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Abstract 

The study of resting state functional magnetic resonance imaging (rs-fMRI) data 

has been the subject of increasing academic interest over the past decade.  Despite a 

growing understanding of the base activity networks (modes) of the human brain, 

current tools used in rs-fMRI analysis show limited adaptability toward the 

complexities inherent within intricate and densely connected neural networks.  Direct 

regression analysis is foiled by the multiple, low-SNR, intricate functional networks 

which characterize the resting state, while advanced analysis methods such as  

independent component analysis (ICA) are designed to be used on sparse, independent 

activity signals rather than connected, distributed and overlapping resting state modes. 

Entropy Field Decomposition (EFD) is a new analysis technique based on the 

measurement of neural functional connectivity, rather than neural activity.  As an 

integration of entropy spectrum pathways into information field theory, EFD represents 

a powerful mathematical method for analyzing the eigenmode connectivity of the brain 

via local coupling & clustering analysis. EFD may distinguish between non-Gaussian, 

non-linear, non-periodic, spatially and temporally overlapping signals using the 

measured space-time correlations present in the data itself. 

This thesis explores the method behind the EFD algorithm, then examines a 

study performed on the effects of the drug ibuprofen on resting state brain function, and 

uses EFD analysis of subject data to verify the basic viability of the EFD algorithm in 

fMRI analysis.  Although no direct correlation was found between ibuprofen dosage 

and observed resting state brain response, EFD analysis showed greater functional 

connectivity in the right hemisphere than in the left hemisphere in nearly all cases. 
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Chapter 1: An Introduction to Functional Magnetic Resonance 

Imaging (fMRI) Technology and Techniques 

1.1 Purpose of This Thesis 

Functional Magnetic Resonance Imaging (fMRI) is a medical imaging technique 

increasingly used in neurological analysis.  A particular focus of recent fMRI literature 

has been an analysis of commonly observed activity patterns, or ‘modes’, of the human 

brain while in a base (resting) state [1].  As these interactions are often complex in both 

time and space, and they are not tied to an easily observed and repeatable activity, 

resting state fMRI modes may be difficult to detect and analyze using current 

techniques.  Both direct observation of the blood-oxygenation-level-dependent (BOLD) 

signal and signal analysis through Independent Component Analysis (ICA) may easily 

encounter difficulty when analyzing an extended, interconnected, time-dependent neural 

network.  Recently, a new analysis technique known as Entropy Field Decomposition 

(EFD) has emerged. This method is based on the dynamic connectivity between neural 

regions.  The primary goal of this thesis is to confirm EFD analysis as an available tool 

for resting state fMRI analysis and to examine its use in fMRI imaging. To accomplish 

these objectives, EFD analysis will be applied to a medical study comparing resting 

state fMRI activity between subjects given varying doses of ibuprofen.  EFD results will 

be analyzed for all scans in the study taken as a whole, and also for each individual 

dosage group. Conclusions of this analysis will be shared, along with suggestions for 

the possible future use of EFD in fMRI analysis. 
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1.2 A Brief History of MRI 

Magnetic Resonance Imaging (MRI) is a low-risk, noninvasive imaging 

technique to capture internal anatomical and physiological processes in the presence of 

a strong magnetic field using the phenomenon of nuclear magnetic resonance (NMR).  

Unlike other internal medical imaging techniques, MRI does not involve x-rays (used in 

computed tomography scans), ionizing radiation (used in positron-emission tomography 

or radiography), or internal instrumentation (used in endoscopies). In the medical field, 

MRI is frequently used for neurological, cardiovascular, musculoskeletal, and 

gastrointestinal imaging, as well as in angiography.   This diagnostic technique may be 

used with or without an accompanying contrast agent to shorten T1 relaxation time.  

The NMR phenomenon was first discovered in 1946 by Felix Bloch and Edward 

Purcell [2][3].  In NMR, isotopes containing odd numbers of protons or neutrons will 

absorb energy in the presence of an external magnetic field, and then re-emit the energy 

at a specific resonance frequency.  The resonance generally occurs in the radio 

frequency range, the exact frequency depending on the strength of the applied field and 

excited atom type.  This energy may be applied and detected within a strong magnetic 

field via the use of specialized radiofrequency coils.  By combining a strong base 

magnetic field, along with weaker, perpendicular gradient fields, the spatial location of 

an excitation may be obtained.  This process creates MRI images, which were first 

discovered by Paul Lauterbur in 1972 and further refined by Peter Mansfield in 1976 

[4][5].   
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1.3 Functional Magnetic Resonance Imaging 

Advances in MRI design, coolant systems, and computer hardware enabled the 

acquisition of increasingly detailed and rapid capture of images, leading to the 

emergence of fMRI in the late 1990’s/early twenty-first century.  As such, fMRI 

research is a relatively new and rapidly expanding area of scientific study.  A typical 

fMRI scanner, such as that used in this thesis’ study, contains a field of 3 Tesla (low-

field scanners may be 1.5 Tesla, while specialized high-field scanners may be over 9 

