layer that the density at the four regions (S1 to S4) was 

increased with the remedial passes. The density at Region S5 could not be increased because 

only one additional pass was provided on S5 as compared to two or three remedial passes on 

the other regions. It was difficult to keep the roller operator motivated towards the end of the 

day. The average density of the five regions improved from 90.9% to 92.2%. In the surface 

layer, the density was found to increase in one region (S1), while in the other region it remained 

almost the same. The average density improved from 93% to 93.2%. 
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Figure 9.7. Improvement in ICA-estimated density with remedial roller passes at the under-
compacted regions. 

 

9.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL 

In order to validate the ICA measured densities, roadway cores were extracted at various 

locations as shown in Figure 9.3. A total of eleven cores were extracted from the base layer and 

seven cores were extracted from the surface layer. Volumetric analyses were performed on all 

the cores. Table 9.3 and Table 9.4 present the results of the volumetric analyses of the cores. 

The core densities varied between 91.05% and 94.09% in the base layer, whereas it varied 

between 90.64% and 94.05% in the surface layer. The lay down density in the base layer was 

88.10% and 86.5% for the base and surface layers, respectively. 

A tabular comparison between the core densities and the corresponding ICA-estimated 

densities for the base and surface layers are presented in Table 9.5 and Table 9.6, respectively. 
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The correlations between the core densities and the corresponding ICA-estimated densities for 

the base and surface layers are given in Figure 9.8 and Figure 9.9. The correlations are quite 

reasonable for both the base (R2 = 0. 85) and surface (R2 = 0.93) layers. From these 

correlations, it can be concluded that the ICA could measure the density with a reasonable 

accuracy. 

Table 9.3. Volumetric analysis of the cores collected from base layer in Acme Road project. 

Parameters 
Test points 

C1 C2 C3 S1 S2 S3 S4 S5 R1 R2 R3 
Wt. in air (A) 2567.2 2691.5 2790 2998.8 2570 2401.9 2393.2 2325.7 2335.4 2815.8 2677.8 
Wt. in water 

(C) 1495.2 1565.2 1627.2 1731.2 1490.5 1393.2 1379.2 1344.4 1341.7 1620.8 1563.2 

Wt. SSD (B) 2598.2 2700.6 2796.4 3010.7 2584.4 2418.5 2403.6 2337.1 2353.1 2829 2691.2 

Gmb 2.327 2.371 2.386 2.344 2.349 2.343 2.336 2.343 2.309 2.331 2.374 

Gmm* 2.536 2.536 2.536 2.536 2.536 2.536 2.536 2.536 2.536 2.536 2.536 
Density (% 

of Gmm) 91.78 93.48 94.09 92.42 92.64 92.38 92.12 92.38 91.05 91.90 93.61 

% Air void 8.22 6.52 5.91 7.58 7.36 7.62 7.88 7.62 8.95 8.10 6.39 
Core 

thickness 
(mm) 

71.5 73 74 81 68 66 64 62.5 64 76 71 

 

Table 9.4. Volumetric analysis of the cores collected from surface layer in Acme Road project. 

Parameters 
Test points 

C1 C2 C3 S1 S2 S3 S4 
Wt. in air (A) 1636 1421.8 1519.1 1656.9 1589.9 1695.1 1798.9 

Wt. in water (C) 930.5 800.4 862.5 954.1 911.8 965.9 1030 
Wt. SSD (B) 1641.4 1429.6 1527.2 1660.8 1593.3 1699.3 1803.1 

Gmb 2.301 2.260 2.285 2.345 2.333 2.311 2.327 
Gmm* 2.493 2.493 2.493 2.493 2.493 2.493 2.493 

Density (% of Gmm) 92.31 90.64 91.67 94.05 93.58 92.71 93.34 
% Air void 7.69 9.36 8.33 5.95 6.42 7.29 6.66 

Core thickness (mm) 45 42 43.5 43.5 45.5 44 47 
   * Gmm was provided by the contractor. 
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Table 9.5. Comparisons of ICA-estimated density and core density at test points on the  
base layer. 

Test points 
Density (%) Difference between core 

and ICA densities (%) Core ICA 
C1 91.8 91.5 0.3 
C2 93.5 93.7 -0.2 
C3 94.1 92.8 1.3 
S1 92.4 93 -0.6 
S2 92.6 93.3 -0.7 
S3 92.4 91.9 0.5 
S4 92.1 91.7 0.4 
S5 92.4 91 1.4 
R1 91.1 90.5 0.6 
R2 91.9 91.1 0.8 
R3 93.6 93 0.6 

Note: Cores were not extracted at all the test points, as shown in Figure 9.3.  

 

Table 9.6. Comparisons of ICA-estimated density and core density at test points on the surface 
layer. 

Test points 
Density (%) Difference between core 

and ICA densities (%) Core ICA 
C1 92.3 92.2 0.1 
C2 90.6 91.5 -0.9 
C3 91.7 92.8 -1.1 
S1 94 93.2 0.8 
S2 93.6 93.2 0.4 
S3 92.7 92.7 0 
S4 93.3 93 0.3 

Note: Cores were not extracted at all the test points, as shown in Figure 9.3. 
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Figure 9.8. Correlation between core density and ICA-estimated density for the base layer in 
Acme Road project. 

.  

