INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note appears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or microfiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.
THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

STATE-OF-THE-ART OF LAND TREATMENT OF
CORROSIVE AND IGNITABLE WASTE

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of
DOCTOR OF PHILOSOPHY

By
BERNADETTE P. VILLACORTA
Norman, Oklahoma
1985
STATE-OF-THE-ART OF LAND TREATMENT OF
CORROSIVE AND IGNITABLE WASTE
A DISSERTATION
APPROVED FOR THE DEPARTMENT OF
CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE

By

[Signatures]

[Names]
ACKNOWLEDGEMENTS

I wish to express my sincerest gratitude and indebtedness to Professor George W. Reid, Chairman of my doctoral committee for his suggestions, guidance and encouragement during the entire course of this research.

My sincerest and deep appreciation to the members of my doctoral committee, Drs. Leale E. Streebin, James M. Robertson, Jimmy F. Harp, and Alexander J. Kondonassis for their invaluable support, guidance and technical advice, without which this study would not have been completed.

I would like to thank all of the EPA agencies who in one way or another provided information and data bases on generators of ICW, and all the facilities who participated in the survey, as well as the petroleum and citrus processing plants, for allowing us to conduct site visits in their plants.

Special thanks are extended to the Bureau of Water and Environmental Resources Research, University of Oklahoma, through its able director, Prof. George W. Reid, and the Robert S. Kerr Environmental Research Laboratory, EPA in Ada, Oklahoma, for the financial support.
I am especially grateful to Dr. Robert J. Murphy and Marjo Carpenter for their initial contributions in an earlier study on cost considerations and site specific design criteria of land application facilities. A special note of appreciation is also due to Betty Sudduth and Barbara Jones for their patience and expert help in the typing and editing of the final manuscript.

Finally, I wish to express my gratitude and indebtedness to my parents for their moral support, encouragement and guidance throughout all the years of my education. And to Godfrey J. Vergara for his patience and understanding throughout the course of this study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiii</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>BACKGROUND</td>
</tr>
<tr>
<td>1.2</td>
<td>OBJECTIVES</td>
</tr>
<tr>
<td>II</td>
<td>LITERATURE REVIEW</td>
</tr>
<tr>
<td>2.1</td>
<td>GENERAL</td>
</tr>
<tr>
<td>2.2</td>
<td>SOIL MICROBIAL DEGRADATION</td>
</tr>
<tr>
<td>2.3</td>
<td>RISK ASSESSMENT</td>
</tr>
<tr>
<td>2.4</td>
<td>COST CONSIDERATIONS</td>
</tr>
<tr>
<td>III</td>
<td>APPROACH AND METHODOLOGY</td>
</tr>
<tr>
<td>3.1</td>
<td>PRELIMINARY ASSESSMENT</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Brown's List</td>
</tr>
<tr>
<td>3.1.2</td>
<td>EPA Mailing List</td>
</tr>
<tr>
<td>3.2</td>
<td>INSTRUMENT</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Reuter Report</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Trial Survey from Brown's List</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Actual Survey</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Site Visits</td>
</tr>
<tr>
<td>3.3</td>
<td>SOIL COLUMN STUDY</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Materials and Methods</td>
</tr>
<tr>
<td>IV</td>
<td>RESULTS</td>
</tr>
<tr>
<td>4.1</td>
<td>RESULTS OF INVENTORY</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Distribution of Companies by EPA Region</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1.2 Distribution of Companies by Climatic Regions</td>
<td>43</td>
</tr>
<tr>
<td>4.2 RESULTS OF THE SURVEY</td>
<td>43</td>
</tr>
<tr>
<td>4.3 RESULTS OF THE SURVEY ON LAND APPLICATION FACILITIES</td>
<td>43</td>
</tr>
<tr>
<td>4.4 RESULTS OF SURVEY ON GENERATORS OF ICW</td>
<td>54</td>
</tr>
<tr>
<td>4.5 RESULTS OF SOIL COLUMN STUDY</td>
<td>61</td>
</tr>
<tr>
<td>V GENERAL CRITERIA FOR LAND APPLICATION OF ICW</td>
<td>72</td>
</tr>
<tr>
<td>5.1 GENERAL</td>
<td>72</td>
</tr>
<tr>
<td>5.2 LAND LIMITING CONSTITUENT ANALYSIS</td>
<td>76</td>
</tr>
<tr>
<td>5.2.1 Waste Characterization</td>
<td>76</td>
</tr>
<tr>
<td>5.2.2 Environmental Considerations</td>
<td>77</td>
</tr>
<tr>
<td>5.3 SITE SPECIFIC CONCEPT DESIGN</td>
<td>82</td>
</tr>
<tr>
<td>5.4 MONITORING</td>
<td>85</td>
</tr>
<tr>
<td>5.5 CLOSURE AND POST-CLOSURE</td>
<td>89</td>
</tr>
<tr>
<td>5.6 SITE SELECTION</td>
<td>91</td>
</tr>
<tr>
<td>5.7 CORROSIVE WASTE</td>
<td>92</td>
</tr>
<tr>
<td>5.8 IGNITABLE WASTE</td>
<td>100</td>
</tr>
<tr>
<td>VI LAND TREATMENT LIFE CYCLE COST CONSIDERATIONS</td>
<td>104</td>
</tr>
<tr>
<td>6.1 INTRODUCTION</td>
<td>104</td>
</tr>
<tr>
<td>6.2 COST COMPONENTS</td>
<td>106</td>
</tr>
<tr>
<td>6.2.1 Monitoring Wells</td>
<td>106</td>
</tr>
<tr>
<td>6.2.2 Equipment Costs</td>
<td>109</td>
</tr>
<tr>
<td>6.2.3 Labor Costs</td>
<td>110</td>
</tr>
<tr>
<td>6.2.4 Fertilizer Application</td>
<td>113</td>
</tr>
<tr>
<td>6.2.5 Buffer Zones</td>
<td>113</td>
</tr>
<tr>
<td>6.2.6 Security</td>
<td>113</td>
</tr>
<tr>
<td>6.2.7 Sampling</td>
<td>114</td>
</tr>
<tr>
<td>6.2.8 Transmission</td>
<td>115</td>
</tr>
<tr>
<td>6.2.9 Pumping</td>
<td>115</td>
</tr>
<tr>
<td>6.2.10 Preapplication Treatment</td>
<td>118</td>
</tr>
<tr>
<td>6.2.11 Storage Ponds</td>
<td>118</td>
</tr>
<tr>
<td>6.2.12 Field Preparation</td>
<td>118</td>
</tr>
<tr>
<td>6.2.13 Distribution</td>
<td>118</td>
</tr>
<tr>
<td>6.2.14 Recovery</td>
<td>118</td>
</tr>
<tr>
<td>6.2.15 Closure Costs</td>
<td>118</td>
</tr>
<tr>
<td>VII RISK ASSESSMENT</td>
<td>122</td>
</tr>
<tr>
<td>7.1 FACTORS CONSIDERED IN THE MODEL</td>
<td>123</td>
</tr>
<tr>
<td>7.2 EXPOSURE ADJUSTMENTS FOR ENVIRONMENTAL MEDIUM</td>
<td>125</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 LIMITATIONS OF THE MODEL</td>
<td>127</td>
</tr>
<tr>
<td>7.4 ADDITIONAL FACTORS THAT COULD BE CONSIDERED</td>
<td>130</td>
</tr>
<tr>
<td>7.5 RESULTS OF RISK ASSESSMENT</td>
<td>130</td>
</tr>
<tr>
<td>7.5.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td>7.5.2 Procedure for Scoring</td>
<td>133</td>
</tr>
<tr>
<td>7.5.3 Results</td>
<td>136</td>
</tr>
<tr>
<td>VIII CONCLUSIONS</td>
<td>142</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>150</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>ICW Facilities with Land Application Systems</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Generators of ICW Surveyed Using Treatment Technology Other Than Land Application</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Survey Forms Used</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Industrial Process and Waste Characterization</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>Procedures and Methods for Microbial and Chemical Analyses of Soil Samples</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1.1</td>
<td>EPA Listed Wastes Based on Hazardous Characteristics</td>
</tr>
<tr>
<td>1.2</td>
<td>Summary Production of D001 and D002 by SIC Code</td>
</tr>
<tr>
<td>1.3</td>
<td>Treatment, Storage and Disposal Methods for D001</td>
</tr>
<tr>
<td>1.4</td>
<td>Treatment, Storage and Disposal Methods for D002</td>
</tr>
<tr>
<td>3.1</td>
<td>Geographic Distribution by Region and State of 197 Land Application Facilities in the U.S.</td>
</tr>
<tr>
<td>3.2</td>
<td>Companies Generating D001 and D002 in 8 EPA Regions</td>
</tr>
<tr>
<td>4.1</td>
<td>Generators of D001 and D002 with Land Application Facilities from Brown's List and the EPA List</td>
</tr>
<tr>
<td>4.2</td>
<td>Quantities of D001 and D002 Generated by 7 EPA Regions (MT per year)</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of Companies Generating More Than or Less Than a Hundred Metric Tons of ICW Per Year</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of Companies Generating ICW in Nine EPA Regions</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of the Survey on Land Application Facilities</td>
</tr>
<tr>
<td>4.6</td>
<td>Generators of D001 and D002 Per Region Surveyed</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>4.7</td>
<td>Results of the Survey on Generators of ICW</td>
</tr>
<tr>
<td>4.8</td>
<td>Basic Parameters Measured for Soil Samples</td>
</tr>
<tr>
<td>4.9</td>
<td>Total Bacterial Colony Counts in a Soil Column Before Application of Ignitable Waste</td>
</tr>
<tr>
<td>4.10</td>
<td>Bacterial Colony County Per Gram of Soil Samples in the Soil Column</td>
</tr>
<tr>
<td>5.1</td>
<td>Typical Design Features for Two Types of Land Application Processes</td>
</tr>
<tr>
<td>5.2</td>
<td>The Influence of Atmospheric Variables on Land Treatment Operators and Processes</td>
</tr>
<tr>
<td>5.3</td>
<td>Permeability Classes for Saturated Soil</td>
</tr>
<tr>
<td>5.4</td>
<td>Typical Ranges of Cation Exchange Capacity of Various Types of Soils</td>
</tr>
<tr>
<td>5.5</td>
<td>Checklist of Items Needed for a Thorough Record of Operations at a Land Treatment Unit</td>
</tr>
<tr>
<td>5.6</td>
<td>Guidance for an Operational Monitoring Program at HWLT Units</td>
</tr>
<tr>
<td>5.7</td>
<td>Major Industrial Generators of D002, Pretreatment and Final Disposal Technology</td>
</tr>
<tr>
<td>6.1</td>
<td>Cost of Alternative Waste Treatment Technologies</td>
</tr>
<tr>
<td>6.2</td>
<td>Cost Components for the Upper and Lower U.S. for Drilling Monitoring Wells, 1984</td>
</tr>
<tr>
<td>6.3</td>
<td>Equipment costs for Land Application</td>
</tr>
<tr>
<td>6.4</td>
<td>Wage Scale Updated to 1984 Dollars</td>
</tr>
<tr>
<td>6.5</td>
<td>Cost of Fertilizer Application</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>6.6</td>
<td>116</td>
</tr>
<tr>
<td>6.7</td>
<td>117</td>
</tr>
<tr>
<td>6.8</td>
<td>119</td>
</tr>
<tr>
<td>7.1</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>138</td>
</tr>
<tr>
<td>7.4</td>
<td>139</td>
</tr>
<tr>
<td>D.1</td>
<td>215</td>
</tr>
<tr>
<td>D.2</td>
<td>226</td>
</tr>
<tr>
<td>D.3</td>
<td>226</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Four-stage procedure or methodology for complete pretreatment land application design system</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Trench in Ada, Oklahoma where soil samples were collected</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Glass column used in the bench scale study</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Solvent recovery waste obtained from Houston, TX</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of companies generating ICW in 8 EPA regions</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Volume of ICW generated in seven EPA regions, million metric tons/year</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of land application facilities surveyed by climatic zones</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Land application facilities surveyed by State and EPA regions</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Five climatic zones in the U.S.</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Soil column with ignitable wastes applied on top of the column</td>
<td>65</td>
</tr>
<tr>
<td>4.7</td>
<td>Bacterial colonies from the soil column agar plates, before application of ignitable waste</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Bacterial colonies in nutrient agar plates 1 week after application of ignitable waste</td>
<td>69</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Bacterial colonies in nutrient agar plates 4 weeks after application of ignitable waste on top of the column.</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Soil permeability and sorptive properties of selected sites.</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Topics to be considered in developing a monitoring program for an HWLT unit.</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Site selection methodology.</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Limestone correction of soil pH.</td>
<td>97</td>
</tr>
<tr>
<td>5.5</td>
<td>Breakdown of toluene to methylcyclohexane and hydrocarboxylic acids.</td>
<td>102</td>
</tr>
<tr>
<td>5.6</td>
<td>Breakdown of toluene to benzoic acid.</td>
<td>102</td>
</tr>
<tr>
<td>6.1</td>
<td>Cost of site clearing, rough grading.</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Cost of service roads and fencing.</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Cost of haul time for liquid sludge.</td>
<td>112</td>
</tr>
<tr>
<td>7.1</td>
<td>Flow chart for scoring inherent hazard.</td>
<td>126</td>
</tr>
<tr>
<td>D.1</td>
<td>Processing plan for typical complete refinery.</td>
<td>218</td>
</tr>
<tr>
<td>D.2</td>
<td>In-plant pretreatment of high contamination waste streams.</td>
<td>219</td>
</tr>
<tr>
<td>D.3</td>
<td>Wet process phosphoric acid flowsheet.</td>
<td>220</td>
</tr>
<tr>
<td>D.4</td>
<td>Process flow diagram for citrus processing.</td>
<td>223</td>
</tr>
<tr>
<td>D.5</td>
<td>Representative process for antibiotic production.</td>
<td>228</td>
</tr>
<tr>
<td>D.6</td>
<td>Process flow sheet for steel production.</td>
<td>230</td>
</tr>
<tr>
<td>D.7</td>
<td>Processing of high temperature tar from hard coal.</td>
<td>233</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>D.8</td>
<td>General process flow diagram for production of titanium dioxide by sulfate process</td>
<td>236</td>
</tr>
<tr>
<td>D.9</td>
<td>General process flow diagram for hydrofluoric acid manufacture</td>
<td>237</td>
</tr>
<tr>
<td>D.10</td>
<td>Flow diagram for solvent base plants</td>
<td>239</td>
</tr>
<tr>
<td>D.11</td>
<td>Standard Plating technique used for soil samples</td>
<td>265</td>
</tr>
</tbody>
</table>
ABSTRACT

This research was conducted to provide state-of-the-art information on land application of ignitable (D001) and corrosive (D002) waste (ICW). Land application is considered a relatively new technology and there is very little experience in industry on land application of ICW. The information in this document therefore relied heavily on secondary information obtained from direct correspondence with generators and disposers of ICW in all 10 EPA Regions. Additional information was obtained through site visits, direct contact with technical people in industry and a laboratory study on the effect of ignitable waste on bacterial populations in a soil column.

The report provides information on existing current practices relating to land treatment of ignitable and corrosive wastes. Data is presented on current disposal methods, characteristics and quantities of ICW generated by EPA Region, total number of facilities generating ICW, current pretreatment and post-treatment technology. An important section discusses the general considerations, design criteria and site-specific design for land application of ICW. The laboratory study emphasizes the
concept of biodegradation in the assimilative capacity of the soil for ICW whereby the effect of solvent recovery waste on bacterial populations in the unsaturated zone was studied. The final section of this report discusses life cycle cost, site specific life cycle cost, and a comparative technique to evaluate alternative treatment technologies and risk assessment which are important parameters of land application.
STATE-OF-THE-ART OF LAND TREATMENT OF
CORROSIVE AND IGNITABLE WASTE

CHAPTER I

INTRODUCTION

A major problem facing the nation today is the disposal of a wide variety of wastes that poses a threat to human health and the environment. Many of these hazardous wastes as they dissipate into the environment, cause irreversible damage through their carcinogenic, teratogenic or mutagenic effects. The environment is also adversely affected if these wastes eventually find their way into aquatic systems, food chain crops and other ecosystems.

The U.S. Environmental Protection Agency (EPA) was mandated by Congress to administer the Resource Conservation and Recovery Act (RCRA). The administration of RCRA involved a regulatory overhaul of the hazardous waste management industry by imposing a "cradle-to-grave" manifest system designed to track wastes from generator to final site of treatment or disposal. Subtitle C, Section 3001 of the Act identifies and lists all hazardous wastes
generated as part of a waste tracking network.

In addition, Section 1004 of the Act specifically addressed the problem of hazardous waste management, and it includes guidelines for treatment and disposal of hazardous waste. With the growing threat of continued improper disposal of hazardous wastes, the Act was recently amended to include deadlines for the final treatment and disposal of hazardous waste.

In May of 1980, EPA promulgated criteria to implement the identification and listing of hazardous wastes in the Federal Register (1,2). The realm of regulated hazardous wastes is comprised of substances with recognized carcinogenic, teratogenic or mutagenic characteristics which may cause short or chronic illness to man, or which may render them toxic the environment. Subpart C lists four criteria for identifying characteristics of hazardous wastes as ignitable, corrosive, reactive and toxic (Table 1.1). Substances with these characteristics could cause damage to human health and the environment.

This study focuses on ignitable and corrosive wastes (ICW), with EPA codes D001 and D002. ICW is generated by a wide variety of sources and in considerable quantities annually. Table 1.2 is a summary of the industrial categories generating ICW together with quantities generated per industry. The total estimated amount generated in 1983 was \(887 \times 10^9\) gallons.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Subpart</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignitable</td>
<td>261.21</td>
<td>1. liquids with flashpoint of less than 140°F (60°C).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. non-liquids liable to cause fires through friction, spontaneous chemical change, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. ignitable compressed air</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. oxidizers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. a liquid with an alcohol content of LE 24%</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>261.22</td>
<td>1. aqueous wastes exhibiting a pH of LE 3 or GE 12.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. liquid wastes capable of corroding steel at rate greater than 0.250 inches/year</td>
</tr>
<tr>
<td>Reactivity</td>
<td>261.23</td>
<td>1. readily undergo violent chemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. react violently or form potentially explosive mixtures with water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. generate toxic fumes when mixed with water or mild acidic or basic conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. explode when subject to a strong initiating force.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. explode at normal temperatures and pressures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. DOT forbidden explosives, and Class A and B explosives.</td>
</tr>
<tr>
<td>Toxicity</td>
<td>261.24</td>
<td>1. a representative sample of the waste contains (E) concentrations equal to or greater than the 8 metals listed: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver; or the 6 organic compounds: endrin, lindane, methoxychlor, toxaphene, 2,4-D, 2,4-TP Silvex.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. a solid waste that exhibits the characteristic of EP toxicity.</td>
</tr>
</tbody>
</table>

Table 1.2. Summary Production of D001 and D002 by SIC Code

<table>
<thead>
<tr>
<th>a. D001 Quantity Produced (gal/year)</th>
<th>SIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04 x 10^9</td>
<td>2865 Cyclic crude and intermediates</td>
</tr>
<tr>
<td>0.65 x 10^9</td>
<td>2800 Chemical and Allied Products</td>
</tr>
<tr>
<td>0.60 x 10^9</td>
<td>2833 Medicinal and botanical</td>
</tr>
<tr>
<td>0.26 x 10^9</td>
<td>2900 Petroleum and coal products</td>
</tr>
<tr>
<td>0.13 x 10^9</td>
<td>2869 Industrial Organic Chemicals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. D002 Quantity Produced (gal/year)</th>
<th>SIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 x 10^{10}</td>
<td>2600 Paper and allied products</td>
</tr>
<tr>
<td>1.1 x 10^{10}</td>
<td>2865 Cyclic crude and Intermediates</td>
</tr>
<tr>
<td>1.0 x 10^{10}</td>
<td>4911 Electrical services</td>
</tr>
<tr>
<td>8.0 x 10^{9}</td>
<td>2631 Paper board mills</td>
</tr>
<tr>
<td>6.3 x 10^{9}</td>
<td>2819 Industrial inorganic chemicals</td>
</tr>
<tr>
<td>5.2 x 10^{9}</td>
<td>2869 Industrial organic chemicals</td>
</tr>
<tr>
<td>3.6 x 10^{9}</td>
<td>2911 Petroleum refining</td>
</tr>
</tbody>
</table>

The improper disposal of hazardous wastes into the environment has been the subject of numerous investigations, due to leachate and groundwater contamination, runoff and surface water contamination, as well as indirect poisoning from crop contamination (3). At the present time, scientists are still looking for acceptable solutions to the treatment and disposal of hazardous wastes. The goal of present treatment technology is to offer economically and politically acceptable alternatives to current technology such as landfilling, deep well injection, and incineration.

The past state-of-the-art of land treatment technology was primitive. Rarely were leachate collection systems used to prevent leaching into groundwater resources. Thus, contaminated leachate has become a chronic pollution event. Waste site selection decisions often ignored simple planning criteria designed to segregate this form of land use from wetlands, floodplains, surface water supplies, population centers, and endangered species habitats (3,4). Land application facilities generally did not segregate wastes potentially subject to hazardous reactions. Essentially, land application facilities, landfills and dumpsites were poorly designed, operated and sited.

In recent years, land application has been found to be a safe and economical means for the disposal of a wide
variety of organic or inorganic wastes (5, 6, 7, 8). Land application is the intimate mixing or dispersion of wastes into the upper zone of the soil-plant system with the objective of microbial stabilization, adsorption, immobilization, selective dispersion or crop recovery, leading to an environmentally acceptable assimilation of the waste (5). The design of a land application facility considers the following: (1) the source or generation of waste, (2) the terminal or ultimate receiver system, and (3) those intermediate pretreatment unit processes that alter the wastes prior to the terminal receiver.

Land application is already widely practiced by some industries, particularly the petroleum and food processing industries. The former has to some extent developed the state-of-the-art of land application of oily wastes, but information is still wanting in systematic studies, design considerations, monitoring for important parameters, cost considerations and risk assessment for other hazardous wastes that have potential for land treatment.

This study presents state-of-the-art information on the management and operation of a land application facility for ICW. It includes information on current production of ICW, the representative categories of industries generating ICW, pretreatment and disposal technology being utilized, design criteria for land application and environmental risk assessment for ICW. Since land appli-
cation is greatly dependent on the ability of viable bacteria to degrade ICW and render it non-toxic, a predemonstration study was also conducted to determine the effect of ignitable waste on soil bacterial populations.

Information was gathered from a sampling procedure of all ICW generators from seven EPA regions, supplemented by telephone interviews and plant visits. The industries singled out for further study were those that were generating significant volumes of ICW (greater than a hundred tons/year).

The estimates of ICW generated by different industries are the result of intensive efforts to build a foundation of essential information so that the design criteria for an efficacious land application facility for ICW can be developed.

1.2 BACKGROUND

The data base obtained from six EPA regions revealed that significant quantities of ICW are stored temporarily in containers, their final fate still undetermined (Tables 1.3 and 1.4). Over 2,000 plants keep them in containers, barrels or drums. Approximately 65 percent of these companies use treatment and disposal methods such as surface impoundment, incineration and stabilization in tanks. The final disposal technology used by most of these companies is through secured landfills.
The safety and stability of secured landfills are seriously being questioned because of documented cases of groundwater contamination (3). There is a need, therefore, to look for alternative technologies that have been tested to be safe and economically feasible. Land application has been used extensively by numerous industries for the disposal of oily sludges and other organic and inorganic wastes.

This study was undertaken to determine current practices and environmental effects associated with land application of ICW. As a starting point, a compilation of all hazardous waste generators provided by the regional offices was used to identify those industries that are currently land applying, in order to assess the current data base and identify loopholes in the technology. In addition, the USEPA National Inventory of Hazardous Waste Generators revealed numerous companies generating significant quantities of ICW (Tables 1.3 and 1.4).

The selected industries generating ICW were studied in depth in order to define the source of ICW through process flow charts, quantities generated, regional distribution and treatment and disposal technology used. The selection was narrowed down further to four industries: petroleum refining, citrus processing, chemicals and steel industries. The wastes produced by these four industries will be the subject of most of the discussion
Table 1.3: Number of Companies with Treatment, Storage and Disposal Methods for D001

<table>
<thead>
<tr>
<th>Process Code</th>
<th>Total</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>1064</td>
<td>181</td>
<td>292</td>
<td>149</td>
<td>221</td>
<td>221</td>
</tr>
<tr>
<td>S02</td>
<td>463</td>
<td>62</td>
<td>96</td>
<td>52</td>
<td>151</td>
<td>102</td>
</tr>
<tr>
<td>S03</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>S04</td>
<td>46</td>
<td>-</td>
<td>10</td>
<td>3</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>T01</td>
<td>141</td>
<td>19</td>
<td>29</td>
<td>23</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>T02</td>
<td>72</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>T03</td>
<td>110</td>
<td>24</td>
<td>27</td>
<td>21</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>T04</td>
<td>171</td>
<td>34</td>
<td>31</td>
<td>20</td>
<td>68</td>
<td>18</td>
</tr>
<tr>
<td>D79</td>
<td>17</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>D80</td>
<td>54</td>
<td>2</td>
<td>-</td>
<td>9</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>D81</td>
<td>39</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>D82</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>D83</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>2203</td>
<td>340</td>
<td>506</td>
<td>303</td>
<td>631</td>
<td>423</td>
</tr>
</tbody>
</table>
Table 1.4 Number of Companies with Storage, Treatment and Disposal Methods for DO02

<table>
<thead>
<tr>
<th>Process Code</th>
<th>Total</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO1</td>
<td>610</td>
<td>103</td>
<td>181</td>
<td>80</td>
<td>114</td>
<td>132</td>
</tr>
<tr>
<td>SO2</td>
<td>431</td>
<td>46</td>
<td>95</td>
<td>67</td>
<td>126</td>
<td>97</td>
</tr>
<tr>
<td>SO3</td>
<td>20</td>
<td>-</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>SO4</td>
<td>155</td>
<td>7</td>
<td>20</td>
<td>48</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>TO1</td>
<td>42</td>
<td>60</td>
<td>89</td>
<td>99</td>
<td>118</td>
<td>66</td>
</tr>
<tr>
<td>TO2</td>
<td>231</td>
<td>13</td>
<td>29</td>
<td>89</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>TO3</td>
<td>42</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>TO4</td>
<td>172</td>
<td>31</td>
<td>35</td>
<td>28</td>
<td>57</td>
<td>21</td>
</tr>
<tr>
<td>D79</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>D80</td>
<td>69</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>D81</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>D82</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D83</td>
<td>73</td>
<td>1</td>
<td>6</td>
<td>28</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2284</td>
<td>280</td>
<td>492</td>
<td>455</td>
<td>661</td>
<td>390</td>
</tr>
</tbody>
</table>
PROCESS CODES

STORAGE

S01 Container (barrel, drum, etc.)
S02 Tank
S03 Waste Pile
S04 Surface impoundment

TREATMENT

T01 Tank
T02 Surface Impoundment
T03 Incinerator
T04 Other (use for chemical, physical, thermal, or biological treatment processes not occurring in tanks, surface impoundments, or incinerators).

