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A bstract

This dissertation presents a m athem atical study and numerical procedure to 

simulate penny-shaped hydraulic fracture (HF) propagation in porous media. It 

accounts for the two-dimensional (2 -1)) pressure-dependent leakofF and poroelastic 

backstress contributions. It allows for m ultiple fracture propagation/closure/re

opening (PCR) events during multiple injection/shut-in/how -back (ISF) pumping 

cycles.

However, th is work is not a simple application of a standard numerical m ethod 

to the general governing equations. Instead, it first proceeds to derive analytical 

expressions for the  early- and late-time asym ptotic poroelastic responses of a pres

surized fracture. It then builds a composite approximate analytical formula to cover 

the interim transient poroelastic response between the two asym ptotic tim e regimes. 

When compared against the numerical com putations using commercial F EM soft

ware for the full mechanical model, the simplified model ia shown to involve less 

than 10% relative error in the significant p a rt of the poroelastic domain. Therefore, 

an adequately accurate m athem atical accuracy exists.

A Duhamel’s theorem-like principle is further derived to extend the foregoing 

stationary fracture-based simplified 2-D model to a propagating fracture. The only 

assumption used is th a t the pore pressure ahead of the fracture tip  remains at the 

in-situ pore pressure level. When the fracture propagation speed is much faster

vn



than fluid diffusion rate, this assum ption is valid. Several examples are computed. 

Analyses of th e  computations show the  physical validity of the extension principle 

and the m athem atical accuracy in the limiting cases. Moreover, the com putation 

shows tha t the  I-D poroelastic model underestim ates the poroelastic effect when 

the fracture propagates a considerable distance.

In another m ajor step, this work derives a pseudo-explicit finite difference scheme 

(PEFD) to com pute the nonlinear, coupled problem of modeling the HF propaga

tion. It is fully implicit in the tim e marching and is thus stable. But it solves one 

point at one tim e, i.e., it is explicit in the solution of the discretized equations. 

Furthermore, the  Newton-Raphson method for a system of nonlinear equations is 

applied to speed up the  convergence. Numerical tests verify its stability and consis

tency as well as m athem atical accuracy. Many other numerical strategies are pre

sented to com pute the multiple PCR fracturing events during multiple ISF pum ping 

cycles. Examples are run to verify overall performance of the resultant HF sim ulator 

and to show its com putational capabilities.

More examples are computed to exemplify the poroelcistic effect. The compu

tations suggest th a t the poroelastic effect increases the wellbore pressure response 

and reduces bo th  the fracture aperture and radius. In the computed examples, a 

maximum of 150% increase in the wellbore pressure is registered as compared to the 

purely elastic case. The magnitude of the poroelastic effect is linearly proportional 

to the in-situ minimum stress and pore pressure difference. It is also a positive 

power function of the formation permeability. The magnitude also increases with 

the number of pum ping cycles.
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<̂j =  fluid pressure m atrix coefficients to relate the elastic norm al fracture
displacement at node, j ,  in the  Chebyshev grid system  to  the fluid 
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c,“ =  leakoff rate m atrix coefficients to relate the fluid pressure inside the
fracture a t node, j ,  in the Chebyshev grid system to th e  leakoff rate 
a t node, i

c," =  elastic displacement m atrix  coefficients to relate the fluid pressure
inside the fracture at node, j ,  in the Chebyshev grid system  to the
normal fracture displacement a t node, i 

Cijki =  solid defoimational constitutive tensor, [ML~^T~^]

Cl =  C arter's leakoff coefficient, [LT~^^^]

DF =  discrete fracture

E — drained Young’s modulus, [M

=  undrained Young’s modulus, [M

FD =  finite difference

FEM =  finite element method
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spline polynomial. Eqn. (3.21), [L]

G =  shear modulus, [M
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=  intrinsic perm eability of the porous media. [L^]

=  bulk modulus, [ M or the consistency index in the power law 
fluid rheology, [ M where n is the flow behavior index 

=  bulk modulus of th e  pore fluid in the porous media,

=  / ( ,  / / , / / / ) —mode stress intensity factor, [M

=  fracture toughness, [M

=  bulk modulus of the  solid grains in the porous media. [M 

=  left-hand side

=  B iot’s modulus, =  K B f a ,  [ML~^T~^]

= the  HF sim ulator developed in this work
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=  Newton-Raphson method

=  directional cosine component, [I]
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= propagation/closure/ re-opening

=  pseudo-explicit finite difference

=  virgin formation pore pressure, [M
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mechanical loading, [ML~^T~‘̂]

=  fracturing fluid pressure inside the HF, [ML~^T~ ‘̂]

= fracture closure pressure, [ML~^T~^]

=  fracturing fluid pressure at node, j ,  in the Chebyshev grids on the 
fracture,

=  the  prescribed boundary traction force in the  i-th axis direction. 
[MLT-^]

=  instantaneous shut-in pressure, [ML~^T~^]

=  fracturing fluid pressure at the wellbore, [ML~^T~^]

=  fluid flux across the  fracture, [L^T~^]

=  pore fluid flux in the  i —th  direction of the porous media, [LT~^]

=  volumetric flow ra te  of fluid flowing inside the fracture, [L^T~^]
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Qo =  volumetric injection ra te  of the fracturing fluid, [L^T~^]

r =  d istance from the wellbore. or the coordinate axis along the fracture.
[ L ]

R  =  the  radius of a propagating fracture. [L\

R.H.S. =  right-hand side

Ro =  the  radius of a stationary  fracture. [L]

R f  =  ratio  of the accumulative unbalanced fluid volume in the  calculation
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Chapter 1 

General Introduction

Hydraulic fracturing (HF) has been widely used in the petroleum  industry to create 

additional hydraulic conduits between the petroleum reservoir in the formation and 

the production wells. It is also utilized to measure the form ation leakofF characteris

tics and the in-situ stresses. In addition, the HF technique has been applied in liquid 

waste disposal, contam inant recovery and geothermal production. Knowledge of the 

fracture dimensions (length/w idth) is crucial for design as well as evaluation of the 

field operation. When used for formation testing, the HF operations are deliberately 

manipulated to extract as much information as possible. T he procedure ranges from 

single cycle of injection/shut-in/flow-back (ISF) to multiple cycles. The formation 

information is extracted from the recorded history of the wellbore pressure. Insight 

into the influence of the  formation characteristics on such a pressure record is vi

tal for the inversion. Therefore, it is of practical im portance to characterize a HF 

process, including its geom etry and wellbore pressure response.

The task of characterization is tackled via various means including direct obser

vation and mechanistic studies. While many geophysical observation methods have 

been applied to pinpoint the fracture geometry, the ultim ate burden often falls on 

mechanistic study. In theory, the mechanistic study should be able to predict the 

fracture geometry before the  operation starts. It, therefore, provides a design tool.



For the purpose of formation testing, mechanistic studies are the  only means to 

relate form ation characteristics to the  wellbore pressure response.

In general, a mechanistic study includes two aspects: physical testing and mathe

matical analysis. The former provides constitutive theories and the relevant material 

properties. The latter provides a forecasting tool to infer the physical process under 

general conditions. As will be discussed below, any HF process, even in its simplest 

form, simultaneously involves several sub-processes which often interact with each 

other. The solution of such a coupled system  normally relies on numerical methods. 

This dissertation is a mechanistic study of HF by means of numerical simulations. It 

particularly focuses on the penny-shaped fracture geometry in porous media, mul

tiple ISF cycles and the associated poroelastic effects in a 2-D, pressure-dependent 

leakoff environment.

1.1 Sim ulation of D iscrete Fracture Propagation

Simulation of HF propagation falls w ithin the category of modeling discrete fracture 

(DF) propagation which has comprised a distinctive branch in engineering fracture 

mechanics, particularly in geomechanics. Using a static linear elastic problem as an 

example, this section sets off to m athem atically formulate the problem of modeling 

DF propagation and elucidate the difficulties involved. It is hoped to  set the general 

m athem atical framework about modeling HF propagation. Precise definition of a 

fracture is not necessary for the purpose of the following description. In numerical 

simulation, a fracture is a special geometric and mechanical entity. In HF, the 

fracture also has its hydraulic characteristics.

Acting both  as friends and foes, fractures are of vital interest to  the scientific 

and engineering community. In m any cases, such as in fragmentation, blasting and 

HF, fractures are the goal tha t is being sought; the design index here is to  create the



desired fracture (length, aperture o r density, and direction) a t the lowest possible 

cost. In many other cases where fractures are detrimental, like in engineering stabil

ity, it has been recognized tha t it is neither possible nor cost-effective, to eliminate 

the initiation of fractures. A feasible way is to tolerate fracture nucléation while 

monitoring its evolution so tha t th e  growth is stable and controllable. Even if it 

is impossible to control fracture initiation and propagation such as during earth

quakes, the study of fracture progression is the key for insight into its mechanisms 

and its successful forecast. Therefore, it is im portant to trace the whole life-cycle of 

a fracturing event, including initiation, propagation, arrest and re-mobilization as 

well as interaction of multiple fractures.

Physically, the goal of modeling fracture growth is to answer questions like where, 

when and how a fracture is nucleated/ propagated. Mathematically, it involves solv

ing a system of equations governing the continuum deformation and under the con

strain t of fracture conditions. W hile physical modeling provides the  insight, in 

particular about the failure criterion, m athem atical modeling is an efficient way to 

rehearse the fracture growth details.

In general, two fracture models are used in the literature: one is deformation- 

discontinuous, such as strain localization, e.g. [1 , 2 ]; the other is displacement- 

discontinuous, i.e. DF, e.g. [3]. The former is more commonly used in soil mechanics 

for granular and soft materials whereas the  la tter is more often seen in rock mechan

ics. Having a distinctive fracture opening, a HF is displacement-discontinuous; and, 

therefore, belongs to the DF type.

In general, simulation of DF propagation can be formulated into the  following 

set of displacement, u,-based differential equations:

Q

+ -j-— =  0  i = x , y , z  ( 1 .1 )

in which the Laplacian operator, V^, and the volumetric deformation, c. are defined



by:

^ ^  +  ^  +  #  • ( ' 3 ,

The corresponding boundary conditions are as follows:

(T.jUj =  pi prescribed traction  along Fp; and, (1.4)

u, =  Ü, prescribed displacement along (1.5)

where the stresses. cr,j, are related to the  displacement via the constitutive law:

O'ij — O i j k l S k l (1 6 )

and the strain-displacement relation:

if small deformations are assumed.

The D P’s are treated as boundaries to  the deformation system (Figure 1 . 1 ^). For 

example, if a crack is open, a zero or prescribed-value boundary traction  is imposed 

along the  crack surface. The crack p a th , Fc, is equivalent to the prescribed-traction 

boundary, Fp.

In addition to the prescribed-displacement and traction boundary conditions, for 

modeling fracture propagation, the deform ation everywhere inside the solid has to 

satisfy the  non-fracture condition as well:

f { a ^ J r ) > 0  ( 1.8)

where a j  is the driving force for the fracture propagation which can be quantified by 

the sta te  of stresses as in stress-based fracture criteria or by stress intensity factors, 

K ii, K m ,  as in fracture mechanics theories. The 3r is the resistance force to the

^Tables and figures are all listed at the end of the corresponding chapters.



fracture propagation often described by m aterial properties such as the compressive 

or tensile strengths, Œc or <7t, or the fracture toughness, A'/c- Eqn. (1.8) is ju s t the 

fracture criterion written in an inequality under which no fracture occurs, such as 

A'/c — A'/ >  0. If Eqn. ( 1 .8 ) is violated, i.e. / ( a ^ .  /?r) <  0, a fracture has to  nucleate 

or propagate in order to dissipate the energy and render a stable condition. If no 

stable condition is possible, the fracture continues to propagate and an unstable 

fracture propagation or uncontrollable struc tu ra l failure results.

Introduction of fractures into the general solid mechanics problem causes certain 

difficulties:

1. A fracture criterion is required to determ ine where and when a fracture is 

nucleated/propagated.

2. After a  fracture is detected to nucleate or propagate, an explicit fracture will 

be inserted into the  m athem atical modeling. Therefore, an appropriate  m ath

ematical description of the fracture is needed.

3. Stress often concentrates around the  fracture tip, such as the tip  stress sin

gularity in the fracture mechanics theories. This rapidly varying stress field 

often breaks the  capacity of conventional numerical modeling tools for accu

rate com putations. It also requires special attention to the possible fracture 

criteria.

4. Before load is added to the structure, the where, when questions of the  fracture 

behavior are generally unknown, which is tackled by a ”snap-shot” scheme. 

T hat is once the fracture violates th e  non-fracture condition, Eqn. (1.8), the 

fracture is extended by a certain am ount. Iterations are then performed to 

adjust th e  basic controlling variable to render the newly-propagated fracture 

tip to be at the critical condition again. In HF, this basic control variable



is the  injection tim e. During each of these iterations, a stationary  fracture 

is computed. The same scheme applies for simulation of fracture closure. 

This scheme has been proven theoretically for elastic m aterials, e.g. [4|. It 

also works for nonlinear materials if the loading is monotonie, similar to the 

validity domain of the J-integral [3j. A similar approach was also used in 

modeling HF propagation in poroelastic media.

1.2 Sim ulation o f HF Propagation

Herein, the earlier description about the four t«isks in modeling DF propagation 

is extended to the  simulation of HF propagation. As will be clear, some special 

features, mainly in the  geom etry of a HF, lead to a simplification of the general 

problem while the physics makes the problem more complex.

In general, the procedure of HF starts with injecting fluid down the wellbore 

to the desired depth where the section to be fractured is packed off. There, a 

fracture is created along a certain direction. Fluid enters into the opened aperture, 

driving the fracture and propagating it further. In the  m icro/m ini-H F jobs, the 

fluid injection is stopped or possibly the injected fluid is pum ped back to allow 

the wellbore pressure to  fall off. During these operations, the fracture may stay 

stationary, propagate or recede. In the stimulation and environmental applications, 

proppants are also pum ped in to hold the opened width after the  pumping stops. 

Therefore, the unique features associated with a HF as compared to the general 

DFs are two-fold: it is driven by the injected fluid and it proceeds in porous media. 

These features lead to a  simple geometry, but complicated physics.

Besides being driven by the fluid pressure inside the fracture, a HF grows per

pendicular to the direction of the  minimum in-situ stress once it propagates away

from the influential domain of a borehole^. This combined loading condition makes 

În general, for deviated boreholes and within the influential stress domain of the boreholes.



the HF behave as a mode-1 crack [13, 14]. Propagation of the mode-1 fracture is 

along the fracture itself, i.e. in-plane fracture propagation (Figure 1.2). T he re

sultant geometry is planar. Therefore, the w hen  question in the general problem 

of modeling DF propagation, i.e. direction of fracture propagation, is answered. 

Associated with the mode-1 crack type of the  HF, the fracture condition for HF 

propagation can be adequately quantified by the  fracture toughness criterion:

A '/=  A'/c (1-9)

i.e. the when question is resolved as welP. Moreover, HF has created a distinctive 

fracture opening and therefore, two planes w ith a narrow aperture and a displace

ment discontinuity suffice to describe the fracture.

The complicated physics involved in a HF process can be explained by several 

co-existing and mutually influential sub-models in the  deformation system (Figure 

1.3). The injected fluid flows inside the fracture and is governed by the flu id  me

chanics theory. The fluid pressure deforms the  fracture, which is described by the 

solid deformation theory. When the fracture deformation reaches a critical point in 

terms of the m aterial strength, propagation of the fracture ensues, which is within 

the domain of fracture mechanics. Furthermore, fluid inside the fracture can leak 

into the surrounding porous formation, resembling flu id  flow in porous media. The 

leaked fluid builds up pore pressure within the formation, causing it to expand. This

the local minimum principal stress direction the HF responds may not coincide with the far-field 
minimum in-situ stress direction. The fracture undergoes turning and twisting after its initiation 
at the borehole before it finally becomes normal to the minimum in-situ stress direction, e.g. 
[6]. Therefore, in this regon, the fracture is subject to a mixed-mode loading condition and its 
propagation cannot be planar according to fracture mechanics theories, e.g. [7, 8, 9]; Instead, an 
out-of-plane geometry is often caused (Figure 1.2). This near-wellbore out-of-plane geometry limits 
the entry of particle-laden packing fluid into the fracture which could cause the early screenout 
problems in the HF stimulation [6, 10, 11, 12]

^Note that behind the superficial simplicity manifested by Eqn. (1.9) lies a great difficulty in 
quantifying the A'/e for the in-situ rock materials. It has been argued that the in-situ values of 
Kic are influenced by the complicated tip behavior (to be elaborated below), e.g. [10]. It has been 
reported that the in-situ values of Kjc  could be orders larger than the laboratory-measured ones, 
e.g. [15]



expansion tends to  close the fracture, which falls into the discipline of poroelastic- 

ity. Therefore, a comprehensive analysis of HF should a t least include the foregoing 

five physical submodels, i.e. fluid mechanics, solid deformation, fracture mechanics, 

poroelasticity and fluid flow in porous media. Some other physical complexities in

clude, though not exclusively, multiphase flow in the formation, tem perature effects, 

tip behavior as well as nonlinear deformation of the formation.

M athematically, the HF growth is strongly nonlinear because of the intimate 

coupling between these various physical processes. The strongest nonlinearity comes 

from the coupling between fracture deformation and flow inside the fracture. The 

fluid flow follows the Poiseuille law if a parallel p late model is used. The flow 

rate is proportional to the cubic of the fracture aperture if a Newtonian fluid is 

considered. Thus, any small change in the aperture could induce large changes 

in the fracture conductivity, which in tu rn  disturbs the fluid pressure distribution 

inside the  fracture. On the other hand, the pressure change affects the fracture 

deformation, including the fracture aperture. Some other couplings include the one 

between flow and deformation in the formation, and the  one between fluid leakoff 

into the formation and fluid flow inside the fracture.

In summary, a  relieving factor in modeling HF is the relatively simple planar 

geometry. The challenge mainly comes from the  complicated physics, specifically, 

the nonlinear, coupled system including the  at least the five physical submodels as 

described.

1.3 Penny-shaped HF M odel

Among the  four commonly-referred HF models — KGD (Khristianovich-Geertsma- 

Daneshy), PKN (Perkins-Kern-Nordgren), penny-shaped and quasi-SD"*. the penny-

'*In the petroleum engineering literature, the quasi-3D model is commonly termed as 3D model. 
In this model, the fracture is assumed and forced to remain planar. However, in engineering



shaped model along with the quasi-3D are most mechanically sound. No mechanical 

assum ption is needed therein.

Both KGD and PKN models are constrained by the pay zone. i.e. having a 

constant height. The KGD model assumes a rectangular section perpendicular to 

the fracture direction [18, 19, 20]. A plane strain crack is assumed to prevail along 

the fracture direction. The fracture shape is governed by fracture deformation, 

fluid flow inside the fracture and leakoff from the fracture. In contrast, the PKN 

model takes an elliptical section perpendicular to the fracture direction [21. 22]. The 

cross-sections are assumed to be mutually independent. No rigorous deformation 

mechanism is assumed along the fracture direction. The fracture geometry along 

this direction is solely determined by fluid flow equations.

The penny-shaped model [23, 24, 21, 19, 25] is contained within the pay zone. 

It is equi-dimensional in all directions. The quasi-3D model allows the  fracture to 

grow up or downwards beyond the  pay zone in addition to propagating laterally into 

the formation. It has been modeled by pseudo-3D [26, 27, 28. 29, 30, 57, 32, 33. 34] 

and true-3D simulators [35, 36, 37, 38, 39, 40, 41, 42, 43].

The validity range of the various models are not strictly defined. Both KGD 

and PKN models represent the first generation of HF simulators. Their advantage 

is in their simplicity. While they are still used as design tools, their role is gradually 

giving way to the  quasi-3D models according to the latest survey [44].

The penny-shaped model is valid when the created fracture lies within the uni

form area of either material properties or in-situ stresses. This condition holds 

when the  formation to be fractured is relatively large, i.e. in HF stim ulation of 

massive formations. This condition also exists in m icro-/m ini-fracturing jobs when

mechanics, a 3-D crack growth may undergo twisting and turning, e.g. [6] and its shape is thus 
curved and out-of-plane. To differentiate these two models, the planar 3D is denoted as quasi- 
3D while the curved-3D is called full-3D. Simulation of the full-3D model is theoretically and 
computationally challenging. There have been a few attempts [16, 17]. However, none of them 
have reported specific results about the out-of-plane propagation.



the injected fluid is small and the  propagated fracture does not approach the bound

ing layers. This practice has been deliberately employed in diagnosis of formation 

leakoff properties and in measuring the  in-situ stresses. The penny-shaped model 

also prevails in hydraulic fracturing of shallow formations where the created fracture 

is horizontal, such as in environmental applications or stim ulation of the Canadian 

ta r sands.

1.4 Critical R eview  on H F Sim ulation

Since the onset of the HF concept, intensive efforts have been spent to simulate 

its propagation either as a predictive tool or as a post-frac checkup. Volumous 

literature exists and, consequently, a  comprehensive review is out of the scope of 

this dissertation. Several review papers also appear in the literature [45, 46, 47, 48, 

49, 50]. Two SPE monographs were dedicated to this subject [51, 52]. At least, 

one dedicated textbook has been published to this topic [53]. The intention of 

this section is to summarize the s ta te  of the  art in accounting for the complicated 

physics. Some other aspects, such as modeling methodology, are to be covered in 

the subsequent chapters when they  become relevant.

Most of the existing hydraulic simulators account only for flow inside the  frac

ture, deformation of the fracture, and fluid leakage into the  formation. Flow in

side th e  fracture is formulated by the  Poiseuille law. Both Newtonian and non- 

Newtonian, particularly power-law, fluid rheology has been considered. The fluid 

leakage has been accounted for by C arter’s leakoff model [54] which is 1 -D and 

pressure-independent. Com putation of the  fracture deformation is based on the 

elasticity theory.

C arter’s leakoff model is independent of any fluid pressure condition in the  for

m ation/fracture. A pressure-dependent leakoff mechanism has been considered in
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studying water- or steam-flood induced fracture propagation [55. 56. 57, 58] and 

in the conventional HF simulation [59, 60]. Therm al effects as well as multiphase 

flow in the reservoir have also been considered when analyzing the flooding-induced 

fracture in conventional or tar-sand reservoirs, e.g. [61, 58, 62], or in the conven

tional HF sim ulation where large tem perature contrasts exist between the fracturing 

fluid and the formation [63, 64. 65]. Moreover, in order to explain the discrepancy 

between the higher observed wellbore pressure and lower simulated value, near-tip 

behavior has been investigated [10]. The near-tip process includes the near-tip fluid 

lag [6 6 , 67] and nonlinear deformation and dilatancy in the formation around the 

tip [26, 6 8 , 6 6 , 69].

1.5 Poroelastic Effects in the HF Process

The role of the flow-deformation coupling, i.e. the poroelastic effect, on HF has 

also been brought to attention. The theory of poroelasticity was established in 

1940's to s tudy  coupled flow-deformation behavior of porous media [70]. In the 

theory, volumetric deformation triggers fluid flow and flow induces solid dilation. 

The first insight into the poroelastic effect in general fracturing behavior was made 

in 1970’s [71, 72, 73]. Particular implication of the poroelastic effect in HF was 

first noted also around the 70's [74, 75, 76, 77]. More detailed studies have contin

ued [78, 79, 80, 81, 82]. Cleary (1980, 1983) [83, 84] considered the flow-induced 

rock dilation and  suggested th a t its effect on the HF propagation is similar to the 

fracture closure exerted by an additional compressive stress acting normal to the 

fracture surface which he coined as back-stress. Settari (1980) [55] followed a simi

lar procedure when accounting for the poroelastic effect in his hydraulic fracturing 

simulation. Detournay et. al (1990) [85] implemented the poroelastic effect into 

the PKN model based on C arter’s leakoff model. Abousleiman [60] extended it by
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including a pressure-dependent leakoff model. Clifton and Wang [8 6 ] included the 

poroelastic effect into a 3-D HF simulator. More recently, Ghassemi (1996) [17] 

coded the 3-D poroelastic fundamental solutions into a boundary element method 

algorithm.

Theoretical findings on poroelastic effects in HF propagation can be summarized 

as follows:

1. It raises considerably the wellbore pressure response; as much as a 60% increase 

as compared to non-poroelastic cases has been reported based on numerical 

studies [82].

2. The shut-in pressure can be higher than  the in situ  minimum principal stress, 

e.g. [87].

3. The fracture dimensions (length/w idth) depend on the fluid leakoff model. 

The pressure-independent C arter’s leakoff model gives little difference in frac

ture dimension between the poroelastic and non-poroelastic cases, e.g. [85]. 

Otherwise, if the leakoff is pressure-dependent, the fracture dimension can be 

altered by the poroelastic effect [60, 8 8 ].

4. W ith the  fluid flow included in the  poroelasticity theory, additional factors, 

such as injection rate, injected fluid viscosity and dilatancy around the fracture 

tip , can influence the already complicated HF process, e.g. [89].

Some of these theoretical findings have been backed by laboratory and field 

observations. For example, field evidence has indicated th a t fracture closure pressure 

increases with injection time [90, 91]. Fracturing pressures have also been found to 

depend on the reservoir pressure change during production [92, 93]. Summarizing 

the numerous microfrac tests, Kry (1989) [94] reported th a t the instantaneous shut- 

in pressure, and fracture closure pressure, were significantly less in high
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injection ra te  tests than when using low rates. In their numerical simulations. Boone 

e t al. (1991) [95] a ttributed this difference to the poroelasticity. Several laboratory 

tests [91. 96, 97, 98] have indicated tha t p,a,p was greater than  the  known or expected 

value of the  in-situ minimum principal stress. Boone et al. (1990) [87] found that 

the cause to this discrepancy is due to the poroelastic effect.

More broadly, physical tests as run by Haimson and Fairhurst (1969) [75] and 

Zoback et al. (1977) [99] pointed out that the breakdown pressure in HF is rate- 

dependent, whose origin was again traced to the poroelastic effect [100. 101. 87]. 

Some o ther well-established field examples about the poroelastic effect can be found 

in o ther geomechanics fields, such as the reverse consolidation (i.e. time-dependent 

borehole closure) [102], M andel-Cryer effect (i.e. non-monotonic pressure history) 

[103, 104], and Noordbergum effect (i.e. rise of groundwater tab le  in the observation 

wells during initial stage of pum ping nearby) [105].

Development of poroelastic effects depends on the m aterial properties and oper

ation tim e scale, which are lumped into a characteristic dimensionless tim e variable, 

T = ct^/ L. For a Griffith crack, if r  is greater than  0.001, th e  poroelastic effect is 

expected to become influential, e.g. [95]. In this formula, c is the poroelastic diffu- 

sivity coefficient (to be defined in the  following chapter), t can be broadly defined 

as the tim e period over which the porous formation has undergone fluid exchange 

with th e  external system. L is a characteristic length. In HF, t  is the injection time 

and L  is the  fracture length. Low diffusivities such as in gas-dissolved reservoirs, 

low permeability, high fluid viscosity as well as short operation time scale all lead 

to a small r  which therefore ham pers the development of th e  poroelastic effect in 

the field. Of course, the m aterial properties also influence the magnitude of the 

poroelastic effect even after it has been fully fledged. A small m agnitude makes the 

poroelastic effect obscure in the  already complicated field practices. Furthermore, if
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the leakoff is considered to be pressure-dependent, the  contrast between the in-situ 

stress and reservoir pore pressure also affects the significance of poroelastic effect. 

If the contrast is large, the poroelastic effect becomes more pronounced.

1.6 C onjectures, O bjectives and Approaches

Scientific research is motivated by conjectures and proceeds towards certain objec

tives via system atic approaches. Based on the foregoing discussion, the conjectures 

for this dissertation are as follows:

1. Poroelastic effects are im portant for HF of porous media. The penny-shaped 

HF model needs to be specifically studied. As pointed out before, the penny

shaped model is applicable in HF stimulation of massive or shallow formations, 

or in the  early stages of HF jobs for formation testing and in in-situ  stress 

measurements. In all these occasions, poroelastic effects are expected to be 

significant. In the  first case, a long period of fluid injection is inevitable as it 

is required to create large fractures. In the second and third cases, the  frac

turing fluid is often operated through the m ultiple ISF cycles. The repeated 

ISF cycles extend the operation time. On the  other hand, the repeated cycles 

result in complicated pressure histories inside the fracture, which in turns af

fects th e  fluid leakoff and fracture propagation history. All these circumstances 

facilitate the  generation of the fully-fledged poroelastic effects. Notably, the 

penny-shaped geometry has been out of the p icture in the literature for con

sideration of the  poroelastic effect. The m ajority of the  published works have 

focused on the PKN, e.g. [85, 60] and one was on the KGD [82].

2. Analyses of the complicated PCR fracturing behavior during the multiple ISF 

pumping cycles is helpful in the interpretation of the  mini/micro-HF jobs 

for the formation properties and in-situ stress. More information an d /o r a
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more accurate determination could be obtained from the wellbore pressure 

response if the effects of the various in-situ  conditions during the fracturing 

process were investigated. Rigorous simulation of the fracturing behavior, 

particularly the involved poroelastic effects, during multiple ISF cycles have 

not been attem pted in the literature and, therefore, warrant serious scientific 

investigation.

3. The fluid leakoff module should have pressure-dependent capabilities in addi

tion to the  pressure-independent C arter’s leakoff model. When incorporated 

with pressure-dependent leakoff, poroelastic effects have been shown to be 

broader; it changes not only the wellbore pressure response, but also the frac

ture dimensions. In addition, the filtercake, which causes the leakoff to be 

pressure-independent, often does not exist if the injected fluid is of low vis

cosity as in the micro-HF jobs an d /o r if the reservoir to be stim ulated is of 

high perm eability such as naturally fractured reservoirs, e.g. [51, 49]. In these 

situations, the leakoff depends on the pressure difference between the reservoir 

pore fluid and the fracturing fluid.

4. In consideration of the poroelastic effects, a  realistic 2-D model is im portant. 

The 1-D leakoff assumption in the context of C arter’s leakoff model underes

tim ates th e  leakoff value at low fluid injection rates [58]. Significant difference 

between the  1 -D and 2-D leakoff models has also been reported in [84].