Figure 9.9. Correlation between core density and ICA-estimated density for the surface layer in 
Acme Road project. 
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It may be noted that the density was also measured at many test points by an NDG. A 

comparison between the NDG measured densities and the ICA-estimated densities for the base 

and surface layers is provided in Figure 9.10 and Figure 9.11, respectively. Reasonably good 

correlations were obtained between the NDG measured and ICA-estimated densities, with R2 = 

0.85 for base layer and 0.98 for surface layer, respectively. 

 

Figure 9.10. Correlation between NDG-measured density and ICA-estimated density for the 
base layer in Acme Road project. 
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Figure 9.11. Correlation between NDG-measured density and ICA-estimated density for the 
surface layer in Acme Road project. 
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10. CONCLUSIONS AND RECOMMENDATIONS 

 

10.1. CONCLUSIONS 

Use of the Intelligent Compaction Analyzer (ICA) to estimate the resilient modulus of stabilized 

subgrade and the relative density of asphalt layers during compaction was evaluated in this 

project. In addition, the feasibility of identifying and remediating the under-compacted regions 

was studied.  

Six case studies were considered in this project to demonstrate the ability of the ICA to 

estimate the level of compaction during construction and use these estimates to identify and 

remediate inadequate compaction. The first two case studies utilized compaction data collected 

during the construction of stabilized soil subgrade at two different locations. The data were used 

to refine a method by which the level of compaction of the subgrade layer could be estimated in 

terms of ICA modulus. This method was then used in Case Studies 3 and 4 to demonstrate the 

use of the ICA in improving the compaction of stabilized subgrades modified with Cement Kiln 

Dust (CKD). In Case Study 3, the use of the ICA in compaction of stabilized subgrade was 

demonstrated during the reconstruction and widening of I-35 in Norman, Oklahoma. In Case 

Study 4, the ICA was demonstrated during the extension of the I-35 Service Road in Norman, 

Oklahoma. In both of these case studies, a smooth steel drum vibratory roller equipped with the 

ICA was used to proof roll the subgrades that were initially compacted using pad-foot rollers. 

After calibration of the ICA, the ICA modulus of the subgrade was estimated and recorded 

continuously during the proof rolling process. Several test locations were marked on the 

compacted subgrade, and the moisture content and the dry density values were measured 

using a Nuclear Density Gauge (NDG). The method developed in Case Studies 1 and 2 was 

used to estimate the modulus at these test locations. The GPS readings of the test locations 
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were used to determine the ICA modulus at these locations. A comparison of the ICA modulus 

with the modulus determined through statistical means shows that the ICA can estimate the 

modulus during compaction with an accuracy level suitable for quality control in the field. As-

built maps developed using ICA-estimated moduli were used to detect regions of inadequate 

compaction on the subgrade. Remedial rolling at those locations showed that the level of 

compaction of stabilized subgrade can be improved if the level of compaction was determined 

during compaction and under-compacted regions rectified. 

In the last two Case Studies, the use of the ICA in improving the compaction quality of 

asphalt layers was demonstrated. The ICA was first installed on a dual steel drum vibratory 

roller and calibrated to estimate the density of asphalt layers being compacted on top of the 

subgrade prepared in the first demonstration. During the compaction process, the ICA-

estimated density was recorded continuously over each roller pass. After the compaction of the 

stretch, test locations were marked on the compacted asphalt pavement and the density at 

these locations was recorded using a NDG. Cores were then extracted from these locations on 

the compacted pavement and their density was measured in the laboratory. A comparison of the 

ICA-estimated density at these locations with the density of the cores measured in the 

laboratory shows that the ICA can estimate the density with an accuracy level suitable for 

quality control purpose in the field. Similar to the previous case, after the stretch was 

compacted, the as-built map generated by the ICA was used to determine regions of inadequate 

compaction. Remedial rolling on these regions was carried out and the density at select 

locations was determined through extraction of cores. A comparison of these densities with the 

densities estimated by the ICA shows that the overall density improved as a result of remedial 

rolling. Further, the variance of these densities about their mean was smaller than the variance 

observed during the traditional compaction process. 
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The ICA moduli were validated by comparing them with the laboratory equivalent 

resilient modulus for the stabilized subgrade. The ICA moduli were also validated by comparing 

them with the FWD and DCP test results wherever possible. Natural subgrade soil and additives 

from each of the ICA demonstration sites were evaluated and their properties were studied in 

the laboratory. Separate regression models were developed for each demonstration site to 

correlate the resilient modulus with the moisture content, dry density and stress states. It was 

found that the ICA modulus and laboratory resilient modulus correlate well when the comparison 

was performed separately for each site, with limited data points. The coefficient of determination 

(R2) was found to be between 0.60 and 0.65 at each test site. It is interesting to note that when 

the correlations between the ICA modulus and the laboratory resilient modulus was studied by 

combining the data points (81 data points) from all the stabilized subgrade compaction related 

projects, the correlation improved significantly as shown in Figure 10.1. The R2
 for this case is 

0.89. 

 
Figure 10.1. Correlation between ICA modulus and laboratory resilient modulus, data from four 

different projects (81 data points). 
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The other important finding from this study is that the ICA can be used to identify and 

remedy under-compacted regions during the construction of pavements. In both subgrade 

compaction projects (I-35 and I-35 Service Road projects), it was shown that the average 

modulus of the entire subgrade can be improved. The level of compaction in the entire project 

stretch was also more uniform when the ICA compaction procedure was followed. 