Tesla), has up to 32-channel reception arrays, and is capable of taking a full-brain image 

comprised of 8mm3 voxels every 2 seconds (typical volume capture times (TRs) in 

fMRI range from 1 to 3 seconds). [6]    

 

1.4 fMRI Analysis Techniques 

At its core, fMRI indirectly measures real-time neural activity through 

monitoring of the BOLD contrast.  As neural activity in a particular region increases, 

that area of the brain is flooded with additional nutrients in the form of oxygenated 

hemoglobin via an increased blood flow. The oxygen within the hemoglobin is then 

consumed to support the increased neural activity [7].  Oxygenated hemoglobin (which 

is diamagnetic), and deoxygenated hemoglobin (which is paramagnetic), differ in 

magnetic susceptibility by about 20% and this forms the basis of the BOLD fMRI 

signal.  It is important to note that fMRI is an indirect measure of neural activity; in the 

case of an active external stimulus, fMRI response via BOLD signal change occurs 

approximately 3.5 seconds after the stimulus [8].  
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The most basic, direct form of fMRI analysis involves the study of the BOLD 

signal, recording which brain regions respond directly after stimulus application and 

determining which neural regions may be most readily involved with the processing of 

the stimulus.  This direct analysis is most useful when attempting to determine neural 

processing immediately following a clear, distinct, and repetitive activity, such as 

repeatedly opening and closing a hand or pressing a button.  Statistical analysis, 

including simple correlation-based [9][10] or more complex regression analysis 

[11][12], may then be applied using an event-based experiment design with activity-

based and non-activity-based periods.  The resulting analysis will identify a likely time 

course of neurological changes directly caused by the chosen stimulus.   

Direct fMRI analysis shows only regions with similar signals, thus providing 

little insight into signal composition.  Furthermore, the analysis may often fail to 

completely capture a complex signal, non-periodic interaction between brain regions, or 

a signal caused by a more subtle stimulus with components possibly occurring at times 

other than directly after the initial stimulus.  fMRI analysis is further complicated by the 

following:  

 inherent time lag in fMRI measurements between stimulus onset and BOLD 

response 

 connectivity inherent in most neural activity (preventing an ideal setup of 

independent, orthogonal regressor signals) 

 difficulty of ‘resetting’ neural activity to a desired base level in the often limited 

time between repeating events 
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 use of smoothing and loss of unit independence as voxel size grows to either 

increase the signal-to-noise ratio (SNR) or decrease TR.   

Nevertheless, regression analysis remains the most common form of basic fMRI 

analysis.  In regression analysis, several linear regressors, representing various 

theoretically independent activity pathways including ‘noise’ regressors to characterize 

unwanted signal activity (e.g. head movement, respiration, and others) are weighted to 

form an approximation of the more complex actual fMRI time-signal [13].  A slightly 

more advanced method of regression analysis, namely Principal Component Analysis 

(PCA), first attempts to filter out unwanted signals, such as those caused by random 

noise or respiration.  This method again works best with strong, repetitive task-related 

signals of interest. 

The most commonly used advanced fMRI analysis technique is Independent 

Components Analysis (ICA), which attempts to separate the often low SNR signal of 

interest and the larger amplitude noise signals.  Probabilistic ICA, a modification of the 

basic ICA algorithm to allow for the investigation of a noisy source signal [14] is 

currently the most commonly used analysis method for resting state fMRI data [15].  

Similar to a basic regression analysis, ICA takes a 4-dimensional fMRI timecourse 

signal as the input and attempts to break it down into a series of coexisting component 

signals.  Unlike basic analysis methods, multiple spatially overlapping signals may be 

simultaneously present in any given voxel.  In particular, the ICA algorithm splits the 

base BOLD signal into a specified number of components that are calculated to be 

maximally independent from one another.  Each component represents a single activity 

pattern allowing for correlation between voxel activity patterns (components) and time-
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correlated fluctuation type identification (specific processes including activities and 

noise).  For example, component 1 may be correlated with breathing (noise), component 

2 with movement (noise), and component 3 with blinking (activity), possibly the pattern 

of interest.   

Figure 1 shows how each component must be matched to a particular process: 

the target signal; background noise; type of physiological noise (i.e. movement in each 

of the 3 axes, respiration); or other factors (e.g. scanner drift, non-target activity 

processes, task-unrelated noise).   
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Figure 1:  ICA Component Signals From Visual Activation Data  

includes (i) head motion (ii) sensory motor activation (iii) signal fluctuations in sinus 

areas (iv) MR ghost data (v) resting state fluctuations/physiological noise.   