5. A fast, PC-based HF simulator is more appealing not only for field design and 

interpretation purposes, but also for academic research. This idea happens 

to agree with the spirit of the current momentum-gaining on-site real-time 

simulation of HF jobs, e.g. [50, 106]. W ith  the sacrifice of being constrained 

to a particular idealized geometry (penny-shaped), it is possible to responsibly
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simplify the  complicated physics and make them amendable.

The prim ary objective of this dissertation is to build a penny-shaped HF sim

ulator, which considers the pressure-dependent leakoff and poroelastic effect in the 

context of multiple ISF cycles and in the 2-D configuration; and which is PC-based, 

fast-run and  real time analysis-oriented. For this mission, the following specific goals 

are set:

1. C onstruct a  simplified 2-D poroeleistic model which balances the complicated 

physics and intensive com putational effort. Specifically, this model should 

be com putationally comparable to the simple 1-D poroelastic model while it 

mechanically covers the true physics in the 2-D poroelastic domain.

2 . Develop an efficient numerical solver to simulate the HF propagation of a 

penny-shaped geometry.

3. Implement the pressure-dependent leakoff and poroelastic effect into the penny

shaped model in the context of multiple PCR fracturing events during the 

m ultiple ISF cycles.

4. Build up a PC-based, fast-run simulator. Extensively validate the numerical 

algorithm s as well as the com puter program.

Therefore, this work is not a simple application of a certain standard  numerical 

method to  the  governing equations followed by coding and validating the computer 

program. Instead, it makes rational simplifications and invents an efficient numerical 

algorithm particularly appropriate to the model.

The foregoing tasks are accomplished via the  following approaches:

1 . Analyze the  1-D transient and 2-D steady-state poroelastic models, .\cting 

as the  asymptotic behavior, these two models bound the full 2-D poroelastic 

response from the early and late times, respectively,
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2. Investigate the transient poroelastic response of a penny-shaped fracture and 

apply a cubic spline scheme to interpolate the transient response based on the 

early- and late-tim e analytical predictions. Thereby, a simplified 2-D poroe

lastic model is constructed. Comparisons between the simplified model and 

the original model are made. The error domain induced therein is specified.

3. Derive a pseudo-explicit finite difference (PE FD ) algorithm which is fast as 

equivalent to the purely explicit FD scheme, but unconditionally stable like the 

fully-implicit FD m ethod. Furthermore, the Newton-Raphson (NR) scheme 

for a system of nonlinear equations is applied to further speed up the com puta

tions. Their combination has successfully and efficiently solved the m athem at

ical system arising from modeling the HF fracture propagation. The stability, 

consistency and com putational accuracy of the  combined PEFD-NR scheme 

has been numerically tested.

4. Implement the combined PEFD-NR algorithm in the context of multiple PC r 

fracturing events during the multiple ISF cycles. Further validate the com

puter program.

•5. Perform a series of param etric analyses about the  poroelastic effects in HF 

propagation, including the multiple PCR events during the multiple ISF pump

ing cycles.

Inclusion of the  poroelastic effects in the HF simulation dramatically complicates 

the numerical calculations. The necessity to simplify th e  poroelastic response can be 

illustrated by taking a plane strain fracture as an example. The governing equation 

for fluid flow inside the fracture is of the following form [82]: 

dq dw
+ + “ = “ "I
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in which w is the fracture aperture and u is the fiuid leakoff flux. The fluid flux, q, 

is related to the pressure distribution by;

- - C t
if a Newtonian fluid rheology is used. In the poroelastic domain and if the leakoff 

is pressure-dependent, w and u depend on the deformation and fluid flow in the 

formation. The dependency can be cast into the  following integral form [82]:

G r ^  d w {x ',t)
“  “ 2 7 ( r - T : )  i  a ; " "

d rd x '

( 1 .12)

d rdx '

(1.1.3)

where t’(x') is the arrival time of the fracture tip  a t which, the position x ' is first 

exposed to the  fracturing fluid. Q, is the whole fracture surface. R  = |x ' — x|. 

Functions of be found in [82] and contain both  spatial and tem poral

variables.

Direct discretization of the coupled equations, (1.10) - (1.13), as done in [82], 

involves integrations in both time and space domains. Solution at the current tim e 

depends on the  pressure or deformation history along the fracture back to the frac

tu re  arrival time. Therefore, it inevitably slows down the calculation.

On the other hand, if a 1-D model is used, there is only a  point-wise relationship 

between the poroelastic response and the fluid pressure, e.g. [60]; i.e. no spatial 

integration is needed. This significantly speeds up the calculations. The goal of the 

current study is to  express the general poroelastic response, i.e. Eqn. (1.12) and
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Eqn. (1.13), in terms of a quasi-point-wise explicit relationship, whose consumed 

com putational effort is much less than  the full implementation as done via Eqn. 

(1.12) and Eqn. (1.13) but retains the  full physics and an adequate m athem atical 

accuracy of the true 2-D poroelastic model.

1.7 Organization o f th e  Work

By reviewing some generalities and the state-of-art in HF simulation, this general 

introduction has laid out the objectives and approaches for this dissertation work. 

After reviewing the theory of poroelasticity, the second chapter studies the  1-D 

transient and 2-D steady-state poroelastic responses. They bound the full transient 

2-D poroelastic response in the  early- and late-tim e regions, respectively. Some 

m athem atical axioms have been proven which are to  be used in the subsequent 

development.

The th ird  chapter is devoted to a study of the full transient poroelastic response 

and seeks ways to simplify the  general 2 -D response. Using a  commercial finite ele

ment (FEM ) software, ABAQUS, it first examines the full history of the poroelastic 

response of a penny-shaped fracture pressurized by two example pressure profiles. It 

is found th a t the 1-D transient and 2-D steady sta te  poroelastic models, as studied 

in C hapter 2, indeed act as the  asym ptotic behavior to the full transient process. A 

composite formula, covering the  interim  transient poroelastic response, is developed 

by using the cubic spline interpolation based on the  analytical results of the  two 

asym ptotic models. W ith these, a simplified transient 2-D poroelastic response is 

constructed, which is to  be used to sim ulate the  penny-shaped fracture propagation 

and is expected to greatly alleviate com putational burden.

The fourth and fifth chapters concentrate on the development of a numerical so

lution strategy (McFrac) to simulate the PC R  of a penny-shaped HF. The dedicated
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governing equations are described based on the simplified 2-D poroelastic model as 

developed in C hapter 3. Extensive example problems are computed to examine the 

stability, convergence and computational accuracy of the  numerical means as well as 

to dem onstrate the capacity of the numerical sim ulator. The fourth chapter focuses 

on the simulation of a stationary fracture. The fifth chapter extends to a propagat

ing fracture, particularly in the multiple fracturing events during the multiple ISF 

cycles. In the fifth chapter, some parametric analyses are also run to exemplify the 

poroelaistic effect in HF propagation, including during the multiple ISF pumping 

cycles.

The final chapter serves to summarize m ajor findings of this work and to suggest 

areas of further study. Usage of m athem atical symbols are intended to be system atic 

and are tabulated  in the nomenclature. Duplication of symbols are to be specifically 

mentioned when they occur. This study focuses on isotropic, linear elastic deforma

tions and one-phase Darcy flow in the porous formation. The system is isothermal. 

The leaked fracturing fluid is assumed to be fully miscible with the in-situ reservoir 

fluid. The m ixture has the same viscosity as the virgin reservoir fluid.

1.8 Sum m ary

The prim ary objective of this work is to build up a  fast-run, PC-based, field analysis- 

oriented HF sim ulator (McFrac) for the penny-shaped geometry. It accounts for the 

pressure-dependent leakoff and poroelastic effect in the  2-D domain. It simulates 

multiple ISF cycles and the associated multiple PC R  fracturing events.

Simple application of a standard numerical m ethod to the general governing 

equations cannot achieve the objective because it is computationally-expensive. In

stead. this work proceeds to reasonably simplify the  mathem atical description which 

retains the physics, does not lose much of the com putational accuracy, but greatly
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reduces the com putational effort. Behind this approach lies the serious analytical 

effort this dissertation undertakes to investigate th e  full poroelzistic response of a 

pressurized penny-shaped fracture. Furthermore, an efficient numerical algorithm is 

created to solve the resultant governing equations. The numerical solver combines 

the advantages of explicit and implicit F.D. schemes as well as the Newton-Raphson 

scheme for nonlinear equations: fast and unconditionally stable.

Ultimately, this dissertation will help the industry  in the interpretation of the 

mini/micro-HF jobs for m easurements of the in-situ  stresses and leakoff character

istics. The current HF in-situ  stress measurement technique relies on the recogni

tion of the so-called instantaneous shut-in pressure or fracture closure pressure on 

the wellbore pressure log curves. In permeable formations, the pressure-dependent 

leakoff and poroelastic effects make both characteristic pressures obscure and diffi

cult to pinpoint. Moreover, they vary with the injection rate and the number of the 

ISF cycles. In permeable formations where the filtercake cannot fully developed, 

C arter’s leakoff coefficient is a fictitious man-added constant. The leakoff depends 

on the pressure difference between the reservoir and the  fracturing fluid. In all these 

occasions, McFrac provides a modeling tool to further investigate the influential 

factors as well as to history-m atch the observed pressure history and therefrom, to 

make inferences about the  in-situ  stresses and the  leakoff features.
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Figure 1 . 1 : Sim ulation of discrete fracture propagation.
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Figure 1.2: In-plane and out-of-plane fracture propagation.
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Figure 1.3: The complicated physics involved in a  HF process.
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Chapter 2 

1-D Transient and 2-D  
Steady-State Poroelastic 
Response

Fluid-saturated porous rock behaves mechanically different than its dry state . Flow- 

deformation coupling is the key factor. The theory of poroelasticity is the  m ath

ematical framework to describe this coupled system  in the linear elastic regime. 

Physically, two mechanisms are involved: volumetric deformation causes an instan

taneous pore pressure increment; an increm ent in the pore pressure triggers rock 

dilation. This chapter summarizes the governing equations and investigates 1-D 

transient and 2 -0  steady-state poroelastic responses. Typically, a complete history 

of the poroelcistic response is bounded in th e  beginning by the 1-D model and a t the 

end by the steady state. Therefore, observations m ade herein serve further develop

ment in the following chapters which study the  full transient poroelastic behavior 

of a penny-shaped fracture in the porous media.

2.1 Governing Equations in  Poroelastic D om ain

Although analyses about the role of the  flow-deformation coupling can be traced 

back to Terzaghi (1923)[107], the modern poroelasticity theory was initiated by 

Biot (1941, 1955, 1962) [70, 108. 109]. Rice and Cleary (1976) [71] reformulated the
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theory in terms more familiar to the  rock and soil mechanics community. Alterna

tively, the theory of poroelasticity was derived within th e  framework of the mixture 

theory, e.g. [110. 111. 112. 113]. A more physically straightforward version of the 

mixture theory, i.e. the micro mechanical approach [114. 115, 116. 117, 118] breaks 

the continuum behavior of the  porous media into those of its constituents, i.e. solid, 

pores and fluid. Therefore, it is more helpful to  gain insight into the basic physics 

of the poroelastic behavior. Following a similar approach. Yew and Liu (1992) [119] 

have also derived the poroelasticity theory with different expressions for the material 

parameters.

In order to fully describe the poroelastic problems, two independent material 

constants, which could be the  Biot’s coupling coefficient, or, and Skempton’s pore 

pressure coefficient, B , are needed, in addition to the  two elastic (e.g. Young's 

modulus, E  and Poisson's ratio, u) and a fluid flow (perm eability coefficient. «*) 

properties. The micromechanical approach relates the  poroelastic constants to the 

mechanical properties of the  individual constituents as follows:

0  =  1 - ^  (2.1)

in which K  is the elastic bulk modulus of the porous media. K j  and A', are the bulk 

modulus of the fluid and solid phase, respectively. Therefore, a  depends only on the 

solid properties while B  is influenced by the fluid property as well as the formation 

porosity. The governing equations in the poroelastic domain can be organized into 

the following forms:

'/c relates to the intrinsic permeability of the formation, k (with a dimension of length squared) 
via K =  k/fi. fi \s the formation fluid viscosity.
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1 . equilibrium equation:

d ^ ' ■
=  0 i j  = x .y , z  (2.3)

CfOCj

in which, quasi-static deformation and no body force are assumed.

2 . constitutive equation:

IG v
(Tij = 'IGsij 4- -~2  4- Qpd.j (2.4)

where compression is taken as positive. This equation, together with the small 

deformation assumption, Eqn. (1.7), ensures the kinematic determ initivity 

and geometric compatibility of the deform ation system.

3. mass conservation equation for fluid flow:

Here, no fluid source/sink is introduced. The fluid content term, is related 

to the fluid pressure, p, and solid mean stresses, by:

or is related to the fluid pressure and solid volumetric deformation, c, via:

C =  ^  -  a e  (2.7)

in which M  is B iot’s modulus, M  =  K B /a .  qi is the fluid flux given by the 

Darcy's law as follows.

4. fluid m om entum  equation as described by D arcy’s law:

9, =  -K  i = (2.8)
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in which, the fluid body force is not included. « is the  dynamic conductivity of 

the porous form ation defined by fc//i with k  being the formation perm eability 

and fi the pore fluid viscosity.

Assumptions behind these governing equations include: (I) quasi-static small 

deformations; (2) isothermal system and (3) single-phase Darcy flow. Dynamic 

excitation induces more sophisticated fluid-solid coupling, “/f is therefore in the 

modeling o f quasi-static processes that the Biot model finds its fu ll justification” 

[89]. Inclusion of therm al effects should not cause serious difficulties. Consideration 

of multiple phase flow depends on the correlation of the phacial fluid pressures to 

describe the pore space deformations.

Combining Eqn. (2.3) to Eqn. (2.8) could yield the following field equations of 

the poroelasticity theory:

(è) ' “ (ê) = “ (2 9)
— K M  V^p — qM — =  0 . (2.10)

a t  at

2.2 General D iscussion on Poroelastic Effect

W ithin the existence of a freely-moving fluid in the porous medium, the solid de

formations become time-dependent even though the  mechanical loading may not 

change over time. This time-dependence may be described by the variation of the 

elastic parameters in the coupled system. Instantaneously upon the exertion of the 

mechanical loading, the  material responds undrained in th a t the fluid has no time 

to flow, i.e. C =  0. A pore pressure field is induced according to Eqn. (2.6):

Po+ =  ^  (2 .1 1 )

Substituting Eqn. (2.11) into Eqn. (2.4) gives:

=  2Geij + " 5 -2“ ( 2 . 12 )
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in which,

called the undrained Poisson’s ratio. The shear modulus is independent of the fluid 

flow.^ Therefore, there is a corresponding undrained Young’s modulus;

ZE
^  Z - a B [ l - 2 u )  ■

W hen the induced pore pressure disturbance, po+, diffuses to zero everywhere, 

i.e. the material becomes drained, the stress-strain relation returns to its original 

equilibrium (dry) state. The material deformation at this stage is characterized by 

the usual (drained) Young’s modulus and Poisson’s ratio, E ,u .

It can be easily proven tha t >  t/ and E^ > E^, i.e. the  m aterial a t the 

undrained sta te  is volumetrically stiffer as compared to the drained"*. As the fluid, 

which has previously shared part of the external loading, is now escaping from the 

pores, the  solids become more stressed and experience more deformation as the 

m aterial approaches the drained state. The tim e scale from the undrained state  to 

the drained is determined by the diffusivity coefficient as discussed below.

In the poroelastic domain, the pore pressure invokes rock dilation. Therefore, 

fluid flow can induce a non-zero s ta te  of stress or displacement field. The magnitude

'Simply taking i ^  j  in Eqn. (2.4) revccJs that in the stress-strain relation under shear, there 
is no pore pressure involved, i.e. the shear modulus remains independent of the pore pressure. 

^Rearranging Eqn. (2.13) and Eqn. (2.14) gives:

3 -  a B { l  -  2u)
Eu , , aB  

= I +E  3 - a f l ( l - 2 i / )  ■

The limiting analyses have shown that 0 <  a(, 5 )  < 1 and 0 < f  <  0.5, e.g. [120]. Therefore, the 
second term on the R.H.S. of the above two equations are all larger than zero. Thus, i/u >  u and 
Eu ^  E .

“’Although both E  and u change, their combination in the shear modulus, G, does not depend 
on the pore pressure diffusion, i.e. the shear deformation does not vary.
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of such an effect is characterized by the poroelastic stress coefficient, rj: 

Of(l — 2 i/)
(2.15)

' 2 (1 - W  ■

Note that like a, t) depends on the solid properties only.

In poroelasticity, the tem poral variation of the  pore pressure is no longer a pure 

diffusion process. The pure diffusion equation applies only to the fluid content. Ç. 

e.g. [89]:

=  (2.16)

in which c is called the poroelastic diffusivity coefficient; i.e.

^  2kG{1 -  !/)(!/. -  u)
q 2 (1 -2 i/)2 (! - : / „ )  ■ ( ' )

It is the diffusivity coefficient, c, which controls the  evolution of the poroelastic 

effect. A higher value of c causes the poroelastic effect to show up earlier. A 

permeable rock and/or low viscosity fluid corresponds to a  higher k , thus facilitating 

the development of the poroelastic effect because it gives a higher value of c. Stiffer 

grains and /o r more compliant solid skeleton, such as a soft formation, give a smaller 

a  and thus, a lower c value, impeding the m aturity  of the poroelastic effect. But 

its magnitude, when fully developed, may be large because it gives a higher !/„ or 

T] value. Furthermore, the fluid compressibility for a  gas-dissolved reservoir is high. 

As a  result, it gives a low B  and small and c values in the chain rule. Therefore, 

th is kind of reservoir delays the full development of the  poroelastic effect and its 

m agnitude is small as well.

When considered in modeling HF propagation, the  poroelastic effect shows up 

in the  following two competing aspects: the mechanically-induced deformation of 

the  pressurized fracture is smaller at the beginning, determined by the undrained 

elastic properties, and increases later on to the drained state. The increment is
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controlled by the  drained and undrained Poisson’s ratios, u and as well as the 

stress difference: (p/ —(To) with (To being th e  in-situ  minimum stress component. On 

the other hand, as the fracturing fluid leaks into the formation, it increases the pore 

pressure and induces rock dilation, tending to close the fracture. The corresponding 

m agnitude is directly proportional to the  stress coefficient. 77, and the difference, 

(Pf — po), in which po is the in-situ pore pressure. In most practical situations, (Tq 

is much larger than po; and; therefore, the  second effect, which reduces the fracture 

opening, is expected to be much larger th an  the first one in HF.

2.3 A  1-D Poroelastic M odel

In this section, a  1-D poroelastic model is analyzed. This example serves as an 

illustration for the  poroelasticity theory. More importantly, a 1-D model is justifiable 

to describe the early-time poroelastic response of the geometries larger than  1-D, 

e.g. [89]. A sketch of the problem is shown in Figure 2.1. Physically, it is equivalent 

to an infinitely long strip of porous m aterial saturated with an initial pore pressure, 

P o  and subject to  a far-field normal stress, (Tq . Fluid pressure, p /((), which may 

be tim e-dependent, is applied at surface x =  0. It serves as both mechanical and 

hydraulic loading conditions.

The governing equations for the current 1-D model can be greatly simplified from 

the general poroelastic equations, (2.3) to  (2.8). Specifically, they can be w ritten 

as:

1 . Equilibrium equation:

O’rx =  C ' ( 0  z , f > 0  (2 .1 8 )

i.e. it is constant spatially, but could vary in time.
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2. C onstitutive equation combined with the small deformation assumption:

dw  n 77
&  =  = . ' >  0 (2.19)

w is the displacement component along the x-direction.

3. Diffusion equation:

■ S -I -S S J t
The original problem is decomposed into two modes (Figure 2.1), which cover 

the perturbation  caused by the  pressurization. Mode I represents the mechanical 

loading condition at x =  0:

Mode 2 makes up the hydraulic flow part with the boundary condition as:

Combination of Eqn. (2.18) and Eqn. (2.21) or Eqn. (2.22) yields the  following

state  of stress:

= pf[t) -  (To X >  0 ,f > 0 (2.23)

for mode 1, and:

(Trr(z, t) = 0  X > 0 ,t  > Q (2.24)

for mode 2. At the beginning, i.e. t =  0" ,̂ the  non-zero stress field in mode 1 causes

an instantaneous pore pressure field, p {x ,t  =  0+), which can be easily computed

from Eqn. (2.6) by setting C =  0, so that:

p { x , t ) =  ~  [p/o -  o-o] t = 0 (2.25)
'JU — î u)
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where p/o = Pf{t =  0)®. Afterwards, this pore pressure field diffuses through the 

surface x  =  0 as dictated by the pore pressure boundary condition, Eqn. (2.21), i.e. 

the diffusion is governed by Eqn. (2.20) and Eqn. (2.25) as:

'  / . f f g  _  ÎE — 5 ( H - i / u )  dpf
dt 3(1—t/u) dt

' 0  =  I f r r ÿ  IPfo -  <̂o]
, = 0

W ith a zero stress field, Eqn. (2.24), the diffusion problem in mode 2 can now be 

simplified to:

X >  0, f > 0 
X >  0, f =  0 
X =  0, f >  0

(2.26)

____
d x^  dt

p ( x , t )  =  0 
. p ( ^ , 0  = P f ( i ) - P o

X >  0 , t  >  0 
X >  0, t =  0 
x = = 0 , ( > 0

(2.27)

Based on the above equations, the  following three formulae can be proven which 

is detailed in Appendix A:

I. The poroelastic displacement at x  = Q, w^{t), can be expressed as time inte

gration o f  the leakoff rate, u{t), at the surface x  =  0 ;

(2.28)

2. The pressure-dependent leakoff rate at x  = 0 is given by:

uUt)  -
3 (1 - z / j  

fo r  mode I loading; or;

P/o ~  O’o , dpf  d r

~ 7 f
+

i : d r  y j t  — T
(2.29)

u^{t) =
\/irc

P/o -  Po ^  /■' d p f j r )  d r  
JoV t dr yjt — T

fo r  mode 2 loading.

(2.30)

®The time factor is included in ail the expressions herein. However, it is not necessary in the 
actual mathematical manipulations. The boundary condition may be Rrst assumed to be time- 
independent. The thus derived results can be easily extended to the general time-varying boundary 
condition by utilization of Duhamel’s principle, e.g. [121].
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Eqn. (2.28) implies th a t w^{t) is proportional to the total fluid leakoff volume 

into the media through r  =  0 until the current time, t. To arrive at Eqn.

(2.28), the pressure boundary condition at x =  0 . i.e. p {x .t)  =  0  or p{x .t)  =  

Pf ~  PQ' is not required. Therefore, if the boundary condition there changes 

to a leakoff rate-prescribed boundary such as in C arter’s leakoff model. u(x =  

0 ,0  =  uo((), Eqn. (2.28) still holds.

Combining Eqn. (2.28) with Eqn. (2.29) or Eqn. (2.30) gives the pressure- 

dependence of the poroelastic displacement:

+ i/u)
3(1 — i/^) 

+

(gV?)
^ dpf{s) ds 

ds \Jt  — s
■ [ ' i r T
Jo Jo 

for mode I; or,

for mode 2 .

(2.31)

(2.32)

Comparing mode 1 and 2 values, i.e. Eqn. (2.29) and Eqn. (2.30) or Eqn. 

(2.31) and Eqn. (2.32), shows:

f  B { l  + i /^)pfo-cro
-  or - ^ l o c -------------------- (2.33)

w^'Pj 3(1 — i/„) P/o — Po 

Theoretically, the combined poroelastic constant, B{1 + i/„)/3(l — ranges 

from 0  to 1 . In practice, this combined constant falls within the range (0.3,

0.7) (Table 2.1). More significantly, the in-situ stress, o-q, is much larger than 

the in-situ pore pressure, po- Therefore, the mechanical (mode 1 ) loading- 

induced leakoff or poroelastic effect is much smaller than  the flow-triggered 

one (mode 2). Similar assertion has been made by many other researchers, 

e.g. [80, 60]. Figure 2.2 exemplifies this comparison. The m aterial properties 

are from Table 2 .2 . The in-situ  stress and pore pressure data are from [123].
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2.4 2-D  Steady-State Poroelastic R esponse

The pore fluid, whether it is generated by the mechanical loading (mode 1 ) 

or by the imposed hydraulic flow boundary condition (mode 2 ). all diffuses 

to reach steady state. Therefore, the steady-state poroelastic solution is rep

resentative of the full poroelastic response a t late times. The steady state  

under mode 1 loading is equivalent to  the  drained state. Its mechanical be

havior is quantified by the drained response, which is given by the conventional 

elasticity theory and is, therefore, not analyzed herein.

M athematically, the steady state under mode 2 loading for a pressurized frac

ture in an infinite media may not be possible. However, after a relatively 

long diffusion time, the tem poral variation of the pore pressure (under a  time- 

independent fluid pressure condition on the fracture surface) in the neighbor

hood of the fracture surface becomes so small th a t the steady state  practically 

has been reached. This will be now shown by several example problems.

Solution to the  steady-state poroelastic response is much easier because the 

deformation and flow now become decoupled. This is evident by eliminating 

the tem poral variation in the general poroelastic governing equations, (2.9) 

and (2 .1 0 ), which becomes:

G V V  +  ^ ( | - ) - a ( ^ ) = 0  , i = x , y , z  (2.34) 

v^p = 0 . (2.35)

This is equivalent to the steady-state thermoelastic equations, e.g. [124] with 

the pressure being substituted by the tem perature and the Biot’s coupling 

coefficient, a ,  replaced by S K j in which 7  is the linear thermal expansion 

coefficient and K  is the bulk modulus of the  elastic material. Therefore, the

34



many available solutions in thermoelasticity can be applied to the current 

steady-state poroelastic problems.

Now. consider a penny-shaped fracture of radius, Rq, in an infinite poroelastic 

domain which is subject to a pure pore pressure boundary condition. p /(r ) . 

along the  fracture (Figure 2.3):

p =  —pf{r) : (T.. =  0 0 <  r <  /?o; ^ =  0 (2.36)

The minus sign is added to  allow for the fracture to open. T he far-field bound

ary condition as well as the  initial conditions are all natural, i.e. zero. The

similar problem was originally solved in thermoelasticity by Olesiak and Sned

don (1961) [125] and can also be found in [126]. In our interest, the normal 

displacement along the  fracture can be expressed by the following formula:

w{s)  =  /  rl'{T})jQ{sT})dT} , 0 <  s =  r /Ro < 1 (2.37)
Jo

where rj is an integration variable, and:

Hri) = ~ j  sin{T]v)dv J  (2.38)
7T Jo Jo y

with /  given by:

/ ( j )  =   ̂ ^  <liv)M^v)dTi (2.39)

in which Jq is the zero-order Bessel function of the  first kind, and:

2
cos ;’ r + ’’ r ÿftî IÔ <‘Pdy'‘)sMyn)du

Furthermore, the pressure derivative, | | ,  normal to the fracture on the fracture 

surface, which is related to the  leakoff rate across the fracture surface, is 

computed via: 

dp f( s , z )

.(2.40)

dz
=  f T]q{Tj)Jo{sTf)dTj . 0 <  s < 1 . (2.41)

_.=0 ■'01=0
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In the  following, these complicated formulae are analyzed. Numerical means 

are developed to calculate them  under general pressure profiles, p /( r ) .

2.4.1 Com putation o f Poroelastic D isplacem ents

First of all, the following statem ent can be reached:

The steady-state poroelastic displacement on the fracture induced by a pure pore 

pressure boundary condition, p/{r).  along the fracture in an infinite poroelastic 

domain is equivalent to the purely drained elastic response to a mechanical 

loading condition, <t„ =  qpf{r),  on the fracture surface, i.e.

whose proof is described in Appendix B.

Some simple pressure profiles can be computed analytically to give the explicit 

relationship between the steady-state poroelastic displacement, and the

pressure profile. For example,

< . , ( 4  =  (2.43)

for a uniform pressure profile,

P/(-s) =  P/o ; (2.44)

or,

for a linear pressure profile,

P /(a ) =  P /o(l -  s) ; (2.46)
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or,

< . . ( » ) = (2. 47)

for an elliptic-like pressure profile:

1 + 3 2
P/(s) =  P/o 1 + 3

K { k ) - K { s ) - { l  + s)E{k) (2.48)

with =  4 3 / ( 1  +  s)^ and K. E  are the complete elliptical integrals of the first 

and second kinds, respectively.

In the above, Eqn. (2.43) and Eqn. (2.45) can be computed easily while 

Eqn. (2.47) is from the purely elastic solution [128]. Figure 2.4 shows the 

coincidence of the analytical predictions, Eqn. (2.43) or Eqn. (2.45) or Eqn.

(2.47), with the late-tim e com putations for the penny-shaped fracture under 

the corresponding pressure profiles. The computations come from a commer

cial F EM software and will be detailed in Chapter 3. Therefore, Axiom 2.3 is 

numerically verified.

The expression for v^ t̂dy under a  uniform pressure profile was derived elsewhere 

[125, 126, 129]. However, all of their final results except the one in [126] were 

wrong due to errors in the interm ediate steps of derivation.

For more complicated pressure profiles, a  numerical scheme is needed to com

pute the integral in Eqn. (2.42). In view of the fact tha t this integral also 

gives the purely elastic response of the  fracture deformation to a mechanical 

pressure profile, the following derivation is based on replacing » 7 P / ( r )  with a 

more general profile, p /(r):
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For the convenience of numerical calculation, the double-integral in Eqn. (2.49) 

is divided into single integrals via the following exercise. Consider the following 

prototype form:

which can be divided into the sums of the  following h  and I2:

I _  r  /  vpjW v
* Je Jo — 7/̂

=  nPf{v)dv\jF{(i>i,Ki)  (2.51)

The integral in the  bracket comes after [130], which reads as:

f  . = -F{4>,k ) (2.52)
-/= ^ (x 2  -  o2)(x 2 _  62) a

for u >  a >  6 >  0 and with:

/u2 — a2 b
é  =  arcsin — — : « =  -  (2.53)

V — 62 a

Presently, u = l , a  = 9,b = rj-, and.

