
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, som e thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of th is reproduction is dependen t upon th e quality of the

copy subm itted. Broken or indistinct print, colored or poor quality iliustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioriing the original, beginning a t the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and beaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0000

UMI'

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DESIGN OF LOW-DENSITY PARITY-CHECK CODES FOR MAGNETIC

RECORDING CHANNELS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

by

Richard M. Todd

Norman, Oklahoma

2002

UMI Number: 3070645

UMI'
UMI Microform 3070645

Copyright 2003 by ProQuest Information and Learning Company.
Ail rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DESIGN OF LOW-DENSITY PARITY CHECK CODES FOR MAGNETIC
RECORDING CHANNELS

A Dissertation APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Cruz

Dr. T. Przebinda

Dr. F. Lee

Dr, .1. Havlicek

© Copyright by

Richard M. Todd

2002

Acknowledgements

I would like to thank my parents for their support. I would also like to thank Robert

Shull, Raymond Schlecht, and Mike Callahan for helping me learn Unix all those

years ago. I would also like to thank Dr. Henry Neeman of the OU Supercomputing

Center for Education and Research for helping me parallelize and optimize my code

and allowing me use of the center’s machines.

IV

Contents

Acknowledgements iv

Contents v

List of Tables viii

List o f Figures ix

Abstract xi

1 Introduction to Magnetic Recording of Data 1
1.1 Inter-Symbol Interference and the Lorentzian Channel Model 2
1.2 Sampling and Equalization.. 5
1.3 The Choice of Target Response p (i ?) ..10
1.4 Magnetic Recording Systems...16
1.5 Precoders and Maximum Transition Run Encoders19

1.5.1 Precoders...20
1.5.2 MTR Encoders.. 22
1.5.3 Systems with both LDPC and MTR Encoders........................... 24

1 .6 Sector Sizes: A N o te .. 26

2 The BCJR Algorithm 29
2.1 Log-Likelihood Values ... 30
2.2 Basic Operation of the BCJR A lgorithm ... 32

2.2.1 Step 1: Forward pass - compute m values 34
2.2.2 Step 2: Backward pass - compute m values36
2.2.3 Step 3: Compute Lq,L i , and final L values..................................37

3 Coding and Decoding of LDPC Codes 39
3.1 Basic Notation and E ncoding ... 40
3.2 The Belief Propagation Decoder.. 42

3.2.1 Message Passing over a G rap h ..42
3.2.2 The Non-log LDPC Decoder... 43
3.2.3 The Log LDPC Decoder..49

3.3 Optimizations and Approximations.. 51

3.4 How the LDPC and BCJR Decoders Work Together: Extrinsic Infor­
mation ..58

C reating LDPC Codes w ith Desired W eight D istributions 62
4.1 Weight D istributions... 63
4.2 Specifying LDPC Codes as Permutations.. 65
4.3 Cycle Elimination... 67
4.4 Making a Systematic C ode.. 69
4.5 S u m m ary ...69

Analyzing Perform ance of LDPC Codes w ith D ensity Evolution 71
5.1 Preliminaries: Computing with Probability Density Functions 72
5.2 Analyzing LDPC Code Decoding with Density Evolution.....................75
5.3 Computing Thresholds..82

Com puting Soft BER Estim ates 84
6 .1 Soft Error E stim ates...85
6 .2 Density Evolution and LDPC Decoding... 87
6.3 BER V ariances..89
6.4 LDPC Max-Product Decoding..90
6.5 Experimental Results...93
6 .6 What Went Wrong?..95
6.7 Alternate Methods for Soft Error Estimation..96

6.7.1 Generalized Gaussian Distributions and Asymmetric Gener­
alized Gaussian D istributions...99

6.7.2 Tail E xtrapolation .. 103
6 .8 Conclusion...105

Com puting Inform ation Capacity of P R Channels 108
7.1 The Arnold-Loeliger A lgorithm ... 109

7.1.1 Computing h{z\x) ... 110
7.1.2 Estimating h { z) .. 113

7.2 Channel Capacity Bounds on Bit Error R a te ..115

LDPC Code Design for th e P R Channel and B C JR Density Evo­
lution 118
8.1 BCJR Density Evolution...119

8 .1 .1 BCJR Density Evolution: Fixed Input x{t) C ase...................... 120
8.1.2 BCJR Density Evolution with Unknown Input Codewords . . 123

8.2 Searching for Good C o d e s ..125
8.3 Code Design Example and Simulation R esu lts 128

Generalized Belief Propagation and Decoding of LDPC Codes 135
9.1 Introduction..136
9.2 Belief Propagation and Bethe Free E n erg y ... 136
9.3 Belief Propagation and LDPC decoding... 149

VI

9.4 Kikuchi Free Energy and Generalized Belief P ropagation.....................151
9.5 Sim ulations..159
9.6 Applying Generalized Belief Propagation to Real-World LDPC De­

coding: Practical Concerns.. 164
9.7 Conclusion...167

10 The MTR Enforcement Algorithm 168
10.1 Introduction..169
10.2 Where the MTR Enforcer Fits Into the System169
10.3 Details of the MTR Enforcer Algorithm..172
10.4 Simulation results...174

11 Conclusions and Further Work 177

Bibliography 180

A Generalized Belief Propagation Equations for Rate 2/3 LDPC
Code 183

B Generalized BP Equations for Rate 1/2 LDPC Code 186

Vll

List of Tables

1.1 Noise enhancement (in dB) versus channel density for various targets. 16

1.2 Four quasi-catastrophic sequences for the EPR4 channel..........................21

6.1 Max-product Pe vs. E[Zi],Yar[Zi] results for rate 1/2 code................... 92

6.2 Max-product Fe vs. £[Zj],Var[2'i] results for rate 0.94 c o d e 92

6.3 Chi-square test of Gaussianity for L values from max-product decoding 97

6.4 Chi-square test of Gaussianity for L values from sum-product decoding 97

8.1 Ai, Pi values for LDPC code designed for precoded E P R 4128

8 .2 A,, Pi values for another LDPC code designed for precoded EPR4 . . . 132

8.3 Ai, Pi values for an LDPC code designed for precoded MEEPR4 . . . 133

vin

List of Figures

1.1 Drawing of magnetic recording head and medium................................ 4

1 .2 Lorentzian response for 5 = 3, T = 1 ... 5

1.3 Diagram of sampler/equalizer system.. 7

1.4 Plot of Lorentzian pulse response spectral density for S=3......................14

1.5 State transition diagram for EPR4 channel, mapping binary inputs

to real outputs.. 18

1.6 Diagram of simple system for PRML magnetic recording....................... 19

1.7 Diagram of simple system for PRML magnetic recording with LDPC

error-correcting code.. 19

1.8 State transition diagram for precoded EPR4 channel, mapping binary

inputs to real outputs.. 22

1.9 Diagram of simple system for PRML magnetic recording with pre­

coder and MTR code 23

1.10 Diagram of system for PRML magnetic recording with precoder,

MTR code, and LDPC code..25

1.11 Output of the MTR constraint adjuster.. 26

2.1 The BCJR Decoder... 32

3.1 Network for a very simple LDPC code.. 43

IX

3.2 Performance of LDPC/BCJR decoder with and without extrinsic sub­

traction.. 61

6.1 Max-product decoding simulation results..93

6.2 Max-product decoding simulation SNR values... 94

6.3 Sum-product decoding simulation results..94

6.4 Sum-product decoding simulation SNR values... 95

6.5 Histograms of observed L distributions versus ideal dual-Gaussian

distribution for max-product decoding at 7dB SNR..................................97

6 .6 Histograms of observed L distributions versus ideal dual-Gaussian

distribution for max-product decoding at 8 dB SNR..................................98

6.7 Histograms of observed L distributions versus ideal dual-Gaussian

distribution for max-product decoding at 9dB SNR..................................98

6 .8 Plot of p(L)/p(-L) showing (lack of) exponential symmetry in the pdf

ofL .. 99

6.9 Plot of BER and generalized Gaussian distribution soft error estimate

for max-product LDPC decoding...102

6.10 Plot of BER and asymmetric generalized Gaussian distribution soft

error estimate for max-product LDPC decoding......................................102

6.11 Plot of BER and tail extrapolation soft error estimate for max-

product LDPC decoding...105

6.12 log(— log(P)) versus log(t) plot for max-product decoding at SNR 7

dB.. 106

6.13 log(— log(P)) versus log(f) plot for max-product decoding at SNR 8

dB.. 106

6.14 Plot of BER and quadratic tail extrapolation soft error estimate for

max-product LDPC decoding.. 107

7.1 Channel capacity bound for EPR4 with 1/(1 © D^) precoder.................116

7.2 Channel capacity bound for MEEPR4 with 1/(1 © Z?) precoder. . . . 117

8.1 BER simulation results for block size 4835 codes over EPR4 channel. 131

8.2 BER simulation results for block size 19340 codes over EPR4 channel. 131

8.3 BER simulation results for block size 4835 codes over EPR4 channel. 132

8.4 BER simulation results for block size 19340 codes over EPR4 channel. 133

8.5 BER simulation results for block size 4352 codes over MEEPR4-equal-

ized Lorentzian channel... 134

9.1 Example network for Kikuchi free energy computation........................... 153

9.2 Network for our rate 2/3 parity-check code.. 160

9.3 Bit error rate of ordinary BP versus generalized BP decoding of rate

2/3 code.. 160

9.4 Number of iterations needed per codeword for ordinary BP versus

generalized BP decoding of rate 2/3 code...161

9.5 Network for our rate 1/2 parity-check code..162

9.6 Bit error rate of ordinary BP versus generalized BP decoding of rate

1/2 code..163

9.7 Number of iterations needed per codeword for ordinary BP versus

generalized BP decoding of rate 1/2 code...163

10.1 Diagram of system for PRML magnetic recording with precoder,

MTR code, LDPC code and MTR enforcer..171

10.2 Performance of system with varying levels of MTR enforcement, using

extrinsic subtraction.. 176

10.3 Performance of system with varying levels of MTR enforcement, with­

out extrinsic subtraction..176

XI

Abstract

DESIGN OF LOW-DENSITY PARITY-CHECK CODES FOR MAGNETIC

RECORDING CHANNELS

Richard M. Todd

Advisor: Dr. J. R. Cruz

A technique for designing low-density parity-check (LDPC) error correcting codes

for use with the partial-response channels commonly used in magnetic recording is

presented. This technique combines the well-known density evolution method of

Richardson and Urbanke for analyzing the performance of the LDPC decoder with

a newly developed method for doing density evolution analysis of the Bahl-Cocke-

Jelinek-Raviv (BCJR) channel decoder to predict the performance of LDPC codes

in systems that employ both LDPC and BCJR decoders, and to search for good

codes. We present examples of codes that perform 0.3dB to 0.5dB better than the

regular column weight three codes employed in previous work.

A new algorithm is also presented, which we call “MTR enforcement”. Typical

magnetic recording systems employ not just an error correcting code, but also some

form of run-length-limited code or maximum-transition-run (MTR) code. The MTR

enforcement algorithm allows us to exploit the added redundancy imposed by the

MTR code to increase performance over that of a magnetic recording system which

does not employ the MTR enforcer. We show a gain of approximately O.SdB from

the MTR enforcer in a typical magnetic recording system. We also discuss methods

of doing so-called “soft-error estimates”, which attempt to extrapolate the bit-error-

rate (BER) curve from Monte Carlo simulations down below the limits for which the

traditional BER results are valid. The recent work by Yedidia on generalizations of

the belief propagation algorithm is discussed, and we consider problems that arise

in using this generalized belief propagation method for decoding LDPC codes.

Xll

Chapter 1

Introduction to Magnetic

Recording of Data

The basic idea of magnetic recording of data, as done in most disk drives today,

is to store data on a magnetizable medium in such a fashion that it can be practically

recovered later. The core of any system for magnetic data recording is the magnetic

recording head, such as can be seen in Fig. 1 .1 . When reading or writing data,

the head flies over the magnetic medium at some velocity v. For writing data,

a current is sent through the head in either the forward or reverse direction for

a time period T , i.e., the current i{t) equals either +A or —A for some current

value A. Each time period T thus allows the storage of one bit of data. The

current causes the magnetic medium passing under it to be fully magnetized in one

direction or the other, hence storing the sequence of +A and —A current values as

magnetized regions of length vT. This is called sa tu ration recording, because

the medium is saturated or fully magnetized, as opposed to, say, audio recording

on analog cassette recorders, where the medium can be in intermediate levels of

magnetization. We also call this longitudinal recording, because the regions of

magnetization have their long axis along the direction of travel of the head. (There

are other possible techniques of magnetic recording which work differently, such as

perpendicular recording. However, perpendicular recording systems are not used

in disk drives on the market today, though this may change in the future.) When

reading the data, the head passes over the magnetized regions and this induces a

current in the head from which our magnetic recording system can infer the original

sequence of data that was written.

1.1. Inter-Symbol Interference and the Lorentz­

ian Channel Model

If the current produced by the head when reading were a simple function of the orig­

inal write sequence (e.g., just some multiple of the original write current sequence

of +A and —A values), magnetic recording system design would be very easy. Un­

fortunately, things are not so simple. For one thing, the read head responds only to

changes in the magnetization, not to the actual magnetization itself, so that current

pulses are produced only when the magnetization changes, i.e., when the original

write current changes from +A to - A or vice versa. Also, the current pulse is not

a simple delta function, but rather a function which can have significant non-zero

values over time-spans much longer than our bit time T. This means that during

any given interval t E [nT, {n 4- 1)T), the read current includes contributions from

not just the current bit under the read head, but from several adjacent bits as well.

The contributions from the other bits interfere with those from the current bit; this

is called inter-sym bol interference.

To a fairly good approximation, in a longitudinal recording system, the resulting

current pulse from a single magnetization change at location x = 0 on the magnetic

medium is a multiple of the Lorentzian response, given by the following function

of position x of the head over the medium:

"«“ir k
where £ is a length parameter determined by the magnetic characteristics of the

medium. Given that our head is moving over the magnetic medium at some velocity

V, and supposing that at time t = 0 our head is at position x = 0 we have the

Lorentzian channel response as a function of time

Now, if we were to write further transitions on the medium at times t = nT, we

would be creating magnetization regions of length vT upon the magnetic medium.

We conventionally define a dimensionless parameter S, called the channel density.

Head

Figure 1.1: Drawing of magnetic recording head and medium.

as the ratio of the characteristic length I and the length of our magnetization regions

vT:
I

(1.3)

The higher S is, the smaller vT is and the more tightly packed and smaller the

magnetization regions are on the magnetic medium. We can now rewrite (1.2) in

terms of the channel density and our bit time T as

L{t) = (1.4)

ST is sometimes called the pulse-width-half-magnitude parameter, since L{t) = 1/2

at t = ±ST/2, so the width of the region for which L{t) has half or more of its

peak magnitude is ST. Typical values of the channel density S for current magnetic

recording systems are around 5 = 3. An example of what the Lorentzian response

for 5 = 3 looks like is shown in Fig. 1.2 for T = 1, so one can see that the response

from each bit affects the output in several adjacent bit time-spans.

Given the Lorentzian response for a single transition, we can now construct the

full Lorentzian model for the magnetic recording channel. Assume that our input

data to be recorded is a sequence of values 6„ e {-f 1 , - 1 } such that our write current

IS

ut)---
0.9

0.8

0.7

0.6

f
0.4

0.3

0.2

I

Figure 1.2: Lorentzian response for 5 = 3, T = 1.

îwrite(i) = Abn if t e [nT, (n + 1)T) Vn

Then the Lorentzian channel model says our read current will be

iread(t)= (^ (b„ - b„-i)L(t - uT)] + n(t)

(1.5)

(1.6)

where n(t) is additive white Gaussian noise (AWGN), i.e., n(t) is uncorrelated noise,

normally distributed, with some variance (Note that the b„—b„-i term takes into

account that the Lorentzian response is a response to changes in the magnetization.)

1.2. Sampling and Equalization

The output iieid(t) is a continuous function of time t and, as such, is inconvenient

to handle in modern digital signal processing systems; such systems really want to

handle discrete-time signals sampled at regular intervals. Thus, given our 4ead()̂, we

would like to have a sequence of output values s„, one for each bit time interval. We

would also like to mitigate, as far as possible, the effects of the inter-symbol inter­

ference. This mitigation is done by filtering the signal, thus changing its frequency

content; this process is called equalization. We now describe how this sampling

and equalization is done and give a model of a typical sampling and equalization

system.

Our sampler/equalizer model is essentially the one given in [1]. The block di­

agram for the equalizer is shown in Fig. 1.3. The read current iread(̂) is fed into

a three-pole analog filter whose poles are specified by three parameters a, 6, c e R

The impulse response of the analog filter is

p{t) = * [e""‘u(t)] (1.7)

where * is the convolution operator and u{t) is the unit step response

u{t) = <
1 if t > 0

0 if t < 0
(1.8)

Once the signal is analog filtered, it is sampled at discrete times t + nT to get a

discrete-time sequence s„ as follows:

Sn = (îread(t) *P(0]lt=nr+T ' (1-^)

The s„ sequence then passes through a digital filter with impulse response f{D) to

get an output sequence r„. The parameters a,b,c,r,f{D) of the sampler/equalizer

system are all chosen to give a certain overall ta rge t response g{D), i.e., so that

for any randomly chosen input sequence i»„, the output z„ is close to filtered by

the response g{D). That is, if

d{D) = g{D)b{D) (1.10)

nT+ T
Analog
Filter
a,b,c

Digital
Filter
F(D)

Figure 1.3; Diagram of sampler/equalizer system.

then Zn is approximately d„. More precisely, the parameters are chosen to minimize

the mean-squared error between z„ and the ideal g(D)-61tered output d„.

The procedure to minimize this mean-squared error is somewhat complex, and

proceeds as follows: suppose for the moment that we are given values of the param­

eters for the analog portion of the system (a, b, c, r) as well as the target response

coeflBcients

g{D) = g g k D * (1.11)
k=0

and also suppose we have specified the size of our digital filter as 2M + 1. We can

find the coefficients of our digital filter

M
m = E (1.12)

k = - M

through a least-squares procedure. From (1.6) and (1.9) we can determine the values

of the sampled sequence se:

= E (("«-t - bt-k-ihk + (1 13)
fc=—00

where the 7 * coefficients are sampled versions of L{t) convolved with p{t):

/OO

L{t)p{kT + T - t) d t (1.14)
00

and rif is noise, Gaussian but not white, having autocorrelation function

Rr^niD) = <7̂ r&D* (1.15)
A:=—00

where

7k = f p{t)p{t + kT)dt . (1.16)
J —00

Note that the 7 * and r& are functions of the analog parameters a, b, c, r. Anyway,

given Si, we have the digital filter output

M M
^] f e ^ m - t — ^] f t I 7 lfn -l + ^ ^ { b m - t - k b m - t - k - l) ' l f k 1 (1 1 7)

(=—M £=—Af \ &=—00 J

and thus the error term

M / 00 \ L
6 m — ~ d m — ^] f t I 7 lm -t "b ^ ^ { b m - t - k ~ b m - t - k - l) l k 1 ~ ^ j Q nbm -n

t= —M \ k=—oo } n = 0
(1.18)

We want to minimize the average squared error

J = E[el] . (1.19)

We assume that the input data sequences are uncorrelated, so

E[bibj] = Sij (1 .2 0)

{E[bf] = 1 since bi is either + 1 or -1). Given this and the known autocorrelations

of the filtered noise

E[nirij] = (1 2 1)

the expression for J simplifies remarkably to

M M 00

^ f e f j ^ 7fc(27fc-j+r - I k - j + e - i ~ 7t-j+(+i)
t=z—M j = —M k=—oo

M M

(=—M j=—M
M L

“ 2 ^ y i f e 9 p { l p - e - 7p-<-i)
l= —M p=0

+ E ^ n (1 .2 2)
n=0

We can rephrase this more conveniently in matrix form by defining the following

matrices:

f — [/-M)/ - A f + l) • • • 1/m]^ (1 23)

g = [50)---,5l]

T J T i —J —l] t € [—
OO

“h 7/s—i('27fc—J 7&—J—1 7fc“J+'l)']tjj€[—
fc=—00

and using these rewrite (1 .2 2) as

J = f^Rf - 2f^Tg + g^g (1.24)

Now the least-squares solution for f is readily derivable as

f = R -‘Tg (1.25)

and the value of the error at this minimum is

Jmin = g ^ g - f ^ T g (1 . 2 6)

(Note that the presentation in [1] differs somewhat from what we show here; in [1]

the author dealt with an extended version of the Lorentzian channel model, and

also the author imposed an, in our opinion arbitrary, restriction that g{D) must be

monic, making the analysis more complicated than it really needed to be.)

We now know how to minimize the mean-squared error J if we are given the

analog subsystem parameters a, b, c, r. To find the overall minimum, we have to

find a ,6 ,c , T that lead to a minimal Jmin- We do this as follows;

• Let T take on values that are multiples of O.IT from -0.5T to 3T. (For

practical reasons it is not really possible to specify r more precisely than

about one-tenth the bit time T, so we need only consider t values at these

discrete intervals. The above range of possible r values is somewhat arbitrary,

but seems to work well in practice.)

• For each of these r values, consider the preceding least-squares solution (1.25),

(1.26) as a function mapping a,b,c,r values to values of the least-squares min­

imum error Jmin- Do a gradient search on the a,b,c parameter space to find

the values of a,b,c that minimize Jmin-

• Once this is done for all our t values, select the t that gave the best value

and use the corresponding a, b, c parameters and the corresponding optimal f

filter parameters to specify our equalizer.

1.3. The Choice of Target Response g{D)

Given that the goal of the equalizer is to eliminate ISI, the obvious choice of target

g{D) would be g{D) = 1, which gives an ideal equalizer output

0

dm — ^ 1 gnbm-n — (1-27)
n=0

10

equal to the original data input, so the ISI is completely gone. This is an obvious

choice, but one that does not work very well in practice. The problem is a phe­

nomenon called noise enhancement. The equalizer is a linear filter designed to

compensate for the ISI of the Lorentzian channel by altering the overall frequency

response of the system. The problem is that the equalizer also changes the noise,

increasing the noise power in proportion to the amount by which we are changing

the frequency response. The case of g{D) = 1 produces a large change in frequency

response, so our equalizer produces a signal that has no ISI, but has a lot of noise.

Let us examine this issue of noise enhancement more closely. Consider our

Lorentzian channel model (1.6) and look at it as a linear system, with discrete-time

inputs bn and continuous-time output head{t)- For an input which is a delta function

&n = <Jno the system has an output

îread(t) = L{t) - L{t - T) (1.28)

(we are for the moment ignoring the noise term) and hence the mapping 6„ -¥ iread(t)

is a linear filter with frequency response

.F[4ead(t)] = /(jw) = L{ju){l - exp(-ywt)) (1.29)

where

% w) = ^ e x p (^ P ^) (1.30)

(Obviously, the sequence = 5„o cannot occur as an actual input to the magnetic

recording channel in real life, since the values must be 4-1 or -1 , but we are for

the moment considering the Lorentzian channel model as an abstract linear system.)

Now, our equalizer is a combination of

• an analog filter with frequency response P{ju}) = p\p{t)],

11

• a sampler, which in the frequency domain corresponds to a convolution of the

Fourier transform of the signal with the function

= ^ e x p (- jw r) 5{w - (1.31)

and

a digital filter, with frequency response

M
. F{jcü) = ' ^ fkexp{-jukT) . (1.32)

k = - M

We know that the equalizer combined with the Lorentzian channel model gives a

system whose overall frequency response is

L
G{jui) = ^ 9 k exp{-jwkT) (1.33)

k=0

so we must have that

<3(jw) = j?lfw]((;L^iOj9l7w))*;f(jw)) . (1.34)

We would like a simple expression for G{ju) as some function times I{ju), but we

do not quite have that, because of the complicating effect of the sampling function

X{j(j). However, we can make an approximation that lets us ignore X(jw), since

the effect of sampling is to sum our frequency-domain response with several shifted

copies of itself. Given moderately large channel densities (say 5 = 3), and given

that P{juj) is known to be a low-pass filter, the shifted copies of I{juj)P{juj) should

not overlap too much, so we should not see aliasing. And since we are, at the end,

interested in G{juj) only within the frequency range |w| < tt/T (since G{ju)) repeats

itself outside that range), we can dispense with the X{jcj) convolution altogether.

12

We can thus subsume P{ju) and F{ju)) into an overall equalizer response as follows:

Stt
G{juj)^H{juj)I{ju j) - (1.35)

and hence

Now the signal-to-noise ratio (SNR) at the input to the equalizer is the ratio of the

“signal” power J \L{t) - L{t — T)\‘̂dt to the noise power, i.e.,

SNR,. = a
r;r/r

cr2 (1.37)

The signal power at the output is just

j ' r^lT^ pir/T

Y .9 l = i z |G(;w)pdw (1.38)
^ 27ry_,/r

and the noise at the output is just white noise filtered by H{ju), so we can compute

the SNR at the output as

Ylk=0 9k
Hi'/T |^ (;w)|V dw

SNRout = (139)

and hence
SNR,. [S ’S iT
SNR« “ E L oîI

or, alternately,

SNRj„ _ (Æ lA ;w)p d w) (r!^ |^ (y 'w)p d w)

SNRo„(Z. \G{ju}) |2(fw

(1.40)

(1.41)

13

1.2

0.8
2

0.6

0.4

0.2

Figure 1.4: Plot of Lorentzian pulse response spectral density for S=3.

This ratio gives us a measure of the noise enhancement. Note that if I{juj) was

equal in magnitude to G(ju}), we would have a flat equalizer response \H{ju)\ =

and the above ratio would be 1 .

A plot of the power spectral density of the Lorentzian pulse response \I{ju)\^ is

shown in Fig. 1.4 for 5 = 3. Given that the spectrum for the target G{D) = 1 (no

ISI) is flat, and given the shape of the \I{juj)\^, it is clear that the noise enhancement

for this target will be quite high. Practical systems for magnetic recording typically

employ instead target responses that are short in length (thus limiting the ISI), but

still have spectra closer in shape to that of |/(jw)p. In particular, they will often

have spectral nulls at w = 0. Typical examples of these responses include

• the Dicode target

g{D) = 1 - D

(note the spectral null at w = 0),

• the P artia l Response Four (PR4) target

(1.42)

g{D) = { l - D) { l + D)

14

(1.43)

(note this has a null at w = 0 and at w = tt/T),

• the Extended Partial Response Four (EPR4) target:

g{D) = { l - D) { l + D f = l + D - D ^ - D ^ , (1.44)

• the Modified Extended EPR 4 (M EEPR4) target [2]:

g{D) = 5 + W - 5 D ^ - A D ^ -2D* . (1.45)

Table 1.1 shows the values of the noise enhancement ratio for these targets

at various values of the channel density S. Note that for some of the higher-length

channels we actually get negative noise enhancement, i.e. SNRmt is better than

SNRi„. This is not too surprising; consider what would happen if G{ju) was a very

narrow-band bandpass response with its peak near that of /(jw), and hence H{j(j)

was a very narrow-band bandpass filter. In that case, H{juj) would reject most of

the noise while still letting the strongest portion of the signal through. However, the

problem with such a narrow-band response is that narrow frequency response G{ju)

automatically implies a long-lasting time-domain response g{D) (i.e., many non-zero

terms in g{D)). This fits well with the results in Table 1.1, where the responses with

least noise enhancement are also the ones with the longest time-domain response.

Hence, our goal of minimizing noise enhancement conflicts with our goal of limiting

the length of the ISI.

We assumed in this analysis a perfect filter, i.e., that H {ju) was able to perfectly

match the frequency response needed to turn the Lorentzian response into G{joj). In

practice, that is not the case; instead, we have some sort of equalizer with a limited

set of parameters, and we try to find the set of parameters that provide a response

as close as possible to the desired target, minimizing some parameter as in (1 .2 2),

15

Table 1.1: Noise enhancement (in dB) versus channel density for various targets.