Source: Beckman & Smith 2004 [14] 

 

Fundamental functional independence of the task-related signal is once again 

assumed in ICA analysis [16][17].  The components of a typically noisy fMRI signal 

include a single signal of interest or a limited number of signals of interest, and many 

more often higher-amplitude non-task-related noise sources.  As the calculated number 

of components and mathematical dimensionality increase (more clearly differentiating 
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the signal of interest from additional non-task-related noise sources) ICA signal 

processing rapidly becomes computationally intensive.  To offset this, ICA often uses a 

“dimensionality reduction” method to decrease computational complexity (PCA, for 

example) [18].  Furthermore, due to neural activity differences across individuals that 

result in a unique component pattern for each person analyzed, ICA analysis is much 

more suited to large-scale studies where data may be aggregated, normalized, and 

analyzed than it is for a single individual or small-group analysis examining functional 

differences in individual activity.  Any particular ICA component in large-scale studies, 

although indicative of a population average, may not closely match a given individual’s 

expression of that component.  This limits the use of ICA in single-subject analysis.  

Notably, ICA has been used to characterize resting-state neural connectivity by 

separating out similar spatial signals with varying timecourses across multiple 

individuals [19], as well as to establish the currently accepted 7 base resting-state 

activity modes [20].   

 

1.5 Functional Connectivity and Resting State Analysis 

The fundamental difficulty of both direct and ICA analysis lies in the 

assumption that any given signal of interest and other associated activity data may be 

separated into a series of identifiable processes that are, ideally, both sparse and 

independent.  Each of these often complex processes must then be able to be correctly 

correlated to its cause and localized within a given individual [21].  The extremely 

noisy signal characteristic of fMRI analysis also interferes with the traditional ICA 

analysis model, further complicating component separation.  Unfortunately, no neural 
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signal exists in isolation, and blind application of the ICA algorithm to fMRI data [22] 

ignores the signal connectivity of resting state networks.  Indeed, the human brain is a 

vast, intricate network of deeply interconnected neural pathways and regions [23], with 

significant anatomical and functional differences between individuals.  These complex, 

nonlinear, non-Gaussian, non-independent interactions form the basis of human thought 

and are, perhaps, most easily observed in the extensive non-task-related neural 

connectivity networks that define the base non-task-related activity state (resting state) 

of the human brain.  Despite this, many of the most common analysis methods used in 

resting state neurological studies make basic assumptions which ignore the connected, 

non-Gaussian nature of resting state activity [24].  Resting state analysis is further 

complicated by a lack of a single task-related signal that may be effectively isolated, 

and by the lack of a separate control state for data comparison since the resting state is 

itself the brain’s baseline state.  Resting state fMRI studies have become an increasingly 

examined topic in neurological imaging during the past decade.  Unlike in basic 

activity-based studies, no single brain region or group of regions may be pinpointed as 

the basis of resting state brain activity.   

While an initial analysis and possible identification of these networks may be 

performed via large-scale group ICA analysis [19][20], an in-depth study of the resting 

state brain must necessarily involve an increased understanding of the dynamic 

functional connectivity of the human brain and how each brain region’s activation may 

influence activity patterns in other not necessarily adjacent or physically directly 

connected brain regions.  This functional activity may be exhibited as simple coactivity, 

in which two functionally connected brain regions often activate and deactivate 
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together.  It may also exhibit as a much more complex system distributed in both spatial 

and temporal activity. 

Despite the vital role of functional connectivity in resting state fMRI studies, 

until recently, few algorithms have been available to analyze the dynamic connectivity 

of neural regions in fMRI data.  With this in mind, the recently proposed connectivity-

based EFD algorithm proposed by Laurence Frank and Vitaly Galinsky in 2016 [25] 

offers a powerful new analysis technique in the field of resting-state fMRI analysis.   
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Chapter 2: Entropy Field Decomposition 

2.1 Entropy Field Decomposition Background and Advantages 

Entropy Field Decomposition (EFD) is a powerful new method of determining 

the major functional connectivity pathways (modes) of the resting state brain.  Unlike 

direct analysis and ICA, which provide an analysis of brain activity, EFD attempts to 

analyze the fMRI signal by providing a view of neural connectivity via nearest-neighbor 

analysis, forming modes of brain regions likely to be functionally connected at any 

given time.  The basic mathematical principles of EFD are derived from information 

field theory (IFT), a Bayesian method designed to analyze a continuous process using a 

finite and discrete data sampling of that process.  EFD then incorporates prior 

information into IFT via the integration of entropy spectrum pathways (ESP), resulting 

in the formation of stable quantized states of signal behavior that are ranked according 

to their significance.  In essence, EFD estimates likely connectivity pathways by taking 

available data and performing a joint probability analysis between this current data and 

any prior available connectivity data.  Significant eigenvalues of this connectivity 

matrix represent the steady state connectivity brain modes; less significant eigenvalues 

represent transition states and system noise. 

EFD as an fMRI analysis tool relies upon several base assumptions.  The first 

and most obvious assumption is the existence of commonly expressed functional 

connectivity pathways within the brain.  Furthermore, it is assumed that the brain is 

commonly found within one of these modes and that transition states between modes 

are relatively brief.  As such, each whole-brain scan may generally be assumed to fall 

into one or more of these base connectivity modes, with chaotic intermode transition 
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captures being a relatively rare occurrence.  Consequently, once the brain enters a 

measured connectivity mode, it is much more likely to remain in that mode than it is to 

transition into a different mode.  This lets us determine, via diffusion and connectivity 

analysis, a number of clearly defined base states with comparatively rare transitions 

between states.  The result provides a stationary probability distribution system for 

resting state brain connectivity with a series of high probability connectivity modes and 

a number of relatively low probability transition states. 