/I-^2 n
=  arcsin y  ^  (2.54)

F  is the elliptical integral of the first kind,

=  r -  = r % — È —  . (2.35)
Jo y /l  — K Sin a  •'0 ^ (1  — x2)(l — K^x^)

Furthermore,

^  VPf{y)dn
 ̂ Je \/(2 — Je \/̂ 2 _ ̂ 2

=  /  f i^^n)VPfiv)dv -  [  (2.56)Je Je
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in which /  is defined by:

ds

=  -F[<i>2 ,K2 ) + f{r},Tj) (2.57)

which is again from Eqn. (2.52) with u =  l , a  =  7 , 6  =  5; and.

/ I - 7 2  e
Ô2 =  arcsin y  ; Kg =  -  (2.58)

Therefore,

h =  f F{(f>2,K2)pf{T])dTi (2.59)
J0

The elliptic integral, F{ç , k ), haa a logarithm ic singularity as é  rr/2 and  

/c —)■ 1, which is the case when t] —* 0 in the both integrals of / i  and /g. In 

the  numerical calculation, this singularity is singled out by adjusting the F  

function to:

F(<2i,«;) =  F(<^, k) -  ^ l n ( l  -  k) (2.60)

F { 6 , k ) =  F (^ , k) +  | l n ( l  — k ) is regular. The logarithmic singular integral, 

fold) — K)pf{Tj)dri, is calculated using special Gaussian quadratures

[131]. Herein, / { tj) represents the  rem ainder in the integrand of and 7g.

In the  numerical implementation, the  pressure profile, pjirj), is interpolated 

by the  Chebyshev polynomial of the first kind of order, N,  from its values at 

the  Chebyshev grid points, p/,„:

2
P/(^) =  P/.n

n=l
13 Fk-l{Vn)Tk-l{v)  — -  

ut=i ^
- 1  <  u <  1 (2.61)

in which:

( n - i ) 7 r
u =  2 7 — 1 ; Tfc(i) =  cos (fccos~* x) ; Un = cos

iV
(2.62)

39



Substituting Eqn. (2.61) into /i and I2 and carrying out the regular inte

gration part by normal Gaussian quadratures and the logarithmically singular 

integration part by the special Gaussian quadratures, as discussed above, gives 

the discretized elastic deformation equation, (2.49), as follows:

2 { l - u ) R o
W;  = • (2.63)

Here, the subscript ^1, 7 ” refer to the nodal point with the repetitive index 

implying summation over [I, N]. Note th a t the matrix c-" only depends on 

the Chebyshev polynomial grids. Therefore, once the grid points are fixed 

at the beginning of the simulation, it remains unchanged even after the frac

ture propagates. Substituting pj in Eqn. (2.63) with ppj gives the numerical 

formula to compute the steady-state poroelastic displacement,

•»r =  . (2.64)

In order to check Eqn. (2.63) or Eqn. (2.64), the three pressure profiles, Eqn. 

(2.44), Eqn. (2.46) and Eqn. (2.48), are computed by Eqn. (2.64) using 

a Chebyshev order of N  =  10. The com putations are compared with the 

corresponding analytical results, Eqn. (2.43), Eqn. (2.45) and Eqn. (2.47). 

Figure 2.5 shows a  very good agreement between them.

2.4.2 C om putation  o f th e Pressure Derivative

For simple pressure profiles, analytical expressions can be developed to calcu

late the fluid leakoff rate along the fracture, or, the  pressure derivative, Eqn. 

(2.41). For example, for the uniform pressure profile, Eqn. (2.44), the pressure 

derivative is:
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or for a  linear profile, Eqn. (2.46),

dp f js^z)
d z 2=0

P/o
Ro

In
1 -h

. ( 2 .66 )
v l  — 5'

The following is to develop a numerical scheme to compute the leakoff rate for 

more complicated pressure profiles.

Substituting Eqn. (B.2) into Eqn. (2.41) and eliminating the Bessel function. 

Jo, which is often problematic in its numerical integration, gives:

5 p /(s , z ) 2 1 7* yg\{y)dy y^dy 7‘ g2{yu)du
d z z=0 W l - S ^ Jo y/l — ŷ Jo y/l — J/2 Js y/û  — g2

(2.67)

As done w ith the elasticity equation, (2.49), the double integral in Eqn. (2.67) 

can be divided into single integrals via the following manipulations. First, 

making the  change of integration variable, v = yu  transforms this integral to:

n  y'^dy [V g2{v)dvI  = f  y dy j-y g2[v)<i'
Jo y / l  — J y s  y / v ^  — y

Defining:

( 2 .6 8 )

(2.69)

and integrating Eqn. (2.68) by parts gives:

/  =  ^  / ( l ,y )P 2( u ) d u - ^  f i{y,y)g2{y)dy -  f 2{y,y)g2iy)dy

+s I  f{y ,ys)g2iys)dy . 
Jo

(2.70)

It can be easily shown tha t a specific form of function, /(O, s), in Eqn. (2.69) is 

irrelevant and is, therefore, taken to be zero. The various functions, / ( I ,  s), /i( ,2)(j/, y)
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and f { y , y s )  involve elliptical integrals, which can be found in [130] as:

(2.T2)

f2iy.y) =  -TJ-[F {ày2̂ f ŷ2) -  E{<i>y2,ky2)] (2.73)
y^y2

fiy^ys) =  -^[F{0ys,ky^)  -  E{4>ys,ky )̂] (2.74)
•«Si

with the various coefficients given by:

= s /v

<i>yl =  sin” ' s , kyi = y /s

éy2 =  sin” ' y  , ky2 = s / y

éya =  sin” '  s , ky, = y (2.75)

F  has been defined by Eqn. (2.55) and E  is the  elliptical integral of the second 

kind, defined by:

E ( *  k) =  r  \ / l  -  s in ' c d a  =  T ” . (2.76)
Jo Jo y/l  —

A similar numerical procedure as used in com puting the integrals of Eqn. 

(2.51) and Eqn. (2.59), can be utilized to com pute the integrals in Eqn.

(2.70). Some of the differences are elaborated here. As shown in Eqn. (B.3) 

and Eqn. (B.4), Çi contains p'j{v), the first derivative of the pressure profile 

w .r.t. the  fracture direction. And ^2  involves up to the 2nd derivative, p'}{v). 

In one way, the p'f{v) or p"(u) can be estim ated by computing the derivative, 

—‘‘Jj in the Chebyshev polynomial for the original pressure profile, Eqn.

(2.61), i.e.

P /( ‘’) =  | E P n | | ; n - i K )  . - ! < « < !  (2.77)
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or,

=  .(2.78)

On the o ther way, p'j{v) and p"(u) can be interpolated by the Chebyshev 

polynomial based on their corresponding values at the grid points. p'f{vn)

and p'j{vn) {n = 1 ,2 ......;V). Experience has shown tha t the former approach

greatly exaggerates the sinusoidal oscillation intrinsic to the Chebyshev func

tion and is, therefore, very inaccurate. The la tter approach gives smooth 

variation and much better accuracy as com pared to  the analytical results, and 

is thus employed for this study. In com puting the derivatives, the following 

F.D. discretization is used:

dpf
dv

(Ppf

(2.79)

dv^

V S = V t u.+l — y.-l

_  2 [p/.,+i(uj — u .-i) +  p /,t-i(u ,+ i — Vj) — p/,i(»,>i —
(^1+1 — yi-l)(Vt+l — Vi){Vi — Ui-l)

(2.80)

for i =  2, 3 ,..., N  — 1; or,

dpf
dv

f i L
dv"̂

V = V l

_  P/,2 -  P/,1
Vl + V2 

_  2 (p/,2 -  P/.I )
vl -  vf

at the first grid point, i =  I; and.

^Pf
dv

<Ppf

v=v,v

dv^

_  jPf,N — Pf,N-2){vN — v^ - i ){vn  +  Uy-l ~  2) 
{vn — UAf-i)(üAA — UiV-2)(ViV-l — U,V-2) 

(P/,/V — P/,iV-i)(uv — +  ^N-2 ~  2)

(2.81)

(2.82)

u=v̂ r

(2.83)(u,v — Vfĵ i){V[̂  — U;v_2)(u;v-1 ~ ^N-2)
_  { P f , N  — P f , N - l ) { v N  —  V N - 2 )  —  { P f , N  -  P f , N - 2 ) { v N  ~  ^ N - l )  

(y,v — uv-i)(^/v  — u.v-2)(yv-i — ^N - 2)
(2.84)
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at the end point, i = N .  In computing the derivatives a t the first grid point. 

I =  I, the symmetric property of the pressure profile w.r.t. the symmetric 

axis, z =  0, is used so th a t p'f{v) =  0 a t u =  0. At the end point, i = V. the 

pressure profile is locally fitted to a parabolic curve based on the immediately 

adjacent three nodal values, pf_s-.Pf.s-i and p f , s - 2-

Carrying out the foregoing numerical procedures finally gives a discretized 

relationship between the pressure and the pressure derivative as:

dpf{s ,z)
dz = <jPf.j (2.85)

2=0

with I ,  j  =  1 N .  Comparison of the com putations based on Eqn. (2.85)

with other solutions for the example pressure profiles, Eqn. (2.44) and Eqn.

(2.48), are shown in Figure 2.6. Good agreement has been reached. For the 

uniform profile, Eqn. (2.44), the other solution is analytically obtained as in 

Eqn. (2.65). For the  elliptic-like profile, Eqn. (2.48), however, an analytical 

solution is not possible and shown in Figure 2.6 are the ABAQUS's com puta

tions as to be detailed in the subsequent chapter. The linear pressure profile. 

Eqn. (2.46), which does have the analytical expression for the pressure deriva

tive, Eqn. (2.66), however, does not satisfy p'f{v) =  0 at u =  0. Therefore, 

this profile is not com puted by Eqn. (2.85).

2.5 Sum m ary

In its first innovative contribution, this chapter has shown, based on the penny

shaped fracture geometry, th a t the steady-state poroelastic deformation along 

the fracture under mode 2 loading (pure fluid flow condition) is simply equiv

alent to the purely elastic deformation of the same fracture loaded by a fluid 

pressure of r]p{r) on the fracture surface, i.e. Eqn. (2.42). This conclusion has

44



been analytically proven and numerically verified by comparing the analytical 

predictions with the computations from a commercial FEM software.

The practical significance of Eqn. (2.42) lies in th a t it characterizes the late

time asym ptotic poroelastic response using the  relatively simple elastic for

mula. To the au thor’s knowledge, there has been no similar assertion proven 

in the literature for the general pressure profile. For the simple uniform pres

sure profile, Eqn. (2.42) has been implicitly used without proof on several 

occasions [81, 126]. For the same simple pressure profile, however, the steady 

state  poroelastic, or equivalently the therm oelastic, solution about the fracture 

deformation was given mistakenly in some other published works [125, 129].

Secondly, the procedure outlined in this chapter to convert a double integral 

into single ones provides an efficient and accurate numerical means to com

pute th e  double integrals. Based on the conversion, two numerical algorithms 

have been developed to compute the elastic deformation of the fracture (or the 

steady-state poroelastic deformation) and the steady-state leakoff rate along 

the fracture. The logarithmic singularity involved therein is adjusted to a regu

lar integral, which can be computed by the normal Gaussian quadratures, plus 

a  purely logarithmic part, which is numerically calculated by the special Gaus

sian quadratures. Using a Chebyshev polynomial to interpolate the pressure 

variation along the fracture, the resultant matrices th a t relate the pressure 

profile to  the deformations or leakoff ra te  do not depend on the propagation of 

the fracture. Therefore, once the Chebyshev grid is set at the beginning, the 

m atrix equation does not need to be re-computed as the fracture propagates. 

In so doing, a considerable com putational effort is saved.

The 1-D transient poroelastic model is also analyzed. The 1-D model repre

sents the  early-time a^vnnptotic behavior of a full poroelcistic response. The
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various m athem atical formulae arrived a t herein serve different purposes in the 

subsequent chapter and further development in McFrac. Particularly, it as

sures th a t the  same equation, 2.28, holds for the pressure-independent C arte r’s 

leakoff model, which has not been explicitly pointed out in the literature.
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Table 2.1: Poroelastic m aterial properties of some typical rocks.

m aterial E  (G Pa) u k (md) 4> a B Varl
Ruhr sandstone 29 0.12 0.2 0.02 0.65 0.88 0.56

Tennessee marble 20 0.25 1 X 10-4 0.02 0.19 0.51 0.30
charcoal granite 28 0.27 1 X  10-4 0.02 0.27 0.55 0.34
Berea sandstone 14 0.20 190 0.19 0.79 0.62 0.41
Westerly granite 38 0.25 4 X 10-4 0.01 0.47 0.85 0.57
Weber sandstone 28 0.15 1 0.06 0.64 0.73 0.44
Ohio sandstone 16 0.18 5.6 0.19 0.74 0.50 0.30
Pecos sandstone 14 0.16 0.8 0.20 0.83 0.61 0.39
Boise sandstone - - 200 0.26 0.85 0.50

coarse sand 0.25 0.30 3,600 0.48 0.98 0.73 0.62

Note: V a r l= B (l +  £/u)/3(l — i/^). D ate compiled from [120].

Table 2.2: Poroelastic m aterial properties used for the computations.

E  (GPa) V k  (md) y- (cp) à a B
10 0.25 35 1 0.20 0.798 0.687
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Figure 2.1: 1-D poroelastic model and its loading mode decomposition.
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Figure 2.2: Comparison of the  leakoff rate, u, and the poroelastic displacement, iw*’, 
under mode 1 and mode 2 loading.
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Figure 2.3: Penny-shape pressurized fracture model.
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Chapter 3 

A Simplified 2-D Poroelastic 
M odel

In the  previous chapter, it was concluded th a t th e  full poroelastic response 

of a hydraulically-driven fracture is bounded by the  I-D poroelastic model at 

the  early times and by the steady-state solution at th e  late times. Analytical 

expressions or numerical formulae have been derived to compute their values. 

This chapter is dedicated to the investigation of th is transient region between 

these two asymptotic regimes for a  penny-shaped fracture  configuration. Ways 

are sought to simplify the transient poroelastic response so th a t there is no 

need to compute the complicated tem poral and spatial integrations th a t is 

used by general HF simulators and discussed in C hap ter 1. Only with this 

simplification can the goal of developing a fast HF sim ulator be realized.

Because of the strong flow-deformation coupling, very few problems of practi

cal significance have explicit analytical solutions in th e  full poroelastic domain. 

The analytical means include the various decomposition techniques, i.e. (1) to 

decompose the general loading condition into mode 1 and 2 as exemplified in 

[100], or (2) to decompose the general coupled field equations into uncoupled 

ones each of which governs a particular sub-function, e.g. McNamee and Gib
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son’s displacement functions (1960) [132], or Biot’s decomposition functions 

(1956) [133, 134]. In order to make these analytical methods work, further 

conditions have to be met in regards to th e  problem geometry an d /o r initial 

and boundary conditions. The summary by Detounary and Cheng (1993) [89] 

provides an excellent coverage on this subject.

General solutions to poroelastic problems rely on various numerical techniques. 

Finite element (FEM ) [135, 136, 137, 78, 138], boundary element (BEM) 

[139, 140] and even finite difference (FD) [141] methods have been used. Par

ticular to the current task of analyzing the poroelastic response of a pressurized 

fracture, a commercial FEM software, ABAQUS, was used. Derivation of the 

equivalence of the ABAQUS’s formulations with the poroelasticity theory and 

validation of its sensitivity to the mesh size and tim e step increment has been 

documented by Yuan and Abousleiman (1993) [142].

The computed model is axi-symmetrical (in r, z coordinates), containing a 

pressurized fracture of radius, Rq, lying in a plane 2  =  0 (Figure 2.3). The 

model is embedded in an in-situ pore pressure field, po, and is subject to a 

in-situ stress, (Tq, perpendicular to the fracture. The fracture surface is loaded 

with a fluid pressure, P / ( r ) ,  which serves as both mechanical and hydraulic 

boundary conditions. The loading condition is again decomposed into mode 

1 and 2. Although the 1-D poroelastic analysis carried out in the previous 

chapter has already concluded tha t the m ode 1-induced poroelastic effect is 

negligibly small and thus can be ignored, th e  mode 1 loading is retained here. 

It helps offer fu rther support to  the previous assertion. The relevant material 

properties are listed in Table 2.2.

The model boundary is set sufficiently far away from the fracture to  represent 

the infinite geom etry (Figure 3.1). Fluid should not diffuse to the boundary
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during the solution time. The outside boundaries are, thus, set impermeable 

and pinned in deformation with zero displacements. Due to the symmetry, 

only one quarter of the model is computed.

In the following, the governing equations for a stationary  penny-shaped hy

draulic fracture are first reviewed and non-dimensionalized. The computations 

are then analyzed in the second section in terms of the poroelcistic displace

ments and leakoff ra te  along the fracture. In the th ird  section, a simplified 2-D 

poroelastic model is developed and compared w ith the computations for two 

example pressure profiles. The fourth section extends the mathem atical analy

sis from a stationary fracture to a propagating one. A Duhamel’s theorem-like 

extension principle is derived.

3.1 Non-dim ensionalization o f  the Governing 
Equations

In order to  reveal the controlling parameters, the m athem atical problem is non- 

dimensionalized. Particular to the axisymmetric configuration, the general 

governing equations can be reduced to:

— kM ^ ^ P  — 0 . (3.3)
a t  a t

with the  Laplace operator and the volumetric strain  given by:

■ ■  T ' 7 ' T  ■ M
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The initial and far-field boundary conditions are taken to be homogeneous,

i.e. zero. The remaining boundary condition takes place along th e  fracture as 

follows:

r 6 | 0 . & | J > 0  (3.6)

for mode I loading; and,

r 6 l 0 . H „ M > 0  ,3.7)

for mode 2 loading. In the above. H{t)  denotes the Heaviside function. W ith

out loss of generality, the pressure profile is eissumed to be uniform and con

stant. More complicated pressure distributions can be easily substitu ted  and 

in fact, have been computed as shown below.

Substituting the following dimensionless variables:

a(,h) =  (3.8)
Ko

< • ( ? ')  =  (3.9)
P/0  — Po

M . ua) =  =  (3.10)
Uc Lr

= i '  =

into Eqn. (3.1) to Eqn. (3.3) and carrying out the algebraic manipulations 

gives the following dimensionless governing equations:

~  Ift = “
dp a ^ M d e  ^
dt G dt

- V " p  =  0 (3.14)
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with the prime denoting the dimensionless sense being dropped; and,

■ ■

which is subject to the following boundary condition:

. £ ( 0 , 1 1 , 0 0  (3.17)

for mode 1 loading; and.

{ z ! : ) ' ! ; , , ,  (3.18)

for mode 2.

The physical variables, kM  and a ^ M /G ,  are functions of the drained and 

undrained Poisson s ratios:

=  L ( l - 2 . . ) ( l _ r )  
a^M  2(i/„ —  I / )

(3.19)

(3.20)
G  (I — 2t'„)(I — 2i/)

Therefore, the  solution to the current problem in the dimensionless domain 

is solely controlled by i> and In addition, the non-dimensionless formulae, 

Eqn. (3.8) to Eqn. (3.11) are particular for mode 2 loading only. In computing 

the mode 1, the (p/o — Po) term should be replaced with (p/o — <Tq).

The pressure distribution along the fracture also influences the com putations. 

In this chapter, two example profiles have been computed, i.e. the uniform 

profile, Eqn. (2.44), and the elliptical-like profile, Eqn. (2.48) (Figure 3.2). 

As will be shown in Chapters 4 and 5, the  former corresponds to the case of 

very large fracture toughness and the la tte r is more like the cases when the  

fracture toughness is small.
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3.2 Com puted Poroelastic R esponse

The com putational results are analyzed for the profiles of leakoff rate, u{s,t)  

and poroelastic displacement, perpendicular to the fracture on the

fracture surface. The following m ajor observations can be reached:

(a) T he  2-D computations again support the previous conclusion tha t mode 2 

loading dominates both the  leakoff rate and poroelastic effect. This domi

nance stems from the large difference in po and ctq as observed in practice. 

In the  non-dimensionalized domain, the mode 1 effect is smaller than but 

still comparable to the mode 2 effect (Figure 3.3). In the dimensional 

sense, i.e. when the practical values of po and (To are taken into account, 

the  mode 1 effect is indeed much smaller than  the mode 2 effect (Figure 

3.4). This agrees with the earlier 1-D prediction and other researcher's 

conclusion, e.g. [80, 60]. Therefore, the mode I-induced poroelastic effect 

is ignored throughout the  sequel of this dissertation. Its induced mechan

ical behavior is described by the  drained elastic deformation theory. The 

loading data used in Figure 3.4 are as follows: po =  25 M Pa and <To=40 

M Pa as from [123); and p/o is set a t 55 MPa.

(b) T he  1-D transient and 2-D steady-state poroelastic models, as discussed 

in th e  previous chapter, are clearly shown in the computations as the 

asym ptotic behavior during the  early and late times, respectively.

Take the uniform pressure profile for example. Figure 3.5 shows the 

evolution of the poroelastic displacement, u;P(s, f), at several typical lo

cations along the fracture. Also displayed there are the asymptotic 1-D 

poroelastic response, Eqn. (2.32), and the steady-state solution, Eqn. 

(2.43). Clearly, the com putations a t late times and the analytical results
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a t the steady sta te  coincide. Similar observations can be reached for the 

leakoff rate, u(s , t) ,  based on Figure 3.6 which displays the evolution of 

u{s,t)  for the same uniform pressure profile.

As shown in Figure 3.7, large disagreement is visible between the ana

lytical predictions and the numerical com putations during the early-time 

period, particularly in the leakoff rate. This inaccuracy is associated 

w ith ABAQUS in computing the early-time poroelastic response or the 

pressure derivative. The analytical models should not share the blame. 

Any numerical means, including the current ABAQUS, are not adequate 

to  yield accurate results for the early-time poroelastic response due to the 

skin effect caused by the Heaviside tem poral function in the boundary 

condition [143]. Moreover, calculations of th e  leakoff rate involve pres

sure derivatives which are computed by numerically differentiating the 

com puted nodal pressure values along the z—direction. Computational 

error is inevitable in this transformation process U

(c) T he transient response in the poroelastic displacement, u;P(s, f), between 

the  two asym ptotic time regimes takes the typical diffusion form: in

creasing rapidly at the beginning from the 1-D response, then gradually 

slowing down and approaching the steady-state solution (Figure 3.8). At 

the  dimensionless time of f =  1, has taken over 80% of the full re

sponse, i.e. the steady-state value (Figure 3.5).

T he leakoff rate decreases exponentially (linearly in the  log-log plot with 

a  slope of -0.5) nearly till t =  1 and then, turns to the constant value 

associated with the steady state  (Figure 3.6). The early-time values are

'A  good analogy to this point is to compare the stress and displacement computations. It is 
widely observed and accepted that in the displacement-based FEM computations, the accuracy 
for stresses at nodal points, which involves displacement derivatives, is not as good as for the 
displacement.
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orders larger than the late-tim e ones, such as the steady-state constant.

3.3 A Simplified 2-D Poroelastic M odel

Between the two asymptotic time regions, there is no explicit analytical ex

pression to cover the transient poroelastic response. Several avenues exist in 

singular perturbation  theories to build up composite mathematical expressions 

to bridge the  outer and inner expansions [144, 145]. In this section, the cubic 

spline interpolation scheme is used to  create an approximate analytical formula 

covering the interim  for the poroelastic displacement. The interim leakoff rate 

is based on a  simple superimposition principle. The reason for using the cubic 

spline scheme is th a t the first derivatives at both ends of the transition  period 

are known. The same interpolation scheme could be applied to the  leakoff 

rate. However, it has been found th a t doing so does not significantly enhance 

the accuracy, bu t considerably complicates the numerical calculation.

3.3.1 C ubic Spline Interpolation  for

The cubic spline interpolation principle is detailed, e.g. by Press et. al. (1990) 

[146], whose derivation is applied herein. Given the end points, the end

point values, and the first derivative values, i/', we set off to  find the 

coefficients for the  cubic polynomial resulting from the interpolation:

y = y o y \ x  + y2X̂ ->r yzX^ (3.21)

in which, x  =  log(f) and y = since it is found that the best fit can be 

realized in the  semi-logarithmic plot. Based on the steady s ta te  property, 

y'o=o.
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After lengthy algebraic exercises, the coefficients in Eqn. (3.21) have been 

found in the  following form:

yo =
XoVi ^iVo +

a

U2 =  

1/3 =

A x Ax
 ^

A x A x 6Ax 
Cc^o

6Ax ~  [xiXo[xo -  2x,)%3.22)

y\ -  ^ - ^ - ^ ( 2 x 2  +  2x,-X o-x?) +  ^ ( 2 x f  +  2 x .x ^ -(3 r.^ )

where,

A x =  

Cc =

2Ax 2Ax
Cj Cc

6 Ax 6Ax

log (

6 (i/o - V i )

(3.24)

(3.25)

(A x): Ax

(3.26)

(3.27)

(3.28)

with.

yi =

Vi  =

2TjfioPf
G

yRppf  
G  M

A
(1 — 2^'u)(l — I/)

7r(I -  2i/)(I — t/u)

( l - 2 i / „ ) ( l - i / )

y/ti 

y/Tiln 10

(3.29)

(3.30)
t (I -  2i/)(I -  i/„)

and rjo from Eqn. (2.64). Eqn. (3.29) is from Eqn. (2.32) with ti as the 

dimensionless time.

In general, it is reasonable to truncate the  transient poroelastic response before 

ti =  0.001 for the 1-D poroelastic model and after to =  10 for the steady sta te  

solution. W ith <,• =  10~^ and to =  10 being dictated so, the best fit can be 

achieved for the computed example pressure profiles. The various coefficients 

in Eqn. (3.22) to Eqn. (3.25) are thus reduced to:

ÿo — g (2 4- 6 I/o — 5 Cc — 7 Cd)

y\ =  ^  (6j/o — 6 r / i - I - 1 3 C c -}- l l C j )

(3.31)

(3.32)
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V2 =  +  (3.33)

y3 =  — (3. 34)

with,

Cc =  ^ { y o - y i ) - y ' i  (3.35)

Cd =  ^[4y--3(ÿ<,-ÿ.)] (3.36)

The transient poroelastic response thus developed by Eqn. (3.21) is denoted 

by fu,. Therefore, a complete description of the simplified 2-D poroelastic 

model can be formulated as follows:

( w^ijisU) t < 10“^
<dfdi^^ t) = { /u-(5, t) 10-3 < ( < 1 0  (3.37)

i t) t >  ID .

with and tJÔtdy being given by Eqn. (2.32) or Eqn. (2.64), respectively.

3.3.2 Sim ple Superim position  for u

Overall, simply adding the steady-state leakoff value to the 1-D leakoff formula, 

Eqn. (2.30), fits the transient response reasonably well for the leakoff rate. 

This simple scheme works because the  1-D leakoff prevails for a relatively long 

time, e.g. until f =  1 in the case of uniform pressure profile (Figures 3.6). 

Moreover, the magnitude of the leakoff ra te  decreases exponentially and its 

early tim e values, which are more akin to the  1-D model, are several orders 

larger than  the late-time values. The simplified 2-D leakoff model formulated 

this way has the following form:

Umdfdir, t) =  — — + Ustdyir, t) (3.38)

in which, Ugtdy =  — wi t h the  pressure derivative given by Eqn. (2.85) 

for the general pressure profile or analytically by Eqn. (2.65) for the  simple
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uniform pressure profile. Eqn. (3.38) is written in dimensional form but 

assuming the  pressure profile to be constant in time. For the time-varying 

pressures, Duhamel’s principle can be used as to be discussed below.

3.3.3 Com parison o f th e Sim plified 2-D  Poroelastic  
M odel w ith  th e True 2-D C om putations

Figures 3.9-3.14 extensively document the  comparison for the two com puted 

sample pressure profiles together with the  distribution of the relative errors. 

Some m ajor observations can be made:

(a) In general, the simplified model catches the  transient nature of the  poroe

lastic response very well. Particular for the displacements, w^, the relative 

error is below 10% in the significant part of where t > 10”  ̂ and 

attains a  large magnitude (Figure 3.13).

(b) A relatively larger error of 10-20% occurs at early times: t < 10“  ̂ (Figure 

3.13) where the is small as compared to its full, steady-state value. 

Therefore, this error is acceptable and not expected to affect the  whole 

deformation system very much.

(c) Moreover, as much as 70% relative error is registered at s =  0.9 under 

the elliptic-like pressure profile in the analytical 1-D region, i.e. t < 

10“  ̂ (Figure 3.13). This is caused by the  steep pressure gradient near 

the fracture tip in this particular example. The pressure gradient in 

the fracture direction at the tip is negatively infinite, as described by 

Eqn. (2.48) and shown in Figure 3.2. In this case, the 1-D poroelastic 

response assumption may have already lost its validity near t =  10“ .̂ In 

addition, the ABAQUS inaccuracy in computing the early-time response, 

as discussed earlier, may become even worse near this rapidly-changing
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pressure region.

(d) T he agreement for the leakoff ra te  is generally in the range of .30-40 

% (Figure 3.14), i.e. not as good as for the poroelastic displacement. 

Two factors are likely causer. One is the computational inaccuracy in 

.\BAQUS's computing the early-tim e response or the pressure derivative 

as discussed earlier. The o ther factor is the simple superimposition in

terpolation scheme, which is responsible for the large errors during the 

transition period from the exponential decrea.se to the steady-state  con

stan t. Again, this inaccuracy, however, should not affect the whole system 

very much because the leakoff ra te  during this period is orders smaller 

than  its early time values.

3.4 Extension o f th e  Simplified 2-D M odel to 
a Propagating Fracture

The simplified 2-D poroelastic model Eqn. (3.37) or Eqn. (3.38) is based on a 

stationary fracture of a constant radius, Rq. When applied to the  sim ulation of 

a propagating fracture, a prim ary issue to  be dealt with is the changing fracture 

radius, R.  There is no ready m athem atical theory to extend the stationary  case 

to th a t of propagation. In the following, a Duhamel’s theorem-like extension 

principle is derived based on physical arguments.