DISPOSAL

D79 Injection Well
D80 Landfill
D81 Land Application
D82 Ocean Disposal
D83 Surface Impoundment

From Application for a Hazardous Waste Permit, Consolidated Permits Program, EPA Forms 3510-1 and 3510-3, June 1980. (1)
in the following chapters.

1.2 OBJECTIVES

The objectives of this dissertation are:

1. To identify generators and disposers of ICW, their geographic location, total volumes generated and industry category.

2. To collect and assemble information through literature search and surveys on the characteristics of ICW, and the treatment and disposal technology currently being utilized.

3. To identify ICW land application sites and obtain information on design, application rates, monitoring data, and operation problems.

4. To demonstrate the effect of ignitable waste in the form of spent solvents on bacterial populations in a soil column.

5. To conduct an economic feasibility of land application of ICW through an evaluation of its different cost components.

6. To identify environmental risks and consequences attendant to land application of ICW.
CHAPTER II
LITERATURE REVIEW

2.1 GENERAL

In order to determine the industries that are presently land applying D001 and D002, an exhaustive literature search was conducted. Of particular interest was a survey by Brown and Associates (9) whereby all land treatment facilities in the United States were identified, along with important information on regional distribution, facility size and type and amount of waste applied annually. Most of these facilities had listed D001 and D002 as part of the hazardous waste generated, therefore these companies were included in the survey. However, after communicating with these facilities by telephone, it was found that over half of the facilities identified in Brown's list were no longer in existence while others have changed disposal practices.

The current EPA list also needed to be updated to exclude those industries who have stopped land application operations or have ceased to generate ICW, as well as those who have instigated closure procedures on their land application facilities. Some of these companies
have requested to be deleted from the EPA hazardous waste list.

In order to generate the data base required in this study, a list of hazardous waste generators together with the quantities and types of wastes generated was obtained from each of the nine EPA regions. Those facilities with land application facilities and which were generating ICW were identified, and a random sample from this list was sent survey forms. Some of the design criteria for land application of ICW were obtained from the results of this survey.

Despite the preponderance of wastes that have a potential for land application, the data base for determining the requirements of a sound land application system is still in its infancy. There is no publication at present on land application of ignitable and corrosive waste. The subject of land application of oily sludge and other organic waste products however, has received unprecedented attention in recent years, and many research institutions have completed or have ongoing studies in this area (10,11,12,13,14,15,16,17,18,19).

A wide diversity of industrial categories are currently operating full or pilot-scale land application systems. These include, according to their order of importance, the petroleum industry, food processing, textiles, pulp and paper, metal plating, leather tanning,
printing, ink, paint, munitions, foundries, inorganic chemicals, organic chemicals and the pharmaceutical industry (18). The petroleum refining industry, however, has been the predominant industry utilizing this treatment and disposal technology, followed by the food processing industry, particularly the citrus processing industry.

Historically, the petroleum industry has been the prime user of land application for the disposal of a variety of wastes, primarily oily sludge. The food industry has also been extensively involved in the use of land application for disposal of its aqueous wastes. It generates significant volumes of corrosive or caustic wastes. These are combined with other aqueous wastes from various plant processes, the final effluent being almost neutral, with a pH ranging from 6-8. The steel and chemical industries generate both ignitable and corrosive wastes which have potential for land application.

There are still many unknowns related to land application systems. Industry has indicated a need for more effective and sound treatment and disposal methods for its wastes, particularly reactive, flammable/ignitable and corrosive wastes which are generated in large quantities yearly. There is a need to fill in the gaps of information relative to the design, and operating criteria of land application systems in general. The assoc-
iated waste/soil complexities and interactions are still the subject of numerous research studies.

Overcash and Pal (5) have studied the fundamental concepts of the entire land treatment design process. They have put together the complete methodology or design procedures for land application of virtually all types of wastes, thereby promoting the concept of limitless applicability of land application technology. They believe that virtually any kind of waste is amenable to land treatment, so long as guidelines are taken to ensure proper loading rates, as well as proper management procedures that will ensure continued use of the land even after closure procedures. The land limiting constituents must be continuously evaluated during and after the land application process. An environmentally acceptable rate of application to a plant-soil system can be determined for any and all industrial waste constituents, according to these authors, with the possible exception of radioactive wastes. They further concluded that wastes from all industrial categories can be assimilated satisfactorily in a land-based treatment system. The methodology they developed holds for all waste streams (raw waste, treated effluents, sludges and solids). The mechanics and equipment used in the actual land application will depend on the particular wastes. The reference contains a methodology or procedure for the design of a combined pretreat-
ment-land application system for selected waste types, and will thus be a very valuable source of information for the design of a land treatment facility for ICW.

EPA has also published numerous documents on hazardous waste land treatment. A particular publication entitled "Hazardous Waste Land Treatment" (6) contains information on site selection, waste characterization, treatment demonstration studies, land treatment unit design, operation and closure and other topics for design and management of land treatment units. Information on the fate of both inorganic and organic compounds in the soil is included. Methods for calculating loading rates and determining limiting constituents and management of soil pH are also discussed. Although the reference does not contain specific information on the design criteria for land application of ICW, general information on waste-site interactions, facility design and operation, monitoring, closure and post closure procedures, are very useful information for treatability studies.

Parr, et al. (20) has provided a reference that presents a critical review and assessment of current knowledge and management practices for ultimate disposal of a number of hazardous waste chemicals. The paper provides information and strategies for the design, development and effective management of land treatment systems for hazardous wastes, and identifies areas of research that
are needed to maximize the potential value of land treatment systems and to minimize associated risks.

In line with the concept of pretreatment land application technology for ICW, various state-of-the-art pretreatment technologies currently being used are reviewed by Berkowitz (21) and Edwards (22). They describe and examine over forty unit operations or processes and ways of combatting pollution from hazardous waste materials through the use of basic unit operations. These unit operations are either physical, such as neutralization and precipitation, or biological.

2.2 SOIL MICROBIAL DEGRADATION OF ICW

There are numerous textbooks, journals and articles in the literature that address the problem of biodegradation of various types of wastes in the soil by microorganisms. Some of these references are highly relevant to the study of degradation of ICW in the soil. Hillel (23), Sprangler et al. (24) and Buckman et al. (25) described the various mechanisms by which various hazardous constituents undergo biodegradation, immobilization and transformation in the soil. In addition, numerous articles in the literature have dealt with the degradation and movement of specific organic compounds in the soil to determine their treatability (26,27,28).
2.3 **RISK ASSESSMENT OF ICW**

Majeti and Clark (10) did an overview of the literature on the potential health effects from viable emissions and toxins associated with land application facilities and wastewater treatment plants to the workers and nearby populations. The different types of microorganisms present in wastewater and sludge and the effectiveness of the various treatment processes in their removal or inactivation are discussed thoroughly.

There are other articles that deal with health effects associated with land application of effluents which may be used in risk assessment of ICW. Kates (29) studied the preliminary pollutant limit values for human health effects of various toxicants. This information is very useful in the development of estimates of potential exposure of humans to hazardous constituents and the determination of exposure adjustment factors in the study of risk assessment of ICW.

Hinesly (30) studied the environmental changes from long-term land application of effluents. The report contains the results of various chemical analyses performed on soil and plant samples collected at disposal sites and could be used in determining exposure adjustment scores in risk assessment.
2.4 COST CONSIDERATIONS OF LAND APPLICATION FACILITIES

The overall cost considerations in a land application facility for ICW will depend primarily on the sophistication of pretreatment technology to be utilized as well as the availability of land at reasonable cost close to the generating facility. The complexity of the pretreatment to be used will influence its costs considerably and will depend on the nature and characteristics of the waste stream.

There are a number of articles in the literature that deal with the costs of various design parameters of land application facilities (3,5,7,29,31). Estimates of operational and maintenance costs were also reviewed by several authors (3,7,31,32). It should be noted however, that these figures should be adjusted to wage scales that reflect the standards of living in many regions. The costs of equipment may also differ considerably from region to region. The proper adjustments should therefore be made when making estimates of overall costs of land application facilities for ICW.

Because of the nature of corrosive and ignitable wastes, special equipment may be required such as corrosion resistant tanks, pipes, and applicators. Some publications (7,32) had listed some of these specifications.

The total costs of a land application facility have also been estimated by some authors (2,3,7). These fig-
ures are influenced considerably by the total cost of land required and pretreatment technology to be used.
CHAPTER III
APPROACH AND METHODOLOGY

The methodology used in this study took the following factors into consideration:

1. The source or generation of wastes;
2. The terminal or ultimate receiver system;
3. The economic feasibility through an evaluation of cost components of land application facilities; and
4. The risks posed by ICW to human health and the environment.

The first step was to determine the characteristics and quantities of ICW generated, and the types, categories and geographical distribution of companies producing ICW. The data base for generators and disposers was obtained from Brown's study and the EPA list of hazardous waste generators in all of the EPA regions. A random sample of these companies was obtained and these companies were sent survey questionnaires. The survey questionnaire was developed to obtain information on design criteria of land application facilities.

The second step was to study the effect of ignitable waste on the ultimate receiver system, which is the
bacterial population in the soil. Standard methods for isolation and examination of soil bacteria were used to determine their response to ignitable waste.

The third step was to determine the overall cost components of land application facilities in order to assess their economic feasibility. The results of this study are presented in Chapter IV.

Finally, it is important to study the risks posed by ICW to human health and the environment. The model presented in the study weighs the various ignitable and corrosive components in the effluent produced by selected industries according to the severity of risks to man and the ease of its dissipation in the environment.

The design procedure or methodology used with its various components is illustrated in Figure 3.1.

3.1 PRELIMINARY ASSESSMENT

3.1.1 Brown's List

Brown and Associates published a survey of existing hazardous waste land treatment facilities in the U.S. The list included information on facilities that are currently land applying in each EPA region, the type and amount of waste applied per year, and industrial categories by SIC code. The bulk of the information was obtained from Part A RCRA permit applications which were on file in the EPA Regional offices. In addition, state and
Figure 3.1 Four-stage Procedure or Methodology for Complete Pretreatment Land Application Design System.

Source: Overcash (5)
territorial environmental agencies were contacted to contribute missing information.

Brown's list identified 197 land treatment facilities in the U.S. (Table 3.1). Over 50 percent of these facilities were located in Regions 4 and 6. Our task was therefore to identify those facilities who were generating ICW and to determine if they were land applying their waste. These facilities were contacted by phone and the results of the survey are presented in the next section.

3.1.2 EPA Mailing List

A list of land treatment facilities along with important information on volumes of ICW generated annually, and treatment technology currently being used were obtained from each of the ten EPA Regional offices. Each region, however, had data bases with varying degrees of completeness. Volumes of waste generated were available from six regions. Some regions could furnish only the names and addresses of the facilities with ICW together with process codes for each facility (Table 3.2). However, the bulk of information gathered was considered adequate to evaluate current technology and state-of-the-art of land application. Those who are currently land applying were identified from the EPA computer printouts and a survey form was sent to each facility.
<table>
<thead>
<tr>
<th>Region</th>
<th>Regional Office</th>
<th>Number of Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Dallas, TX</td>
<td>58</td>
</tr>
<tr>
<td>IV</td>
<td>Atlanta, GA</td>
<td>45</td>
</tr>
<tr>
<td>IX</td>
<td>San Francisco, CA</td>
<td>19</td>
</tr>
<tr>
<td>VIII</td>
<td>Denver, CO</td>
<td>18</td>
</tr>
<tr>
<td>V</td>
<td>Chicago, IL</td>
<td>16</td>
</tr>
<tr>
<td>VII</td>
<td>Kansas City, MO</td>
<td>15</td>
</tr>
<tr>
<td>X</td>
<td>Seattle, WA</td>
<td>12</td>
</tr>
<tr>
<td>II</td>
<td>New York City, NY</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>Philadelphia, PA</td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td>Boston, MA</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>197</td>
</tr>
</tbody>
</table>

Brown and Associates (9).
Table 3.2 Companies Generating D001 and D002 in 8 EPA Regions.

<table>
<thead>
<tr>
<th>Region</th>
<th>DO01</th>
<th>DO02</th>
<th>DO01/DO02</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
<td>153</td>
<td>87</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>166</td>
<td>252</td>
<td>568</td>
</tr>
<tr>
<td>3</td>
<td>151</td>
<td>109</td>
<td>76</td>
<td>336</td>
</tr>
<tr>
<td>4</td>
<td>172</td>
<td>179</td>
<td>136</td>
<td>487</td>
</tr>
<tr>
<td>6</td>
<td>137</td>
<td>132</td>
<td>221</td>
<td>490</td>
</tr>
<tr>
<td>7</td>
<td>104</td>
<td>46</td>
<td>136</td>
<td>286</td>
</tr>
<tr>
<td>8</td>
<td>145</td>
<td>115</td>
<td>140</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>72</td>
<td>173</td>
<td>355</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1057</td>
<td>972</td>
<td>1221</td>
<td>3250</td>
</tr>
</tbody>
</table>
The results of the survey are presented in the next section.

3.2 INSTRUMENT

3.2.1 Reuter Report

Life Systems Inc. was contracted to provide guidance and information concerning the following:

a. A hazard evaluation indicating the risk posed by land treating wastes from each industrial category.

b. The potential treatment and pretreatment methods used in conjunction with land application and the use of other alternatives.

c. The construction of a viable methodology for data generation on the project.

The risk model presented by Life Systems Inc. is presented in Chapter VIII, on Risk Assessment. It includes a model description, factors considered in the model, exposure adjustment for environmental medium, limitations of the model, and the results of the risk assessment.

3.2.2 Trial Survey from Brown's List

The facilities listed in the study by Brown and Associates, which were generators and landappers, were contacted by telephone. There were a total of 27 facili-
ties included in the survey and these companies were classified as follows:

<table>
<thead>
<tr>
<th>Company</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinery</td>
<td>11</td>
</tr>
<tr>
<td>Government Installation</td>
<td>5</td>
</tr>
<tr>
<td>Electric Company</td>
<td>4</td>
</tr>
<tr>
<td>Fruit Processing</td>
<td>3</td>
</tr>
<tr>
<td>Transportation</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

The results of the survey showed that most of those facilities listed in Brown's List as land appliers have either stopped operations of their land application facility or have opted to contract out their disposal of ICW. These wastes are deposited in landfills off-site or incinerated.

It was therefore determined that a more comprehensive and updated list of land appliers had to be obtained from the EPA Regional offices in order for the study to be completed.

3.2.3 Actual Survey

The primary object of the survey was to collect data for establishing a reliable data base. This was accomplished by: (1) literature search; (2) trial survey from Brown's List; (3) actual mail survey, and (4) site visits and interview technical people in the field.

As mentioned earlier, the literature on land appli-
cation of corrosive and ignitable waste is practically nonexistent. Therefore, a mail instrument had to be relied on as well as telephonic contact with people in industry and site visits for needed information. Most mail surveys result in a high rate of no response; therefore follow-up personal phone interviews were also conducted.

The addresses of facilities with land application systems (Appendix A) as well as those that generate ICW but use other treatment technologies (Appendix B) were obtained from computer printouts furnished by the 10 EPA Regional offices. A copy of the survey form is included in Appendix C and the results of the survey are presented in Tables 4.5 and 4.6.

The survey form sought to obtain the following information:

1. Total size of the facility in acres
2. Application rates
3. Volume of D001 and D002 wastes generated and quantities land applied
4. Land limiting constituents of the waste
5. Preconditioners used in the soil
6. pH range of corrosive waste
7. Flash point of ignitable waste
8. Alcohol content of the waste
9. Availability of operating records, unsaturated
zone monitoring plan and analytical results

10. Constraints of land application as a treatment technology.

A random survey of facilities that generate ICW, but do not land apply was also conducted in each of the EPA regions. The EPA computer printouts again provided the addresses of facilities and contact persons in each facility. Basically, the same information as in the former survey was used in the survey form. The reason for this survey was to obtain information on other treatment and disposal technologies for ICW. This will form an essential part of alternative technologies available for the treatment and disposal of ICW. A copy of the form used in the survey is in Appendix C. The results of the survey are presented in Chapter IV.

3.2.4 Site Visits

A total of 5 facilities, three in Oklahoma and two in Florida were visited to provide in-depth information on the design criteria, monitoring and analytical results in land application facilities. The three land application facilities visited in Oklahoma were petroleum refineries while those in Florida were citrus processing plants that generate corrosive/caustic waste.
3.3 **SOIL COLUMN STUDY ON THE EFFECT OF IGNITABLE WASTE ON BACTERIA**

In this study solvent recovery waste from an industrial facility in Houston, Texas was obtained to determine its effect on soil bacterial populations and thus determine its land treatability. Some organic compounds may cause direct biocidal effects on soil microorganisms or exert inhibitory responses to their growth and metabolic processes for extended periods. The effects of numerous organic compounds and metals are found in the literature, but no study has addressed the microbiological responses to solvent recovery waste of known composition and structure in the unsaturated zone.

3.3.1 **Materials and Methods**

3.3.1.1 **Media Preparation**

A modified standard plating technique was used (33) to determine the total bacterial colonies in the unsaturated zone.

Nutrient agar was autoclaved for 20 minutes at 15 pounds pressure (121°C), and cooled at 55°C. Twenty five mls of nutrient agar were poured into disposable sterile petri dishes that contained different dilutions of soil samples. The procedure for the preparation of the culture medium used is in Appendix E.

3.3.1.2 **Sample Collection and Preparation**

Uncontaminated soil samples were collected under
sterile conditions in the unsaturated zone in Ada, Oklahoma (Figure 3.2). The soil samples were collected in sterile plastic sacs at one foot intervals from the surface to a depth of 4 feet, in the unsaturated zone, from a cross section of 1.5 m² in the field.

A glass column four feet long previously sterilized by exposure for 6 hours under an ultraviolet lamp (Figure 3.3) was carefully packed with soil collected from the unsaturated zone, using a sterile glass rod.

The soil samples were analyzed for moisture content, nitrate nitrogen, phosphorus, and pH. One gram of soil sample from each of the soil layers was diluted appropriately using the standard plating technique and inoculated in nutrient agar plates to determine the initial total bacterial colony counts. These served as the control plates. The procedure used in the analyses of the soil samples is in Appendix E.

3.3.1.3 Sampling and Plating Technique

The solvent recovery waste was obtained from Dr. K.W. Brown of the Texas A & M University, College Station, Texas (Figure 3.4). It had the following hazardous organic constituents:

1. Base/Neutral Fraction
 - Napthalene
 - Acenaphthylene
 - Fluorene
Figure 3.2 Trench in Ada, Oklahoma where soil samples were collected under sterile conditions at different depths of the unsaturated zone.
Figure 3.3 Glass column, four feet long packed with soil from the different layers of the unsaturated zone.
Figure 3.4 Flammable waste in the form of spent solvents from a Solvent Recovery Waste Plant in Houston, Texas.
Phenanthrene
Fluoranthene
Pyrene

(2) Acid Fraction
Benzene, ethyl
Benzene, methyl
Benzene dicarboxylic acid
Toluene
Xylene

The gas chromatographic analyses of the solvent recovery waste is in Appendix E.
CHAPTER IV
RESULTS

4.1 RESULTS OF INVENTORY

4.1.1 Distribution of Companies by EPA Regions

The nine EPA regions surveyed reported a total of 3,245 companies nationwide generating ICW. Table 4.1 presents the generators of D001 and D002 with land application facilities from Brown's list and the EPA list. Figures 4.1 and 4.2 show the distribution of companies by EPA region and total volumes of ICW generated per region.

Seven EPA regions were able to send information on total volumes of D001 and D002 generated in each facility in their respective regions. These are presented in Table 4.2.

In seven EPA regions above, a total volume of 33,506,880 and 147,992,699 metric tons of D001 and D002, respectively, are generated annually. There were a total of 339 companies generating greater than a 100 metric tons and 765 companies generating less than a hundred tons of D001 per year. There were a total of 576 companies generating greater than a hundred metric tons
Table 4.1 Generators of D001 and D002 with Land Application Facilities from Brown's List and the EPA List.

<table>
<thead>
<tr>
<th>Region</th>
<th>Brown's List</th>
<th>Number of Facilities</th>
<th>EPA List</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>8.4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3.7</td>
<td>18</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>18.5</td>
<td>15</td>
<td>14.0</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>10.3</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>48.1</td>
<td>14</td>
<td>10.3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7.4</td>
<td>11</td>
<td>11.2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>14.8</td>
<td>19</td>
<td>21.5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3.7</td>
<td>8</td>
<td>8.4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.7</td>
<td>5</td>
<td>5.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27</td>
<td>100.0</td>
<td>110</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Figure 4.1 Distribution of companies generating ICW in 8 EPA Regions.
Table 4.2 Quantities of D001 and D002 Generated in 7 EPA Regions (MT per year)

<table>
<thead>
<tr>
<th>REGION</th>
<th>D001</th>
<th>D002</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>367,264</td>
<td>3,025,919</td>
<td>3,393,183</td>
</tr>
<tr>
<td>2</td>
<td>1,711,814</td>
<td>10,833,533</td>
<td>12,545,347</td>
</tr>
<tr>
<td>3</td>
<td>3,861,597</td>
<td>19,274,184</td>
<td>23,135,781</td>
</tr>
<tr>
<td>4</td>
<td>9,064,196</td>
<td>12,588,223</td>
<td>21,652,419</td>
</tr>
<tr>
<td>6</td>
<td>8,238,434</td>
<td>89,542,033</td>
<td>97,780,467</td>
</tr>
<tr>
<td>7</td>
<td>1,248,242</td>
<td>6,823,973</td>
<td>8,072,215</td>
</tr>
<tr>
<td>9</td>
<td>9,015,333</td>
<td>5,904,834</td>
<td>14,920,167</td>
</tr>
<tr>
<td>TOTAL</td>
<td>33,506,880</td>
<td>147,992,699</td>
<td>181,499,579</td>
</tr>
</tbody>
</table>
Figure 4.2 Volume of ICW Generated in Seven EPA Regions, million metric tons/year.
and 520 companies generating less than a hundred metric tons of D002 per year (Table 4.3) in five EPA regions. There were more companies generating D002 wastes than D001 wastes. Approximately 82 percent of these companies were generating D002 while only 18 percent were generating D001.

The regional distribution of facilities generating ICW is presented in Table 4.4. Regions 2 and 6 topped the list with 568 and 490 companies, respectively.

4.1.2 Distribution of Companies by Climatic Zones

A total of 110 land application facilities were surveyed from nine EPA regions. The distribution of these facilities by climatic zones is presented in Figure 4.3. Figure 4.4 presents the land application facilities by state and EPA regions.

There are 5 climatic zones designated A to E (Figure 4.5). Survey forms were mailed to a total of 107 land application facilities generating ICW in these climatic zones.

4.2 RESULTS OF SURVEY OF LAND APPLICATION FACILITIES

A total of 55 land application facilities generating both D001 and D002 waste were listed in Brown's survey. The EPA inventory list had a total of 110 facilities. All the facilities in Brown's survey were contacted by telephone while those from the EPA Regional inventory
Table 4.3 Distribution of Companies Generating More than or Less than a Hundred Metric Tons of ICW per Year.

<table>
<thead>
<tr>
<th>Region</th>
<th>D001 (metric tons/year)</th>
<th>D002 (metric tons/year)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>100</td>
<td><100</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>145</td>
<td>182</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>96</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
<td>215</td>
<td>358</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>180</td>
<td>238</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>129</td>
<td>203</td>
</tr>
<tr>
<td>TOTAL</td>
<td>339</td>
<td>765</td>
<td>1,104</td>
</tr>
</tbody>
</table>
Figure 4.3 Distribution of land application facilities surveyed by climatic zones.
Figure 4.4 Land application facilities surveyed by State and EPA regions.
Figure 4.5 - Five climatic zones in the U.S.
Table 4.4 Distribution of Companies Generating ICW in eight EPA Regions.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Number of Companies with D001 and D002</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>568</td>
</tr>
<tr>
<td>3</td>
<td>336</td>
</tr>
<tr>
<td>4</td>
<td>487</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>490</td>
</tr>
<tr>
<td>7</td>
<td>286</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>355</td>
</tr>
<tr>
<td>Total</td>
<td>3,250</td>
</tr>
</tbody>
</table>

Fifty-five companies from Brown's list were reported generators of D001 and D002 waste and were listed as land application facilities. All of these facilities were contacted by telephone and 34 of the facilities were verified to have either ceased operations of their land application sites or switched to other disposal technology. A total of 21 companies generating ICW still had operational land treatment facilities. These are classified as follows:

- Petroleum Refinery: 13
- Citrus Processing: 5
- Transportation: 1
- Chemical Manufacturing: 1
- Electric: 1
- Total: 21
Table 4.5 shows the results of the survey on land application facilities. A total of 21 companies with land application facilities and generating ICW were included in the results of this survey. Of these companies, 15 or 71.4 percent had a Part A Permit to operate a hazardous waste facility, 1 or 9.6 percent had a Part A and Part B Permit, while 4 or 14.3 percent had an Interim Permit. A majority of these facilities had operating records available (66.7 percent), whereby information was available on loading rates, nature and characteristics of waste applied, and prevailing environmental conditions. This information will be used for planning and policy purposes and is essential for establishing an efficacious hazardous waste management strategy as mandated by RCRA. Records of analytical results were also available in 66.7 percent of these facilities. Unsaturated zone monitoring plans were available in 71.4 percent of these facilities.

The survey indicated highly variable responses to the composition of ICW generated. They reported ICW as consistent, 28.6 percent; variable, 23.8 percent; and highly variable, 4.8 percent. The nature of ICW was in the form of a sludge/slurry in 42.9 percent of the facilities and aqueous in 19.0 percent of the facilities.