In the asphalt layer compaction projects, the ICA was used in real-time monitoring of 

level of compaction in terms of relative density. The relative density is the ratio of the density at 

any location to the maximum theoretical density. The relative density was monitored throughout 

the compaction process. Under-compacted regions were identified during this process. 

Additional remedial passes were applied to improve the level of compaction on the identified 

under-compacted regions.  

The ICA-estimated relative densities were validated by comparing them with the relative 

density of cores extracted from selected locations on the compacted asphalt layer. The 

coefficient of determination (R2) was found to vary between 0.85 and 0.98. The correlation 

between the ICA-estimated density and density of the cores was studied by combining the data 

points (55 data points) from the two asphalt projects. The R2 value was found as 0.93, as shown 

in Figure 10.2.  

In a manner similar to subgrade compaction projects, the ICA can be helpful in 

identifying and remediating any under-compacted regions in asphalt layers as well. In both 

projects involving asphalt layer compaction (I-35 and Acme Road projects), it was shown that 

the average density of the asphalt layer can be improved. The level of compaction in the entire 

project stretch became uniform when the ICA compaction procedure was followed. 

99 
 

 

 



 
Figure 10.2. Correlation between core density and ICA-estimated density for the two asphalt 

layer projects (55 data points). 
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1)  Difficulty in coordinating field test schedules with construction schedules as IC is not a 

requirement in the project specifications;  

2)  Selection of number and test locations is constrained by project schedules and weather 

conditions; 

3) Availability of construction sites that meet project requirements such as layer thickness 

and length of the pavement for demonstration is an ongoing challenge; 

4)  Verification of the impact of IC-based construction on the performance of pavements is 

hard to ascertain unless the entire pavement is constructed using IC techniques and 

evaluated periodically; 

6)  Contractors and pavement professionals are still unclear on the functionality and 

benefits of IC techniques. Lack of information about specifications and incentives for 

implementation of IC is also a limiting factor in the early adoption of the technology. 

Based on the experience gained from the current study, the following recommendations 

are made for studying the performance of ICA in greater detail and to further the early 

acceptance of Intelligent Compaction methods: 

7) The necessary specification or a special provision shall be developed for Intelligent 

Compaction of both the stabilized subgrades and asphalt layers; 

8) Intelligent Compaction shall be considered as a requirement in the bidding of the work; 

9) Workshops and training programs shall be conducted for providing necessary training to 

the construction crews; 
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10) ICA technology shall be demonstrated on more construction sites varying with soil type, 

additive type and asphalt layer property to study the influence of these parameters on 

the ICA-estimated compaction quality parameters (ICA modulus of subgrade, density of 

subgrade, density of asphalt layer, dynamic modulus of asphalt layer); 

11) Research studies shall be carried out to study the long-term benefits of the Intelligent 

Compaction; 

12) The closed-loop control of vibratory compactors during Intelligent Compaction of 

subgrade and asphalt layers shall be considered in future projects. 

The field demonstration presented in this report would not have been possible without 

the unparalleled support of Oklahoma Department of Transportation (ODOT), Haskell Lemon 

Construction Company (HLCC), Oklahoma City, Oklahoma and Silver Star Construction 

Company, Moore, Oklahoma. Access to HLCC's construction sites, equipment, and their 

technical staff has been vital to the success of this project. In particular, the authors wish to 

thank Jay Lemon (Chief Executive Officer, HLCC), Bob Lemon (Chief Operations Officer, 

HLCC), and Craig Parker (Vice-President, Silver Star Construction Company) for their vision 

and unqualified support of the research team. Their partnership with OU has been critical for 

the success of this project. 
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IntellIgent AsphAlt CompACtIon AnAlyzer 

User Manual 

Version 2.0 
 

1.0 Introduction 
The Intelligent Asphalt Compaction Analyzer (IACA)

 
is a roller-mounted device that can 

measure the density of an asphalt pavement during its construction. The IACA 
measures the vibrations of the drum of the vibratory compactor during the compaction 
process and estimates the density of the asphalt mat continuously, in real-time during 
the pavement’s construction.  
 
Quality control techniques currently used in the field involve the measurement of density 
at several locations on the completed pavement or the extraction of roadway cores. 
These methods are usually time consuming and do not reveal the overall quality of the 
construction. Furthermore, any compaction issues that are identified cannot be easily 
remedied after the asphalt mat has cooled down. The ability of the IACA to measure the 
level of compaction of the asphalt pavement during its construction will enable the roller 
operator to identify and remedy under-compaction of the pavement while avoiding over-
compaction. 
 
Key features of the IACA are: 
 

• Neural network based intelligent analyzer that can estimate the density over the 
entire pavement. 

• Display of mat density, surface temperature, roller position, speed and heading in 
real-time. 

• Density is also displayed as a ‘strip chart’ to help identify the uniformity of 
compaction on a given stretch of the pavement. 

• The displayed information is updated twice every second with a spatial resolution 
of better than 0.3 meters (1 foot). 

• Intuitive, easy to use, calibration procedures that allow for accurate estimation of 
density of both full-depth, as well as overlaid asphalt pavements. 

• Can be used to estimate the density of thick lifts (base and intermediate lifts), as 
well as thin lifts of asphalt pavement (surface course). 

• Built-in utilities can be used to validate the density at a given location on the 
pavement against Nuclear Density Gauge (NDG) readings or density measured 
from a roadway core. 