3 = 2.4 S = 2.6 5 = 2 .8 5 = 3.0 5 = 3.2
1

1 - D
{1-D){1 + D)

l + D - D ^ - D ^
5 + 4 D - 3 D ^ - i D ^ - 2 D ^

28.6791
6.8670
1.5512
-0.6226
-1.1846

28.1001
8.3136
2.4086
-0.1715
-0.8665

27.5561
9.8402
3.3757
0.3931
-0.4059

27.0493
11.4389
4.4428
1.0638
0.1939

26.5846
13.1022
5.6010
1.8330
0.9285

(1.25). This results in a noise enhancement value different in practice from the one

computed here. Furthermore, since the output of the real equalizer is not exactly

the ideal output (the input filtered by the ideal g{D)), we have an error term which

can be thought of as an additional noise source on the output, lowering SNRout and

thus acting as another source of noise enhancement. (Strictly speaking, this error

term is not an uncorrelated noise source, since the error term is correlated with the

inputs 6m, but it simplifies the analysis considerably to think of the error term as

added white noise.)

The reasons for selecting one target over another may include other reasons than

just how well the target response spectrum matches that of the Lorentzian channel.

For example, Nishiya et al. [2] chose their MEEPR4 target not just because it

provided a particularly good fit to the Lorentzian channel’s spectrum (which it

does), but also because they studied the most probable errors that would occur due

to noise and devised a so-called maximum-transition-run (MTR) code that would

have the advantage of suppressing some of these error sequences.

1.4. Magnetic Recording Systems

Now we are ready to consider what a simple system for magnetic recording of data

might look like. A block diagram of such a system is shown in Fig. 1.6. The input

data bits are mapped to -4-1 and -1 values, making a bipolar sequence. These 6m

1 6

values are then passed into the magnetic recording channel (MRC). The output of

the channel is then equalized, as we discussed in the previous section. The output of

the equalizer, z„i, is equal to the original bm sequence filtered by the target response

g[D) and corrupted by noise. In order to get our original data back, we need some

system that can look at the Zm and compute the original bm- Since the Zm are noisy

and thus we cannot know for sure what the bm are, we must compute the bm sequence

that is most likely to have produced the observed Zm values. Such a system is called

a channel decoder. The idea of using an MRC equalized to a particular target

response and then doing maximum-likelihood decoding is called partial-response

maximum-likelihood (PRML) decoding. The first PRML implementations did

channel decoding using the Viterbi algorithm [3]. As we shall discuss in later portions

of this dissertation, however, we will use the Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm [4], because it provides not just the decoded sequence bm but estimates

of what the probabilities are that each bit 6^ is a + 1 or —1 . If one layers an

error-correcting code (ECO), such as the Gallager or LDPC codes [5], [6] on top

of this simple PRML system, these probability estimates will be needed for the

ECO decoder to function. Both the Viterbi and BCJR algorithms are based on

considering the g(D)-equalized channel as a state machine that at each time takes

in a bipolar input bm (or, equivalently, a binary input Xm) and produces an output

Zm- Each state of the state machine corresponds to a possible sequence of previous

input values 6m-i) ■ • - Since each bm can have one of two veJues, our state

machine has 2^ possible states. As an example, we present the state transition

diagram for EPR4 in Fig. 1.5. Each arrow is labeled with the input and output

values for each transition, e.g., the arrow from state 1 to state 1 corresponds to an

input Xm = l giving an output Zm = 0 .

A diagram of a magnetic recording system using an LDPC code is shown in

Fig. 1.7. This system has an LDPC encoder inserted in front of the magnetic

17

1/-4 1/0
1/0

1/-2 1/-2

0 /0/ 0 /-Z0/0/

1/20/2
1/-2

0/2 0/2

0/ 0'

0/4

Figure 1.5: State transition diagram for EPR4 channel, mapping binary inputs to
real outputs.

recording channel and an LDPC decoder inserted after the channel decoder. The

LDPC decoder and the channel decoder both work on Bayesian principles, with each

decoder computing a posteriori probabilities of each codeword bit being either

one or zero. The channel decoder computes a posteriori probabilities based on the

a priori probabilities it takes in as well as the observed channel data Zm and the

knowledge that Zm is a p(D)-filtered version of our bipolar sequence bm- The LDPC

decoder computes a posteriori probabilities based on its given a priori probabilities

and the knowledge that the bits Xm must constitute a valid codeword of the LDPC

code. Each decoder takes as a priori probabilities the a posteriori output of the

other decoder, and the two decoders are run iteratively, one after the other. The

initial channel decoder iteration starts with a priori probabilities P{xm = 1) = 0.5,

indicating no prior knowledge. This procedure of iterating the two decoders is called

tu rbo equalization [7] in the literature. Once the iterations are done, the last set

of probabilities computed can be used to hard decode the original x,n bits as follows:

18

input
data
x(m) 0 ->+l

1—>—1
Channel
Decoder

Equalizer

Magnetic
Recording
Channel
(Lorentzian)

Figure 1.6; Diagram of simple system for PRML magnetic recording.

P(x(m) =1)
x(m) P(x(m)=l),

input
data

Decoded
x(m) P > 0 .5 ?

P < 0 .5 ?

LDPC
Decoder

LDPC
Encoder

0 - > + l

1 - > - l

Channel
Decoder

Equalizer

Magnetic
Recording
Channel
(Lorentzian)

Figure 1.7; Diagram of simple system for PRML magnetic recording with LDPC
error-correcting code.

we decide that bit Xm was a one bit if P{xm = 1) > 0.5 and decide Xm was a zero

bit otherwise. (Actually, in practice, one does a hard decoding of the probabilities

after -each iteration of turbo decoding, and checks to see if the resulting set of

bits constitute a valid codeword. If they do, then the iteration is assumed to have

converged to a valid result and subsequent iterations of turbo equalization may be

skipped.)

1.5. Precoders and Maximum Transition Run En­

coders

The previous section described simple PRML magnetic recording systems, either

with or without an error-correcting code layer added. However, in practice, there

are a couple of problems that require us to add a bit more complexity to our system.

19

The components we add are called precoders and maximum transition run

(M TR) encoders, and we explain why they are needed and what they do below.

1.5.1. Precoders

Most partial response channels suffer from a problem called quasi-catastrophic

sequences or ambiguous output sequences. (We have not seen the latter term

used outside of [8], but we find it appropriate.) Let us consider the EPR4 state

transition diagram in Fig. 1.5. Suppose we have four different input sequences

of bits Xk about which we only specify the sequence of bits from time k on (i.e.,

specifying Xk,Xk+i, . . .) and what the state of the channel is at time k, call this 5*.

(Note that specifying 5* is equivalent to specifying and Xfc_3 .) Table 1.2

gives our set of four sequences. A bit of careful study of Pig. 1.5 will show that all

four of these sequences give the exact same output sequence from time k on:

Zm = 0 Vm > k (1.46)

This makes it difficult for the channel decoder given such an output sequence to

determine which of the possible input sequences actually was transmitted. We have,

as the term “ambiguous output sequences” implies, an ambiguity which is difficult

to resolve, and this impairs the performance of the channel decoder.
»

To avoid the problem of ambiguous output sequences, we add an additional

transformation step, a precoder on our binary data Xm just before we convert it to

bipolar form. Precoders are basically infinite-impulse-response (HR) digital filters,

except that the digital filters operate in the binary field Zj and not the field of real

numbers. The precoder is characterized by a monic polynomial

p

P(^) = Pi G Zz.po = 1 (1-47)
i=0

20

Table 1.2: Four quasi-catastrophic sequences for the EPR4 channel.

Sk {^kiXk+i,. . .)
1 1 , 1 , 1 , ! , . . .
8 0 , 0 , 0 , 0 , . . .
6 1 , 0 , 1 , 0 , . . .
3 0 , 1 , 0 , ! , . . .

and the HR filter is just l/p(D). Hence, the precoder maps an input sequence of

bits Xjn to bits Xm where

(1.48)
:=1

Note that if this were a standard HR filter we would have Xm-Y^PiXm-i on the right-

hand side above, but since the precoder operates inside the field Z2 , subtraction and

addition are interchangeable. Actually figuring out what precoder p[D) is needed

and showing that it works is a somewhat tricky endeavor which we will not go into

here; interested readers are referred to the Appendix of [8], which shows in detail

that, e.g., p(£>) = 1 © produces a valid precoder for EPR4.

The reader may be wondering if we need another system on the output side of the

magnetic recording channel to compensate for or undo the effects of the precoder. It

turns out that we do not need a separate system to undo the precoding. The channel

decoder itself is perfectly capable of doing this; all we have to do is use, instead of the

state transition diagram of the original channel, an altered state transition diagram

that contains the effects of both channel and precoder. In other words, we have a

single state transition diagram that covers the mapping from un-precoded data Xm

to channel outputs Zm, and we use that diagram to construct our channel decoder.

As an example. Fig. 1.8 shows the combined diagram for EPR4 with the 1/(1 ©D^)

precoder.

21

0/0 (both ways)

o / o \0/0

,0/-2
0/2

0/ - 2'
1/2 1/-21/-2, 1/2

1/0 1/4 1/0

1 /-4

Figure 1.8: State transition diagram for precoded EPR4 channel, mapping binary
inputs to real outputs.

1.5.2. MTR Encoders

Throughout this chapter, we have assumed that our magnetic recording system

exhibits perfect synchronization. That is to say, if the writing process put bit Xm

into the magnetic recording system at time m, then the reading process manages

to get the corresponding channel output Zm at time m and not, say, one bit-time

ahead or behind, or worse yet a fraction of a bit-time oflF. In practice, any magnetic

recording system needs to have some system for ensuring that the reading process

does not get out of sync. Designing systems to ensure synchronization is a subject of

extensive research, and one we will not go into here; for the remainder of this work

we shall continue to assume perfect synchronization. However, the synchronization

systems that are commonly used do impose some constraints on the bipolar sequence

hm that we must allow for in our system design. The synchronization system usually

uses some sort of phase-locked loop triggered by the transitions seen in the magnetic

recording channel. This means that if there is a long sequence where there are

no transitions, where bm = + 1 for a long time or 6^ = - 1 for a long time, the

22

P(x(m)=l)

x(m)

Input
data

Output
data"̂

Precoder

MTR
Decoder

P > 0.5?
P < 0 .5?

MTR
Encoder

0 ->+l
1->-l

Channel
Decoder

Equalizer

Magnetic
Recording
Channel
(Lorentzian)

Figure 1.9: Diagram of simple system for PRML magnetic recording with precoder
and MTR code.

synchronization system gets confused and loses sync. Hence, we must have an

additional code to eliminate bm sequences with such long runs without transitions.

Such codes are called run-length limited (RLL) codes or m axim um -transition

run (M TR) codes; [2] discusses the design of such an MTR code. Fig. 1.9 shows

a block diagram of a magnetic recording system with a precoder and with MTR

code in use, but without the LDPC code. (Designing a system with both LDPC

and MTR codes in use has some complications, which we discuss in the next sub­

section.) Note that since the MTR code must try to avoid certain sequences of

non-transitions, but the MTR encoder is placed before the precoder, the MTR code

m ust be designed with the specific precoder in mind.

There are other constraints which the MTR code must obey as well. Not only

do we wish to avoid long runs with no transitions (because they break the synchro­

nization systems), but we wish to avoid runs with lots of transitions right next to

each other. Back in Section 1.1 we said that the magnetic recording channel was

basically a linear channel, with one Lorentzian pulse response being super-imposed

on the output for each transition in the input. It turns out that this is only approx­

imately true; the responses from adjacent transitions interfere with each other in a

non-linear way. The non-linearities are usually small enough to be safely ignored.

23

but not when there are a group of several transitions adjacent to each other; in

that case, the Lorentzian channel model breaks down, and our recording systems,

designed with that model in mind, will not work well. So we wish to avoid not only

long sequences without transitions, but long sequences of nothing but transitions as

well. The particular MTR code presented in [2] is designed to avoid runs of more

than three transitions in a row, or more than eleven bit times without a transition;

such a constraint is called an MTR(3;11) constraint.

1.5.3. Systems with both LDPC and MTR Encoders

We are now ready to consider systems which employ both LDPC error-correcting

codes and MTR codes. However, it is not at first clear what order the various

encoders should go in. Fig. 1.10 shows the overall system design we are using, a

design originated by H. Song [9]. The reasoning behind this particular layout is as

follows:

• There is no known soft-input/soft-output decoder for the MTR code. Soft-

input/soft-output means that the decoder takes as its input a priori proba­

bilities and gives o posteriori probabilities as its output, like the LDPC and

channel decoders do. The MTR decoder instead takes in an MTR-encoded

bit sequence and gives the original bit sequence. Hence the MTR decoder has

to come after the LDPC decoder and the box that does the check to see if

P{x) > 0.5 or not. This implies that the codes on the input have to go in the

reverse order. The MTR encoder has to go before the LDPC encoder.

• We can do this, but we now have a problem. We have an MTR-encoded

word that goes into the LDPC encoder. The LDPC encoder adds a group of

parity bits to this codeword. The problem is that there is no guarantee that

the parity bits obey the MTR constraint. To solve this problem, we have to

24

P(x(in)=l)

Output
data"*"Input

data

MTR
Adjuster

Precoder

MTR
Decoder

P>0.5?

P<0.5?

LDPC
Decoder

MTR
Encoder

0->+l
1—>—1

LDPC
Encoder

Channel
Decoder

Equalizer

Magnetic
Recording
Channel
(Lorentzian)

Figure 1.10: Diagram of system for PRML magnetic recording with precoder, MTR
code, and LDPC code.

insert additional bits amongst the parity bits to ensure that we never violate

the MTR constraint. We call the system that does this insertion the MTR

adjuster. The resulting word looks something like Fig. 1.11. The bits added

by the MTR adjuster after every three parity bits obey the following rule:

- If the preceding three bits are all ones, make this bit a zero.

- If the preceding eleven bits are all zeros, make this bit a one.

- Otherwise, the bit we add will not affect the MTR constraint, so it does

not matter what value it has; we arbitrarily choose a zero bit.

These rules make the MTR adjuster’s output obey the MTR(3;11) constraint.

(Note that the MTR(3;11) code from [2] is made to work with a 1/ (1 ©D) pre­

coder, so zero bits always correspond to no transition and one bits correspond

to transitions.)

2 5

B LDPC Encoder Input

H LDPC Parity Bit

□ Bits added by MTR adjuster

Figure 1.11: Output of the MTR constraint adjuster.

1.6. Sector Sizes: A Note

Much preceding discussion of the magnetic recording channel, and of basic magnetic

recording systems such as Fig. 1.6, assumed implicitly that our data sequences

were infinite in length, or at least of no fixed specific length. In practice this is

not the case. In practical disk drives, we always read or write data in segments,

called sectors of a fixed size, and the sectors are stored on separate regions of

the magnetic medium. This allows us to write and rewrite one particular sector

of data without disturbing other sectors elsewhere on the disk. The sectors are

separated by blank (unwritten) regions so as to keep the ISI from one sector from

affecting another, and also by regions of specially written data called preambles

and postambles. The preambles and postambles come before and after the sector,

respectively, and contain sequences of data designed to allow the synchronization

systems to acquire sync on a known sequences of transitions. The preambles also

contain data telling the number of each sector, helping our system to know which

sector is currently passing by the magnetic recording head at the time. As with the

workings of the bit-time synchronizers, we are not interested here in exact details

of what the preambles and postambles are like; for our purposes, it is enough to

know that our magnetic recording system deals in bits in sector-size segments. A

sector is usually 4096 bits long in current disk drives; future disk drives may have

2 6

larger sectors, and exactly how much larger the sectors should be is a matter of

current discussion [10]. The sector size is an important consideration in designing

our LDPC code as well as the BCJR decoder. Unlike the Viterbi decoder used in

the earliest PRML recording systems, which did not care about block lengths and

operated in a streaming fashion, both the LDPC and BCJR algorithm are block

algorithms, operating on a block of data at a time. It is convenient for the block

size of these algorithms to be big enough to hold a sector. Hence, in the system of

Fig. 1.7, the LDPC code must have 4096 data bits and thus must have a codeword

length of 4096/R bits, where R is the code rate. Since we want to fit as much user

data as possible on our magnetic medium, we want a high code rate, so typically

R will be 0.9 or higher. The BCJR decoder’s block length must be large enough

to handle the LDPC codeword, so it must also be 4096/iî, though often we may

add a few “trailer” bits, extra bits that we add to the end of our codeword to force

the channel back to a known starting state. This trailer helps the performance of

the BCJR algorithm a little. For the system described in Fig. 1.10, the additional

MTR layer adds 1/16 times as many bits, and the MTR adjuster adds some bits

too. Specifically, the number of LDPC data bits in this case is

K = 4096^ = 4352 (1.49)
16

and the number of parity bits added is

L = k (^ ^ - 1 ^ = 4352 (1.50)

27

and the number of bits added by the MTR adjuster is L/3, for a total of

= 4 3 5 2 1 ^ (1,51)

bits as the block length for the BCJR decoder.

28

Chapter 2

The BCJR Algorithm

29

As we mentioned in the previous chapter, the BCJR algorithm is the algorithm

we use to handle the effects of the ISI induced by the channel. As we discussed

previously, and as shown in Fig. 2.1, bits of data x{t) go into the channel producing

outputs z{t). The BCJR decoder takes the channel outputs z{t) as well as values

specifying the a priori probability that each bit is a zero or one bit, and produces a

posteriori probabilities for each of those bits. In this chapter we explain how exactly

the BCJR algorithm works.

2.1. Log-Likelihood Values

In the BCJR algorithm, we find it convenient to use somewhat modified forms of the

probabilities P{x{t) = 0) or P{x{t) = 1). Instead of dealing with these probabilities

explicitly, we use what are called log-likelihood ratios

IM t)) = l o g ^ ^ j ^ ° | . (2.1)

A log-likeliliood ratio contains the same information as either of the prohahilities

P{x{t) = 0) or P(a:(<) = 1); we can freely convert from probabilities to log-likelihood

ratios or vice versa:

exp(L(x(t))/2) -t-exp(-L(a:(t))/2)

Plx(t) = 0) = exp{L{x{t))/2)
^ ^ exp(L(x(t))/2)-hexp(-L(x(t))/2)

(note that P{x{t) = 0) + P{x{t) = 1) = 1 , as it should). Positive values of L{x{t))

correspond to x{i) being more likely to be a zero bit, and negative values of L{x{t))

correspond to x{t) being more likely to be a one bit. L(x{t)) = 0 corresponds to

x{t) being equally likely to be a one or zero bit, or to us being totally ignorant of

the state of x{t). In the initial round of BCJR decoding, we start with a priori

30

probabilities of 0.5, so our initial L values are all zero.

We find log-likelihoods convenient numerically because for bits whose value we

are particularly certain about, we risk having numerical errors if use the probabilities

and not the log-likelihoods. Suppose that for bit x{t) we have P{x{t) = 0) = 10“ °̂,

then on a typical 16-decimal-place accuracy computer we would have P{x{t) =

1) = 1.0000000000000000. Just looking at P{x{t) = 1), we would have no idea

whether the probability of that bit being zero was 1 0 “®® or 1 0 “ °̂; both would give

P{x{t) = 1) = 1.0000000000000000. We could alternatively choose to keep track of

only P{x{t) = 0) values and not P{x{t) = 1) values (since the two, theoretically,

contain the same information about x{t)), but we would run into similar problems

with bits we are highly certain are zeros. We could keep track of P{x{t) = 0) and

P{x{t) = 1) values separately throughout our calculations, but that would take

twice as much memory and might still cause numerical problems. But if we do

everything in the log-likelihood domain, everything is nicer; we just have a single

number L{x{t)), and we can easily tell the difference between P{x{t) = 0) = 10“ ®̂

or 10““*° because L{x{t)) will be +69.078 in one case and +92.013 in the other. For

this reason, while the computations in the BCJR algorithm can be done either with

probabilities or log-likelihoods, we prefer to use the log-likelihood values. Hence we

will present in this chapter the so-called log-domain version of the BCJR algorithm,

and only occasionally make note of how the non-log version of the BCJR differs.

For the full details of the non-log version readers may refer to [11]. (We shall see

in the next chapter that the LDPC decoder algorithm also comes in both log and

non-log versions.) The choice of convention in defining the log-likelihoods in (2.1)

is completely arbitrary; we could equally well have chosen

31

a posteriori
likelihoodsx(t) z(t)

post

BCJR
Decoder

Combined
Precoder/
MRC/
Equalizer
Response

apnon
likelihoods
L . (t)

pnor

Figure 2.1: The BCJR Decoder.

as a convention. We note that while the literature we have seen about the BCJR

algorithm tends to employ one convention for defining L{x(t)), papers about LDPC

decoding tend to employ the other convention; this is a bit confusing for people like

us who need to use both algorithms at once. We choose to use the convention in

(2.1) throughout this work to be self-consistent. A further notational note; since in

the BCJR algorithm we only deal with likelihoods of the bits x{t) and never need

likelihoods of any other random variables, we simplify the notation L{x{t)) to just

Lit).

2.2. Basic Operation of the BCJR Algorithm

Here we follow the presentation of the log form of the BCJR algorithm more or less

as in [12]. Let us define some notation. Our channel (and any precoder, if present)

can be described by a state-transition diagram such as Fig. 1.5. At each time t

the channel receives a binary input x{t) and produces an output z{t) E M which is

equal to the ideal state-machine output z{t) corrupted by additive white Gaussian

noise. The mapping between x{t) and z{t) depends on the current channel state

St, which is for convenience represented as an integer in [0, M — 1], where M is the

number of states. The state at time (4-1 is also a function of the current state and

32

channel input, so the channel can be fully described by giving the AWGN variance

and writing down a table of the function

f :{s{t),x{t))^{s{t + l),z{t)) . (2.4)

This is just a way of writing as a function the various transitions in our state-

transition diagram.

For the BCJR algorithm, it is more convenient to rewrite this function in terms

of all possible pairs of states (s(t), s(t -I-1)) that can begin and end at a given time-

step. Let D be the set of all such state pairs that actually can occur in the channel.

Then we can define two new functions s{t + 1)) and 0{s{t), s{t 4 -1)) for all

(s{t), s{t 4-1)) € D such that

/(s(t),s(t4-l)) =x(t) and 0(s(t),s(t 4-1)) = i(t) . (2.5)

Note that it is not immediately obvious that these are well defined functions, i.e.,

that there is a unique input x for each state transition («(<),«(< 4 - 1)), but in fact

this is the case for PR channels with the states defined in the “obvious” way (where

the state s{t) is the bit vector encoding of the previous channel inputs x(t — 1), x { t -

2),. . .). These functions are also well defined in the case of a precoded channel.

We assume that a word of length N bits is sent through the channel and that the

resulting channel outputs z(0), z(l) , . . . , z{N - 1) are given to the BCJR decoder.

The starting state s of the channel is assumed known, as is the ending state e.

We assume the words always contain a trailing section such as to always leave the

channel in state e. (If this assumption does not hold, a few minor modifications

to the BCJR algorithm below are needed.) We also assume that for each time

t € [0 , W - 1] we have an a priori log-likelihood ratio Ljn(t) computed from the a

priori probabilities for bit x(t).

33

The BCJR algorithm computes a posteriori likelihood values L{t) for each time

t. The procedure for computing them consists of three steps.

2.2.1. Step 1: Forward pass - compute m values

The first part of the algorithm goes forward in time and computes values rrii{t)

for each state i and time t. The mi{t) are (possibly rescaled) log versions of the

probabilities that the channel is in state i at time t. (In the non-log version of the

BCJR algorithm they are just the probabilities of being in state i at time t.)

We start by initializing the m values for f = 0:

m,(0) = 0 and mj(0) = —oo Vi ^ s . (2.6)

This corresponds to assuming that at time t = 0 we are certain to be in state s and

not in any other state. Then for all t e [1, AT - 1] we successively compute

77ii(t) = log ^ e x p { m j{ t - l) + p { j , i , z { t - l) ,L i n { t - l)) Vi (2.7)

where the function p{j, i, z, L) is defined as:

p[3,hz,L) = «
- (2 - 0 (j,z))V(2O - h L / 2 i î l{ j , i) = 0

- { z - 0 { j , i)) V i 2 a ^) - L l 2 i î l{ j , i) = l
(2.8)

The p{j, i, z, L) is basically a log version of the Gaussian probability density function

of the noise being such as to give output z from the ideal channel output 0{j,i),

plus the ±L/2 terms which are a log version of the a priori probabilities. This is so

34

because

/
0

\

lo S L *prior x{t) = < >

V
1

/

= ± LUt) - log ^exp + exp - LUt)
))
(2.9)

and it turns out we can drop the second term because it will just disappear if we

renormalize the as we discuss below. (The above expression for p{j,i,z,L)

also omits a constant term -l/21og27ra^ ; this constant term also disappears in the

renormalization.) Note that if L = 0 (as is the case for the initial round of BCJR

decoding), p{j, i, z, L) simplifies to

p{j, i, z, 0) =
{ z -0{ j , i)) ^

20-2
(2 .10)

We should also note that none of the rest of the algorithm uses the mi{t) values in

isolation; only differences between pairs of mi{t),mj{t) values for differing i , j end

up in the final result. Hence, the m,(t) values can be (and, where convenient, are)

renormalized by adding or subtracting a constant value. In practical implementa­

tions of the BCJR algorithm, this is done to avoid numerical problems by keeping

the mi{t) values from growing too large.

The non-log version of the update rules for mi{t) is essentially the same as (2.7),

only with everything exponentiated to bring it the log domain, i.e., sums become

products, the log-of-sum-of-exponentials combination becomes just a sum, etc.

Often, in practical implementations of the BCJR algorithm, the log and expo­

nential operations are found to be too computationally expensive and one uses less

expensive approximations to compute mi{t). One way is to use a piecewise-linear

approximation to the log-sum-exponential function

G{x,y) = log(exp(%) 4-exp(?/)) (2 .11)

35

and use that in the computation of An example of such an approximation is

found in [1 2], where one computes

= max(x, y)

G{x,y)

-b \

0 + 0.6931 if b < 0.3571

u + 0.3985 if 0.3571 < b < 1.0714

0 + 0.2148 if 1.0714 < b < 1.7857

a + 0.1109 if 1.7857 < 6 < 2.5

fl + 0.0558 if 2 , 5 < 5 <3.2143

a + 0.0277 if 3.2143 < b < 3.9286

a + 0.0137 if 3.9286 < b < 4.6429

a + 0.0067 if 4.6429 < b < 5.3571

a if b > 5.3571

An even faster approximation can be made by noting that

G{x, y) % max(x, y)

(2 .12)

(2.13)

and hence

rrii{t) « max mj{t - 1) +p{j, i, z{t - 1), L;n(t - 1)) Vi . (2.14)

2.2.2. Step 2: Backward pass - compute m values

This step is essentially the same as Step 1 , only working backwards from the end of

the codeword to the beginning. We start by initializing the m values for t = N:

me{N) = 0 and mi{N) = -oo Vz ^ e (2.15)

3 6

This corresponds to asserting that the system at time N is certain to be in state e.

If we do not employ the trailer method to ensure that our channel always ends in a

known state e, we must instead set

fhi{N) = 0 Vi (2.16)

corresponding to all states being equally probable. (Actually, equiprobable would

mean each state would have probability 1/M, so fhi{N) = log 1/M. But as we noted

before, any constant common to all the fhi{t) can be made to disappear through

renormalization.)

Then for t = AT - 1, . . . , 1 we compute:

fhi{t) = \og ^ exp{fhj{t + l)+p{i,j,z{t),Li^{t)) Vi . (2.17)

All the comments in the previous section regarding renormalization of the mi{t) and

more eflScient approximation techniques apply here to the m<(t) as well.