3.4.1 Derivation o f th e E xtension  Principle

Before going into the details, let us examine the parametric dependence of 

the simplified poroelastic model, such as Eqn. (3.37) or Eqn. (3.38). Firstly, 

transform ing the dimensionless form of the  equations into the dimensional one

6 2



gives:

1-3}p/(r)Aoi/F] t' < 10- 
/u,(r. V) 10-^ <  f' < 10 (3.39)
^  (Æ ocgp/,) I' > 10

in which, p f  should be viewed as relative to the reservoir pressure, po- P / is 

cissumed to be constant in tim e although it may vary along the  fracture, t' 

is the dimensionless time. Obviously, w’’{r, t) depends on the fracture radius,

R q , and the pressure distribution, pj(s)  (we use s here to cover all along the 

fracture and to differentiate from r  where we seek the solution.). T he p /(s ) 

influence on w’’ is linear. Explicitly, we use p{s)w^{r,t; R q ) to  denote this 

param etric dependence.

Now, consider a simple fictitious fracture propagation history (Figure 3.15): 

the fracture has a radius, R q , over t 6  [to.ti]. At t the fracture suddenly 

extends to a new radius, Ri  and thereafter, remains stationary a t Ri.  To 

simplify the description, the pressure profile along the fracture is assumed to 

be uniform and constant at p/o even after the fracture propagation. We need 

to com pute the poroelcistic response, say w^, at location, r , on the fracture 

and a t the current time, t.

For the  convenience of the m athem atical analysis, the same problem is depicted 

a little  differently (Figure 3.16). Instead let R  =  R q  during t €  let us

attach  an additional fracture segment to R q s o  th a t the to tal fracture radius 

during [ t o , h a s  the same radius, Ri  as during t 6  [ti,f]. The boundary 

condition for both deformation and flow over this additional segment during 

[to, ti] is maintained so th a t it is ju s t like in the continuum, i.e.

Uï(r, t ) = 0 ,  (Tr:(r, t) =  0 , Ç;(r, t) =  0 : r £ [Rq, Ri] , z = 0 . t e  [to.t\]

(3 .40 )
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Therefore, th e  m athem atical solution to this modified problem with a fracture 

radius. R \  is the same as the one with a radius. R q .

.\s a result of the boundary condition. Eqn. (3.40). the fluid pressure over the 

fracture segment. [/?o-/?i]. during t 6 [to.^i]< is unknown and changes both 

temporally and spatially. In any case, let us denote it as W ith

this, the boundary condition to this segment can be re-expressed in term s of 

this pressure function, i.e.

Pf(r. t)  =  pRoRi{r.t) : r  E [Ao. & j . z =  0 . ( €  [to. (ij • (3.41)

During the fracture  propagation, the fluid pressure condition along the fracture 

has experienced th e  following change:

Ap,(r.i = (,) = ! r  g

With the modification, the fracture has an identical fracture radius. R \ .  over 

the whole tim e domain: [to,t]. Therefore, the  conventional Duhamel's princi

ple is applicable, i.e. the  solution at r. t can be given by:

w^[rA)  =  pfow^[rA - to ; R o )  +  A p /(r. t i ) u / ( r . t  -  A%) (3.43)

So far. no o ther assum ption has been made except the linearity of the problem 

which is guaranteed by the theory of poroelasticity. The fracture propagation, 

however, introduces an intermediate unknown, PRoRi{r.ti), into Eqn. (3.42). 

which needs to  be solved from the pressure solution based on the boundary 

condition. Eqn. (3.40). Physically, the pressure over r E [i2o.i?i], follows 

the diffusion process (Figure 3.16): a.t t = Iq instantly upon the fracture of 

Ro in radius being created, the pressure over there is equal to the formation 

pore pressure, po. As  the fluid diffuses (assume pfo > po) into the formation.
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the pressure gradually rises towards pjQ. Therefore, if the fracture propagates 

faster than  the fluid diffusion rate, the pressure over [/2o.^i] is always a t the 

early stage of the diffusion process and can be reasonably approximated by po, 

i.e. pRQR\{r.t\) =  Po for r  6 {Rq, R i ]. Similar conditions have been applied in 

all other researches explicitly or implicitly whenever the Pflofli value is needed, 

e.g. [60. 82].

Now, let us extend the above simple propagation history to a continuous frac

ture propagation history. R(t).  Look a t a point at a fixed physical distance 

from the wellbore. r. At time, r ( r ) ,  the fracture first extends beyond this 

point whose radius is denoted as Rr. To com pute the poroelastic response 

at the current tim e, t, let us divide the tim e period, [r. <], into a number of 

small intervals: During the each tim e increment,

the fracture radius increases from Rç^ to and the fluid pressure changes

from p(^t) to p(<ffc) +  A p/(^t). The contribution from this time subinterval to 

the poroelastic effect at r, t can be com puted by:

AujP(r,f) =  A p /(s .,ft)u ;''(r,( (3.44)

One may sum  the  elemental contributions corresponding to each subinterval 

as described by Eqn. (3.44), and pass to the limit by taking the subintervals 

to zero and their number to infinity. In this way, the following formulae for a 

propagating fracture can be reached:

u;P(r, 0  =  p f { s , T ) w ’’ { r . t  -  t : R r ) - \ r

n—*oo fc—I ^ L J J

= r)u;P(r, t -  t : R r )  +  ' w^{r.t -  R ^ )d ^ j  .

(3 .45)
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This equation is similar to Duhamel’s principle except that the fundamental 

function, , depends on both and R.  The pressure appears in this equa

tion as its profile along the  fracture, i.e. s 6 ( 0 ,1). Therefore, the fracture 

propagation may also induce a non-zero time derivative of the  fluid pressure.

If the fracture is stationary at R q , Eqn. (3.45) recovers the conventional 

Duhamel's principle for a time-varying pressure profile.

Similarly, the leakoff rate can be computed for a propagating fracture as fol

lows:

u(r. f) = | u( r.  i -  r : / lr )p / (r ) - f  j
dp js .Q

d i
u(r. f — .f: R(_)dS, > (3.46)

in which, u(r. R^) is given by Eqn. (3.38) with Rç as the non-dimensionalizing 

fracture radius, R q .

3.4.2 D iscussion  about the E xtension Princip le

A  rigorous proof of the extension principle can only be obtained by solving 

the case of a propagating fracture and comparing the results with the ones 

bcised on Eqn. (3.45). Unfortunately, this cannot be carried out because the 

solution of a propagating fracture in poroelastic media requires a numerical 

tool which neither exists in the literature nor can be readily developed. In 

this section, we a ttem pt to check its performance in some limiting cases. The 

needed material properties are listed in Table 2.2.

Firstly, let us consider the  case of a stationary fracture. For simplicity, take 

a spatially uniform and tem porally linearly decreasing pressure profile, for 

example,

P f { s , t )  =  p ; o ( l  -  t f t o ) (3.41
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An analytical solution can be easily derived based on Eqn. (3.45). Figure 

3.17 shows the comparison between the numerical prediction by Eqn. (3.45) 

and the analytical ones. Obviously, an almost identical agreement results. The 

poroelastic displacement, w^, increases initially till t =  10 seconds even though 

the pressure continuously decreases. Starting from t = = 24 seconds, the

decreases linearly with time. In Figure 3.17. to = 100 seconds and p/o =  1.

Next, let us consider a simple propagation history:

(1. t < 10s
1 .4 - 0 .5 ( ( -  10) 10 < (  <  11 . (3.48)

1.5 O i l s

in which, the specific numbers are chosen arbitrarily  and have no physical 

meaning. R  has a unit of meter. Figure 3.18 shows the evolution of the 

poroelastic displacement at several particular physical locations on the frac

ture. Before t =  10 s, the poroelastic response coincides with the stationary  

fracture case w ith its radius equal to 1 meter. At t =  10 s, it has already 

attained the steady state. The fracture propagation perturbs the steady s ta te  

so that after t =  10 s, the fracture experiences an abrupt, rapid increase in its 

deformation and then again, slowly approaches the new steady sta te  based on 

the propagated fracture geometry of 1.5 m in radius.

Figure 3.19 shows the evolution of the profiles along the fracture. The 

fracture propagation causes a cusp in the profiles near the previous fracture 

tip; the newly propagated fracture segment has a smaller fracture opening 

because it is exposed to the fracturing fluid later. As the diffusion continues, 

the kink is gradually smoothed out and the whole profile finally becomes 

the steady-state elliptical shape.

Due to its history-independence, the final steady state  should not feel the 

influence of the fracture propagation except its created new fracture radius.
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[t is therefore expected that the final com puted steady state values of by 

Eqn. (3.4.5) should coincide with the analytical predictions based on Eqn. 

(2.43) if substitu ted  with the appropriate fracture radius values. Figure 3.20 

indeed shows this observation. At ( =  10 s before the fracture propagation, 

the iv’’ profile is elliptical, corresponding to the  steady state based on the 

non-propagated fracture geometry of 1 m in radius. At t =  100s when the 

propagated fracture reaches the steady sta te , another elliptical-shape for the 

fracture apertu re  appears, which corresponds to  the  propagated fracture radius 

of 1.5 m.

Finally, let us consider a  real fracture propagation history in which the  frac

turing pressure decreases as the fracture propagates (Figure 3.21):

R{t) =  3.T4 (3.49)

p{t) =  11 .49r°-2  (3.50)

where R  is in meters and p in MPa. Eqn. (3.49) and Eqn. (3.50) are based on 

a similarity solution of a penny-shaped fracture propagation in purely elastic 

media of high fracture toughnesses (to be discussed in the next chapters).

Figure 3.22 displays the evolution a t some particular physical coordinates 

on the fracture. The abrupt change in due to the fracture propagation, 

which is observable in the above simple step-rate  fracture propagation history. 

Eqn. (3.48), does not exist for the current continuous propagation history, 

Eqn. (3.49). As shown in Figure 3.23, the profiles along the fracture appear 

linear and do not have the cusps (except a t early times) which are visible for 

the step-rate fracture propagation history as discussed earlier (Figure 3.19).

Figure 3.24 plots the  comparison between the 1-D transient model. Eqn. 

(2.32). and the  simplified 2-D model. Eqn. (3.45). M  the very early times
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when the fracture is first exposed to the fracturing fluid, the 1-D and 2-D 

results are comparable. Shortly after the fracture arrival, however, the 1-D 

results s tart to  exceed the 2-D as the fluid penetrates deeper into the forma

tion in 1-D (in 2-D, the lateral diffusion takes portion of the diffused fluid). 

However, the 1-D model cannot feel the structural influence, i.e. the  fracture 

radius, induced by the fracture propagation. As the fracture propagates to 

a certain length, the structural effect intrinsic to the 2-D model eventually 

overtakes the penetrating diffusion predominance of the 1-D model. As a re

sult, the 2-D values go beyond the 1-D. Similar observation can be made 

in the profiles (Figure .3.23); the fracture aperture near the fracture tip 

is larger in the 1-D prediction than  in the 2-D because the fracturing fluid 

ju st reaches th a t point; wherecis away from the tip, the results in the 2- 

D model are larger than in the  1-D model because the structu ral effect has 

already surpassed the diffusion effect.

Based on the above reasoning about the competition between th e  structural 

effect in the 2-D model and the  penetrating diffusion advantage of the 1- 

D model, a smaller permeability, k. of the poroelastic media is expected to 

prolong the tim e period when both  models are comparable and reduces the 

predominance of the 1-D over 2-D, i.e. enhances the structural dominance. 

Moreover, a faster fracture propagation rate, i.e. a higher Kr value in Eqn. 

(3.49), should strengthen the 2-D response, causing it to exceed the  1-D results 

at earlier times. The parametric study  as shown in Figure 3.25 indeed predicts 

this trend.

As a separate note, we computed the CPU time taken to compute Figure 3.24 

based on the 1-D and 2-D models, respectively. The 1-D model consumes 11 

seconds on IBM PC 486 66 MHz while the 2-D model spends 32 seconds on
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the same machine. We believe this is comparable. Therefore, the advantage of 

the 2-D model being physically realistic and com putationally efficient is shown 

here.

The above exercises point to the  conclusion tha t all the  computations based on 

Eqn. (3.45) are physically valid and mathematically accurate in the limiting 

cases, including the cases of a  stationary fracture and the final steady-state 

solution during the simple step-rate propagation history. Eqn. (3.48).

Similar exercises have been applied to compute the leakoff rate based on Eqn. 

(3.46) and its validity has been proven as well. As an illustration. Figure 3.26 

shows the comparison of the leakoff rate evolution between the 1-D analytical 

model, Eqn. (2.30), and the simplified 2-D model. Eqn. (3.46). during the 

realistic propagation history, Eqn. (3.49) and Eqn. (3.50). It suggests that 

the I-D model underestim ates the leakoff rates if compared to the 2-D model, 

which is in agreement with other researchers’ findings (e.g. Settari and Warren. 

1994).

3.5 Sum m ary

In this chapter, a simplified 2-D poroelastic model has been developed. In 

the existing literature, poroelastic effects have been considered by either a full 

model or a 1-D model. The full model is very com putationally intensive as 

briefly discussed in C hapter 1 of this dissertation. The 1-D model consumes 

much less calculation effort, but loses the true 2-D or 3-D nature which in

troduces large errors, particularly, in the poroelastic displacements as shown, 

for example, in this chapter. The simplified 2-D model eliminates the disad

vantages of both models. It retains the realistic physics and reasonably good 

mathematical accuracy as compared to the true 2-D model. However, it is
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com putationally efficient and comparable to the 1-D explicit analytical model. 

Only with this simplified model is it possible to have a fast, yet accurate. HF 

sim ulator th a t accounts for the poroelastic effect.

The simplified model is reached by first building up the model for the case 

of stationary  fractures and then, deriving a Duhamel's theorem-like principle 

to extend it to propagating fractures. The stationary  fracture-based model is 

created by interpolating the transient interim behavior of the 2-D poroelastic 

response based on the early- and late-tim e asym ptotic results. A cubic spline 

interpolation scheme is used for the poroelastic displacem ent. w^\ and a simple 

superim position technique summing the 1-D transient and 2-D steady-state 

predictions is applied to the pressure-dependent leakoff rate. u.

The m athem atical accuracy of the simplified 2-D model for stationary fractures 

has been checked by comparing its predictions w ith the commercial FE.M's 

com putations bzised on the full 2-D model for two example pressure profiles. 

In the significant part of the poroelastic domain, e.g. for t > 10“ .̂ less than 

10% relative error is reported for w^. In some situations, larger errors, e.g. 20% 

relative error for and 30-40% for u. do occur in the  comparison. Partly, they 

can be a ttribu ted  to the FEM’s inherent inaccuracy in early-time calculation 

or in the  calculation of pressure gradient. The cases where the simplified model 

is the main source of the error, happen to be those when the or u values 

are insignificantly small: therefore, a relatively large error in the prediction 

does not affect the whole system very much.

Based on the physical arguments, an extension principle has been derived to 

apply the  stationary fracture-based simplified 2-D model to a propagating frac

ture. The resultant mathematical formula happens to appear like Duhamel's 

theorem and in fact, it strictly can be reduced to D uham el’s theorem for a
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stationary fracture and time-varying pressure history. Besides the linearity 

requirement which is guaranteed by the theory  of poroelasticity. the deriva

tion also assumes th a t the pore pressure ahead of the  fracture tip along the 

fracture direction remains at the in-situ reservoir pore pressure value. This 

assumption has been used explicitly or im plicitly in all other researches when

ever it is needed. It is valid when the fracture propagation rate is much faster 

than the fluid diffusion rate in the porous media. Although vigorous proof of 

this extension principle has not been a ttem pted , com putations for several rep

resentative fracture propagation histories using the extension principle have 

revealed tha t it captures all the physics, and in the  limiting behavior, it is 

identical to the corresponding analytical results.



P f

5 0 0 RO

Figure 3.1: C om putational model of the penny-shaped pressurized fracture.

2o.

2

1

• uniform profile
0

1
. . . i .

2
0 0.2 0.4 0.6 0.8 1.0

Figure 3.2: T he computed example pressure profiles.

73



0 .20
unmarked: mode 1: marked: mode 2

? -------V s=0.0
O -------- O  5=0 J

& ■ A  5=0.90.15

c

S 0.10
'S

0.05

t, dimensionless

Figure 3.3: Comparison of between mode 1 and 2 loading in the non-
dimensionalized domain.

0.0010
y 9 y f  T Vunmarked: mode 1

marked: mode 2
0.0008

- a  5=0.9 
-O s=0.5 
- 9  s=0.0

0.0006c

0.0004

0.0002

t, seconds

Figure 3.4: Comparison of between mode 1 and 2 loading in the dimensional 
domain.



0.20
V --------9  s=0.0
O ...........o  f= O j
A-------- A 5=0.9

0.15
V  Aa a ' o 'A g  e  o  o  D  o

/...>^0^'

I  O.IO 

%

_ J-Djcansieitt. __ Jj
 I M

,-2-D steady state- -

A A* Af*

0.05

time, dimensionless

Figure 3.5: Evolution of the poroelaatic displacement, w’’{s, t) and its comparison 
with the 1-D transient and 2-D steady-state solutions. Uniform pressure profile.

1000

V—— V 5=0.9
O......... O 5=0 J
A-------- A 5=0.1-D transient

100

S

3

t, dimensionless

Figure 3.6: Evolution of the leakofF rate, u { s j )  and its comparison with the 1-D 
transient and 2-D steady-state solutions. Uniform pressure profile.

10



Ct)
E

c.

0.00925

s  0.00875

0.00825

0.00775

■ 30

— " — 1-D transient w*"
----------1-D transient u

O------- 0  wf. early time (t=0.8e-4)
G------- Q u. early time (t=0.8e-4)

"unmarked: analytical ^ymptotic r  
marked: full model from ABAQUS

0 0.2 0.4 0.6

Uj

0.8

31

29

28

27

1.0
26

;/5
Cu

-o
3

s. dimensionless

Figure 3.7: Profiles of the computed and u along the fracture and their compar
ison with the asym ptotic 1-D analytical results. Uniform pressure profile.

0.15

V5
V3<L>

C.

0.10

0.05

0

1-D t r a n s i e n t i

o  s=OS

0

time, dimensionless

Figure 3.8: Evolution of the  poroelastic displacement, w^{s. f), during the  early time 
period. Uniform pressure profile.



0.20 f ! ■ ■ ■ » ■  r ' -  T" "  "  T I
symbol :̂ true 2-D model from ABAQUS

;s; simpUfied 2zD model
WV'VW W 'Vf 'W

0.15

I  0.10

0.05

t, dimensionless

Figure 3.9: Comparison of the simplified 2-D model with the true 2-D computations. 
Poroelastic displacement, lo^, and uniform pressure profile.

1000
symbols: true 2-D niodel from ^ A Q U S

linqs: simplified 2-D model.

100

cc

3
A & A A A A

0.1

t, dimensionless

Figure 3.10: Comparison of the simplified 2-D model with the true  2-D com puta
tions. leakoff rate, u, and uniform pressure profile.

11



%t)

■y.
C
u
E

c.

0.20

0.15

0.10

0.05

10-5

V J=0.0
o s=0.5
6  s=0.9

T v /  ,*f..../ —*Oi'

Ë # :
V(.

lines;: simplified 2-D model
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0
0 0.5 1.0 1.5

r, m

Figure 3.20: The steady-state profiles for the original and propagated fracture 
geometries and their comparison with the analytical predictions. Simple step-rate 
fracture propagation history.

82



E
c£

25

20

15

10

5

0
0 20 40 60 80 100

time, s

Figure 3.21; The fracture radius and pressure histories during the real propagation 
case.

0.004

0.003

=C 0.002

0.001

0

I —I 1 ' '

.................. : ..... ...................

............... ...................... r= l........ :
_

............... r=5
....

. y  /
........1....... ... r̂ .l.Qf.. T.*............

......... ...................
/  /
:./........  / y ................. r=15
U  /

...............
>i / f  ^
1 . . . . ........................... ..................
I '  /  " -7'

/  /'*
---- 1_ i i-

0 20 40 60

t, seconds

80 100

Figure 3.22: evolution a t the typical physical coordinates on the fracture during
the real propagation history.

83



0.004

0.003

cT  0.002

0.001

I ? ■ ^  ^  ! I

solid; 1-D; dashed; 2-D
I-*.-;

0 — —O 1=99.
66.

M-------* 32-
O------- O 12.
7 — -V 2.1
O— Q 0.1

0 -L ̂  I — Li - I  ■ i  mmJ, -  &. I I Ê .  L . 1  . 1  « I  _ j

0 10 15 20 25

r, m

Figure .3.23: Evolution of w’’ profiles along the fracture and comparison between 
the 1-D and the simplified 2-D poroelastic models. The real fracture propagation 
historv.

0.003
marked; 1-D; unmarked; 2-D

r=lQ
0.002 r=5.

E
%

0.001

r=20,

0 20 40 60 80 100

t, seconds

Figure 3.24: Comparison between the  1-D and the simplified 2-D poroelastic models 
in the evolution. The real fracture propagation history.

84



0 . 0 0 2 0

.K=.7,.8.4».K=3.,5.e.-.5

0.0015
K =3.74. K=3.5e-5

£
0.0010? solid: 1-D: dashed: 2-D

0.0005
iK =3.74, K=3.5e-7

600 20 40 80 100

t, seconds

Figure .3.25: Parametric dependence on k  or Kr of the 1-D vs. 2-D comparison in

I
3

0.1
marked: 1-D; unmarked: 2-D: :

0.01 ï=0:

0.001 r=10:

r=2

0.0001

0.00001
0.01 0.1 1001 10

t, s

Figure 3.26: Evolution of the leakoff rate, u and the comparison between the 1-D 
and 2-D models. The real propagation history.

85



Chapter 4 

A  Pseudo-Explicit Finite 
Difference Scheme

This and the following chapters deal with the simulation of penny-shaped HF 

propagation. A numerical algorithm  was derived and tested to couple the  var

ious physical sub-processes during the fracture propagation, including fracture 

deformation, flow inside the fracture, fracture propagation, fluid leakage into 

the  formation and the associated poroelastic effect. Numerically, the  fracture 

propagation is often accomplished via the snap-shot scheme. In each snap

shot, a stationary fracture is calculated. Therefore, one of the keys is the 

stra tegy  to  compute the stationary  fracture, which is the focus of this chapter. 

T he subsequent chapter extends this concept to a propagating fracture. Par

ticularly, it describes the com putation of the fracture propagation/closure/re- 

opening.

Herein, the governing equations to model the penny-shaped HF propagation 

are first summarized and non-dimensionalized. Thereafter, a pseudo-explicit 

finite difference (PEFD) scheme is derived and qualitatively tested for its com

putational and convergence perform ance. The Newton-Raphson (NR) method 

is then applied to aid the PEFD in speeding up the convergence. Finally, the
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stability, consistency and accuracy of the current combined PEFD-NR algo

rithm  are checked via various examples in the context of a stationary fracture.

4.1 Governing Equations in  McFrac

Consider a penny-shaped fracture of radius R  in an infinite and permeable 

formation (Figure I). Given the injection rate, Qq. from the wellbore. the 

fluid properties, the flow and deformation properties of the porous rock, the 

in situ stress, <To, and pore pressure, po, the goal is to determine the evolution 

of the fracture dimension (radius/w idth) and the  pressure profile along the 

fracture, including the pressure response a t the  wellbore. The fracture is 

assumed to propagate equi-dimensionally. i.e. possessing an axial symmetry. 

The m athem atical model is constructed as follows.

The fluid flow inside the fracture follows the Poseuille's law:

dpf _  2Kq  | , r - '  
dr

and is also governed by the meiss balance:

(4.1)

l î ï ü . j . - .  , «

where p / is the  fluid pressure inside the fracture; r  is the radial distance from 

the wellbore; 0  =  is a  geometric factor for the current axisymmetric

configuration; q is fluid flux, defined as the volumetric flow rate. Q, through a 

unit circumference at distance, r , from the wellbore, i.e. q =  Q /2;rr and. thus, 

has a dimension of I T  ; w is the fracture aperture; u is the rate of the fluid 

leakoff from both fracture surfaces. Eqn. (4.1) is written for the power-law 

fluid rheology with K  being the consistency index and n is the flow behavior
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index. For a Newtonian fluid, n =  1. /\ =  ^ — the fluid dynamic viscosity. 

Eqn. (4.1) thus becomes:

d p f  I2pq
dr

(4.3)

which is the well known cubic law. Eqn. (4.1) and Eqn. (4.2) are derived in 

.\ppendix  C. Therefrom, it is clear th a t th e  m ajor assumption for Eqn. (4.1 ) is 

its small Reynolds number so tha t a lam inar flow exists and the inertial force 

can be ignored. For Eqn. (4.2), the fluid is assumed to be incompressible.

Primarily, the fluid leakoff is assumed to be pressure-dependent, which is de

scribed by the modified 2-D model, Eqn. (3.38)^ However, allowance for the

C arter’s leakoff model is also provided:

u (r) =  - ^ ? - =  (4.4)

in which. Ci is the C arter’s leakoff coefficient; r ( r )  is the fracture arrival time 

when the  position, r, is first exposed to th e  fracturing fluid.

.\ccording to the loading modal decomposition as exemplified in Chapters 2 

and 3, th e  fracture aperture, w, consists of two contributions:

w =  wi + W2 (4.5)

in which, wi reflects the fracture deformation induced by the mechanical load

ing condition, p =  pj — ctq, while W2 represents the contribution from the 

hydraulic loading condition, p = pf — po. W2 is purely time-dependent and 

caused by the poroelastic mechanism, which is therefore re-denoted by w^. In

*A factor, "2” , has to be added to account for the contribution from the upper and lower 
fracture surfaces. The same applies to the poroelastic displacement, w’’, to be described below.
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the poroelastic dom ain, comprises the time-independent undrained elas

tic response and the tim e-dependent poroelastic part as the  deformation ap

proaches the drained sta te . However, the earlier discussion has pointed out 

that this time-dependence of mode I is negligibly small as compared to mode 

2 and thus, can be ignored, tuj can be adequately quantified by the purely 

elastic deformation characterized by the drained state. For this reason, is

re-written as u;*. and th e  to tal fracture deformation now becomes;

w = w"' (4.6)

with w‘ given by Eqn. (2.49) and by Eqn. (.3.37).

The fracture propagation is governed by the fracture toughness criterion:

rR{t) -  (Tor' -  i  / 2 [ i  
tr V R{t) Jo iAVc (4.7)

in which. 3 is introduced to quantify the poroelastic influence on the dry 

fracture toughness.

The boundary condition to the above mathematical system is dictated by the 

injection rate, Qo- from the  fracture inlet, i.e. at the wellbore, r  =

Theoretically, the initial conditions are specified as:

A(0) =  0 and p(0 .0) =  0 (4.9)

“The tip region around a fast propagating fracture is always near the undrained state. Therefore, 
the material there behaves stronger. The fracture toughness of the poroelastic media is expected 
to be larger than its dry value and depends on the fracture propagation rate [147]. 3  describes 
the ratio of the fracture toughness at the wet state to its dry value. Because there is no explicit 
relationship between 3  and the fracturing speed, 3 is conveniently given a unit value. For a given 
material, the associated poroelastic effect can be approximately analyzed by changing its Kir. 
value.
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The system of equations 4.1.4.2, 3.38. 4.6. 2.49, 3.37. and 4.7. supplemented 

by the above boundary and initial conditions constitutes a well-posed m ath

em atical model to predict the evolution of the fracture radius R { t )  and the 

field variables: w { r . t ) .  p ( r . t ) ,  u { r . t )  and ç ( r . ().

4.2 N on-D im ensionalization o f the Govern
ing Equations

For the non-dimensionalization. th e  following dimensionless variables are in

troduced:

r '  =  r / L c >  R f  = R f  L c .  t '  = t / t c .  P f  =  p'fCTo + (To (4.10)

in which.

2(Tq

so th a t, the fracture propagation equation. (4.7). is reduced to

Following [148, 149], tc, as a characteristic time, is an unknown constant for 

the tim e being and is to be specified as explained in the following. Correspond

ingly, the various governing equations can be expressed in their dimensionless 

counterparts via the following relations:

lü '( r '. t ')  =  wlw[{r' ,t ')  (4.13)

u { r ' j ' )  =  u ^ u ' { r ' , t ' )  (4.14)

w ^ ( r ' , t ' )  =  w l w ' ^ [ r ' . t ' )  (4.15)

=  w \ w ' ( r ' . t ' )  (4.16)

q{r'.t') =  q^q'[r'A') (4.17)

90



with

=

=

9c —

4( 1 — i/)LcO'o
7 g

2/ccro
~

'lacraL.
G ~~

(2K YI-
/(To I/n

(4.18)

(4.19)

(4.20)

(4.21)

and

\ / F - ^

l/n

(4.22)

(4.23)

(4.24)

u ; ' ( r \ n  =

Formulation for u' or is the  dimensional form, Eqn. (3.38) or Eqn. (3.37). 

divided by or inf, respectively.

Substituting the relevant variables as listed in the above into Eqn. (4.2) yields 

the following dimensionless fluid mass balance equation:

1 9 {r'q ’) i nf l c  / _  tng ^

r'  d r' q^tc \  d t' w ‘ d t' j u' =  0
9c

(4.25)

which can be further simplified by defining the characteristic tim e, by 

dictating

^  =  1 .
9cfc

Therefrom, is solved as

(4.26)

—
1 + 1 / n

_4(1 -!/)_ I g J U oJ (4.27)
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I.e.

(4.28)

which happens to agree with Cleary's definition [77. 26]. 

The simplified version of Eqn. (4.25) now becomes:

].d{rq) dw" a~  dw„  '—11 J------1------------c 4.
r dr dt 2(1 — u) dt 2 (1 - W

KOtc'
u =  0 (4.29)

in which the prime denoting the  dimensionless sense is dropped.

The concerned non-trivial dimensionless boundary/initial conditions to the

above mathem atical svstem are located at the wellbore:

q (0 . t ' ) =  lirn -Qqc
r«,->o 27rr„ (4.30)

in which.

Qoc =
_Qo_
ÇcLc

(4.31)

Physically, tc characterizes the tim e for the injected fluid to reach the fracture 

tip  of radius, L^; and; furtherm ore, for the pressure inside the fracture to 

become uniform at <to if its pressure at the wellbore is m aintained at the 

constant value, ctq. Currently, the injection rate is used as the boundary 

condition a t the wellbore. Thus, the resultant wellbore pressure does not 

remain constant. Therefore, tc may not be very useful herein. However, for 

the purely elastic case without leakoff, the fluid mass balance equation can be 

reduced to the following simple dimensionless form:

I d(rq) dw ‘
(4 .32)
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which implies that in the  purely elastic regime w ithout leakoff. the frac

tu re  propagation in the dimensionless regime is dependent only on the non- 

dimensionalized injection rate, Qoc- Any set of m aterial and operation param 

eters should give an identical solution provided their corresponding Qoc values 

are equal. As will be discussed in the subsequent chapter, this notion provides 

another means to check the  numerical algorithm.