• As-built maps to plot the overall compaction for the entire roadway construction. 
• Pass-by-pass density to detect under compaction and prevent over compaction 

of the pavement. 
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2.0 Installation Procedure 
The Intelligent Asphalt Compaction Analyzer (IACA) consists of a rugged Tablet PC, 
GPS receiver, uniaxial accelerometer, and an infrared temperature sensor. The IACA 
should be mounted on a Volvo DD138HF or similar roller prior to its calibration and use. 
The installation procedure is described in this section. 

2.1 Components 
Check and verify the following components prior to installing the IACA on a Volvo 
DD138HF roller.  

 
1) Rugged Tablet PC (Figure 1). 
2) Trimble Pathfinder ProXT GPS receiver (Figure 2). 
3) Raytek CI noncontact infrared pyrometer (Figure 3). 
4) Summit Instruments 13200C 10g accelerometer (Figure 4). 
5) Tablet PC mounting platform (Figure 5). 
6) Mounting bracket (Figure 6). 
7) Swivel arm (Figure 7). 
8) Mounting Hardware (8 – 5/8 x 6 inch bolts, 8 – 5/8 inch nuts, 16 – 5/8 inch 

washers, 16 – 5/8 inch lock washers. Tie wraps). 
 

 
 

Figure 1. T8700 Rugged Tablet PC with integrated numeric keypad 
(shown on mounting platform) 
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Figure 2. Trimble Pathfinder ProXT GPS receiver 

 

 

Figure 3. Raytek CI noncontact infrared temperature sensor 

 

 

 

Figure 4. Summit Instruments 10g uniaxial accelerometer 
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Figure 5. Tablet PC mounting platform with spring loaded latch 

 

 

Figure 6. Bracket used to attach the Tablet PC platform  
to the rail on the roller 

 
 

 
 

Figure 7. Swivel arm used to attach the Tablet PC platform  
to the mounting bracket 
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2.2 Installation 

 
 

Figure 8. Mounting location labels on a Volvo DD118HF roller. 
 

1 Find the best location on the drum to mount/glue the accelerometer. The 
closer to the drum the better and it should always be before the drum rubber 
mount to make sure the measured vibration is for the drum and not the roller 
body frame. Once the location is defined, clean it and use superglue to mount the 
accelerometer. 
2 Mount the temperature sensor on its bracket and then glue it on a safe location 
on the frame pointing down towards the road surface. 
3 Mount the GPS receiver on top of the roller. The GPS receiver has foam 
padding and a magnet that is good enough to stay in place without the need for 
glue or tape. Turn GPS receiver on. Write down the horizontal distance between 
the GPS and the accelerometer (offset distance) for later use during the post 
processing. 
4   

1. Mount the mounting bracket (Figure 6) to a convenient location on the rail.  
It is a good practice to use foam padding to absorb vibration.  Mount the 
bracket by running the bar between the semicircular rods and tightening 
the bolts so that the bracket will not slide when the roller vibrates.  Make 
sure the knob is facing inside the cab.   

2. Attach the swivel arm (Figure 7) to the knob on the mounting bracket 
(Figure 6) and to the knob on the mounting platform (Figure 5) by inserting 
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the knobs into each side of the swivel arm and adjusting the tightening 
screw.  Make sure the mounting platform is situated so that the ribbon 
cable is on top. 

3. Insert the tablet PC in to the mounting platform.  Do this by pulling the top 
bracket back and fitting the tablet PC in the space provided, and then 
bend the top bracket back down ensuring the tablet PC remains in place.  
Connect the power cord from the mounting bracket to the associated plug 
on the bottom of the tablet PC. 

4. Connect the ribbon cable to the data acquisition on the tablet.  There are 
three cables coming out of the back of the cradle labeled C1, C2 and C3. 
Connect the cable attached to the accelerometer to C1, the temperature 
sensor cable to C2.  If needed, use straight serial cables to reach sensors. 

5  
1. Connect the power cable to C3 and to a 12V battery if available.  

Otherwise open the roller engine hood and connect to its battery.  Use 
care when tapping to the roller’s battery to avoid electric shocks and 
make sure polarities are correct. 

2. Turn the tablet PC on by depressing the gray button on the top left hand 
side of the face of the tablet PC.  Once this is on, connect the GPS null-
modem cable to its associated port on the bottom of the tablet PC.  Wait 
until the tablet PC is ON before connecting the GPS using the null-
modem serial cable. 

2.3 IACA Initialization 
Boot up the Tablet PC by depressing the power button. After the Tablet PC has 
been powered up and the Windows XP operating system has been booted up, the 
IACA will be started automatically. The user interface to the application is shown in 
Figure 9 with different features being outlined. 
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Figure 9. IACA user interface  

 
 

3.0 Calibration of the IACA 
The IACA is based on the hypothesis that the hot mix asphalt layer being compacted 
and the vibratory compactor form a coupled system whose vibrations are affected by 
the stiffness of the asphalt mat. As the compaction process unfolds, the stiffness of the 
asphalt mat increases and as a consequence the response characteristics of the roller 
are altered. These changes in the response can be used to determine the level of 
compaction achieved. In order to determine the level of compaction, the IACA should be 
trained to recognize the response of the roller during the compaction process. The 
calibration process described below is designed to train the IACA to recognize the 
vibrations resulting from different levels of compaction and to generate the density 
information based on the characteristics of the mix. 
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The calibration of the IACA is a two-step process. In the first step, the vibrations of the 
roller are captured over successive passes on a calibration stretch. These vibrations are 
analyzed and features corresponding to different levels of vibrations are extracted. The 
extracted features correspond to the amplitude of the vibrations at salient frequencies. 
These features are then used to train the neural network. After the completion of the 
training process, the neural network can classify vibrations of the roller during 
compaction as those corresponding to one of the predetermined levels of compaction. 
For the sake of calibration, the lowest level of vibration is assumed to correspond to the 
lay down density while the highest level of vibration is typically encountered when the 
target density is achieved.  
 