2.2.3. Step 3: Compute Lq,L i, and final L values

For each time t = 0,1, . . . , AT - 1 , we compute two values Lo{t) and Li{t) as follows:

Lo{t) = log ^ exp{mi{t)+p{i,j,z{t),Lin{t)) + mj{t + l)) (2.18)
{iJ)çD,I{i,j)=0

Li{t) = log Y j exp(mi(t)+p(i,y,z(t),Li„(t))+%(t + l))
(i,j)6D,/(t,;)=l

37

The Lo{t) and Li{t) are measures of how likely each bit x{t) is to be either a 0 or a

1, respectively. The final a posteriori likelihood value L{t) is computed as

L{t) = Lo{t) - Li{t) . (2.19)

One can see that if Lo{t) = Li{t), implying the BCJR decoder has equally good

evidence that x{t) is a zero or a one, then the a posteriori likelihood will be L{t) =

0, as we would expect. One can use approximations to the log-sum-exponential

combination as before, e.g..

Lo(<)«, ̂ max rrii{t)+p{i,j,z{t),Lin{t))+ mj{t + l) (2.20)

and similarly

jLi(t) w max mi{t)+p{i,j,z{t),Lin{t)) + mj{t + l) . (2.21)

38

Chapter 3

Coding and Decoding of LDPC

Codes

3 9

In this chapter, we discuss how to encode and decode codewords of a low-density

parity-check code [5],[6]. We explain how to do decoding of such codes through the

so-called belief propagation algorithm, also known as the sum-product algo­

rithm. (There is another algorithm besides the belief propagation one that decodes

LDPC codes [5], but as it is not a soft-input/ soft-output algorithm, it is not of

interest to us here.) As with the BCJR algorithm, there are both non-log and log

versions of the belief propagation decoder; we shall explain both versions. We also

discuss the max-product algorithm, a fast approximation to the full sum-product

decoder, and discuss in a bit more detail how the LDPC and BCJR decoders feed

information back and forth.

3.1. Basic Notation and Encoding

Each LDPC code is specified by two numbers K and L, the number of data bits and

parity bits respectively, and a, L x { K + L) parity-check matrix H of ones and zeros.

H is usually a sparse matrix (hence the “low density” part of the LDPC name).

The codewords produced by the LDPC encoder have length N = K + L, and each

word X e ^ 2^ is a valid LDPC codeword iff

Hx^ = 0 (3.1)

We commonly rearrange our H matrix to make the code a system atic code; such

a code has the property that the codeword x consists of our original K data bits

followed by L new bits, the parity bits. This simplifies encoding and decoding, as

the encoder only has to add L new bits to the input data to make a codeword, and

once one is done with finding the most likely codeword with the LDPC decoder,

one can just throw away the final L bits to get the original data. Also, the MTR

adjustment scheme mentioned in Section 1.5.3 would not work without a systematic

40

code.

Supposing we have H corresponding to a systematic LDPC code, we can rewrite

H as the concatenation of two matrices as follows:

H = B (3.2)

where A has dimensions L x K and B has dimensions L x L, and B is invertible.

Let Xin be our input data word and Xp be our added parity bits, i.e..

X = (3.3)

Then our encoding procedure computes the parity bits like this:

Xp = (B ^AxT)^ (3.4)

These parity bits produce a codeword that satisfies (3.1) since

Hx^ = B

B t \T(B-'AxT)

= AxT+BB-'Axj

= Ax^ + AxÎ̂

= 0 (3.5)

(remember we are dealing with vectors and arrays over Z2, so anything added to

itself gives zero).

41

3.2. The Belief Propagation Decoder

We explain here how the belief propagation decoder operates, first with the non-log

version of the algorithm, and later with the log version of the algorithm. Our favorite

exposition of LDPC decoding through belief propagation is in an (unpublished)

paper by Fan et al. [13]. We follow their notation here, deviating only where it

seems appropriate, e.g., to maintain consistency with our notation elsewhere in this

dissertation.

3.2.1. Message Passing over a Graph

The basic idea behind the belief propagation algorithm is to consider the LDPC

code as a network of nodes and do Bayesian probability calculations on this network,

propagating various probabilities (also called beliefs or messages) from one node

to another throughout the calculation. Our network of nodes consists of two kinds

of nodes. There are N variable nodes, each of which corresponds to a bit in the

codeword x. There are also L check nodes, each of which corresponds to one of

the rows of H, i.e., to a constraint equation that the codeword must satisfy:

HiX^ = 0 i = l , 2 , . . . , L (3.6)

where H,- is the zth row of H. Each variable node Xi is connected to the set of check

nodes that the ith bit of x participates in, i.e., there are connections between the

variable node X{ and all check nodes for rows j of H for which H^i = 1. An example

of such a graph is shown in Pig. 3.1 for the parity-check matrix

H =
1 1 1 0

0 1 1 1
(3.7)

42

c z

Figure 3.1: Network for a very simple LDPC code.

(This particular choice of H is not, strictly speaking, a low-density parity-check

matrix, due to its small size and large number of ones, but it is a parity-check

matrix. For practical reasons we did not wish to try and draw the network for

a more realistic LDPC code here.) The messages passed from node to node are

essentially estimates of a posteriori probabilities of bits being either one or zero.

Let us define some more notation. We number the variable nodes with numbers

(corresponding to the bits in x) and the check nodes with numbers 1 , . . . , L

(i.e., the number of the row in H). The set M{i) is the set of numbers of all check

nodes adjacent to the variable node i, and N{j) is the set of numbers of variable

nodes adjacent to the check node j.

3.2.2. The Non-log LDPC Decoder

Each node in the graph has messages it is passing on to its neighbor nodes. Each

variable node i passes to its neighbor j a message consisting of a pair of numbers

q]i,q]i- These numbers are essentially probabilities of Xj being either 0 or 1 , respec­

tively, given information from all the other check nodes M{i)\j that their respective

check constraints are satisfied. Each check node j also passes messages r®,-, rL cor­

responding to probabilities that the jth parity-check constraint is satisfied given

Xj = 0 or Xj = 1 , respectively. Each variable node also has overall probabilities

q°,q} associated with it; these probabilities will, when we are done, be our a poste-

43

non probability outputs of the LDPC decoder. The and q} are sometimes called

pseudo-posterior probabilities because of this. Note that

+ r]i =• Jt ' • Jt

(3.8)

as one might expect.

Saying that the yth parity-check constraint is satisfied is equivalent to saying

or

0 lit = 0
keN{j)

Ci= 0 2:*
k€NU)\ i

(3.9)

(3.10)

Hence, we can define r°£, rL as

r9. = P I 0 = 0 Xk
k€NU)\i

= P \ ^ = 0
k€NU)\ i

(3.11)

where F is shorthand for the set of initial a priori information our LDPC decoder

starts with. We compute the r9̂ , rL values from the messages using the

following trick. Consider a set of independent random bits yi, ■■■, ym and suppose

we wish to find the probability P (0 j^ i yi = 0). Define the partial sums

2„ = 0 t / i n = 0 , 1 , . . . , M (3.12)
:=1

44

where we define the empty partial sum zq = 0. Note that we have a recursion

2n = 2n-l®ÿn n = l , . . . , M . (3.13)

Now consider that for two independent random bits a, b with known probabilities

P{a = l),P{b = 1) we have

P{a ® 6 = 0) = P{a = 0)P{b = 0) + P{a = l)P{b = 1)

= (1 - P{a = 1))(1 - P{b = 1)) + P{a = l)P{b = 1)

= 2P{a = l)P{b = 1) — P{cL = 1) — P{b = 1) + 1 (3.14)

and hence

2F(a®6 = 0) - l = (l - 2 P (a = l)) (l - 2 P (6 = l)) . (3.15)

Now Zn-i and y„ are by assumption independent, so we can apply the previous

equation to get

2P(Zn = 0) - 1 = 2P(z„_i ® 7/„ = 0) - 1

= (1 - 2P(2„_i = 1))(1 - 2P(j/„ = 1))

= {2P{zn-i = 0) - 1)(1 - 2P(y„ = 1)) (3.16)

and, since 2 P { zq = 0) - 1 = 2 (1) - 1 = 1 , we can recursively compute

M
2P{zm = 0) - 1 = %%(1 - 2P(% = 1)) (3.17)

i=l

45

and hence

/
0

Z m = <

\
1

= ̂ 1̂:1= 11(1 - 2P{yi = 1)) j (3.18)

Applying (3.18) to the problem of computing the while taking g?,, gk as

the probabilities associated with bit Xi, we get

4 = % 1 1 + n
V kÇN{j)\i

h = l \ ^ - n
V kçN(j) \ i

(3.19)

where we define the quantities Sq^ as follows:

ôqji = 1 - 2q]i = q]i - q]i (3.20)

Note that this presumes that all the variable nodes, all the Xi connected to a given

check node are in fact independent. This is not necessarily the case if the graph of

our code includes cycles, paths that loop back on themselves. Hence, if we have

cycles in our graph, the assumptions upon which the belief propagation decoder is

based are not valid, and the decoder may not work as well [6]. As we shall see in

later chapters, trying to reduce or eliminate cycles from our codes is an important

part of designing LDPC codes.

Given the r®̂, rb values computed above, we can now compute the pseudo-poster­

ior probabilities for each bit (i.e., each variable node) as follows, where Q denotes

the event that all the parity-checks N{i) that bit i participates in are satisfied, and

4 6

b E Zg"

Qi = Pi^ i = F)
P{Ci\xi = b,F)P{xi = b\F)P{F)

- P{C-F)

which follows from Bayes’ Theorem. Since q° + qj = 1, we can rewrite (3.21) as

qt = a {P{Ci\Xi = 6, F)P{xi = 6|F)) (3.22)

where the operator a() normalizes its argument by multiplying it by a constant such

that we get a valid probability distribution, i.e., that the values over all b sum to

one. We threw away some terms from (3.21), namely the p{F) and p{Ci,F) terms,

but since they do not depend on b, they can be thought of as disappearing into the

normalization a(). Now we have

P{Ci\xi = b,F) = %% P 0 = 0
j eM{i) \ kÇN{j)

X i = b,F

= n ^ M = 0
j€M{i) \ k€N(j) \ i

= J J rji (3.23)

and P(xi = 6|F) are just our a priori probabilities for each bit. Let us for simplicity

define

p ̂= P{xi = b\F) . (3.24)

We now can write the full equation for the pseudo-posterior probabilities by

47

combining (3.22) and (3.23):

9? = “ I Pi n 4 I (3.25)
j€M(i)

and, since the are defined as containing the information from all the check node

neighbors of i except for j, we must exclude the contribution from the message

from node j to node i to get

9ji — O' I Pi J J I (3.26)
V fceM(i)\j /

We now can describe the belief propagation LDPC decoder algorithm. We start

with a priori probabilities p* and proceed thus:

1. Initialize all the initial variable node messages from the a priori probabilities:

Qji — Pi • (3.27)

2. Compute all the using (3.19).

3. Compute the with (3.26) and the pseudo-posterior probabilities q- with

(3.25).

4. From the pseudo-posterior probabilities compute a provisional hard decoding

X of the codeword with

Xi = <
1 if gl > 0.5

(3.28)
0 if g |< 0 .5

5. Check to see if Hx = 0. If so, we have a valid codeword and we are done.

Otherwise, go back to Step 2.

48

When the algorithm terminates, our final a posteriori probabilities are the gf values.

In practice, of course, we impose some limit on the total number of iterations to

prevent the decoding algorithm from looping indefinitely. If we have done, say, 100

iterations and still have not found a valid codeword, we give up and report an error.

One of the nice things about the LDPC decoder is that if it fails to find a valid

codeword, it can report that the word is not valid; compare this to the decoder for

turbo codes [14] which can produce words that are not valid codewords without any

sort of error indication.

3.2.3. The Log LDPC Decoder

We now derive the log domain version of the LDPC decoder. First let us, in accor­

dance with Section 2.1, define the log domain version of

L(r,,) = l o g ^ (3.29)

and define L{qji) and L{qi) in analogous fashion. From (3.19), we find that

L (r , ,) = l o g l l H î ! Ï S V ^ . (3.30)

Now, since

% = Qji-<iji
exp{L{qji)l2) exp{-L{qji)/2)

exp{L{qji)/2) + exp(-L (gji)/2) exp{L{qji)/2) + exp{-L{qji)/2)
exp(L(g,i)/2) - exp{-L{qji)/2)
exp{L(qji)f2) -t- exp{-L{qji)/2)
exp{L{qji)) - 1
exp{L{qji)) + 1

= tanh (1 (3.31)

4 9

we can rewrite (3.30) as

1 + U kem \i tanh(L(g,A)/2)
L { r j i) = log l-rifc€N(j)vtanh(L(?;A)/2)

= 2tanh"^ J J tanh(I(%k)/2) (3.32)
\ k € N U) \ i J

which gives us the log form of the rule for updating the messages from the check

nodes. We now need log forms of (3.25) and (3.26); a few moment’s computation

shows that

HQji) = ^(Pi) + ^ H^ki) (3.33)
fc6M(i)\j

and

L(ft) = W + X) ^ M (3.34)
j€M(t)

The log version of the algorithm proceeds similarly to the non-log version:

1. Initialize all the initial variable node messages from the a priori likelihoods:

L{Qji) = HPi) • (3.35)

2. Compute all the L{rji) using (3.32).

3. Compute the L{qji) with (3.33) and the pseudo-posterior likelihoods L(g,) with

(3.34).

4. From the pseudo-posterior likelihoods compute a provisional hard decoding x

of the codeword with

Xi = < ’ “ ° . (3.36)
0 if I(%) > 0

50

5. Check to see if Hx = 0. If so, we have a valid codeword and we are done.

Otherwise, go back to Step 2.

3.3. Optimizations and Approximations

The equation (3.32) is somewhat computationally expensive, requiring several mul­

tiplications and hyperbolic tangents for each L{rji) evaluated. We can rearrange

this equation to speed things up a bit. First note that any product of terms o, can

be rearranged in terms of an exponential of sums of logs like this

J J Ci = n sgn(aj) e x p (^ log(k|)) (3.37)
i i i

Since tanh and tanh” ̂ are both odd functions, we can freely move terms that are

±1 in value past these functions:

tanh(±x) = ± tanh(x) and tanh"^(±a;) = ± tanh“ (̂a:) (3.38)

Applying both (3.37) and (3.38) to (3.32) gives us

L{rji) = 2 tanh"* I J J tanh(T(%()/2)
\fcew(i)\i

n sgn(tanh(T(gji)/2))
k€NU)\i

x2tanh"* I exp I log(tanh(|T(%i)/2|)))) (3.39)
V \ k € NU) \ i

51

which simplifies to

= n ®sn(l'(g,t))
k€N{j)\i

x 2 tanh"M exp | ^ log(tanh(|Z/(gji)/2|)) j j . (3.40)
V \k€N {j) \ i j j

Now let us define a function ^ (i) = — log(tanh(%/2)). Then we have

= 2 tanh"^ exp(-y) (3.41)

and we can rewrite (3.40) as

H'Tji) = n sgn(L(gji)) X 2tanh"M exp j ^ -$(|Z,(%i)/2|)
k€NU)\i V *eJV(j)\i

= n sgn(L(9;0)^-M E ^ (I ^ M /2 |)) (3.42)
k€N{j)\i \keN{j)\i j

We have thus replaced |A ^(j)\i|-l multiplications with the same number of additions

(plus some multiplications of the sgn(Z/(gj{)) terms, but those are trivial since the

numbers are always ±1). Also, as Gallager pointed out [5], ^ is its own inverse, i.e.,

$"^(z) = ^(x) . (3.43)

Hence we only need be able to do additions and this one special function ^(x) to

compute the L{rji), and we can, if more speed is needed, use a lookup table to

compute ^(x).

For even further increases in speed, we can resort to approximation techniques

similar to those discussed in the previous chapter for the BCJR algorithm. This

approximate version of the LDPC decoder is sometimes called the max-product

52

algorithm. The basic idea behind this approximation is this: consider the computa­

tion of the Tji associated with some check node j . Suppose check node j has degree

C, and let the indices of the bits participating in the check j be Oi,a2 , - , o-c- With­

out loss of generality we can assume a \= i . Then we can rephrase the definition of

the Tjj (3.11) as

r) , = p (6 = 0 x,
c

(3.44)
fc=2 /

and note that this probability is the sum of the probabilities for each possible com­

bination of bits Zok that satisfy the overall parity constraint. That is to say, if we

define the set of combinations of bits

A = |(a;a2,---,a:ac)16 = 0 X 0 * 1 (3.45)

then

^] f^(xa;,. . . , igglF) (3.46)
(̂ <*2

which in turn can be rewritten

^ II9;?
(log r ' k=2

The critical idea behind the max-product approximation is to assume that one of

the terms of the above sum is dominant over the others and to approximate r-j as

the largest of these terms, so instead of (3.47) we compute

/ c \
r̂ ji = a \ max n « S ‘

k= 2

where we have added an q() normalization to compensate for the fact that our

approximation might give probabilities that do not sum exactly to one.

The above expression does not look at first to be simpler, for though it uses

53

a max operation instead of a sum, it requires us to compute probabilities for all

the possible bit combinations in each set Di,, something which we avoided in (3.19)

through a clever trick. However, it turns out that in the log-domain version of the

max-product algorithm, we can in fact derive a really simple version of the update

rule for the L{rji) likelihoods. To see this, consider the case where check node j has

degree three, and in order to simplify the notation a bit let us assume the indices of

the bits in this node are = 0,1,2. Then our above equation gives us

r% = amax(g?ig?2.?]i9j2)

r)i = amax(g?igj2.9ji9j2) (349)

for some normalizing constant a. We now must figure out how to write this in terms

of log-likelihood ratios. For convenience, let us call L(çji) = a and L{qj2) = b, and

let us define

do = 9ji

«1 =

6o = é

bi — 9)2 (3.50)

Note that

= exp(o) exp (6) = exp(o + b) (3.51)
OiOi

so we can in general write

aaobo if a -h 6 > 0

aaibi if a -t- 6 < 0 (3.52)

aaobo = aaibi if n + 6 = 0

54

and similarly

leads to

apbi _ exp (a)
uibo exp (6)

(3.53)

ĵo =

aapbi if a - b > 0

auibp if 0 - 6 < 0 (3.54)

aapbi = aaibp if a — 6 = 0

no matter what a, b are. We shall use these results later. We now have several cases:

Case 1: |a| > |6|, o > 0. We have a + 6 > 0 and a - 6 > 0, so

I"jo — ocdpbp

rjo = otapb i

L{rjo) = b

Case 2: |a| > |6|, a < 0. We have a + 6 < 0 and a - 6 < 0, so

(3.55)

= aaifti

io = aaibp

= —b (3.56)

Case 3: |a| < |6|, 6 > 0. We have a + 6 > 0 and a - 6 < 0, so

°̂jo = aapbp

»’jO = aoibp

: h o) = a (3.57)

55

Case 4: |a{ < |6|, 6 < 0. We have a + 6 < 0 and a - 6 > 0, so

r°g = aaibi

rjo = aaobi

L(rjo) = - a (3.58)

Case 5: |a| = |6| = 0. We have a = 6 = 0, so oi = 6i = oo = = 1/2, so

io = " i

io = “ i

L(rjo) = 0 (3.59)

Case 6: |a| = |6|, o > 0,6 > 0. We have a + 5 > 0 and a - 6 = 0, so

r“o = aoobo

rjo = aaibo

L{rjo) = a (3.60)

Case 7: |a| = |6|, a < 0,6 > 0. We have a + 5 = 0 and a - 6 < 0, so

I"jg — Odgbg

rjg = aaibo

L(rjo) = a (3.61)

56

Case 8: |o| = |6|, a > 0,6 < 0. We have a + b = 0 and a - 6 > 0, so

°̂jo = aaibi

= aaobi

= —a (3.62)

Case 9: |a| = |6|, a < 0,6 < 0. We have a + h < 0 and a - 6 = 0, so

= aaibi

»'lo = aaobi

Hrjo) = —a (3.63)

After considering all nine cases, we find that we can define a function, which we call

the Ai-function,

M{a, b) = sgn(a) sgn(6) min(|a|, |6|) (3.64)

such that

L{rjo) = M{a,b) Va,6eM . (3.65)

The A4-function can be considered an approximation to the so-called %-function

7^(a, 6) = 2tanh“^(tanh(a/2) tanh(5/2)) . (3.66)

This approximation gets better for larger |a| or |6|. Note that for this case of the

degree three check node the corresponding equation from the sum-product algorithm

(3.32) gives us L{rjo) = %(a, 5). (This notation of the A4-function and %-function

is taken from [15].) For the sum-product algorithm, we can consider the 71-function

57

as a dyadic operator, like addition, and rewrite (3.32) as

“ M W , / '» ' '

(note that

'll(a,Tl{b,c)) =Tl{'Jl{a,b),c) V a ,6 ,ceR (3.68)

so TZ is indeed an associative operator). The corresponding equation for the max-

product algorithm for any check node j is just

(3.69)
k€N{3)\t

SO that the max-product algorithm in the log domain is just the sum-product algo­

rithm with this peculiar TZ operation replaced by the M operation, which is easily

computed.

3.4. How the LDPC and BCJR Decoders Work

Together: Extrinsic Information

The preceding discussion in Chapter 1 implied that the LDPC and BCJR decoders

feed each other the a posteriori probabilities they produce or, in the log domain,

the a posteriori likelihood values. This is in fact a bit of an over-simplification.

In practice, the values that are passed are not the a posteriori likelihoods, but a

somewhat modified version of them called the extrinsic information. Suppose

the LDPC decoder takes as inputs likelihood values LtDPCprior(*) for each bit i and

computes a posteriori likelihoods iLDPCpost(i) using either the sum-product or max-

product algorithms as explained above. We then feed into the next iteration of the

58

BCJR decoder not LLDPCpost(i), but the extrinsic information

■^'LDPCext(*) = i 'L D P C p o st(j) ~ J 'L D P C p rio r(4 • (3.70)

This extrinsic information becomes the input I'BCJRprior(*) to the next round of the

BCJR decoder, and the resulting a posteriori likelihoods from the BCJR decoder

have the prior likelihoods subtracted to yield extrinsic information

■f'BCJRext(ï) = ^B C JR post(*) “ f 'B C JR p rio r(î) (3 71)

which becomes input for the next LDPC round, and so on. Once all rounds of turbo

equalization are completed, we take the final sets of extrinsic information from each

decoder and sum them to get an overall likelihood

L[i) = LgcjRext (*) "b ^LDPCext(%) "h f^initialprior(î) (3.72)

where Linitiaiprior(î) is the set of initial prior likelihoods we started the first BCJR

iteration with (usually all-zeros, since we assume our bits are equally likely). We

then hard-decode L{i) to produce final bit decisions.

Why is this subtraction process done to generate the extrinsic information?

There are heuristic arguments that each decoder should not be given as input in­

formation that originated with a previous iteration of itself, so that each decoder

only gets what new information was added by the other decoder, i.e., the extrinsic

information from the other decoder. We ourselves do not find these arguments all

that convincing. Fan [16] gives a more in-depth argument proceeding as follows.

Consider the basic Bayesian equation for the probability that bit z, has value b

59

given that the codeword satisfies a constraint C and other prior information F\

= = (3.T3)

(note that (3.21) is a special case of this). Putting this in the log-likelihood domain,

and noting that the terms that do not depend on h drop out, we get

posterior extrinsic prior
.1. ■ ^ —
L{xi\C, F) = L{C\Xi, F) -h L{xi\F) (3.74)

where the various conditional likelihood ratios are defined, in an extension of our

previous notation, as follows:

P{C\xi = 0 ,F)
L{C\xi = b,F) = log

P{C\xi = l,F)

Here L{xi \C,F) is the log-likelihood version of the a posteriori probability of bit

Xi being zero or one given the constraint C, L{xi\F) is our a priori log-likelihood,

and the diflference, the so-called extrinsic information, is just the log version of the

flipped-around conditional probabilities P{C\xi = b,F). It is thus more reasonable

that in order to combine several (independent, we assume) constraints from several

different decoders we take the product of the conditional probabilities P{Ci,upc\xi =

b,F), P(C'BcjR|aîi = b,F) together with the a priori probabilities P{xi = 6 |F) to

get final a posteriori values, or in the log domain, we get (3.72). Fan [16] notes that

in fact we carry out this extrinsic subtraction and combining of several extrinsic

values from different constraints in the internal workings of the LDPC decoder as

well as between the LDPC decoder and other decoders; consider, e.g., (3.33) and

60

extrinsk: s u b tra c tio n ---------
no extrinsic su b tra c tio n ---------

0.01

u 0.001

0.0001

a e.2 ase.4 8.8 9 92 9.4 9.6

Figure 3.2: Performance of LDPC/BCJR decoder with and without extrinsic sub­
traction.

(3.34).

The process of subtracting to get the extrinsic information was first done in the

realm of turbo code decoding [14], where decoding is done by means of two BCJR

decoders iterating back and forth. The above argument due to Fan seems to be

reasonable justification for doing this with the LDPC/BCJR decoder combination

as well. However, there is a problem. Before we had come across Fan’s work [16]

we decided to try some simulations to see if the use of this extrinsic subtraction

empirically performs better than the simple approach of just passing the a posteriori

outputs LBCJRpost(i)i LLDPCpost(î) as the inputs to the other decoders and taking the

final a posteriori value as our final result. The results of those simulations are shown

in Fig. 3.2. We simulated performance of the LDPC code used in [9] over the EPR4

channel at various signal-to-noise ratios, with and without the extrinsic subtraction

being used. Curiously, the non-extrinsic-subtraction case performs be tte r than the

extrinsic-subtraction case. The difference is only about O.OSdB or so, but it does

perform better. Clearly, the whole issue of extrinsic information is not understood

as well as it could or should be.

61

Chapter 4

Creating LDPC Codes with

Desired Weight Distributions

6 2

In this chapter, we explain how to create a random LDPC code matrix H given

the desired code size parameters N (codeword length) and K (user data length),

as well as specifying the column and row weights of the H matrix. The N and K

values are pretty much fixed by the requirements of our magnetic recording system

(see Chapter 1), but the choice of column and row weight distributions is up to

the user. Figuring out which column and row weight distributions are best for a

given application is an important problem (in fact, it is the main problem of this

dissertation), but it is a problem we will defer to later chapters for the moment. For

now, we assume that we have been given column and row weight distributions, and

consider the problem of how to make an LDPC code fitting those constraints.

4.1. Weight Distributions

The column and row weight distributions are conventionally [15] specified by vectors

of numbers Aj and p,-. Â is the fraction of one bits in the H matrix of the code that

occur in columns of weight i, and similarly p, is the fraction of one bits that occur in

rows of weight i. That is to say, if A3 = 1/4, then one-quarter of all the one bits in the

H matrix are found in columns of total weight three. Here i is an integer that is two

or larger, since weight zero or one columns or rows are not something we would ever

want in the parity-check matrix in practice. Sometimes, instead of giving explicit

vectors A,,pi, we specify the weight distributions with two polynomials A(x),p(x)

defined as

00

A(r) = ^
1=2

P(%) = (4.1)
i=2

Note that if, say, A3 = 1/4, this is not the same thing as having one-quarter of

63

all columns have weight three. For example, if A3 = 3/7 and A4 = 4/7 and all other

A,- = 0, then if the total number of one bits in H is Q, then there are 3Q/7 bits in

columns of weight three and 4Q/7 bits in columns of weight four. Hence, the total

number of columns of weight three is (3Q/7)/3 = Q/7 and for weight four we have

(4Q/7)/4 = Q/7 columns, so the fraction of columns with weight three is 1/ 2 , and

the same is true for weight four. In general given a column weight distribution A,-,

the fraction of columns that have weight i is

and a similar equation holds for the fraction of rows with a given weight:

Why do we specify the weight distributions in this somewhat counter-intuitive

way, as A, values rather than Â,- values? As we shall see in later chapters, the A, and

Pi form of the weight distribution is more convenient for analyzing the performance

of LDPC codes through density evolution [17]. For actually creating an LDPC code

meeting these parameters, the Aj, p, version of these parameters are more useful; we

can freely convert between the two using (4.2) and (4.3).