4.3 A Pseudo-Exp licit F in ite Diflference Scheme

A number of papers have studied the penny-shaped HF propagation to differ

ent degrees of complexities. The earlier works, e.g. [23, 24. 21, 19], initialized 

the  penny-shaped fracture configuration in HF simulation. .Abe et al. (1976)

[25] addressed the need to  implement temporal variation of the fracture width, 

i.e. the  unsteady flow. Zazovskii (1979) [150, 151] studied separafe/y the influ

ence of leak-off and the unsteady flow inside the fracture. Cleary and Wong 

(1985) [152] considered fluid lag, but no fluid leakoff. The penny-shaped frac

tu re  has also been modeled in the  defense industry to investigate the explosive 

gas dynamics-induced fracture propagation [153, 154].

All the  researchers show th a t the difficulty involved in modeling the HF is 

the  nonlinear coupling between the two m ajor mechanisms: fracture deforma

tion and fluid flow inside the fracture. Experience indicates th a t the key in 

coping with the nonlinear coupling is to solve for the fluid flow and fracture 

deformation simultaneously. Cleary and Wong (1985) [152] achieved this by 

solving a matrix equation resulting from a fully-implicit FD discretization of 

both  the fluid flow and elasticity equations. The integral m ethod [153] and 

sim ilarity solution method [26, 155, 154] semi-analytically combined these two 

submodels together. The successive approximations [150, 151] condensed the
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various unknowns into two: thus, the coupling is closely simulated. To ac

commodate the  various physical processes, including unsteady flow inside the 

fracture, pressure-dependent leakoff and poroelastic effects, these methods ap

pear neither applicable nor efficient.

The finite difference method has the advantages of being physically straight

forward and thus versatile in considering complicated physical processes. If 

an explicit scheme can be used. FD can be very efficient. This is especially 

true for McFrac because, mathematically, it is a  1-D problem. Indeed, these 

advantages of the  explicit FD’s have been witnessed in computing the PKN 

models that accounts for pressure-dependent leakoff an d /o r poroelastic effect 

[85. 60|.

The key to success of an explicit FD m ethod is the derivation of a universal 

adaptive time-marching criterion to ensure the  stability  of the solution. For 

the PKN model, an explicit point-wise relationship between the fracture aper

ture and the fracturing pressure can be derived because of the plane strain 

assumption perpendicular to the fracture (also the fluid flow) direction [85]. 

There is a direct proportionality between them:

w y i p f  (4.33)

in which, w and pf  are the aperture and pressure values at the same location. 

Although the resulting fluid mass balance equation is still highly nonlinear, a 

heuristic approach was proposed in [85] to derive an approximate time-stepping 

criterion:

r Ag? •
=  min —— ^  ; z =  l,.. . ,  i V - 1  (4.34)
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c,„ comes from the diffusion part of the mass balance equation:

dw d^w (2ra +  L)c,  ̂ ( d w \ ^  O d L d w

in which, the leakoff and poroelastic terms have already been ignored. For 

detailed explanation to Eqn. (4.34) and Eqn. (4.35), please refer to [85]. .At 

least. Eqn. (4.34) has been shown to break down during fracture recession 

[60]. .An ad hoc adaptive scheme was thus proposed by controlling '"the time 

step size' calculated after Eqn. (4.34) ”so that the variation o f  the width and 

its spatial derivative do not exceed a prescribed magnitude at each time step"" 

[60]. Therefore, it is proper to say th a t Eqn. (4.34) is not universally adaptive 

as generally required by an explicit FD scheme.

More importantly, the above heuristic or ad hoc approach cannot be applied 

to the penny-shaped HF model because the pointwise relation of w vs. pf,  

Eqn. (4.33), no longer holds for the  penny-shaped configuration. Instead, an 

integral equation takes its place so th a t the fracture aperture at one point, i. 

is a function of the fracturing pressure at all the points along the fracture as 

shown in Eqn. (2.63).

The PEFD scheme is proposed to overcome the difficulty in deriving a universal 

adaptive time marching criterion for the penny-shaped model while retaining 

advantages of an explicit FD m ethod. It is implicit in th a t it uses the implicit 

F.D. scheme to obtain the  tim e marching. It is explicit, however, in th a t it 

does not need to solve a m atrix equation; instead it solves one point at one 

time. The payoff is to iterate  to get the convergence.
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4.3.1 D iscretization o f Fluid F low  Equations

The numerical calculation of the fracture deformation. w‘ . fluid leakoff. u. 

and poroelastic displacement, w^. hcis been detailed in the previous chapters. 

Therein, a Chebyshev grid in the normalized coordinate system , s = r / R  Ç, 

[0.1]. is distributed along the fracture. In so doing, the various m atrix equa

tions relating the foregoing variables to the fluid pressure are independent of 

the fracture propagation. Once established a t the  beginning, they do not need 

to be re-computed throughout the fracture propagation steps.

The Chebyshev grid offers another advantage in discretizing the fluid mass 

balance equation, Eqn. (4.2). From Eqn. (2.62), the Chebyshev grid has a 

dense distribution of nodes near the ends of the  fracture (Figure 4.2). This 

happens to provide more leverage to model the  rapid variation there. Near 

the wellbore, as fluid is injected into the fracture, rapid variation in the field 

variables is expected. W ithin the fracture tip  region, a dense mesh is desired 

because the tip is a mathematically singular point. Note th a t the two end 

nodes. 1 and iV, do not coincide with the wellbore point or the fracture tip. 

A small but non-zero distance spans them, respectively (Figure 4.2).

W ithout loss of generality, an example of pure elasticity, Newtonian fluid, and 

no leakoff is cited here to describe the FD discretization and th e  PEFD scheme. 

Inclusion of the power-law fluid rheology. fluid leakoff, and the associated 

poroelastic effect will be detailed later. In this simplified case, the fluid mass 

balance a t node “z”  can be written as:

‘ =  o (4.36)
sRo ds dt

in which, s = rjRo  and the fracture radius is explicitly denoted by Rq to imply 

th a t currently, one only deals with a stationary  fracture.
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Numerically, Eqn. (4.36) is equivalent to;

I  -51 /2<7 ,+1 /2  — ■St-l/2<?t-l/2 ~  _  q

SiRo Si^\/2 — ■S,_i/2 At At

2 =  I.2.3,....(A(37)

which is written for an iteration step. m 4 -1, in time step. n. in the incremental 

form as:

=  +  (4.38)

with as the basic unknown. The subscripts 'i ±  1 /2’ refer to the mid

positions between i and i ±  I, respectively.

Special attention is needed for the near-boundary nodes in order to implement 

the boundary conditions. At node T ’ which is the nearest to the wellbore 

(Figure 4.2),

27r/?Q.S|_i/2?i-i/2 =  Qo{i) (4.39)

as from Eqn. (4.8), which gives:

■Si - i /2<7i - i /2 =  Qo(0 /27 t/?o • (4.40)

At node ' N \  the nearest to the fracture tip,

qN+i/2  = 0 (4.41)

since the fracture aperture a t the tip  is zero. Note th a t in these implementa

tions. subscripts T — 1 /2 ’ and ‘:V 4- 1 /2’ refer to the wellbore point and the 

fracture tip, respectively. Their corresponding coordinates are:

^1-1/2 =  0 ; s.v+i/2 =  1 • (4.42)
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The flux, q, depends on the fluid pressure, p, and fracture width, w, via the 

cubic law, Eqn. (4.3), for the current Newtonian fluid rheology:

“ L i/ i  Sp

The pressure derivative can be com puted by:

(4.43)

ds
_  Pi+I — Pi (4.44)

and Wi^i /2 is taken as the corresponding arithm etic mean:

Wi±i/2 = ----- ------  . (4.4o)

The fracturing pressure is related to the fracture width via the elasticity equa

tion:

fp ô . =  =  L 2 ,3 ,..., .V (4.46)

which is written in terms of increments, cfj is the inverse of m atrix  o'"- as 

defined in Eqn. (2.63). The repetitive index, j ,  in Eqn. (4.46) implies its 

sum m ation over 1 to N .

As described earlier, there are two essential complicating factors in com puting 

the penny-shaped propagation: one is the nonlinear coupling between the 

fracture deformation and fluid flow inside the fracture, which dictates that 

the fracture deformation and fluid flow be solved simultaneously. However, if 

the foregoing relevant equations are directly, without any tactic modifications, 

substitu ted  into the discretized fluid mziss balance equation, Eqn. (4.37). a 

set of nonlinear equations results in term s of the incremental width variables. 

This is the other troublesome factor in modeling the penny-shaped 

fracture propagation, which is referred herein as the integro-differential nature
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of the governing equations. The PKN model is not troubled by this factor 

because its w vs. p relation is directly proportional and point-wise [85. 60].

Solution of such a set of nonlinear equations is neither theoretically m ature nor 

practically feasible. There are no good, general methods for  solving systems 

o f  more than one nonlinear equation'' [146]. The only available m ethod, the 

Newton-Raphson method, strongly depends on the initial guess about the 

solution, which is detrimental to a  flexible program like McFrac. In view of 

this situation, the following pseudo-explicit FD (PEFD) scheme is proposed. 

The two troublesome factors, as discussed in the above, are all accounted for. 

but less strictly.

4.3.2 T he PE FD  A lgorithm .

In PEFD . the fluid momentum equation. (4.43). is deliberately w ritten as:

(4.47)

with.

using the fracture aperture value a t the immediately previous iteration step, 

m.

In solving for node ‘F. PEFD further simplifies the momentum equation.

(4.47). by assuming tha t width increments at nodes other than 'T are all 

zero. i.e.

8pi =  CijSwj (4.49)
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in which, the repetitive j  does not mean summation. In so doing, Eqn. (4.47) 

becomes:

' 7 i + 1 / 2  ~  Q > 1 / 2

I 8
-I ^

PT+l.n  -  PTn ^  (cf+1.. -  < . ) K '
m

n

•Si+l — -St ■5t+l —
(4.501

or.

9'+1/2 C +1/2
8wi

Wi+i/2 +  — ds
+

t+1/2

( c f + i . i  -

•St+1 — -S,

~  ^0.:+l/2 "b ‘'l.t+l/2^^* “b ^2.t+l/2(^^«)

(4.51) 

(4 52)

where the indices for tim e and iteration steps are dropped. The coefficients 

^o(,i.2),i+i/2 come from the  associated factorization of Eqn. (4.51) and the 

expressions are not given here.

Therefore, the fluid mass balance equation, (4.37), is reduced to:

^t+l/2 [co.,+1/2 +  "b C2.,+i/2(‘̂ ^t)^

R{^i+i/2 — ^ i - 1/ 2 ) 

^ t - 1 / 2  [ c q . , - 1 / 2  ~b C t . i '- 1 /2 ^ ^ «  ~b

^(^■+1/2 — ^ i- 1/2 )
_

At A t
(4.53)

or.

Co) +  +  c^(5u;,)* =  0 . (4.54)

Again, the various eg)  ̂^̂ -s are after the  factorizing procedure. Therefore, the 

PEFD has finally given a  single equation for a single unknown, Sw^^, similar to 

the fully-explicit FD scheme. Eqn. (4.54) is a quadratic equation; the choice 

of the appropriate solution from the two roots can be made ezisily by using 

physical intuition. T hat is, the to tal fracture aperture must be positive or at 

least zero.
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After solving for node 'i', the pressure profile is updated using the updated 

width profile before proceeding to solve for the next node 'i +  T.

To get a  converging solution, iterations are performed. The whole process, as 

outlined above, is repeated until the following convergence check variable;

Æ /= -r—  [  d x \ 2 - R ^ { \ )  [  r f{ .s . \ ) sds  (-1.-55)
V inj •'0 L

meets the  convergence condition:

R f  < e/ (4.56)

in which, cy is a given small number. In Eqn. (4.55), is the to tal injected 

fluid volume. In general, i.e. for the case of a propagating fracture in poroelas- 

tic media, ry is the unbalanced local fluid mass, i.e. the non-zero L.H.S. value 

of Eqn. (4.2) in the discretized form which is computed after all the nodes 

have been solved during each iteration step. The tim e integral in Eqn. (4.55) 

is approxim ated by the simple accumulation of the spatial integral within each 

time step , k, i.e.

r  dX \2t R \ X )  r  sry(s, X)ds] % -  tk) (A t+ ' +  R'}] (4.57)
Jo I Jo t=o

with,

R f  =  TrR^{tk) J  srf{s . tk )ds

~  É  (4+1/2 -  4 -1 /2 )] (-t-58)

in which, ry j( f t)  is the corresponding unbalanced local fluid mass at node, y , 

and at time, tk, i.e. the L.H.S. value of Eqn. (4.37) at this particular location 

in case of pure elasticity without leakofF.
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The definition of A / in Eqn. (4.55) comes from taking both the tem poral and 

spatial integral on the local fluid mass balance equation, e.g. Eqn. (4.2). so 

that:

f i x  f  t o  +  +  .fl(A )u(,.A )l ds =
Jo Jo L OS O a

f  dXR{X) f  srf{s,X)ds  (4.59)
Jo Jo

in which, the unbalanced mass, r / ,  is inserted to account for the inaccuracy 

caused by the numerical discretization, including the PEFD procedure. Car

rying out the integrations in Eqn. (4.59) yields the following physically self- 

evident equation:

— Vinj + +  Met =  VinjRf (4.60)

measured at the  current time, t. In Eqn. (4.60), R /  is defined by Eqn. (4.55) 

and Vcrk is the  current crack volume,

Vcrk(t) = 2TrR^{t) f  w { s j ) s d s  ; (4.61)
Jo

and Met is the  accumulated leakofF volume through the propagating fracture:

Met =  f  dX2TvR^{X) f  su{s,X)ds  . (4.62)
Jo Jo

Therefore, Eqn. (4.60) implies th a t the convergence check variable. R j ,  repre

sents the to tal unbalanced global mass portion so far among the to ta l injected 

fluid:

Rr = , Mcrt +  Met i --
Mnj

(4.63)

Theoretically, R j  should be zero when convergence is strictly fulfilled. In the 

numerical calculation, a small threshold value, e/, is perm itted.
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4.4 Q ualitative Validation of the P E F D

In this section, an example is used to exemplify the PEFD ’s performance. 

Analyses are carried out in regards to the fluid front progression inside the 

fracture, evolution of the wellbore response and profiles of pressure/fracture 

aperture as well as the global mass balance based on the convergence measure. 

R f .  Therefore, it provides a means to validate the PEFD in a qualitative 

sense. It also reveals the necessity to develop a supplementary algorithm  

to enhance the PE FD ’s convergence rate when the fluid pressure inside the 

fracture becomes uniform.

In this example, fluid is pumped into a  pre-existing fracture of a constant 

length. As a benchmark case, a fracture 10 m long is discretized by a 10-order 

Chebyshev grid. A constant tim e step of 1 second is used. The iteration 

tolerance is set at e/ =  1%. The o ther relevant material and operational 

param eters are listed in Table 4.1.

4.4.1 Fluid  Flow inside th e Fracture.

In Figure 4.3, the fracture aperture profiles at earlier times illustrate the fluid 

front advancement inside the fracture. Fluid progresses gradually toward the 

fracture tip . In the present case, it takes about 13 seconds for the fluid to reach 

there. The advancing rate is not uniform, initially rapid and then approaching 

zero (Figure 4.4). The fluid front in Figure 4.4 is taken as the first node where 

the fracture aperture still remains at zero.

After the fluid reaches the fracture tip, its further movement beyond is pre

vented. Fluid accumulates inside the fracture and its pressure builds up and 

becomes uniform as suggested in Figure 4.5. Correspondingly, the fracture
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aperture profiles become more like an elliptic shape (Figure 4.6). This stage 

is reached after about 40 seconds of pumping. Thereafter, the computations 

agree well with the similarity solution to be discussed later (Figure 4.7).

Figure 4.7 displays the  evolution of the global variables, including the fluid 

pressure and fracture aperture a t the wellbore. the stress intensity factor as 

well éis the average pressure along the fracture. At least, three periods can be 

distinguished:

(a) Period L. 0 <  ( < 13 s. Fluid has not advanced to the fracture tip. 

Fracture aperture at the wellbore increases, but the increasing rate grad

ually slows down. The stress intensity factor remains a t zero. Initially, 

pressure at the wellbore decreases rapidly. Then, the decrease gradually 

slows down. However, the average pressure along the fracture increases 

alm ost linearly. During this period, the similarity solution does not hold. 

Therefore, large differences exist between the analytical results and the 

com putations (Figure 4.7).

(b) Period 2. 13 <  t <  40 s. Fluid has reached the fracture tip, but the 

pressure has not built up to the extent tha t its profile has become uni

form. During this period, th e  increasing rate of the fracture aperture 

a t the wellbore is raised to a new level and extends to the linear range 

in the subsequent Period 3. The stress intensity factor rises rapidly and 

approaches a constant rate. During this period, pressure at the wellbore 

initially continues its decreasing trend inherited from Period I, but later 

begins to increase. The average pressure continues its linear increasing 

trend.

(c) Period 3. f > 40 s. The injected fluid uniformly raises the pressure inside 

the fracture. An elliptical shape of the fracture opening results. .\ll the
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global variables show a linear increasing trend. The wellbore pressure and 

the  average pressure emerge together, representing the  uniform pressure 

profile.

4.4.2  Convergence o f  th e PEFD

At early times before the fluid pressure inside the fracture becomes uniform, 

the PEFD  algorithm works very efficiently. Each iteration takes about 10~  ̂

seconds of CPU time on an IBM 486 66MHz PC. A few hundreds of such 

iterations generally achieve the convergence for a given time step. For example. 

Figure 4.8 shows the evolution of the iteration convergence measure. Rf ,  and 

the global mass balance check.

A . . .  =  — D - - '  (4.64)
^inj

after each iteration step during tim e step no. 2, i.e. a t t = 2  s. Viek in Eqn. 

(4.64) represents the leaked fluid volume, which is zero for the current no- 

leakofF case.

Theoretically, a t convergence, the injected fluid volume, Vinj is expected to 

be 100% occupied by the current crack volume, V„.k and the  local fluid mass 

balance equation, Eqn. (4.37) is rigorously met, i.e, Rmaa =  1 and R j  = 0. 

Indeed, Figure 4.8 shows this trend. The mass balance is rapidly met either 

locally or globally with R f  approaching zero and Rmaa increasing towards 

unity. A to ta l of 120 iterations suffice to bring the iteration convergence to 

the prescribed level.

However. Figures 4.9-10 reveal one of the drawbacks with th e  PEFD  scheme, 

i.e. as the fluid pressure inside the fracture builds up to be relatively uniform, 

the PEFD  convergence becomes very slow and it takes over several thousands
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iterations to arrive at the converged solution (Figure 4.9). As a result, the 

number of iterations taken for each time step, if computed by PEFD  alone, 

increeises exponentially (Figure 4.10). In the following section, a new algorithm 

is derived to  assist PEFD in overcoming the difficulty of slow convergence at 

late times.

4.5 N ew ton-R aphson Scheme

In this section, the cause of the slow convergence in PEFD at la ter time is 

first analyzed. The Newton-Raphson (NR) scheme for a system  of nonlinear 

equations is implemented. Such a combined NR-PEFD algorithm solved the 

slow convergence problem.

4.5.1 Effect o f the P E F D  Sim plificatioiis

There have been two key steps in the PEFD algorithm. One is to retain both 

linear terms of w and p in the fluid momentum equation, 4.47, so th a t both 

the elastic deformation and the fluid flow are accounted for simultaneously. 

This step is essential to tackle the strong nonlinearity involved. Then, as done 

in Eqn. (4.50), the  fluid flux, q,±i/2 , is further simplified to be dependent on 

only by introducing Eqn. (4.49). This step is to avoid solving a set of 

nonlinear equations. These simplifications break down the local fluid mass 

balance, which in turn  affects the global mass balance. In order to  clarify the 

effect, let us compare the local mass balance equation with and w ithout the 

simplifications. Obviously, all the exercises center around the term  /  =

W ith the simplifications, I  becomes:

ipEFD.i+xn =  (u^i+l/g)^
Swi

^1+1/2 +
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( c f + i . i  -

^i+1 —



, >3 dp
'  l ê

(Wj+l/z): ^  
2

+
i+1/2

+ 6wi 4-
t+ l /2 .

t̂+1 — Oi

(u;,+i/2)^<+i., - 4 . '
^i+i — #,

(6 i4 4 ^ 5 )

W ithout the simplifications.

^'X3c£.«+1/2 ^ P E F D . i + l / 2 "h ^^+1/2 (4.66)

i.e. Ri+i /2 represents the error introduced in the PEFD scheme. Ignoring 

width increments with powers higher than second-order. Æ.+1/2 can be written 

as:

■^+1/2
.3

+ 1'"'*') i«
1+ 1 / 2

3 5 p
4- ^Û )(6u7 i 4 - <5u’. + i ) ^  —

i+l/2

C.+ 1.J — Cij
2

-Swjèwj

i+1/2 i=l % + ! - %
(4.67)

The overbar denotes the arithm etic average between nodes i and i 4- 1. It is 

thus clear th a t the coefficients of the  width increment terms in both  I p E F D . t + \ / 2  

and Ri+i /2 are comparable. For the  material properties as listed in Table 4.1. 

the order of magnitudes of the various terms can be estim ated as:

tpEFD,1+1/2 ~  10~ +  10~ +  10(5lü,)
;V y

A l+1/2 ~  ^  LO“ ^diüj 4- ^  I0(5u;,6iüj
;=l,j^x >=l,j5éi

(4.68)

(4.69)

At early times, the fracture aperture near the fracture tip are either zero or 

very small as the fluid has not reached the tip or the fluid pressure has not 

built up so much therein. During this period, dropping the w idth increments 

at nodes in this region does not result in a large error. Expectedly, the con

vergence is fast as shown in Figure 4.8. On the other hand, however, when
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the fluid pressure approaches a  uniform distribution inside the fracture, all 

the nodes experience a comparable width increment, 6w. By dropping the 6w 

for other than  the current node, large errors result. This causes the slow con

vergence as witnessed in the current example at late times when the pressure 

profile becomes uniform (Figure 4.9). In order to circumvent this difficulty, 

the algorithm  must incorporate as much nodal information as possible in the 

solution procedure. In the following, a strategy is implemented which does 

not make the simplification of Eqn. (4.49); instead, the full relationship, Eqn. 

(4.46). is applied. The Newton-Raphson method is employed to solve the re

su ltan t system of nonlinear equations with the required initial guess about the 

solution provided by PEFD.

4.5.2  Derivation o f N R  A lgorithm

The Newton-Raphson scheme for finding the root(s) of a nonlinear equation 

system  has been described in [146]. The following is its straightforward ap

plication to the current task of modeling the penny-shaped HF propagation. 

Given the general power-law fluid rheology, the fluid momentum equation. 

(4.1). can be re-written as:
l /n

w

dp
dO

l /n

in which. C  now changes to:

0"
C’ =  -Sign I

l/n

2 K R o )

and S ign(i) function denotes the  sign of x:

Sign(x) = 1 if X > 0 
- 1  if X < 0

dp
de

l / n

(4.70)

(4.71)

(4.72)
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If discretized a t node 'i +  1/2’, Eqn. (4.70) becomes:

in which the sign for the absolute value of the  pressure gradient is omitted for 

simplicity.

In NR. the  pressures are taken as the basic unknowns and the elastic fracture 

aperture, u;'. is expressed as the function of the pressures by Eqn. (2.6.3). 

Finally, after substituting Eqn. (4.73) into Eqn. (4.37) results in the following 

set of nonlinear equations:

F^(Pi ,P2,-•-.Piv) =  0 î =  I ,2 ,...,:V  . (4.74)

In solving for tim e step, n, and proceeding from iteration step, m  to m + I. Eqn. 

(4.74) can be expanded into a Taylor series around the solution at iteration 

step, m:

-V Q f .

F .(P r ')  = '  =  1 . 2 ...... .V(4.75)
J=i

where the  bold symbols represent the vector of the corresponding variables. 

Truncating the terms higher than the first-order yields the following linear 

equation for

.V
^ Q i j S p j  = 3i z =  1.2 .V . (4.76)
j=i

The coefficients, a  and 3, are listed in Appendix D.

After the  current iteration, the total solution is updated to:

' =  pT. +  %  . (4.77)
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At the beginning of each time step, the  initial guess for the solution is solved 

by PEFD . T h e  iteration ends when Eqn. (4.56) is met. The NR algorithm, 

if provided w ith a good initial guess, is very efficient at arriving at the true 

solution. The example in Figure 4.7. if calculated by the combined PEFD-NR 

algorithm, takes only 2 seconds of the  CPU tim e on IBM 486 66 .VIHZ PC 

while the PEFD  alone consumes much more, i.e. over 1,000 seconds. The 

results from th e  two methods are essentially identical.

4.5.3 R elationship  between P E F D  and N R  Schemes

Inevitably, the  remarkable efficiency of the NR scheme may cause one to won

der why the PEFD  scheme is needed. The answer is th a t PEFD is needed 

to provide a correct initial guess for NR. Also, as pointed out in [146], the 

NR m ethod 'Ogives you a very efficient means o f  converging to the root, i f  

it exists, or o f  spectacularly failing to converge, indicating that your putative 

root does not exist nearby.'^ Therefore, the issue is to identify the appropriate 

neighborhood of a root in which the solution to  be sought is guaranteed to 

exist. In our experience, if the NR is used alone, its solution is either found 

dependent on the  initial guess; or it simply cannot converge. For example, if 

NR is used alone, Figure 4.11 shows the com puted pressure response at the 

wellbore for th e  same problem as in Figure 4.7 using different initial guesses 

for the pressure profile at the beginning of the solution, i.e. at the beginning 

of time step no. 1. Obviously, the final com putations deviate significantly 

among the various initial guessed pressure profiles.

Fortunately, th e  PEFD can correctly approxim ate the root within the range 

around the correct solution. For each tim e step, PEFD is first invoked to 

predict the solution for NR. If NR has not converged after 100 iteration steps.
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the PEFD  subroutine is called back, th is time for more steps before handing 

the solution procedure to NR. In general, with this precaution, NR will indeed 

yield a converged solution. If still not, PEFD  is mobilized again for more steps 

(Figure 4.12). Such a combination of PEFD  and NR has successfully solved 

all of our computed examples.

Figure 4.10 also shows the number of iterations taken by the NR-enhanced 

PEFD algorithm for each time step. W ith PEFD first called only once, NR 

then correctly locates the solution. And all the computations given by the 

combined PEFD-NR scheme bcised on th e  different initial guesses are identical.

4.6 Quantitative Validation of the P E F D

In Section 4, the PEFD has been qualitatively examined for its com puted fluid 

flow pattern  inside the fracture and its convergence performance. Therefrom, 

it can be concluded th a t all the com putations are at least physically valid. It 

is also shown that the PEFD converges and preserves the mass balance.

This section extends the validation to th e  qualitative comparison. The lack of 

decent comparison examples makes the  full quantitative verification difficult. 

The various solutions for the similar penny-shaped fracture configuration are 

based on different simplifications. All th e  results are obtained by complicated 

numerical methods. Neither the assum ptions nor the results are ready to be 

repeated. Fortunately, at late times when the fluid pressure inside the fracture 

becomes relatively uniform, there is an analytical similarity solution. In this 

section, the late-time computations are compared to this analytical predic

tion. The stability and consistency of th e  PEFD scheme is then numerically 

examined.
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4.6.1 Sim ilarity Solution at Late T im es

For a stationary penny-shaped fracture of radius. Rq, within a pure elastic 

medium, a similarity solution exists if the pressure profile within the fracture 

is assumed to be uniform at p/{t). The elastic fracture aperture profile is 

elliptic:

=  ,4.78)
ttCt

The corresponding crack volume is given by:

K .  =  (4.79)

Based on the global mass balance, i.e. QqI =  V„k if a. constant injection rate, 

Qo and no fluid leakofF are assumed, the pressure and fracture aperture profiles 

as well as the stress intensity factor are derived as follows:

"  8 ( f = ^ '
M i . t )  =  (4.81)

A-,(() =  . (4.82)

As shown in Figure 4.5, the fluid pressure inside the fracture is indeed uniform 

at late times, e.g. f >  40 s. Thus, it is expected th a t the computations will 

then agree well with Eqn. (4.8G)-Eqn. (4.82). The comparison is indeed very 

good as shown in Figure 4.7 and Tables 4.3 and 4.5. Both tables show that the 

relative error decreases with time. Table 4.5 further indicates that the best 

agreement has less th an  0.5% relative error.
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4.6.2 Stability and C onsistency

Next, the time stepping size, A t ,  is varied to check the stability of the  algo

rithm . Figure 4.13 and Tables 4.2-3 show that stability is realized. One order 

of difference in the tim e stepping gives identical wellbore responses at late 

times, and only a little difference exists at earlier times between the various 

A ts  (Figure 4.13). Table 4.2 details the comparison by listing the  difference 

between the neighboring tim e steps for the early-time results; and Table 4.3 

gives the computational error relative to the late-time analytical results. In 

Table 4.2, 6w or Sp for A t  = 1.0 comes after taking the difference between 

A t  = 1.0 and 0.5; for A t  =  5.0, it is the difference between A t  = 5.0 and 

1.0; for A t  = 10, it is between A t  =  10. and 5. The difference calculated this 

way shows a decreasing trend  as A t  decreases (Table 4.2). This means th a t

the time stepping effect is co n s is te n t a smaller difference in the  time

stepping gives smaller difference in the  computations or vice versa. Table 4.3 

shows that the different A ts  give an identical computed relative error a t the 

same time. It therefore suggests the stability.

Consistency of the algorithm  is checked by varying the number of Chebyshev 

grid points, iV. As shown in Figure 4.14 and Tables 4.4-5, the early-tim e com

putations are indeed very much affected by the grid discretization. However, 

as the grids become denser, i.e. as N  increases, the computations differ less. 