There were 66.7 percent of the companies generating D001 with an alcohol content of <24 percent, and 19 per-
cent with an alcohol content of >24 percent. In the case of ignitable waste, 57.2 percent report a flash point of less than 60°C.

About half (47.6 percent) of these facilities use some kind of pretreatment technology, 38 percent use a soil conditioner, 28.6 percent use lime, 23.8 percent use fertilizer and 4.8 percent rototilled the soil.

Among the constraints listed for land application of ICW, these facilities considered Federal constraint and regulations (47.6 percent) as the single most limiting factor for the operation of a land application facility. On the other hand, approximately 24 percent of these facilities considered land availability as their main constraint, while 14.3 percent thought it was economics.

All of these companies, as mentioned earlier, were using one or several pretreatment technology. For D002 waste it was neutralization (41.6 percent). The final disposal technologies used for ICW waste was incineration (16.7 percent), aeration/settling (12.5 percent), and landfilling (8.3 percent).

These results would indicate an increasing awareness among generators, operators and disposers of hazardous waste of the importance of monitoring information for proper planning and management of land application facilities.
Table 4.5 Results of the Survey on Land Application Facilities

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hazardous Waste Permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part A</td>
<td>15</td>
<td>71.4</td>
</tr>
<tr>
<td>Part A and B</td>
<td>1</td>
<td>9.6</td>
</tr>
<tr>
<td>Interim Permit</td>
<td>4</td>
<td>14.3</td>
</tr>
<tr>
<td>No Permit</td>
<td>1</td>
<td>4.7</td>
</tr>
<tr>
<td>2. Operating Records Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
<td>71.4</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>No Response</td>
<td>6</td>
<td>28.5</td>
</tr>
<tr>
<td>3. Application Loading Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>Weekly</td>
<td>2</td>
<td>9.5</td>
</tr>
<tr>
<td>Monthly</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>Variable</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>No Response</td>
<td>4</td>
<td>19.1</td>
</tr>
<tr>
<td>4. Type of Process Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch</td>
<td>12</td>
<td>57.1</td>
</tr>
<tr>
<td>Continuous</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>No Response</td>
<td>8</td>
<td>38.1</td>
</tr>
<tr>
<td>5. Composition of ICW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Consistent</td>
<td>6</td>
<td>28.6</td>
</tr>
<tr>
<td>Variable</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>Highly Variable</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>No Response</td>
<td>9</td>
<td>42.8</td>
</tr>
<tr>
<td>b. Sludge/Slurry</td>
<td>9</td>
<td>42.9</td>
</tr>
<tr>
<td>Aqueous</td>
<td>4</td>
<td>19.0</td>
</tr>
<tr>
<td>Solid/Others</td>
<td>1</td>
<td>4.3</td>
</tr>
<tr>
<td>No Response</td>
<td>7</td>
<td>33.3</td>
</tr>
</tbody>
</table>
Table 4.5 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Alcohol Content of ICW</td>
<td></td>
<td></td>
</tr>
<tr>
<td><24%</td>
<td>14</td>
<td>66.7</td>
</tr>
<tr>
<td>>24%</td>
<td>4</td>
<td>19.0</td>
</tr>
<tr>
<td>No Response</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>7. Pretreatment of ICW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>8. pH Range of Corrosive Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>2-6</td>
<td>2</td>
<td>9.5</td>
</tr>
<tr>
<td>7-12</td>
<td>2</td>
<td>9.5</td>
</tr>
<tr>
<td>>12</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>No Response</td>
<td>5</td>
<td>23.9</td>
</tr>
<tr>
<td>9. Flash Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60°C</td>
<td>12</td>
<td>57.2</td>
</tr>
<tr>
<td>No Response</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>10. Use of Soil Conditioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>57.1</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>19.0</td>
</tr>
<tr>
<td>No Response</td>
<td>5</td>
<td>23.9</td>
</tr>
<tr>
<td>11. Soil Conditioner Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime</td>
<td>6</td>
<td>28.6</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>Not Used</td>
<td>9</td>
<td>42.9</td>
</tr>
<tr>
<td>12. Unsaturated Zone Monitoring Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>71.4</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>No Response</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>Table 4.5 (Continued)</td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>13. Analytical Results Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>14</td>
<td>66.7</td>
</tr>
<tr>
<td>Not Available</td>
<td>4</td>
<td>19.0</td>
</tr>
<tr>
<td>No Response</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>14. Constraints Considered in Land Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>Land Availability</td>
<td>5</td>
<td>23.8</td>
</tr>
<tr>
<td>Federal Constraints/Regulations</td>
<td>10</td>
<td>47.6</td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>15. Other Treatment Disposal Technology Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landfill</td>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td>Incineration</td>
<td>4</td>
<td>16.7</td>
</tr>
<tr>
<td>Contracted Out</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Recycle</td>
<td>3</td>
<td>12.5</td>
</tr>
<tr>
<td>Dilution</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Neutralization (D002)</td>
<td>10</td>
<td>41.6</td>
</tr>
<tr>
<td>Aeration/Settling</td>
<td>3</td>
<td>12.5</td>
</tr>
</tbody>
</table>
4.3 RESULTS OF SURVEY ON GENERATORS OF ICW WITHOUT LAND APPLICATION FACILITIES

The second part of the survey consisted of those companies generating ICW but having no land application facilities. It was necessary to obtain information on current technology on treatment and disposal methods being utilized by generators and disposers of ICW. A random sample of generators and disposers from nine EPA regions was obtained. A total of 380 survey forms were mailed to generators of ICW producing greater than a hundred metric tons of ICW per year. It was decided that the big generators should be the primary concern of this study since it is in this section of industry where disposal problems are of great concern. Table 4.6 shows the distribution and type of facility surveyed per region.

The survey was a representative random sample from the EPA Regional list of generators and disposers of ICW. A total of 86 responses were received over a span of 8 weeks after the survey forms were mailed, a response rate of approximately 23 percent. There were a total of 56 completed survey forms received, while the remaining 30 wrote to decline participation in the survey.

Among the number of generators surveyed, 17.9 percent were generators of D001, 32.1 percent were generators of D002, and 35.7 percent were generators of both D001 and D002 waste (see Table 4.7).
Table 4.6 Generators of D001 and D002 per Region Surveyed

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Totals</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chemical/Agricultural</td>
<td></td>
</tr>
<tr>
<td>Chemical Fertilizers</td>
<td>5</td>
<td>15</td>
<td>18</td>
<td>4</td>
<td>20</td>
<td>6</td>
<td>15</td>
<td>13</td>
<td></td>
<td>106</td>
<td>27.9</td>
</tr>
<tr>
<td>2. Pharmaceutical</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>12</td>
<td>3.2</td>
</tr>
<tr>
<td>3. Equipment</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td>5.8</td>
</tr>
<tr>
<td>4. Petroleum Refining</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td>10.5</td>
</tr>
<tr>
<td>5. Plating/Metals</td>
<td></td>
</tr>
<tr>
<td>Forming Steel</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>27</td>
<td>7.1</td>
</tr>
<tr>
<td>6. Paint</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>12</td>
<td>3.2</td>
</tr>
<tr>
<td>7. Electric Power</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>21</td>
<td>5.5</td>
</tr>
<tr>
<td>8. Paper/Wood Processing</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>9</td>
<td>2.4</td>
</tr>
<tr>
<td>9. Dyeing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>10. Glass Manufacturing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1.1</td>
</tr>
<tr>
<td>11. Transportation/Communication</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>22</td>
<td>5.8</td>
</tr>
<tr>
<td>12. Food/Beverage/Canning</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>15</td>
<td>3.9</td>
</tr>
<tr>
<td>13. Explosives</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>14. Disposal Services/Transfer Stations</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>18</td>
<td>4.7</td>
</tr>
<tr>
<td>15. Rubber Manufacturing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>16. Construction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17. Government/Research Institutes</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>2.4</td>
</tr>
<tr>
<td>18. Miscellaneous</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>58</td>
<td>15.3</td>
</tr>
<tr>
<td>TOTALS</td>
<td>31</td>
<td>58</td>
<td>56</td>
<td>19</td>
<td>55</td>
<td>17</td>
<td>46</td>
<td>42</td>
<td>56</td>
<td>380</td>
<td>100.0</td>
</tr>
</tbody>
</table>
DOO1 was characterized as aqueous by 40 percent of the respondents. Twenty-three percent said it was in the form of a sludge or slurry, while 16.7 percent said it was solid. DOO2 was characterized as aqueous by 42.1 percent; sludge and slurry by 26.3 percent; and solid by 7.9 percent. Approximately half of those surveyed generated DOO1 and DOO2 wastes from batch processes.

The pH of corrosive waste also varied whereby 31.6 percent and 36.8 percent of those surveyed reported a pH of \(<3\) and \(>12\), respectively. Among these companies, 43.3 percent reported the flash points of DOO1 waste as less than 60°C, while 16.7 percent had DOO1 waste with greater than 24 percent alcohol. The most popular disposal method currently utilized among the generators of DOO1 and DOO2 waste was landfilling (33.3 percent and 10.5 percent, respectively). There were more than ten types of disposal methods used for ICW, and these were in decreasing order of importance, contract disposal (26.8 percent), landfilling (21.4 percent), incineration (17.9 percent), the use of a lagoon or pond for biodegradation (7.1 percent), deep well injection (5.4 percent), and discharge to a receiving stream (5.4 percent).

A majority of those surveyed, 36.5 percent, agreed that Federal and local regulations were the main constraints for the land application of ICW.

The rest of those surveyed listed contamination of
Table 4.7 Results of the Survey on Generators of ICW

<table>
<thead>
<tr>
<th></th>
<th>D001</th>
<th></th>
<th>D002</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>1. Classification of Generators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D001 Generators</td>
<td>10</td>
<td>17.9</td>
<td>18</td>
<td>32.1</td>
</tr>
<tr>
<td>D002 Generators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both D001 and D002</td>
<td>20</td>
<td>35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>8</td>
<td>14.3</td>
<td>9</td>
<td>23.7</td>
</tr>
<tr>
<td>2. Nature of Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>12</td>
<td>40.0</td>
<td>16</td>
<td>42.1</td>
</tr>
<tr>
<td>Sludge/Slurry</td>
<td>7</td>
<td>23.3</td>
<td>10</td>
<td>26.3</td>
</tr>
<tr>
<td>Solid</td>
<td>5</td>
<td>16.7</td>
<td>3</td>
<td>7.9</td>
</tr>
<tr>
<td>No Response</td>
<td>6</td>
<td>20.0</td>
<td>9</td>
<td>23.7</td>
</tr>
<tr>
<td>3. Type of Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch</td>
<td>15</td>
<td>50.0</td>
<td>19</td>
<td>50.0</td>
</tr>
<tr>
<td>Continuous</td>
<td>9</td>
<td>30.0</td>
<td>10</td>
<td>26.3</td>
</tr>
<tr>
<td>No Response</td>
<td>6</td>
<td>20.0</td>
<td>9</td>
<td>23.7</td>
</tr>
<tr>
<td>4. Use of Pretreatment Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>13.3</td>
<td>19</td>
<td>50.0</td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td>56.7</td>
<td>10</td>
<td>26.3</td>
</tr>
<tr>
<td>No Response</td>
<td>9</td>
<td>30.0</td>
<td>9</td>
<td>23.7</td>
</tr>
</tbody>
</table>
Table 4.7 (Continued)

<table>
<thead>
<tr>
<th>Method</th>
<th>D001 No.</th>
<th>D002 No.</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Coagulation</td>
<td>3</td>
<td>4</td>
<td>10.0</td>
</tr>
<tr>
<td>Neutralization</td>
<td>1</td>
<td>15</td>
<td>3.3</td>
</tr>
<tr>
<td>Precipitation/Filtration</td>
<td></td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Incineration</td>
<td>2</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>Flocculation</td>
<td></td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>Bioxidation</td>
<td></td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>Ponding</td>
<td></td>
<td>3</td>
<td>33.3</td>
</tr>
<tr>
<td>Evaporation</td>
<td>1</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>Dilution</td>
<td></td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>Stripping</td>
<td>1</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Distillation</td>
<td>1</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Landfill</td>
<td>10</td>
<td>4</td>
<td>10.5</td>
</tr>
<tr>
<td>None</td>
<td>11</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Table 4.7 (Continued)</th>
<th>D001</th>
<th>%</th>
<th>D002</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. HWLT Permit Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part A</td>
<td>24</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interim Status</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. pH Range of Corrosive Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td>12</td>
<td>31.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>7</td>
<td>18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>5</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 12</td>
<td>14</td>
<td>36.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Flash Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 60°</td>
<td>13</td>
<td>43.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 60°</td>
<td>11</td>
<td>36.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>6</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Alcohol Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 24%</td>
<td>19</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 24%</td>
<td>5</td>
<td>16.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>6</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Constraints for Land Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulations/Federal Constraints</td>
<td>19</td>
<td>36.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination of Groundwater</td>
<td>.16</td>
<td>39.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Availability</td>
<td>7</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>7</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>4</td>
<td></td>
<td>(Continued)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.7 (Continued)

11. Current Disposal Technology Used

<table>
<thead>
<tr>
<th>Technology Used</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration</td>
<td>10</td>
<td>17.9</td>
</tr>
<tr>
<td>Lagoon/Pond</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>Solidification/Encapsulation</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Contract Disposal</td>
<td>15</td>
<td>26.8</td>
</tr>
<tr>
<td>Recycle/Reuse</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>Landfill</td>
<td>12</td>
<td>21.4</td>
</tr>
<tr>
<td>Deep Well</td>
<td>3</td>
<td>5.4</td>
</tr>
<tr>
<td>Discharge to Stream</td>
<td>3</td>
<td>5.4</td>
</tr>
<tr>
<td>Dewatering/Evaporation</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Land Application</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>1.8</td>
</tr>
</tbody>
</table>

12. Endorsement of Land Application for Treatment of ICW

<table>
<thead>
<tr>
<th>Endorsement</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>17</td>
<td>30.0</td>
</tr>
<tr>
<td>No</td>
<td>15</td>
<td>27.8</td>
</tr>
<tr>
<td>No Response</td>
<td>24</td>
<td>42.9</td>
</tr>
</tbody>
</table>

13. Willingness to Participate in a Feasibility Study

<table>
<thead>
<tr>
<th>Willingness</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>16</td>
<td>28.6</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>32.1</td>
</tr>
<tr>
<td>No Response</td>
<td>22</td>
<td>39.3</td>
</tr>
</tbody>
</table>
groundwater, 30.8 percent, and land availability and economics, both 13.5 percent, as the limiting factors in land application of ICW. Approximately 30 percent of the companies generating ICW believed land application to be a feasible method for disposal of ICW, while 27.8 percent had certain reservations, due to the constraints mentioned earlier.

4.4 RESULTS OF SOIL COLUMN STUDY

The objective of the laboratory study was to provide a preliminary study on the effect of solvent recovery waste with ignitable compounds on microbial populations in the unsaturated zone. This study could aid in understanding the different processes by which soil bacteria biodegrades ICW.

Hazardous waste land treatment systems are designed to utilize the diverse microbial populations in the soil responsible for degradation, immobilization and transformation of the hazardous organic constituents of the wastes applied to the land. Soil is an ideal medium for degradation of organic matter because of its ability to absorb nutrients and hold sufficient water to sustain life. The physical and chemical properties of the soil affect the ability of bacteriato degrade, detoxify and inactivate toxic waste constituents. The soil also functions as a natural filter in the adsorption and
retention of waste constituents, thereby preventing or minimizing transport, leaching and contamination of surface and groundwater (18).

An indirect measure of the rate of decomposition of hazardous organic matter applied in the soil is the agar-plating technique, which gives an index of the bacterial population in the soil from the time of waste application. The growth and activity of microorganisms in terms of their types and numbers can be monitored and determined after land application of hazardous waste. Certain compounds will exhibit greater toxic and biocidal effects on soil bacteria than others. In some cases partial sterilization could occur, resulting in marked quantitative changes in the soil bacteria that may require longer periods to reestablish a climactic microbial population that can again degrade waste chemicals.

Table 4.8 is a summary of the chemical analyses of the soil samples collected. The results of the bacterial colony counts before application of the solvent recovery waste is presented in Table 4.9. The dilution chosen in order to obtain reliable results was 1:20,000 since the bacterial colony counts ranged from 5 to 120. This dilution was used for all of the plates subsequently inoculated with soil samples after application of the solvent recovery waste on top of the column (Fig. 4.6). Table 4.10 is a summary of the bacterial colony counts after
Table 4.8 Basic Parameters Measured for Soil Samples

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Phosphorus (ppm)</th>
<th>Nitrate-N (ppm)</th>
<th>Temp. (°F)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>25.9</td>
<td>0.55</td>
<td>70</td>
<td>7.1</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>0.48</td>
<td>70</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>5.9</td>
<td>0.45</td>
<td>70</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>0.45</td>
<td>69</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>0.10</td>
<td>69</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Table 4.9 Total Bacterial Colony Counts in the Unsa­
turated Zone Before Application of Solvent
Recovery Waste (Control)

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Surface</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:200</td>
<td>TNC*</td>
<td>TNC</td>
<td>260</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>1:2000</td>
<td>TNC</td>
<td>TNC</td>
<td>125</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>1:20,000</td>
<td>120</td>
<td>100</td>
<td>56</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1:200,000</td>
<td>65</td>
<td>45</td>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1:2,000,000</td>
<td>44</td>
<td>3</td>
<td>7</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

* Too numerous to count.
Figure 4.6 Soil column with 500 ml of ignitable waste in the form of solvent recovery waste applied at the top.
application of the solvent recovery waste. One gram of soil sample was collected from different points in the glass column representing varying depths of one to four feet, diluted appropriately and poured into nutrient agar plates.

The counts significantly decreased from more than 500 colonies at the surface to about 22 bacterial colonies at a depth of four feet, using a dilution of 1:200. The other dilutions yielded similar results. Figure 4.7 shows the bacterial colonies from different points in the soil column in nutrient agar prior to application of flammable waste. The number and size of the bacterial colonies on the soil surface significantly decreased following a single application of solvent recovery waste (Figure 4.8). However, the number of bacterial colonies gradually increased and reached normal counts (same as control) after 4 weeks, indicating a gradual recovery from the effects of the hazardous constituents in the waste (Fig. 4.9).

The solvent recovery waste partially sterilized the surface of the soil column and apparently had a deleterious effect on the microbial population. However, these bacterial colonies were able to recover and increase in number after four weeks.

Where wastes are applied at acceptable loading rates, the potential problems associated with waste dis-
Table 4.10 Bacterial Colony Counts per gram of soil in the unsaturated zone before and after application of solvent recovery waste.

<table>
<thead>
<tr>
<th>Days in which soil samples were taken</th>
<th>Bacterial Colony Counts Per Gram of Soil* (X 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface</td>
</tr>
<tr>
<td>Control</td>
<td>2,420</td>
</tr>
<tr>
<td>1 hour post ap.</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>940</td>
</tr>
<tr>
<td>14</td>
<td>1,600</td>
</tr>
<tr>
<td>21</td>
<td>1,870</td>
</tr>
<tr>
<td>28</td>
<td>2,620</td>
</tr>
<tr>
<td>35</td>
<td>2,601</td>
</tr>
</tbody>
</table>

* Means differed significantly at P=0.05 using Duncan's Multiple Range Test.
BACTERIAL COLONIES BEFORE APPLICATION OF
SOLVENT RECOVERY WASTE

Dilution: 1: 2000

Figure 4.7 Bacterial colonies from different points in the soil column prior to application of ignitable waste (control plates). Note the lower numbers of bacterial colonies at 4 feet below the surface.
Figure 6.8: Bacterial colonies 1 week after application of ignitable waste on top of the column. Note the marked reduction in colony counts at all depths in the soil column. Compare with control plates in Figure 6.7.
Figure 4. Bacterial colonies in nutrient agar plates four weeks after application of irritable waste on top of the column. Note the apparent recovery of soil bacteria at the surface after four weeks.
posal, including extended anaerobiasis and production of undesirable end products, can be prevented or minimized. However, such soil has certain physical, chemical and biological limits as to how much of a particular chemical waste it can accommodate at one time, and if loaded excessively will display certain deleterious effects of rapid oxygen depletion, extended anaerobiasis, chemical reduction, and the accumulation of odorous, and/or phytotoxic end products which will impair the soil's fertility and productivity for some time.

Shock loadings of certain chemical wastes and their excessively toxic and biocidal effects on the soil microflora should be avoided, if possible, to prevent serious and lasting impairment of the soil's biodegradative potential. The biological degradation of specific organic chemicals is dependent on the chemical characteristics of the organic compounds in question. The longer chain hydrocarbons and ring-compounds have been found to degrade more slowly than shorter chain, single ring aromatic compounds. Degradation is also dependent on soil characteristics, as well as the location of the chemical in the unsaturated zone.
CHAPTER V
GENERAL CRITERIA FOR LAND APPLICATION OF ICW

5.1 GENERAL

In the design of a land treatment system for ICW, consideration must be made for the following:

(1) Source, quantity and quality of the waste streams, or waste characteristics. Corrosive waste may either be aqueous or in slurry form, while ignitable waste is usually aqueous. The nature of the waste stream will determine the method of application of the waste to the land as well as the loading rate.

(2) Climate and plant-soil systems. Most facilities surveyed indicated that loading rates must be considerably reduced during wintertime as a result of cold weather, when biodegradation of waste takes place at a slower rate. Warm weather is considered ideal for biodegradation, consequently loading rates can be higher during the warmer months. Land application systems in the southern states will probably function more efficiently than those found in the northern states. The influence of climate and different soil types on the efficiency of land
application systems cannot be overemphasized.

(3) Intermediate pretreatment processes that make the waste amenable to land treatment. It must be emphasized that land application per se of corrosive or ignitable waste would destroy the capacity of the soil to degrade, immobilize or transform the waste, which is the very essence of the effectiveness of land application systems. Pretreatment of ICW prior to land application should be incorporated in the design criteria.

The design methodology deals predominantly with the plant-soil-system. On the other hand, the constituents of the waste will determine the acceptable assimilative capacities of the plant-soil system. Therefore, the design criteria is based on four major stages, as outlined by Overcash (5):

Stage 1. The determination, on a constituent-by-constituent basis of:

1. Plant-soil assimilation characteristics
2. Assessment of waste generation
3. Determination of the land limiting constituent (LLC)

Stage 2. Design evaluation of all required components and a cost analysis, expressed in investment costs or average annual costs per unit amount of LLC.
Stage 3. The selection and cost analysis of pretreatment or in-plant alternatives for reducing the total level of LLC.

Stage 4. A cost-benefit analysis weighing the cost of the total land receiver against cost of the pretreatment processes to put the total system cost at a minimum. Comparison is made with other industrial management alternatives to allow selection of the most cost-effective alternative.

Table 5.1 summarizes the typical design features of two types of land treatment processes on pretreated hazardous waste, the slow rate (SR) and the rapid infiltration land treatment systems. The range of values given represents successful experience in a variety of locations in the United States.

The design of all land treatment processes, is based on the land limiting constituents (LLC) which could be determined. It is necessary to identify the critical factors or parameters that limits or controls the design. The volume of flow or hydraulic loading can be an independent or controlling variable in the design of a land treatment system. For example, a grass covered hay field might be able to receive 3 in/week of pretreated wastewater, and still satisfy nitrogen requirements in the percolate. However, if the soil were a slowly permeable
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Slow Rate</th>
<th>Rapid Infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Method</td>
<td>sprinkler or surface</td>
<td>usually surface</td>
</tr>
<tr>
<td>Annual Loading, ft.</td>
<td>2-20</td>
<td>20-400</td>
</tr>
<tr>
<td>Treatment areas for 1 mgd, acres</td>
<td>60-700</td>
<td>70-60</td>
</tr>
<tr>
<td>Weekly application, in.</td>
<td>0.5-4</td>
<td>4-96</td>
</tr>
<tr>
<td>Minimum preapplication treatment</td>
<td>primary</td>
<td>primary</td>
</tr>
<tr>
<td>Need for vegetation at closure</td>
<td>required</td>
<td>sometimes used to stabilize</td>
</tr>
<tr>
<td>Organic Loading lbs BOD/acre/day</td>
<td>45-450</td>
<td>130-890</td>
</tr>
<tr>
<td>Soil Permeability range</td>
<td>0.06-20</td>
<td>less than 2.0</td>
</tr>
<tr>
<td>Permeability class range</td>
<td>moderately slow to moderately rapid</td>
<td></td>
</tr>
<tr>
<td>Textural class range</td>
<td>clay loams to sandy loams</td>
<td>sandy and sandy loams</td>
</tr>
<tr>
<td>Unified Soil Classification</td>
<td>GM-d, SM-d, ML, OL, MH, PT</td>
<td>GW, GP, SW, SP</td>
</tr>
</tbody>
</table>

Source: Berkowitz, et.al. (19)
clay the application rate might be limited to 1 in/week or less due to the hydraulic constraints. In this case, the hydraulic loading capacity is the land limiting constituent.

Each industry's waste has unique characteristics of its own and therefore the land limiting constituent will also differ from one industry to another and from site to site.

5.2 LAND LIMITING CONSTITUENT ANALYSIS

Land limiting constituent analysis (5) involves the determination of assimilative capacities in kg/ha/year, which is based on site-specific characteristics and detailed waste characterization. The waste characterization for each constituent is expressed in kg/year. The ratio of waste generation to assimilative capacity gives the total area required for an environmentally acceptable land application system. A comparison of the constituents will show one requiring the greatest land area, and this one is designated the land limiting constituents (LLC). This constituents will be used to determine the total land area required.

5.2.1 Waste Characterization

An evaluation of the characteristics of ICW is an important step in selecting ICW management alternatives. Laboratory analyses (pH, conductivity, flash point,
alcohol content) are required for ICW. A detailed analysis of present and projected volumes is also required. The evaluation should include the following:

(a) present and projected quantities of ICW, and
(b) detailed chemical analysis of ICW.

5.2.2 Environmental Considerations

(a) Climate - Although restrictive climatic conditions exist in some regions in the U.S., conditions usually vary greatly within a given region. The atmosphere modifies soil-waste interactions and acts to transport waste in the environment. Table 5.2 summarizes the various influences of atmospheric variables on land treatment operations and processes.