Note that there are constraints on the Aj £ind p i\ we are not entirely free to choose

any values we want. The definitions of the Aj and p, give these obvious constraints:

X^Ai = J^ P i = l (4.4)
1=2 i=2

and

Ai, Pi e [0,1] Vi . (4.5)

What may not be so obvious is that the code rate R = K /N also constrains our

6 4

Ai, Pi values. The reason is this: H has Q one bits in it, arranged in N columns and

L = N - K rows. We know that the Q bits must be in columns of various weights:

00

Q = W ^ i Â i
j= 2

= N
Ei=2

N

but these same Q bits are in the rows of various weights as well:

00

Q =
t=2

- r _ m a .
z : 2 A /i

L

and hence
N

But L = (1 - R)N, so we have

1 1 - R

and hence

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.2. Specifying LDPC Codes as Permutations

As we saw in the previous chapter, each parity-check matrix H corresponds to a

network of variable and check nodes, as in Fig. 3.1. Each link in that network links

6 5

a check node with a variable node; each bit in H links a row with a column. Let

be the weight of the ith row of H, and similarly define q on the columns. Let us

define two vectors

and

R =

C =
Cl CN

(4.11)

(4.12)

where each number i occurs r, times in R and similarly for C. Note that R and C

both have total number of elements Q. Then H can be thought of as specifying a

bijection between members of R and members of C. Hence, each matrix H can be

specified by some permutation vr 6 Sym(Q), the set of permutations on Q symbols.

For some numbering of the Q bits in H, we have that the ith bit of H links column

number C, and row Hence we can reduce the problem of generating H to that

of generating a suitable permutation tt.

Note that not every permutation t t E Sym(Q) corresponds to a possible H ma­

trix. Some permutations tx might try to have more than one link between the same

variable node/check node pair. Mathematically, that would correspond to there be­

ing i , j such that C, = Cj and We need to check any permutation

that we generate to make sure that it is admissible, i.e., that

if Ci = Cj then ■Rr(i) f -Ri(j) Vi, y = 1, . . . , (3 (4.13)

The simplest way to check this is to initialize a matrix H to all zeros and for each

i = 1 , . . . , (3 try to set a bit in the ith column and %(i)th row; if we end up trying

to set a bit that is already set, we have an inadmissible tt.

66

4.3. Cycle Elimination

Even once we have an admissible t t , it may lead to a matrix H that is not desirable

for LDPC decoding. As mentioned in the previous chapter and as discussed in [6], if

the network for our H matrix has cycles in it, the basic independence assumptions

upon which the LDPC belief-propagation decoder was derived are violated. Hence,

cycles impair the performance of the decoder. To avoid this impairment, we attempt

to remove any such cycles from our code. In practice, it is not practical to remove

all cycles. However, the shortest cycles, the ones of length four, are the ones which

impair performance the most, so if we can eliminate them, we will have a better code

matrix H. To eliminate the four-cycles, we first have to find them in our code. Let

us define a couple of functions. Rows(5) is a function that maps a column number

i to a set of row numbers; this function is defined as

Rows(i) = {r|r = for some k such that Ck = i} (4.14)

and similarly

Cols(i) = {c|c = Q -i(t) for some k such that Rk = i} (4.15)

maps a row number i to a set of column numbers. We can now check for four-cycles

with the following algorithm.

1. Let z = 1.

2. Find j — Rn{iy, this is the row on one side of link number i.

3. Compute the set 5a (y) = Cols(y')\C',-.

4. For each k € S2 {j), compute a set Szik) = Rows(k)\y.

5. For each i € Sz{k), compute a set Si(ê) = Cols(^)\fc.

67

6 . If any of the sets 54 ()̂ contain C,, then we have a cycle Ci j k Q.

Stop.

7. Otherwise, let i <- i + 1 , and if i <= Q, go back to Step 1 .

8 . We are done! If we got here, there are no four-cycles in the graph.

If we found a four-cycle Cj j ->• Æ Ci, we can attempt to eliminate

it by altering the permutation it. We do this by picking a random number q €

{ ! , . . . ,Q}\i and “switching” the links i -)• j and q ir(q). This corresponds to

making a new permutation tt' such that

7T (a:) = <

7t(ç) if x = i

j if x = q (4.16)

7r(a;) otherwise

Once we have the new permutation, we can go back and check it for four-cycles, and

continue this process until we have a tt free of four-cycles. Note that for some sets

of code parameters N, R, Ai, pi, we may in fact never find such a cycle-free tt; the

preceding algorithm may never converge. High code rates (say, R > 0.9) and high

average column weights (^ iAi > 4) tend to be particularly bad cases for this. In

such cases where the algorithm fails to converge, the code designer has little choice

but to accept that the generated code is going to have four-cycles. In some cases we

have been able to do some limited removal of four-cycles by restricting the preceding

algorithm to only a subset of the possible bits i, only trying to remove cycles which

go through columns of low weight. What we did in that case was restrict the above

cycle search to only those initial i values for which column Q had weight less than

a certain threshold. It is not clear whether this limited cycle removal is of much

value with regard to the performance of the resulting code, however.

6 8

4.4. Making a Systematic Code

Once we have a permutation tt which has been cleaned of four-cycles, we still need

to be sure we can make a parity-check matrix H corresponding to a systematic code.

This means, as we saw in the last chapter, that we need an H whose rightmost L x L

segment is invertible. We first test the rightmost segment of H for invertibility. If

that matrix is invertible, we are done. Otherwise, we have to rearrange columns

in H until we have a suitably invertible RHS; doing Gaussian elimination on the

entire matrix H and paying attention to the column reordering moves can tell us

which columns need to be shuffled into the RHS to make it invertible. Gaussian

elimination can also tell us if we are in the unfortunate situation where H is not full

rank, and no rearrangement of columns can ever give us an invertible RHS. This

is pretty rare for irregularly distributed H (i.e. where A, is not a delta function).

However, for an important case of regular codes, codes of uniform column weight

four (Aj = Sii), the RHS can never be invertible. This is because, if we have a square

matrix whose columns all have even parity, if we try to invert it by doing Gaussian

elimination on the columns, adding columns to each other will never give columns

with odd parity, so we can never get the identity matrix. In such cases where we

do not have an H matrix of full rank, all one can do is randomly add an extra bit

somewhere to H to make it full rank. Note that this does make H violate the given

weight constraints A,-, /?,• slightly, and may also spoil the four-cycle freedom.

4.5. Summary

We are now in a position to list the overall algorithm for generating random parity-

check matrices H. We proceed as follows:

1 . Convert our given A{,p, into ratios of how many columns/rows have weight i,

XuPi, as per (4.2) and (4.3).

69

2. Create a random set of row weights r, and column weights c, that match the /),

and Aj distributions. Also create the initial vectors R, C as in (4.11), (4.12).

Also compute Q = n = ^ . c,.

3. Create a random permutation tt e Sym(Q).

4. Check tt for admissibility as in Section 4.2. If tt is not admissible, randomly

pick two links in tt to exchange as in (4.16) and go back to Step 4.

5. Check tt for four-cycles as in Section 4.3. If we find a cycle through link i ,

randomly exchange that link with some other link g as in (4.16), and go back

to Step 4.

6 . Create the matrix H from tt, and check its RHS for invertibility. If it is

invertible, we are done.

7. Otherwise, do Gaussian elimination on H. If it succeeds (H is full rank),

reorder columns as needed to make the RHS of H invertible, and we are done.

8 . Otherwise, we are in a bit of trouble. H is not full rank. Add a random bit to

H, compute the corresponding permutation t t , adjust the row/column weight

tables n , Ci accordingly, and go back to Step 4.

This is how we create random LDPC codes meeting specified weight distributions.

70

Chapter 5

Analyzing Performance of LDPC

Codes with Density Evolution

71

In order to be able to design good LDPC codes and find the A, and pi distri­

butions that lead to the best codes, we need some way of estimating how well an

LDPC code will perform given only its A<, p, values. Fortunately, there is a technique

for doing such predictions; this technique, called density evolution was developed

by Richardson and Urbanke [17]. By studying the behavior of probability density

functions (pdfs) of various variables in the LDPC algorithm, one can predict the bit

error rate of an LDPC code when used with various memoryless channels. This lets

us compute so-called threshold values for each set of LDPC code parameters A,, Pi\

loosely speaking, the threshold value tells us how noisy our memoryless channel has

to be in order to have significantly high bit error rates. Obviously, one wants to

select Ai, p, sets which give as high a threshold value as one can get. In this chapter,

we explain in detail how to do density evolution and find the threshold for a given

set of LDPC code parameters. The notation used here loosely follows that in [15].

5.1. Preliminaries: Computing with Probability

Density Functions

To do density evolution, we must be able to perform various operations on prob­

ability density functions. Ideally, the pdf of some random variable z € K is some

function p^(z) where 6 L (̂M) and pz(z) G [0,1] for all z. However, we would

need to have an (uncountably) infinite amount of storage to completely represent

a general function p̂ which can take on values at any point z € M. In order to do

practical computations with pdfs on our computer, we need to introduce a quan­

tized form of the pdf. We pick a quantization interval 5 and break up the real axis

into intervals of size 5. Our quantized pdf V[z] is thus a vector with subscript fc G Z

72

such that

6

2 J = A m '
kS - - < z < k S + - \ = I P z { z) d z . (5.1)

Obviously, this loses a good bit of information from the original pdf, but like most

quantization procedures, one hopes that if 6 is chosen sufficiently small, the infor­

mation loss is acceptable. Note that our quantized pdf V[z] still would require an

infinite amount of storage unless we imposed another condition, namely that V[z]^

is negligible outside some interval k e [/fiow) .fChigh]- This is easily the case for ran­

dom variables that represent log-likelihood values; if our (non-zero, finite) likelihood

ratio p/q is represented as an IEEE format double-precision number, it is simple to

show that the log of that ratio must always satisfy

|log(p/g)|< 708.3 (5.2)

and we can always represent the edge cases p/q = 0,p/q = œ h y setting log(p/g) =

f708.3, respectively. For other sorts of random variables, such as, e.g., z Gaussian,

we can pick Ffiow, .K’high sufficiently far out to include, say, ten sigmas worth of

deviation about the mean and consider as negligible the pdf values outside that

range. (Note: in [15], the author implicitly assumed throughout that all pdfs were

constrained to the same range, with Kiov, = - / f / 2 ,/fhigh = K/2 - 1 for some

even integer K. We find it convenient, and not much more complex, to allow the

possibility that /£'io„ and /fhigh may be different for different pdfs.)

Note that since we assume our random variable z must be somewhere in the

range delimited by the K\ov, and /fhigh numbered intervals, i.e..

2 € K \ o v ,5 - - , K h i g h S + -

73

(5.3)

we must always have

E ^ 1 4 = 1 (5.4)
[/Clow,if high]

Some further notation: let

c{k) =k5 VA; 6 Z (5.5)

be the center of the A;th interval and

C{k) =

be the Acth interval itself. We also let P = [0,1]“ denote the set of all possible

quantized pdfs.

Given any two independent random variables z and w whose pdfs P[z] and V[w\

are known, we can find the pdf of their sum, difference, or any other dyadic function

of the two variables. Consider the case of their sum z + w. Then by the definition

of the quantized pdf, we have

P[2 + = P[z +10 G G(i)] (5.7)

To evaluate these probabilities exactly we would need the details of the shape of

the pdfs of z and w inside each little interval C{i). However, for small 5, we can

approximate things by assuming all the probability density in each interval of each

pdf is at the center of the interval c{i) (i.e., we are approximating Pz{z) as

Pz{z) « - c{i)) (5.8)
:

and similarly for Pu,(w). Given this, and the assumption that z and w are indepen­

dent, we have

?[2-t-io]. « ^ 'P[z]j'P[w]k ■ (5.9)
(j.*):c(j)+c(fc)eC(i)

74

We can handle other dyadic functions of random variables similarly, e.g.,

V[z - w]. « ^ 'PiAj'PMk (5.10)
(j,*):c(j)-c(fc)6C(i)

and

?[max(z,w)]j % ^ 'PiAj'PMk ■ (5.11)
(j,fc):max(c(i),c(fc))eC(i)

We shall find it convenient to define operators combining a pair of pdfs, e.g., the +

operator combines Viz] and P[tü] as follows:

V[z]+'P[w\ = P[z + w] (5.12)

and similarly we can define —, mæc, etc., in the obvious fashion.

5.2. Analyzing LDPC Code Decoding with Den­

sity Evolution

We are now ready to start analyzing the behavior of the pdfs of the variables in the

belief propagation decoder as the decoder proceeds through its iterations. We start

by assuming, without loss of generality, that the transmitted codeword is the all-zero

codeword. This is valid since, given any codeword x satisfying (3.1), we can set up

a one-to-one equivalence between the behavior pattern of the LDPC decoder with

a priori likelihoods L(pi) and the behavior of the decoder with inputs (-l)®‘L(pj).

To see this, consider the various steps of the log version of the LDPC decoder (i.e.,

(3.32), (3.33), (3.34)). Suppose we replace our initial L{pi) values with

Lfe) = (-1)"I(P() (5.13)

75

Then in the first step of the algorithm instead of the original L{qji) we get

= % = (5.14)

Now consider (3.32). Instead of the original L{rji) we now get

L{rji) = 2tanh“M tanh(L(g^fc)/2) j
\ k m m)

= 2tanh“M J][(-1)“* tanh(L(gj*)/2) j (5.15)
J

But since x is a valid codeword, the set of all the Xi bits that participate in any

check must have even parity, so

n (- 1) ' * = 1 (5.16)
k€N{j)

and hence

so we have

J J (-1)^* = (-1) '' (5.17)

Li'^ji) = (-l)" '‘2tanh~^ I J J tanh(L(g;i)/2)
\k€N U)\i

= (- l) " I (r j ,) . (5.18)

76

But given that, the next iteration’s set of L{qji) and L{qi) will, given the new inputs,

become

HQh) = L{pi)+ ^ L(rfci)

keM{i]\j
= i - i rL{q j i) (5.19)

and similarly

m . (5.20)

Hence, given any set of initial a priori likelihoods L(p,) with known decoding behav­

ior, and some codeword x, we can find an equivalent set of initial likelihoods Z(p,)

whose decoding behavior is identical to that of the L{pi) except that all messages in­

volving bit i are multiplied by (-1)®‘. If the original set of likelihoods corresponded

to the transmission of codeword x and decoded successfully to the codeword x, then

sgn(L(ft)) = (-1)" (5.21)

and hence the new likelihood values would obey

sgn(ZW) = (-1)" (-1) '" = (-1)° (5.22)

and hence would decode to the all-zero codeword. Hence, given the situation that

any codeword x was transmitted, we can find an equivalent situation (an equivalent

set of likelihoods) corresponding to the case of the all-zero codeword. We can hence

assume the codeword is all-zeros without loss of generality, as we said earlier.

We are now ready to see how to model the behavior of the LDPC decoder by

looking at probability densities of the various variables involved. Let us define a

77

bit of notation to simplify things. We shall, following [15], call the messages from

variable nodes to check nodes % for some k = 1,2,__ This means that each Vk

is equal to for some pair j,i] we assign indices to each of these messages

in an arbitrary fashion. Similarly let the Uk be the various messages L(rji) from

check nodes to variable nodes. We assume that these % and Uk variables are all

independent random variables. (This is not, strictly speaking, the case, but to a

good approximation we can assume it to be true as we consider larger and larger

networks of nodes, in the limit as N co.) We also assume that the nodes are

connected randomly, with given densities A, telling what fraction of variable nodes

have i check node neighbors and p, telling what fraction of check nodes have i

variable node neighbors. We also assume that our initial a priori likelihoods L(pi)

are independent with pdf P[T(p)].

Suppose we know the pdf 'P[v\, which we assume is the pdf of any random one of

the Uk variables. We wish to find P[w], the pdf of some random %, i.e., the message

from some random variable node. If vq is the output of a variable node of degree

i receiving messages uo, ui, Us,..., from its i check node neighbors, and if we

assume that vq is the message going back to the same check node that gave us the

Uo message, we have by (3.33)

1-1

uq = L(p) + ^ Ufc (5.23)
&=1

where L(p) is the a priori likelihood associated with that variable node. Since we

have assumed the u* all have pdf V[u\, and are independent, we must have

V[v,]=V[Lip)]+V~\V{u]) (5.24)

78

where the iterated operator on pdfs +* is defined in the obvious fashion as

if % = 1
+ m) = _ , \ . (5.25)

^+* (?[%]) j if * > 1

Since we wish to find the pdf of any random v of any random degree, we have

to average over all possible degrees i, weighting by the probability A,- that we are

dealing with a variable node of degree i. This gives us

= YL^iP[L{p)]++'~ {Viu])
1=2

00

= V[L{p)]+'^XiV~^ {V[u]) (5.26)
i=2

where addition and scalar multiplication of pdfs are done in the obvious (point-by-

point) way. Note that since A, = 1, the sums above preserve the property that

the pdfs are normalized, i.e., that for a variable x,

£=—00

We can make our equation simpler by define a new function A : P -> P on pdfs

A {V[x])i = J] Ai (V'^V[x]j^ (5.28)
1=2

which gives us

V[v] = V[L{p)]+X{V[u]) . (5.29)

We now compute the pdfs of messages coming out of the check nodes. Consider a

check node of degree i with an output uq and inputs from its variable node neighbors

79

v q , V i , . . . , V i - i - Prom (3.67) we have

t-i
«0 = Tlv). (5.30)A=1

where the function Tl{a,b) is as defined in (3.66). Note that, as we explained in

Chapter 3, in the case of max-product decoding we use the function M{a, b) instead

of %{a,b)-, this is the only difference between the max-product and sum-product

variants of the LDPC decoder. Anyway, we can now derive the relationship between

the pdfs of Uo and the u,:

V[uo] = n'~^V[v] (5.31)

and, as before, generalize to the case of nodes of random degrees:

00

V[u] = Y ,P i ^ '~ 'P M ■ (5.32)
:=2

As before, we can define a function on pdfs p : P -> P as

P m) e = 'E P i{^ '~ ' 'P M)^ (5.33)
t=2

which lets us rewrite ?[u] as

P[u] = p{V[v]) . (5.34)

We need one final pdf relationship: we need the pdf of the pseudo-posterior

probabilities L(%). We can find V[L{q)] as follows: since the pseudo-posterior prob­

ability associated with a variable node is just the message Uj from that node to a

check node neighbor, plus the check-to-variable message that we did not include in

80

the computation of we have that

L[qi) = Vi + Ui (5.35)

where Vi is the message from the variable node to a check node, and ui is the previous

message from that check node to the variable node. Hence, we have

'P[L{q)] = V[v]+V[u] . (5.36)

Since we assumed an all-zero codeword, the probability that the decoder has decoded

a given bit incorrectly is just

P[L{q) < 0] = (E (5.37)

(the V[L{q)]j2 term is there because the interval C(0) is half below and half above

zero).

We are now ready to do density evolution to estimate the probability of error

for decoding an LDPC code of given A,-, p,-. We do this via a repeated iteration

of computing pdfs analogous to the repeated iteration of the steps of the LDPC

decoder. We proceed as follows:

1. Initialize the pdf of check-node messages as

V[u\ = (5f,o (5.38)

which corresponds to the messages Uj being identically zero. (This is not quite

the same as the initialization

L{qji) = L{pi) (5.39)

81

we used back in our description of the algorithm in Chapter 3, but initializing

all the check-node messages L(rjj) = 0 leads to L{qji) = L(p,) after the next

application of (3.33).)

2. Compute V[v] from (5.29).

3. Compute VlLlq)] from (5.36).

4. Compute the probability of error Pg = P[L{q) < 0] from (5.37).

5. Compute the next V[u] from (5.34).

6. Go back to Step 1 and repeat for as many iterations as one’s LDPC decoder

is set to run.

5.3. Computing Thresholds

As mentioned in the beginning of this chapter, we often want to compute a so-called

threshold value for a given LDPC code; the higher the threshold value, the higher

the noise in the channel has to be before we start getting errors in the decoder. Here

we explain how to compute thresholds for LDPC codes used over AWGN channels.

First, in order to do any performance evaluation of LDPC codes over AWGN

channels, we need to figure out what the pdf of the initial likelihood values P[L(p)]

is. Assume that our bits r, are converted to bipolar form and sent over an AWGN

channel with noise variance i.e. the channel output is

Vi = (-1)*' + r i i r i i ' ^ N{0, cr̂) . (5.40)

82

By the definition of the log-likelihood ratio, we have

P{xi = 0|j/i)L{pi) = log

= log

= log

P{xi = l\yi)
Pjyil^i — 0)
P{yi\xi = 1)
exp (-(% - l)7 (2 g ^))

exp(-(î/e + l)V(2o‘̂))
- 1) ̂ {yi_+1)̂

2a 2 2a 2

2%
0-2

(5.41)

Now if we transmit an all-zeros codeword, then y,- ~ N{1, a^) , so we have that L(p,)

is Gaussian too, with

(5-42)

Given the above pdf, we can use the density evolution algorithm to estimate

the probability of error for an LDPC code with given parameters Xu pi at any noise

level 0-2. We define the threshold as the value of cr̂ for which the probability of

error is 10~®. This definition is somewhat arbitrary (we could have picked another

value other than 10“®), but the exact definition turns out not to matter too much.

Chung [15] uses a slightly different definition, but we find this one somewhat easier

to compute with; to find the threshold, we do a binary search on values of cr̂ until we

find one which leads to a Pg of approximately 10“®, and take that as our threshold.

83

Chapter 6

Computing Soft BER Estimates

84

In recent years, there has been a great deal of interest in two closely related types

of powerful error-correcting codes: turbo codes [14], an low-density parity-check

(LDPC) codes [5], [6j. Due to the complexity of decoding LDPC codes or turbo

codes, those who wish to evaluate the performance of their codes are faced with

the problem that Monte Carlo simulations become more and more computationally

expensive if one is interested in the behavior of the code for lower and lower bit

error rates (BER). Recently Hoeher et al. [18] suggested a way to handle this

problem, through the use of what one might call “soft error estimates” or “soft

BER estimates” which allow the estimation of bit error rates in simulations where

the traditional Monte Carlo computation of BER gives too few simulated bit errors

to be of use; Hoeher also discussed their applicability to the simulation of turbo

codes. In this chapter we discuss the applicability of Hoeher’s method and other

soft error estimation methods to performance evaluation of LDPC codes on AWGN

channels. We present theoretical reasons why the Hoeher method should work well

in this situation, but find problems with the technique in actual use.

6.1. Soft Error Estimates

Consider the typical case of a turbo or LDPC code being used over a memoryless

channel: we send coded bipolar bits f/j 6 {-1,1} over the channel and then use the

received channel outputs yi to compute initial log-likelihood ratios

Then the decoding algorithm operates iteratively on the log-likelihood values to get

final log-likelihood values for each bit. In traditional Monte Carlo simulations one

85

hard-decodes the Li output from the decoding algorithm as:

Ùi = sgn(Li) . (6.2)

and then compares the hard decoded bits t/j against the original input bits Ui\ the

estimated BER is the fraction of Ùi that do not match the original Define

Wi = l - 5{Ui^Ûi) where Wi is 1 if there is an error at bit i; then one estimates the

BER by
1 "

Peii.^i)=W = - J 2 ^ i (6.3)

where W is the arithmetic mean of the Wi.

In [18], Hoeher et al. noted that since Li is the decoder’s estimate of the log-

likelihood ratio between the probabilities of the symbol being +1 or -1 , then an

estimate of the probability of error at bit i is

= i T i ; ^

and one can estimate the overall BER by averaging the Z,- gathered from a group

of simulations of the decoder:

1 ^
Peisoit) = E[Z] « Z = — ^ Zi (6.5)

%=1

where Z is the arithmetic mean of the observed Z, samples.

This results in a soft error estimate, as opposed to the “hard error estimate”

from hard-decision simulation. This technique was called Method 2 in [18].

This procedure intuitively seems like it should give a good estimate of the BER.

In [18], Hoeher et al. proved that this is a valid estimate when used on the initial

Li (i.e., for the uncoded channel) and asserts that this is the case for the Li after

86

turbo decoding. We now look into the case of the Li outputs from LDPC decoding.

6.2. Density Evolution and LDPC Decoding

As mentioned in Chapter 5, the density evolution method of Richardson and Ur-

banke [17], [15] is a powerful technique for modeling the behavior of the LDPC

decoding algorithm. For any given class of LDPC codes, it provides a ways to esti­

mate the probability density function of the sum-product decoding L, values under

the assumption that the all-+l codeword is sent. (Assuming a symmetric channel,

we can assume this without loss of generality, as for the case when —1 is sent the

Li distribution will just be the appropriate mirror image.)

In [15], [19], it is argued that for LDPC sum-product decoding with an AWGN

channel the Li are, to a very good approximation, Gaussian random variables with

the property that their variance is twice the mean, i.e., Li ~ N{mi, 2m,) for some

m,-. Given this, we can readily show that

and hence

1
= r e x p (- (^) < f c
y J o V 4mi Jy/4nmi

= PiiLi CO) ==jP (6.7)

87

and hence that estimating E[Z^ gives an estimate of the probability of error.

As it happens, one can generalize the previous proof and show the validity

of E\Zi\ as an estimate of Pg without the assumption of Gaussian distributions

N{mi,2mi) for the likelihood ratios, which, as mentioned in [15] and [19], is only

a good approximation anyway. All one really needs is the lesser condition of expo­

nential symmetry, i.e., that the pdf of the Li, pi{£) satisfies

P l {£) = e x p (^) p i (- ^) . (6 .8)

This condition is true for the initial log-likelihood values from the AWGN channel;

since the initial values are Gaussian, this is equivalent to the condition that the

variance of the log-likelihood values is twice the mean. In [17], Richardson and

Urbanke show that exponential symmetry is invariant under iterations of sum-

product decoding, so if the initial log-likelihood values have exponential symmetry,

so will the final values.

Given exponential symmetry for the final log-likelihood values Li, we have

= r p i { - t) d i
Jo

= P{Li < 0) = Pg (6.9)

and hence whenever we have exponential symmetry, E[Zi] = Pg and the soft error

estimates of E[Zi] are still valid estimates of the bit error rate. Hoeher et al. [18]

give a similar proof for another BER estimation technique, which they call Method

3 and which is closely related to the Method 2 we examine here.

88

Given that the technique of density evolution is available to us, the reader may be

wondering why one would bother with simulations at all, with or without soft error

estimates, if one can directly compute pdfs of the Lj and expected Pg values for any

given SNR? The answer lies in the fact that density evolution only applies to a class

of LDPC codes; if one is interested in the behavior of a specific code of a specific

given length, one has no choice but to simulate the code or try to use some sort of

bounding technique. Also, the density evolution techniques, strictly speaking, apply

only in the limit of infinite code length; they neglect the effects of finite code length

or of four-cycles in the code, which can greatly effect the performance of LDPC

codes.

6.3. BER Variances

We have presented two different methods of estimating the BER for a system em­

ploying LDPC codes, the traditional hard estimate Pe(hard) = in (6.3) and the

soft estimate Pe(soft) = Z in (6.5). The question naturally arises as to just how good

either of these estimates actually is in practice. To answer the question, we look at

the variances of W and Z.

Prom the standard Bernoulli distribution, we can easily compute

Var[Wi] = P e { l - P e) . (6.10)

Note that for most common values of Pg we can approximate Var[Wi] by Pg without

difficulty. The variance of Zi is defined as

Yar[Zi] = E[Zf] - E[Zif . (6.11)

This is difficult, if not impossible, to compute analytically from the assumed Caus-

8 9

sian distribution of the Li but can be computed numerically (as we do below in a

couple of examples). Alternately, if one is doing a simulation of an LDPC system

with soft error estimates, one can take the observed Z, values and compute the

observed sample variance and take that as an estimate olVar[Zi\.