The early-time inaccuracy diminishes with time and does not propagate to 

the late-time period. This observation haa been graphically shown in Figure 

4.14. It is further supported by the more detailed quantitative comparison in 

Tables 4.4-5.

Table 4.4 is constructed similar to Table 4.2 except the varying param eter 

now changes to the Chebyshev nodal number, N,  i.e. the difference, Sw or
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Sp, is after the subtraction between the neighboring /Vs. Unlike for A t. the 

.Vs now increases from 5 to 20 by a constant increment. Table 4.4 shows 

th a t the difference decreases as th e  Chebyshev grid becomes denser, i.e. .V 

increases. Therefore, it suggests th a t further increasing V could yield an 

identical result, i.e. the consistency of changing the grid discretization is 

realized. This conclusion has its further support, perhaps even more clearly, 

from Table 4.5 where the late-tim e com putations are listed and compared with 

the analytical solutions. Eqn. (4.81) or Eqn. (4.80), to give the relative error 

measurement. Therefrom, it is obvious th a t the denser discretization, i.e. a 

larger .V, yields better com putational accuracy.

The keen sensitivity of early-time com putations to the discretization is mostly 

caused by the  inaccuracy in com puting the  fluid front before the fluid moves 

to the tip . Different numbers of grid points give different movement patterns 

for the fluid front (Figure 4.4). T he denser grids give closer patterns, thus, 

the com putations differ less.

The consistency is also checked by varying the iteration convergence threshold 

value, t f .  Figures 4.15 show th a t w ith a decreasing e/, i.e. as the fluid mass 

balance is more strictly enforced, the  computations moves closer to the  ana

lytical solutions. After t f  < 1%, reducing t f  further does not have significant 

effect.

4.7 Power-law Fluid R heology

Allowance of power-law fluid rheology can easily be made with the  NR al

gorithm. As derived in Section 4.5, the power-law parameters are directly 

entered into the expressions and, therefore, no iterations are necessary. This 

is, however, under the condition th a t the pressure gradient remains unchanged

114



in sign during each iteration for pressure increments. In the power-law expres

sion, Eqn. (4.73), it is implied th a t the  pressure gradient is taken as its absolute 

value so tha t its derivative with respect to the pressures can be w ritten as:

d n  -  -  «Vj ■

•^f+1/2 denotes the sign of the pressure gradient and is the Kronecker delta.

In most cases, the pressure gradient does not change in sign during consecutive 

iterations. However, during the m ultiple IS F cycles and a t the tim e when 

pumping-in stops or is followed by pumping-back (or vice versa), pressure 

gradients at some points no longer hold the same sign as in the previous 

iteration step. In McFrac, allowance is m ade for this situation by an iterative 

procedure for the power-law fluid. This procedure is evoked in the early 10 

tim e steps (the 'TO” is essentially arb itrary) of each new pumping event. In 

this procedure, the fluid momentum equation is written as the Newtonian fluid 

form:

in which is called effective Newtonian viscosity and computed by:

P ' =  (1̂ )
using the  solution at the  immediately previous iteration step. Doing so. the 

com putation of fracture width and pressure is based on an equivalent New

tonian fluid and it is not necessary to distinguish the pressure gradient sign. 

An iteration loop is enforced to ensure converged power-law fluid properties. 

T hat is. prior to each current iteration, /, for the power-law fluid, the effective
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Newtonian viscosity, is updated based on the solution at the end of previ

ous iteration, / — 1. At the end of the  current iteration, a new set of values 

are com puted based on the current results and compared with the previous 

Hr.. Convergence is met if:

2Ç f* . (4.86)

At the beginning of each new time step, the / — 1 iteration steps are taken at 

the end of the previous time step. At the  beginning of time step I. the fluid 

flux, q. is estim ated from the given pum ping rate, Q, so that:

in which the factor “10” comes from a rough estimate about the effect of well

bore radius on conversion from Q io q. w is computed under the assumption 

of a uniform pressure profile.

The previous example listed in Table 4.1 is re computed by changing the fluid 

rheology to power-law in which K  =  2.5 x 10“ ' MPa.s" and n =  0.8. Figure 

4.16 displays the effective viscosity, /i,, of the fluid moving inside the fracture. 

Due to the  shear-thinning, the fluid viscosity is reduced as compared to the 

Newtonian one [h — 250 cp and the solid line in Figure 4.16). Relatively, the 

viscosity attains the smallest value near the  wellbore and the largest near the 

fracture tip. This corresponds well to the  fact th a t the fluid moves fastest near 

the wellbore and staggers near the fracture tip because it is prevented from 

moving further. Owing to the reduced viscosity, the fluid flows faster in the 

fracture. The fracture aperture profile is flatter, i.e. smaller near the wellbore, 

but larger towards the fracture tip, as compared to the Newtonian case (Figure 

4.17). By the same token, the fluid reaches the fracture tip earlier so th a t its
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com putations s ta rt earlier to agree with the sim ilarity solution (Figure 4.18). 

Note tha t th e  fluid rheology plays no role at late times when the pressure 

profile becomes uniform (Figure 4.18). This is predicted by the analytical 

solution. Eqn. (4.80)-Eqn. (4.82). Figure 4.18 also includes an example which 

further reduces the  power-law flow behavior index, n, to 0.2. This enhances 

the shear-thinning effect, i.e. further lowers the fluid viscosity. .\s a result, the 

fluid reaches the tip and its pressure profile becomes uniform at even earlier 

times. The com puted wellbore response agrees with the analytical results 

almost instantly  upon starting the pumping.

4.8 Im plem entation of the Poroelastic Effects

When the poroelastic effect is considered, the  fluid mass balance contains 

two additional contributions: one is the poroelastic fracture closure, and 

the other is th e  fluid leakoff, u. Their calculation has already been given in 

Chapter 3 by two formulae, Eqn. (3.37) and Eqn. (3.38), and their extensions 

to a propagating fracture. Eqn. (3.45) and Eqn. (3.46).

,\ t  the current tim e, t which corresponds to the n -th  time step. Eqn. (3.45) 

tells tha t w’’ can be broken into the following two parts:

it’̂ (r .f) = w°'^{r,t) Aw^{r.t)  (4.88)

with.

u'°"(r. () =  Pf{s . T)w’’{ r J  -  T : f i r ) +

d p f i s .O

S (£
L < (r. 0  =  f

Ju- i

(4.89)

%
(4.90)
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in which, to =  r.  w°-^{r.t) is known since the pressure and fracture propa

gation history before the current n —th tim e step has been solved. However. 

A a’P(r.f) contains the unknown pressure, p f(s . t ) .  Physically, this integral 

represents the  contribution from the current time step, f E To sim

plify the calculation, the time stepping size. S t  = t — fn -i- is constrained by 

the following condition:

h o R lS t  <
k M

(4.91)

so that Au)P can be adequately represented by the I-D poroelastic model, Eqn. 

(2.32). i.e.

(4.92)
\ / t

in which, a factor, ’’2” , is added to the original equation. Eqn. (2.32), to count 

for the upper and lower fracture surfaces (the same applies to the following 

leakoff rate formula). Eqn. (4.91) simply comes from the  I-D validity range 

as shown in Eqn. (3.37) (where typ is taken as 10“ ^). Similarly, the leakoff 

rate can be decomposed into:

u(r. t) =  u° (r, t) + Aun(r, t) (4.93)

with.

u%(r) =  p f{ s . r )u ( r . t  -T -.Hr)
d p f j s . ^

u{r.t  -  (f: R^]d^ I  

(4.94) 

(4.9.5)
v/ttc  J o \ / S t  — ^

In the numerical discretization. Au can be approxim ated via the following 

exercise:

Au m+l.p I k  S p f , i  1
i :\JtFc S t  Jo yj S t  — ^ 
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4/c
vArcÂÏ

Similariv.

[(PU ~  Pi.n-l) +  - (4.96)

Here, and are ail known at the current iteration step. is the

unknown, dependent on the width increments as shown in Eqn. (4.46) or Eqn. 

(4.49). if the PEFD simplification is used.

W ith the poroelastic effects included, the discretization of the fluid mass bal

ance equation. (4.2). changes to:

f 5|+l/2?i+l/2 -  •Si-1/2?,-1/2 , ~  ,
H-------------r i -------------------------n ------------r

S i R o  ■Si+i/2 — S , - l / 2

+  u L  +  =  0 f =  1 .2 .3  .V (4.98)

However. —̂  can be computed by taking the time derivative of Eqn. (2.28) 

so that:

in which, the minus sign in the original equation, (2.28), is dropped since in 

the  above derivations, has been taken as an absolute value. Thus. Eqn. 

(4.98) becomes:

1 S j + i / 2 Ç i + i / 2  -  ■ S . - i / 2 ? t - l / 2  ~  ~  ^

S i R o  •S i+ l /2  — • S t - l / 2

+ ( l  -  1 ^ )  =  0 i =  1 .2 .3 .(.4 .ra0)

in which. now stands for the to tal fracture aperture at the end of the

in  — I)-th  time step. The corresponding coefficients in the NR algorithm  are 

listed in .Appendix D.
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The same benchmark example (Table 4.1) is computed here by setting the cor

responding poroelastic constants as non-zero, i.e, q  =  0 .7 9 8 .5  =  0.678. k =  

3.5 X 10"* m^/M Pa.s, which gives =  0.376: tj =  0.266 and c =  0.266 m^/s. 

Because the  current chapter is confined to the subject of a stationary  fracture, 

the calculation is started when the fluid has flowed to the  tip of the frac

ture and occupied the whole fracture space therein. Figures 4.19-20 show the 

profiles of pressure and fracture aperture aX t = 100s among the cases of pure 

elastic w ithout leakoff, leakoff only without poroelastic backstress contribution 

and the full poroelastic case. Figure 4.19 shows that th e  fluid leakoff plays 

a dom inant role in depleting the injected fluid volume so th a t when propa

gation takes place, much less fluid is available to prop-up the fracture and 

the resultant fracture aperture is much less when compared to the no-leakoff 

situation. Correspondingly, the dominant leakoff mechanism lowers the well

bore pressure considerably (Figure 4.20). The poroelastic effect increases the 

pressure as it resists the  poroelastic closure, but the afterm ath is not enough 

to raise the  pressure to a level comparable to the purely elastic case. .More

over, the raised pressure level due to the poroelastic mechanism increases the 

fluid leakoff, which further reduces the fracture aperture from its no-leakoff 

counterpart (Figure 4.19).

Figure 4.21 displays the evolution of the accumulated leakoff volume, and 

the created fracture volume, V^k. .\gain, it shows tha t a larger portion of the 

injected fluid is leaked into the formation. Moreover, it shows th a t the various 

mass distributions in the computations are balanced. T he sum of V^rk +  V^k 

is equal to  the  injected fluid volume, K>ij.

Figure 4.22 illustrates the profiles of the tem poral derivative of the fracture 

aperture, w' =  and the fluid leakoff flux. u. along the  fracture at t =
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100s. It more clearly characterizes the mass distribution among the leakoff 

and fracture aperture change. From Eqn. (4.2), the fluid transport. d[rq)frdr .  

supplies the fluid source to create the additional fracture aperture, w'. and to 

meet the leakoff demand, u. W ith leakoff, the fracture aperture increment 

rate. w'. is very much reduced as compared to the case without leakoff. The 

leakoff term , u, takes the m ajority  of the injected fluid as it is much larger 

than w'. Even more fluid escapes into the formation when the poroelastic 

backstress is allowed to develop (as denoted by the superscript. ’2 ’. in Figure 

4.21. The superscript ”0” or " 1” denotes the purely elastic case w ithout leakoff 

or the leakoff-only, respectively.).

Being pressure-dependent, th e  leakoff now is controlled by the pressure differ

ence between the in-situ stress, ctq, and the reservoir pore pressure, po, as well 

as the formation permeability, k. Expectedly, a larger difference of ctq — po 

and/or a more permeable form ation facilitates the fluid leakoff and thus, re

sults in a smaller fracture apertu re  (Figure 4.23).

4.9 Summ ary

In the first place, this chapter contributes an efficient numerical algorithm. 

PEFD, for the simulation of fluid flow inside the fracture coupled with the 

fracture deformation in the context of pressure-dependent leakoff, poroelas

tic effect and power-law fluid rheology. The validity of the com putations has 

been first qualitatively checked by observing the convergence and global mass 

balance. The stability and consistency of the algorithm has been numeri

cally verified. Its m athem atical accuracy has been validated by comparing the 

computations with the associated analytical results.

An explicit FD method is well-known for its efficiency and flexibility. These
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advantages have been keenly felt in com puting the PKN HF model [60, 85]. 

For the penny-shaped HF fracture, the explicit FD scheme was a ttem pted  for 

the relatively simple elastic situation w ithout leakoff [136]. However, it was 

later given up because of the resultant severe numerical instability problem. 

Indeed, our previous experience with McFrac [157] did agree with their notion: 

if one directly applies the traditional explicit FD scheme, it is very difficult, 

if not impossible, to derive an adaptive tim e marching criterion. No fruitful 

efforts has been reported in the literature to overcome this difficulty. The 

PEFD algorithm  proposed in this dissertation has successfully circumvented 

this deadlock by using a fully implicit time marching scheme.

However, computationally, the PEFD scheme is fully explicit. It solves one 

point a t one time, needing no m atrix inversion. The reason for invoking such 

an algorithm is the nonlinear, coupled and integro-differential nature of the 

governing equation system. The way to achieve it is to isolate one point a t one 

iteration. Qualitatively, this is similar to the  Alternative Direction Implicit 

(ADI) m ethod [158, 159]. The latter isolates one direction at one time of the 

solution.

One advantage of this explicit nature is the efficiency, which has been dem on

strated by the  CPU time. Although there is no comparison with other m ethods 

because of the  lack of their data, it is believed th a t the present method is the 

fastest. A nother advantage is the flexibility. W ith few additional difficulties, 

the pressure-dependency of the leakoff and the  induced poroelastic effects have 

been included into the HF simulation. It is anticipated that it would be also 

relatively easy to implement other physical aspects such as the tem perature 

effects.
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T able 4.1: M aterial p rop erties for th e  sta tion ary  fracture
K n E u (To Qo

250 cp I 3.0E4 M Pa 0.25 10.0, MPa 0.03 m^/s

Table 4.2: Comparison of the w,^b and p^b between the different Afs. Early time.
t, s A t Wyub. xlO  ̂ m 6w,^b, xlO m Pu,6, MPa M Pa
1. 0.1 0.212680 14.665480

1.0 0.188306 2.437422 14.189700 -.475780
5. 0.1 0.255450 8.793759

1.0 0.246896 0.855416 8.720428 0.073332
5.0 0.226218 2.067734 8.863718 0.143291

10. 0.1 0.271678 7.162381
1.0 0.269506 0.217199 7.141482 0.020898
5.0 0.257977 1.152885 7.156686 0.015203
10. 0.244727 1.324975 7.361680 0.204994

15. 0.1 0.286668 6.248361
1.0 0.284159 0.250879 6.242867 0.005494
5.0 0.279036 0.512335 6.255274 0.012407

20. 0.1 0.318444 5.653008
1.0 0.318690 0.024617 5.656522 0.003514
5.0 0.319551 0.086036 5.668419 0.011898
10. 0.319641 0.009038 5.670056 0.001637

25. 0.1 0.378281 5.701672
1.0 0.378299 0.001818 5.702083 0.000412
5.0 0.378457 0.015786 5.705551 0.003468

30. 0.1 0.444919 6.163538
1.0 0.444923 0.000396 6.163641 0.000103
5.0 0.444950 0.002682 6.164333 0.000692
10. 0.445020 0.007055 6.166118 0.001785

35. 0.1 0.514440 6.830737
1.0 0.514442 0.000113 6.830769 0.000031
5.0 0.514448 0.000674 6.830954 0.000185

40. 0.1 0.585330 7.601273
1.0 0.585330 0.000036 7.601284 0.000011
5.0 0.585333 0.000221 7.601346 0.000062
10. 0.585337 0.000458 7.601476 0.000131
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T able 4.3: C om paring th e  an a ly tica l results w ith  th e  com puted  w,uh and  p,„(, by th e

s A t X  10  ̂ m rel. error, % Pwb  ̂ ^IPa rel. error. %
30. 0.1 0.444919 3.54 6.163538 14.14

1.0 0.444923 3.54 6.163641 14.14
5.0 0.444950 3.54 6.164333 14.15
10. 0.445020 3.56 6.166118 14.19

analy. 0.429717 5.400000
35. 0.1 0.514440 2.61 6.830737 8.42

1.0 0.514442 2.61 6.830769 8.42
5.0 0.514448 2.62 6.830954 8 J J

analy. 0.501337 6.300000
40. 0.1 0.585330 2.16 7.601273 5.57

1.0 0.585330 2.16 7.601284 5.57
5.0 0.585333 2.16 7.601346 5.57
10. 0.585337 2.16 7.601476 5.58

analy. 0.572956 7.200000
45. 0.1 0.656928 1.92 8.426790 4.03

1.0 0.656928 1.92 8.426794 4.03
5.0 0.656929 1.92 8.426818 4.03

analy. 0.644576 8.100000
50. 0.1 0.728921 1.78 9.283346 3.15

1.0 0.728921 1.78 9.283348 3.15
5.0 0.728921 1.78 9.283359 3.15
10. 0.728922 1.78 9.283376 3.15

analy. 0.716195 9.000000
55. 0.1 0.801147 1.69 10.158390 2.61

1.0 0.801147 1.69 10.158390 2.61
5.0 0.801147 1.69 10.158390 2.61

analy. 0.787814 9.900001
60. 0.1 0.873518 1.64 11.044950 2.27

1.0 0.873518 1.64 11.044950 2.27
5.0 0.873518 1.64 11.044950 2.27
10. 0.873518 1.64 11.044960 2.27

analy. 0.859434 10.800000
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c o n t’d from  th e  previous page
t. s A t xlO 2 m rel. error, % MPa rel. error, %
65. 0.1 0.945982 1.60 11.938990 2.04

1.0 0.945982 1.60 11.938990 2.04
5.0 0.945982 1.60 11.938990 2.04

analy. 0.931054 11.700000
70. 0.1 1.018509 1.58 12.838040 1.89

1.0 1.018509 1.58 12.838040 1.89
5.0 1.018509 1.58 12.838040 1.89
10. 1.018509 1.58 12.838040 1.89

analy. 1.002673 12.600000
75. 0.1 1.091079 1.56 13.740550 1.78

1.0 1.091079 1.56 13.740550 1.78
5.0 1.091079 1.56 13.740550 1.78

analy. 1.074293 13.500000
80. 0.1 1.163680 1.55 14.645520 1.70

1.0 1.163680 1.55 14.645520 1.70
5.0 1.163680 1.55 14.645520 1.70
10. 1.163680 1.55 14.645520 1.70

analy. 1.145912 14.400000
85. 0.1 1.236303 1.54 15.552260 1.65

1.0 1.236303 1.54 15.552260 1.65
5.0 1.236303 1.54 15.552260 1.65

analy. 1.217532 15.300000
90. 0.1 1.307497 1.42 16.442230 1.50

1.0 1.308942 1.54 16.460310 1.61
5.0 1.308942 1.54 16.460310 1.61
10. 1.308942 1.54 16.460310 1.61

analy. 1.289151 16.200000
95. 0.1 1.380148 1.42 17.351250 1.47

1.0 1.381594 1.53 17.369350 1.58
5.0 1.381594 1.53 17.369350 1.58

analy. 1.360771 17.100000
100. 0.1 1.452809 1.43 18.261030 1.45

1.0 1.454255 1.53 18.279140 1.55
5.0 1.454255 1.53 18.279140 1.55
10. 1.454255 1.53 18.279140 1.55

analy. 1.432390 18.000000
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Table 4.4: u;»,» and p«,6 between the different Chebyshev grid points. ;V. Early time.
t, s iV xlO"2 m xlO 4 m pu,6, MPa Sp^b. M Pa
5. 5 0.241225 7.553291

10 0.246896 0.567099 8.720428 1.167136
15 0.247126 0.023036 9.342992 0.622564
20 0.247689 0.056282 9.938881 0.595889

10. 5 0.270316 6.203807
10 0.269506 0.081012 7.141482 0.937675
15 0.270588 0.108275 7.653911 0.512428
20 0.271331 0.074315 7.990123 0.336213

15. 5 0.283579 5.386477
10 0.284159 0.057998 6.242867 0.856389
15 0.285280 0.112030 6.724667 0.481800
20 0.285918 0.063816 7.066731 0.342065

20. 5 0.325166 5.125809
10 0.318690 0.647539 5.656522 0.530713
15 0.317256 0.143483 6.010087 0.353566
20 0.316896 0.035945 6.266607 0.256519

25. 0' 0.388044 5.466225
10 0.378299 0.974438 5.702083 0.235858
15 0.375871 0.242847 5.898804 0.196721
20 0.375148 0.072321 6.048135 0.149332

.30. 5 0.457419 6.110969
10 0.444923 1.249599 6.163641 0.052672
15 0.441710 0.321272 6.265243 0.101602
20 0.440715 0.099581 6.350284 0.085042

35. 5 0.529455 6.895555
10 0.514442 1.501364 6.830769 -0.064786
15 0.510531 0.391042 6.875101 0.044332
20 0.509299 0.123179 6.922335 0.047234

40. 5 0.602739 7.748356
10 0.585330 1.740897 7.601284 -0.147072
15 0.580768 0.456268 7.608872 0.007588
20 0.579319 0.144827 7.632672 0.023800
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Table 4.5: w»,.» and p^b by the différent Chebyshev grid points, ;V. Late tim es.
t. s .V xlO"2 m rel. error, % MPa rel. error. %
35. 5 0.529455 5.61 6.895555 9.45

10 0.514442 2.61 6.830769 8.42
15 0.510531 1.83 6.875101 9.13
20 0.509299 1.59 6.922335 9.88

analy. 0.501337 6.300000
40. 5 0.602739 5.20 7.748356 7.62

10 0.585330 2.16 7.601284 5.57
15 0.580768 1.36 7.608872 5.68
20 0.579319 1.11 7.632672 6.01

analy. 0.572956 7.200000
45. 5 0.676666 4.98 8.636921 6.63

10 0.656928 1.92 8.426794 4.03
15 0.651738 1.11 8.408935 3.81
20 0.650084 0.85 8.417213 3.92

analy. 0.644576 8.100000
50. 5 0.750950 4.85 9.545521 6.06

10 0.728921 1.78 9.283348 3.15
15 0.723118 0.97 9.246529 2.74
20 0.721264 0.71 9.243831 2.71

analy. 0.716195 9.000000
55. 5 0.825445 4.78 10.466000 5.72

10 0.801147 1.69 10.158390 2.61
15 0.794739 0.88 10.106510 2.09
20 0.792689 0.62 10.095560 1.98

analy. 0.787814 9.900001
60. 5 0.900070 4.73 11.393870 5.50

10 0.873518 1.64 11.044950 2.27
15 0.866510 0.82 10.980460 1.67
20 0.864266 0.56 10.962990 1.51

analy. 0.859434 10.800000
65. 5 0.974780 4.70 12.326520 5.35

10 0.945982 1.60 11.938990 2.04
15 0.938378 0.79 11.863470 1.40
20 0.935942 0.53 11.840590 1.20

analy. 0.931054 11.700000
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c o n t’d from  th e  previous page
t. s .V xlO~^ m rel. error. % MPa rel. error. %
70. 5 1.049546 4.67 13.262370 5.26

10 1.018509 1.58 12.838040 1.89
15 1.010311 0.76 12.752570 1.21
20 1.007684 0.50 12.725020 0.99

analy. 1.002673 12.600000
75. 5 1.124351 4.66 14.200440 5.19

10 1.091079 1.56 13.740550 1.78
15 1.082289 0.74 13.645870 1.08
20 1.079471 0.48 13.614180 0.85

analy. 1.074293 13.500000
80. 5 1.199183 4.65 15.140070 5.14

10 1.163680 1.55 14.645520 1.70
15 1.154298 0.73 14.542150 0.99
20 1.151291 0.47 14.506680 0.74

analy. 1.145912 14.400000
85. 5 1.274036 4.64 16.080840 5.10

10 1.236303 1.54 15.552260 1.65
15 1.226331 0.72 15.440590 0.92
20 1.223133 0.46 15.401610 0.66

analy. 1.217532 15.300000
90. 5 1.348903 4.63 17.022440 5.08

10 1.308942 1.54 16.460310 1.61
15 1.298380 0.72 16.340620 0.87
20 1.294993 0.45 16.298320 0.61

analy. 1.289151 16.200000
95. 5 1.423781 4.63 17.964680 5.06

10 1.381594 1.53 17.369350 1.58
15 1.370443 0.71 17.241840 0.83
20 1.366866 0.45 17.196380 0.56

analy. 1.360771 17.100000
100. 5 1.498668 4.63 18.907390 5.04

10 1.454255 1.53 18.279140 1.55
15 1.442515 0.71 18.143980 0.80
20 1.438749 0.44 18.095460 0.53

analy. 1.432390 18.000000
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Figure 4.1: Sketch of the penny-shaped H P propagation.

r -i- t— 3 
■ •  è' ' é

-N-r-rK-t-

i t t
weObote point

Figure 4.2: Nodal distribution of the  Chebyshev grid.

129



0.004

0.003

0.002

0.001

0

7 ----- - 7  (=20 _
# -------•  (=15
* —— ■  (=13
O----- - 7  (=10
O -------O (=5
□ ---- —Q (=3
A A (=1 s

1 . • j t ! •

........... ...............!........................... .̂........... .
.................;..........................................................i ...................

.................................................... L..................

« ...... . ...

L. : " ' a  r * - . ^
4 .  ..........’ r  ’ ....................................

m . x l . r . : .....
\

.......! ^ . Z
.................. ........................ .. X  i '  %  ...........

r . z z . % 7 . . . z z z x  z  \ ......... z : .......

. i \  V ' »  \....%. . ........ .̂ r ...

i S Z  . 'm J ' - 'V -  i

2 4 6 8

distance from the well, r (m)

10

Figure 4.3: Fracture aperture profiles a t early times before the  fluid reaches the 
fracture tip.

co
"2
'3

10.5

9.0

7.5

..... □--------Q N=15
O.......... O N=10
7 --------V N=56.0

N: nymber of the nodes :4.5

3.0
12 16

time, t (s)

Figure 4.4: Fluid front position, measured in distance from the  well, vs. tim e after 
different numbers of the Chebyshev grid nodes.

1.30



L

3

la.
•a
‘5

25
o-

20

15

10

5

0
0 2 4 6 8 10

distance from the well, r (m)

Figure 4.5: Pressure profiles along the fracture at late times.

0.015
1=1005
(=60:
(=30:

E

 ̂ 0.010
2
3

2
3

I 0.005

0 2 4 8 106

distance from the well, r (m)

Figure 4.6: Fracture aperture profiles along the fracture at late times. The unmarked 
do tted  lines are the predicted elliptical profiles based on the  computed average 
pressures.

131



0.015

0.010

0.005

0

— —  anaiyticalw
analytical p 
analytical K_

"V computed K,

30

0 20 40 60 80

20

10

CL
2

a.

0
100

time, t (s)

Figure 4.7: Evolution of the fracture aperture, and fluid pressure, p^b at the 
vvellbore: average pressure along the fracture, paug and stress intensity factor. A'/.

qc

0

.R
m as

: 2  dme step no. 2, t=2 sr  i

£
I V

7 = - N : ±

à i , Lmm L, .Iwm I

0 30
t i l l

60 90 120

1 .1

1.0

0.9

0.8

0.7

0.6
150

iteration step no.

Figure 4.8: Evolution o( R f  and Rmas during the iterations for tim e step no. 2.

132



0.20 1.000
in a s .

0.995
0.15

-time step no, 45. t=45 s---- 0.990

0.985

0.05
0.980

0.975
1000 2000 3000 40000

iteration step no.

Figure 4.9: Evolution of R f  and Rmas during the iterations for time step no. 45.

8000

g
a
Q£.
z
.o

J
2

= 2 

B
3C

0

J
L

NRiteratLQDS.mJSDR.;EEEQL EEEC) alone
.........
.................. of........
 /

-0— 0— e— 0—"O— e-,-9-—e— »t -o-

PEFD iterations in N^PEHD-L . ^ . L

B— -9— B:—O—

6000

4000

2000

0 20 40

time step no.

60
0

t)C
15
Ûu.
s
>>

jO
■■r,C

2u

u.

Figure 4.10: Number of iterations required for each tim e step if computed by the 
different numerical schemes.

13.3



(S
s

100

80

60

40

20

0

4-------- 4 p=p^+(10-x)»0.01
3****'0 p=p^+(l0-x)*0.1 
O — G p=p^+(IO-x) 
9 — V p=p + (10-x)*10

0 20 40 60

time, t (s)

80 100

Figure 4.11: Evolution of the wellbore pressure computed by NR alone based on the 
different initial guesses for the pressure profile.

en ter]

[  itmax=r)

yes
1000

no

no

.exit]

Mnverge^

Difficult to get 
converged sin. 
Exit with error.

Itmax; maximum allowable Iteration steps In PEFD.

Figure 4.12: Relationship between the PEFD and NR algorithm s.

134



s

20
* -------- K 10.
O-----—s  5.

15
[I...

10

5 ...late-time analytical .

0
8020 40 600 100

time, t (s)

Figure 4.13: Influence of the  tim e stepping size, A i on the computed wellbore 
pressures.

&
s

ia.

20

O..........O 15
9----- 9 N=2015

10
late-time analytical

.......
5

0 0
0 20 40 80 10060

time, t (s)

Figure 4.14: Influence of the  different number of the Chebyshev nodes, .V. on the 
computed wellbore pressure, pu,b-

135



s

20

G......... O 0.5
9 ------- 9  0.1

0.0115 £,=0.001

10

5

late-time ^^ytiçd
0

0 20 40 60 80 100

time, t (s)

Figure 4.15: Influence of the different iteration meaaure values, Cy, on the computed 
wellbore pressure,

400

300

u
« 200 a.

100

0

--- --------1-------r

m-----m (=80:
A----- A (=11 s
-— — (=9s
------ (=7:

o...... O (=5s
o-----a (=3 s
9 ——- 9 (=1 s

■i... Newtonian Fluid, p.=250 cp

/  !