As a dynamic analysis method based upon functional connectivity, EFD offers 

many advantages when compared to regression analysis or ICA.  Perhaps most relevant 

to resting state neural analysis, EFD, unlike ICA, readily supports analysis of non-

Gaussian, non-linear, non-periodic signals containing multivariate data.  Moreover, 

there is no requirement that these signals be either sparse or independent.  EFD is thus 

superior for detecting spatially and temporally overlapping signals commonly found in 

resting state fMRI modes, while using only the connectivity and correlation information 

within the data itself.  With EFD, there is no requirement for an external control signal 

or the input of any prior information.   

Figure 2 shows a comparison of ICA and EFD when analyzing a task-based 

phantom consisting of two spatially overlapping ‘activated’ regions with additive 

signals.  Note that the EFD algorithm does not inherently assume either signal additivity 

or Gaussian noise, although both are used in this test.  As expected, ICA activity 

analysis (See Figure 2, bottom row) shows difficulty in distinguishing these overlapping 

signal regions due to its forcing of maximally independent component signals [26], 

while EFD connectivity analysis (See Figure 2, middle row), unrestricted by a 



 

13 

preference for sparse and independent signals, accurately separates the two regions by 

their dynamic connectivity based upon measured correlations within the data. 

 

Figure 2: Comparison of EFD With ICA in Task-based fMRI Simulation  
(Top) Numerical phantom signal with additive Gaussian noise.   

(Mid) Estimated modes using EFD.  (Bottom) Estimated modes using ICA.   

Source: Frank & Galinsky 2016 [25] 

 

As a connectivity analysis technique, rather than a signal activity decomposition 

and analysis, EFD offers several additional advantages over ICA.  For example, high-

dimensionality resting state fMRI data requires significantly less processing time via 

EFD than ICA, the latter gaining computational complexity extremely rapidly when 

dealing with high mathematical dimensionality and multiple signal components that 

span hundreds of thousands of voxels with the short TR of an fMRI system.  As a result, 

EFD analysis may be performed without the ICA voxel smoothing and dimensionality 

reduction techniques used to reduce computational complexity and noise in ICA.  
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Likewise, the procedure used to establish connectivity modes via nearest-neighbor 

analysis will result in an increased SNR in EFD when compared with ICA.  EFD 

modes, with their emphasis on connectivity regions, will often appear to be more 

uniform, with less noise, lower spatial distribution, and clean well-defined edges 

compared to their ICA counterparts.  Accordingly, EFD requires a slightly higher 

threshold level for data analysis than ICA (See Figure 3, scan data obtained from [27]).  

As a result, EFD naturally provides a higher SNR than ICA at identical thresholds [25].  

ICA is generally used with larger normalized data sets rather than single-subject 

analysis, while EFD may be more efficient at demonstrating subject-to-subject modal 

variation.   

 

 

Figure 3: ICA vs EFD, default mode network, threshold 0.9  
Source: Frank & Galinsky 2016 [25] 
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2.2 Entropy Field Decomposition Mathematical Analysis 

The objective of this section is to provide a more numerical analysis of EFD 

algorithm design.  A comprehensive mathematical analysis of EFD, which provides 

additional details about the derivation of the following equations, may be found in 

[25][28].   

The basic initial input to the EFD algorithm, similar to most fMRI analysis 

techniques, is the raw discretized BOLD signal capture represented as an array of voxel 

signal levels with time and space components: 

𝑑(𝑥𝑗 , 𝑡𝑖) = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒 = 𝑅̂𝑠(𝑥𝑗 , 𝑡𝑖) +  𝑒𝑖,𝑗 

Also fundamental to EFD is the Bayesian joint probability statistical model used 

to estimate an unknown signal s from a measured dataset d and prior information I, 

allowing for future estimation of that unknown signal based on the prior observed 

evidence: 

𝑝(𝑠|𝑑, 𝐼) =  
𝑝(𝑑, 𝑠|𝐼)

𝑝(𝑑|𝐼)
=

𝑝(𝑑|𝑠 𝐼) 𝑝(𝑠|𝐼)

𝑝(𝑑|𝐼)
 

Re-expressing this joint probability within IFT [29] for a field 𝜓(𝑥, 𝑡) and 

partition function 𝑝(𝑑|𝐼) = 𝑍(𝑑) allows us to apply our discretized data to estimate a 

continuous signal, giving 

𝑝(𝜓|𝑑, 𝐼) =  
𝑒−𝐻(𝑑,𝜓)

𝑍(𝑑)
 

The information Hamiltonian H above may be written as 

𝐻(𝑑, 𝜓) = − ln 𝑝(𝑑, 𝜓|𝐼) = 𝐻0 − 𝑗†𝜓 +
1

2
𝜓†𝐷−1𝜓 + 𝐻𝑖(𝑑, 𝜓) 
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with propagator D, j as in information source; Hi representing an interaction 

Hamiltonian (including terms describing eigenmode interactions, noise, and system 

response); and H0 as a normalizing constant [25].   