With either the hard or soft error estimates, given the variance of the individual

values (yar\Wi\ or Var[Z,]), we can compute the variance of the final estimates

(Var[W] or Nar[Z]). Assuming that the W,- and Z{ are independent and identically

distributed, we have

W a r m = (6 .12)

and

Yar[Z\ = Var[Zi]lN . (6.13)

It is reasonable to measure the “goodness” of one’s BER estimate by comparing the

squared estimate to the variance. One can define signal-to-noise ratio (SNR) values

■on the estimates as follows;

SNR,,A = lOlo&o (6.14)

and similarly define SNRhard based on W. The higher these SNRs are, the better

the estimate.

6.4. LDPC Max-Product Decoding

Often, for efficiency reasons, one decodes LDPC codes with the computationally

less expensive max-product algorithm instead of the sum-product algorithm. The

question that comes to mind immediately is: Does the E[Zi\ soft error estimate still

have any validity in the case of max-product decoding? Our previous proof depends

90

on the exponential symmetry property, which is not preserved by max-product

decoding; in fact, no algorithm for LDPC decoding other than the sum-product

one can preserve exponential symmetry [15]. Given this, let us try examining some

sample code classes under max-product density evolution and see how compares

to E[Zi] for these codes.

Table 6.1 shows the Pe and E[Zi\ values computed for various values of the

AWGN noise variance via max-product density evolution for a rate 1/2, regu­

lar, column weight 3 LDPC code. We see that the soft error estimates are of the

same order of magnitude as the true Pe values, with the soft error estimates being

consistently low by a factor of about 0.6. This deviation is due to the likelihoods

from the max-product decoding deviating from exponential symmetry; the results

are still approximately Gaussian, but the variance, instead of being twice the mean,

is a bit over 3 times the mean. In principle, if the amount of deviation from expo­

nential symmetry (i.e. the ratio Yar[L]/E[L]) were known, one might be able to

modify the soft error estimates to compensate for this. A relatively straightforward

modification of (6.6) for the case where L ~ N{m, km) {k not necessarily equal to

two) shows that replacing Z, with

1 -f-exp(2|L;|/t)

results in an E[Zi] equal to Pg.

Table 6.2 shows similar results done with the parameters from a rate 0.94 column

weight 3 code used in [9|. Here the soft error results are low by a factor of about

0.8 compared to the true Pg.

91

Table 6.1: Max-product Pe vs. E[Zi\,Var[Zi\ results for rate 1/2 code

cr Pe E[Zi] Var[Zi]
0.675500
0.675510
0.675520
0.675530
0.675540
0.675550
0.675560
0.675570
0.675580

1.31883e-05
0.000388843
0.00325519
0.0124999
0.0296471
0.052169
0.0762037
0.0989503
0.119094

8.1168e-06
0.000240111
0.00201763
0.00777371
0.0184918
0.0326394
0.0478456
0.0623723
0.075378

2.01004e-06
5.97675e-05
0.000503232
0.00192095
0.00445555
0.00756955
0.0106113
0.0132178
0.0153027

Table 6.2: Max-product Pe vs. E[Z^,Var[Z^ results for rate 0.94 code

Pe E[Zi] Var%]
0.189900
0.189910
0.189920
0.189930
0.189940

2.98467e-07
0.00372522
0.0417915
0.0900744
0.123619

2.57098e-07
0.0031545
0.0338486
0.0704572
0.0949367

5.85325e-08
0.000731127
0.00737187
0.0138307
0.0172159

9 2

MâX'PfOduet Oacodino
0,1

0.001

Figure 6.1: Max-product decoding simulation results.

6.5. Experimental Results

Here we present some results from simulations of the rate 0.94 LDPC code on the

AWGN channel, with curves plotted of both the BER (i.e. Pg) and the soft error

estimate E[Z]. Fig. 6.1 shows a plot of BER and E[Z] vs. SNR for the case of

max-product decoding; Fig. 6.3 shows similar results for sum-product decoding.

We also examine the variances of these estimates by plotting the SNRs for both the

hard and soft estimates as defined in (6.14). The plot for the sum-product case is

given in Fig. 6.4; similarly, the plot for the max-product simulations is given in Fig.

6 .2 .

In the sum-product simulation case we see in the figures reasonably good agree­

ment between the hard and the soft error estimates down to input SNRs of 7.5 dB.

This corresponds to the behavior we see on the SNR graphs where the SNR for the

hard estimate starts going down markedly around 7.5 dB. We see similar behavior

for the max-product decoding simulations around input SNRs of 7.75 dB. With the

soft error estimate SNR curves, we see the SNR start to decline at around 9.5 dB

for the sum-product case and around 9 dB. If we set a threshold of 20 dB as the

limiting estimate SNR below which we no longer consider our estimates to be useful

93

SNR of BER and E|Z1 M thnalaa

SO

40

a

0
107

Figure 6.2: Max-product decoding simulation SNR values.

Sum-PieduM Daceding

§

SNR

Figure 6.3: Sum-product decoding simulation results.

94

6NR ot BER tn d E |Z | M UimlM

40

!»
I

6 7 0 10
6NR(inpui)

Figure 6.4: Sum-product decoding simulation SNR values.

(this corresponds, in the hard-estimate case, to the traditional rule-of-thumb that

one wants at least 100 bit errors to appear in one’s simulations), we see that in the

sum-product case we hit that threshold at 7.75 dB input SNR for the hard estimates,

and 10.5 dB input SNR for the soft estimates. Similarly, for max-product decoding

we hit that threshold at around 7.8 dB for hard estimates and around 10.6 dB for

soft estimates. Just looking at the SNR curves would lead us to expect that the

soft estimates were ■valid out to this point (10.5 dfi for sum-product, 10.6 dfi for

max-product). However, the peculiar shape of the E[Z] curves leads us to suspect

that these soft estimates are not, in fact, valid throughout this range and, in fact,

start having problems even before the hard estimates become unreliable.

6.6. What Went Wrong?

Obviously something is amiss in the reasoning that lead us to the use of these soft

estimates E[Z]. The proofs above used one of two assumptions, that the L values

were Gaussian with variance twice the mean, or that the L pdf had exponential

symmetry. As we show by examining graphs derived from the L values from various

LDPC max-product decoder runs, these assumptions do not seem to be valid for

95

the actual decoder outputs. Figs. 6.5, 6.6, and 6.7 show histograms of the observed

L values from simulation runs of max-product decoding of the aforementioned rate

0.94 LDPC code at SNRs 7dB, 8dB, and 9dB. Also plotted on the graph are the

“ideal” distributions derived from fitting a Gaussian distribution to the observed L

mean and variance. (Note that since the actual simulation used words with both

zero and one bits, i.e., Ui = -fl or Ui = —1, our observed L distributions would

actually be expected to be the sum of two Gaussians with the same variance and

means at ±m for some m. The graphs below reflect this.) Note that the observed

L distributions look roughly Gaussian, but with some noticeable deviations from

the Gaussian ideal. Chi-square tests confirm this; Table 6.3 shows results of chi-

square tests against the Gaussian assumption. The table shows that the observed

L values fail the test of Gaussianity, and do so overwhelmingly. Similar results for

sum-product decoding are shown in Table 6.4.

As for the assumption of exponential symmetry, that seems not to hold either.

Fig. 6.8 shows a plot of the observed ratio of pdf values p{L)/p{—L) versus the

value expected from exponential symmetry, exp(L), for the L values observed from

max-product decoding of our code at SNR 7dB. As we can see, the observed ratio

deviates noticeably from the exponential symmetry condition. (To avoid some minor

complications resulting from the presence of L values corresponding to both original

zero and one codeword bits in our distribution, this graph was computed using just

the L values corresponding to zero bits. A similar test with just the - L values from

the one bits produced an essentially identical graph.)

6.7. Alternate Methods for Soft Error Estimation

In this section we consider some alternate techniques for soft error estimation, and

attempt to apply them to the same max-product LDPC decoding situation. As we

96

Table 6.3: Chi-square test of Gaussianity for L values from max-product decoding

SNR (dB) Degrees of freedom
7 21 156632

7.5 85 175633
8 85 203034

8.5 85 158901
9 85 114304

9.5 85 516728
10 85 1.18226 X 10®

10.5 85 4.48140 X 10®
11 85 10655.8
12 85 8742.39
13 85 8755.16

Table 6.4: Chi-square test of Gaussianity for L values from sum-product decoding

SNR (dB) Degrees of freedom x '
7 5 2126.73

7.5 62 110532
8 85 581551

8.5 85 227562
9 85 91071.7

9.5 85 525756
10 85 1.17160 X 10®

L PDF lor SNR 7

Figure 6.5: Histograms of observed L distributions versus ideal dual-Gaussian dis­
tribution for max-product decoding at 7dB SNR.

9 7

L PO F Io fS N R B

>100 -60 4Q -40 >20 0 20 40 «0 00 100
L

Figure 6.6: Histograms of observed L distributions versus ideal dual-Gaussian dis­
tribution for max-product decoding at 8dB SNR.

ObMTvadPDP ' ■ * —

I

•100 • a O - 0 0 ' 4 0 ' 2 0 0 20 40 60 00 100L

Figure 6.7: Histograms of observed L distributions versus ideal dual-Gaussian dis­
tribution for max-product decoding at 9dB SNR.

98

O bw nrad p(L)ÿ(4.) POP rilio v*. *%pom#md«P#ymm#Me vtkM #1 SNA 7

tO

2 12

Figure 6.8: Plot of p(L)/p(-L) showing (lack of) exponential symmetry in the pdf
of L.

shall see, the results are not a noticeable improvement over the results from the

Hoeher method.

6.7.1. Generalized Gaussian Distributions and Asymmetric

Generalized Gaussian Distributions

Since our assumption that the L values are well described ty Gaussian distributions

was shown by the chi-square test to be invalid, perhaps modeling the L pdf by

another distribution will provide more useful results. At the same time, since the

observed distributions look somewhat similar to Gaussian distributions, we should

pick distributions which also look this way. In this case, we attempt to model the

L distribution with so-called generalized Gaussian distribution (GGD) [20],

[21] or asym m etric generalized Gaussian distribution (AGGD) [22]. Both

these distributions reduce to the Gaussian distribution with appropriate choices

of parameters. In addition, since Yang et al. [21] had some success with using

generalized Gaussian distributions to model the likelihood values in turbo decoding,

we hoped that similar techniques would be helpful in the LDPC decoding case. The

99

generalized Gaussian distribution is characterized by parameters n, a, a and has the

form

f{x\ fl, a, a) = 2^r{l/a) ^ (616)

where the function 77(a) has the form

Note that when a = 2 this distribution reduces to the Gaussian distribution. fi

and are the mean and variance of the distribution, as usual, and a controls the

broadness of the curve, and is related to the kurtosis of the distribution, which we

shall call k:
E l{x - I ,)<] r (5 /g)r (l/»)

r(3/a)2 ' ()

To compute a GGD-based soft error estimate given a set of observed likelihoods

Li from an LDPC decoding simulation run, one proceeds as follows:

1 . “Normalize” the X,- by computing firom them the values

Li = LiUi . (6.19)

This amounts to flipping the sign on Li values corresponding to one bits. By

our hypothesis, the Li values should be GGD distributed.

2. Estimate the mean f i , variance a^, and kurtosis k from the X, in the obvious

way.

3. Solve (6.18) to find the value of a which gives the observed kurtosis k.

4. We now have all three parameters of our GGD distribution. Our estimate of

100

the BER is just

^*e(soft,GGD) = [f{x] cr, o)dx . (6.20)
J —00

The asymmetric generalized Gaussian distribution [22] is a relatively straightforward

extension of the GGD; instead of a single value, there are both left and right

variances a\, a \ which are estimated from the data in the obvious fashion

N

^ Ç { L i - t i f

1
* TV*

1 "
cr% = ^ {Li - fi)^ (6.21)

* i=l,Li>n

where Nl ,N r are the number of L,- values less than/greater than /i, respectively.

The pdf for the asymmetric generalized Gaussian is

fix; (Tl , Or , a) = <

exp ~ M)Kr) % %< P
. (6 .22)

When ai = or, this distribution reduces to the GGD. As Tesei et al. argue in

[22], although the equation (6.18) strictly speaking only holds for the GGD case,

in practice it is a suitable approximation even when ai ^ or and thus can still be

used to estimate the parameters of the asymmetric GGD.

Fig. 6.9 shows the results of the GGD-based soft error estimates and Fig. 6.10

shows the results of estimates based on the assumption of an asymmetric generalized

Gaussian distribution. As can be seen from the plots, we still have the peculiar

distortion of the curve around SNRs of 8 dB that we saw with Hoeher’s method.

101

M U 'Preduel Decoding

B E R --------

§

5NR

Figure 6.9: Plot of BER and generalized Gaussian distribution soft error estimate
for max-product LDPC decoding.

Mii*PraduelDoooding

g

SNR

Figure 6.10: Plot of BER and asymmetric generalized Gaussian distribution soft
error estimate for max-product LDPC decoding.

102

6.7.2. Tail Extrapolation

This technique for soft error estimates is a modification of one originally presented

in Jeruchim et al. [23]. The idea is as follows: assume that our variable L, what

Jeruchim et al. call the “decision variable”, is GGD distributed, and assume we

have on hand an estimate of the mean fx. Let us define the function

p{t) = P{L < (1 - 1) V (> 0 . (6.23)

Note that the probability of a bit error is P(L < 0) = piix). Then they show that

in the limit of large t, the curve of log(- logp(<)) versus logt approaches a straight

line, i.e.,

log(-logp(t)) « m lo g t + 6 as t - ¥ o o (6.24)

for some m, 6 G K. This allows us to compute a soft error estimate as follows:

1. Estimate the pdf of the Li for the zero bits from the histogram of the observed

Li. Compute a separate pdf for the -L i values from the one bits. (Jeruchim

et al. [23] argue that one’s decoder may perform differently for zero bits

as opposed to one bits, so one should really assume that the two may have

different pdfs and carry through the computation for both cases independently.

2. From the pdf for the zero-bit case, compute p{t) values.

3. Perform a least-squares fit on some of the last log(- log(p(t)) versus logt pairs

we have to get estimates of m, b. We are being a bit vague here as to which

or how many points we wish to fit, as the user obviously has a good bit of

freedom to choose here, and what choices are made may affect the quality of

the result. Obviously one wants to use p{t) values for t as high as possible, to

be sure that we are in the linear region of the curve, but on the other hand

such values are from parts of the histogram where we have relatively few data

103

points, so we have a trade-off here.

4. Extrapolate the line y = mx 4- b out to a: = log^ and compute

Po =exp(-exp(m log/i-f 6)) (6.25)

This is our soft error estimate for the zero bit case.

5. Repeat the whole procedure with the pdf for the one bit case to get P\, and

take our final soft error estimate to be

■Pesoft = ^ (6.26)

Fig. 6.11 shows the performance of the tail-extrapolation soft error estimation

technique; in this case three p{t) points were used for the least-squares fit, starting

at the point t = p - L where the histogram counts exceeded 100. As can be seen, the

curve still shows the sort of anomalies we have seen before. Perhaps looking at some

actual log(— log(P)) versus log(t) curves will illuminate the situation. Fig. 6.12 has

such a plot for an SNR of 7 dB. The plot shows the curve from the observed data,

the least-squares line fit to the large-t end of the curve, and the point corresponding

to the true BER value (i.e., at x = log/x and y = log(- log(BER))). In this case,

the tail extrapolation works well, and the extrapolated log(— log(P(t))) hits the true

BER value nicely. At an SNR of 8 dB, however, things are different, as we can see

in Fig. 6.13. The least-squares line still matches up well with the large-t part of the

curve we see, but the true BER is fairly far off the least-squares line, causing us to

give a poor soft estimate in this case.

Perhaps trying a higher order least-squares curve fit (e.g., quadratic) will work

better; after all, the assumption that the curve eventually becomes linear was based

on the GGD assumption, which as we saw from the GGD estimates we attempted

104

M u'P ioduc i Dacodtng

B ER --------

I

Figure 6.11: Plot of BER and tail extrapolation soft error estimate for max-product
LDPC decoding.

in Figs. 6.9 and 6.10 is a rather suspect assumption. After various attempts with

different choices of curve-fitting order, number of points, etc., we got Fig. 6.14, which

was derived using a quadratic fit on 14 points on the curve starting at the point

where the histogram count goes above 1000. The results are still not encouraging.

6.8. Conclusion

We tried various techniques for creating “soft” estimates of the bit-error-rate that

would work at higher SNRs than those for which the BER from traditional Monte

Carlo based simulations goes to zero. These techniques were based on various as­

sumptions about the pdfs of the likelihood values Li output by the LDPC decoder.

Although the L{ pdf looks Gaussian, these techniques based on the assumption of

the distribution being Gaussian or some sort of generalized Gaussian have failed

to perform satisfactorily. The exact nature of the Li pdf still remains a bit of a

mystery, one worthy of future research.

105

M u c P n d u e l O tcodine SNR 7

5
L##*k5qumf## •••“

, Known K R pok* »

2.52 0.5

Figure 6.12: log(-log(P)) versus log(f) plot for max-product decoding at SNR 7
dB.

Mu-Pfoduet Oaeedbe SNR 8

2

i:

•5

0.5 1.5 2 2 5 3 3.5

Figure 6.13: log(-log(P)) versus log(t) plot for max-product decoding at SNR
dB.

106

M ai'P raduet Decoding

a

■10

Figure 6.14: Plot of BER and quadratic tail extrapolation soft error estimate for
max-product LDPC decoding.

107

Chapter 7

Computing Information Capacity

of PR Channels

108

In studying the performance of codes over partial-response channels, it is helpful

to have, as a basis for comparison, information-theoretic bounds on the best possible

performance possible for any code when used with that channel. Such bounds

are readily computable from the Shannon information capacity of the PR channel.

Computing the capacity of such ISI channels has traditionally been problematic,

with only loose bounds on the capacity of the channel being available. However,

recently Arnold and Loeliger [24] developed a method for estimating the capacity of

a PR channel with relative ease, and interestingly enough their technique involves

doing simulations with a modified version of the BC JR algorithm which we presented

in Chapter 2. Below we explain the Arnold-Loeliger technique and show how to

estimate the capacities of PR channels and derive curves of the best possible bit-

error-rate versus signal-to-noise ratio.

7.1. The Arnold-Loeliger Algorithm

Consider our standard model for the PR channel with added white Gaussian noise,

as we considered it in Chapters 1 and 2, mapping inputs x{t) to outputs z{t):

L
z(t) = ^ gkx(t - k) + N(t) N(t) - N(0, (7.1)

&=o

where N(t) is white Gaussian noise. Define the vectors z" = [z(0), z (l) ,. . . , z (n -l)]

and x" = [r(0), z (l) , .. , ,x(n - 1)] for any positive integer n. One can define the

entropy of these vectors in the standard way, e.g.,

h(z") = f -p(z") logp(z")dz" (7.2)
JzngRn

109

where p(z“) is the joint pdf of the variables z(0),. . . , z{n - 1) that constitute the

vector z". One can define conditional entropies similarly, e.g.

/i(z"|x") = f -p(z"|x")logp(z"|x")dz" (7.3)

We also will find useful the notion of average entropy per unit time, which we

compute in the limit as n approaches infinity as

h{z) = lim (7.4)
n-*oo n

and we may define h{z\x) in the same fashion. We are interested in finding the chan­

nel capacity, how many bits of information we can get from one side of the channel

to the other per unit time. The channel capacity is just the mutual information

I{x-,z) = h{z) - h{z\x) . (7.5)

To find the channel capacity, we must be able to find both h{z) and h{z\x).

7.1.1. Computing h{z\x)

Computing h{z\x) is relatively straightforward, since the conditional pdf p(z“ |x")

turns out to be quite simple. If we are given a known vector x“, then the probability

distribution of the z" vector is completely determined by the noise vector N" =

[n(0),. . . , n (n - 1)]. Since

N{t) = z { t) ~ Y ^ gkx{t - k) (7.6)
A;=0

no

n — 1

we can compute the conditional probability as

p(z"|x“)= p (N ") = n<^(iV(t)) (7.7)
t—Q

where <j>{N) is the Gaussian pdf

Since the random noise variables N{t) are all independent, we find that the condi­

tional entropy /i(z"|x") is just

/i(z"|x") = f -p(z"|x")logp(z"|x")dz"

= f -p(N")logp(N")dN" (7.9)
JN"eR’*

If n = 1, we just have

h{z \̂x)̂ = r -ct>iN{0))log<t>iNmdNiO)
J —00

= j -<t>{N)\og<f>{N)dN

= j " + <f,{N)N-dN

-
1 4- log 2itcr'̂

(7.10)

Now if n > 1, we have that

p(N") = p(N"-^)ÿ(N(n - 1)) = p(N"-')<A(iV) . (7.11)

111

For notational convenience we shortened N{n — 1) to just AT; note that this means

that N" = [N"“ |̂AT]. We now have

h(z"|x") = f -p(N"-^)^(iV)log(p(N"-^)(^(Ar))dN“-^diV

= f - p (N " - ^) 0 (W) l o g p { N " - ^) d N " - ^ d W
yN“6R"

+ [-p(N"-^)^(W)log^(iV)dN"-^dW . (7.12)

Call the two integrals in the previous equation Hi and H2 - Now

H i = f -(p(N"-^)logp(N "-^)) <̂ (AT)dWdN“-^
7n“~16R"“1 J-00

= f - p (N " - ^) l o g p (N ” - ^) d N " - ^

= /i(z"-^|x"'^) . (7.13)

since cl){N)dN = 1. We can find H2 similarly as

H 2 = f -<t>{N)\og(t){N) f p (N " - ^) d N " - ^ t i W
J -00 VN'-^gR"-'

= f ~(j>{N) log <j){N)dN
J —00

= /i(z^|x^) (7.14)

Hence, by induction,

h(z"|x") = nh{z^\y}) (7.15)

which means the conditional entropy per unit time has the simple form

h{z\x) = h(z^|x^) = ̂ (7.16)

112

7.1.2. Estimating h{z)

The key part of the work of Arnold and Loeliger [24], their method for estimating

h{z), proceeds as follows. Given that the output of our PR channel can be charac­

terized as a hidden-Markov process, the Shannon-McMillan-Breimann theorem [25]

shows that

log(p(z")) h{z) (7.17)
n

with probability one. But, for a given vector z", estimating p(z”) can be done

readily; as we recall from Chapter 2, the BCJR algorithm in its internal workings

computes the mi{t) values (see (2.7)) which are estimates of the log of the probability

of being in state i and having received the sequence z(0),. . . , z(t - 1).

Conceptually, the Arnold-Loeliger process for estimating h{z) is quite simple:

for some word length n, just generate a number of random codewords x" and their

corresponding channel outputs z", feed each z" into the BCJR algorithm, compute

p(z") from the resulting final TTii{n) values, and then compute h{z) values and

average over all sample codewords. But we have to be very careful. As we mentioned

in Chapter 2, in the standard BCJR algorithm, we often delete extra constant terms

from the p{j, i, z, L) expressions (2.8) since the rest of the BCJR algorithm only uses

differences between the nij(t) values, and we were allowed to renormalize the m,(t)

values at will. But here we need the actual, unmodified, values of the mi{t)\ no

discarding of seemingly-extraneous constant terms is permissible, and we must be

careful about renormalizing. This imposes a bit of extra work, but on the other

hand, we need only the mi{t) for our capacity calculations, not the fhi{t) or the

final L{t) values. Hence, we only need to do part of the BCJR algorithm for our

purposes. We now explain, in detail, how to do this modified BCJR for estimating

h{z).

1. Generate a random input channel word x".

113

2. Compute the channel output word z". (We assume that the preceding channel

inputs x { - l) , ... ,x{-L) are known and fixed, and are whatever values are

needed to force our PR channel to be in the known start state s at time

t = 0).

3. Initialize m,(0) as follows:

m,{0) = 0 and mi(0) = -oo Vi s (7.18)

4. For all t € [1, n] successively compute

mi(t) = log e x p { m j{ t - l)+ p { j , i , z { t - l) ,0)) Vi (7.19)

where

= (7.20)

(note that the prior likelihoods Lm{t) are all zero, since we assume equally

likely inputs x{t)). Since the mi{t) may get large and negative enough to

cause problems with the log-sum-exponential functions (being so large that

exp (mi (t)) % 0 in floating-point arithmetic), we may need to renormalize the

m i(t) by adding a constant X{t) to all of them, but we must keep track of these

renormalizing constants X{t) so we can subtract them off again at the end.

5. Compute

(M —X \ n

log exp(mi(n)) j - ^ A(<) (7.21)

i=0 / t=l

This is just the log of the sum of the probabilities over all final states at time

n, subtracting off the constants X{t) that we had previously added during

renormalization.

114

6. Compute

h{z) = . (7.22)

7. Repeat Steps 1 through 6 for as many codewords as desired and average the

resulting h{z) values to get a final estimate of h{z).

Once we have h{z), we can compute the channel capacity (in nats per unit time)

Cnat(cr') = h{z) - h{z\x) = h{z) - . (7.23)

The capacity in bits per unit time is just

= ^ . (7.24)

7.2. Channel Capacity Bounds on Bit Error Rate

We now know how to compute the channel capacity, in bits per unit time, for any

given PR channel at any given noise level However, as we mentioned earlier, we

would like to be able to compute a bound for the best possible bit error rate for a

given noise level, given the constraints of the channel having a limited capacity. We

can convert our channel capacity results to BER versus SNR curves, however. To

do so, we first need to know the code rate of the code whose BER performance we

wish to bound; different code rates will result in different bounding curves. This is

not unexpected; intuitively, it is clear that for lower code rates we should be able to

get better (lower) BER for any given noise level.

Given the code rate R and the channel capacity at a given noise level C'bit(a)̂,

the Shannon rate equivalence theorem [11] tells us that the best achievable BER pg

115

C apacity of P racoded EPR4 Channel

Rate 0 .9 -------
Rate 0 .94-------

0.01

0.0001

2 le-06

5.5 6.55 6 7 8

Figure 7.1: Channel capacity bound for EPR4 with 1 /(1 0 D^) precoder,

satisfies

A(1 - h(pE)) =

where h(pg) is the binary symmetric channel capacity (in bits)

h{pE) = -PE lOggPS - (1 - Pe) log2(l ~ Pe)

(7.25)

(7.26)

Note that if the SNR is high enough for C\,\t{cr̂) > R, there is no solution for the

above equation; asymptotically error-free transmission is possible at such SNRs. To

create BER versus SNR curves for any given code rate, all we must do is compute

C'bit(o'̂) for various SNRs and for each SNR, solve (7.25) for pg. Since the compu­

tation for each SNR is somewhat lengthy and the desired BER curves often vary

sharply over small variations in SNR, we often find it useful to compute Cb;t(o^)

for a small number of SNR values and linearly interpolate them before computing

the final BER curves. Fig. 7.1 shows the capacity bounds for the EPR4 precoded

channel at code rates 0.9 and 0.94. Fig. 7.2 shows the same curves for the case of

the precoded MEEPR4 channel.

116

Capacity o f MEEPR4 P recoded C hannel

0 .01
RateO.Ô4 — —

R ate 0 . 9 ---------
0.001

0.0001

1e-10

7.86.8 7.2

SNR

7.4 7.66.4 6.6

Figure 7.2: Channel capacity bound for MEEPR4 with 1/(1 © D) precoder.

117

Chapter 8

LDPC Code Design for the PR

Channel and BCJR Density

Evolution

118

In this chapter we discuss how to design LDPC codes for use with PR chan­

nels, that is to say, finding sets of code parameters A{,p, which will lead to codes

that perform well over such channels. To do this, we need to be able to analyze

the performance of LDPC codes with given code parameters when used with PR

channels. In the case of LDPC codes used with memoryless channels (e.g. AWGN),

the density evolution techniques of Chapter 5 allow us to do such analysis. But in

order to be able to do density evolution for the PR channel case, we need some way

of computing the probability density function of the output of the BCJR decoder.

In effect, we need to be able to do density evolution to analyze the behavior of the

BCJR decoder. Below we explain how to carry out density evolution for the BCJR

decoder and then how to use the BCJR and LDPC density evolution algorithms to

search for good A,, pi sets.