In the second step of the calibration procedure, the calibration performed in step one is 
refined to improve the accuracy of the density measurements. After the calibration 
stretch is compacted, three cores are extracted from the completed pavement and the 
estimated densities at these locations are compared to the densities measured from the 
cores according to the AASHTO T-166 standard. The calibration parameters are then 
modified to minimize the error between the estimated and measured densities at these 
locations.  
 

3.1 Selection of a pavement section for calibration of IACA 
i) First a control strip of approximately 100 feet (33 meters) long needs to be 

selected. Mark off a 30 foot calibration section in the middle of this control 
strip (Figure 11). The start and end of the calibration section need to be 
marked by GPS coordinates at the center line of the pavement. The GPS 
receiver is used to trigger the collection of the vibration data when the roller 
starts compacting this section of the pavement.  

ii) Mark test locations at the center of the lane at distances of, five feet, fifteen 
feet and twenty five feet from the beginning of the test section.  

iii) Stop the compaction process when no appreciable increase in the density is 
seen after the roller pass. After the final pass of the roller, three core locations 
are marked as shown in Figure 11. The GPS location of the cores is collected 
in the Tablet PC as explained in the section 4.0. Also, the density at the core 
and in the immediate vicinity of the core is recorded for each of the three 
cores using a hand held density gauge.  

iv) The cores marked in the previous step need to be extracted and their density 
is measured in accordance with the AASHTO T-166 method. 

v) The densities of the extracted cores are used to train and calibrate the IACA 
as detailed in the following sections of this manual. 
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Figure 11. Selection of core locations after the final pass of the roller 

3.2 Calibration procedure 
1. Make sure that the GPS is updating by looking at the coordinates textbox on the 

display (see figure below).  
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2. Let the roller compact a couple of stretches (not passes) and make sure that the 
data is being saved by looking at the status textbox (see figure above). 

3. Mark a calibration region of 30 feet as shown in the figure below:

 
 

4. Make sure that the roller compacts all the passes without stopping and within 13 
minutes. Also make sure that the roller stops for at least 1 minute before and 
after the calibration stretch for the roller to save data. 

5. The last pass of the calibration region should be in the middle of the road. 
6. In the tools tab of IACA, push “Start Point” button while the roller is aligned with 

the start line and the “End Point” button at the end of the calibration stretch. 
 

              
 

Figure 12. IACA Tools window 
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7. After the calibration region is compacted and the roller is stopped for the data to 
be saved (remember the file number), go to the tools tab and push the 
“Calibration” button (Figure 12). The following three windows appear on the 
screen.   

 
                                          Figure 13. IACA command editor window 

 

 
                                                 Figure 14. IACA process window 
 

 
                                       Figure 15. IACA Select a working day window 
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8. Select a working day as shown in the figure below. 
 

 
 
After selecting the working day, enter the following parameters: G-sensor 
position on the drum (front or rear), distance between GPS and G-sensor (offset 
distance) in feet and drum width in feet (as shown in the figure below) and push 
“Confirm” button.  
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9. Push on the “CALIBRATION MODULE” button in the IACA process window of 
figure 14. 
 

The following window appears after the successful initaialization of the calibration 
module. Click “OK”. 
 

 
 

Figure 16. IACA Calibration Module window 
 
10. Push “Train a neural network” button in the figure above. 
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11. After training is finished, select the theoretical maximum density as 96% and 
minimum density as 91% then push the “Calibrate” button. A new file named 
datecalRaw.mat is created and the new Calibration parameters are saved to it.  

12. Close everything including the IACA application then open it again and make 
sure the right Neural Network is selected in the IACA Tools tab (see figure 12). 

13. After you get the core densities of the calibration region from the lab, go back to 
the Calibration Module (figure 16) and change the selection from “Raw 
Calibration using Maximum Density” to “Calibration using Measured Density”. 

14. Push the “Get Estimated Density” button to get the estimated densities at the 
three core locations. Enter the corresponding Lab densities on the right side and 
push the “Calibrate” button (see figure below). 

 
15. Close everything and then reopen IACA. 

 
This completes the calibration procedure.   

17 of 28 



3.3  Validation of IACA Measurements 
At the end of each day or whenever needed, GPS location of the cores should be 
collected to be able to correlate estimated density with the measured ones. The 
following steps describe core marking operation: 
 

1. Remove the GPS receiver from the roller and reconnect it to the tablet PC if the 
cable was disconnected during the operation. 

2. Disconnect the ribbon cable coming from the cradle to the data acquisition on the 
tablet PC. 

3. Remove the tablet from the cradle and put the GPS receiver on top of the core to 
be marked. 

4. On the Tools tab of the IACA GUI (figure 12), select a letter from the drop down 
menu as a core name for the day and type in the core number in the box next to 
it (see figure below). 