4 6

r, m

10

Figure 4.16: D istribution of the effective viscosity, along the fracture at different 
times.

136



E
U*
?

0.004

0.003

0.002

0.001

0

• — —# (=20%
U 1.11J s

1=11 s 
i=9s 
(=5 s 
t=I %o---—O

dashed: power-law; splid: Newtopian

- 0.001
0 2 4 6

distance from the well, r (m)

10

Figure 4.17: Fracture aperture profiles at early times and the comparison between 
the power-law and Newtonian rheology cases.

S
j:

CL

15 0.010

V-------- 9  K=2.5e-7. n=l
O...........O K=5.6e-7. a=0.8
A-------- A K=5.6e-7. n=0.2 0.008t—

10
0.006

0.004
5

0.002dashed: solid:

umarked lines: late-time analytical
0 0

0 10 20 30 40 50

time, t (s)

Figure 4.18: The wellbore responses for the power-law fluid cases.

1.37



0.015

elastic without leakoff"...

  .at t=100

0.010

E

pcroelastic, ti=0.266

0.005 .-;...le^off only, ti=0

Q i

6 8 100 2 4

distance from the well, r (m)

Figure 4.19: Poroelastic effect on fracture deform ation as displayed by its profile 
along the fracture at t =  100s.

20

«a.
S
0=

15

10

.....e l a s t i c  w i

r I

t h o u t  l e a k o f f ...........................

............................, ..........................1.............................

- 1 0 0  "

.....7 "

...........................i..............

!

............ : l e a k o
Ï —0 —

f f  o n ly ,  T |= 0

.........p o r o e l a .
: :

S tic ,  T |= 0 .2 6 6 ............ ..............

•  V «  V mf-m w • • w

:
i

:
-----------1---------- 1----------i

0 2 4 6 8

distance from the well, r (m)

10

Figure 4.20: Pressure response due to the poroelastic effect as illustrated by its 
profile along the fracture at t =  100s.

138



»  leaimff only. H=0-
□  poroelastic. r)=0.266

marks: V -+ V ,

500

time, t (s)

Figure 4.21: Evolution of the accum ulated leakoff volume, Vigf. and the created 
fracture volume, V„k-

0.00015

0.00010

c
3

0.00005

0

at t=100 s
w

 2— i--------
* ~ ■ "O* •

u4-
“‘O  /

\
\

'fi"

w .Li...... W

0 10

E

3

distance from ± e  well, r (m)

Figure 4.22: Comparison of the leakoff flux, u, with the fracture aperture change. 
w' =  in the  fluid mass balance equation.

139



0.03

Nsfi^leakoff
0.02

• ------------•  ffo -P o= 0
7----- 7 S
□ ----- —S  10
O .......... O 15.MPa

s

k=35 m d
0.01

60 4 8 102

distance from the well, r (m)

Figure 4.23: Poroelastic effect influenced by the cro—po difference and the formation 
perm eability as typifled by the fracture aperture profile a t t =  200s.

140



Chapter 5 

Simulation of Fracture 
Propagation/C losure/R e
opening

HF was first investigated in Chapters 2 and 3 by prescribing a non-zero pres

sure boundary condition along the fracture. Chapter 4 related the pressure to 

fluid flow inside the  fracture as well as its coupling with the fracture deforma

tion. The only non-zero boundary condition therein is the fluid injection rate 

at the fracture inlet. Being confined to a stationary fracture, however, C hapter 

4 has not considered the other boundary condition, i.e, the fracture propaga

tion condition, Eqn. (4.7). In this chapter, this limitation is relaxed. Fur

thermore, the capacity of modeling multiple fracturing events, including the 

propagation/closure/re-opening (PCR) during multiple fluid injection/shut- 

in/flow-back (ISF) cycles, is implemented.

The first section is dedicated to the numerical calculation of fracture propa

gation during a  single injection cycle. In the second section, the numerical 

strategy to model fracture closure is described, including the fracture rem ain

ing stationary upon stopping the fluid injection. In the third section, the 

fracture is allowed to re-open upon fluid re-injection. Validation examples are
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given in each section whenever they become relevant and available. Finally, 

parametric analyses are carried out in regards to the poroelastic effect in the 

HF propagation, including the fracture closure/re-opening.

5.1 Fracture Propagation

.Mathematically, allowance for the fracture propagation or closure creates a 

moving boundary value problem [160. 161, 162]. The condition to determine 

the fracturing behavior relies on the stress intensity factor-based fracture cri

terion. such as Eqn. (4.7). However, this equation is inherited from the purely 

elastic fracture mechanics theory. In the poroelastic domain, the effective 

pressure acting on the fracture includes the implicit poroelastic contribution 

which is not the  boundary condition, but the  com putational outcome. Direct 

application of Eqn. (4.7) into the current poroelastic domain is thus not fea

sible. Therefore, special efforts in calculating the  stress intensity factor are 

first elaborated. The numerical strategy to deal with the moving boundary is 

then discussed. Finally, several example problems are computed for validation 

purposes.

5.1.1 C alculation  o f the Stress In ten sity  Factor

Recently, Atkinson and Craster have published a series of papers on analytical 

derivations of fracturing behavior in poroelastic media, e.g., [163, 164, 165). 

Therein, they found th a t in the near vicinity of the fracture tip, the Laplacian 

term, V^p, is the  dom inant part in the fluid diffusion equation, such as Eqn. 

(2.10). Therefore, near the fracture tip, the poroelastic governing equations. 

Eqn. (2.9) and Eqn. (2.10), become de coupled and mathematically equivalent 

to the uncoupled thermoelasticity. The asym ptotic behavior of the stresses
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towards the  fracture tip  is similar to their purely elastic counterparts, i.e. of 

the following form [163]:

o-., =  ' . (5.1)

in which. Kij is the stress intensity factor reflecting the contribution of the  ex

ternal loading condition as well as the  fracture size and shape. / ,j  summarizes 

the circumferential variation around th e  fracture tip. r  is the radial distance to 

the tip. Atkinson and Craster (1991) further derived the asym ptotic behavior 

of the pore pressure as:

p = K j r j { 9 ) V ^  (5.2)

in which, Kp and ffj have similar meaning as the above Kij and / , j ,  respec

tively. A similar asymptotic behavior was derived by Simmons (1977) [166] 

for a mode-II crack in poroelastic media, steadily moving with an either slow 

or high speed.

Therefore, based on the constitutive relation, Eqn. (2.4), the strain com po

nents can be easily shown to have a singularity of the order l / \ / r .  Further, 

from the strain-displacement relationship, Eqn. (1-7), the displacement has an 

asym ptotic variation of \ / r  near the fracture tip . Particularly for the current 

axi-symmetric configuration, the to ta l fracture aperture near the fracture tip  

has the following form:

'2(1 -  u)ATf(f)'w{r,t)  = y/R  — r r < R  (5.3)

in which, r  is now defined as the distance from the wellbore in order to agree 

with the notion carried out in the rest of this work. The A'/ is specifically 

written as time-dependent. Numerically, K[{t) can be computed based on
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Eqn. (5.3) by using the to ta l fracture aperture value, u;v, at the last node. 

.V, in the Chebyshev grid via:

in which. s,v is the normalized coordinate of node, N .

5.1.2 Ai?—based Fracture Propagation  Scheme

As pointed out earlier, the  propagation of a discrete fracture is often numer

ically realized by a ‘‘snap-shot’’ scheme [67, 167]: the  fracture is propagated 

by a certain amount, A R .  Iteration is then performed to adjust the tim e 

increment required to render the newly-propagated fracture tip to be at the 

critical condition again, i.e.. Eqn. (4.7) holds. Numerically, this condition is 

equivalent to:

K < e/vV (5-5)

with tKi being given as input. This is called a AÆ-based fracture propagation 

scheme. In McFrac, the A R  value at a new time step, n -t- I, is given as:

AA^+i =  A ^ ( l - a ,v )  (5.6)

which is the distance between the last node, A , and the true fracture tip at 

the previous time step, n. Therefore, in tim e increment from step n to n -i- I. 

node N  moves to the previous fracture tip. This arrangem ent is solely for the 

convenience of coding and there is no theoretical merits behind it.

The A/2-based scheme happens to be efficient in handling the time marching 

in fracture propagation. Fracture radius varies more rapidly at early times: 

therefore, it is beneficial, and im portant, to have smaller time increments in

144



the early history of the pumping-in. As shown in Eqn. (3.6), this condition is 

indeed met in the Ai2-based scheme as the short fracture radius. R, at early 

times gives a smaller A.R.

The boundary condition. Eqn. (4.8). has already been explicitly implemented 

into the simulation by Eqn. (4.39). However, minor modifications are needed 

in the initial condition. Eqn. (4.9): .An arbitrary, usually small, fracture 

radius at the beginning is given as input to initiate the com putation. The 

initial width. w(r], and pressure profiles. p{r) are still kept as zero.

5.1.3 Calculation o f th e  Tem poral D erivatives

To accommodate the moving boundary nature, R{t). during the fracture prop

agation/recession. the time derivative appearing in the system of governing 

equations has to be adjusted accordingly. .A.nalv'tically. the tem poral deriva

tives are given by [168]:

d
dt

d
dt

(3.7)

Therefore, to implement this formula, spatial derivatives as well as the fracture 

propagation rate. R. are needed. These quantities are generally not easy to 

accurately compute. In McFrac. this difficulty is overcome by looking at the 

physical coordinate, e.g.. r, =  which is the Chebyshev grid node. i. at

the current time, t -t- A t. The tim e derivative is discretized by the normal FD 

procedure, i.e..

dv
dt =  ( u r ^ ‘ -  (5.8)

in which, v refers to the variable of interest. The superscript, t 4- A t or t. 

denotes the value at the current time, t -I- A t. or the previous time. t. respec

tively. .\ t  time t. the node. i. is no longer at the same physical coordinate.
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r,, since W  has propagated or receded to a new value. Therefore, r- is

interpolated from the v profile at tim e t.

Similar practices are carried out in computing the leakoff ra te  or the poroelastic 

displacements by Eqn. (3.46) or Eqn. (3.45). T hat is in computing u or at 

ûi at the current time, t +  A t .  the pressure histories since the fracture arrival 

tim e. r ( r ,)  at the same physical point, r, =  are interpolated from the

corresponding pressure profiles at th a t time.

5.1.4  Validation Exam ples

Again, the example listed in Table 4.1 is re-computed by allowing the fracture 

to  propagate if its stress intensity factor exceeds the fracture toughness. K[c- 

Two representative values of A '/c=l and 10 M Pa.\/m  are used (Table 5.1).

Figure 5.1 shows the evolution of the pressure profiles along the fracture at 

early times for the high fracture toughness case, K/c =  10 MPa. ̂ /m. Initially, 

the  fracture is very short so th a t its flowing velocity is large causing a high gra

dient pressure profile. As the fracture propagates, the  fluid velocity becomes 

small. The high fracture toughness prevents easy extension of the fracture. 

As a result, a large amount of fluid volume has to be accumulated inside the 

fracture to bring the fracture tip to the critical condition. All these factors 

work to  create a relatively uniform pressure profile a t late times (Figure 5.1).

When the pressure profile becomes uniform, a similarity solution can be found 

from Abe et al. S derivations [25], which use a concept of average pressure along 

the  fracture. Assuming no fluid lag and negligible wellbore radius, the formulae 

for fracture length, R. fracturing pressure . p,^i,andfractureaperture. w,ub at 

the  wellbore can be inferred from Abe et al. (1976) [25]:

R{t) =  (5.9)
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p^vbit) =  (5.10)

w,^{t) =  (5.11)

with:

A'fl = 1 ' ' '  <0.12,
16?(1 -  t/'^)Kic

A -.. =  ! 1 L : «  . (.5.14,
a IL

Figure 5.2 shows th a t the late-time com putations are indeed in excellent agree

ment with the analytical predictions.

For a low fracture toughness, i.e.. A'/c =  1 MPa.^y/m. the pressure profile is 

not 2ts uniform as in the case of high fracture toughness if the same injection 

rate. Qq =  0.03 m^/s, is used (Figure 5.3). Therefore, it is not expected that 

the com putations agree with the foregoing analytical results. However, the 

non-dimensionalization exercise carried out in C hapter 4 has indicated tha t in 

a purely elastic formation without leakoff. the fracture propagation behavior 

in the dimensionless domain depends on the non-dimensionalized injection 

rate only. Taking the  above high fracture toughness case as the base example 

(which has already been validated by comparing to  the analytical solution), 

let us project the current small toughness case to the dimensionless domain by- 

adjusting the  injection ra te  (Table 5.1). Figure 5.4 indeed shows they coincide 

as expected.

Also shown in Figure 5.4 is the case of power-law fluid rheology (Table 5.1). It 

falls on the same growth line as the Newtonian cases. Note the huge difference 

in the injection ra te  required to render an identical dimensionless injection 

rate, Qoc as in Eqn. (4.31). McFrac has handled them  very easily without 

much difference in the convergence behavior.

147



5.2 Fracture Closure

When the fluid injection stops, fluid inside the  fracture continues to leak into 

the formation. Therefore, the fracture volume gradually decreases, i.e.. the 

fracture closes. Depending on the circumstances, the fracture may continue 

to propagate a little after the pumping-in ceases, or. it may remain stationary 

before its recession. .\s  shown below, accurate simulation of this transition 

period is im portan t in interpreting the wellbore pressure response such as in 

extracting the  formation leakoff characteristics. This section is dedicated to 

modeling the fracture closure. .\ validation example is also given.

5.2.1 A f—based Fracture Propagation  Schem e

The AR-hased  scheme has no active control on the  time increment, At. A t  is 

adjusted to accom m odate the fracture propagation. In modeling the multiple 

pumping cycles, it is essential to truncate the  tim e increment at the moment 

when the pum ping activity changes, e.g.. from pumping-in to shut-in. or vice 

versa. Hence, a  A t-based scheme is required in which McFrac could dictate the 

time increment to be used. The A t—based scheme is also desired in modeling 

a stationary fracture.

The A t—based scheme is similar to the Ai2-based except th a t in the former, 

a At is m anually given and McFrac iterates for different fracture radius in

crements, A R ,  so th a t the newly propagated fracture tip  lies a t the imminent 

propagation state .

W ith the A t-based scheme, it is also possible to  model the continuous growth 

of the fracture after shut-in or continuous recession of the fracture after a 

new run of pumping-in. If the program detects th a t the fracture has entered

148



into a steady propagation or recession stage, the  control is turned back to the 

A A—based scheme.

When the com puted SIF, AT/, is less than the  fracture toughness, but larger 

than zero, the fracture is in a stable condition and no propagation will occur,

i.e.. a stationary fracture results. In McFrac. this condition is described as:

^  f • (5-1Ô)
Arc

Furthermore, a negative A'/, or.

<  —^Ki ( 5 .1 6 )
h[c

signals th a t the fracture is to close. The fracture radius has to be reduced 

by a certain am ount, Ai2, so that the stress intensity factor. A'/, at the new 

fracture tip  remains at zero. Numerically, this is equivalent to;

■Ic
< eK, ■ ( 5 .1 7 )

5.2.2 D eterm in ing Carter’s Leakoff Coefficient from  
Pressure-D ecline Curves

Nolte [96] proposed a theory of fracturing pressure decline analysis to estimate 

the formation characteristics, including C arter’s leakoff coefficient. In the 

theory, Nolte assumes pressure-independent leakoff and no poroelastic effects. 

These assumptions can be realized in McFrac with a material property set 

such 3.S  the A'/c =  10 case in Table 5.1 except th a t now, a C arter’s leakoff 

coefficient. Ci =  1.34 x 10““* m /\/s , is input. The high fracture toughness is 

chosen in order to render a relatively uniform pressure profile which is closer 

to Nolte's assumption. One pumping cycle is used with a pumping-in period 

of 100 seconds a t Q =  0.3 m^/s and then shut-in until the fracture closes
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completely. Based on the computed pressure decline and Nolte's theory, the 

C arter’s leakoff coefficient can be computed. It is expected tha t the computed 

value should agree with the input one if the calculation is correct. This way. 

the validity of McFrac in computing the multiple fracturing events can be 

checked.

The com puted wellbore pressure response as well eis the fracture radius are 

shown in Figure 5.5. Figure 5.6 shows two pressure decline curves furnished 

from Figure 5.5 based on Nolte’s theory [96]. A upper bound category was 

assumed because the given leakoff coefficient falls within the low leakoff range. 

One of the  two curves in Figure 5.6 used a shut-in tim e of t, =  100 s when the 

pumping-in stops. At =  100 s, however, the fracture continues to propagate 

until 3 seconds later (Figure 5.7). Therefore, a shut-in time of t, =  103 s, when 

the fracture physically stops propagating, is used for the other curve in Figure 

5.6. The ti =  100 s curve gives the C arter’s leakoff coefficients of 1.887 xlO'"* 

m/-s/s, which results in 41% error relative to  the input value. The =  103 s 

data  set, however, gives a more accurate estim ate of Ci =  1.282 x 10~* m /\/s , 

which corresponds to 4% in the relative error.

This observation assures the validity of McFrac in computing the fracture 

closure. Meanwhile, it points out th a t it is im portant in pressure decline 

analysis to  distinguish the times when the pumping-in stops or the fracture 

propagation ceases. It is more accurate to use the la tte r time as the i, used in 

Nolte’s theory. The necessity for such a correction can be easily recognized on 

the p’ — G {to)  log curve. As shown in Figure 5.6, the t, =  100 s curve hzis a 

very high slope near the origin, G{to) =  0. Shortly after, the curve abruptly 

changes to  another straight line which has a much smaller slope and is parallel 

to the ti =  103 s curve. This abrupt transition point is associated with the
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time when the fracture has physically stopped extending. Translating this 

point to  the origin by moving the =  100 s curve downwards along the p' 

axis gives a new curve (the marked line in Figure 5.6) which almost coincides 

with the  ti =  103 s curve and therefore, yields the correct value for the Carter's 

leakoff coefficient.

5.2.3 Fracturing Behavior after th e Shut-in

W ith McFrac, one can look more closely into the fracturing behavior after 

shut-in. Figure 5.8 displays the evolution of pressure profiles immediately af

ter shut-in. At t =  100s when the fracture still accepts the injected fluid, the 

pressure profile along the fracture has a relatively large gradient. Immediately 

thereafter, the fluid injection is stopped. But the pressure gradient, or the 

fluid m om entum , inherited from the pre-shut-in period continues to push the 

fluid moving towards the fracture tip. As a result, the fluid pressure, or equiv

alently, the fracture aperture, near the tip continues to  grow and the fracture 

propagates by an increment of Ai? =  0.0769m one second after the shut-in. 

Meanwhile, the pressure near the wellbore decreases and its overall gradient 

along the  fracture decreases as well. But the gradient is still sufficient to drive 

the fluid pressure to rise near the tip and the fracture to extend by a series 

of exponentially decreasing segment. A i? =  0.0393,0.0034 m consecutively 

during the  next two one-second time increments till t =  103 s. Starting from 

t =  103 s, the fracture stops propagating further, i.e., remains in a stationary 

state. T he fluid pressure along the fracture, including near the tip, decreases 

due to the  fluid leakoff (Figure 5.8).

As more fluid leaks into the formation, the stiffness o f the fracture, which is 

partly supplied by the accumulated or the pressurized fluid inside the fracture.
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decreases. It is expected tha t the fracture will close, s tarting  near the fracture 

tip and proceeding towards the wellbore until finally, the propped-up fracture 

radius becomes zero. This process is indeed shown in Figure .5.9.

.A.S in the injection stage, the leakoff rate plays a decisive role in affecting the 

fracturing behavior during the shut-in. For example, by increasing the leakoff 

coefficient in th e  above example by an order, i.e., Ci = 1.34 x L0~^ m / \/s. the 

fracture propagation stops spontaneously upon the shut-in. Shortly after the 

shut-in. the fracture starts to recede and closes very rapidly (Figure 5.10).

Expectedly, the  fracture toughness, or the mechanical strength  of the rock 

mass, affects th e  fracture propagation eis well. For example, a smaller fracture 

toughness allows the fracture to propagate longer after the  shut-in , which is 

indeed seen in Figure 5.10 where the  fracture keeps on propagating until about 

t =  120 s. Correspondingly, the fracture recedes very slowly. However, the 

fracture starts to  close earlier as compared to the high fracture toughness case.

Figure 5.11 shows another interesting point relevant to the HF stress mea

surement. When applied to the porous formation, the HF stress measurement 

technique often relies on the recognition of a characteristic pressure, p,5,p, from 

the wellbore pressure log after the shut-in, e.g., [169,170,171,172]. p,a,p, called 

the instantaneous shut-in pressure, is pinpointed by the abrup t turning point 

on the vs. t curve shortly after the shut-in. Often, the  p,„p is assumed 

to be equal to th e  in-situ minimum stress, ctq. However, both Figure 5.11 and 

Table 5.2 show th a t a large difference exists between them  in the computed 

examples. A majcimum difference of 5.5 MPa is found.

In the above discussion, the shut-in time, f,-, has already been defined in the 

pressure decline curve. Another characteristic timing can also be pinpointed 

to typify the tim e, f/oc, when the fracture starts to recede (Figure 5.5). Figure
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5.5 suggests th a t tj^c is shown up on the vs. t curve as a inflexion point; the 

curve changes from convex to concave. In order to clarify this change. Figure

5.5 also plots the second time derivative, d^pjdi^, of the wellbore pressure 

computed by Eqn. (2.80). In analytical mathematics, a convex curve has 

a positive second derivative while a concave one takes a negative value. At 

the transition point, the second derivative is zero. .As shown in Figure 5.5. 

d^pjdt^ is obviously positive before (/oc=339 s and changes to mostly negative 

after tjoc- .At t/oc- it a ttains an abrupt minimum (Figure 5.5)^. A f/oc =  108 

s can be readily picked by the same procedure for the case of higher leakoff 

coefficient. C/ =  1.34 x 10"^ m ly/s.  For a low fracture toughness, however, 

the similar features are not so obvious, but can still be found which gives 

tfac =158 s (Figure 5.12). Corresponding to tjoc the pressure decline curves 

give a pressure reading, p/oc, i.e.. the fracture closure pressure. Compared to 

Pmp« P/oc is closer to  ctq (Table 5.2).

Determination of th e  timings, and f/oc, are not only significant in the in- 

situ stress measurement, but could be indicative of more information. The 

preliminary results (Table 5.2) suggest that a small difference between them. 

ifoc — U, is representative of a very permeable formation an d /o r a small fracture 

toughness, or vice versa. But a small fracture toughness enables the  fracture to 

propagate longer after shut-in (i.e., t{ is much longer than  the  pumping shut- 

in time) while a very permeable formation causes the fracture propagation to 

cease instantly upon shut-in (i.e., coincides with the pum ping shut-in time). 

In any case, the analysis shows tha t with a detailed rigorous simulation of the 

post-shut-in fracturing behavior, one may extract more information about the 

in-situ condition from the wellbore pressure recordings.

^d^pjdt' is not strictly zero at (y ,, because of the numerical artifact in computing the 
derivatives.
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5.3 Fracture R e-opening

The fracture re-opens along the previously created trace during subsequent 

pumping-in's after the previous run of injection/shut-in. In McFrac. this con

dition is detected by the following criterion:

>  (-Ki and R{t) < Rmax (5.18)
A/c

in which. Umax is the maximum fracture length in its previous propagation 

history. The fracture reopening is modeled in a way similar to a fracture 

propagating through the intact formation. Except in the former, the fracture 

toughness is treated as zero.

Calculation of the leakoff rate is complicated by the fracture propagation/closure/ 

reopening sequence. Leakoff calculation depends on the time a t which the  frac

ture surface is first exposed to the fracturing fluid, i.e.. fracture arrival time,

T .  As sketched in Figure 5.12. a point at distance from the wellbore is first 

exposed to the fracturing fluid at tim e to. At tim e however, the fracture is 

receding behind the same point. Theoretically, there is no fracturing fluid left 

around th a t point beyond fj, i.e., from now on, there is no fluid ready to leak 

into the formation at this point. Subsequently at fg, the fracture reopens and 

the fracturing fluid again passes beyond this point. The cycles could continue 

to to and so on. Herein, questions arise about which tim e to take as the  time 

of fracture arrival in computing the leakoff and the  associated poroelastic ef

fects after the fracture re-opens. How does on correlate the fluid pressure at 

position, R{t), during the time period of t e  [(1, ( 2]?.........

As no previous work has addressed these questions, this section is mainly 

dedicated to this issue. The treatm ent differs between the C arter’s pressure- 

independent and the poroelastic pressure-dependent leakoff cases. For the
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C arter s leakoff, a rigorous theoretical derivation is given based on the API 

standard  filtration principle. For the 1-D pressure-dependent leakoff, an as

sumption has to be made as will be discussed below. For the 2-D pressure- 

dependent leakoff. however, more thorough research is needed before mak

ing any a ttem p t, which is beyond the scope of the current dissertation work. 

Therefore, the  2-D poroelastic model is only used in com puting the monotonie 

fracture propagation. When the fracture closes or re-opens, a 1-D model is 

used.

5.3.1 C arter’s Leakoff Calculation in  M ultip le Frac
turing E vents

The pressure-independent leakoff (C arter’s) is controlled by the buildup of a 

filtercake on the fracture surface. Its m athem atical formula is derived based 

on the s ta tic  filtration principle [173]. As fluid leaks into the formation, the 

solids or polymer contained in the fluid are stopped at the fluid-formation 

interface and gradually build up into a certain thickness /i, i.e.. a filtercake is 

formed. T he to ta l leaked-off fluid volume Vf up to current time t through a 

unit area of the cake can be computed according to D arcy’s law [17.3]:

in which k is the cake permeability, fj. is the fluid viscosity and A P  is the 

pressure difference across the cake.

Consider a point where the cake has first built up to a thickness Hq up to time 

<1, and then  stops growing because no fluid supply exists. At a later time 

the solid-bearing fluid arrives again. Filtration restarts and the  cake thickness
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increases by A h ,  i.e.. h =  ho + A h .  Material balance gives:

fsrrAAh + V j ) = f , , A h  (.5.20)

in which f,c  and /,m are the solid fraction in the cake and the fluid, respectively. 

Vf should be interpreted here as the incremental fluid volume leaked through 

the cake since the latest exposure time (%. From Eqn. (5.20) it can be found 

that:

/>m

where Vq is the total leaked volume per unit area of the  surface prior to to 

when fluid is reintroduced. Combining Eqn. (5.19) - Eqn. (5.21) \nelds:

VoVf + \ v J  = 2 C fA t  (5.22)

in which A t  is the elapsed tim e after the latest exposure to the fluid; and.

Cl = k A P ( U _ ^  (5.2.3)f SC

2/i \ l sm

is the C arter's leakoff coefficient. Solving the quadratic equation (5.22) (Only 

the plus solution is physically valid) gives the to tal leaked volume since the 

latest exposure as:

Vf =  y/vf+ïcfÂt -  Ko - (5.24)

Taking the tim e derivative gives the leakoff rate as:

u = - - (5.25)
y /V ^ + A C fA t

in which, a factor “2” is added to account for the two fracture surfaces. Note 

tha t with Vq =  0, Eqn. (5.25) reduces to the conventional C arter’s leakoff 

formula, Eqn. (4.4). C ontrary to u. which is estim ated for both surfaces of 

the fracture. Vq is computed only for one side of the fracture.
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5.3.2 1-D Pressure-dependent Leakoff C alculation in
M ultip le Fracturing E vents

In com puting the pressure-dependent leakoff. McFrac assumes tha t the fluid 

pressure a t point. Rt, remains constant during the time interv'al of [fi. <2] when 

the  fracture closes at this point (Figure 5.13). This assumption comes from 

the fact th a t there is no fracturing fluid available to leak into the formation 

after the fracture closes at this point. Therefore, it is solely based on physical 

intuition and could be modified in the  future if more refined work comes forth.

5.3.3 A n Example

Figure 5.14 shows the histories of fracture radius and wellbore pressure under 

three pumping cycles. The C arter's leakoff model is used and no poroelastic 

effect is considered. The relevant m aterial properties are based on field data 

and listed in Table 5.3. Each pumping cycle consists of 5 minutes of pumping- 

in a t a ra te  of 20 bpm and then 20 m inutes of shut-in. For the current material 

property set. right at the beginning of shut-in, the fracture stops propagating 

and remains stationary for a short period. Afterwards, the fracture recedes 

rapidly. The fracture closes completely before the end of the  shut-in period. 

During the late pumping-in cycles, the fracture reopens rapidly along the 

preexisting trace until it reaches the  previously attained maximum radius. 

Thenafter, the propagation rate slows down, because from now on. the fracture 

extends through the intact formation.

The wellbore pressure response returns to the in-situ minimum stress value. 

(To. whenever the fracture closes completely no m atter what pumping cycle 

it is in. Moreover, in this particular example, both p,a,p(~ 4280 psi) and 

P/oc(~ 4260 psi) remain relatively constant between the consecutive pumping

157



cycles and very near the in-situ minimum stress, ctq (=4200 psi). As pumping 

cycles increase, the pressure decline during the shut-in period becomes slower. 

Smaller leakoff rate during the late shut-in periods due to the longer exposure 

time is responsible for this phenomenon.

The staircase-like pattern  in the fracture radius history profile in the  third 

pumping-in cycle manifests the fracture re-opening (Figure 5.14). Correspond

ingly. the pressure profile shows a local increasing cusp in contrast to the 

general descending trend (Figure 5.14). After the fluid re-injection, the  frac

ture propagates rapidly along the previously created trace. After it reaches 

the maximum length previously attained, the fracture hits the intact forma

tion and a  non-zero fracture toughness has to be overcome before the fracture 

propagates further. The fluid pressure inside the fracture builds up in order 

for the stress intensity factor to exceed the fracture toughness value of the 

intact formation. Therefore, the fracture propagation rate slows down dra

matically. The increasing cusp in the wellbore pressure history reflects this 

pressure buildup process. After the pressure buildup stage, the fracture has 

gained new momentum and is in a phase of rapid propagation (although it is 

not as fast as in the fracture reopening phase). The longer the fracture, the 

more significant this feature becomes. For example, the slow propagation rate 

starts to show up in the second pumping-in cycle and becomes more significant 

in the th ird  one (Figure 5.14).