8.1. BCJR Density Evolution

In this section we will use the formulation of the BCJR algorithm given in Chapter

2. We will also use the notation and methods for representing probability density

functions (pdfs) introduced in Section 5.1. We shall also assume that there is no

turbo equalization in use, i.e., that we do not feed likelihoods back from the LDPC

decoder to the BCJR decoder. Extending the subsequent analysis of the BCJR to

allow for turbo equalization would not be overly difficult, but, as we shall discuss

later in the section on searching for good codes, the search becomes impractically

computationally expensive unless we assume no turbo equalization.

One of the things that makes doing density evolution of the BCJR algorithm

difficult is that, unlike the LDPC algorithm where we could assume that the input

codeword was all-zeros without loss of generality, the BCJR algorithm’s behavior

is non-trivially dependent on the channel inputs x[t). Hence what we have to do

1 1 9

is do density evolution for the BCJR decoder with several different possible input

sequences x{t) and then combine the results to get an effective pdf that we can

use as input to the LDPC density evolver. In the next subsection we show how to

do BCJR density evolution for a known fixed channel input sequence x{t). In the

following section we will build on this result to get the pdf for the BCJR outputs

L{t) in the case where the are not known.

8.1.1. BCJR Density Evolution: Fixed Input x{t) Case

Given the known (fixed) input codeword x{t), it is a simple matter to compute the

ideal (no-noise) channel output z{t) for all t; we just have

= ^ 9 k x { t - k) . (8.1)
k=0

The actual channel output z{t) is z{t) corrupted by AWGN, so z{t) is as follows:

z{t) = n{t) + z{t) n{t) ~ iV(0, a^) . (8.2)

For the case we are interested in, i.e., no turbo equalization, the a priori likelihoods

L are always 0. Given that, p{j,i,z{t),L) (2.8) simplifies to

p{j,i,z{t),0) = - ^ (n (t) + z (t) - 0 (j , i) f

=

(2n(t) (z(t) - 0(j, i)) 4- (z(t) - 0(j, i) f) . (8.3)

Now, the n(ty term does not depend on j or i, so this term appears in the equations

for all the m,(t) independent of i. Since only differences between the mi(t) matter in

the BCJR algorithm, we can make the n(t)^ term disappear into our allowed renor­

120

malization of the mi{t). Hence we only need to consider the pdf of the remaining

terms:

p{j,hz{t),0) = —^ { 2 n { t)w { t , i , j) + w { t , i , j f)

n{t)w{t,i,j) _ w{t,i,j)^
cr̂ 20-2

where we have defined

(8.4)

w{t,i,j) = z{t)~ 0{i, j) (8.5)

as the distance between z (the ideal noise-free channel output) at time t and some

possible channel output 0{j,i), and the hat on p{j,i,z{t),0) indicates we have

dropped those n{t)^ terms. Since w(t, i, j) is not stochastic and n{t) is known to be

Gaussian, we know that

(8.6)

We can thus use the Gaussian distribution to compute V\p{j, i, z{t), 0)]. In practice,

w{t,i,j) only takes on a fixed number of values (each value corresponding to a

single-step distance between two paths in the channel trellis), so given we can

easily precompute a table of all possible ?[p(y, i, z{t), 0)] vectors.

We have the expression for the m,(t) given before:

mi{t) = max mj{t - I)+p{j, i ,z{t - 1),0) Vz (8.7)

(note that we are here employing the max function to approximate the log-sum-

exponential). Given this and knowledge of - 1)] for all j , and given (8.6) to

compute V\p{j, i, z{t - 1), 0)], we have

Vimiit)] = iââxj:^j,i)çD'P[mj{t - 1)]+P[p(y, i, z{t - 1), 0)] (8.8)

121

and so we can recursively compute pdfs for all The recursion for computing

Vlfhiit)] proceeds in much the same fashion, with the obvious changes for going

backwards instead of forwards:

V[rhi{t)] = nmj;(ij)6 j3P[% (t + l)]+V\p{i, j, z{t), 0)] . (8.9)

In both cases, the recursion is initialized with sets of pdfs derived from the initial­

ization conditions for the BCJR (2.6), (2.15), i.e.,

^[m ,(0)]^ = 4 ,0 = h - K Vi # s (8.10)

where - K is some suitably large negative integer representing the negative infinity

with which we initialize m,(0). Similarly, we set

V l m e i N)] ^ = 4,0 V i m i i N)] ^ = 4,-K • (8.11)

The next step is to compute pdfs for Lo{t), Li{t), and finally L{t). Given the

previously computed pdfs, we can find

V[Lo{t)] = V[mi{t)]+V\p{,ij,z{t),0)] (8.12)

+V[fhj{t 4-1)]

V[L,{t)] = V[rni{t)]+V\p{i,3 , z{t),Q)] (8.13)

+V[fflj{t 4- 1)]

and finally

V[L{t)] = 'P[Lo{t)]-V[L,{t)] . (8.14)

Note that this gives a different pdf for each time t; in the next section we discuss

122

how to combine these into an “average” pdf, and also averaging over many differ­

ent input sequences to get a general V[L\ suitable for use in density evolution of

combined BCJR/LDPC systems.

8.1.2. BCJR Density Evolution with Unknown Input Code­

words

In the previous section we showed how to compute the V[L{t)\ that result from the

BCJR algorithm given a specific input codeword z(t). To compute a general V[L]

usable when we do not have a given fixed input codeword, we compute the V[L{t)]

for a set of various codewords Xj { t) and average the result. We average both over

diflferent codewords and different values of t . The set of codewords we use for Xj { t)

are a set of 2* codewords defined as follows:

X j { t) =
1 if y A 2“ "°'“ *7^0

(8.15)
0 ify A2‘"'°^*’= 0

where A is the Boolean and operator. This definition is written such that xo{t) is

the length k sequence of bits (0 ,0 ,..., 0) repeated over and over, xi{t) is the length

k sequences (1 ,0 ,...,0) repeated, and the set of X j { i) covers all possible repeating

sequences of k bits. As k increases, averaging the V[L{t)] for each sequence should

give better and better approximations to the “ideal” likelihood pdf.

We have to be a bit careful about how we do the averaging, though. To see

why, suppose that for some pair of codewords X i { t) , X j { t) at some given t we have

X i { t) = 0 and X j { t) = 1. Performing the BCJR algorithm on the x,- codeword

should, intuitively, give a likelihood for this bit of that codeword Li{t) tending

towards the positive, with a mean E [L i { t) \ > 0. Performing the BCJR algorithm

with channel inputs X j { t) will, correspondingly, give an E [L j { t)] < 0. Averaging the

123

two corresponding 7^[Li(t)], 'P\Lj{t)] pdfs is not going to give a meaningful result, as

the distribution of variations in L we are interested in due to how the noise affects the

decoder will be overwhelmed by the variations resulting from combining the differing

signs of the means E[Li{t)],E\Lj[t)\. Furthermore, we are interested in getting a

likelihood pdf we can use as input for the LDPC density evolution algorithm from

Chapter 5, and that algorithm computes likelihood pdfs based on the assumption

that the codeword is all-zero. So what we need to do, before combining our various

pdfs by averaging them, is to compensate for these differences between the Li{t)s

for the one and zero bits by “flipping” the pdfs for the Li(t)s for which x{t) = 1

before averaging. To put this more precisely, instead of dealing with L, (t) values

and their pdfs, we deal with the related values

Li{t) = (8.16)

which results in just changing the sign for Li{t) if the tth bit of the ith codeword is

1. This operation induces a corresponding operation on the pdfs of the Ls and Ls:

— [̂■̂ »(̂ }]<(-i)*i(o • (817)

We then average these pdfs over all i and a range of ts to get a final pdf V[L] suitable

for inputing into the LDPC density evolution algorithms:

1=0 t=to

where to < t < t i is the time interval of interest. In practice, for efficiency reasons,

we do not average over the entire codeword length 0 < t < N but instead over an

interval of length k somewhere in the middle of the codeword. This is based on

124

the assumption that the codewords are long (thousands of bits) and that, except

for regions near one end or the other, the behavior of the BCJR algorithm should

be reasonably uniform in the region away from either end. Thus, in averaging over

this interval, we are assuming that such edge effects are negligible. We now have a

combined or effective V[L] pdf of the output of the BCJR decoder that we can use

as input for the LDPC density evolution algorithm.

8.2. Searching for Good Codes

We now describe how, given the density evolution algorithm described in the pre­

vious section which can evaluate the performance of a class of LDPC codes, we

search for a good class of such codes (i.e., for a good set of A;,p, values). Our algo­

rithm here is essentially the one in [26]. First, one picks a set of subscript bounds

d\min,dimax,dmin,dtmax which Specify the range of subscripts for which A,-,pj are

allowed to be nonzero; more precisely:

A, = 0 'i I' i ^ [dlmin 1) dlmoi]

Pi — 0 '' '' i 0 [dtmin Ldrmai] • (8.19)

We specify a set of Aj, Pi values with a vector

V = (-̂ dimin) • • • 1 Pdimin' Pdlmax) ' (8.20)

125

These values are enough to completely specify all our Xi,pi, since the XuPi must

satisfy the following constraints:

= 1

Y^Pi = 1
i

E f = (I - - R) E t (8-21)
t i

where R is the code rate. Hence from the values given in our v we can compute the

other needed A,, pi values as follows;

{^p + C : i ~ ~ - d t h)

(s i - c r)
(8 .22)

where

and

rfrmox / ■» 1 \

/ 1 1 \

and then we can use the constraints that the A<, pi sum to one to solve for the re­

maining values Aj,^.^_i, ([26] presents the above equations in the restricted

case that d\min = d^in = 3.) Note that not all vectors v G [0, Ij" lead to acceptable

sets of Xi,Pi- Some v choices may, when (8.22) and the other equations are solved,

lead to or values that are out-of-bounds (outside the interval

[0, Ij). Such V vectors are called non-admissible and those which do lead to valid

Aj, Pi sets are called admissible.

We now describe the algorithm for searching for good LDPC code parameter

sets A,, Pi:

126

1. Select an initial noise variance and an increment Sa^. Also select dimim

d rtn in i ^Xmaxi ^tmax-

2. Generate a set of M random admissible vectors vo,.. . ,Vm- v

3. For each vector v< evaluate the corresponding set-of-codes’ performance via

density evolution, getting a value P(vi).

4. Let imin be the index of the P(vj) which gives the minimum value. This

corresponds to our provisional best vector .

5. If all the P{vi) are “too large” (we define this as P{vi) > 0.001), we are at

too high a noise variance. In this case, we do

a

and go back to Step 3.

6. For each i = 0,....., M - I, we create a new vector

Vnew = Vj + 0.5(va - Va + Vc - V<i) (8.25)

where a,b,c,d are random numbers in [0, M - 1]. If \neu, is not admissible,

keep trying new a, b, c, d 4-tuples until we get an admissible one. Then compute

F(v„e«,); if the resulting probability is smaller than P{vi), replace v, with v„e^.

7. Add to and go back to Step 3.

The algorithm has no explicit termination condition; in practice, we let the algorithm

run until it seems to make no further progress, usually in a state where one of the

P(vj) is reasonably small, all the other P(vj) are large, and ôa"̂ is small (10"* or

so). We then take the values from to design our good LDPC code.

127

Table 8.1: X^pi values for LDPC code designed for precoded EPR4

i Pi
59 0.3731251
60 0.4642554
63 0.0003370

i Ai 64 0.1499316
3 0.2131352 65 0.0014538
6 0.0024832 69 0.0000522
7 0.3705876 72 0.0000039
8 0.0000540 73 0.0002034
10 0.4137401 75 0.0008222

76 0.0000163
78 0.0000009
80 0.0000839
86 0.0097144

8.3. Code Design Example and Simulation Re­

sults

Here we present an example of a code designed using the technique we described

previously. The target channel is EPR4 (h(D) = 1 + I? - - D^) with a

precoder. We chose a code rate R = 4352/4835 % 0.90 and weight bounds d\min = 4,

d\max = 10, drmin = 60, and drmoi = 90. The resulting A,-,pi are in Table 8.1.

To explore the performance of codes with this set of Â, pi code parameters, we

generated a set of four LDPC codes of various block lengths. The codes are:

• Code 1: a regular column weight three code with K = 4352, N = 4835. This

is the code from [9].

• Code 2: a code based on our computed A,-, pi with K = 4352, N = 4385.

• Code 3: a regular column weight three code four times as big as Code 1, i.e.,

= 17408, iV = 19340.

• Code 4: a code based on our computed Ai,p,- with K = 17408, N = 19340.

128

Results from simulations of the shorter {N = 4835) codes are given in Fig. 8.1.

The parameters of the simulation are as follows: we used 5 iterations of turbo

equalization and an iteration limit of 30 on the LDPC decoder. The definition of

SNR used here is SNR = 4/cr^, where 4 is the total power of the EPR4 impulse

response and cr̂ is the EPR4 channel noise variance. The plots also show the

capacity bound for codes of rate 0.9, as computed with the Arnold-Loeliger method

from the previous chapter. As we can see, both codes are short a bit over 2 dB from

achieving the capacity bound, and, unfortunately, our new code performs 0.2dB

worse that our already-existing Code 1. We hypothesized that this deviation was

due to the density-evolution technique only theoretically working in the limit of

AT 0 0 and, hence, not necessarily being an accurate predictor of performance

at smaller N. That hypothesis is why we decided to create the longer Codes 3

and 4 mentioned above and test their performance. Unfortunately, the situation in

this case, as shown in Fig. 8.2, is even worse, as our supposedly-optimized Code

4 performs about IdB worse than the regular Code 3. Clearly, these are not the

sort of results we were hoping for. Our current theory is that our choice of weight

bounds dimin = 4, d\mca = 10 was inauspicious, as it provides thé code with a great

many columns of high weight, which causes the code to have a great many cycles.

As we said before, cycles impair the performance of LDPC codes, and the eSects of

cycles are not modeled by the density evolution technique. We suspect it would be

better for dimax to be at most six, or possibly even lower still.

We attempted to confirm this hypothesis by creating two more codes with lower

ranges for the column weights, namely dimt„ = 4, d\max = 5, d̂ min = 30, and

drmax = 90. The resulting Aj,pi are shown in Table 8.2. As before, we created codes

of length 4835 (Code 5) and length 17408 (Code 6). Performance of those codes

compared to the regular weight 3 codes is shown in Figs. 8.3 and 8.4. The graphs

show that Code 5 provides a gain of approximately 0.5dB over the regular weight

1 2 9

three code, Code 1. Unfortunately, this is not the case with the larger block length

codes. Code 6 versus Code 3; here we get approximately a 0.75dB loss, which is

somewhat unexpected given the success of the smaller block length code.

We also performed a search for good code parameters for the case of precoded

MEEPR4. The parameters of the search were dimin = 4, dimax = 8, drmin = 30,

and drmax = 80. The resulting code specification A,,/), is in Table 8.3. We used

this specification to build a block-length 4835 code, which we call Code 7. Fig.

8.5 gives the results of a simulation of this code and our regular column weight

Code 1 over a Lorentzian channel equalized to MEEPR4. As before, the number

of turbo equalization and LDPC iterations were 5 and 30, respectively; the channel

is a Lorentzian channel with density S = 3.3, and the LDPC codes are used in

combination with the MTR code [2] as discussed in Chapter 1, as well as a 1/(1©D)

precoder. The signal-to-noise ratio is defined as S N R = where is the

variance of the noise at the Lorentzian channel output (i.e., not the noise at the

output of the MEEPR4 equalizer). We also give a capacity bound curve; this is not

the true capacity bound for the MEEPR4-equalized Lorentzian channel, since there

is no known method to calculate that. Instead, it is just the capacity for a perfect

MEEPR4 channel computed as in Chapter 7, but with the SNR axis rescaled to

bring it in line with the different definition of SNR used above. It is expected that

the true MEEPR4-equalized Lorentzian channel capacity is somewhere close to the

ideal MEEPR4 curve, but as this is not known for sure, the curve should be treated

as an inexact measure of where the true capacity bound lies. The plot in Fig. 8.5

show that the new code provides a gain of about 0.3dB over the regular column

weight three code.

130

C o d e l
C ap

0.01

0.0001

1e-05

5.5 6.5 7.5 8.5 9.5

SNR

Figure 8.1: BER simulation results for block size 4835 codes over EPR4 channel.

EPR 4Sim

C o d e 4
C o d e s

C ap

0.01

0.001

0.0001

5.5 6.5 7.5 6.5 9.5
SNR

Figure 8.2: BER simulation results for block size 19340 codes over EPR4 channel.

131

Table 8.2: Aj, pi values for another LDPC code designed for precoded EPR4

Ai
0.7656858
0.2343141

i Pi
29 0.000000428210
31 0.000002141048
33 0.974863240562
34 0.000291610732
35 0.000000428210
37 0.000544254391
38 0.000012846288
39 0.022460449492
46 0.000785764600
47 0.000009420611
51 0.000829870188
54 0.000017984803
56 0.000000428210
59 0.000179419819
60 0.000001712838

C o d e â —
C o d a i ---------

C a p

0.01

I 0.001

0.0001

7.55.5 6 .5
SNA

Figure 8.3: BER simulation results for block size 4835 codes over EPR4 channel.

132

C o d o é *
C o d e s ---------

C a p

0.01

§

0.0001

9.56.5 7.5

SNA

Figure 8.4; BER simulation results for block size 19340 codes over EPR4 channel.

Table 8.3: A,, pi values for an LDPC code designed for precoded MEEPR4

Ai
0.698047250
0.301952750

i Pi
29 0.000000428
33 0.000002997
37 0.999126881
74 0.000000856
77 0.000002997
78 0.000864127
79 0.000001713

133

MEEPFM-equaüzed Channel S bn

C o d e l
c o d e ?

Capacity

0.01

0.0001

le -0 5

SNR

Figure 8.5: BER simulation results for block size 4352 codes over MEEPR4-equal-
ized Lorentzian channel.

1 3 4

Chapter 9

Generalized Belief Propagation

and Decoding of LDPC Codes

135

9.1. Introduction

Within the past decade, there has been a great deal of research involving two major

types of error correcting codes, the turbo codes of Berrou et al. [14] and the LDPC

codes of Gallager and MacKay [5], [6 j. The decoding algorithms for these two

types of error-correcting codes are closely related, and in fact both these algorithms

have been shown [27] to be special cases of the so-called “belief propagation” (BP)

algorithm developed by Pearl for general Bayesian probabilistic inference upon a

graph [28]. As a result. Pearl’s BP algorithm and its properties are of particular

interest. Recently Yedidia et al. [29] have shown a relationship between the belief

propagation algorithm and a quantity from statistical mechanics called the Bethe

free energy [30]. They show that fixed points of the BP algorithm are extrema of the

Bethe free energy, and go on to derive new variant BP algorithms which extremize

a generalization of the Bethe free energy called the Kikuchi free energy [31]. In this

chapter, we examine the work of Yedidia et al. and consider its relevance to the

field of LDPC decoding.

9.2. Belief Propagation and Bethe Free Energy

First, a brief comment about the Yedidia et al. paper. The notation used and

presentation of the belief propagation algorithm in [29] is somewhat different from

the way belief propagation is usually described in the LDPC decoding literature and

the way we described LDPC decoding in Chapter 3. The relationship between what

Yedidia et al. do and the “standard” LDPC decoding algorithm may be somewhat

obscure to the reader. In fact, it was obscure to one particular reader, D. J. C.

MacKay. He asked for clarification on various parts of the paper that were unclear

to him, and the result was a companion technical report [32] by MacKay and the

original paper’s authors that contains MacKay’s questions and answers to those

136

questions. We have found this technical report useful in understanding the original

Yedidia paper and recommend it be read in conjunction with said paper.

We now proceed to describe the belief propagation algorithm as presented by

Yedidia et al. and show how belief propagation is related to the Bethe free energy.

We start with a network of nodes, numbered 1 through N. Each of the nodes can

be in one of several possible states; we use the variable X{ to describe the state of

node i. (Note that the set of states node i can be in does not have to be the same

as the set of states node j can be in. This is different from the standard description

of LDPC coding as in, say. Chapter 3, where the variable and check nodes all have

two states and, thus, the associated messages are two-element vectors [qji,q]i] or

[r°j, rL]. Later we will discuss how this formulation of BP decoding in [29] is in fact

equivalent to the more traditional formulation of the LDPC decoder.) Various pairs

of the nodes in our network are linked together; these links between pairs of nodes

impose correlations between the states of each node. For each link in the network

we are given a function ilJij{xi,Xj) which quantifies the correlation. Such a network

is called a Markov Random Field. Note that we can consider each link as a link

from i to j or from j to i; this implies the symmetry condition

ipij{xi,Xj) = 'ipji[xj,Xi) . (91)

The states X{ themselves are not observable, but we can observe other variables %

which are related to the Xi such that by observing the yi we can compute known a

priori probabilities i>i{xi) of each node i being in a state Xj. (The tpi{xi) values are

sometimes called the “evidence” for node i.) The probability density function for

Xi , . . . , xn given the observed y vector is

P{xi,... ,XN\y) = i V’y(a:i,a;;)j ^n^fc(a;*)j (9.2)

137

where Z is a normalizing factor. Here < ij > means we take the product over all

ordered pairs (i,j) which are linked in the network and where i < j; i.e., if there

is a link between nodes 1 and 2 , we do not include both ‘>pi2 {xi,X2) and iIj2 i{xi,X2)

in the product, but just include one (the former, though by (9.1) it does not matter

which one of the two we include, as long as we only include one of them).

Anyway, the goal of the BP algorithm is to attempt to compute the a poste­

riori probabilities that each node i is in some state i , , given the initial a priori

probabilities tl>i{xi) and the known correlations between nodes ipij{xi,Xj). To do

this, the BP algorithm computes messages m i j (x j) , which can be thought of as data

propagating from node i to its neighbor j giving it some information of what the

probability should be of node j being in state Xj, given the information known at

node i. The BP algorithm also computes so-called “beliefs” 6j(xf), which eventually

(one hopes) converge to the desired o posteriori probabilities P{xi\y). The messages

m i j (x j) start out initialized to all ones, implying no knowledge giving one a reason

to pick one state over another. One then iterates between the following two rules

for updating the beliefs and messages:

mij(Xj) i - a n (9 3)
\ keN(i)\j)

bi{Xi) 4- Q I IpiiXi) TOfci(li) (9.4)
\ fceiv(i) /

where N{i) is the set of all nodes that are connected to (i.e., neighbors of) node i

and N{i)\j is the same as N{i) but with node j removed. As in Chapter 3, a()

is a normalization operator; for each i , j pair one computes rriij{xj) for all possible

states Xj node j can be in, and then divides all these m,ij{xj) by some scale factor

138

such that

= 1 (9 . 5)

X j

and similarly each set of 6i(xj) values is renormalized such that

^ bi(xi) = 1 (9.6)
Xi

One can also, at each stage of the iteration, compute pairwise belief functions for

each pair of connected nodes in the network

bij(xi,Xj) = Q U i j (x i , x j) J J mki(xi) J J m i j { x j) \ (9.7)
V fc€iV(i)V j

where the functions are defined as follows:

^tj(a:i,Xj) = ^i(x,)^ij(xi,Xj)^j(Xj) . (9.8)

If the network is a tree, it is known [28] that the 6j(xi) converge to the exact marginal

probabilities P(xj|j/) and the 6y(x,,Xj) converge to the exact marginal probabilities

P{xi,Xj\y). For networks with loops, things are more complicated, but one can

derive a theorem regarding fixed points of the BP algorithm.

First, we define a quantity called the Bethe free energy [30], which is a function

of the bij{xi,Xj) and 6,(xi):

Fp {bij ,bi) = ~ Y ^ ^ b i j {xi , Xj) In (/>y (xj, Xj)
< i j > X i , X j

+ ̂ (% - l) ^ 6 ((x i) In^i(xi)
i Xi

+ 5 3 S l ab i j (x i ,X j)
< i j > X i , X j

-Y^(Qi-^)Y^l>i(xi)^nbi(xi) (9.9)
X <

139

where % is the number of neighbors node i has. We can rearrange the above ex­

pression a bit, given the definition of (t>ij and the constraints that the bi{xi) and

bij{xi,Xj) must satisfy:

bjjixj, Xj) — 1
i i , i j

= 1
X i

'^^bij{xi,Xj) = bj{xj)
u

Y^bi j{x i ,Xj) = bi{xi) . (9.10)
%■

Note that the first term of F^{bij, 6<) can be rewritten as

< i j > X i , X j < i j > X i , X j

< i j > X i , X j

= ^ n X j) I n i p i i ^ i)
< i j > X i , X j i j X i , X j

(9.11)

(note the second sum is over unordered pairs i , j , i.e., if there is a link between nodes

i and j , both pairs i , j and j , i appear in the sum) and hence

fg i = ~Y^Ylbij{xi,Xj)\nif)ij{xi,Xj)-Y^Ylbi{xi)ln‘ipi{xi)
< i j > X i , X j i j X i

= - 5̂ kj{xi,Xj) Ini^ijixuXj)
< i j > X i , X j

t Xi

140

and thus

Pp{bij, bi) = - XI V’ij(a^i,Xj) - X2X]
< i j > X i , X j i X i

+ ^ ̂ ^ ̂bij {xi, Xj) In bij {xi, Xj)
< i j > X i , X j

- ^ (% - 1) X] (9 13)
i X i

Why is this quantity called a free energy? In statistical mechanics, if a system

can be described by a state vector x and we have a function b{x) that may serve as

a possible probability function, one defines the free energy as follows:

F{b{x)) = X] b{x)E{x) + X̂ b{x) In b{x) (9.14)
X X

where E{x) is the energy of state x, so the free energy is just the average energy

minus the entropy. If we consider our network of nodes, letting x = (x i,... ,ijv),

and define the energy to be something consistent with Boltzmann’s Law

P{x\y) = ^ exp (-E (x)) (9.15)

then

E{x) = - In P{x\y) - In % = - X] ln^ÿ(xj,Xj) - Y^\nrpi{xi) (9.16)
<ij> i

and hence the average energy is

Y^b{x)E{x) = - ^Y^bij(xi,Xj)ln'il}ij{xi,Xj) - ' ^Y^b i{x i) \n ip i{x i) (9.17)
X <ij> X i , X j i X i

where 6ÿ and bi are the obvious marginalizations of the full b(x) function down to

single states or pairs of states. Thus the average energy is the first half of the Bethe

141

free energy given in (9.13), so we already see part of the connection between the

“true” free energy and the Bethe free energy. Let us also note here that since the

free energy is

F{b{x)) = - In Z - ^ 6 (x)lnP(i|y) + ^ 6 (x)ln6 (i) (9.18)
X X

the free energy is obviously minimized when b{x) = P{x\y), i.e., when our “trial”

probability function b{x) equals the true probability. Note that this free energy

is a thinly disguised version of the Kullback-Liebler divergence between the two

probability functions b{x) and P{x\y).

To see the rest of the connection, we note that, as shown in [28], if our network

is known to be a tree, any b{x) that is consistent with the presence or absence of

correlations between the various nodes must have the form

and substituting this b(x) in the expression for the entropy term of (9.14) gives us

the second half of (9.13). Thus in the case of a treelike network, the Bethe free

energy is exactly equal to the true free energy and, as such, is minimized when

b(x) equals the true a posteriori probabilities P{x\y). The Bethe free energy is thus,

in some sense, an approximation to the true free energy, an approximation that is

exact for treelike networks. We now go on to show that, whether the network is a

tree or not, the BP algorithm finds extrema of the Bethe free energy:

Theorem 1 Suppose that we are given a network of nodes and a set of messages

and beliefs bij, k . These beliefs and messages are a fixed point of the BP algorithm

iffbi and bij minimize the Bethe free energy Fp{bij,bi).