 
 

5. Push the “Mark Core” button to register the GPS coordinates in the box. The 
“Mark Core” button can be pushed as many times as the operator wants, without 
the data (GPS coordinates) being saved. Once the GPS coordinates are ready to 
be saved, the “Save to File” button should be pressed to automatically save or 
append the information to a text file named datecore.txt .   

6. The “Measured Density” and “Core Density” boxes are optional information that 
can be filled in case the density measurement is available. 

7. Repeat steps 4 to 7 for each core location. 
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4.0 Run Time Monitoring of Compaction 
The calibrated IACA can be used to monitor the progress of compaction as well as to 
evaluate the quality of the construction. The capability of the IACA to influence the 
quality of compaction of asphalt pavements during their construction is described in this 
section. 

4.1Monitoring of the compaction process 
To monitor the progress during compaction, select the ‘Display’ option in the IACA user 
interface (Figure 17). The interface shown in Figure 17, displays the roller position 
(latitude and longitude), the roller speed and heading, the surface temperature of the 
asphalt mat and the density of the pavement at the current location. The display is 
updated two times every second. 
 

 
 

                                         Figure 17. Real-time display of compaction density 
 

The above figure also displays the density of the asphalt mat during the compaction as 
a ‘strip chart.’ This chart provides visual feedback on the uniformity of compaction to the 
roller operator. 
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4.2 Compaction maps and tools for analysis 
In addition to providing real-time information on the density achieved during compaction, 
the IACA can also be used to evaluate the overall quality of compaction over the entire 
project.  
 

1. On the tools tab of the IACA GUI push the “Calibration” button and select a 
working day. 

 
 

2. On the main window push “ANALYZER MODULE”. 
 

 
3. On the Analyzer Module window select a task to be performed. 
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Figure 18. IACA Analyzer Module  
 
There are a number of useful tools in IACA (as depicted in the figure above) which are 
helpful to understand the compaction process as well as to estimate the overall quality 
of the construction. A few of these tools are described below. 
 

4.2.1 Generation of as-built maps 
We can generate compaction map of a particular stretch using “Plot compaction map” 
tool in the IACA Analyzer module of figure 18. Once the tool is selected, we need to 
choose the stretch for which the map is required, neural network, calibration parameters 
and then push “Perform the selected task” button (see figure 19 below).  
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Figure 19. IACA “Plot Compaction tool” 

An example plot is shown below. 
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In the above plot, each color corresponds to a different density level. So this map 
basically shows an outline of the approximate density achieved during the compaction 
of the stretch.  

4.2.2 Plotting of GPS data 
We can obtain a plot showing the compactor rolling pattern of a particular stretch by 
using the tool “Plot GPS data” in the IACA Analyzer module (figure 18).  Once the tool is 
selected from the scroll down list, we need to choose the stretch for which the data is to 
be plotted and then push “Perform the Selected task” button (see figure 20 below).   
 

 
 

Figure 20. IACA “Plot GPS data” tool 
 
An example plot is shown on the following page. 
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4.2.3 Validate the compaction values at a point 
Using the “Validate at a point “ tool in IACA, we can estimate the density of a particular point or 
location on the pavement. Use the scroll down menu (as shown in the figure below) to select the 
core location and then push “Perform the selected task” button. This will generate a figure 
displaying the density during each pass for the selected core. 
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An example figure is shown on the following page. 
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    Figure 21. Estimated Density of a core using IACA tool 

 

5.0 Usage and Precautions 
The IACA is capable of displaying the density of the asphalt mat continuously during its 
compaction. This information is also stored along with the GPS data and other relevant 
information for analysis of the quality achieved. While the accuracy of the measured 
densities have been found to be comparable to hand held devices used for in-situ 
testing of the density, a proper understanding of the technology and the calibration 
process is essential to obtaining accurate measurements. The following points must be 
kept in mind during the calibration and use of the IACA. 
 

• Proper calibration is key to getting accurate measurements of density.  
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• The density obtained on compaction of an asphalt pavement depends on the 
mix, lift thickness, compacting equipment, and more importantly on the 
underlying layers of asphalt as well as the subgrade. Inability to obtain desired 
compaction can usually be traced to a poor asphalt mix or to insufficient 
preparation of the site.  

 
• For accurate results, the IACA must be calibrated for each layer of the pavement 

under construction. Further, recalibration is warranted whenever there is an 
appreciable change in either the mix or the site characteristics. 

 
• GPS sensors require a clear line of sight to the satellites for their proper 

functioning. Roadway construction under bridges and overpasses, as well as in 
cities with tall structures, poses a problem in determining the spatial location of 
the roller.  
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6.0 Removal and Care of IACA Components 
The IACA and associated components have been designed for easy installation and 
removal. While it may be necessary to retain the equipment for a period of several 
weeks during the evaluation process, it is necessary to remove the computational 
platform (Tablet PC) and the GPS receiver at the end of each day’s activities. The 
following steps must be followed to safely remove the Tablet PC and the sensor. 
 
Step 1.Save all relevant files and terminate the IACA application on the Tablet PC. 
 
Step 2.Power off the Tablet PC and disconnect connectors C1-C3. Also, carefully 

disconnect the ribbon cable connector  and the GPS connector. 
 
Step 3.Ensure that the compactor is turned off and securely parked. Remove the GPS 

receiver from the room of the compactor by gently prying the magnet off from 
the frame. 