 In the case of EFD theory, the prior information consists of information 

diffusion probabilities calculated via nearest-neighbor coupling.  These diffusion 

probabilities form a ranked probability matrix Q (coupling matrix), of likely 

connectivity pathways between any two points i and j.  No assumption of Gaussian 

noise is made within the calculation of the transition probabilities while forming the 

coupling matrix.  This allows for additional flexibility that is inherent in the EFD 

model.  Specifically, transition probability between i and j along a given eigenvalue 

path k may be expressed as  

𝑝𝑖𝑗𝑘 =
𝑄𝑗𝑖

𝜆𝑘

𝜙𝑖
(𝑘)

𝜙𝑗
(𝑘)

 

where 𝜆𝑘 and 𝜙(𝑘) represent the kth eigenvalue and eigenvector of the coupling matrix 

Q.  Using this coupling matrix Q as the prior known data I in the IFT signal equation, 

the estimated IFT signal is calculated: 

𝑝(𝑠|𝑄) =
1

|2𝜋𝑄|1 2⁄
exp (−

1

2
𝑠𝑖

†𝑄𝑖𝑗𝑠𝑗) 

Under this model, the definition of a resting state fMRI mode may be expressed 

as a significant eigenexpansion of the ESP basis fields.  An initial cluster of larger 

eigenvalues represent functional connectivity modes ranked by average duration.  The 

remaining less significant eigenvalues signify system noise and transition states 

between the significant modes. 
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To simplify the computing of eigenmodes of the coupling matrix, we may apply 

a Fourier expansion to the eigenvalue basis functions: 

𝜓(𝜉𝑖) = ∑⌊𝑎𝑘𝜙𝑘(𝜉𝑖) +  𝑎𝑘
†𝜙†,(𝑘)(𝜉𝑖)⌋

𝐾

𝑘

 

We can instead use an ESP expansion in space and a Fourier expansion in time: 

𝜓(𝑥𝑖 , 𝑡𝑗) = ∑ 𝑎𝑘,𝑙𝑒𝑖𝜔𝑙𝑡𝑗𝜙(𝑘,𝑙) + 𝑎𝑘,𝑙
† 𝑒−𝑖𝜔𝑙𝑡𝑘𝜙†,(𝑘,𝑙)

𝑘,𝑙

 

The latter eigenvalue expansion, applied to our coupling matrix Q, becomes: 

Λ𝑎𝑘 = 𝑗𝑘 −  ∑
1

𝑛!

∞

𝑛=1

∑ …

𝐾

𝑘1

∑ Λ̃𝑘𝑘1…𝑘𝑛

(𝑛+1)
𝑎𝑘1

… 𝑎𝑘𝑛

𝐾

𝑘𝑛

 

When factored out in powers of Λ𝑛, the result is the solution modes as a 

calculation of eigenvalues and eigenvectors of the coupling matrix.  These may be used 

to determine amplitudes of the interacting coupled connectivity modes as interaction 

terms of the diagonal eigenvalue matrix: 

Λ̃𝑘1…𝑘𝑛

(𝑛)
=

𝑎(𝑛)

𝑛
∑ (

1

𝜆𝑘𝑝

∏ 𝜆𝑘𝑚

𝑛

𝑚=1

)

𝑛

𝑝=1

∫ (∏ 𝜙𝑘𝑟(𝜉)

𝑛

𝑟=1

) 𝑑𝜉 
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Chapter 3: EFD as Applied to a Resting State fMRI Subject Study 

3.1 Study Background 

The remainder of this thesis discusses the application and analysis of EFD when 

applied to resting state fMRI data collected in a medical study of the effects of 

ibuprofen on brain function.  Testing was carried out by the Laureate Institute of Brain 

Research (LIBR), a neurological research institute based in Tulsa, Oklahoma [30].  In 

this study, performed from July through October 2015, each of 19 healthy adult 

individuals aged 18 to 55 years old were tested three times, with 1 to 2 weeks between 

scanning sessions.  Three additional subjects did not complete a full series of three 

scanning sessions, resulting in 61 total fMRI scans with 57 usable sessions.  Each 

subject was given either a placebo (test type A), a 200 mg ibuprofen dose equivalent to 

a single Advil™ tablet (test type B), or a 600 mg ibuprofen dose (test type C).  Each 

individual received each dose (A, B, and C) once, albeit in a randomized order, and the 

study itself attempted to determine both overall behavioral response and amygdala 

activation pattern changes in response to an increasing ibuprofen dose.   