Proof: We take the Bethe free energy and turn it into a Lagrangian by adding

142

Lagrange multipliers for the various marginalization and normalization constraints

(9.10):

+ 7ÿ (1 - X I
<ij> \ Xi î /

+ 13'^* “ '1* (9-20)

We differentiate this with respect to the bij{Xi,Xj) and the bi{xi) to get the following

two equations to extremize L:

dbij{xx,Xj)
I n i j) = I n X j .) + Ay(xj) + ■h'Yÿ 1 (9.21)

and

dL
dbi{xi)

= 0

(% - 1)(1 + ln6i(ii)) = (ft - 1) lntpi{xi) + Aji(xf)

+ 7 i (9.22)

Extrema of Fff{bij, 6,) must satisfy the previous two equations as well as the normal­

ization and marginalization constraints (9.10). (Note: The version of (9.22) found

in [29] in their proof sketch on page 6 is incorrect; they left out the (ft - 1) term

that multiplies In^j(xi).) We now proceed to prove that a fixed point of BP implies

an extremum of Bethe free energy and vice versa.

1. BP fixed point implies extremum:

143

Suppose we have a fixed point of the BP update rules, i.e., we have

7Tlij(̂ Xj') = (9.23)
X i k € N { i) \ j

and

and

bi{xi) = Biipiixi)]][rriki{xi) (9.24)
keN(i)

bij{xi,Xj) — Cij<j>ij{xi,Xj) rJîj-i(xj) ni(j{xj) (9.25)
k€N(i)\j eeN{j)\i

where Aij, Bi, Cij are normalization constants that force the sums of m^(xj),

bi{xi), and bij(xi,Xj), respectively, to be one. Now compute new variables

Xij{xj) from the messages as follows:

Xij{xj) = In J J rnkjixj) . (9.26)
k€N(j)\i

Then (9.25) becomes

^ÿ(^ti^j) " C";ji îj(x:,Xj) exp(Aj;(x()) exp(Aij(xj)) (9.27)

and thus

lnbij(xi,Xj) = InCÿ + ln^ÿ(xj,Xj) -h Xji[xi) + Ajt(xj) . (9.28)

However, this is just (9.21) with jij = 1 + In Cij, so we have proved one of the

two conditions needed for extremizing the Bethe free energy. Now consider

1 4 4

the equation for the bi{xi) (9.24). We have

ln 6i(a;i) = ln5i + lnV'i(a:i)+ ln rriki{xi) (9.29)
k€N{t)

Now pick any j € N{i). We can rewrite the preceding equation as

ln 6i(a;i) = InB i+ ln^i(x,)+ lnm jt(xi)+ln TO*,(xj)
fc6JV(i)\j

\nbi{xi) = In Bi +In tpiixi) + In mji{xi) + Xji{xi) . (9.30)

Now we can write the preceding equation for any j G N{i), so let us pick some

neighbor k G N{i) and sum the versions of this equation for all j G N{i)\k.

We get

(g< - l)lnèi(xi) = {qi - l) \nBi + {qi-l)lnil)i{xi)

+ In P J TTiji X̂i) + ^] Xji{xi)
j€N (i) \k j€N (i) \k

= (ft - 1) In Bi + (ft - 1) In V»i(xi)

+<\&i(3::) + ^ 2
jeN (i) \k

= (ft - 1) In B i + (ft - 1) In V’i(xj)

+ ^ 2 • (9.31)
i€N(i)

But if we set

7i = (ft - 1) + (ft - 1) In Bi (9.32)

we get (9.22). Hence our fixed point is indeed an extremum of the Bethe free

energy.

145

2. Extremum implies BP fixed point: Suppose we have an extremum of the Bethe

free energy and, hence, a set of 6,(a;i), bij(xi,Xj), \ j (x j) , 'yij, 7 ,- that satisfy

(9.21), (9.22), and (9.10). Now let

= e x p (4 (5)* ,(x ,) ■

(Again, the sketch of the proof in [29] is in error; the ibj{xj) term is missing

from the above equation.)

Now consider the product

bi{xi)

^i(xi)«>-i exp (Efc€JV(i)\j ^«(^f))

Now by (9.22) we have

. (9.34)

hiiXi)]

so

bi{xif' ̂ ̂exp I Xki{xi) I exp(7i) exp(-gj + 1)
\ k e N (i) J

n ^ki ix i) = exp (7 i)exp (-g i + l)exp(A ji(xj))
keN (i) \ j

= «cp(7,) e x p (- „ + l) j ÿ | g _ . (9.36)

146

Now consider

= M^i)-

and letting

gives us

exp (Efc6W(i) >̂ ki{xi)) ipiixi) '̂
= bi(xi) exp(ji) exp(-gi + 1) (9.37)

Bi = — ^ (9.38)
exp(7 i) exp(-% +1)

Béi{xi)]][rukiixi) = hi{xi) (9.39)
k£N(i)

which is just the equation specifying that 6j(xj) is part of a BP fixed point

(9.24). Next we look at

<l>i}{xi,Xj) J J mki{xi)]][mtj[xj)= (j>ij{xi,Xj)
k€N(i)\ j t€NU)\i

, , exp(Aji(xi))exp(Ai,(xj))
BiBj

6ij(x i,x j)exp(l-7 i,)
BiBj

(9.40)

and hence we have derived (9.25) with the normalizing constants being

Now that we have derived (9.25) and (9.24), let us combine them with the

147

marginalization relationship

bij{xi, Xj) = bj{xj) (9.42)
Xi

to get

Y ^ C i j ^ i j { x u X j) J J n i k i i x i) J J m i j { x j)
X i k eN (i) \ j (€N U)\i

= Bjipj{xj) J J m,kj{xj) (9.43)
keNU)

and thus

' ^ C i j i) i j { x i , X j) i p i { x i) J J m k i i x i) J J m t j { x j)
Xi kçN {i) \j teN { j) \ i

= Bj J J mtj{xj) (9.44)
£6JV(j)

which gives us

Y^Ci j‘ipij{xi,Xj)‘il)i{xi) J J nikiixi) = BjTTiijixj) (9.45)
X i k€N{t) \j

which is just the fixed-point equation for the messages (9.23) where Aij =

CijIBj.

We have now shown that fixed points of BP are extrema of the Bethe free en­

ergy, which is an approximation to the true free energy or to the distance between

our belief b{x) and the true a posteriori probability. In practice, these extrema of

the Bethe free energy usually are minima. Note that, as MacKay points out [32],

this does not necessarily imply that the BP algorithm always converges to such an

extremum; in fact, it is sometimes the case that the BP algorithm does not converge

at all. But if it converges, it converges to an extremum of the Bethe free energy.

148

9.3. Belief Propagation and LDPC decoding

Here we explain how one applies the generic formulation of belief propagation in

[29] to the specific problem of decoding of LDPC codes. As we noted before, this

formulation of LDPC code decoding is rather different than the more usual formula­

tion as in [6], [5], so it is worthwhile to examine this in detail. Recall from Chapter

3 that any LDPC code is specified by a parity-check matrix of ones and zeros, H,

of dimensions N hy L where N is the codeword length, L = Æ - A" is the number

of parity-check bits, and K is the number of bits available for the user’s data. Each

valid codeword x satisfies

Hx = 0 (9.46)

Hence, each row of H specifies a parity constraint that certain bits of the code­

word X must satisfy; specifically, if row a of the H matrix has bits set in columns

a i, «2 , ■ • •) ûm, then the corresponding bits of x must satisfy

aJai + 3̂02 + • • • + lom = 0 (mod 2) (9.47)

and we have one equation like that for each row of H. The problem of LDPC

decoding is, given a priori probabilities ipi{xi) of bit z, in the codeword being one

or zero, to find the a posteriori probabilities of each bit being one or zero given that

we know the codeword satisfies (9.46).

To rephrase this problem in terms that the BP algorithm from the previous

section can handle, we have to construct a suitable network of nodes. In this case,

as one might expect, our network has two kinds of nodes, N variable nodes each

corresponding to a codeword bit and L check nodes corresponding the L parity-

check constraints imposed by H. For convenience we distinguish here between the

two types of nodes by using Latin letters like i as indices amongst the variable

nodes and Greek letters like a as indices for the check nodes. Links exist only

149

between variable nodes and check nodes; there are no direct links between any pair

of variable nodes or any pair of check nodes. Thus each link is between a member

of one class of nodes and a member of the other class; such a network is sometimes

called a b ipartite graph. Each variable node i is linked to those parity-checks

that bit i participates in. Similarly, each check node a is linked to those variable

nodes which participate in the ath parity-check. Each variable node is in one of two

states, corresponding to the zero and one states of the codeword bit, and are

the corresponding a •priori probabilities for that bit. The states for the check nodes

are considerably more complicated, with each node a having 2"“ states, where

is the number of codeword bits that participate in that parity-check. Each state of

node a corresponds to a possible combination of the bits that are parity-checked at

that node. It is helpful to think of the check node states Xa as being themselves bit

vectors, with one bit for each of the codeword bits that belong to this parity-check.

The a priori information ipa{xa) just specifies that the bits must have even parity

and no other information, so

Ipaip'o) — *
0 ifxa has odd parity

(9.48)
if aîQ has even parity

The compatibility matrices tpia{xi,Xa) impose the constraint linking the states x<

of codeword bits to the states x& of check nodes. If Xa{i) is the bit in the state Xa

corresponding to bit i, then

'^iai^U^a) — X̂i,Xa{i) (9.49)

where 6 is the Kronecker delta. We now have all the information we need to perform

BP on our network and find the final beliefs 6(xf) for the codeword bits.

This presentation of LDPC decoding is somewhat diflFerent from that in [6] and

150

in Chapter 3. Here the algorithm for computing messages is the same whether the

messages are messages mia{xa) going from variable nodes to check nodes giving

the check nodes information on what state they should be in, or messages mai{xi)

going the other way. The only difference between the check nodes and the variable

nodes is that variable nodes have binary states and check nodes have more complex

states. In the conventional treatment of LDPC decoding, there are messages

from variable nodes to check nodes telling them about the state of codeword bit

i and messages from the check nodes to the codeword bit nodes telling them

about the state of codeword bit Xi. In the conventional treatment, the check nodes

are not considered to have explicit states, and the equations for computing the

are different from those for the the enforcement of the parity-check constraint

(the equivalent of our ipaixa)) is implicit in the equations (3.19). Also, in the

conventional treatment all messages are two-element vectors, since Xi is always a

binary variable; in this Version the messages to check nodes are vectors with more

than two elements. Nonetheless, these two versions of LDPC decoding are in fact

equivalent and give the same results [32].

9.4. Kikuchi Free Energy and Generalized Belief

Propagation

The preceding sections have shown that the BP algorithm can find extrema of the

Bethe free energy, which is an approximation to the true free energy. Hence the BP

algorithm attempts to minimize a quantity which approximates the distance between

our beliefs b(x) and the true a posteriori probabilities P{x\y). The Bethe free energy

is an approximation defined on two-node connected regions of the network (the 6ÿ

and (j)ij terms) and on the intersections between those regions (the 6,- and terms).

Note that not all the 6,- appear in the expression for Fp{bij,bi), only those for which

151

Qi > 1 , i.e., those bi whose nodes are in the intersection of two two-node regions

(links). This definition of the Bethe free energy can be generalized to one defined

on sets of regions containing more than two nodes. This generalization is called the

Kikuchi free energy [31], and it leads to a generalization of the BP algorithm.

Consider for a moment the entropy term of the Bethe free energy on the network

shown in Fig. 9.1. We consider our set of fundamental connected regions, the pairs

of nodes, as {12,23,36,25,14,45,56} and thus the entropy term is

Hp{x) = H{xn) +H{x23) +H{x36) +H{x 2 h) +H{xu)

+ H { X i s) + H { x 56) - H { X i) - 2 H { x 2) - H { X 3)

-H { x4) - 2H{x5) - Hixe) (9.50)

where the individual entropy terms are defined in the obvious way on each region r:

H{Xr) = -Y^br{Xr)lnbr{XT) (9.51)
X t

Note that in our computation of Hp{x) we subtracted 71{xi) only once, since it only

appears in two of our fundamental regions and thus is only over-counted once by

summing over all our fundamental regions, but H{x2) gets subtracted twice because

it appears in three fundamental regions. Now suppose instead we had chosen as our

fundamental set regions the pair of four-node regions {1245,2356}. Then we would

compute the Kikuchi entropy over these regions, their intersections, the intersections

of their intersections, etc., as

Hk (x) = H{xi24s) + ^ (3:235g) — H{x24) ■ (9.52)

We can do a similar generalization of the energy term of the free energy. Define the

152

Figure 9.1: Example network for Kikuchi free energy computation,

energy associated with a region r as

Er{xr) = - In J J t l) i j { x i ,X j) - In jjv»i(a:f) = -ln(^Xrr)
<ij> i

(9.53)

where the first product is over all links ij inside the region r and the second product

is over all nodes inside r. Yedidia et al. [29] called the final term in the preceding

equation — \aipr{xr), but we deviate from their notation here and believe <j>r{xr) is a

better name for these quantities. Note that for the case of a two-node region j>r{xr)

equals the previously defined (f>ij{xi,Xj) from (9.8).

We are now ready to completely define the Kikuchi free energy. Let Rq be our

set of fundamental connected regions on our network graph. Let Ri be the set of all

non-null connected intersections of regions in Ro, and let R2 be similarly defined as

the non-null connected intersections of regions in Ri, and continue on until we can

continue no further. Define our total set of regions as

= [J (9.54)

Note that R does not contain every possible connected subregion of our network,

just those that are derivable from Rq. For example, in the network in Fig. 9.1

153

with the fundamental regions {1245,2356}, the region 12 is a connected subregion

of the graph, but one that is not in R. Let us write the set of all possible connected

subregions of the network as R. For each region r e R compute the over-counting

number Cr as follows:

Ct = <
1 if c e iîo

(9.55)
1 - E 56fi.ro otherwise

Cr is thus a measure of how many times region r is over-counted by summing over

all the regions that contain r. The Kikuchi free energy is now defined as

Fk = ^ Cr (̂ br[Xr)Er{Xr) ^ br{Xr) In br{Xr) J (9.56)
r e f i \ ®r I r /

where the br{xr) are beliefs over regions r e R. (Actually, we can, and will, define

beliefs br{xr) and the corresponding Er{xr) over any connected region r in R, but

only those br{xr), Er{xr) for which r ^ R appear in the equation for the Kikuchi

free energy.) This definition reduces to the Bethe free energy Fp when we let our

fundamental set of regions Rq be the set of all links in the network. The beliefs

bi, bij that the Bethe free energy depends on have to obey certain normalization and

marginalization constraints. Similarly, we have constraints here on the br{xr); we

must have

^^br{Xr) = 1
X r

Y^br(Xr) = bs{x,) if s C r , (9.57)

i.e., each br{xr) must sum to one and, if we sum over all the r , that are in r but

not in the subregion s, we must get the same values as for the belief bg{x,) over the

subregion.

154

We now present the rules for Generalized Belief Propagation, a generalization of

the BP algorithm which reduces to the standard BP algorithm in the case that Re is

the set of all two-node links in the network, and which extremizes the Kikuchi free

energy. Instead of messages from one node to another, we have messages mr,{xg)

from one region r to its direct subregions s . A direct subregion s of r is one such that

there are no other intermediate subregions s ' such that s C s ' C r . If one represents

regions r and s as bit vectors, with each bit being one if the corresponding node is

in the region and zero otherwise, the direct subregion requirement can be thought

of as saying that the bit vectors r and s only have Hamming distance one. (Note:

Yedidia et al. [29] do not say whether the subregions s have to be connected

subregions of the network. For the rest of this chapter, we are going to assume that

s must be a connected subregion, e.g., if we have a region 1 - 0 - 2 with no link

between 1 and 2, we do not allow s = 12 as a possible subregion. From the limited

example networks for which we have worked out explicitly what the update rules

are, it appears that if one did allow messages into non-connected regions s,

these extra messages do not affect the messages into the connected regions s, nor do

they affect the single-node beliefs 6j(xj). We do not have a proof of this, however, so

for now we shall just proceed with the assumption that we are restricting ourselves

to connected subregions s .)

Next, we define the set M(r) of messages going into the region r as follows,

describing each message by its pair of regions (r, s):

M { r) = { { r , s ') \ r ' \ s H r = { } , s C r } . (9.58)

This set contains all messages whose target is inside r, but whose source contains

at least one node outside r . Intuitively, it seems that the belief for a region r should

depend on messages coming into r from outside r, and as we shall see momentarily.

155

that is indeed the case. We also need to define notation for a couple of other sets of

regions. M{r)\M{s) is, as one might expect, the set of all messages in M(r) but not

in M(s). M{r, s) is the set of messages in M{s) that originate in a proper subregion

of r, i.e.,

M(r, s) = {(r", s")|(r", /) € M(s), r" C r} . (9.59)

We now present the update rules for generalized BP. The messages are updated

with

for any r e R and s a direct subregion of r. The beliefs are updated by

br{Xr) f - a j (t>r{Xr) J J I (9 61)
V (r',s')€M(r) J

where r can be any subregion of R. This is not quite the same set of equations as

are given in [29]. Yedidia et al. used, in our notation, (t>r\s{xr\s) where we have

■<i>r{̂)/' ŝ{Xs). We believe that Yedidia et al. are in error here, as the equations

they give do not reduce to the standard BP equations when one chooses the set of

two-node links as /îq. To further persuade the reader that our form of the equation

is valid and leads to a generalized BP algorithm which extremizes Fk , we proceed

to prove that our version of (9.60) is a straightforward consequence of (9.61) and

the marginalization relations. This is our version of part of the proof presented in

[29], and corresponds to our previous derivation of the message update rules from

the belief update rules for the standard BP algorithm.

Suppose we have a set of messages mrs{x,) at a fixed point of generalized BP

and a corresponding set of beliefs br{Xr) related via (9.61). Pick any r e R and a

156

direct subregion s Cr . We know from the marginalization relations that

Y^br{Xr) = b,{xs) (9.62)
®r\j

Since s is a direct subregion of r, r \s contains only one node; let us call this node

c, so we have

Y^br{xr) = b,{x,) . (9.63)
Xc

Now substitute (9.61) into this equation to get

'^ar(l>r{xr) {x̂ >) = a ^ ^ x ,) J J m/-,»(x,«) (9.64)
(r ',i')6M (r) {r" , s")€M(s)

where we have replaced the a normalization operator with explicit normalization

constants O r , a s . Let us now consider the set of messages into s, M{s). Each message

{r", s") can fall into one of three disjoint categories:

1. (r",s") = (r,s)

2. {r",s") G M{s) n M(r)

3. (r",s")GM(s),(r",a")0M(r),(r",s")?6(r,s).

Note that categories 1 and 2 are disjoint since (r, s) is a message originating in r and

thus cannot be in M{r). Let us look at category 3 further. Since {r",s") G M(s),

we know that s" C s and {r"\s") n s = {}. We know that s" is a direct subregion

of r", so r"\s" is a single node, which we will call node d. Hence {d} n s = {},

so we know d ^ s. Now we know that {r",s") ^ M{r), so {r"\s") n r {}, so

d G r. But d 0 s, so d must be in r\s = {c}, so d is the same node as c. Hence

r" = {c}Us" Ç {c}Us = r, so r" C r. But we know that our message is not the (r, s)

one, so we have strict inclusion, r" Cr. Hence our message (/',&") is a message in

157

M{s) that originates in a subregion of r, so category 3 is just our previously defined

M{r,s).

Using this decomposition of M{s) into three subsets, we can now rewrite (9.64)

as follows:

Zc (r',s ')eM (r)

X n
(r" ,j")6M (i)nM (r)

X n ’™r%"(v) • (965)
(r",i")6M (r,s)

All the terms for messages in M{s) fl M(r) appear on both the left and right hand

sides and can be canceled, giving

Y ^ a r M ^ r) n J J ” * r " » " (v) ' (9 6 6)
(r',s')€Af(r)\M («) (r",s")eM (r,5)

and hence

n "*r'/(z,') = rnrXr,) n "^r"."(v) ' (9 67)
* * * (r',s')6M (r)\Af(s) (/ ',» ")eM(r,«)

which leads to

M X r)
ûr r[(r',a')6M(r)\A/(i) ”^r'j'(^i') /n co\
---------------- r f -------------------------------- ?— \------------- = rnr,{Xs) (9 .6 8)

which is essentially (9.60).

158

9.5. Simulations

Here we present some simulations comparing the performance of decoding some

very simple parity-check codes with both the standard LDPC BP-based decoding

algorithm and with the generalized BP algorithm. Our first code is about as simple

a code as one can get, a rate 2/3 code with two data bits and one parity bit. The

parity-check matrix is

H = 1 1 1 (9.69)

(Strictly speaking this is not a low-density parity-check code, but the standard

LDPC decoding algorithm will function even for such codes.) The corresponding

network for generalized belief propagation is shown in Fig. 9.2. Nodes 1, 2, and 3 are

variable nodes and 0 is the parity-check node. For the generalized BP decoding, we

use the set of fundamental Kikuchi regions Rq = {012,013,023}. The resulting full

set of belief propagation update rules are given in Appendix A. We simulated the

performance of both algorithms in decoding codewords sent over an additive white

Gaussian noise (AWGN) channel at various signal-to-noise ratios (SNR). At each

SNR value, we simulated the performance of the decoder over 10® codewords. The

maximum number of iterations of the algorithm per codeword was set to 30 for both

the standard LDPC BP and generalized BP algorithms. The resulting bit error rate

(BER) curves are in Fig. 9.3, and the average number of iterations per codeword are

in Fig. 9.4. Note that the resulting BER versus SNR curves are identical for both

the standard LDPC decoder and the generalized BP decoder. In retrospect, this

is not a surprising result, as our network (Fig. 9.2) is a tree, and it is known that

the standard belief propagation algorithm will converge to the correct a posteriori

probabilities in this case. The number of iterations required per codeword is roughly

the same for both the standard decoder and the generalized BP decoder, though the

iteration count for the latter is slightly higher, which seems a little surprising.

159

0 Ucheck)

Figure 9.2: Network for our rate 2/3 parity-check code.

R e g u la r L O P C
G e n . B P

0.1

0.01

I
I 0.001
UJ

ffi
0.0001

•2 6 8 102 40

Figure 9.3: Bit error rate of ordinary BP versus generalized BP decoding of rate
2/3 code.

160

R e g u la r L D P C ----------
G e n . B P ----------

3 .5

2 .5

I
I
I

1 .5

0 .5

•2 100 2 64 8
S N R

Figure 9.4: Number of iterations needed per codeword for ordinary BP versus gen­
eralized BP decoding of rate 2/3 code.

Our next code is a rate 1/2 code with four codeword bits. The parity-check

matrix is
1 1 1 0

0 1 1 1
H = (9.70)

and the corresponding network is shown in Fig. 9.5. Here the check nodes are nodes

0 and 5, and our fundamental regions are Rq = {012, 013, 023, 025, 035, 235, 245,

345}. Note that the network contains a four-cycle, a closed loop of four nodes. This

is different from the previous case where we had a tree-like network. The resulting

full set of belief propagation update rules are given in Appendix B. Again, we

did simulations of decoding this code with both the regular LDPC algorithm and

generalized BP, and the resulting bit error rate curves are in Fig. 9.6, and the average

number of iterations per codeword are in Fig. 9.7. Here we see that the generalized

BP algorithm does require fewer iterations than the traditional algorithm, with the

low SNR cases requiring roughly 1.3 iterations/codeword instead of 4.7. However,

the BER performance is worse for generalized BP, with about a 0.7dB loss relative

161

(check)

(check)

Figure 9.5; Network for our rate 1 /2 parity-check code.

to regular LDPC decoding! This is not an encouraging result for those who might

want to apply generalized BP to their LDPC codes. Admittedly, this is an extremely

small code we are using, and extrapolating performance from it to a more realistic

sized code is not something one can be too sure about, but this result does give one

cause for concern. (It occurs to us here that, although we know that the Kikuchi

free energy is a different estimate of the true free energy, we do not know that it is

in fact a more accurate estimate than the Bethe free energy. We, and the authors

of [29], have been implicitly assuming that it is a better estimate, but we do not

know this for a fact. It would be interesting to try and compute the true, Bethe, and

Kikuchi free energies on our network and see which is the better estimate; perhaps

this should be a topic of further investigation.)

162

R e g u la r L D PC -■ — ■
G e n . B P ----------

0.1

0.01

I
I 0.001

a

0.0001

1 e -0 5

1 e -0 6
■2 0 2 6 104 6

S N R

Figure 9.6: Bit error rate of ordinary BP versus generalized BP decoding of rate
1/2 code.

R e g u la r L D PC
G e n . B P

3 .5

I
1.5

0 .5

>2 0 2 6 8 104

S N R

Figure 9.7: Number of iterations needed per codeword for ordinary BP versus gen­
eralized BP decoding of rate 1/2 code.

163

9.6. Applying Generalized Belief Propagation to

Real-World LDPC Decoding: Practical Con­

cerns

The reader, having seen the results of generalized belief propagation decoding for

simple, almost trivial, codes, is probably wondering how the generalized BP decoder

will work on codes with lengths found in the real world. Unfortunately, our opinion

is that, barring some major reworking of the algorithm, the use of it with large

LDPC codes is not at all practical. We see two main reasons for this, a lesser reason

which renders the decoding more problematic (though not impossible), and a second

reason which appears to us to be, at present, a major show-stopper.

First, there is the issue of the number of messages we have to keep track of.

Consider our simple example rate 2/3 and 1/2 LDPC codes. For the rate 2/3 code

with the standard LDPC decoder, we have three binary messages going from the

variable nodes to the check nodes and three binary messages going back the other

way, for a total of six messages. For the rate 1/2 code, we have a total of 12 messages.

But in the generalized BP decoder, the rate 2/3 code requires 12 messages (twice

as many), and the rate 1/2 code requires 28 messages (2.33 times as many). The

combinatorics of the situation seem to suggest that as we go to bigger and bigger

codes the number of messages will increase rapidly with the code size. Let us see

if we can estimate what the total number of messages would be for generalized BP

decoding of a realistic code.

Consider an LDPC code of codeword length N, with each variable node con­

nected to Cj checks, and suppose the number of checks is L, with each check con­

nected to Ta variable nodes, and suppose that we are, as in the previous section,

only doing fundamental regions of size three. Each variable node and check node is

going to be the central node in a number of fundamental regions in Rq. The num-

164

ber of such regions containing variable node i as their central node is the number

of combinations of check node peers of i taken two at a time, or (g), so the total

number of regions in Ro is

= + ■ (9-71)
t=l a=l

Each of these regions can have two direct connected subregions, so that gives us a

number of messages generated from Ro of

N L

|{(r, s)|r e - 1) + - 1) . (9.72)
1=1 0 = 1

Now, the two-node regions in R\ formed by intersections of pairs of regions in R\

will just be the set of all the two-node links in the network. Hence

N

= (9.73)
1=1

and each of these regions gives rise to two subregions and hence two messages, so

the total number of messages Mq is

N N L

MG = 2 T Q 4 . ^ Q (q - l) - b T U r a - l) • (9.74)
i=l t=l 0=1

Note that the number of messages required for the standard LDPC decoder is just

N

Mstd = 2|/?i| = 2 Cj (9.75)
t=i

For a typical LDPC code, such as the one used in [9] for which N = 4629 and

L = 277, we have Mstd = 27826 and M q = 740726, so the generalized BP algorithm

165

requires processing about 26.6 times as many messages, and thus at least 26.6 times

as much memory and CPU usage per iteration.

Now this by itself would not necessarily render generalized BP impractical,

though it does mean that generalized BP would have to render considerable gains

in BER to justify the extra resources. However, there is another problem. As we

mentioned previously, in this formulation of LDPC decoding as a problem in belief

propagation over a network, the check nodes do not have binary states, but instead

have states that are bit vectors of length ra- Hence the number of states each check

node can be in is 2’'“. In the simple examples we looked at, was 3, giving nodes

with 8 states, but in the code in [9] Tq is always between 50 and 53. Hence every

message to a region that includes a check node (and that includes all the thousands

regions in R q) must be an array with one dimension being of length at least 2®“.