 
Step 4.Use the power adapter to charge the internal battery of the GPS sensor for future 

use. 
 
Step 5.Carefully pack the Tablet PC taking care to not scratch or damage the PC 

display. 
 
At the completion of the evaluation, the user is required to remove all the IACA 
components, place them in their original packages, and ship the IACA back to the 
University of Oklahoma. 
 
The address for shipping is: 
 
Attn. Dr. Sesh Commuri 
University of Oklahoma 
School of Electrical and Computer Engineering,  
Devon Engineering Hall, Room 432 
110 W. Boyd St., Norman, OK 73019 

7.0 Troubleshooting 
• Make sure the tablet PC is ON before connecting the GPS receiver. 
• When charging the battery of the GPS receiver, please disconnect the battery 

from the receiver before connecting the charger. 
• If the TabletPC is not receiving power, then check the fuse in the connector 

embedded in the power cable. 

28 of 28 


	ODOT SPR 2246 ODOT Cover February 27
	Oklahoma Department of Transportation 
	200 NE 21st Street, Oklahoma City, OK 73105-3204
	Materials and Research Division
	Research & Implementation
	Implementation of Research
	for Transportation Excellence 
	spr@odot.org

	SPR 2246 Commuri word text - main not appendices first five pages ii
	LIST OF ACRONYMS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	1.1. INTELLIGENT COMPACTION TECHNOLOGY
	1.2. UNIVERSITY OF OKLAHOMA INTELLIGENT COMPACTION ANALYZER (ICA)
	1.3. GOALS AND OBJECTIVES
	1.4. STUDY TASKS

	2. METHODOLOGY FOR SUBGRADE COMPACTION WORK
	2.1. IDENTIFICATION OF SITES
	2.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	2.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	2.4. REGRESSION MODELS FOR RESILIENT MODULUS
	2.5. CALIBRATION OF THE ICA
	2.6. ICA MEASUREMENTS
	2.7. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	2.8. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL

	3. CASE STUDY 1: SUBGRADE COMPACTION (60TH STREET)
	3.1. IDENTIFICATION OF SITE
	3.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	3.3. REGRESSION MODELS FOR RESILIENT MODULUS
	3.4. CALIBRATION OF THE ICA
	3.5. ICA MEASUREMENTS
	3.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL

	4. CASE STUDY 2: SUBGRADE COMPACTION (APPLE VALLEY PROJECT)
	4.1. IDENTIFICATION OF SITE
	4.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	4.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	4.4. REGRESSION MODELS FOR RESILIENT MODULUS
	4.5. CALIBRATION OF THE ICA
	4.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	5. CASE STUDY 3: SUBGRADE COMPACTION (I-35 PROJECT)
	5.1. IDENTIFICATION OF SITE
	5.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	5.3. CALIBRATION OF THE ICA
	5.4. COLLECTION OF ICA MEASUREMENTS
	5.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	5.6. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	5.7. REGRESSION MODELS FOR RESILIENT MODULUS
	5.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL
	5.9. IMPROVEMENT IN THE RESILIENT MODULUS AFTER THE REMEDIAL COMPACTION
	5.10. RELATIONSHIP BETWEEN THE Mr-0 AND Mr-28

	6. CASE STUDY 4: SUBGRADE COMPACTION (I-35 SERVICE ROAD)
	6.1. IDENTIFICATION OF SITE
	6.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	6.3. CALIBRATION OF THE ICA
	6.4. COLLECTION OF THE ICA MEASUREMENTS
	6.4.1. East-west Stretch
	6.4.2. North-south Stretch

	6.5. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	6.6. REGRESSION MODELS FOR RESILIENT MODULUS
	6.6.1. 0-day Curing Period
	6.6.2. 7-day Curing Period

	6.7. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE Mr
	6.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE DCP INDEX
	6.9. COMPARISON OF ICA-ESTIMATED COMPACTION LEVEL WITH FWD MODULUS
	6.10. IMPROVEMENT IN ICA-ESTIMATED MODULUS WITH REMEDIAL COMPACTION

	7. METHODOLOGY OF INTELLIGENT COMPACTION FOR ASPHALT LAYERS
	7.1. IDENTIFICATION OF SITE
	7.2. CHARACTERIZATION OF ASPHALT MIX
	7.3. CALIBRATION OF THE ICA
	7.4. ICA MEASUREMENTS
	7.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	7.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	8. CASE STUDY 5: COMPACTION OF ASPHALT LAYERS (I-35 PROJECT)
	8.1. IDENTIFICATION OF SITE
	8.2. CHARACTERIZATION OF ASPHALT MIX
	8.3. CALIBRATION OF THE ICA
	8.4. ICA MEASUREMENTS
	8.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	8.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL
	8.7. APPLICATION OF THE ICA IN ESTIMATING DYNAMIC MODULUS

	9. CASE STUDY 6: COMPACTION OF ASPHALT LAYER (ACME ROAD PROJECT)
	9.1. IDENTIFICATION OF SITE
	9.2. CHARACTERIZATION OF ASPHALT MIX
	9.3. CALIBRATION OF THE ICA
	9.4. ICA MEASUREMENTS
	9.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	9.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	10. CONCLUSIONS AND RECOMMENDATIONS
	10.1. CONCLUSIONS
	10.2. RECOMMENDATIONS