Although only the fMRI data was obtained and used in this thesis, each testing 

session consisted of a multi-part assessment in the following areas: 

“(a) a standardized diagnostic assessment, (b) self-report questionnaires 

assessing the positive and negative valence domains as well as interoception,              

(c) behavioral tasks assessing reward-related processing, avoidance, and aversive 

processing, cognition, and interoception; (d) physiological measurements consisting of 

facial emotion expression monitoring, heart rate and respiration, (e) functional magnetic 

resonance imaging focusing on reward-related processing, fear conditioning and 

extinction, cognitive inhibition, and interoceptive processing, and (f) biomarker 

assessments.” [30] 

Each fMRI scan consisted of a scan region of 79x74x94 8mm3 voxels, captured 

on a 3-Tesla scanner with a TR of 2 seconds.  237 volumes were captured per scan, for 
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a total scan time of approximately eight minutes per session.  Prior to EFD analysis, the 

subjects’ raw fMRI data first underwent standard basic preprocessing, including but not 

limited to image alignment, motion correction, despiking, and skull stripping.  Voxel 

smoothing or blurring was not used, as this is not needed for EFD analysis.  Brain 

volume for each scan was normalized and co-registered to a shared Talairach 

anatomical space that consisted of approximately 220,000 voxels of potential interest 

per capture volume. 

 

3.2 Software Used 

Several commonly used software suites were used to process fMRI data.  Initial 

ICA analysis of fMRI data was performed using the FSL MELODIC software suite, 

commonly utilized in fMRI, MRI, and DTI imaging analysis [31].  Basic viewing of 

post-EFD fMRI data, as well as clustering analysis, thresholding, and image capture, 

was accomplished using the AFNI suite, an open-source processing and display 

environment for functional MRI data developed and maintained by the National 

Institute of Mental Health [32].  Statistical analysis of the final fMRI data was primarily 

performed in MATLAB.  Finally, the EFD computational tool (and assistance with 

parameter setup) that was used to analyze the pre-processed fMRI data was provided by 

Dr. Lawrence Frank at the University of California at San Diego  This computational 

package is the same processing suite used in [25]. 
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3.3 EFD Analysis and Data Processing Methodology 

Initial ICA and EFD analysis was first performed on the given preprocessed 

fMRI study data for all 61 scans.  At this point while ICA analysis appeared normal, a 

key limitation of EFD on the same dataset was observed: as EFD is an analysis of 

functional connectivity and not signal strength or activity, with over 500,000 voxels in 

the capture area false positives may easily be mistaken for dominant modes by the EFD 

algorithm.  In particular, on several scans, a region outside the skull consisting of 

simple background noise was correlated and matched to a primary EFD mode through 

random chance, with its randomly increasing and decreasing signal matched closely 

with that of another region’s activity pattern.  As such, it was necessary to introduce a 

low-level noise mask to the preprocessed fMRI data before EFD was run.  All voxels 

below a (very low) base noise threshold were set to 0, leaving approximately 220,000 

voxels of interest per volume, and effectively removing those regions outside the brain 

from EFD analysis.    

The initial EFD and ICA results were analyzed and used to determine that 

further research would be concentrated in the examination of the statistical and 

clustering results of EFD mode 0 across all individuals.   

An activity threshold of 94.84% was selected based on clusterization results.  

This proved to be the minimum threshold level where significant neural activation 

levels began to separate by brain quadrant (via axial view) or region, rather than 

remaining in a single large hemispherical or whole-brain cluster (See Figure 4).   

At this threshold, a minimum of six significant clusters (over 100 voxels each) 

were observed in the primary EFD mode of each of the 61 scans.  An initial hypothesis 
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was formed based on initial analysis of the clusterization data and the distribution of 

clusters along the midaxial brain slice. 

 

 

Figure 4: Clustering Threshold Progression (Subject AA104 600mg dose) 

 

Whole-brain activity was analyzed and compared across dosage levels in 

individual subjects by recording the number of thresholded voxels in each captured 

axial slice of the primary EFD mode, and then creating a histogram of the connectivity 

profile for each individual scan.  Further statistical whole-brain data was analyzed for 

each scan, including mean, median, total surviving voxel count, skew, kurtosis, peak 

information, and relative entropy between dosages.  The thresholded volume was then 

divided by hemisphere and also into four quadrants by slicing along the coronal and 

sagittal midlines and similar data collected. 
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Chapter 4: EFD Study Results 

4.1 Initial EFD and ICA results 

EFD and ICA analysis was run across all 61 scans on a computing cluster 

provided by LIBR.   

ICA analysis yielded normal results, with subject data showing multiple clearly 

defined modes for each subject scan (See Figure 5).  As expected for a single-subject 

ICA analysis, individual scan ICA modes could not be easily matched to accepted 

resting state modes, and a great deal of modal variation was observed between subjects 

(See Figure 6, sample of 4 subject scans), underscoring the unsuitability of ICA for 

single-subject and small-group resting state fMRI studies. 

EFD results were much more consistent, showing clearly similarities in 

observed modes across multiple subjects (See Figure 7, sample of 4 subject scans).  