As shown in Figure 5.14, at the transition from the general descending trend 

to the local increasing cusp in the wellbore pressure log curve during the third 

pumping-in cycle lies the fracture re-opening pressure, pr, which has been also 

used in micro-HF jobs to equate to the in-situ minimum stress, ctq. In this 

particular example, pr ~  4320 psi which is indeed close to the (Tq. During the
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second pumping-in cycle. Pr is marked by an abrupt change from the rapid 

pressure descending rate to a slow one. As shown in Figure 5.14, immediately 

after the  fluid re-injection, the wellbore pressure increases instantly to a very 

high value (5280 psi in the second pumping-in cycles and 5230 psi in the th ird  

cycle). .As the fluid flows inside the previously-created fracture trace, the 

wellbore pressure drops rapidly. When the  fluid reaches the previous fracture 

tip. the wellbore pressure decrease greatly slows down (in the second cycle) or 

even locally reverses, changing to increase (in the third cycle).

Corresponding to pr- one may define another characteristic timing. a t which 

the previously created fracture is completely opened up. Obviously, the dif

ference between tr and the time when the most recent fluid re-injection starts  

is a good indicator about the fracture length previously created. In the th ird  

re-injection cycle of the current example, such a difference reaches to about 

3 minutes while in the second cycle, it is only 1.2 minutes. The former cor

responds to a fracture length of 100 m while the la tte r is associated with a 

fracture length of 86 m.

Therefore, in the post-shut-in pressure decline as well as in the wellbore pres

sure response during the subsequent pumping-in cycles. McFrac has been able 

to give the three characteristic pressures. p,„p,p/oc and pr, all of which have 

been used in micro-HF jobs to measure the  in-situ stress, (Tq. Associated with 

these pressures can be defined three characteristic times, f,. t/oc and tr- Com

parison between these timings as well as the pumping schedule could reveal 

more information about the in-situ condition, such as the previously created 

fracture length, leakoff characteristics and formation strength.
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5.4 Poroelastic EflPects in HF Fracture Prop
agation

Herein, the poroelastic effects on fracture propagation are analyzed. In the 

monotonie fracture propagation history, the difficulty in dealing with the 

leakoff calculation during m ultiple PCR events does not show up. Therefore, 

the calculation is based on the  modified 2-D poroelastic model. In calculat

ing the multiple pumping cycles, however, the 1-D poroelastic model is used 

since the 2-D model is not m ature enough to handle the complex situation as 

explained in Section 3.

5.4.1 Poroelastic Effect During th e  M onotonie Frac
ture Propagation

series of param etric studies have been carried out to study  the influence 

of in-situ stress and pore pressure difference, formation perm eability via the 

poroelastic mechanism. The effect is manifested by the created fracture dimen

sion (radius and fracture aperture) as well as the wellbore pressure response. 

The basic m aterial property set is the A"/c =  10 case in Table 5.1 with the 

additional poroelastic param eters as a  =  0.798, B  =  0.678 and k = 3.5 x 10"^ 

m^/M Pa.s. The following observations can be summarized:

(a) The wellbore pressure response increases due to the poroelastic mecha

nism (Figure 5.15). For example, the net pressure, p /  — o-q, at i =  100, 

increases by over 150% as compared to the purely elastic case without 

leakoff (Table 5.4). T he specific magnitude of the increase depends on 

the difference between the  in-situ stress and the reservoir pressure, i.e, 

(<To — po), as well as th e  formation permeability, k, among other effec-
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tu a i param eters. A larger difference of (<7q — po) or a higher permeability 

results in a higher pressure at the wellbore (Figure 5.15 and Table 5.4).

(b) There is a large difference in the created fracture length between the 

poroeléistically-affected case and the purely elastic case without leakoff. 

Owing to the poroelastic effect, the fracture length is reduced (Figure 

5.16). Similarly, a larger permeability or a larger difference in (ctq — po)- 

results in a larger amount of such a reduction.

(c) Furtherm ore, the fracture aperture also decreases due to  the  poroelastic 

influence (Figure 5.17). Therefore, the resultant fracture volume, or the 

fracturing efficiency, in a poroelastic medium is much smaller than in 

low 'permeability formations where the pressure-dependent leakoff and 

poroelastic effect are not significant. The fluid leakage has taken a large 

portion of the injected fluid volume so th a t the created fracture dimension 

is small in either its aperture or length.

(d) T he poroelastically-affected fracture dimension or the wellbore pressure 

response is linear proportional to the in-situ stress and pore pressure 

difference, (ctq — po) (Figure 5.18). However, the perm eability effect on 

sim ilar variables is a positive power function^(Figure 5.19).

5.4.2 Poroelastic Effects during Fracture P rop agation / 
C losure/R e-opening

Figure 5.20 shows the wellbore pressure response under pressure-dependent 

leakoff. Basic material properties are listed in Table 5.3. Two cases are con

sidered to  examine the poroelastic effects. The poroelastic stress coefficient. 

Tj = 0 .3 , denotes the poroelastic case while rj = 0 corresponds to a pure leakoff

"i.e.. in the form of u oc in which, v is the fracture width or length or the wellbore pressure: 
K is the permeability coefficient; e < 1 is a positive number.
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case without considering the poroelastic effect. There are four pumping cycles 

consisting of 100 seconds of pumping-in at a rate of 0.3 m^/s and 100 seconds 

of shut-in. Table 5.5 further lists two characteristic pressures. and in 

each pumping cycle for the two cases, is taken exactly at the beginning 

of the shut-in and right a t the end of the shut-in. Therefore, they are not 

defined in a way similar to th a t used in HF stress measurement.

It is obvious th a t the  poroelastic case always has a higher pressure value. ,A.s 

pumping cycles go on. the difference between the poroelastic and the leakoff- 

only cases increases. In the present example, the difference reaches nearly 3 

MPa. In the leakoff-only case, the wellbore pressure converges to the in-situ 

minimum stress value when the  fracture closes completely. In the  poroelastic 

case, however, the  wellbore pressure remains higher than the in-situ stress 

value by an increment of 2.5 MPa at the complete closure of the fracture.

5.5 Sum m ary

This chapter docum ents the numerical strategies in simulating the fracture 

propagation, closure and re-opening. Particularly, it used the Ai?-based scheme 

to model the  monotonie fracture propagation/recession. It employed the 

A t—based scheme to  compute the fracturing behavior during the transition in 

the pumping activities. Comparison with the sim ilarity solution [25] has vali

dated the capability of computing the fracture propagation for purely elastic 

cases. Based on N olte’s theory, a C arter’s leakoff coefficient is inferred from 

the computed fracture decline curve during the shut-in period. The leakoff 

magnitude obtained this way agrees very well with the  input, which therefore 

further lends support to the validity of computing the  fracture closure. To ver

ify the calculation of the multiple fracture PCR events during the multiple ISF
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cycles, a field example based on C arter’s leakofF is also computed. The compu

tations have been shown as physically valid although quantitative comparison 

has not been possible. W ith these, it is believed tha t a complete HF simulator. 

McFrac. which is able to compute fracture propagation/closure/reopening due 

to the fluid injection/shut-in. is developed.

McFrac is able to assist in detailed analyses of the fracturing behavior after 

shut-in an d /o r its subsequent fluid re-injection. Several examples have been 

computed to illustrate the capabilities of McFrac. For example, the three 

characteristic pressures. Pisip.p/oc and pr in relation to the HF stress determ i

nation. have been identified on the computed wellbore pressure history. It hcis 

been shown th a t, depending on individual circumstances. p„,p could be several 

M Pa’s higher than ctq. High leakoff formation increases this difference. While 

a low m aterial strength as realized by a small fracture toughness decreases this 

difference, it can be still as high as 4 M Pa in the computed example. Moreover, 

corresponding to the three characteristic pressure readings. /),«>, p/oc and pr. 

there are three characteristic times, t,, f/oc and tr- The analyses carried out 

in this work have revealed that these timings depend on the previously cre

ated fracture length, formation leakoff characteristics as well as its mechanical 

strength.

More param etric analyses have been performed in regards to the poroelastic 

effect in HF propagation. It has been shown th a t the poroelaistic mecha

nism significantly increase the wellbore pressure and reduce both the fracture 

aperture and radius. The specific m agnitude of such an increment or reduc

tion depends on the in~situ stress and pore pressure difference, <to — po, as 

well as the  formation permeability, k . The <to — po influence is nearly linear 

while the k effect is more like a positive power function. During the multiple
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injection/shut-in cycles, the wellbore pressure increase due to the poroelastic 

effect becomes more significant in the  late pumping cycles.
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T able 5.1: M aterial p rop erties for th e p rop agatin g  fracture.

case K n E ,  M Pa V (To. M Pa pQ. MPa Kic, Qo. m^/s
R'lc = 1 0 250 cp 1 3.0E4 0.25 40. N /A 10 0.03
A'/c =  1 250 cp 1 3.0 E4 0.25 40. N'/A I 0.3 E-7

power-law 2.5E-7 MPa.s" 0.8 3.0E4 0.25 40. N/A I 0.6 E-6

K[c is in M Pa.ym .

Table 5.2: Some characteristic values on the computed wellbore pressure log in

case Pisip ^ 0 ? MPa p f o c  -  <Tq , M Pa t f o c  . S

K i c C l

10 1.34 X  lO-'* 4 2.5 237
1 1.34 X 10-^ 4 2.5 17
10 1.34 X  10'^ 5.5 3 8

A'/c is in MPa.y/m. Ci in m/y/s.

Table 5.3: M aterial Properties for the Examples with M ultiple Pumping Cycles

param eter p-dependent leakoff C arter’s leakoff
dynamic permeability, k 8.36 X  10"^ mVMPa.s N/A

diffusivity, c 0.4 m^/s N/A
Young’s modulus, E 0.3 xlO^ MPa 1.5 xlO® psi

Poisson’s ratio, v 0.25 0.25
Fracturing fluid viscosity. A', n 250 cp (Newtonian only) A'=0.15 lbf.s° ®/ft^, n =  0.5

(Tq  —  P o 1.7 MPa 1500 psi (po =  2700 psi)
C arter’s leakoff coefficient, Ci N/A 0.003 f t/\/m in

Fracture toughness, Ki^ 1 MPa. y in 1000 psi.\/m
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T a b le  5.4: Poroelastic effect on th e  w ellbore pressure respon se
case Pwb -  o-Q, MPa rel. inc.. %

no leakoff 6.05 0.
fc=0..35 md, Po =  40 MPa 7.46 23.3
6=3.5  md. Po =  40 MPa 7.83 29.4

6=35 md. po=40 MPa 8.81 45.6
6=350 md, po=40 MPa 11.84 95.7
6=35 md, po=40 MPa 8.81 45.6
6=35 md. po=35 MPa 10.67 76.4
6=35 md, po=30 MPa 12.72 110.3
6=35 md, po=25 MPa 15.14 150.3

Table 5.5: Comparison of Wellbore Pressures during the Multiple Pumping Cycles. 
Poroelastic ( 7  =  0.3) vs. Leakoff-only Cases ( 7  =  0 .).

P is iv ' M Pa
cycle no. 7 =  0 7  =  0.3 ^ P i s i v

1 5.53883 7.04015 1.50132
2 4.84622 7.12749 2.28127
3 4.52247 7.20590 2.68343
4 4.28523 7.24109 2.95586

P'foĉ  M Pa
cycle no. 7 =  0 7  =  0.3 ^ P ' f o c

1 0.86225 1.72610 0.86385
2 1.10563 2.04533 0.93970
3 1.16955 2.23766 1.06811
4 0 2.48004 2.48004

A denotes the  difference between the cases of 7  =  0.3 and 0.
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Chapter 6 

Conclusions and 
Recommendations for Future 
Work

In all, the following conclusions can be drawn:

(a) The full poroelastic model can be approximated, to an adequately good 

accuracy, by the simplified 2-D poroelastic model derived in this work. 

It involves less than  10% relative error in th e  significant part of the 

poroelastic domain, when compared with the  numerical computations 

by ABAQUS for the full poroelastic model. Equally importantly, the 

simplified model is com putationally efficient and comparable to the I-D 

model. Therefore, it provides an effective and efficient methodology to 

account for the poroelastic effect in the conventional HF simulations.

(b) The size effect of the propagating fracture, which has not been included 

in the 1-D model, enhances the backstress-induced fracture deformation 

if the  2-D model is used. Therefore, in general, the I-D model underesti

mates the poroelastic effect. A faster propagating fracture and/or a more 

permeable formation increases this contrast. Figures 3.27-28 help illus

tra ting  these points. In contrast, the I-D poroelastic model predicted a
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much more comparable leakofF ra te  to the  2-D model as shown in Figure 

3.29.

(c) T he pseudo-explicit finite difference m ethod has proven suitable to solve 

the  coupled nonlinear integro-differential equation system. The numeri

cal tests suggested that it is stable, consistent and convergent. Excellent 

accuracy has been obtained in the computed examples. With the help of 

the  Newton-Raphson scheme for a nonlinear equation set. the efficiency 

of the PEFD scheme is believed to be remarkable. Additionally, the 

flexibility of the explicit FD method is inherited. Therefore, more com

plicated physics can be included with few additional difficulties, such as 

the  current pressure-dependent leakoff and poroelastic effect. Similarly, 

therm al effects can be easily implemented.

(d) McFrac, the resultant HF sim ulator after this work [157, 174, 175. 176]. is 

able to model the complicated fracture propagation/closure/re-opening 

events during multiple injection/shut-in/flow-back pumping cycles. For 

example, several characteristic pressures, Piaip.p/oc and pr which are com

monly used to determine the in-situ minimum stress in the micro-HF jobs, 

can be easily pin-pointed on the com puted wellbore pressure logs.

(e) Poroelastic effects, including the pressure-dependent leakoff and the backstress- 

induced fracture closure, significantly increases the wellbore pressure re

sponse. The increase relative to the purely elastic case without leakoff has 

reached a high of 150%. Meanwhile, the poroelastic mechanism causes 

more fluid leakoff into the formation and therefore, reduces both the 

fracture aperture and radius. The m agnitude of the poroelastic effect is 

linearly proportional to the in-situ  stress and pore pressure difference,

(To — po, and is a positive power function of the formation permeability,
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K. T h e p oroelastic  effect increases w ith  th e  num ber o f pum ping cycles.

The recommended future works include:

(a) use McFrac to compute a variety of additional examples, particularly 

field cases, to relate various fn-sffu/formation characteristics to the well

bore pressure response. The author keenly believes* that there is good 

promise in using multiple pumping cycles to characterize, more accu

rately and in more details, the previously-created hydraulic fracture and 

the relevant in-situ  parameters. The former includes the fracture dimen

sion and detailed geometry such as surface roughness, multiple fracture 

strands, etc. The la tter includes the in-situ  minimum principal stress, 

leakoff characteristics, in-situ value of fracture toughness and other ma

terial param eters, which are otherwise difficult or impossible to obtain 

by conventional methods. There have been successful attem pts made in 

industry along similar directions. But could more be forthcoming?.

(b) validate the m athem atical accuracy of the  principle of extending the s ta 

tionary fracture-based 2-D model to the propagating fracture. Moreover, 

new avenues have to be derived to extend it to a receding fracture.

(c) add additional improvements in modeling the fracture recession in the 

complicated poroelastic domain.

*The inspiration comes from the history of exploration seismology. In its early history, the 
recorded full seismic waveforms were only analyzed for two points: the P- or S-wave arrival times. 
Gradually, more information carried on the waveform is utilized, such as the incidence phase angle, 
shear-wave splitting, ..., until full waveform modeling. Multiple IS F cycles not only generate the 
wave-like wellbore pressure history; but also should carry more information about the formation 
properties and the fracturing behavior. It is hoped that the present study will open a way to this 
arena.
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Appendix A

P roof of the 1-D Poroelastic 
Formulae

Proof of Eqn. (2.29) can be can be carried out by combining the various 

equations stated in the above. The procedure is illustrated here by taking 

mode 2 loading as an example. Integrating Eqn. (2.19) over x  € [0,c«| and 

considering Eqn. (2.24) gives:

u;P(<) =  - ^ ^  p { x j ) d x  (A .I)

while integrating Eqn. (2.27) over x 6 [0, oo] yields:

1 /■“  9 p ( i , t )
dx x=0

where the regularity condition at infinity, |2 j  = 0  and w^{x —*■ oc) =  0,

are applied. Therefore, via Darcy’s law, the  leakoff rate at x =  0 is given by:

c JO a t

Integrating the above equation over r  E [0, t\ results in:

/ ‘ u (r )< ir  =  t f d r r ? É ^ d x  
Jo C Jo Jo OT

=  - [  p ( x j ) d x  (.A..4)
c Jo
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where the initial condition p {x ,t  =  0) =  0 is substituted. Comparing Eqn. 

(A.I) with Eqn. (A.4) comes to Eqn. (2.28).

Similar derivations can be carried out for mode 1 loading, which shows the 

displacement field consisting of the following two parts;

Au;(x, t) =  w {x ,t)  — w{x = 0 ,t) =  A u;'(x , <) +  Au;^(x. t) (A.5)

with

A w 'ix . t )  =  \p f{ t ) -a o ] x  (A.6)
I — Uu I

Au;P(x,i) =  — [u(x, r )  -  u ( r ) ]d r  (A.7)

Obviously, A iü '(x , t) represents the undrained response to the  mechanical 

loading, pf{t) — ctq. A w ^ (x ,t)  purely depends on the fluid leakoff into /out 

from the model, thus belonging to the poroelastic displacement. Note tha t in 

this part, and u bo th  tend to zero as x —» oo: and; therefore, Eqn. (.A.7) 

can be reduced to Eqn. (2.28).

Eqn. (2.28) implies th a t w^{t) is proportional to the total fluid leakoff volume 

into the media through x =  0 until the current time, t. To arrive at Eqn. 

(2.28), the pressure boundary condition at x =  0, i.e. p(x, i) =  0 or p { x j )  = 

Pf ~  Poi is not required. Therefore, if the boundary condition there changes 

to a leakoff rate-prescribed boundary such as in Carter's leakoff model. u(x =

O.f) =  Uo{t), Eqn. (2.28) still holds.

Again, proof of the leakoff rate is given to Eqn. (2.30) only, which corre

sponds to mode 2 loading. Calculation of the leakoff rate needs the  knowledge 

about the pore pressure field, p(x, (), which is obtained by solving the diffu

sion equations (2.26) or (2.27). This can be readily found in the literature
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such as [121]. Following the Green’s function principle [122]. the fundam ental 

diffusion problem in semi-infinite domain:

f ^  — —8 (i — s)6{t — \ )  x > 0 . f > 0  , \
\ p ( x . f ) = 0  X =  0 .f > A  ̂ '

for given s. A has a fundamental solution to p. G p { x .t \s ,\)  and the associated

leakoff rate a t x =  0, Gu(f:s. A) as:

.p-(x-sŸlAc{t-\) _  IG p {xJ:s ,X )  =

G u(i;s.A ) =

1 1
\xc{ t — A) 4(rc( t — A )

SK
\/47r[c(f — A)]3/2 

The particular solutions to the problem:

~  I? =  0  X >  0, t >  0
p(x, t) =  g{x) X >  0, f =  0
p(x. t) =  h{t) X =  0, f > 0

can be w ritten as:

,-5^/4c(t-A)

. - ( ■ r + i ) ^ / 4 c ( t - A |

(A.9)

(A.IO)

(A .ll)

p{x ,t)  =  /  dA /  G p {x ,t:s ,X )f{s .X )d s  + f  Gp{x.t: s ,0)g{s)ds
Jo Jo Jo

dX (A.12)
i = 0

-pc f  h{X) — Gp{x.t: s. X)
Jo os

u{t) =  /  dA /  G u{t:s ,X )f{s ,X )d s  + [  G^{t: s,0)g(s)ds  
Jo Jo Jo

h(X)— Gu{t',s,X)\^_gdX  (A .13)

Particular for mode 2 loading, the various components corresponding to the

differential equation set. (A .ll) , are:

/ ( s .  A) =  0 
« g{s) =  0 
. = P f W  - P o

Therefore, Eqn. (A .13) becomes 

Integrating by parts vields Eqn. (2.30).

(A.14)

dA (A .1 5 )
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Appendix B

P roof of the Steady-State 
Poroelastic Displacement 
Formula

Eqn. (2.42) can be proven by combining Eqn. (2.37) to Eqn. (2.39) and Eqn. 

(2.40). The key in the proof is to validate the equality of:

(1 -W A o '
f i x )  = T}Pf{x) B.ll

Performing the integration-by-parts twice w.r.t. u in the second integral in 

Eqn. (2.40) yields:

= 7 k
(B.2)

with:

9 ii^ )  =  p /(r)  +  sp}(u) (B.3)

9 2 {v) =  2pf{v) + spj{v) (B.4)

and p'f{v) =  and p'f(v) =  Substituting Eqn. (B.2) into Eqn.

(2.39) and utilizing the integral:

XJo(if)sin(j/t)d< f  ^ < y
s in "‘ (^ )  x > y (B.3)
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leads to:

f ( i )  =
v ^ g 2 { u v ) d v

G
9 f x

(1 -  i/)Rog r yi vgx{v)dv _  yi y ‘ u^g2(uu)( 
[Vo >/l — A  -/o \ / l  — V

- -  T s i n - '  ( - ) d u  I
-J o  \  X  / VO

I v^gi{uv]dv
\ / l  —

Eqn. (B.3) is obtained after manipulating the integral property [127]:

_  f sin '*  Q ) p > I
i :

(3 .6 )

(B.T)

Substituting the  definition of g\ and g2 into Eqn. (B.6). performing a series of 

integration-by-parts and exchanging the integration variable finally gives:

/ ( x )  =
(I  — i/)Rpg 

G
2 vdv p  
7T Jo \ / l  — l?2 Jq

9i{u)du
(B.8)

y/v^X^ — V?

Therefore, the burden of the proof is to show th a t the quantity in the bracket 

of the above equation satisfies the following equality:

2 /■! vdv gi{u)du
(3.9)

J /-I vdv gi{u)du
= r X  x / T T T j / o  x / u ' i :  _  „ 2  -  ■

Direct proof of Eqn. (3.9) is very difficult; hence, an analytical series approach

is employed.

Assume tha t the  pressure distribution function, p /(u ), is analytical for u £ 

(0 .1). Thus, it can be expanded into Taylor series w.r.t. to an interior point.

uq:

7 1 = 0

(3.10)

which is absolutely convergent over the convergence circle. |u — uq] < 

=  d^p f/d u ^ . Further expanding (u — uq)” into the power series of u:

( .  -  u , r  =  ±  +
m = 0 ml

(3.11)

* Note that a particular convergence circle may not necessarily lead u to cover all the defined 
region (0.1). But based on the continuation of analytical expansion [122], a series of different uq 
can indeed make the expansion. Eqn. (B.IO). valid for any analytical points within the region 
u 6 ( 0 . 1 ) .
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5 ,(„ ) =  4 “P /(“ ) I .  g -
du n=0 n'.

------------------------- :-----------------------u u,
.m=0

The prototype integral of:

ml
(B.12)

 ̂ 2 vdv u" ^d u
K  J Q  x / T " — ~ u 2  J q  y / J j 2 ^ 2  —  y 2

(B.13)

can be computed by changing the  integration variable, u. to z via u = vx: 

and using the elementary integral property of:

Jq y jl — Jq
k  - 1  r n

/  sin tdt 
J q

£  f(fc-l)(fc-3)(fe-5)-3l - f  u — 01
4 L k ( k - 2 ) { k - 4 ) . . A  J "  « -
(fc-l)(A;—3)(fc-5)...2 ;r _  9 /if ik =  2 / + l

which finally yields:

A =
1

n — m + I
(B.15)

Therefore,

Lm=0

n{n — — m +  l)(n  — m +  l)u ^

n=0 m!
2 /■' t’du u" "‘du 1

_7r do \ / l  — J o  \ J v ^ x ^  — )

=  E
P/ *("o) [ ^  ~  — m +  1) ,i_

77 *n=0 Lm=0
E ( - i ) X -

m!

a = 0 n:

=  P f i x ) (B.16)
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W ith I  given by p /(x ), it can be easily shown th a t Eqn. (B .l) is met. Sub

stitu ting  Eqn. (B .l) into Eqn. (2.38) and in turn  into Eqn. (2.37) and using 

the  integral property [127]:

r ic f 0 p >  p
I sin{nn)M pri)dn = { '■ 0 < p < fj. • (B.17)

gives Eqn. (2.42).
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Appendix C

Equations for Power-law Fluid  
Flow inside Fractures

Take a representative volume in the fluid which is flowing inside two parallel 

plates (Figure A .I). Let us first derive the momentum equation. The Newton's 

second law dictates the force balance as follows:

^ (2 % rz )A r =  (2 ? rA r) r  (C .l)
dr

where the  property of r  =  0 at z =  0 due to the symmetry of the flow system 

is used. Also implied in this equation is a small Reynolds num ber so tha t a 

lam inar flow exists and the inertial force is negligibly small. For a power-law 

fluid,

in which the property of a decreasing velocity profile in the z-direction is 

used so th a t —^  is positive. Ur is the flow velocity along the  r  direction. 

Combining Eqn. (C .l) and Eqn. (C.2) yields:

-l/n
d z \ K d r j

l / n

(C.3)

187



Defining the fluid flux through the parallel plates, q, as the volumetric rate 

per unit circumference, i.e..

Q 1 r /”"/2
(C.4)

integrating the R.H.S. of Eqn. (C.4) by parts and using Eqn. (C.3) gives:

I/n
q = 2 -i^+D/nd. :c.o)

I.e ..

’  -  2n +  1 [ i t ]

In the above, we have used the non-slip property of =  0 at the fracture 

wall (z =  w /2) and assumed that ^  does not change across the fracture in 

the z—direction. Note tha t the above derivation has not required any partic

ular property about the fracture aperture, w, between the plates. Therefore, 

although Figure A.I depicts a constant aperture, Eqn. (C.6) is valid for a 

changing aperture profile. u;(r).

Now, let us proceed to derive the local fluid mass balance equation. Take 

another representative segment of r  E [r, r  -f- Ar] along the fracture (Figure 

A.2). Adding up the various mass transfer components results:

^^-A rA f — u{’2irr)A rA t — ^ (2 7 r r )A rA f  =  0 (C.T)
dr  ' -------  dt

if the fluid is assumed to be incompressible, u consists of the leakoff from the 

upper and lower fracture surfaces. Noting Q is related to the fluid flux, q, via

Q =  2/rrç (C.8)

yields the mass balance equation. Eqn. (4.2), in the text.
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« r ^

(a)

(b)

Figure C .l: Sketch of an  elem entary volume to  derive: (a), the  momentum equation 
and (b). mass balance equation for fluid flow inside parallel plates.
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Appendix D

M atrix Coefficients in NR  
Algorithm

W ith the known solution at the end of iteration step m in time step n. the 

incremental pressure during the iteration step m +  1 is computed \na the

following:

i = 1.2,.... N (D .I)

The coefficients are computed differently for cases of pressure-dependent and 

pressure-independent (Carter's) leakoff.

Pressure-dependent Leakoff

Qlj =

de 1 +  1/2 

(D.2)

— (<̂ ,+1.; +
[+1/2
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+

+

Q.Vi =

........

1-1/2

fD.3)

1 + 1 )
2n)

ËE
de

+
n(0,v — ^.v-i ) 

with j  ranges from 1 to N. And.

: V - l / 2

(D.4)

1 + 1 / 2 . T I

+
'ItC R 9 \ [ 9 \ + \ I 2  — ^1-1/2

(D.Ô)

3i =
^ T n  ~

\ t

4- r “ ^^ -1 /2  gg

Jv =

In the above.

''iV.n

A<

t =  2 . 3  .V — I

•V .n - l A \  m  I
 v - G ; j  c . v - , / ,  g j

(+1/2.71

i - 1/2.71
(D.6)

ID.7)
,V-1/2.71

R9i(9i^i/2 — ^ ( -1/ 2 )

\  1 / 7 1 - 1

C - i =  2 . 3 .
^^((^1+1/2 — ^ t- 1/ 2 )

All the pressure, fracture width and leakoff rate values are evaluated at n. m

1 =  1.2 V - l  (D.8)

.V . (D.9)

which are known prior to the current m  +  1-th iteration.
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Pressure-independent (C arter’s) Leakoff

«I; =

+

Q , ,  =

^ I  ( i + ^)  f e +<i) %  

•^1+1/2 “ 1̂+1/2

1 + 1/2

n(^2 — ^l]

+

â I (‘ + è) Ê
■̂i + 1/2“-’«'+1/2 _  r J

' + 1/2

+

C.-1/2 I  ( ‘ +  ^ )  (<> +

^  -  C s -U 2  I (‘ + è )  w

- 1 /2

1 =  2 .3 ,.... iV — 1

.V - l / 2

+
"^A'-l/2^'V-l/2
n{Os — 0.v_i) 

with j  ranges from 1 to N . .A.nd,

3i = < , x  -  < n - l  f ,  VC \

~ T t
2C,

-  c

3i =

1 +  1 / 2 ^ 1  +  1 / 2 ,7 1  Q 0  

K n  -  K n -

+

y/t +  Ùit — taUi

1+1/2,71 2 î r i 2 0 i ( 0 i + i / 2 - O i _ i / 2

2Ci
Af

t+l/2  “ 1̂ + 1/2,71 QQ

V 2 G k )  y/t + A t  — taui

C ;,j InW
1+1/2,71

t ^ Q t  771
+  C . - _ i / 2 l ü , -1 /2 .71  ^

1-1/2,71

3iw = ' " . V . 7 7  -  " ' ' V . 7 1 -

A t
2C,

+  A t — tauf]

I (~<a 771
.V—1/2  iV—1/2,71

(D.IO)

(D .l l)

D.12]

(D.13)

(D ,H )

(D,15)
. V - 1/2,71

In the above, factors C “ are evaluated the  same way as in pressure-dependent 

leakoff. The to tal width, w, consists of both the elastic and poroelastic parts
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such  as:

Wi =  w- —
'2T}cCl\/t +  A f  — Ti

G k
(D .1 6 )

in the single pumping cycle: or:

,  2t/cC/
Wi  =  w -  —

O k  \ 4Cf
(D.IT)

in the multiple pumping cycles. K.o is the total leaked volume at node i up 

to the latest exposure tim e r,.
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