(b) Winds - It is necessary to minimize public risk from treatment operations caused by prevailing winds. Hot weather or recent waste applications cause volatilization and transport of waste constituents. Land treatment facilities, therefore, should be placed downwind of major population centers.

(c) Temperature and Moisture - Facilities located in cold northern or mountainous regions have seasonal treatment restrictions and may need to have storage capabilities, as land application in winter is usually not feasible. Temperature and moisture also affect the rate of microbial activity in the soil,
Table 5.2 The Influence of Atmospheric Variables on Land Treatment Operations and Processes.

<table>
<thead>
<tr>
<th>Operation or Process</th>
<th>Atmospheric Variable</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodegradation</td>
<td>Temperature</td>
<td>Indirect-controls soil temperature which controls microbial populations and activity</td>
</tr>
<tr>
<td></td>
<td>Precipitation-Evapotranspiration</td>
<td>Indirect-controls soil moisture which controls (1) soil aeration, the supply of oxygen for microbes, and (2) adequacy of water supply</td>
</tr>
<tr>
<td>Waste Application</td>
<td>Temperature</td>
<td>Direct-cold temperatures increase waste viscosity, thus decreasing ease of handling and hot temperatures may restrict application due to waste volatility hazard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect-cold temperatures keep soil temperature low, which can limit soil workability and waste degradation, and may increase the amount of runoff</td>
</tr>
<tr>
<td></td>
<td>Precipitation-Evapotranspiration</td>
<td>Indirect-soil wetness can inhibit field accessability and enhance the waste leaching hazard</td>
</tr>
<tr>
<td></td>
<td>Winds</td>
<td>Direct-hazard of off-site pollution due to transport of particulates and volatile constituents</td>
</tr>
<tr>
<td></td>
<td>Atmospheric Stability</td>
<td>Direct-surface inversions can lead to fumigation of the surface layer by volatile waste constituents</td>
</tr>
<tr>
<td>Site Selection</td>
<td>Winds</td>
<td>Direct-potential hazard to public from advected particulates and volatile constituents.</td>
</tr>
</tbody>
</table>

Source: Hazardous Waste Land Treatment, EPA SW-874, April, 1983.
thus affecting degrading rates of ICW.

Regions with excess moisture may require special designs or operational procedures such as field drainage systems, increased waste storage capacity, major run-off and run-on structures, etc.

(d) Plant-Soil Systems - An analysis of soil in the suggested site should include information on soil texture, permeability, available water holding capacity, shrink-swell potential, pH and cation exchange capacity. The chemical and physical/hydraulic properties of a soil determine how effective it is in attenuating potential contaminants, controlling run-off and leachates. Permeability classes for saturation are presented in Table 5.3. Typical ranges of Cation Exchange Capacity (CEC) of various types of soils are presented in Table 5.4 and Figure 5.1.

(e) Regional Geology - The following significant geological features of the area are required to determine the proper design and monitoring needs of the treatment facility (11):

1. depth to bedrock and characteristics of the bedrock
2. characteristics of soil above the bedrock
3. outcrops
4. aquifer recharge zones
Table 5.3 Permeability Classes for Saturated Soil

<table>
<thead>
<tr>
<th>Soil Permeability (cm/s)</th>
<th>Class</th>
<th>Representative Soil Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2×10^{-5}</td>
<td>Very Slow</td>
<td>Clay</td>
</tr>
<tr>
<td>4.2×10^{-5} to 1.4×10^{-4}</td>
<td>Slow</td>
<td>Clay & Loam</td>
</tr>
<tr>
<td>1.4×10^{-4} to 4.2×10^{-4}</td>
<td>Moderately Slow</td>
<td>Clay, Loam & Silt</td>
</tr>
<tr>
<td>4.2×10^{-4} to 1.4×10^{-3}</td>
<td>Moderate</td>
<td>Loam & Silt</td>
</tr>
<tr>
<td>1.4×10^{-3} to 4.2×10^{-3}</td>
<td>Moderately Rapid</td>
<td>Sand & Silt</td>
</tr>
<tr>
<td>4.2×10^{-3} to 1.4×10^{-2}</td>
<td>Rapid</td>
<td>Sandy Gravel</td>
</tr>
<tr>
<td>$>1.4 \times 10^{-2}$</td>
<td>Very Rapid</td>
<td>Gravel</td>
</tr>
</tbody>
</table>

Source: Overcash (5)

Table 5.4 Typical Ranges of Cation Exchange Capacity of Various Types of Soils.*

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Range of CEC, meq/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy Soils</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Silt Loams</td>
<td>12 to 20</td>
</tr>
<tr>
<td>Clay and Organic Soils</td>
<td>Over 20</td>
</tr>
</tbody>
</table>

Figure 5.1 Soil Permeabilities and Sorptive Properties of Selected Soils.

![Diagram showing increasing sorption capacity and permeability]

INCREASING SORPTION CAPACITY

PERMEABILITY

\[K \text{ in } \frac{\text{cm}}{\text{sec.}} = 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10 \]

TYPICAL SOIL TYPES

- CLAYS

- SANDS, SANDY GRAVELS

- SILTS, SILTY SANDS, SILTY SANDY GRAVELS

- CLEAN GRAVELS

5. discontinuities such as faults, fissures, joints, fractures, sinkholes, etc.

(f) Topography and Drainage - Drainage patterns for the area should be determined. A 1 percent grade is usually sufficient to avoid standing water and prevent anaerobic conditions. Too steep locations prevent adequate surface drainage. A topographic map of the area will aid in assessing required topographic parameters for land treatment design.

5.3 SITE SPECIFIC CONCEPT DESIGN

There are several options for operating a land application facility for ICW in an environmentally sound manner under different general conditions. The specific design and management will be established on a case-by-case basis, and will depend on the following factors:

1. quantity and quality of ICW
2. terrain and area involved
3. access needs, service areas, parking
4. pattern of application—strip or contour application
5. collection and disposal of run-off and run-on water
6. buffer zones
7. land preparation—cleaning trees or brush, leveling, etc.
8. Water control and management- cumulative periods of rainfall, available storage volume, temperature and pan evaporation are needed to develop a water balance, acceptable hydraulic loading rates and sizing run-off diversion and retention structures. Diversion structures must be designed to prevent flow onto the treatment zone from the peak discharge of at least a 25-year storm.

9. Subsurface drainage- the seasonal high water table should not rise higher than 1 meter (3 feet) below the bottom of the treatment zone (6). Subsurface drainage may be needed to lower and maintain the water table below some desired depth, to increase aeration in the surface soil, and to decrease the hazard of groundwater contamination.

10. Air emission control- wind dispersal of contaminants and dust from traffic on facility roads may also present a problem. On an operational basis, wind, atmospheric stability, and temperature are important considerations for timing the applications of wastes, especially volatile wastes (6).

11. Management of soil pH- a neutral soil pH is important to maintain plant nutrition, keep
soil microorganisms active and ensure survival of symbiotic nitrogen fixing bacteria for waste degradation. Acidity in soils may be reduced by addition of calcium or magnesium compounds (liming). Soil sampling and testing should be done periodically. Alkaline soils have been treated with dilute sulfuric acid solutions from some industries with some success (5,23).

12. Vegetation cover- revegetation is generally required at closure (11). It is desirable to establish a permanent cover following closure to prevent long-term erosion hazards. Appropriate species should be selected and adequate seedbeds maintained.

13. Soil fertility- nutrient imbalances affect plant growth and reproduction of microbes, and thus limit waste degradation. Fertilizer must be applied periodically for nutrient deficient soils. A carbon nitrogen ratio greater than 38 is desirable (23).

14. Waste application techniques- sprinkler irrigation may be utilized for wastes with 95 percent to 100 percent water, while dry, volatile, or toxic materials may require subsurface injection techniques. There must be uniform application of waste to the soil. Surface
spreading and mixing is the typical method for sludges or semiliquids.

15. Equipment—equipment for hauling and spreading the wastes is commonly available.

16. Records and reporting— a checklist of items needed for a thorough record of operations at a land treatment site is presented in Table 5.5.

5.4 MONITORING

The topics to be considered in developing a monitoring program for a hazardous land treatment site are presented in Figure 5.2. In addition, current regulations (EPA, 1982) require the following types of monitoring, listed in Table 5.5.

a. Groundwater detection monitoring to determine if a leachate plume has reached the edge of the waste management area (40 CFR 264.98).

b. Groundwater compliance monitoring to determine if the facility is complying with groundwater protection standards for hazardous constituents (40 CFR 264.99).

c. Soil pH and concentration of cadmium in the waste when certain food-chain crops are grown on HWLTs where cadmium is disposed (40 CFR 264.276).

d. Unsaturated zone including soil cores and soil-
Figure 5.2 TOPICS TO BE CONSIDERED IN DEVELOPING A MONITORING PROGRAM FOR AN HWLT UNIT

Source: Hazardous Waste Land Treatment, EPA, SW-874, April, 1983. (6)
Table 5.5 Checklist of Items Needed for a Thorough Record of Operations at a Land Treatment Unit

1. Plot layout map

2. Inspections
 a. weekly observations on levees and berms*
 b. observations of odor, excessive moisture, need for maintenance, etc.*

3. Waste Applications
 a. Date
 b. Amount and rate
 c. Location

4. Waste Analysis
 a. Original
 b. Quarterly waste analysis reports
 c. Any changes in application rate needed due to change in waste

5. Fertilizer and lime applications*
 a. Date
 b. Amount
 c. Location

6. Vegetation Efforts*
 a. Planting date
 b. Species planted
 c. Fertilizer applied
 d. Emergence date
 e. Groundwater

(Continued)
Table 5.4 (Continued)

7. Monitoring Sample analyses
 a. Soil samples
 b. Waste samples
 c. Groundwater samples
 d. Leachate samples
 e. Runoff samples*
 f. Plant tissue samples*

8. Climatic parameters*
 a. Rainfall
 b. Pan evaporation
 c. Air temperature
 d. Soil temperature
 e. Soil moisture
 f. Wind velocity and direction

9. Water depth in retention basins*

10. Accidents
 a. Personal injury
 b. Amount and type of waste spilled
 c. Location

11. Breaches of security

12. Breaches of runoff retention resulting in uncontrolled off-site transport

13. Maintenance schedule
 a. Levees and berms
 b. Regrading of plots
 c. Grassed waterways
 d. Tilling activities
 e. Roads

*Not required by regulation but important to successful management of an HWLT unit.

Source: EPA SW-874, April, 1983 (6)
pore liquid monitoring to determine if hazardous constituents have migrated out of the treatment zone (40 CFR 246.278).

e. Waste analysis of all types of waste to be disposed at the HWLT (40 CFR 264.13).

A sound monitoring program should account for potentially harmful effects of all waste constituents. Facility permits normally address both hazardous and nonhazardous constituents. The frequency of sampling and the parameters to be analyzed depend on the characteristics of the waste being disposed. Waste streams need to be routinely sampled and tested to check for changes in composition. Guidance for an operational monitoring program at hazardous waste land treatment sites is presented in Table 5.6.

5.5 CLOSURE AND POST CLOSURE

Monitoring continues as before with some modification during closure and post closure of a hazardous land application site. The time required will vary considerably from site to site based on the rate of degradation of wastes applied and final cover requirements.

Except where no significant concentrations of hazardous constituents remain in the treatment area, the final surface must be covered with permanent vegetative cover to prevent water and wind erosion and off-site
Table 5.6 Guidance for an Operational Monitoring Program at HWLT Units.

<table>
<thead>
<tr>
<th>Media to be Monitored</th>
<th>Purpose</th>
<th>Sampling Frequency</th>
<th>Number of Samples</th>
<th>Parameters to be Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste</td>
<td>Quality Change</td>
<td>Quarterly composites if continuous stream; each batch if intermittent generation.</td>
<td>One</td>
<td>At least rate and capacity limiting constituents, plus those within 25% of being limiting, principal hazardous constituents, pH and EC</td>
</tr>
<tr>
<td>Soil cores (unsaturated zone)</td>
<td>Determine slow movement of hazardous constituents</td>
<td>Quarterly</td>
<td>One composited from two per 1.5 ha (4 ac); minimum of 3 composited from 6 per uniform area.</td>
<td>All hazardous constituents in the waste of the principal hazardous constituents, metabolites of hazardous constituents, and nonhazardous constituents of concern.</td>
</tr>
<tr>
<td>Soil-pore liquid (unsaturated zone)</td>
<td>Determine highly mobile constituents</td>
<td>Quarterly, preferably following leachate generating precipitation snowmelt.</td>
<td>One composited from two samplers per 1.5 ha (4 ac); minimum of 3 composited from 6 per uniform area.</td>
<td>All hazardous constituents in the waste or the principal hazardous constituents, mobile metabolites of hazardous constituents, and important mobile nonhazardous constituents.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Determine mobile constituents</td>
<td>Semiannually</td>
<td>Minimum of four suggested—one upgradient, three down gradient.</td>
<td>Hazardous constituents and metabolites or select indicators.</td>
</tr>
<tr>
<td>Vegetation (if grown for food chain use)</td>
<td>Phytotoxic and hazardous transmitted constituents (food chain hazards)</td>
<td>Annually or at harvests.</td>
<td>One per 1.5 ha (4 ac) or three of processed crop before sale.</td>
<td>Hazardous metals and organics and their metabolites.</td>
</tr>
<tr>
<td>Runoff water</td>
<td>Soluble or suspended constituents</td>
<td>As required for NPDES permit.</td>
<td>As permit requires, or one.</td>
<td>Discharge permit and background parameters plus hazardous organics.</td>
</tr>
<tr>
<td>Soil in the treatment zone</td>
<td>Determine degradation, pH, nutrients, and rate and capacity limiting constituents</td>
<td>Quarterly</td>
<td>7-10 composited to one per 1.5 ha (4 ac).</td>
<td>Particulates (adsorbed hazardous constituents) and hazardous volatiles.</td>
</tr>
<tr>
<td>Air</td>
<td>Personnel and population health hazards</td>
<td>Quarterly</td>
<td>Five</td>
<td></td>
</tr>
</tbody>
</table>

Source: Hazardous Waste Land Treatment, EPA SW-874, April 1983 (b)
transport of soil and waste materials (35).

Along with the establishment of permanent vegetation, the collection, treatment and disposal of run-off water must continue until the water meets water quality standards. Acceptability of run-off water quality for direct discharge should be based on a series of samples taken over a period of time, preferably three consecutive sampling events from representative storms. When water quality criteria are met, direct discharge to sewers or receiving streams may be permitted.

During the closure period, soil core and groundwater monitoring also must continue. Once it has been determined that the water and soil are free from hazardous and key nonhazardous constituents, run-off water monitoring and soil-pore liquid sampling may be discontinued.

The intent of post-closure care is to complete waste treatment and stabilization of the remaining soil and waste residuals while checking for unforeseen long-term changes in the system. Present regulations call for continuation of post-closure activities for up to 30 years unless it has been demonstrated that a shorter period is acceptable (6).

5.6 SITE SELECTION

The technical considerations that must be considered
in site selections are:

a. site life and size
b. topography
c. surface water
d. soils and geology
e. groundwater
f. vegetation
g. site access
h. land use
i. archeological and historical significance
j. environmentally sensitive areas
k. cost

Figure 5.3 is a summary of site selection methodology.

5.7 CORROSIVE WASTE

Table 5.7 presents the pretreatment and final disposal technology for some selected major industrial generators of D002. Landfilling as a final treatment/disposal technology, was more commonly used by the pharmaceutical, pulp and paper, textile mill and paint industries. Incineration was used by the pharmaceutical, pulp and paper and the organic dyes/pigments industries. Those that generated large quantities of organic wastes such as pulp and paper, pharmaceutical and cyclic crude and intermediates, used biological ponds as a pretreatment technology.
Figure 5.3 Site Selection Methodology.

Table 5.7 Major Industrial Generators of D002, Pretreatment and Final Disposal Technology.

<table>
<thead>
<tr>
<th>Industry</th>
<th>D002 Waste</th>
<th>Pretreatment Technology</th>
<th>Final Disposal Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Petroleum Refining</td>
<td>- Alkaline wastes from cracking process</td>
<td>- Dilution with cooling and wash water</td>
<td>Land application</td>
</tr>
<tr>
<td></td>
<td>- Acidic wastes from alkylation and polymerization</td>
<td>- Dilution and neutralization with lime or soda ash</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sulfidic spent caustics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Phenolic spent caustics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pharmaceutical (organic chemicals)</td>
<td>- Spent acids, bases, and solvents</td>
<td>- All aqueous wastes streams to biological wastewater treatment facility</td>
<td>Biological sludges are landfilled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incineration</td>
</tr>
<tr>
<td>3. Pulp & Paper</td>
<td>- Green liquor dregs (NaOH)</td>
<td>Biological Treatment</td>
<td>Landfill</td>
</tr>
<tr>
<td></td>
<td>- Chlorinated resin, acids, phenolics</td>
<td></td>
<td>Incineration</td>
</tr>
<tr>
<td></td>
<td>- Lime muds</td>
<td>- Neutralization</td>
<td></td>
</tr>
<tr>
<td>4. Textile Mills</td>
<td>- Scouring Solution</td>
<td>- Neutralization</td>
<td>Landfill</td>
</tr>
<tr>
<td></td>
<td>- Bleaching Wastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mercerizing/Dyeing/Printing Solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Paint</td>
<td>- Process Cleaning Solutions (spent solvents, acids, bases)</td>
<td>- Neutralization/Dilution</td>
<td>Landfill</td>
</tr>
<tr>
<td>6. Cyclic Crude & Intermediates</td>
<td>- Run-off from process areas</td>
<td>- Electrostatic precipitator for suspended solids and particulates</td>
<td>Biopond for liquid effluents</td>
</tr>
<tr>
<td></td>
<td>- Sour Water Stripper</td>
<td>- Dilution</td>
<td>Pond sludges are landfilled</td>
</tr>
<tr>
<td></td>
<td>- H₂S</td>
<td>- Scrubbers for gaseous pollutants as NOₓ and SOₓ</td>
<td>Incineration for H₂S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
<th>DO02 Waste</th>
<th>Pretreatment Technology</th>
<th>Final Disposal Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Organic Dyes/Pigments</td>
<td>- Stripping wastes</td>
<td>-Carbon Adsorption beds - do - - do -</td>
<td>Secondary treatment in a municipal sewage treat-</td>
</tr>
<tr>
<td></td>
<td>- Slab washdowns</td>
<td></td>
<td>ment plant</td>
</tr>
<tr>
<td></td>
<td>- Vessel cleanouts</td>
<td>-Neutralization with lime</td>
<td>Incineration/Landfill</td>
</tr>
<tr>
<td></td>
<td>- Acidic effluents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Citrus Processing</td>
<td>- Spent caustic cleaning solutions</td>
<td>-Recycle</td>
<td>Land application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neutralization</td>
<td></td>
</tr>
<tr>
<td>9. Fertilizer Industry</td>
<td>- Gypsum slurry</td>
<td>-Recycle of acidic gypsum slurry</td>
<td>Gypsum pond</td>
</tr>
<tr>
<td></td>
<td>- Off-gas scrubber liquor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Acid sludge</td>
<td>-Neutralization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Steam condensate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Steel Industry</td>
<td>- Spent pickle liquor</td>
<td>-Dilution</td>
<td>Landfill</td>
</tr>
<tr>
<td></td>
<td>- Acidic rinse waters</td>
<td>-Neutralization</td>
<td></td>
</tr>
<tr>
<td>11. Inorganic Chemicals (hydrofluoric acid)</td>
<td>- Gypsum solids</td>
<td>-Neutralization with lime</td>
<td>Settling storage gypsum ponds</td>
</tr>
<tr>
<td></td>
<td>- Drip acid</td>
<td>-Wastewater treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Scrubber waste water</td>
<td>plant</td>
<td></td>
</tr>
<tr>
<td>12. Explosives/Munitions Industry</td>
<td>- Red and Find Water</td>
<td>-Chlorination, bromination for color removal</td>
<td>Final sludge sold or incinerated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Neutralization with lime</td>
<td>Red water used as fuel</td>
</tr>
<tr>
<td></td>
<td>- Red Water</td>
<td>-Evaporation in rotary kilns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- UV-light catalyzed ozonation and reduction</td>
<td></td>
</tr>
</tbody>
</table>
The use of land treatment for the disposal of corrosive waste is a very viable one. Five alternative strategies for the development of a land application system based on pH can be employed utilizing the following options.

1. Neutralization of acids or bases prior to land application.
2. Dilution of acids or bases thus reducing their corrosive properties and bring the pH to allowable limits.
3. Utilization of existing soil buffering capacity.
4. Addition of soil conditioners to bring the soil pH to normal before or after application of the waste.
5. The use of highly buffered soils or use of acid wastes on alkaline soils or alkaline wastes on acid soils.

The amount of base required for a constant change in pH is highly dependent on the nature of the soil. Figure 5.4 shows the limestone requirements for correction of soil pH. The clay loam soil needs much larger quantities of limestone as compared to sandy loam. This, therefore, indicates different management strategies for different soil types and climatic zones. Data from waste soil interaction studies must be interpreted to determine fea-
Figure 5.4 Limestone correction of soil pH.

Source: Overcash (5)
sibility, acceptable loading rates, management needs, and monitoring requirements.

In the design of a land treatment system for corrosive wastes, consideration must be given to the assimilative capacity of the soil for acids or bases, and in the case of strong acids neutralization by strong bases and salts. When acids or bases are applied to a plant soil system, an initial reaction occurs. A neutralization takes place to an extent dictated by the reactive soil fraction or soil buffering capacity, and by the strength and dissociation of applied acid or base (5).

After initial plant-soil response, organic acids and bases would be expected to undergo microbial degradation and thus be converted to soil organic matter or gaseous microbial end products \(\text{CO}_2 \). Organic acid decay improves soil physical conditions by improving soil texture and structure. The inorganic acids and bases behave as conservative or nondecomposable species. Inorganic acids dissociate to a greater extent than organic acids. These inorganic acids or bases will eventually migrate with the movement of water, applied wastewater or rainfall, in a manner analogous to the movement of cations and anions in a natural plant-soil system. Thus, in the long term, cumulative storage capacity of soils is exceeded and an ion balance must again be determined (6).
The first portion of the design for waste assimilation is to minimize the dose effect of the initial soil reactions. That is, waste acids or bases are not applied at such a high ratio of the soil buffering capacity that there is a severe loss of vegetation or soil microbial populations. Avoidance of these dose effects, which are primarily waste concentration dependent, can be accomplished through waste pretreatment. The second portion of assimilative capacity is to ensure that there is a long term correction for acid or base imbalances. In other words, the waste-soil complex must be amended with supplementary chemicals that will maintain functional agricultural capacity of the soil system. The final portion of the assimilative capacity design is to determine the parameters necessary to keep the impact of the cations and anions on receiving waters within acceptable limits. From soil hydraulic assimilative capacity, it can be found what percentage of the applied water and rainfall moves through the soil to surface waters and to groundwater. Therefore, sufficient land must be used so that the concentration of material reaching groundwater or surface waters does not exceed the respective water quality standards.

The buffering capacity of the soil can be altered with the application of corrosive wastes. Changes in pH result in altered relationships, which in turn affect the
assimilative capacity of plant-soil systems for waste constituents. One relationship that is changed is the nature of the ions present on the soil cation exchange complex. As pH is lowered, greater amounts of Al$^{3+}$ and H$^+$ dominate the soil complex. Both high and low pH reduce the availability of essential nutrients like Ca, Mg, P, to the plant (18). Alternative strategies for the development of the assimilative capacity of the soil could therefore be employed as mentioned earlier. This includes various pretreatment methods such as neutralization of corrosive wastes, or correction of substantial pH changes in soils by the addition of soil conditioners, use of acid wastes on alkaline soils and vice versa.

5.8 **IGNITABLE WASTE**

The results of the survey indicated that most of the ignitable wastes generated by industry in the U.S. are disposed using other technology such as incineration, landfilling, recycling, or deep well injection (35,36, 37,38,39). These methods have a variety of constraints in their application because they are either prohibitive, uneconomical, or undesirable. Incineration is undesirable because of air pollution problems and higher cost (18).

The application rate of flammable solvents and their breakdown products in the soil could be determined on an
annual basis and the land limiting constituent analysis could be performed. The significance of this parameter in the design of a land application facility should be emphasized.

Toluene is an example of an ignitable compound present in industrial waste. It has been shown that a large dose rate of toluene (1.7 g/g day soil 3.4 x 10^6 kg/ha) leads to soil sterilization (41). However, when applied at low or intermediate levels, toluene is degraded rapidly in soil. Aromatic compounds, when applied at 500 ppm level, disappear from the soil within 3 to 13 days.

It was further determined that soil pH determines the potential for leaching of aromatic compounds. A pH range of 5-7 will tightly hold aromatics in the soil by adsorption and insolubilization, thus enhancing bacterial degradation. A high pH decreased adsorption (18).

Figures 5.5 and 5.6 show the breakdown of toluene to benzoic acid and hydrocarboxylic acids and other organic acids. The biological breakdown of these compounds takes place at a fairly rapid rate in soil, and application rates could be determined knowing the specific decomposition rate constants, as determined for other compounds in an earlier discussion.

Since one of the constraints for land application of organic solvents and other ignitable compounds is their
Figure 5.5 Breakdown of toluene to methycyclohexane and hydrocarboxylic acids.
Source: Brewster (44)

Figure 5.6 Breakdown of toluene to benzoic acid.
Source: Roberts (40)
organic solvents and other ignitable compounds is their apparent toxicity to fish, copepods, oyster larvae and other land and aquatic animals, run-off and run-on control measures in a land application facility should reduce this risk considerably (18).

Other alternative treatment techniques such as sorption by activated carbon or ion exchange resins or coagulation and filtration prior to land application is utilized by many industries. The use of chemical treatment as a pretreatment method for munitions waste has been successful for PGDN and cellulose nitrate wherein the end-products could be treated biologically (37, 38, 39).
6.1 INTRODUCTION

Reed and Crites (36) identified eight major categories of capital costs for land treatment systems. These are transmission, pumping, preapplication treatment, storage, field preparation, distribution, recovery and land. In addition, there are costs associated with monitoring, administration buildings, roads and service and interest factors. There also may be costs for fencing, relocation of residents and purchase of water rights (36).