	REFERENCES

	FY14_2246_Commuri_FinalReport version 2 February 28.pdf
	Asif SPR 2246 Final Report-main part only-01082015
	LIST OF ACRONYMS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	1.1. INTELLIGENT COMPACTION TECHNOLOGY
	1.2. UNIVERSITY OF OKLAHOMA INTELLIGENT COMPACTION ANALYZER (ICA)
	1.3. GOALS AND OBJECTIVES
	1.4. STUDY TASKS

	2. METHODOLOGY FOR SUBGRADE COMPACTION WORK
	2.1. IDENTIFICATION OF SITES
	2.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	2.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	2.4. REGRESSION MODELS FOR RESILIENT MODULUS
	2.5. CALIBRATION OF THE ICA
	2.6. ICA MEASUREMENTS
	2.7. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	2.8. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL

	3. CASE STUDY 1: SUBGRADE COMPACTION (60TH STREET)
	3.1. IDENTIFICATION OF SITE
	3.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	3.3. REGRESSION MODELS FOR RESILIENT MODULUS
	3.4. CALIBRATION OF THE ICA
	3.5. ICA MEASUREMENTS
	3.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL

	4. CASE STUDY 2: SUBGRADE COMPACTION (APPLE VALLEY PROJECT)
	4.1. IDENTIFICATION OF SITE
	4.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	4.3. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	4.4. REGRESSION MODELS FOR RESILIENT MODULUS
	4.5. CALIBRATION OF THE ICA
	4.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	5. CASE STUDY 3: SUBGRADE COMPACTION (I-35 PROJECT)
	5.1. IDENTIFICATION OF SITE
	5.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	5.3. CALIBRATION OF THE ICA
	5.4. COLLECTION OF ICA MEASUREMENTS
	5.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	5.6. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	5.7. REGRESSION MODELS FOR RESILIENT MODULUS
	5.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL
	5.9. IMPROVEMENT IN THE RESILIENT MODULUS AFTER THE REMEDIAL COMPACTION
	5.10. RELATIONSHIP BETWEEN THE Mr-0 AND Mr-28

	6. CASE STUDY 4: SUBGRADE COMPACTION (I-35 SERVICE ROAD)
	6.1. IDENTIFICATION OF SITE
	6.2. CHARACTERIZATION OF NATURAL AND STABILIZED SUBGRADE SOILS
	6.3. CALIBRATION OF THE ICA
	6.4. COLLECTION OF THE ICA MEASUREMENTS
	6.4.1. East-west Stretch
	6.4.2. North-south Stretch

	6.5. RESILIENT MODULUS TEST ON THE STABILIZED SOIL
	6.6. REGRESSION MODELS FOR RESILIENT MODULUS
	6.6.1. 0-day Curing Period
	6.6.2. 7-day Curing Period

	6.7. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE Mr
	6.8. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL WITH THE DCP INDEX
	6.9. COMPARISON OF ICA-ESTIMATED COMPACTION LEVEL WITH FWD MODULUS
	6.10. IMPROVEMENT IN ICA-ESTIMATED MODULUS WITH REMEDIAL COMPACTION

	7. METHODOLOGY OF INTELLIGENT COMPACTION FOR ASPHALT LAYERS
	7.1. IDENTIFICATION OF SITE
	7.2. CHARACTERIZATION OF ASPHALT MIX
	7.3. CALIBRATION OF THE ICA
	7.4. ICA MEASUREMENTS
	7.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	7.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	8. CASE STUDY 5: COMPACTION OF ASPHALT LAYERS (I-35 PROJECT)
	8.1. IDENTIFICATION OF SITE
	8.2. CHARACTERIZATION OF ASPHALT MIX
	8.3. CALIBRATION OF THE ICA
	8.4. ICA MEASUREMENTS
	8.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	8.6. VALIDATION OF THE ICA-ESTIMATED COMPACTION LEVEL
	8.7. APPLICATION OF THE ICA IN ESTIMATING DYNAMIC MODULUS

	9. CASE STUDY 6: COMPACTION OF ASPHALT LAYER (ACME ROAD PROJECT)
	9.1. IDENTIFICATION OF SITE
	9.2. CHARACTERIZATION OF ASPHALT MIX
	9.3. CALIBRATION OF THE ICA
	9.4. ICA MEASUREMENTS
	9.5. IDENTIFICATION AND REMEDIATION OF UNDER-COMPACTED REGIONS
	9.6. VALIDATION OF ICA-ESTIMATED COMPACTION LEVEL

	10. CONCLUSIONS AND RECOMMENDATIONS
	10.1. CONCLUSIONS
	10.2. RECOMMENDATIONS

	REFERENCES

	IACA User Manual-Final
	1.0 Introduction
	Table of Contents
	2.0 Installation Procedure
	2.1 Components
	2.2  Installation
	2.3 IACA Initialization

	3.0 Calibration of the IACA
	3.1 Selection of a pavement section for calibration of IACA
	3.2 Calibration procedure
	3.3  Validation of IACA Measurements

	4.0 Run Time Monitoring of Compaction
	4.1Monitoring of the compaction process
	4.2 Compaction maps and tools for analysis
	4.2.1 Generation of as-built maps
	4.2.2 Plotting of GPS data
	4.2.3 Validate the compaction values at a point


	5.0 Usage and Precautions
	6.0 Removal and Care of IACA Components
	7.0 Troubleshooting




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