Unlike ICA modes, however, most significant modes observed for individual EFD 

scans were extremely similar, and may be minor variations of a single dominant resting 

state connectivity mode (See Figure 8).  After reviewing EFD results, due to the low 

sample size of 19 individuals and the observed similarity between EFD modes, the 

decision was made focus on the primary EFD mode (mode 0) for further statistical and 

clustering analysis.  Additional investigation into other EFD modes or single-subject 

ICA results was not pursued. 
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Figure 5: First 7 ICA Modes, Subject AA104, Dosage Group C 
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Figure 6: First 5 ICA Modes, 4 Subjects, Dosage Group A  

(top left) Subject AA104                                  (top right) Subject AA115  

(bottom left) Subject AA296                           (bottom right) Subject AA624 
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Figure 7: First 5 EFD Modes, 4 Subjects, Dosage Group A  

(top left) Subject AA104                                  (top right) Subject AA115  

(bottom left) Subject AA296                           (bottom right) Subject AA624 
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Figure 8: First 7 EFD Modes, Subject AA104, Dosage Group C 
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4.2 Single Slice and Cluster Analysis 

Initial clusterization of EFD mode 0 data at a 94.84% threshold was relatively 

consistent across all 19 subjects for whom full scan data was collected.  A sample 

clusterization and corresponding midaxial slice is shown in Figure 9 below, and 

warrants further discussion.   

 

 

Figure 9: Typical Subject Clusterization Results 

 

Generally, midline axial clusterization across all subject fMRI scans followed a 

similar pattern, indicative of a shared resting state mode across all subjects.  Once a 

suitably high threshold level was set, four clusters of interest became visible in each 

subject, one in each axial quadrant.  The right hemisphere clusters in particular 

(outlined in red and green boxes) begin as a single hemisphere-wide cluster, often only 

separating at high threshold levels, showing a wide range of functional connectivity 

throughout the hemisphere.  The upper clusters (outlined in green and blue boxes) show 
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the strongest signal and are the last to be lost as threshold levels increase.  The bottom 

left cluster (outlined in an orange box) generally holds the weakest connectivity value, 

and occasionally disappears from the midline axial view almost entirely by the time the 

right hemisphere clusters begin separating.  As expected for a common mode, the 

midline axial shape and center-of-mass-location of all four clusters of interest is 

relatively consistent across all individuals, often with vaguely triangular clusters in the 

frontal positions (outlined in green and blue).  The bottom right cluster (outlined in red) 

in particular holds a relatively distinctive shape in the midaxial slice across subjects: 

long and thin, often following the curvature of the brain itself, with three primary 

connectivity sites often showing strongly in this view. 

In 17 of the 19 individuals the midaxial clustering characterization changes in a 

consistent and predictable manner across the three drug dosage group:  

A (placebo, left), B (200mg ibuprofen, middle), and C (600mg ibuprofen, right), as 

shown in Figure 10.   

 

 

Figure 10: Single-subject Connectivity Variation With Ibuprofen Dosage 
 

(left) Placebo, Group A           (mid) 200mg, Group B          (right) 600mg, Group C 
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Generally, as ibuprofen dosage increases, connectivity in the upper right 

quadrant remains approximately the same or decreases, as does the connectivity of the 

lower right quadrant.  Additionally, the activity in the lower right quadrant becomes 

more sporadic in nature and often moves further toward the mid-hemisphere region, 

occasionally moving into or slightly above the midline.   

These results aided in the formation of an initial hypothesis regarding the effects 

of ibuprofen on resting state functional connectivity: as subjects receive a substantial 

drug dose, we expect to see a change in brain activity from a given mode configuration 

(base-type) to a slightly but noticeably different configuration (modified-type).  

Depending on the differing nature of painkiller drug resistance between subjects, we 

hypothesize that the actual functional connectivity of our subjects to start with the base-

type when given a placebo, then change toward the modified-type to some degree based 

on drug resistance at the 600mg dose.  Results from the 200mg dose should fall 

somewhere in between.  Under this hypothesis, subject results such as those in Figure 

10 would exhibit low drug resistance, while subjects with relatively consistent 

connectivity across all three dosages would exhibit higher drug resistance. 

  

4.3 Whole Brain Statistical Analysis  

Moving away from clusterization analysis and a more subjective study of the 

midline axial slice, the connectivity profile of the primary EFD mode (again 

thresholded to 94.84%) across the entire brain volume may be visually characterized 

(See Figure 11) by creating a histogram-like graph of individual fMRI scans.  The 

number of post-threshold surviving voxels was graphed against the axial slice position 
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in which they are located.  Figure 11 shows the primary-mode EFD profiles (identified 

by a solid line) across four individuals (AH072, AH307, AH490, AH645) for all 

dosages.  The top row depicts dosage group A (placebo); the middle shows group B 

(200mg ibuprofen); the bottom demonstrates group C (600mg ibuprofen).  For 

reference, the dotted line represents the number of potential voxels of interest across the 

entire brain region, also normalized to the 94.84% threshold of the EFD analysis. 

If the hypothesis from the previous section holds, each subject (detailed in 

columns) should show either consistent connectivity profiles across all three dosages 

(detailed in rows) for subjects who exhibit high drug resistance.  Alternatively, profiles 

should all change gradually and predictably moving from the placebo dose to the 

600mg dose for subjects with low drug resistance.  Unfortunately, no clear pattern 

emerges within the connectivity profiles, and no clear trend may be discerned at the 

subject level between various dosages.   