The relative disposal cost of land application is $12 to $25 per ton. The costs of alternative technology other than land farming is presented in Table 6.1. It therefore, appears that land application is economically the least expensive disposal method for ICW. Detailed cost information is difficult to procure from the literature and varies greatly from author to author and regionally. Cost effective analyses for land application systems should include estimates for pretreatment, site preparation (clearing, roads, fences, and monitoring...
Table 6.1 Cost of Alternative Waste Treatment Technologies*

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralization/Precipitation</td>
<td>$30 - 150/Ton</td>
</tr>
<tr>
<td>Including: screening, sedimentation,</td>
<td></td>
</tr>
<tr>
<td>flotation, neutralization & precipitation</td>
<td></td>
</tr>
<tr>
<td>Solvent Recycling</td>
<td>$50 - 100/Ton**</td>
</tr>
<tr>
<td>Including: distillation, steam stripping,</td>
<td></td>
</tr>
<tr>
<td>extraction</td>
<td></td>
</tr>
<tr>
<td>Landfilling</td>
<td>$6 - 12/Ton</td>
</tr>
<tr>
<td>Incineration</td>
<td>$250 - 500/Ton</td>
</tr>
<tr>
<td>Range includes all types of thermal treatment</td>
<td></td>
</tr>
<tr>
<td>Cement Kiln Co-Combustion</td>
<td>$50 - 70/Ton</td>
</tr>
<tr>
<td>Aqueous Organic Treatment</td>
<td>$30 - 60/Ton</td>
</tr>
<tr>
<td>Includes: sedimentation, filtration,</td>
<td></td>
</tr>
<tr>
<td>steam stripping, carbon adsorption</td>
<td></td>
</tr>
<tr>
<td>and biological treatment</td>
<td></td>
</tr>
<tr>
<td>Chemical Stabilization/Solidification</td>
<td>$100 - 120/Ton</td>
</tr>
<tr>
<td>Oil/Water Separation</td>
<td>$25 - 125/Ton</td>
</tr>
<tr>
<td>Includes: sedimentation, emulsion breaking</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxidation/Reduction</td>
<td>$50 - 175/Ton</td>
</tr>
<tr>
<td>Includes: neutralization, precipitation,</td>
<td></td>
</tr>
<tr>
<td>solid/liquid separation</td>
<td></td>
</tr>
<tr>
<td>Evaporation Ponds</td>
<td>$20 - 30/Ton</td>
</tr>
</tbody>
</table>

* All estimates include costs for the disposal in Class 1 landfills of the residue remaining after the waste has been processed.

** Does not include credit for recovered solvent.

Source: EPA -430/9-75-003
wells), operational costs (including: equipment, personnel, vehicle maintenance and operation and fertilizer application), monitoring for pollutants (including technicians and analyses of samples), and closure costs (cultivation of vegetative cover and monitoring). The complete land application system cost can be developed from the above components.

Some of the data on cost criteria was derived from a study by Murphy et al. (7), on navy facilities. The 1984 figures were arrived at by using an inflation rate of 10% per year. The values for clearing the land and building roads and fences were obtained from Reed, 1979 (42). The cost analysis was obtained from Figs. 6.1 and 6.2. For the site clearing, it is assumed that the field is grass only and all debris will be disposed of onsite. The service roads will be 12 feet wide with gravel surfaces and will be located around the perimeter of the area and within larger fields. If fencing is used, it will consist of a 4 foot stock fence around the perimeter of the area. A maintenance cost for the service roads and fencing includes major repairs after ten years.

6.2 COST COMPONENTS

6.2.1 Monitoring Wells

Walsh, 1983 (32) listed the cost components for the upper and lower U.S. for the drilling of monitoring
Figure 6.1 Cost of site clearing, rough grading.
Source: Reed, 1979 (42)
Figure 6.2 Cost of service roads and fencing.
Source: Reed, 1977 (42)
wells. These cost components updated to 1984 dollars are presented in Table 6.2.

Table 6.2 Cost Components for the Upper and Lower U.S. for Drilling Monitoring Wells, 1984

<table>
<thead>
<tr>
<th>Cost Components</th>
<th>Costs ($)</th>
<th>Upper U.S.</th>
<th>Lower U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Investigation</td>
<td></td>
<td>$27,300</td>
<td>$13,300</td>
</tr>
<tr>
<td>Drill Rig Rental (1 day)</td>
<td>658</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>Well Points (3m)</td>
<td>285</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Well Point Fittings (1)</td>
<td>20</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$28,263</td>
<td>$13,871</td>
<td></td>
</tr>
</tbody>
</table>

Source: Walsh, 1983 (32)

6.2.2 Equipment Costs

Equipment and techniques in land spreading consist of a movable tank in which mixing or agitation can be attained and from which the waste is applied to land by a spreader mechanism. There are two methods currently in use: tractor hauling of the tank and spreading equipment and truck mounted equipment. Since application is year-round, flotation tires are installed to aid in vehicle movement across wet fields. Flotation tires allow for a low compaction factor of approximately 15 psi, thus permitting increased field access. Table 6.3 shows the equipment costs obtained from Overcash and Pal, 1979 (5).
There are three types of spreading devices: 1) "T" pipe-waste which flows freely, 2) pressurized spray or rotating spinner disc (wide coverage 12m), 3) subsurface injection device (15-25 cm deep and buried), used for waste containing volatiles.

6.2.3 Labor Costs

To estimate the cost of a driver, the haul time must first be calculated. This calculation includes tank loading time (5 minutes for the 13,500 liter tank and 2 minutes for the 5,600 liter tank; Overcash and Pal, 1979 (5)); transport time (distance/vehicle speed, truck-50 km/hr, tractor-25 km/hr), unloading time (distance to be covered/vehicle speed during unloading-injection operations = 6-9 km/hr), and return time. This number can be compared to the figures shown in Figure 6.2 to derive cost per day/ton ($/T). (See Table 6.3 and Figure 6.3.)

Once the haul time is calculated for each site, the following wage scale from Waste Oil Recovery Practices State of the Art 1972 (35) can be used. (See Table 6.4.) Vehicle maintenance and operation, including repairs, fuel, oil, and insurance for one tank truck or tank trailer unit plus tractor in 1984 is estimated at $2,170 (35).
Table 6.3 Equipment costs for Land Application.

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>1984$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor w/Flotation Tires</td>
<td>$24,000</td>
</tr>
<tr>
<td>Tank Wagon (13,500 l)</td>
<td>21,120</td>
</tr>
<tr>
<td>Tank Wagon (5,600 l)</td>
<td>10,560</td>
</tr>
<tr>
<td>Injection Unit</td>
<td>5,600</td>
</tr>
<tr>
<td>Tank Truck Spreader (14,250 l)</td>
<td>31,200</td>
</tr>
<tr>
<td>Injection Option</td>
<td>15,500</td>
</tr>
<tr>
<td>Disc Harrow (cultivating)</td>
<td>4,000</td>
</tr>
<tr>
<td>Mower/Conditioner 2.7m</td>
<td>9,400</td>
</tr>
<tr>
<td>Seeder (for closure)</td>
<td>1,120</td>
</tr>
</tbody>
</table>

Table 6.4 Wage Scale Updated to 1984 Dollars*

<table>
<thead>
<tr>
<th>Wage Description</th>
<th>1984$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver's Hourly Wage</td>
<td>12.00</td>
</tr>
<tr>
<td>Health & Welfare</td>
<td>.71</td>
</tr>
<tr>
<td>Pensions</td>
<td>.74</td>
</tr>
</tbody>
</table>

$13.45/hr

Figure 6.3 Cost of haul time for liquid sludge
Source: Anderson, 1977 (31).
6.2.4 Fertilizer Application

Nitrogen and phosphorous and other nutrients if necessary must be added for optimal microbial action. A fertilizer application of 1,000 pounds nitrogen and 500 pounds phosphorous per acre per year may be used (34), (see Table 6.5 for cost per acre).

Table 6.5 Cost of Fertilizer Application

<table>
<thead>
<tr>
<th></th>
<th>Nitrogen lbs/yr</th>
<th>Phosphorous lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/lb</td>
<td>$.33</td>
<td>$.32</td>
</tr>
<tr>
<td>Cost/yr/acre</td>
<td>330.00</td>
<td>160.00</td>
</tr>
<tr>
<td>Spreading cost/acre</td>
<td>132.00</td>
<td>132.00</td>
</tr>
</tbody>
</table>

6.2.5 Buffer Zones

Buffer zones of 5-10m are normally required for industrial wastes to contain pathogenic microorganisms or substantial adverse odor. Shrubs and trees are maintained in a buffer zone to render the land application site more aesthetically pleasing to the public and block the view of the landfarm. The maintenance cost for such a zone would be $1,440 - $1,600/100m shrub, tree line per year (2).

6.2.6 Security

Security should be maintained by fencing the site, having locked gates, and posting signs. The costs will
vary and will depend on the total land area to be fenced.

6.2.7 **Sampling Methodology**

The overall dual objectives of monitoring land treatment areas have been agreed upon by most researchers. These objectives are:

a. To corroborate its performance as a waste treatment system subject to the nondegradation type of constraint and to verify long-term plant soil viability.

b. To maintain the needed essential elements for microbial action and plant growth.

Monitoring to evaluate land treatment of various constituents is categorized in four phases related to the behavior of the critical constituents in the plant-soil system and to the methods used to collect samples.

a. plant and soil surface zone
b. soil and water subsurface zone
c. groundwater
d. surface water

These parameters must be analyzed prior to waste application. To sample soils, 5-15 subsamples are composited to obtain a sample. Each soil type in each area must be sampled separately. Groundwater samples are taken from onsite wells and offsite or perimeter wells in the direction of hydrologic flow. Surface water samples
are required where there is a lateral movement of waste constituents across the surface of the site. The cost of equipment used in sampling is as follows (6):

- **Grab Sampler (surface waters)** $ 215
- **Soil and Plant Preservation** (for organic and inorganic species) $ 1,960
- **Weighing Scales and Drying Equipment** $ 1,200

The following values were reported for sampling and analyses (34), modified by 10 percent inflation for 1984 (Table 6.6). These values were also evaluated by obtaining data from a local analytical firm (see Table 6.6).

- **Sampling, 12 days (96 hrs/yr)** ... $ 1,064

6.2.8 Transmission

This involves gravity pipes, open channels or force mains. Costs of transmission will depend on the pipe and channel size (Table 6.7).

6.2.9 Pumping

This ranges from full pumping stations to tailwater pumping facilities. A fully enclosed wet well/dry well structure, pumps, piping and valves, controls and electrical work will cost $300,000 for a 1 mgd peak flow and 150 ft. head. For structures built into the dike of ponds, the cost of pumping for distribution would be approximately $210,000 (32).
Table 6.6 Cost for Sampling and Analysis, 1984

<table>
<thead>
<tr>
<th>Soil Samples</th>
<th>$/Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Content</td>
<td>30</td>
</tr>
<tr>
<td>pH</td>
<td>6</td>
</tr>
<tr>
<td>Total N</td>
<td>40</td>
</tr>
<tr>
<td>P</td>
<td>30</td>
</tr>
<tr>
<td>Most Metals</td>
<td>10 each</td>
</tr>
<tr>
<td>As</td>
<td>13</td>
</tr>
<tr>
<td>Ag</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$212/sample</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>25</td>
</tr>
<tr>
<td>TOC</td>
<td>25</td>
</tr>
<tr>
<td>TIC</td>
<td>20</td>
</tr>
<tr>
<td>Phenols</td>
<td>40</td>
</tr>
<tr>
<td>Most Metals</td>
<td>10</td>
</tr>
<tr>
<td>As</td>
<td>13</td>
</tr>
<tr>
<td>Ag</td>
<td>13</td>
</tr>
<tr>
<td>Total N</td>
<td>40</td>
</tr>
<tr>
<td>NH₃</td>
<td>18</td>
</tr>
<tr>
<td>P</td>
<td>30</td>
</tr>
<tr>
<td>Cl</td>
<td>13</td>
</tr>
<tr>
<td>SO₄</td>
<td>20</td>
</tr>
<tr>
<td>pH</td>
<td>4</td>
</tr>
<tr>
<td>Conductivity</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>$345/sample</td>
</tr>
</tbody>
</table>

Source: Mead Compu. Chem., N.C.
Table 6.7 Cost of Underdrains

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs, 400 ft. spacing</td>
<td>$750</td>
</tr>
<tr>
<td>O & M Costs, 400 ft. spacing</td>
<td>15</td>
</tr>
<tr>
<td>Materials, 400 ft. spacing</td>
<td>60</td>
</tr>
<tr>
<td>Tailwater Return</td>
<td></td>
</tr>
<tr>
<td>0.1 mgd of Recovered water</td>
<td></td>
</tr>
<tr>
<td>Capital, $</td>
<td>40,000</td>
</tr>
<tr>
<td>O & M</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>300</td>
</tr>
<tr>
<td>Labor</td>
<td>250</td>
</tr>
<tr>
<td>Materials</td>
<td>120</td>
</tr>
<tr>
<td>Runoff Collection</td>
<td></td>
</tr>
<tr>
<td>Capital Cost, open ditch system</td>
<td>250</td>
</tr>
<tr>
<td>Labor, open ditch</td>
<td>20</td>
</tr>
<tr>
<td>Materials, open ditch</td>
<td>30</td>
</tr>
<tr>
<td>Recovery Wells</td>
<td></td>
</tr>
<tr>
<td>Capital, $</td>
<td>20,000</td>
</tr>
<tr>
<td>O & M, power, 50 ft. depth</td>
<td>6,300</td>
</tr>
</tbody>
</table>

Source: Reed and Crites (36).
6.2.10 Preapplication Treatment

This ranges from preliminary screening to advanced secondary treatment. The costs will vary according to the preapplication treatment required.

6.2.11 Storage Ponds

The cost of storage ponds varies depending on initial site conditions, and the depth and volume of wastewater to be stored (32).

6.2.12 Field Preparation

This includes site clearing and rough grading, land leveling and overland slope construction (Table 6.8).

6.2.13 Distribution

This involves the use of a wide variety of sprinkler and surface distribution systems, which may include the following:

- Materials... $ 50
- Operation and Maintenance (100 acres/year) $500

6.2.14 Recovery

This includes underdrains, tailwater return, and run-off collection systems for overland flow systems and recovery wells.

6.2.15 Closure Costs

Closure costs are not well documented in the litera-
Table 6.8 Costs of Field Preparation*

<table>
<thead>
<tr>
<th>Site Preparation</th>
<th>Capital Cost, $/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Clearing</td>
<td>20</td>
</tr>
<tr>
<td>Grass only</td>
<td>150</td>
</tr>
<tr>
<td>Open Field, some brush</td>
<td>1,000</td>
</tr>
<tr>
<td>Brush and Trees</td>
<td>3,000</td>
</tr>
<tr>
<td>Land Leveling</td>
<td></td>
</tr>
<tr>
<td>200 yd^3/acre</td>
<td>250</td>
</tr>
<tr>
<td>500 yd^3/acre</td>
<td>500</td>
</tr>
<tr>
<td>750 yd^3/acre</td>
<td>700</td>
</tr>
<tr>
<td>Overland Flow Slope Construction</td>
<td></td>
</tr>
<tr>
<td>500 yd^3/acre</td>
<td>900</td>
</tr>
<tr>
<td>1000 yd^3/acre</td>
<td>1,500</td>
</tr>
<tr>
<td>1400 yd^3/acre</td>
<td>2,000</td>
</tr>
</tbody>
</table>

* From Reed and Crites (36).
ture. Kincannon, 1972 (43), lists cultivation costs for existing cleared fields.

<table>
<thead>
<tr>
<th>Cultivation, hours/plowing</th>
<th>8 hrs/10 acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/hour</td>
<td>$13.45</td>
</tr>
<tr>
<td>Cost/day/acre</td>
<td>$440.00</td>
</tr>
<tr>
<td>Cost/year/10 acres</td>
<td>$5,280.00</td>
</tr>
</tbody>
</table>

Fertilizer costs would be the same as that used for the application phase of the landfarm.

The overall cost considerations in a land application facility for ICW will depend on the nature of the waste stream, and this will in turn, determine the land limiting constituent, an important parameter in land application of any type of waste. The waste stream, aside from its corrosive and ignitable characteristics may also have other hazardous constituents which must be considered if land application is to be used as a treatment/disposal technology. For instance, the presence of heavy metals together with ICW will alter the land limiting constituent of the waste and thus influence the loading rate. On the other hand, the quantity of effluents can be controlled through in-plant changes whereby the amount and nature of the effluents produced from various manufacturing processes can be reduced. This is considered one of the most cost-effective alternatives in the management of ICW. Recycling of waste streams is another method that will reduce the volume of ICW considerably, and thus reduce the overall waste pretreatment
cost. Other effective methods of reducing waste quantities is the recovery of some of the components of the waste stream for reuse or sale. This is a very attractive alternative in terms of its economic return to the company.
The risk model used in this report is a modification of a RCRA/Risk Policy Model (RCRA Risk/Cost Policy Model Project, Phase 2 Report, June, 1982) (45) used to identify trade-offs between the risks posed by wastes and costs associated with their disposal. This model was developed by Life Systems, Inc. (46) for the University of Oklahoma. The portion of the model used here assesses the likelihood and the severity of human exposure to hazardous compounds.

The risk posed by a waste stream is related to a number of factors, the most important of which are:

1. The inherent hazard and physical properties of the waste stream, which depend primarily on the nature of the waste stream and its chemical constituents;

2. The quantity of the chemicals released and the medium into which they are released, which depend on the size and the nature of the waste stream, and on the technology;

3. The persistence of the chemicals, and the rate
of their dispersion, and other factors governing exposure which depend primarily on the nature of the waste stream and on the environment;

4. The size of the human population potentially exposed to the chemicals, which depends primarily on the environment; and

5. The presence of nonhuman systems that can be adversely affected, such as sensitive ecosystems which depend primarily on the environment.

The score obtained for each compound is composed of two factors, an Inherent Hazard and an Exposure Adjustment for each media considered (i.e., air, surface water and groundwater). These two factors are added to obtain an Adjusted Inherent Risk by medium. The framework in which this model operates is a screening device for identifying areas of special concern due to risks involved. This is an analysis on a general level. While this estimate is not detailed enough to be useful in a regulatory process, it can serve to point out situations that are extremely risky or relatively safe and identify better candidates for land application.

7.1 FACTORS CONSIDERED IN THE MODEL

The Inherent Hazard Score attempts to relate
potential hazardous effects at a given probability of an occurrence per unit dose. The adverse effect on human health is the only factor considered. No provisions are made for ecological damage or economic risk. Two estimation scales are used in the derivation of the inherent hazard: dichotomous response and a graded response. These two responses encompass the entire range of possible health effects. A dichotomous response represents an all-or-nothing situation such as carcinogenesis, teratogenicity or mutagenicity. A graded response includes dose dependent effects that occur in a continuum ranging from slight to substantial impairment or illness. The sequence of rules in the scoring system are presented in Fig. 7.1.

A dichotomous response corresponds to the EPA's unit risk estimate which is defined as the slope of the dose-response relationship. For carcinogenic compounds then, the EPA's estimate of unit risk has been either used when available or calculated using EPA's procedure for unit risk assessment.

The calculation of the graded response utilizes a minimum-effective-dose (MED) which is the lowest dose that produces an observable adverse effect. The score for graded response is based on an estimate of the daily dose required to produce an adverse effect in about 1 percent of the exposed population. In typical cases the
smallest effect than can be detected with statistical reliability is about 10 percent. The score is based accordingly on the MED required to produce a measurable effect. For human data, the MED is divided by 10 to approximate the dose that would yield a 1 percent probability of producing an adverse effect. For animal data, the MED is divided by 100 if the study is chronic; 300 if the study is subchronic. Determining if such a dose from toxicological data on animals is dependent on: 1) the age, sex and strain of exposed animals, 2) the route, frequency and duration of the exposure, 3) an assumption of dose-response linearity. In this model primary weight has been placed on chronic effects on animals or epidemiological data.

The inherent hazard score is then assigned according to the limits presented in Fig. 7.1. Carcinogens with the highest unit risk scores and noncarcinogens with the lower MEDs are assigned to the higher inherent hazard scores.

7.2 EXPOSURE ADJUSTMENTS FOR ENVIRONMENTAL MEDIUM

To provide an estimate of the potential exposure of humans to the hazardous constituents, exposure adjustment factors were developed for the hazardous constituents in three media: air, surface water and groundwater. The environment has the ability to dilute, degrade and/or
Figure 7.1 FLOW CHART FOR SCORING INHERENT HAZARD

Review
Toxicological Data

Dichotomous Response

Graded Response

Human Studies MED/10

Animal Chronic Studies MED/100

Animal Subchronic Studies MED/300

Estimate of Human MED/10

Calculate Inherent Hazard per 1 mg/kg/day (unit

Calculate Inherent Hazard per 1 mg/kg/day

Inherent Hazard per 1 mg/kg/day

<table>
<thead>
<tr>
<th>Inherent Hazard Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>0</td>
</tr>
<tr>
<td>0.0005 to 0.005</td>
<td>1</td>
</tr>
<tr>
<td>0.005 to 0.05</td>
<td>2</td>
</tr>
<tr>
<td>0.05 to 0.5</td>
<td>3</td>
</tr>
<tr>
<td>0.5 to 5.0</td>
<td>4</td>
</tr>
<tr>
<td>5.0 to 50.0</td>
<td>5</td>
</tr>
<tr>
<td>50.0</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: RCRA (45).
transport the compound and thus the potential for a population to be exposed will depend, in part on the magnitude of these mechanisms. The adjustment factor is essentially the half-life of the compound, and the scores are roughly equivalent to the log of the expected half-life of each compound in each medium. Several processes which tend to reduce the hazardous effects of the compound are taken into consideration in calculating the exposure adjustment factors (i.e., half-lives). Air scores include removal by atmospheric washout. Surface water scores take into consideration oxidation, hydrolysis, biodegradation and/or volatilization. Groundwater scores consider adsorption and hydrolysis. In each medium the attenuation is usually dominated by one mechanism, which is used in the scoring. Table 7.1 summarizes the scoring procedure.

7.3 LIMITATIONS OF THE MODEL

There are a number of limitations inherent in this model. A number of simplifying assumptions have been made, including:

1. Weighing all adverse effects equally.
2. Assuming linearity in dose response relationships.
3. Including only human adverse effects.

Additionally, the model does not accommodate syner-
Table 7.1 Exposure Adjustment Scores

<table>
<thead>
<tr>
<th>Half-Life</th>
<th>Air</th>
<th>Surface Water***</th>
<th>Groundwater***</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 minutes</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30 minutes</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1 hour</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3 days</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>30 days</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1 year</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10 year</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>100 years</td>
<td>-</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1,000 years</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

* If bioaccumulation factor in fish is 10^k, add $k-2$ points for $k \geq 3$; leave score unchanged for $k > 2$.

** If chemical is removed by conventional water treatment, subtract factor based on degree of removal (90 percent removal = -1; 99 percent removal = -2).

*** If adsorbed to solid surfaces, subtract points according to degree of adsorption (99 percent adsorption = -2; 99.9 percent adsorption = -3).

Source: RCRA (45).

Gism or antagonism among compounds. Even though wastes are chemical mixtures, the model evaluates compounds separately. There is a measure of uncertainty involved in evaluating the toxicological data. In many instances data is either absent or insufficient and, therefore, in many instances judgement was used to derive risk scores, particularly in using animal data to assess possible human health risks and to evaluate exposure to compounds.
It must also be assumed for this model that the concentrations of hazardous constituents in the waste are sufficient to cause the chronic or acute health effects in humans.

Another simplification made in this model was the use of one or at most two mechanisms (i.e., biodegradation, hydrolysis, volatilization, etc.) for each media to estimate the half-life of a substance in that media. A single mechanism was used if the half-life estimated for the particular medium was 10 times greater than any other mechanism. If two mechanisms had half-life estimates within 10 times of each other, both were used. In no instance was more than two mechanisms used. Thus, some degradation mechanisms that could be important (i.e., photolysis or neutralization) may not be considered in the media exposure adjustment.

The model also does not take into consideration effects on the environment but only on human health. The authors note, however, that rarely does chemical pollution pose a threat to the environment without also posing a threat to human health and consider human health to be the most critical factor.

In many instances, best scientific judgement was used to derive risk scores, particularly in using animal data to access possible human health risks and to evaluate exposure to compounds.
7.4 ADDITIONAL FACTORS THAT COULD BE CONSIDERED

Additional information is being obtained to aid in a more accurate estimate of the risk posed by land treatment of ICW. These are:

1. **Climatological parameters** such as mean annual rainfall, temperatures and wind speed, since these parameters will affect transport and degradation of wastes being land treated. Evapotranspiration rates could also be used to establish a climatological factor.

2. **Soil types in each climatic region.** Parameters that might be considered in developing factors for soil type would include those parameters that extend the most influence on the assimilative capacity such as pH, microbial activity, soil moisture content, cation exchange capacity, and hydraulic conductivity. Availability of this information for geographical areas where land treatment is most prevalent would be required for development of these factors.

The risk model developed by ICF, Inc. (45) also incorporates an adjustment for environmental settings. Three factors were considered: 1) potential population exposed, 2) assimilative capacity of surface waters, and 3) groundwater contamination potential.

The potential population exposed was defined by
three ranges of populations:

1. High (520 people/km2 and over)
2. Medium (52-519 people/km2)
3. Low (less than 52 people/km2)

Assimilative capacity of surface water was characterized by two broad categories:

1. Those with a high assimilative capacity (i.e., discharge to streams with a flow rate greater than 3×10^3 m3/day).
2. Those with a low assimilative capacity.

Groundwater contamination potential was divided into three categories:

1. Low soil permeability (less than 10^{-6} cm/sec) and moderate depth to groundwater saturation zone (greater than 10m) - low risk.
2. Moderate soil permeability (less than 10^{-4} cm/sec) and large depth to the groundwater saturation zone - moderate risk.
3. All locations not meeting the criteria for 1 or 2 - high risk.

These environmental setting adjustments should be incorporated in the risk assessment model.

7.5 RESULTS OF RISK ASSESSMENT

8.5.1 Introduction

As noted above, the following components of the risk
model were used to evaluate risks posed by each industry category:

a. **Inherent Hazard.** Provides a single score that estimates the toxicological effects on humans of the hazardous constituent. Chronic effects are given priority.

b. **Environmental Medium Adjustment.** Provides a score for each hazardous constituent for three media (i.e., air, surface water, and groundwater) that estimates the potential for exposure to a hazardous constituent based on its dispersion/degradation in each media. The half-life of the hazardous constituent was used to describe this factor using one or two dominant attenuation mechanisms for each medium to derive the half-life.