This is obviously not practical. The conventional LDPC decoding algorithm avoids

this issue by not explicitly considering the check nodes as having such a complex

state; in effect, the algorithm does not track the complete state of the bits going

into a check node, but only considers whether the bits form a word of even or odd

parity. If the generalized BP algorithm is to become practical, one needs a refor­

mulation of it similar to the way the conventional LDPC algorithm is formulated,

with messages going back and forth but only passing information about the states

of codeword bits, instead of each message giving information about the state of its

target nodes. How one is to do this, to successfully “hide” the check node states,

when we have messages going towards regions which contain both check nodes and

variable nodes, is not at all obvious.

166

9.7. Conclusion

Yedidia et al. [29] showed that when the BP algorithm converges, it converges to

an extremum of the Bethe free energy, and hence to an approximate minimum of

the distance (Kullback-Liebler divergence) between the beliefs it computes and the

true a posteriori probabilities. This is an interesting theoretical result in that it

provides some theoretical backing for the validity of the use of BP on networks

with cycles. Before this, theory only told us that BP converged to true a posteriori

results for the limited case of tree-like networks. Yedidia et al. go on to develop

a generalization of the BP algorithm based on a generalization of the Bethe free

energy defined on multi-node regions of the network. This result is theoretically

quite interesting, but not practical to apply to LDPC codes of any substantial size

without substantial reworking of the algorithm. Also, the limited testing we have

done of the algorithm does not show any improvement in BER performance over

the standard LDPC decoder, so it is not known that the generalized BP algorithm

would be useful even if it was practical to implement for large LDPC codes.

167

Chapter 10

The MTR Enforcement Algorithm

168

10.1. Introduction

As we mentioned back in Chapter 1, practical magnetic recording systems employ

some sort of run-length-limited (RLL) or maximum-transition-run (MTR) code to

impose restrictions on the kinds of sequences of transitions that are present in the

data written on the magnetic medium. These restrictions are imposed in order to

make the synchronization circuitry work better and to avoid certain error-prone

sequences. Now, any such constrained code, like any code with code rate less than

one, imposes a certain amount of redundancy in its output. However, the decoders

in the magnetic recording systems we have discussed so far (see, e.g., Fig. 1.10), the

BCJR and LDPC decoders, do not take advantage of the redundancy introduced

by the MTR constraint. It would be nice if we could modify the decoders to take

advantage of this extra redundancy present in our channel inputs. This chapter

explains how we can add an extra decoder module, employing what we call the

M T R enforcement algorithm, and gain a little bit extra performance.

10.2. W here the MTR Enforcer Eits Into the Sys­

tem

Fig. 10.1 shows a diagram of a magnetic recording system with our MTR enforcer

added into the system. The enforcer, like the BCJR and LDPC decoder, is a soft-

input / soft-output decoder, i.e., its inputs and outputs are log-likelihood values. The

flow of the log-likelihood values proceeds as follows;

1. The BCJR decoder creates an initial set of log-likelihood values.

2. We compute the extrinsic information from the BCJR decoder as in Section

3.4. (Note that on the first iteration this is just the BCJR output, as the

BCJR log-likelihood inputs are all zeros.)

169

3. The LDPC decoder operates on this log-likelihood vector and creates new

log-likelihood values.

4. The MTR enforcer iterates one or more times on the LDPC decoder’s output.

5. The original input to the LDPC decoder is subtracted off from the MTR

enforcer output to get the extrinsic information as in Section 3.4. Note that

we do the extrinsic information subtraction the same way as in Section 3.4,

except that we are effectively treating the LDPC decoder and MTR enforcer

as if they were one big decoder.

6. The BCJR and LDPC/MTR extrinsic informations are added to get a total

log-likelihood L(i) as in (3.72). The resulting L(i) are hard-decoded and the

result checked to see if it is a valid LDPC codeword. If it is, we are done.

7. Otherwise, the extrinsic information is fed back into the BCJR decoder and

the process begins again until the limit of number of iterations of turbo equal­

ization is reached.

As in Section 3.4, there is an analogous version of this algorithm without the extrinsic

information subtraction; that version goes as follows:

1. The BCJR decoder creates an initial set of log-likelihood values.

2. The LDPC decoder operates on this log-likelihood vector (the BCJR output)

and creates new log-likelihood values.

3. The MTR enforcer iterates one or more times on the LDPC decoder’s output.

4. The resulting L(i) are hard-decoded and the result checked to see if it is a

valid LDPC codeword. If it is, we are done.

170

P(x(m) =1)

Output
data"*”Input

data

MTR
Adjuster

Precoder

MTR
Decoder

? > 0 .5 ?

? < 0 .5 ?

MTR
Enforcer

LDPC
Decoder

MTR
Encoder

LDPC
Encoder

Channel
Decoder

Equalizer

Magnetic
Recording
Channel
(Lorentzian)

Figure 10.1: Diagram of system for PRML magnetic recording with precoder, MTR
code, LDPC code and MTR enforcer.

5. Otherwise, these L{i) values are fed back into the input of the BCJR decoder

and the process begins again until the limit of number of iterations of turbo

equalization is reached.

In Section 3.4, we saw that whether or not the extrinsic subtraction is done did not

make very much difference to the resulting bit error rates of the system. As we shall

see later, there is a more substantial difference when the MTR enforcer is added.

The sequence of decoders presented above is admittedly somewhat arbitrary.

We argue that intuitively the LDPC decoder should come before the MTR enforcer

because the LDPC code is a more powerful code and thus more likely to be able to

correct errors. Given the relative looseness of the MTR constraint compared to the

constraints of the LDPC parity-check matrix, it seems to us that the MTR enforcer

is more likely to be confused than the LDPC decoder (more likely to decode to the

wrong MTR codeword) and thus should only see the data after the LDPC decoder

has had a chance to clean up as many errors as possible.

171

10.3. Details of the MTR Enforcer Algorithm

The details of the MTR enforcer algorithm are highly dependent on the particular

MTR code in use. We present here the MTR enforcer for the MTR code given in

[2]. The MTR enforcer is basically a Bayesian algorithm that computes o posteriori

log-likelihood ratios given the MTR constraints that the codeword must obey. In the

case of the code from [2], this constraint means that we can never have a sequence of

four or more one bits in a row, nor can we have twelve or more zero bits. Let us call

these two constraints the One Constraint and the Zero Constraint, respectively.

An iteration of the MTR enforcer takes in log-likelihood values Lm{i) and produces

outputs Lout(î) as follows.

First, the Lin(i) are converted to probabilities qo{i),qi{i) in the obvious way:

%(i) = _________________________
exp(Lin(i)/2) + exp(-L i„(i)/2)

= exp(-Lin(i)/2)
 ̂ exp(Li„(i)/2)-bexp(-Li„(z)/2) ' ̂ "

Next, we compute values N Aij defined as follows: N A ij is the probability that the

four-bit block of bits starting at bit i satisfies the One Constraint (i.e. is not the bit

sequence 1111) given that bit i + j is one. In more mathematical language, if we let

Xj_>i+ 3 represent the sub-vector of bits from bit i to bit i + 3, then

= F(Xi_+i+3 ^ [llll]lx,+j = 1) (10.2)

is defined for all j € {0,1,2,3} and all i for which the above equation makes sense,

that is, i E {0 ,..., J - 4} where J is the length of the input likelihood vector.

Note that J may be longer than the original LDPC codeword length N, due to

the extra bits stuffed in-between parity bits by the MTR adjuster (Section 1.5.3)

to ensure that the LDPC codeword does not violate the MTR constraints. Also

172

note that we do not have, or need, any variables for the corresponding probabilities

P(xi_>i+ 3 7 ̂ [llll]|xj+j = 0), since by the very nature of the One Constraint, if

Xi+j = 0, the constraint is automatically satisfied. We compute the N A tj values

thus:

A i = 1 “ n 9i(* + ^) (10.3)
fce{o,i,2,3}\i

Similarly, we define the quantities N Eij as the probability that the block of bits

starting at bit i satisfies the Zero Constraint given that bit i + j is zero, i.e.,

N E i j = P (x i_ ,+ n f [000000000000]|a:i+j = 0) (10.4)

for J € { 0 , . . . , 11} and i € { 0 , . . . , J - 12}. The N E ij are computed in the obvious

fashion:

N E i j = l - ?o(* + A) . (10.5)
fce{o,i,...,ii}\i

Then a straightforward Bayesian computation of the a posteriori probabilities

%(%), q\{i) of bit i being zero or one respectively given that the Zero Constraint and

One Constraint are true over the entire codeword gives us

11
qo(i) = aqo(i)'[lN E i-jj

j=o
3

qi{i) = agi(i) (10.6)
j=o

where a is the usual normalizer to give us total probability of one and, for notational

convenience, we have assumed that N Etj = 1 and N A tj = 1 any place where

they are not defined above in (10.2) and (10.4). This avoids having to explicitly

complicate our equations to handle the cases “at the edges” , i.e, when i — j < 0.

Once qo{i) and qi{i) are computed, we compute the output likelihood Ẑ out(*) in the

173

obvious fashion:

Lout(i) = l o g | | | . (10.7)

10.4. Simulation results

Here we present simulation results of a system such as in Fig. 10.1 with a Lorentzian

channel and varying numbers of iterations of the MTR enforcement algorithm. Let

us describe here the parameters for the simulation. The magnetic recording channel

is Lorentzian with channel density 5 = 3.3. We used the regular rate 0.90 LDPC

code from [9], along with the rate 16/17 MTR code from [2]; the Lorentzian channel

is equalized to the MEEPR4 (5+4D-3D^-4£)®-2£>^) response and the 1/(1©D)

precoder is used, as specified in [2]. Note that the total number of bits input into

the channel for each sector is 4996 once the expansion due to the MTR code, the

LDPC parity bits, and the extra added bits to keep the overall MTR constraint

satisfied are taken into account (1.51). Thus the code rate of the entire system is

4096/4996 = 0.81986. We used 5 iterations of turbo equalization and an iteration

limit of 30 on the LDPC decoder, with a variable number B of iterations of the

MTR enforcement algorithm. The signal-to-noise ratio is defined as SN R = l/a^

where is the variance of the noise at the Lorentzian channel output (i.e., not the

noise at the output of the MEEPR4 equalizer).

Fig. 10.2 shows performance of the system with the number of iterations of

MTR enforcement being B = 0, 1, 5, and 10 respectively. We use here the variant

with the extrinsic information subtraction. Also appearing in the plot is a channel

capacity curve. This is not the true capacity bound for the MEEPR4-equalized

Lorentzian channel, since we do not know how to calculate that. Instead, it is just

the capacity for a perfect MEEPR4 channel computed as in Chapter 7, but with

the SNR axis rescaled to bring it in line with the difierent definition of SNR used

174

above. It is expected that the true MEEPR4-equalized Lorentzian channel capacity

is somewhere close to the ideal MEEPR4 curve, but as this is not known for sure, the

curve should be treated as an inexact measure of where the true capacity bound lies.

Anyway, the results in Fig. 10.2 show that, unfortunately, the MTR enforcement

actually makes the performance worse.

However, Fig. 10.3 tells a much more interesting story. This plot is of the same

system as Fig. 10.2, except that this time we use the variant of the system which

does not do the extrinsic information subtraction. In this case, the system with

one round of MTR enforcement (B = 1) performs substantially better than the

system without the MTR enforcement, providing a gain of about 0.5dB. Increasing

B beyond B = 1 produces worse performance, so it seems that having only one

iteration of MTR enforcement is optimal. This is a very interesting result, since

as Fig. 3.2 showed, the presence or absence of the extrinsic subtraction did not

make much difference in the system considered there, but not doing the extrinsic

subtraction here made a surprising difference with the MTR enforcer, a difference

between a -0.25dB loss and a 0.5dB gain. This only reinforces our comments at the

end of Chapter 3 that the whole issue of extrinsic information is not understood as

well as it should be.

175

MEEPR4*«quaJized C hannel Sim with MTR E nforcer

B —
B - 1 0 -------

C a p a c ity -------

0.01

0.0001

SNR

Figure 10.2: Performance of system with varying levels of MTR enforcement, using
extrinsic subtraction.

M E£PR4-equaiizsd Channel Sim with MTR Enforcer

8 .1 0 ------
C a p a c ity -------

0.01

0.001

0.0001

SNR

Figure 10.3: Performance of system with varying levels of MTR enforcement, with­
out extrinsic subtraction.

176

Chapter 11

Conclusions and Further Work

177

In this dissertation, we have presented a novel method of analyzing the perfor­

mance of the BCJR algorithm through density evolution, and used this in com­

bination with the known density evolution techniques for LDPC codes to design

codes for various partial-response channels associated with magnetic recording. We

exhibited codes with performance 0.3 dB to 0.5 dB above that of regular column

weight three codes. We also presented a technique, called MTR enforcement, which

exploits the knowledge of the maximum-transition-run constraint that MTR-coded

data must satisfy to gain a fraction of a dB performance boost.

There are still several open questions to be explored:

1. The proper choice of the dimax, dimim etc., parameters used in the code search

is still somewhat unclear. The results we presented in Chapter 8 showed that,

generally speaking, lower dimax means less likelihood of four-cycles appearing

in the code and compromising the code performance, but further information

on how to choose the dimoi etc. parameters well would be helpful.

2. Density evolution only predicts performance of LDPC codes in the limit of

infinite block length and in the absence of cycles (size four or otherwise).

Unfortunately, as we have seen, codes that density evolution predicts will do

well sometimes do not do so, due to these effects of block length and cycles.

It would be nice if someone could develop an extension to density evolution

that would take these factors into account.

3. The whole issue of extrinsic information, i.e., should the extrinsic subtraction

be performed or not, and why, deserves more attention. As far as we know,

this topic has not been discussed much in the literature; most authors seem to

assume the extrinsic subtraction should be performed always, and as we saw

in Chapters 3 and 10, this may not be the case.

4. One feature of magnetic recording channels that we did not discuss is the issue

178

of so-called thermal asperities and media defects. Without going into detail

here about what they are, the effect of thermal asperities and media defects

on the magnetic recording channel is to cause occasional burst erasures of the

bit stream, effectively turning the channel into a combination of our existing

magnetic recording channel model and an erasure channel. Extending the

existing BCJR density evolution to include an erasure effect should be fairly

trivial assuming the erasure probability is known, and this should allow one to

design codes for magnetic recording systems where erasures may be present.

How well the codes would work in practice, given that the erasures occur in

bursts and not independently, and that the actual erasure probability may not

match that for which the code was designed, remains to be seen.

1 7 9

Bibliography

[1] D. Krueger, “Generalized partial response (GPR) system design for digital
magnetic recording,” Tech. Rep., CSPLab, The Univ. of Oklahoma, 1995.

[2] T. Nishiya, K. Tsukano, T. Hirai, S. Mita, and T. Nara, “Rate 16/17 maximum
transition run (3;11) code on an EEPRML channel with an error-correcting
postprocessor,” IEEE Trans. Magn., vol. 35, pp. 4378-4385, Sept. 1999.

[3] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 71, pp. 268-278, Mar.
1973.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-
20, pp. 284-287, Mar. 1974.

[5] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,
vol. IT-8, pp. 21-28, Jan. 1962.

[6] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theory,-vol. 45, pp. 399-431, Mar. 1999.

[7] W. E. Ryan, L. L. McPheters, and S. W. McLaughlin, “Combined turbo coding
and turbo equalization for PR4-equalized Lorentzian channels,” in Proc. Conf.
Inform. Sciences and Systems, (Princeton, NJ), pp. 489-494, 1998.

[8] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf, “Joint message-passing decoding
of LDPC codes and partial-response channels,” IEEE Trans. Inform. Theory,
vol. 48, pp. 1410-1422, June 2002.

[9] H. Song, R. M. Todd, and J. R. Cruz, “Applications of low-density parity-
check codes to magnetic recording channels,” IEEE J. Select. Areas Commun.,
vol. 19, pp. 918-923, May 2001.

[10] P. Hodges and D. Cheng, “Large block size for disk drives,” tech.
rep.. National Storage Industry Consortium, 2000. Available at
h ttp : / / www.n s ic .org/large_block_white_paper.pdf.

[11] R. Johanesson and K. S. Zigangirov, Fundamentals of Convolutional Coding.
New York, NY: IEEE Press, 1999.

180

http://www.nsic.org/large_block_white_paper.pdf

[12] Z. Wu, Coding and Iterative Detection for Magnetic Recording Channels. Nor-
well, Mass.: Kluwer, 2000.

[13] J. L. Fan, A. Friedmann, E. Kurtas, and S. W. McLaughlin, “Low density
parity check codes for magnetic recording,” submitted to IEEE J. Select. Areas
Commun., 2000.

[14] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Com­
mun., (Geneva), pp. 1064-1070, May 1993.

[15] S.-Y. Chung, On the Construction of Some Capacity-Approaching
Coding Schemes. Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge, Massachusetts, Sep. 2000. Available at
h ttp : / / t r u t h .m it.edu/"sychung/thesis/main.p s .gz.

[16] J. L. Fan, Constrained Coding and Soft Iterative Decoding. Norwell, Mass.:
Kluwer Academic Publishers, 2001.

[17] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47,
pp. 599-618, Feb. 2001.

[18] P. Hoeher, U. Sorger, and I. Land, “Log-likelihood values and Monte Carlo
simulation,” in Proc. Int. Symp. on Turbo Codes and Related Topics, (Brest,
France), pp. 43-46, Sept. 2000.

[19] S.-Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approximation,”
IEEE Trans. Inform. Theory, vol. 47, pp. 657-670, Feb. 2001.

[20] M. Varanasi and B. Aazhang, “Parametric generalized Gaussian density esti­
mation,” J. Acoust. Soc. Amer., vol. 86, pp. 1404-1415, October 1989.

[21] F. Yang, R. Tafazolli, B. Evans, L. Luo, and M. Ye, “Performance of iterative
turbo decoding with the hypothesis of generalized gaussian distribution for ex­
trinsic values in AWGN and fading channels,” in Proc. IEEE Global Telecommu­
nications Conference (GLOBECOM ’01), vol. 2, (San Antonio, Texas), pp. 957-
962, Nov. 2001.

[22] A. Tesei, R. Bozzano, and C. Regazzoni, “Comparison between asymmetric
generalized gaussian (AGG) and symmetric-a-stable (SaS) noise models for
signal estimation in non-gaussian environments,” in Proc. IEEE Signal Proces-
sign Workshop, (Banff, Alberta, Canada), pp. 259-263, July 1997.

[23] M. Jeruchim, P. Balaban, and K. Shanmugan, Simulation of Communication
Systems. New York: Plenum Press, 1992.

181

[24] D. Arnold and H.-A. Loeliger, “On the information rate of binary-input chan­
nels with memory,” in Proceedings IEEE International Conference on Commu­
nications, (Helsinki, Finland), June 2001.

[25] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York,
NY: John Wiley and Sons, 1991.

[26] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and code opti­
mization of low density parity-check codes on Rayleigh fading channels,” IEEE
J. Select. Areas Commun., vol. 19, pp. 924-934, May 2001.

[27] R. J. McEliece, D. J. C. MacKay, and J. F. Chang, “Turbo decoding as an
instance of Pearl’s belief propagation algorithm,” IEEE J. Select. Areas Com­
mun., vol. 16, pp. 140-152,1998.

[28] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[29] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi ap­
proximations, and belief propagation algorithms,” Tech. Rep. TR-2001-16, Mit­
subishi Electric Research Laboratories, Cambridge, MA, May 2001.

[30] H. A. Bethe, “Statistical theory of superlattices,” Proc. Roy Soc. London A,
vol. 150, pp. 552-575,1935.

[31] R. Kikuchi, “A theory of cooperative phenomena,” Phys. Rev., vol. 81, pp. 988-
1003,1951.

[32] D. J. C. MacKay, J. S. Yedidia, W. T. Freeman, and Y. Weiss, “A conversa­
tion about the Bethe free energy and sum-product,” Tech. Rep. TR-2001-18,
Mitsubishi Electric Research Laboratories, Cambridge, MA, May 2001.

[33] L. Wall and R. L. Schwartz, Programming Perl. Sebastapol, CA: O’Reilly and
Associates, 1991.

182

Appendix A

Generalized Belief Propagation

Equations for Rate 2/3 LDPC

Code

183

Here we present the full set of generalized belief propagation equations for the

network shown in Fig. 9.2. The list of equations was generated from the list of

all possible messages with the help of a script in the Perl programming language

[33]. A similar script was used to automatically generate the C code for the main

iteration subroutine for the simulation program.

moi^o(a^o) /° \^ ^ wtoi2->oi(3^0)3 î)^oi3^oi(3^0)3:i) (A.l)
“ 0o(a:oj

mowi(Ti) f - a^^^j7^4^mo2->o(xo)mo3-*o(a:o)

X îUoi2-»oi (3:0,%) MI013-+01 {xoiXi) (A.2)

J7lo2-»o(a;o) ^ Ot^^^^^-^-^moi2-y02{Xo,X2)l^023-y02{Xo,X2) (A.3)

mo2^2{x2) <- moi-»o(a:o)mo3_»oW)
xo

XJ7loi2-»02(â O, I2)M̂ 023-»02W, ̂ 2) (A.4)

mo3-»o(2;o) <- Q,y^ <̂03(0) ^ ĵ7îqj3_^q3(xo,1 3)771023-403(^0)2:3) (A.5)
_ m m)

mo3-+3(m) <- aV ^^j^^^m oi->o(m)nio2-^o(m)

xmoi3->o3(m, m)î^023->03(m> m) (A.6)

184

T7lo3->o(â oj

bi{xi) <- ‘ipi(xi)moi^i{xi) (A.13)

6 2 (2:2) <r- 1p2ix2)mo2-*2{X2) (A. 14)

6 3 (2:3) <- V"3 (2:3)mo3-»3 (2:3) (A.15)

185

Appendix B

Generalized BP Equations for

Rate 1/2 LDPC Code

186

Here we present the full set of generalized belief propagation equations for the

network shown in Fig. 9.5. As with the previous code, the list of equations was

generated from the list of all possible messages with a Perl script, and a similar

Perl script was used to automatically generate the C code for the main iteration

subroutine for the simulation program.

, . Ylxi X2)mo25-*02{Xo,X2)m25-̂ 2{X2)
*̂012̂ 01 (2:0 , 3:1) a ----------------------

)#02->o(%o)
(B.l)

, , T , x 3 ^ 0 2 3 - ^ 0 3 (J o , X 3) m Q 3 S ^ Q 3 i x o , X 3) m 3 s ^ 3 { x 3)
m o i 3 ^ o i W , a ; i) < - a w u o j _ u ------------------- ------------------------------

? % 0 3 -» o (2 o)

(B.3)

, , Ex3 ^3) ^ 035^ 03(^0 , r3)m36_»3(r3)
^ a ----------------------------- ---

(B.5)

, . Zz2 "̂ 012-̂ 02(a:0, X2)mo25^02{Xo, X2)m25^2{X2)
I ,) ^ ----------------------------

(B.6)

187

S l5 (®2.l5)»n245-t25(Z2,l5)m35-*;(Z5)ni45-»5(®s)

(B.7)

5 3 x 0 * ^ 2 5 l l 2 % y ^ (® 0 . l 2) m o 2 3 - t 0 2 (Z Q .l2)m o i-* 0 (iQ)m o 3 -* 0 (z o)

(B.8)

2 3 x 5 ^ % ^ % ^ ÿ ^ " * 2 3 5 - * 3 5 (z 3 ,Z 5)n i3 4 5 - t3 5 (%3 ,Z 5)»n25-*5 (Z 5)m 4 5 - tS (i s)

(B.9)

23x0 ^̂ f̂ ^̂ ">oi3-*03(zoiZ3)mo23-t03(zo.®3)moi-»o(io)mo2-*o(®o)
-noss-ssN.Xs) <- Û :

(B.10)

Zx3 ^%&^ÿmo35^35(l3, ̂ 5) ^ 345^ 35(3:3 , r5)mo3_3(r3)

*- “ --------------'------------- ; ^ Æ) -----------------------------
(B.ll)

53,2 %^^mo25-»2e(ra,%)mM5-y35(r2,r5)mo2-»2(i2)
^ a ---

(B.12)

188

. X),,, ^^^^^^^^mo25->2s(a:2,2^5)m235->25(a:2,a:5)7no2->2(a:2)
f - » ----------------------------- ---

(B.14)

(B-)‘n^45^s(^5)

/ \ E 13 045(ici,X5) ”*035->35(â 3,;C5)m235->35(x3,Xs)mo3-+3(a;3)
Ml345-»4513:4,3:5) ^ &-------------------------------------7—T----------------------------

(B.16)

moi^oW) <- ^^^^^j^^y^”îoi2->oi(a;o)a;i)moi3->oi(a;o,Xi) (B.17)

TMoi-»i(î) ^ (zo,ii)Tnoi3-»oi(a;o,a:i)Tno2-^o(3:o)mio3-^o(zo)
10

(B.18)

‘̂ 02 -*o{X o) < - Q, ^ - 7 — M^012-»02(3 0̂ , X 2)m o 2 3 ^0 2 {x o ,X 2)
^ <Po(XoJ

xmo25_»o2(io, a:2)m25_̂ 2(a:2) (B.19)

n̂ 02-»2(a:2) ^ ^ ̂ °I. 2) r7iQj2_̂ Q2{2;o, X2)mo23-*02{Xo> 2̂ 2)ni025->02(â 0> Ï 2)
% 02(X2)

xmoi_^o(ro)mo3-»o(a:o) (B.20)

189

^ 0 3 -+ o (® o) <— Q, ° ' y ^ n%0i3_»03(a;|), X 3)T no23->03(jo, X3)

Z3 M ^o)
Xmo35-^Q3{XQ, X3)m35-^3{X3) (B.21)

^03->3(2̂ 3) <— 0; "^013^03, 3:3)MlQ23-y03, 3̂ 3)mQ35-»03(l̂ O, %)

xmowoW)mo2-^o(zo) (B.22)

^ 25^2 (3:2) <- OC^^^^r~r~^''^025-¥2s{X2,Xs)m235-^25(x2,X5)m245^25{X2,Xs)
1 5

h{X2)
X‘m33^s{x3)mi5-^5{X5) (B.23)

M ^ 2 5 -» s (%) ^ 0 2 s (2) ^ ^ 7 7 tp 2 5 -» 2 s (3 ^ 2 i^ 5)^ T ^ 2 3 5 -» 2 5 (^ 2)a :5)n ^ 2 4 5 -» 2 5 fe |3 ? 5)

xmo2-»2(a:2) (B.24)

W 3 5 _>3 (X 3) <— Q, y ^ — T»035-»35(^3i X 5) m 2 3 3 -^3 3 {X3 , 1 5)
15 <̂ 3(aî3)

Xm345_>35(X3, X5)m25-^5(a:5)W45_»5(X5) (B.25)

190

■<— 1^m^35{X3,X5)m235-^35{X3,X5)m3i5^35{x3,X5)
13 0 5 (2:5)

xmo3_v3(a:3) (B.26)

m 4 5 _ » 4 (X 4) < - a ^ ^ ^ ^ ^ ^ - ^ - ^ m 2 i 5 - ^ i s { X i , X 5) m 3 i 5 - ^ i 5 { x 4 , X 5) m 2 5 - t 5 { x 5) m 3 5 - y 5 { x 5)

(B.27)
0 4 (2:4)

^45-+5(2:5) 4 ^ , / \ ^245->45(2:4) 2 5̂) ^ 345—>4 5(2:4 » 2*5) (B.28)
^ 0 5 (3:5)

6 1(2:1) -f- 0i(xi)moi->i(xi) (B.29)

6 2(2:2) <- 02(2:2)mo2->2(2:2)m25->2(2;2) (B.30)

6 3(2:3) <- i)3{X3)mo3-*3{x3)m35^3{X3) (B.31)

6 4 (1 4) 4- 04(a:4)m45_>4(x4) (B.32)

191