A numerical analysis of these histograms again fails to identify any clear 

functional connectivity progression linked to drug dosage (See Figure 12).  Of 

particular note in this numerical analysis is the calculation of the relative entropy of 200 

and 600mg drug dosage graphs when compared with the placebo dose for each 

individual.  Relative entropy, also known as the Kullback-Leibler divergence, is a 

measure of how greatly (measured along a logarithmic scale) a probability distribution 

differs from a second expected probability distribution function (pdf).  By normalizing 

the graphed histograms to a unit area, a probability distribution may be obtained for 

each fMRI connectivity analysis.   
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Figure 11: Histogram Graphs of Primary Mode EFD Connectivity; Surviving 

Connected Voxels vs. Axial Position 
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Figure 12: Numerical Analysis of Histogram Data in Figure 8 
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In line with the initial hypothesis, and setting the placebo ibuprofen dosage 

graph as our baseline distribution, we would expect individuals with a high drug 

resistance to have little variation in relative entropy between dosages, while individuals 

with low drug resistance would see a consistent change in relative entropy at a high 

dosage.  The 200mg dosage relative entropy value should fall in between.  Instead, 

relative entropy results preclude the formation of a strong correlation between resting 

state primary mode functional connectivity profiles and ibuprofen dosage by exhibiting 

remarkably evenly scattered relative entropy results across the three possibly broad 

categories; of the 19 individuals analyzed, 5 show relative equal relative entropy across 

all dosage levels; 7 show increasing entropy from placebo to high dosage, with the low 

dosage level in between; and frustratingly, 7 show significantly greater relative entropy 

with low-dosage ibuprofen than high-dosage when compared to the placebo pdf. 

Repeating both the visual and numerical analysis for each quadrant individually 

yields similar results, again showing no discernable trend propagating through drug 

dosage levels on the individual level.  Nearly even relative entropy results are 

demonstrated across all reasonable statistical analysis categories, once again preventing 

the drawing of any consistent conclusions between ibuprofen dose and EFD functional 

connectivity modes.   
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4.4 Total Activity by Hemisphere 

A final observation may be made when calculating the total thresholded 

connectivity levels per hemisphere for each subject (See Figure 13).  In 53 of 57 counts 

of surviving voxels post-thresholding in the primary EFD mode, the right hemisphere 

shows more functional connectivity than the left hemisphere.  For the four cases in 

which this phenomenon did not hold, subsequent scans of the same subject with a 

different ibuprofen dosage again followed this trend toward right-hemisphere-

connectivity dominance.   

 

 

Figure 13: Functional Connectivity: Surviving Voxels by Hemisphere 

  

This observation provides independent support for a previous Near-Infrared 

Spectroscopy (NIRS) [33] study which concluded that resting state brain activity is 

inherently asymmetrical, regardless of right vs. left-handedness or other physical 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60

S
u
rv

iv
in

g
 V

o
x
el

s 
p

o
st

-T
h
re

sh
o

ld

Subject #

Active Primary Mode Functional Connectivity

Left Hemisphere Right Hemisphere



 

35 

characteristics, with most subjects showing greater resting state connectivity in the right 

hemisphere.    
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Chapter 5: Conclusions and Future Work 

5.1 Conclusions 

Most importantly, this thesis establishes the base viability of the EFD algorithm 

for resting state fMRI studies.  EFD provides reliable, consistent, and reproducible 

results in the examination of resting state neural connectivity modes.  As a connectivity-

based algorithm, rather than an activity based analysis, EFD offers particular strengths 

in analyzing the complex, non-Gaussian, dense, and highly interconnected dynamic 

networks which characterize resting state brain activity.  While a direct link between 

ibuprofen dosage and functional connectivity changes was unable to be established 

using EFD analysis, we were able to provide confirmation via an independent analysis 

(EFD) of the dominance of right-hemisphere functional connectivity in the primary 

resting state neural mode. 

  

5.2 Future Work 

 Two further avenues of study into the use of EFD for neuroimaging analysis are 

suggested as a natural extension of this thesis.   

 The first opportunity involves the classification and characterization of multiple 

resting state fMRI modes via EFD.  While this thesis focused on the primary EFD mode 

network, a large-scale study similar to the 1000-scan ICA analysis in [20] has not been 

conducted via EFD analysis to confirm the existence of the seven commonly-accepted 

resting state neural modes. 

 The second opportunity involves the direct comparison of ICA and EFD.  This 

would most easily be accomplished by comparing the performance of both algorithms 
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in the analysis of simple task-related data.  Experiment task blocks would consist of 

simple activities such as blinking, button pressing, and hand opening/closing, with 

easily isolated BOLD signal activity perturbations which may be assumed to be closely 

related to the target activity’s functional connectivity. 

 While much work remains to be done before EFD becomes a widely accepted 

tool for fMRI analysis, this study nonetheless represents a powerful new advanced 

analysis technique for the discovery of functional neurological connectivity networks. 
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