It should be noted that the above scores are derived by taking the logs of the actual numbers derived so that an increase or decrease of one in the score represents a 10-fold increase or decrease in that score.

c. **Waste Origin Adjustment.** This is an additional factor also used to determine risk scores. Scores of these factors are arbitrarily assigned. If the hazardous waste constituents used in the assessment were measured in the
land treated waste, then a factor of 0 (log of 1 indicating no uncertainty) was assigned. For hazardous constituents used in the assessment measured in another waste stream (e.g., waste water) a factor of 1 (log of 10 indicating a 10-fold uncertainty of the hazardous constituent being in the land treated waste) was assigned. Note that an assumption was made that sludge generated from these wastes would be ignitable or corrosive and would contain the hazardous constituents. If the hazardous constituents used in the assessment were identified as being in raw materials or products used in the production process, then a factor of 2 (log of 100 indicating a 100-fold uncertainty) was assigned since the uncertainty of these constituents being present in land treated wastes was greatest.

7.5.2 Procedure for Scoring

The following steps were taken in ranking the industrial category wastes in regard to their applicability to land treatment:

a. Hazardous constituents of wastes generated by each industry category were identified from the available literature. Hazardous constituents
of land treated waste were of course used where the information was available. Hazardous constituents from other waste streams were used otherwise and it was assumed that these constituents would be present in wastes potentially land treated.

b. All hazardous constituents identified in each industry category for which scores were available in the ICF report were then listed along with their appropriate scores (i.e., Inherent Hazard, Exposure Adjustment for each media, and Adjusted Inherent Risk for each media).

c. The Adjusted Inherent Risk scores for each media were then summed. The rationale for summing these is that exposure through each media is possible for land treated waste.

d. Based on the sum of the Adjusted Inherent Risk scores the hazardous constituents with the highest scores (i.e., highest risk) were selected for further consideration. Where possible, the four hazardous constituents with the highest scores were selected; however, the lack of data on some industrial category wastes allowed less than four constituents to be evaluated.

e. The hazardous constituents now remaining were
checked against the Appendix VIII list in 40 CFR Part 261. The land treatment regulations under RCRA require that owners/operators identify and monitor Appendix VIII constituents present in land treated wastes. If the hazardous constituent were listed in Appendix VIII they were retained; if not, they were deleted.

f. From the remaining hazardous constituents in each industrial category, a score was selected to represent the industry. Where scores were equal, one was randomly chosen.

g. Next, the waste origin factor was applied. This factor is discussed above in item 3. It should be noted that this factor is more a measure of uncertainty concerning the data available. This factor when added to the summed Inherent Hazard Risk Scores yields the final score for each category.

In deriving risk scores in this report, all three media (i.e., air, surface water, groundwater) were taken into consideration. In certain instances, however, it may be appropriate to omit one or more of the media from the weighted scores. For instance, if it was determined that most land treatment would be performed in areas a large distance from population centers, it might be appropriate to eliminate air from the assessment. If
facilities were located a great distance from surface waters, the surface water factors could be omitted.

7.5.3 Results

The lower the score obtained, the lower the risk involved in regard to land treating the hazardous wastes. Table 7.2 presents a ranking of the industry categories according to the final scores obtained for each.

Table 7.2 Ranking by Industry Category

<table>
<thead>
<tr>
<th>Industry Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Processing</td>
<td>9</td>
</tr>
<tr>
<td>Explosives and Munitions</td>
<td>14</td>
</tr>
<tr>
<td>Cyclic Crude and Intermediates</td>
<td>22</td>
</tr>
<tr>
<td>Medicinal and Botanicals</td>
<td>22</td>
</tr>
<tr>
<td>Organic Dyes and Pigments</td>
<td>22</td>
</tr>
<tr>
<td>Chemical and Allied Products</td>
<td>24</td>
</tr>
<tr>
<td>Petroleum Refining</td>
<td>25</td>
</tr>
<tr>
<td>Industrial Inorganic Industry</td>
<td>27</td>
</tr>
<tr>
<td>Pulp and Paper</td>
<td>28</td>
</tr>
</tbody>
</table>

The citrus processing industry followed by the explosives and munitions industry, had the lowest risk scores while the industrial inorganic and the pulp and paper industries had the highest risk scores.

A comparison was made on the inherent hazard and risks associated with various compounds generated present in the waste stream of selected categories of generators.
The scores for the selected waste constituents are presented in Table 7.3. These compounds were chosen from industries that generate ICW as determined by a study of manufacturing processes in each industry selected. This information was available in the literature.

The risk assessment scores are presented in Table 7.4, by industrial category. These scores are based on information again available in the literature and the limitations inherent in this risk assessment. Final results indicate that wastes generated by the explosives/munitions industry as well as the cyclic crude and intermediates, medicinals and botanicals, organic dyes and pigments industries pose the least risk to human health when land treated.

In deriving risk scores in this report, all three media (i.e., air, surface water, groundwater) were taken into consideration. In certain instances, however, it may be appropriate to omit one or more of the media from the weight to the remaining and more important factor(s). For instance, it was determined that most land treatment would be performed in areas a great distance from population centers. It might, therefore, be appropriate to eliminate air from the assessment. If facilities were located a great distance from surface waters, the surface water factors could be omitted.

Scientific studies of risk are usually severely
Table 7.3 Scores for Selected Waste Constituents.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Inherent Hazard</th>
<th>Exposure Adjustment</th>
<th>Adjusted Inherent Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Air Surface Ground</td>
<td>Air Surface Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Water</td>
<td>Water Water</td>
</tr>
<tr>
<td>Lead</td>
<td>5</td>
<td>4 3 2</td>
<td>9 8 7</td>
</tr>
<tr>
<td>Benzene</td>
<td>2</td>
<td>4 0 6</td>
<td>6 2 8</td>
</tr>
<tr>
<td>Toluene</td>
<td>1</td>
<td>3 0 7</td>
<td>4 1 8</td>
</tr>
<tr>
<td>Benzidine</td>
<td>2</td>
<td>3 0 7</td>
<td>4 1 8</td>
</tr>
<tr>
<td>Creosote</td>
<td>2</td>
<td>2 1 7</td>
<td>4 3 8</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1</td>
<td>4 0 6</td>
<td>5 1 7</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>4</td>
<td>3 3 6</td>
<td>7 7 10</td>
</tr>
<tr>
<td>Phenol</td>
<td>4</td>
<td>2 1 6</td>
<td>6 5 10</td>
</tr>
<tr>
<td>Anthracene</td>
<td>3</td>
<td>4 4 5</td>
<td>7 7 8</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>3</td>
<td>4 0 6</td>
<td>7 3 8</td>
</tr>
<tr>
<td>1,2 Dichloroethane</td>
<td>3</td>
<td>4 0 6</td>
<td>7 3 9</td>
</tr>
<tr>
<td>Chloroform</td>
<td>3</td>
<td>5 0 6</td>
<td>8 3 9</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>2</td>
<td>4 0 7</td>
<td>6 2 9</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>3</td>
<td>8 0 6</td>
<td>11 3 9</td>
</tr>
<tr>
<td>1,1,2,2, Tetrachloro</td>
<td>4</td>
<td>6 0 6</td>
<td>10 4 10</td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysene</td>
<td>4</td>
<td>4 6 5</td>
<td>8 10 9</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>4</td>
<td>4 N/A N/A</td>
<td>8 N/A N/A</td>
</tr>
<tr>
<td>Fluorides</td>
<td>3</td>
<td>4 7 7</td>
<td>7 10 10</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>2</td>
<td>3 3 6</td>
<td>5 5 8</td>
</tr>
<tr>
<td>Nitrosodimethylamine</td>
<td>4</td>
<td>3 0 5</td>
<td>7 4 9</td>
</tr>
<tr>
<td>N-Nitrosodiphenyl</td>
<td>1</td>
<td>3 0 5</td>
<td>4 1 6</td>
</tr>
<tr>
<td>Amines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>5</td>
<td>4 7 7</td>
<td>9 12 12</td>
</tr>
</tbody>
</table>

Source: Life Systems (46)
Table 7.4 Risk Assessment Scores.

<table>
<thead>
<tr>
<th>Industrial Category</th>
<th>SIC Code</th>
<th>Hazardous Constituents</th>
<th>Sum of Adjusted Inherent Hazard Scores</th>
<th>Appendix VIII Constituent</th>
<th>Selected Constituent</th>
<th>Waste Origin Factor</th>
<th>Final Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic Crude and Intermediates</td>
<td>2865</td>
<td>Phenol</td>
<td>21</td>
<td>X</td>
<td>Phenol</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene</td>
<td>16</td>
<td>X</td>
<td>Benzene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toluene</td>
<td>13</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creosote</td>
<td>16</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical and Allied Products (Paint Industry)</td>
<td>2800</td>
<td>Pentachlorophenol</td>
<td>24</td>
<td>X</td>
<td>Pentachlorophenol</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenol</td>
<td>21</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anthracene</td>
<td>22</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td>19</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicinals and Botanicals</td>
<td>2833</td>
<td>Phenol</td>
<td>21</td>
<td>X</td>
<td>Phenol</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2 Dichloroethane</td>
<td>19</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroform</td>
<td>20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methylene Chloride</td>
<td>17</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Organic Chemicals</td>
<td>2869</td>
<td>Insufficient Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulp and Paper</td>
<td>2600</td>
<td>Carbon Tetrachloride</td>
<td>23</td>
<td>X</td>
<td>Chrysene</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>24</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysene</td>
<td>27</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentachlorophenol</td>
<td>24</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum Refining</td>
<td>2911</td>
<td>Lead</td>
<td>24</td>
<td>X</td>
<td>Lead</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>33</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>18</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Industrial Category</th>
<th>SIC Code</th>
<th>Hazardous Constituents</th>
<th>Sum of Adjusted Inherent Hazard Scores</th>
<th>Appendix VIII Constituent</th>
<th>Selected Constituent</th>
<th>Waste Origin Factor</th>
<th>Final Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td>2819</td>
<td>Sulfuric Acid (hydrogen sulfide)</td>
<td>8</td>
<td>X</td>
<td>Yes</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrofluoric Acid and calcium fluoride (fluorides)</td>
<td>27</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Dyes and Pigments</td>
<td>2865</td>
<td>2-Naphthylamine (a)</td>
<td>18</td>
<td>X</td>
<td></td>
<td>Nitrosodi- methylamine</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrosodi-methylamine (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-Nitrosodi-phenylamine (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosives & Munitions</td>
<td>2892</td>
<td>Toluene</td>
<td>13</td>
<td>X</td>
<td>Toluene</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene</td>
<td>16</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrus Processing</td>
<td>2037</td>
<td>Sulfuric Acid (hydrogen sulfide)</td>
<td>8</td>
<td>X</td>
<td>Sulfuric Acid</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

(a) These hazardous constituents were specifically identified in the available literature. Only amines as a general category were noted as being in the waste. These three were chosen from the 140 compounds scored in the IFB report.
constrained by data limitations and by the lack of understanding of underlying physical, biological, chemical, economic and social processes. Risk assessment is going to be increasingly used in hazardous waste management. It is important to remember, however, that different sites require different approaches and techniques for estimating risk. This will depend on the nature of the hazardous waste under consideration, knowledge of its movement in the environment and site specific constraints or factors, that require different site containment, remedy and restoration procedures. Our knowledge of the hazards caused by exposure of man and/or the environment to ICW is very limited. Therefore, further investigation is needed in this area.
CHAPTER VIII
SUMMARY AND CONCLUSIONS

The goal of treatment and disposal technology for ICW should be to offer economically and politically acceptable and environmentally compatible alternatives to current technology being used such as landfilling and incineration. The use of land application as a treatment alternative is a very promising one. It will depend on the nature of the waste stream, the quantity of the effluents, the pretreatment technology available, its economic feasibility and the satisfaction of federal and state regulatory requirements.

The nature and characteristics of ICW were identified in this study as well as the industries generating ICW, and the quantities produced annually. In addition, a survey of industries generating ICW was made, and state-of-the-art information was obtained on loading rates, pretreatment and disposal technology currently being utilized, permitting requirements and constraints of land application facilities. All of these parameters were dealt with in detail in Chapters III, IV and V.

Based on the objectives outlined in Chapter I, the
following conclusions can be drawn from this study:

1. The generators and disposers of ICW were identified by geographic location and climatic zones. The data base for generators and disposers were obtained from the EPA list of hazardous waste generators. The generators of ICW are distributed all over the United States. Approximately 30 percent of these facilities are located in Region 6, 23 percent in Region 4 and 10 percent each in Regions 9, 8 and 5. A majority of the land application facilities in the U.S. are petroleum refineries, 41 percent, followed by government installations and electric companies, 19 percent and 15 percent, respectively.

 The distribution of these companies by climatic zones indicates the existence of more land application facilities in the humid, continental climatic zone (Zone E), 40 percent, followed by the humid, subtropical climate (Zone C), 22 percent. The least number of ICW land application facilities were located in the arid, hot and dry climatic zone (Zone B), 7 percent.

2. A total volume of 33,506,880 and 142,992,699 metric tons of D001 and D002 are generated annually. There were more companies generating D002 than D001. Region 6 produced the largest volume of ICW followed by Regions 3 and 4. Region 2, however, had the most
number of companies generating ICW followed by Regions 6, 4 and 8.

3. The survey of land application facilities generating ICW indicated a highly variable waste stream. A majority of the facilities reported ICW in the form of a sludge/slurry (43 percent), while the rest were aqueous (19 percent). The nature and characteristics of ICW will determine the design criteria to be utilized for land application of ICW. For instance, an aqueous waste stream will require the use of a sprinkler system while a sludge/slurry type of waste stream may require underground injection techniques.

Among the land application facilities surveyed, the pretreatment technology most commonly used for corrosive waste was neutralization, 42 percent. For ignitable waste the most commonly used disposal technology was landfilling (33 percent).

Application rates varied highly and depended on the nature of ICW. The citrus processing industry for instance, had an aqueous waste stream, and the rapid infiltration method was used based on soil characteristics and percolation rates. Waste was also applied to the land daily. Those that generated ignitable wastes in slurry form used an underground injection system. The total treatment area also varied from 60 to 700 acres, with a loading
rate of 1 to 10 mgd.

4. The soil column study proved an initial biocidal effect of ignitable waste on soil bacteria. The bacterial counts decreased more than ten fold a week after application of ignitable waste on top of the soil column. However, the soil bacteria gradually recovered with time. The number of bacterial colonies gradually increased and reached normal counts (same as control) after four weeks. The results of the soil column study demonstrated the ability of soil bacteria to degrade and utilize the carbon from ignitable waste in the form of spent solvents, indicating its biodegradability.

5. The results of the economic feasibility study of treatment and disposal technology for ICW showed that land application for ICW is economically feasible. It is one of the least expensive disposal methods for ICW after landfilling. The relative disposal cost for land application is $14 - $25 per ton. Because of the current stringent regulations for landfills, the costs today may be higher than the one estimated for the land application. The costs of solvent recycling may also be considerably decreased after credit for recovered solvent is considered (see Table 6.1 for a comparison of the cost of other treatment technologies). As in any
other system, the overall cost considerations in a land application facility for ICW will depend on the nature of the waste stream, the availability of land at reasonable costs, and federal and state regulatory constraints.

6. The risk assessment on ICW generated by selected industries showed the citrus processing had the lowest risk scores, while the industrial inorganic and the pulp and paper industries had the highest risk scores. For selected waste constituents, the final risk results, indicated that wastes generated by the explosives/munitions industry as well as the cyclic crude and intermediates, medicinals and botanicals, and the organic dyes and pigment industries pose the least risk to human health when land treated.

We still are in the process of developing or refining the technology that is currently available to treat and dispose of ICW. Numerous researchers have indicated the viability of land application of a variety of organic and inorganic wastes to which ICW belongs. The decision to use land application as a treatment/disposal technology for ICW lies in its economic feasibility. The single most limiting constraint identified by the companies surveyed was the availability of land, at a reasonable cost, close to the generator. This requirement is important in determining the cost effectiveness of land application
for ICW. The total cost as estimated by various authors is approximately $600,000 to $800,000 for a total life span of about 30 years. The cost is considerably less than any other treatment and disposal technology currently available (see Chapter VI).

The primary concept of land application as reiterated by numerous authors in the literature (5,6,) is that the industrial waste, when considered on a constituent-by-constituent basis, shall be applied to the plant-soil system at such rates or over such limited time spans that no land is irreversibly removed from other societal usage (agriculture, development, forestation, etc.). Land application rates can be specified for any and all industrial categories and subcategories delineated by EPA. It is possible to outline and develop the specifications for landbased treatment systems for ICW.

The nature of the waste stream will affect the design parameters for land application of ICW. Aside from its corrosive and ignitable characteristics, the waste stream may also have other hazardous constituents. In this case, the land limiting constituent will have to be altered to take into consideration these other factors. The total land area required for land application of ICW may therefore increase or decrease depending on the presence of other hazardous constituents in the waste. Of course, the overall consideration should be to decrease
these constituents in order to meet state and federal regulatory standards. A reduction in the total volume of ICW generated will require the use of some kind of pretreatment technology. Again, the choice of the kind of pretreatment technology to be used will depend on the nature of the waste stream and economic considerations. Other options available to the design engineer are in-plant changes that will reduce the quantity and the nature of ICW produced. This method is a very cost-effective alternative. Recycling or recovery of waste constituents are other options, that will reduce the volume of ICW considerably, and thus reduce the overall waste pretreatment cost. Of course, the best option is not to create the waste at all. This can be accomplished by finding substitutes in production materials that will not result in a waste stream that is hazardous but instead creates process streams ideal for recycling. This will require long range planning on the part of manufacturers and is not likely to be achieved within the next decade.

This study is not to provide detailed designs of a land application system for ICW since design criteria are very site specific (see Chapter IV). Rather, it aims to provide state-of-the-art information on land application of ICW that will aid subsequent system designers in selecting relevant parameters applicable to their own fa-
cities. This report provides general guidelines for selecting those design parameters which are potentially applicable to corrosive and ignitable wastes of particular characteristics.
REFERENCES

REFERENCES (continued)

REFERENCES (continued)

REFERENCES (continued)

REFERENCES (continued)

50. USEPA. Complete Mix Activated Sludge Treatment of Citrus Processing Waste. EPA Grant No. 12060 EZY, August 1971.

APPENDIX A

ICW FACILITIES WITH LAND APPLICATION SYSTEMS
LAND APPLIERS SURVEYED

Region 2

1. Royal Altreuter, Coordinator
 Amerada Hess Corp.
 1 Hess Plaza
 Woodbridge, NJ 07095

2. The Manager
 Exxon Bayway Refinery
 P. O. Box 2180
 Houston, TX 77001

3. Leslie Lakie, Supervisor
 Texaco USA
 Box 98
 Westville, NJ 09093

4. W. Bailey Barton, Director
 Borden, Inc.
 180 East Broad St.
 Columbus, OH 43215

5. Paul Letki, Env. Manager
 SCA Chemical Services, Inc., NY Div.
 1550 Balmer Rd.
 Model City, NY 14109

6. Albert Leonardis, Supervisor
 Edwin B. Stimpson Co., Inc.
 Bayport, NY 11705

7. Sol Colon
 Servicios Carbareon Inc.
 Compania Ganadera Del Sur Inc.
 Firm Delivery
 Ponce, Puerto Rico 00731

8. Rolando Mendez, Director Env. Control
 Box 1166
 Guayama, Puerto Rico 00654

9. R. L. Sagebien, VP and General Manager
 Hess Oil Virgin Islands Corp.
 Box 127
 St. Croix, Virgin Islands
Region 3

1. The Manager
 American Cyanamid Co.
 South Cherry St.
 Wallingford, CT 06492

2. The Manager
 Crane Company Indian Orchard Plant
 203 Hampshire St.
 Indian Orchard, MA 01151

3. The Manager
 Genrad, Inc.
 Rte 117
 Bolton, MA 01740
Region 4

1. Herbert Knight, Tech. Supv.
Hercules, Inc.
P.O. Box 190
Bessemer, AL 35020

2. Ralph Stanford, Chief Engineer
USAF Gunter Air Force Station
3800 Air Base Group/DE
Maxwell Air Force Base, AL 36112

3. Preston Troutman, VP
Ben Hill Griffin Citrus Co.
P. O. Box 2000
Frostproof, FL 33843

4. Leo Sputts, President
Continental Circuits, Inc.
P.O. Drawer F
Longwood, FL 32750

5. John May, Vice President
Holly Hill Fruit Products Co. Sprayfield
P. O. Box 708
Davenport, FL 33837

6. J. R. Katic, Director PDR & GO
Olin Corp.
P.O. Box 222
St. Marks, FL 32356

7. Joanne Lynch, Engineer
Tropical Circuits
P.O. Box 21355
Ft. Lauderdale, FL 33334

8. Roland Allen, Environmental Engineer
USAF Homestead Air Force Base
31 CSG/DEEV
Homestead AFB, FL 33039

USAF MacDill Air Force Base
56 Combat Support Group/DE
MacDill AFB, FL 33608

10. A. McDonald
USAF Tyndall Air Force Base
4756 Civil Engr. SQ DEEV
Tyndall AFB, FL 32403
Region 4 (cont'd)

11. John Considine
 Amoco Oil Company/Refinery
 P.O. Box 1881
 Savannah, GA 31498

12. Francis Simmons, Manager
 General Electric Co. Service Shop
 Box 5646
 Augusta, GA 30906

13. D. Cunningham
 EA/OH Dept H
 Union Carbide Agric. Products Co.
 P.O. Box 428
 Woodbine, GA 31569

 Wm Wrigley Jr. Co.
 P.O. Box 1750
 Gainesville, GA 30503

15. Harold Armstrong, Plant Engineer
 Borden Inc./Borden Chemical Division
 6200 Camp Ground Rd.
 Louisville, KY 40216
Region 5

1. Brian Bonamico, Plant Engineer
 Gilbert and Bennett Mfg. Co.
 P.O. Box 56
 Blue Island, IL 60406

2. Larry Echelberger, Environmental Coordinator
 Marathon Oil Co.
 Robinson, IL 62454

3. William Schwartz, Executive Vice President
 Peoria Disposal Co.
 1113 N. Swords Ave.
 Peoria, IL 61604

4. Oliver Goodlander
 Texaco Inc. Texaco USA Division
 P.O. Box 200
 Lockport, IL 60441

5. L.D. Erchull
 Union Oil Co. of California Chicago Refinery
 135th St & New Ave.
 Lemont, IL 60439

6. David Williams, Chief Chemist
 Indiana Farm Bureau Coop. Assn. Inc.
 1200 Refinery Rd.
 Mt. Vernon, IN 47620

7. C. J. Fulton
 Total Petroleum Inc. Alma Refinery
 East Superior St.
 Alma, MI 48801

8. Segar Thomas, Chief Env. Engr.
 Kock Refining Co.
 St. Paul, MN 55164

9. James Hamilton
 FEI Landfarm Site #3
 876 Otter Creek Rd.
 Oregon, OH 43616

10. Ed Maxley
 Gulf Oil Co. US Refinery
 P.O. Box 7
 Cleves, OH 45002

11. Clarence Tyler
 Standard Oil Co. Ohio
 P.O. Box 696
 Toledo, OH 43694
Region 6

1. Karline Tierney
 Ciba-Geigy Corp.
 Route 75 River Road
 St. Gabriel, TX 70776

2. Henry Hethcoat
 Gulf Alliance Refinery
 Hwy 23
 Alliance, TX 70037

3. C. Blake Harmon, Env. Engr.
 Marathon Oil Co. Louisiana Refining Div.
 US Hwy 61
 Garyville, TX 70051

4. John Weld, Plant Mgr.
 Warren Petroleum Co., Venice Gas Plant
 Tidewater Rd.
 Venice, TX 70091

5. George O'Brien
 Conoco Inc. Ponca City
 1000 S. Pine
 Ponca City, OK 74601

6. R. K. Reid
 Firestone Tire & Rubber Co.
 2500 S. Council Rd.
 Oklahoma City, OK 73114

7. B. G. Hawthorne, Mgr.
 Sun Petro Products Co. Tulsa Refinery
 1700 S. Union
 Tulsa, OK 74120

8. Windle Taylor, Jr., Env. Engr.
 Coastal States Petroleum Co.
 1300 Cantwell Dr.
 Corpus Christi, TX 74807

9. Denneth Wright, Mgr.
 Cominco American Inc., Camex Operation
 FM 1551 near Hwy 136
 Borger, TX 79007

10. J. R. Kempfhenkel
 Sun Exploration & Production Co.
 Suntide Rd.
 Corpus Christi, TX 78403
Region 7

1. John Maier, Facility Repr.
P.O. Box 282
Fort Madison, IA 52627

2. Richard Carlisle
Facility Engr.
Ft. Riley & 1st Infantry Div.
Dir of Facility Engr Bldg 187
Ft. Riley, KS 66442

3. John McKone, Col. USAF
Offu-t Air Force Base
3902 ABW
Offutt Air Force Base, NE 68113

4. Cordell Peterson, President
Landfill Service Corp.
104 Black Hawk
Reinback, IA 50669

5. John Pruitt, Mgr. Engr & SFE
Farmland Industries
P.O. Box 570
Coffeyville, KS 67337

6. David Cutler, Pollution Control Director
Getty Refining & Marketing Co.
P.O. Box 1121
El Dorado, KS 67042

Pester Refining Co.
Box 751
El Dorado, KS 67042

8. J.M. Hazen
Total Petroleum Inc.
P.O. Box 857
Arkansas City, KS 67005

9. John Lamkin
Amoco Oil Co., Sugar Creek Refinery
P.O. Box 8507
Sugar Creek, MO 64054

10. Michael Gill, Manager
Bobs Home Service Inc.
RR 1, Box 116F
Wright City, MO 63390

11. Gene Wallace
Syntex Agribusiness
P.O. Box 1246 SSS
Springfield, MO 65805

Kerr McGee Chem Corp
P.O. Box 2815
Springfield, MO 65803
Region 8

1. Gary Refining Co.
 Nordhausen Lloyd Plant Supt.
 Fruita, CO 81521

2. Michael Halla, Env. Prog. Director
 USA-Fl. Carson
 DFAE Bldg. 304 AFZC-FE-EQ
 Fort Carson, Co 80913

3. The Manager
 Simmons Great Falls Refinery
 1900 10th Street
 Black Eagle, MT 59414

4. R.B. Blomeyer, Plant Mgr.
 Conoco Land Fram
 P.O. Box 2548
 Billings, MT 59103

5. Louis Day, Jr., Refinery Mgr.
 Farmers Union Central Exchange/Cenex
 P.O. Box 909
 Laurel, MT 59044

6. T.N. Schug, Coord. Environ. Affairs
 Exxon Billings Refinery
 P.O. Box 1163
 Billings, MT 59103

7. Daniel Drumiler, Supt. EC & S
 Amoco Oil Co. SLC Remote Tank Farm
 474 W. 900 North
 Salt Lake City, UT 48103

8. B.F. Ballard, Dir. Env. Control
 Phillips Petroleum Co.
 1004 Phillips Bldg.
 Bartlesville, OK 74004

 Husky Oil Co.
 P.O. Box 175
 North Salt Lake, UT 84054

10. Larry Butler, V. Pres. Operations
 5662 S. 300 West
 Salt Lake City, UT 84107

11. James Speer, Refinery Manager
 Husky Oil Co., Cody Refinery
 P.O. Box 380
 Cody, WY 82414
Region 8 (cont'd)

Wyoming Refining Co.
Newcastle Refinery
P.O. Box 820
Newcastle, WY 82701

13. L. R. Corpuz, Mgr. Safety & Environ.
Sinclair Oil Corp.
P.O. Box 277
Sinclair, WY 82334

Texaco Inc.
P.O. Box 320
Casper, WY 82602

Amoco Pipeline Tank Farm
P.O. Box 160
Casper, WY 82602

16. The Manager
Colorado State University
17 State Services Bldg.
Denver, CO 80203

17. Dener's Livestock
2400 Sweetwater Rd.
Dillon, MT 59725

18. The Manager
Conoco Landfarm
P.O. Box 2548
Billings, MT 59103

19. The Manager
Exxon Billings Refinery
P.O. Box 2180
Houston, TX 77001

20. The Manager
Montana Sulphur & Chemical E. Billings
P.O. Box 31118
Billings, MT 59107

21. The Manager
Amoco Oil Company SLC Remote Tank Farm
200 East Randolph Dr.
Chicago, IL 60601
Region 8 (cont'd)

22. The Manager
Phillips Petroleum Co.
P.O. Box 196
Woods Cross, UT 84087

23. The Manager
Sinclair Oil Corp.
P.O. Box 277
Sinclair, WY 82334
Region 9

1. Jose Guaderrama, Plant Supt.
 AZ Public Service Co., Octilla Sta.
 1500 E. University
 Tempe, AZ 85251

2. Hugh Thompson, Dir. Env. Affairs
 Aerojet - General Corp.
 P.O. Box 13222
 Sacramento, CA 95813

3. James McBride, Dir. Tech. Services
 Casmalia DSPL
 P.O. Box 5275
 Santa Barbara, CA 93108

4. Craig McKenzie, Mgr.
 Chemical Waste Mgt. Kettleman Hills
 P.O. Box 255
 Kettleman City, CA 93239

5. William Park, President
 Environmental Protection Corp.
 3040 19th Street, Suite 10
 Bakersfield, CA 93301

6. David L. Bauer, Vice President
 It Corp. Imperial Facility
 338 West Anaheim St.
 Wilmington, CA 90744

7. D.W. DeBuse, Env. Engr. Supervisor
 Union Oil Co. of California, San Francisco RDF
 Country Road
 Rodeo, CA 94572

8. Patrick McReaken
 Hq 43rd Combat Support Group
 APO San Francisco, CA 96334

9. James Ryan
 Hawthorne Army Ammunition Plant
 Hawthorne, NV 89416
Region 10

1. Frank Dement
 Chem - Security Systems
 Cedar Springs Rd.
 Arlington, OR 97812

2. R. Ogar, Mgr.
 ARCO Petroleum Products Co. Cherry
 4519 Grandview Rd.
 Ferndale, WA 98248

3. C. Miller
 Mobil Oil Corp.
 3901 Unick Rd.
 Ferndale, WA 98248

4. Mark Warner
 Pringle Mfg. Co.
 3301 East Isaacs
 Walla Walla, WA 99362

5. R. Flickinger
 Shell Oil Co.
 March Point Rd.
 Anacortes, WA 98221

6. C. R. Ferguson
 Texaco Inc.
 March Point
 Anacortes, WA 98221
APPENDIX B

GENERATORS OF ICW SURVEYED USING TREATMENT TECHNOLOGY OTHER THAN LAND APPLICATION
Region 1

1. The Manager
American Cyanamid
1937 West Main St.
Stamford, CT 06902

2. The Manager
Belding Chemical Industries
Route 12
Grosvenordale, CT 06246

3. The Manager
Carpenter Technology Corp.
837 Seaview Ave.
Bridgeport, CT 06607

4. The Manager
Exide Corp.
2190 Post Rd.
Fairfield, CT 06430

5. The Manager
CMC New Departure Hyatt Bearings Bristol
780 James P. Casey Rd.
Bristol, CT 06010

6. The Manager
Naugatuck Chemical Div.
Uniroyal, Inc.
Elm Street
Naugatuck, CT 06770

7. The Manager
Porters Grove Metal Recovery Co.
1558 Barnum Ave.
Middletown, CT 06457

8. The Manager
Raybestos Manhattan Co.
Stratford Plant
75 East Main St.
Stratford, CT 06497

9. The Manager
American Hoechst Corp.
289 North Main St.
Leominster, CT 01453

10. The Manager
Boston Edison LST/New Boston Station
776 Summer St.
Boston, MA 02191
Region 1 (cont'd)

11. The Manager
Chemical Waste Mgt. of MA Inc.
10 Mercer Rd.
Natick, MA 01760

12. The Manager
Graph Coat Inc.
75 Whiting Farms Rd.
Holyoke, MA 01040

13. The Manager
North East Solvents Reclamation Corp.
300 Canal St.
Lawrence, MA 02184

14. The Manager
Recycling Industries Inc.
385 Quincy Ave.
Braintree, MA 02184

15. The Manager
Riverside Station
Water Street
Holyoke, MA 01040

16. The Manager
Service Chemical Corp.
221 Sutton St.
North Andover, MA 01845

17. The Manager
Thiokol/Ventron Div.
154 Andover St.
Danvers, MA 01923

18. The Manager
Western Mass. Electric Co.
West Springfield Sta.
15 Agawan Ave.
West Springfield, MA 01089

19. The Manager
Crago Co. Inc.
Libby Hill Rd.
Gray, Maine 04039

20. The Manager
Jet Line Services
106 Main St.
South Portland, ME 04106
Region 1 (cont'd)

21. The Manager
Maine Yankee Atomic Power Station
Bailey Point Ferry Rd.
Wiscasset, ME 04578

22. The Manager
Scott Paper Co.
Rte #201
Skowhegan, ME 04976

23. The Manager
Beede Waste Oil Corp.
Kelly Rd.
Plaistow, NH 03865

24. The Manager
General Electric Co.
130 Main St.
Somerworth, NH 03878

25. The Manager
American Hoechst Corp.
129 Quiknick St.
Coventry, MA 02815

26. The Manager
Bradford Dyeing Corp.
17½ Bowling Lane
Bradford, MA 02891

27. The Manager
Corning Glass Works
1193 Broad St.
Central Falls, MA 02863

28. The Manager
International Business Machines
Maple St/River Rd
Essex Junction, VT 05452

29. The Manager
Vermont Yankee Nuclear Power Station
Governor Hunt Rd.
Vernon, VT 05354
Region 2

 Goldmine Rd.
 Mt. Olive, NJ 07828

 Air Products and Chemicals, Inc.
 172 Baekeland Ave.
 Middlesex, NJ 08846

 Alliance Chemical
 33 Avenue P
 Newark, NJ 07114

4. Wayne Fennimore
 BFI Chemical Services Inc.
 Frontage Indust. Park Bldg D-1
 Westville, NJ 08093

5. William Sessler, Plant Engr.
 Dart Industries Inc.
 Woodfern Rd.
 Neshanic Station, NJ 08853

 DuPont E.I. DeNemours & Co.
 Washington Rd.
 Parlin, NJ 08859

7. L. Makfinsky, Mgr.
 Ethyl Corp., Bromine Chemicals Div.
 880 Main St.
 Sayreville, NJ 08872

8. Steve Rice, Env. Engr.
 Exxon Research & Engr. Co.
 US Route 22 East, Clinton TWP
 Annandale, NJ 08801

9. The Manager
 Fairmont Chemical Co.
 117 Blanchard St.
 Newark, NJ 07105

10. David Hersey, Plant Supt.
 GMI Electronics Inc.
 20 Washington Ave.
 Plainfield, NJ 07060
<table>
<thead>
<tr>
<th>Region 2 (cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halcon Research and Development Corp.</td>
</tr>
<tr>
<td>1 Phillips Parkway</td>
</tr>
<tr>
<td>Montvale, NJ 07645</td>
</tr>
<tr>
<td>Hunt Philip A Chemical Corp.</td>
</tr>
<tr>
<td>Roosevelt Place</td>
</tr>
<tr>
<td>Palisades Park, NJ 07650</td>
</tr>
<tr>
<td>13. Edward Smith, Plant Manager</td>
</tr>
<tr>
<td>Interstab Chemical Inc.</td>
</tr>
<tr>
<td>500 Hersey Ave.</td>
</tr>
<tr>
<td>New Brunswick, NJ 08903</td>
</tr>
<tr>
<td>Kearney Generating Station</td>
</tr>
<tr>
<td>Foot of Hackensack Ave.</td>
</tr>
<tr>
<td>Kearney, NJ 07032</td>
</tr>
<tr>
<td>15. Tom Puchalski, Mgr.</td>
</tr>
<tr>
<td>Merck and Co., Inc.</td>
</tr>
<tr>
<td>126 E. Lincoln Ave.</td>
</tr>
<tr>
<td>Rahway, NJ 07065</td>
</tr>
<tr>
<td>16. S. J. Gold</td>
</tr>
<tr>
<td>Mobil Chemical/Chemical Coatings Div.</td>
</tr>
<tr>
<td>Rte #27 & Vineyard Rd.</td>
</tr>
<tr>
<td>Edison, NJ 08818</td>
</tr>
<tr>
<td>17. Fred Cassaday, Plant Mgr.</td>
</tr>
<tr>
<td>National Can Corp.</td>
</tr>
<tr>
<td>Route 287 at Rondolphville Rd.</td>
</tr>
<tr>
<td>Piscataway, NJ 08854</td>
</tr>
<tr>
<td>18. John Wentz, Director</td>
</tr>
<tr>
<td>Natl. Smelting of New Jersey Inc.</td>
</tr>
<tr>
<td>Penus Grove, Pedricktown Rd.</td>
</tr>
<tr>
<td>Pedricktown, NJ 08067</td>
</tr>
<tr>
<td>19. The Manager</td>
</tr>
<tr>
<td>NL Chemicals</td>
</tr>
<tr>
<td>Chevalier Ave.</td>
</tr>
<tr>
<td>Sayreville, NJ 08872</td>
</tr>
<tr>
<td>20. Edward O'Connor, V. Pres-</td>
</tr>
<tr>
<td>Pfister Chemical Inc.</td>
</tr>
<tr>
<td>Foot of Linden Ave.</td>
</tr>
<tr>
<td>Ridgefield, NJ 07657</td>
</tr>
</tbody>
</table>
Region 2 (cont'd)

Rollins Env. Services, Inc.
Route 322
Bridgeport, NJ 08014

22. Plant Manager
Southern California Chemical Co. Inc.
Foot of E22 St.
Bayonne, NJ 07002

23. A. R. Brubaker
50 Meister Ave.
Branchburg TWP, NJ 08876

24. Charles Much, Mgr.
The Sherwin Williams Co.
Industrial Ave.
Perth Amboy, NJ 08863

Union Carbide Corp.
100 Normandy Dr.
Piscataway, NJ 08805

26. Director, Safety and Environment
Bausch & Lomb Inc. Optics Center
1400 N. Goodman St.
Rochester, NY 14602

27. A. Filiaci, Director
U.S. Metal Refining
400 Middlesex Ave.
Carteret, NJ 07008

Ashland Chemicals
South Street
Rensselaer, NY 12144

29. The Manager
Buffalo Color
340 Elk St.
Buffalo, NY 14210

30. John F. Dugan
Cecos International Inc.
56th St. & Pine Ave.
Niagara Falls, NY 14302
Region 2 (cont'd)

31. The Manager
 Diaz Chemical Corp.
 40 Jackson St.
 Holley, NY 14470

32. Director of Engineering
 Empire Cheese Corp.
 Jordan Rd.
 Hart Lot, NY 13705

33. Edward Urbanic, Corp. Engr.
 Frontier Bindery Corp.
 1144 Military Rd.
 Kenmore, NY 14217

34. Plant Engineer
 General Electric
 Beekman Ave.
 North Tarrytown, NY 10591

35. The Assistant Director
 Grumman Aerospace
 South Oyster Bay Rd.
 Bethpage, NY 11714

36. The Supervisor
 Hooker Chemicals & Plastics Corp.
 4700 Hyde Park Blvd.
 Niagara Falls, NY 14305

37. Dominic Casale, Env. Engr.
 IBM Corp.
 1701 North Street
 Endicott, NY 13760

38. Israel Gajer
 Jameco Industries Inc.
 248 Wyandanch Ave.
 Wyandanch, NY 11798

 Mobil Chemical Co. Plastics-Macedon Pkg.
 Route 31
 Macedon, NY 14502

40. The Plant Manager
 Pennwalt Corp. Homer Plant
 43 James St.
 Homer, NY 13077
Region 2 (cont'd)

 Refined Syrups and Sugars Inc.
 1 Federal St.
 Onkers, NY 10702

42. Paul Letki, Env. Mgr.
 SCA Chemical Waste Services
 1550 Balmer Rd.
 Model City, NY 14109

43. Robert Wills, Env. Engr.
 Specialty Metals Div/Crucible Inc.
 State Fair Blvd.
 Geddes, NY 13209

44. The Manager
 Three Star Anodizing Corp.
 1 East Main St.
 Beacon, NY 12508

45. Frank Lequerica, V. Pres.
 Cyanamid Agricultural De Puerto Rico
 Km 47.3 Route 2
 Manati, Puerto Rico 00701

46. Jose Solero, Mfg. Engr.
 General Electric Gepol Inc.
 Rt. 129 Km 41.0
 Zeno G. Industrial Park
 Arecibo, Puerto Rico 00612

47. The Director
 Municipal Dump of Ponce
 #500 Municipal Rd., La Cotorr
 Ponce, Puerto Rico 00731

48. The Manager
 Searle & Co.
 State Road No. 189 Km. 2
 Caguas, Puerto Rico 00625

49. Luis Oyole Rivera
 Union Carbide Caribe, Inc.
 Road 127
 Penuelas, Puerto Rico 00724
Region 3

1. The Manager
 U.S. Bureau of Engraving & Printing
 14th and C Streets, S.W.
 Washington, DC 20228

2. The manager
 Ametec Inc., Haveg Div.
 900 Grenback Rd.
 Wilmington, DE 19808

3. ICI Americans Inc. Atlas Paint
 Cherry Lane
 New Castle, DE 19720

4. The Manager
 Baltimore Gas & Electric
 P.O. Box 1475
 Baltimore, MD 21203

5. The Manager
 Chem-Clear of Baltimore Inc.
 1910 Russel St.
 Baltimore, MD 21230

6. The Manager
 Dutch Boy Paints Coatings Group
 2325 Hollins Ferry Rd.
 Baltimore, MD 21230

7. The Manager
 FMC Corp., Agricultural Chem Group
 P.O. Box 1616
 Baltimore, MD 21203

8. The Manager
 Naval Ordnance Station
 Route 210
 Indian Head, MD 20640

9. The Manager
 PEPCO, Morgantown Generating Sta.
 1900 Pennsylvania Ave, N.W.
 Washington, DC 20068

10. The Manager
 Tenneco Chemicals Inc. Chestertown Plant
 P.O. Box 120
 Chestertown, MD 21620
Region 3 (cont'd)

11. The Manager
U.S. Andrews AFB
1185 Civil Engineering GP/DEV
Andrews AFB, DC 20331

12. The Manager
Vulcan Materials Co.
2415 Grays Rd.
Baltimore, MD 21219

13. The Manager
Allied Chemicals, Baker & Adamson Works
Route 13
Marcus Hook, PA 19061

14. The Manager
Allied Table & Conduit Corp.
11350 Norcom Rd.
Philadelphia, PA 19154

15. The Manager
Amchen Products Inc.
300 Brookside Ave.
Ambler, PA 19002

16. The Manager
Alion Chemical Co. Inc.
P.O. Box 114
Folcroft, PA 19032

17. The Manager
Mt. Vernon St.
Lock Haven, PA 17745

18. The Manager
American Inks & Coatings Corp.
P.O. Box 803
Valley Forge, PA 19481

19. The Manager
Arco Chemical Co. Res. & Engr. Center
3801 West Chester Pike
Newton Square, PA 19073

20. The Manager
Atlas Powder Co.
Tamaqua, PA 18252
Region 3 (cont'd)

21. The Manager
 Berkeley Products Co. Inc.
 405 S. 7th St.
 Akron, PA 17501

22. The Manager
 Bethlehem Steel Corp, Johnstown Plant
 119 Walnut St.
 Johnstown, PA 15907

23. The Manager
 Betz Laboratories
 4636 Somerton Rd.
 Trevose, PA 19047

24. The Manager
 Boeing Vertol Co.
 P.O. Box 16858
 Philadelphia, PA 19142

25. The Manager
 Cabot Berylco Industries Inc.
 P.O. Box 1296
 Reading, PA 19603

26. The Manager
 Carpenter Technology Corp.
 P.O. Box 662
 Reading, PA 19603

27. The Manager
 Chemical Clear Inc.
 Jeffrey St. & Delaware Ave.
 Chester, PA 19013

28. The Manager
 Congoleum Corp.
 Ridge Road
 Marcus Hook, PA 19061

29. The Manager
 Conversion Systems
 Box 340
 Honey Hook, PA 19344

30. The Manager
 Dana Corp., Parish Div.
 P.O. Box 1422
 Reading, PA 19603
Region 3 (cont'd)

31. The Manager
Electronic Mfg. & Precision Assembly Inc.
9 Queen Anne Court
Laughorne, PA 19047

32. The Manager
GTE Products
Hawes St.
Towanda, PA 18848

33. The Manager
Gilbert Spruance Co.
Richmond and Tioga Sts.
Philadelphia, PA 19134

34. The Manager
Gulf Oil Co., U.S. Philadelphia Refinery
P.O. Box 7408
Philadelphia, PA 19101

35. The Manager
Hairanerhill Paper Co.
P.O. Box 1440
Erie, PA 16533

36. The Manager
International Metals Reclamation Co.
P.O. Box 720
Ellwood City, PA 16117

37. The Manager
Kopper's Co. Inc., Bridgeville Plant
P.O. Box 219
Bridgeville, PA 15017

38. The Manager
Lanchester Corp. Stabilized Disposal Site
P.O. Box 490
Honey Brook, PA 19344

39. The Manager
Mallinckrodt Inc.
Calsicat Div.
1707 Gaskell Ave.
Erie, PA 16503

40. The Manager
Merck & Co. Inc., Merck Chemical Div.
P.O. Box 196
Denville, PA 17821
Region 3 (cont'd)

41. The Manager
Mill Service Inc., Yukon Plant
1815 Washington Rd.
Pittsburgh, PA 15241

42. The Manager
Municipal & Industrial Disposal Co.
P.O. Box 119
Clairton, PA 15025

43. The Manager
Penn Rare Metals, Cabot Berylco Inc.
Beaver Run Rd.
Revere, PA 18953

44. The Manager
Rohna & Haas Del Val Inc. Bristol Plant
P.O. Box 219
Bristol, PA 19007

45. The Manager
Smith Kline & French Labs
709 Swedeland Rd.
Swedeland, PA 19479

46. The Manager
Technographics Fitchburg Coated Products Inc.
P.O. Box 1106
Scranton, PA 18501

47. The Manager
U.S. Steel Corp., Clairton, Wks.
415 Fourth Ave.
McKeesport, PA 15132

48. The Manager
Vulcan Materials Co.
4100 Grand Ave.
Pittsburgh, PA 15225

49. The Manager
Waste Conversion Inc.
2869 Sandstone Dr.
Hatfield, PA 19440

50. The Manager
Westinghouse Air Brake Div.
P.O. Box 99
Wilmerding, PA 15148
<table>
<thead>
<tr>
<th>Region 3 (cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51. The Manager</td>
</tr>
<tr>
<td>Witco Chemical Corp.</td>
</tr>
<tr>
<td>3300 W. 4th St.</td>
</tr>
<tr>
<td>Trainer, PA 19043</td>
</tr>
<tr>
<td>LCP Chemical Corp</td>
</tr>
<tr>
<td>South Plant</td>
</tr>
<tr>
<td>P.O. Drawer J</td>
</tr>
<tr>
<td>Moundsville, WV 26041</td>
</tr>
<tr>
<td>52. The Manager</td>
</tr>
<tr>
<td>DuPont De Nemours E.I. Co.</td>
</tr>
<tr>
<td>P.O. Box 4000</td>
</tr>
<tr>
<td>Front Royal, VA 22630</td>
</tr>
<tr>
<td>Sharon Steel Corp.</td>
</tr>
<tr>
<td>Fairmont Coke Works</td>
</tr>
<tr>
<td>P.O. Box 291</td>
</tr>
<tr>
<td>Sharon, PA 16146</td>
</tr>
<tr>
<td>53. The Manager</td>
</tr>
<tr>
<td>Hercules Inc., Hopewell Plant</td>
</tr>
<tr>
<td>P.O. Box 271</td>
</tr>
<tr>
<td>Hopewell, VA 23860</td>
</tr>
<tr>
<td>P.O. Box 8004</td>
</tr>
<tr>
<td>South Charlestown, WV 25303</td>
</tr>
<tr>
<td>54. The Manager</td>
</tr>
<tr>
<td>Mobay Chemical Corp.</td>
</tr>
<tr>
<td>P.O. Box 367</td>
</tr>
<tr>
<td>Damascus, VA 24236</td>
</tr>
<tr>
<td>Radford Army Ammunition Plant</td>
</tr>
<tr>
<td>State Route 114</td>
</tr>
<tr>
<td>Radford, VA 24141</td>
</tr>
<tr>
<td>56. The Manager</td>
</tr>
<tr>
<td>Union Camp Corp.</td>
</tr>
<tr>
<td>Bleached Paper & Board</td>
</tr>
<tr>
<td>P.O. Box 178</td>
</tr>
<tr>
<td>Franklin, VA 23851</td>
</tr>
<tr>
<td>Borg-Warner Chemicals Weston Plant #2</td>
</tr>
<tr>
<td>P.O. Box 816</td>
</tr>
<tr>
<td>Morgantown, WV 26505</td>
</tr>
<tr>
<td>E.I. duPont DeNemours Parkersburg</td>
</tr>
<tr>
<td>P.O. Box 1217</td>
</tr>
<tr>
<td>Parkersburg, WV 26101</td>
</tr>
<tr>
<td>59. The Manager</td>
</tr>
<tr>
<td>Fike Chemicals</td>
</tr>
<tr>
<td>P.O. Box 546</td>
</tr>
<tr>
<td>Nitro, WV 25143</td>
</tr>
<tr>
<td>P.O. Box 547</td>
</tr>
<tr>
<td>Nitro, WV 25143</td>
</tr>
</tbody>
</table>
Region 4

1. Corina Byron, Env. Supervisor
 Alabama Power Co/Gaston Steam Plant
 P.O. Drawer B
 Wilsonville, AL 35186

2. Arlene Hendrickson
 Ashland Chemical Co.
 P.O. Box 7368
 Mobile, AL 36607

3. Steven Erickson, Mgr.
 Cheesebrough - Ponds Inc.
 P.O. Box 1348
 Huntsville, AL 35807

4. LaVern Heble, Mgr.
 Diamond Shamrock Corp.
 P.O. Box 1000
 Sheffield, AL 35660

5. Robert Milk, Mechanical Engr.
 Goodyear Tire & Rubber Co.
 P.O. Box 952
 Scottsboro, AL 35768

6. Sidney Foster, Mgr.
 Kerr-McGee Chemical Corp.
 P.O. Box 629
 Theodore, AL 36590

7. Mike Sappington, V. Pres.
 Sanders Lead Co., Inc.
 Henderson Rd.
 Troy, AL 36081

8. George Lessley, Plant Mgr.
 Stauffer Chemical Co.
 P.O. Box 32
 Bucks, AL 36512

9. Mohamed T. El-Ashry
 TVA Widows Creek Steam Plant
 Natural Resources Bldg.
 Norris, TN 37828

10. Tennimon Oakland, Mgr.
 Walverine/UOP Div.
 P.O. 2202
 Decatur, AL 35602
 Anheuser-Busch Inc.
 P.O. Box 18017 AMF
 Jacksonville, FL 32218

12. Whit Hudson, Mgr.
 Chemical Waste Mgt.
 2700 N.W. 48th St.
 Pompano Beach, FL 33067

13. H.E. Sanders, Mgr.
 Florida P & L
 Ft. Lauderdale Plant
 P.O. Box 8248
 Ft. Lauderdale, FL 33310

 Florida P & L
 St. Lucie Plant
 P.O. Box 128
 Ft. Pierce, FL 33450

 Holly Hill Fruit Product Co. Sprayfield
 P.O. Box 708
 Davenport, FL 33837

 Jones Chemicals Inc.
 P.O. Box 6067
 Ft. Lauderdale, FL 33310

17. Frank Bartnick, Mgr.
 RCA Corp. Solid State Div.
 3900 RCA Blvd.
 Palm Beach Gardens, FL 33408

18. Enrique Arias
 Sugar Cane Growers Coop of Florida
 P.O. Box 666
 Belle Grade, FL 33430
Region 6

1. John B. Manning III
 Allied Chemical Corp., Helena Works
 AR Hwy 20 South
 Helena, AR 72342

2. Wayne Sickels, Technical Mgr.
 Energy Systems Co.
 American Rd.
 El Dorado, LA 71730

 Maybelline Co.
 I-40 and Galloway Junction
 North Little Rock, AR 72117

4. John Garrison
 Monsanto Co., Inc.
 Hwy 7 North
 El Dorado, LA 71730

5. J.L. Echhoff, Mgr.
 Teletype Corp.
 8000 Interstate 30
 Little Rock, AR 72209

 Vertac Chemical Corp.
 Hwy 242 South
 West Helena, AR 72390

 American Hoechst Corp.
 11911 Scenic Hwy
 Baton Rouge, LA 70807

8. Austin Arabie, Site Mgr.
 Browning-Ferris Ind. Chem. Services
 Hwy 37 Willow Springs Rd.
 Westlake, LA 70669

 Chevron Chem. Co.
 LA Hwy 23
 Belle Chase, LA 70037

 Copolymer Rubber & Chem. Corp.
 Hwy 1
 Addis, LA 70710
Region 6 (cont'd)

11. M.M. Koenecke, Plant Mgr.
 Ethyl Plant
 Gulf States Rd.
 Baton Rouge, LA 70821

12. Sheryl Brocato
 Gulf States Utilities Co.
 Nelson Station
 Myrtle Spring Rd.
 Westlake, LA 70669

 Kaiser Aluminum & Chem. Co.
 U.S. 61 Airline Hwy
 Gramercy, LA 70052

 Monsanto Co.
 River Road
 Luling, LA 70070

15. Dr. W.F. Snyder, Tech. Mgr.
 Rollins Environmental Services
 13351 Secnic Hwy
 Baton Rouge, LA 70807

 Shell Oil Co. Refinery
 River Td.
 Merco, LA 70079

17. P.F. Normand
 Union Carbide Corp. EOG Div.
 Hwy 19 River Rd.
 Hahnville, LA 70057

18. J.F. Baechtel, Mgr.
 General Electric Co.
 336 Woodward S.E.
 Albuquerque, NM 87102

19. Dennis Murphey, Env. Supervisor
 Agrico Chemical Co.
 West of Verdigres
 Catoosa, OK 74015

 Conoco Inc., Ponca City
 1000 S. Pine
 Ponca City, OK 74601
Region 6 (cont'd)

 Halliburton Services
 Osage Rd.
 Duncan, OK 73536

22. B.F. Ballard, Director
 Phillips Research Center
 94E PRC
 Bartlesville, OK 74004

23. J.C. Wagner, Plant Mgr.
 Air Products & Chemicals Co.
 Rt. 1 10202 Strang Rd.
 La Porte, TX 77571

24. Everett Nicoson, Mgr.
 Advanced Micro Devices
 5204 E. Ben White Blvd.
 Austin, TX 78760

25. Philip Morris, Sr., Env. Engr.
 American Hoechst Corp. Bayport
 12212 Port Rd.
 Addison, TX 75001

26. F.F. McKay, Mgr.
 Arco Chemical Co.
 8280 Sheldon Rd.
 Channelview, TX 77530

27. R.H. Young, Env. Mgt. Mgr.
 Bell Helicopter Textron
 600 E. Hurst Rd.
 Ft. Worth, TX 76053

28. B.F. Ballard, Director
 Borger Refinery & NGL Process Center
 State Hwy Spur 119
 Phillips, TX 79007

29. Charles H. Neeley
 Campbell Soup (Texas) Inc.
 500 N. Loop 286
 Paris, TX 75460

30. Robert Stubbeman, Mgr.
 Celanese Chemical Co., Inc.
 1901 Clarkwood Rd.
 Corpus Christi, TX 78409
Region 6 (cont'd)

31. M.H. Davis, Mgr.
Champion Chemicals Inc.
115 Proctor
Odessa, TX 79763

32. Norb Bolda, General Mgr.
Chemical Waste Mgt. Inc.
Hwy 73
Port Arthur, TX 77640

33. Windle Taylor, Env. Engr.
Coastal States Petroleum Co.
1300 Cantwell Dr.
Corpus Christi, TX 78407

34. Harril Eastus, Mgr.
Dallas Morning News
Young & Houston Streets
Dallas, TX 75202

Denka Chemical Corp.
8701 Park Place Blvd.
Houston, TX 77017

36. Jeffrey Leed, Mgr.
Dixie Metals Co.
3030 McGowan
Dallas, TX 75216

37. Richard Tavelli, Analyst
DSI Terminals Inc.
404 Holley St.
Quintana Townsite, TX 77541

38. Charles Evans, Env. Coord.
E.I. Dupont De Nemours & Co.
Hwy 361
Ingleside, TX 78362

39. V.P. Piskura, Jr.
Empak Inc. Deer Park
2759 Battleground Rd.
Deer Park, TX 77536

40. Marvin Chlapek, Env. Coord.
Exxon Chemical Baytown Olefins Plant
3525 Decker Dr.
Baytown, TX 77520
Region 6 (cont'd)

41. G.S. Hsieh, Env. Coord.
GAF Corp. Texas City
State Hwy 146
Texas City, TX 77590

42. Ronald Miller, Plant Mgr.
GM Assembly Div.
Arlington Plant
2525 E. Abram
Arlington, TX 76010

43. Larry Goza, Quality Control Supt.
General Dynamics-Abilene Facility
300 Wall St.
Abilene, TX 79604

44. James Pearson, Plant Mgr.
Goodyear Tire & Rubber Co.
13441 Bay Area Blvd.
La Porte, TX 77571

Gulf Oil Co.-Dawson Terminal
State Hwy 31 East
Dawson, TX 76679

46. Kathleen H. Anglin
Hercules Inc.
1101 Johnson Dr.
McGregor, TX 76657

47. W.F. McGuire, Mgr.
Houston Light & Power
Hwy 146 North of San Leon
Baycliff, TX 77518

48. Jeffrey Jones, Plant Mgr.
Jones Chemicals, Inc.
1777 Haden Rd.
Houston, TX 77015

49. Benjamin Renzo, Mgr.
Lonza Inc.
9700 Bayport Blvd.
Pasadena, TX 77507

Mission Petroleum Carriers, Inc.
8434 Mosley St.
Houston, TX 77075
Region 6 (cont'd)

51. P.B. Mullin, Env. Supt.
 Mobil Chemical Co.
 GSU County Rd.
 Beaumont, TX 77704

52. Bill Morries, Plant Mgr.
 National Can Corp.
 8800 South Freeway
 Fort Worth, TX 76134

53. Louis Leuthyold
 Oakite Products Inc.
 10100 Hirsch Rd.
 Houston, TX 77016

54. Larry Burrell
 Paktank Corp. Galena Park Terminal
 1500 Clinton Dr.
 Galena Park, TX 77547

55. Robert Laither, Plant Mgr.
 Pennwalt Corp.
 2231 Haden
 Houston, TX 77015

56. Robert Reddin, Superv.
 Reichhold Chemical Inc.
 1503 Haden Road
 Houston, TX 77015

57. J. Venable, Mgr.
 Rohn and Haas Texas, Inc.
 La Porte Hwy 225
 Deer Park, TX 77536

58. Henry Blank
 Standard Industries
 Nelson Rd. at Reliable Drive
 San Antonio, TX 78227

59. Michael Sikirica, Plant Mgr.
 Stauffer Chemical Co.
 8615 Manchester Blvd.
 Houston, TX 77012

60. J.E. Langford, Mgr.
 Tenneco Chemicals Inc.
 Pasadena Site
 4403 La Porte Rd.
 Pasadena, TX 77501
Region 6 (cont'd)

61. G.R. Coker, Mgr.
 Texaco, Inc.
 6500 Trowbridge
 El Paso, TX 79905

62. R.S. Beard, Supt.
 Texas Elec. SVC Co.
 6604 E. Rosedale St.
 Fort Worth, TX 76112

 Texas Instruments Inc.
 Hwy 75 South
 Sherman, TX 75090

64. John Leverton
 Union Carbide Corp.
 Hwy 1765
 Texas City, TX 77590

 Vulcan Materials Co.
 East County Road
 Denver City, TX 79323
Region 7

1. Leonard Reggit, Chief
 Amana Refrigeration Inc.
 Main At.
 Amana, IA 52203

2. Robert Schuler, Process Engineer
 Chemplex Co.
 P.O. Box 819
 Clinton, IA 52732

3. Don Evans, Env. Control Supt.
 Monsanto Co.
 P.O. Box 473
 Muscatine, IA 52761

4. Kent Houser
 Abbott Laboratories
 P.O. Box 12291
 Wichita, KS 67277

5. R.R. Williams, Plant Engr.
 General Motors Corp.
 GMAD Fairfax Plant
 100 Kindelberger Rd.
 Kansas City, KS 66115

 Sunflower Army Ammunition Plant
 P.O. Box 640
 De Soto, KS 66018

 American Oil Co., Sugar Creek Refinery
 P.O. Box 8507
 Sugar Creek, MO 64054

8. Brad Willett, Env. Engr.
 American Cyanimid Co., Hannibal Plant
 Box 817
 Hannibal, MO 63401

9. The Manager
 Hercules Inc.
 P.O. Box 717
 Carthage, MO 64836

10. J.V. Weatherspoon, Mgr.
 Lake City Army Ammunition Plant
 P.O. Box 717
 Carthage, MO 64836
Region 7 (cont'd)

11. J. V. Weatherspoon, Mgr.
 Lake City Army Ammunition Plant
 P.O. Box 169
 Independence, MO 64050

 Mobay Chemical Corp., SG Chemical Div.
 P.O. Box 4913
 Kansas City, MO 64120

13. Louis Dellorco, Director
 Ralston Purina Health Industries Plant
 13001 St. Charles Rock Rd.
 Bridgeton, MO 63044

 Schuylkill Metals Corp.
 P.O. Box 36
 Forest City, MO 64451

15. Alan B. Staples, Env. Engr.
 3M Company, T&CG
 P.O. Box 327
 Nevada, MO 64722

 Nebraska Public Power District
 P.O. Box 499
 Columbus, NE 68601

17. James Stolmeier, Env. Coordinator
 Caterpillar Tractor Co.
 P.O. Box 2790
 Davenport, IA 52808

18. Robert Aaron, Plant Mgr.
 GNB Batteries
 P.O. Box 209
 Leavenworth, KS 66048

 Vulcan Chemicals Co.
 P.O. Box 12283
 Wichita, KS 67277

20. Albert Dillis, Engr.
 Union Carbide Corp., Maryville Plant
 P.O. Box 280
 Maryville, MO 64428
Region 7 (cont'd)

21. The Manager
McDonnell Douglas Corp., St. Louis Tract.
P.O. Box 516, Dept. 191C
St. Louis, MO 63166

Annheuser-Busch Inc.
721 Pestalozzi
St. Louis, MO 63118

23. Ronald Vorthmann, Plant Engr.
Sperry Vickers
6600 N. 72nd St.
Omaha, NE 68122
Region 8

1. The Manager
 Adolph Coors Co.
 8714 Hwy 60
 Johnstown, CO 80534

2. The Manager
 Allied Chemical Corp., Denver Works
 1271 West Bayand Ave.
 Denver, CO 80209

3. The Manager
 Ashland Chemical Co.
 3350 South Zuni
 Sheridan, CO 80110

4. The Manager
 Balcom Chemicals Inc.
 P.O. Box 1286
 Greeley, CO 80632

5. The Manager
 Beech Aircraft Corp.
 P.O. Box 9631
 Boulder, CO 80301

6. The Manager
 Colorado Yampa Coal Co., Middle Creek
 P.O. Box 774228
 Steamboat Springs, CO 80477

7. The Manager
 Conoco Inc.
 5801 Brighton Blvd.
 Commerce City, CO 80022

8. The Manager
 Coors Container Co.
 Mail #334
 Golden, CO 80401

9. The Manager
 Denver, Arapahoe Chemical Waste Process Facility
 P.O. Box 440865
 Aurora, CO 80044

10. The Manager
 Gary Refining Co.
 Rural Area
 Fruita, CO 81521
Region 8 (cont'd)

P.O. Box 5887
Denver, CO 80217

12. The Manager
Honeywell Inc.
1150 E. Cheyenne Mountain Blvd.
Colorado Springs, CO 80906

13. Komac Paint Inc.
1275 Osage St.
Denver, CO 80201

14. McKesson Chemical Co.
5400 Monroe
Commerce City, CO 80022

15. Moly Corp. Inc, Union Oil Co.
P.O. Box 607
Louviers, CO 80131

16. Mountain Chemical Inc.
16035 W. 4th Ave.
Golden, CO 80401

17. NCR Microelectronics
1635 Aeroplaza
Colorado Springs, CO 80916

18. Oil & Solvent Process Co.
P.O. Box 360
Commerce City, CO 80037

19. Platte Chemical Co.
P.O. Box 667
Greeley, CO 80631

20. Shattuck Chemical Co.
1805 S. Bonnock St.
Denver, CO 80223

21. Storage Technology Corp.
2270 S. 88th St. MD N5
Louisville, CO 80027

22. Syntex Chemicals Inc.
2075 N. 55th St.
Boulder, CO 80301
Region 8 (cont'd)

23. Thompson-Hayward Chemical Co.
 P.O. Box 7427 Park Hill Station
 Denver, CO 80207

24. Allen-Bradley
 P.O. Box 1906
 Bozeman, MT 59715

25. AT&T-Fallow
 P.O. Box 7810
 San Francisco, CA 94120

 P.O. Box 1204
 Great Falls, MT 59415

27. Conoco Bozeman Terminal
 318 Griffin Dr.
 Bozeman, MT 59715

28. Exxon Billings Refinery
 P.O. Box 1163
 Billings, MT 59103

29. Exxon Pipeline Co., Montana System
 P.O. Box 2220
 Houston, TX 77001

30. Great Western Chemical Co.
 2000 Boulder Ave.
 Helena, MT 59624

31. Malstrom Air Force Base
 341 CSG/CC
 Malstrom AFB, MT 59402

32. Ranzoil Inc.
 2207 Central Ave., Suite 302
 Billings, MT 59102

33. US DOE Hot Springs Substation
 P.O. Box 491
 Vancouver, WA 89666

34. Amoco Oil Co.
 P.O. Box 1247
 Jamestown, ND 58401

35. General Electric Co.
 1810 40th Ave., S.E.
 Mandan, ND 58554
Region 8 (cont'd)

36. The Commander
Minot Air Force Base
91 CSG/CC
Minot AFB, ND 58705

37. 3M Wahpeton Mag A/V & Telecom
2200 North 3M Drive
Wahpeton, ND 58075

38. Hardcastle Transfer
202 10th Ave. East
Mobridge, SD 57601

39. Midtex Division, Midland Corp.
121 Airport Dr.
Watertown, SD 57201

40. Robert Short & Sons Const.
1115 5th St.
Strurgis, SD 57785

41. 3M Brookings Medical Products Div.
P.O. Box 3331
St. Paul, MN 55133

42. American Plating & Bumper
1621 Beck St.
Salt Lake City, UT 84116

43. Chevron USA Inc., Milford Bulk Plant
P.O. Box 599
Denver, CO 80201

44. Chicago Bridge & Iron Co.
P.O. Box 599
Denver, CO 80201

45. Crysen Refining
P.O. Box 251
Woods Cross, UT 84087

46. National Semiconductor Corp.
3333 West 9000 South
West Jordan, UT 84084

47. Scientific Products Div. of AHSC
2177 West Custer Rd.
Salt Lake City, UT 84125
48. Syro Steel
 Box 835
 Centerville, UT 84014

49. Sinclair Oil Corp.
 P.O. Box 277
 Sinclair, WY 82334

50. Conoco Rock Springs Terminal
 Box 429
 Rock Springs, WY 82901

51. Amoco Oil Co., Casper
 P.O. Box 160
 Casper, WY 82602

52. Syro Steel Corp., Geneva Works
 P.O. Box 510
 Provo, UT 84603

53. General Electric Co.
 P.O. Box 2559
 Casper, WY 82602
Region 9

1. David Anderson
 Ashland Chemical Co.
 P.O. Box 1209
 Mesa, AZ 85201

2. McKesson Chemical Co.
 P.O. Box 14799
 Phoenix, AZ 85063

3. The Director, Environmental Affairs
 Aerojet-General Corp.
 P.O. Box 13222
 Sacramento, CA 95813

4. Advanced Micro Devices Inc/
 901 Thompson Place M/S 8
 Sunnyvale, CA 94086

5. The Environmental Engr.
 Ashland Chemical Co.
 10505 S. Painter Ave.
 Santa Fe Springs, CA 90670

6. The Vice President, Production
 Betz Laboratories
 4636 Somerton Rd.
 Trevose, PA 19047

7. Chief Engineer
 BKK Corp.
 San Diego Transfer Sta.
 2550 237th St.
 Torrance, CA 90505

8. The Environmental Engineer
 Chevron Chemical Co.
 Ortho Division
 940 Hensley St.
 Richmond, CA 94804

9. Crowley Environmental Services Corp.
 1453 Harbour Way South
 Richmond, CA 90731

10. Dow Chemical-Torrance Plant
 306 Crenshaw Blvd.
 Torrance, CA 90503
Region 9 (cont'd)

11. EPC Eastside Disposal Farm
 3040 19th St, Suite 10
 Bakersfield, CA 93301

12. Fairchild Hazardous Waste Storage Facility
 101 Bernal Rd.
 San Jose, CA 95119

13. Ferro Corp.
 Productol Chem. Div.
 10051 Romande1 Ave.
 Santa Fe Springs, CA 90670

14. The Vice President
 Forward Disposal Site
 P.O. Box 6567
 Stockton, CA 95206

15. Francis Plating of Oakland Inc.
 785 7th St.
 Oakland, CA 94607

16. General Battery Corp.
 P.O. Box 1262
 Reading, PA 19603

17. Golden Eagle Refining Co., Inc.
 P.O. Box 4886
 Carson, CA 90749

18. Great Western Chemical Co.
 860 Wharf St.
 Richmond, CA 94804

 4265 Charter St.
 Los Angeles, CA 90058

20. David Bauer, Vice President
 IT Corp. Baker Factory
 336 W. Anaheim St.
 Wilmington, CA 90744

21. Mobil Oil Corp.
 3700 W. 190th St.
 Torrance, CA 90509

 3901 W. Broadway
 Hawthorne, CA 90250
Region 9 (cont'd)

23. The Director
Oil & Solvent Process Co.
P.O. Box 907
Azuza, CA 91782

24. Pacific Oasis
14700 Downey
Paramount, CA 90723

P.O. Box 3366
Bakersfield, CA 93385

26. Prestolite Battery Div. of Eltra Corp.
P.O. Box 3067
Visalia, CA 93277

27. Rio Bravo Refining Co.
2323 E Street
Bakersfield, CA 93301

28. Rockwell International Corp.
6633 Canoga Park
Canoga Park, CA 91304

29. Shell Oil Co.
Martinize Mfg. Complex
P.O. Box 711
Martinez, CA 94553

30. Signetics Corp.
811 E. ARques Ave.
Sunnyville, CA 94086

31. Solvent Service Co., Inc.
1021 Berryessa Rd.
San Jose, CA 95133

32. The Administrator
Southern California Waste Reduction
P.O. Box 1063
Sun Valley, CA 91352

3016 Alvarado St.
San Leandro, CA 94577

34. Stauffer Chemical Co.
100 Mococo Rd.
Martinez, CA 94553
Region 9 (cont'd)

35. Texaco USA
 P.O. Box 817
 Wilmington, CA 90748

36. Union Oil Co. of California
 San Francisco RDF
 County Road
 Rodeo, CA 94572

37. Varian Assoc. EIMAC Div.
 301 Industrial Way
 San Carlos, CA 94070

38. West Contra Costa Co. Sanitary Landfill
 205 41st St.
 Richmond, CA 94805

 Golden Bear Div.
 P.O. Box 5446
 Carson, CA 90744

 1990 Bay Rd.
 East Palo Alto, CA 94303

41. Unitek Env. Services Inc.
 91-125 Kaomi Loop
 Ewa Beach, HI 96706

 P.O. Box 55
 Henderson, NV 89015

43. Montrose Chem. Corp. of California
 P.O. Box 37
 Henderson, NV 89015

44. Titanium Metals Corp. of America Timet
 P.O. Box 2128
 Henderson, NV 89015

45. Tyoby Electronics
 P.O. Box 664
 Carson City, NV 89701
Region 10

1. Shawn Moore, General Mgr.
 AM Test Inc.
 4900 9th Ave., N.W.
 Seattle, WA 98107

2. Allied Chemical Corp., Hedges Works
 P.O. Box 6447
 Kennewick, WA 99336

3. Alumax Irrigation Products
 TA Box 3107
 Spokane, WA 99220

4. B & H Body Shop Inc.
 P.O. Box 6127
 Bellevue, WA 98008

5. Big Bend Fertilizers
 1276 Halyard Dr.
 West Sacramento, CA 95651

6. Boeing Co. Development Center
 Box 3999, Mail Stop 89-13
 Seattle, WA 98124

7. Boeing Kent Space Center
 P.O. Box 3707
 Seattle, WA 98124

8. Brea Agricultural Service, Toppenish
 1276 Halyard Dr.
 West Sacramento, CA 95651

9. Burlington Northern Inc., Hillyard Shop
 Box 6218
 Spokane, WA 99207

 960 Industry Dr.
 Seattle, WA 98188

11. Cenex Trucking Terminal
 Box 1200
 Pasco, WA 99301

12. Chemcentral/Seattle
 7601 South 190th St.
 Kent, WA 98031
Region 10 (cont'd)

13. Colfax Orange Supply Inc.
P.O. Box 526
Colfax, WA 99111

14. Continental Can Co., USA Plant 466
Rt. 4, Grant Co.
Airport Bldg. 5825
Moses Lake, WA 98837

15. Daniel Boone Paint Co. Inc.
P.O. Box 9240
Seattle, WA 98109

16. Deer Park Co. Pacific N.W.
Room 1501, 1600 Bell Plaza
Seattle, WA 98191

17. DuPont Repeater Bldg, Pacific N.W. Bell
Room 1501, 1600 Bell Plaza
Seattle, WA 98327

18. Elenbaas Co. Inc.
P.O. Box 38
Sumas, WA 98295

P.O. Box 46406
Seattle, WA 98146

P.O. Box 68782
Tukwila, WA 98168

366 W. Nickerson St.
Seattle, WA 98119

22. Fibrex Corp.
Box 428
Burlington, WA 98233

23. Frontier Hard Chrome
113 Y St.
Vancouver, WA 98661

N. 3919 Sullivan Rd.
Spokane, WA 99216

25. Georgia Pacific, Bio Treatment Lagoon
P.O. Box 1236
Bellingham, WA 98227
Region 10 (cont'd)

26. Graham Steel Corp.
P.O. Box 658
Kirkland, WA 98033

27. Great Western Chemical Co. of Washington
6900 Fox Avenue
Seattle, WA 98108

712 S. Portland St.
Seattle, WA 98108

29. Harbor Island Plant, Shell Oil Co.
P.O. Box 3947
Seattle, WA 98124

30. Hewlett Packard
1620 Signal Dr., TAF C-34
Spokane, WA 99220

31. Honeywell, Inc.
5303 Shilshole Ave., N.W.
Seattle, WA 98107

32. Industrial Finishers Unlimited, Inc.
22631 88th Ave., South
Kent, WA 98031

33. Industrial Plating Corp.
2411 6th Ave., South
Seattle, WA 98134

34. Intalco Aluminum Corp.
P.O. Box 937
Ferndale, WA 98248

35. International Paper Co. Wood Products
P.O. Box 579
Longview, WA 98632

36. Jones Chemical Inc.
100 Sunny Sol Blvd.
Caledonia, NY 14423

37. Kaiser Aluminum & Chemical Corp., Mead Plant
P.O. Box 6217
Spokane, WA 99207

38. Lilyblad Petroleum Inc.
P.O. Box 1381
Tacoma, WA 98401
Region 10 (cont'd)

39. Long Painting Co.
 Box C81435
 Seattle, WA 98108

40. M & M Finisher
 16600 Pacific Hwy 80
 Seattle, WA 98188

41. McKesson Chemical Co.
 702 3rd St., S.W.
 Auburn, WA 98002

42. Metal Technical Plating
 15327 N.E. 92nd St.
 Redmond, WA 98052

43. Mobil Oil Corp.
 10 Box 8
 Ferndale, WA 98248

44. National Can Corp.
 2601 N.W. Lower River Td.
 Vancouver, WA 98660

45. Naval Undersea Warfare Engineering Sta.
 Code 073
 Keyport, WA 98345

46. Northwest Plating Co., Inc.
 825 S. Dakota
 Seattle, WA 98108

47. Nulife Fertilizers Hygrade Food Products
 P.O. Box 883
 Tacoma, WA 98421

48. Occidental Chemical Corp.
 P.O. Box 2157
 Tacoma, WA 98401

49. Pacific Circuits Inc.
 3830 148th Ave., N.E.
 Redmond, WA 98052

50. Pacific Wood Treating Corp.
 111 W. Division
 Ridgefield, WA 98642

51. Terry Eggen, Production Mgr.
 Pacific Woodworks, Inc.
 2138 Humboldt St.
 Bellingham, WA 98225
Region 10 (cont'd)

52. Parker Paint Mfg. Co., Inc.
P.O. Box 11047
Tacoma, WA 98411

53. Phillips Pacific Chemical Co.
104D Phillips Bldg.
Bartlesville, OK 74004

54. Robert Walker,
Vice President Ops & Engr.
P.O. Box 1482
Tacoma, WA 98421

55. Alan M. Park, Jr., General Mgr.
Rudd Paint & Varnish Co., Inc.
1608 15th Ave., West
Seattle, WA 98119

56. Donald W. Lilly
United Paint Mfg. Co.
P.O. Box 369
Greenacres, WA 99016

57. M. F. Calloway
Virgin Chemical Inc.
P.O. Box 10
Kalama, WA 98625

58. Greg Barnette, Mgr.
Wolfkill Feed & Fertilizer Corp.
P.O. Box 406
Lyden, WA 98264
APPENDIX C

SURVEY FORMS USED
SURVEY OF CORROSIVE AND IGNITABLE WASTE

1. Name of Company: ________________________________
 Address: __
 Tel.No. () ____________________
 Name of Contact Person: ____________________________
 Tel.No. () ____________________

2. Nature of corrosive waste: (check one or more)
 ___ Sludge ___ Slurry ___ Aqueous ___ Solid ___ Others
 Nature of ignitable waste:
 ___ Sludge ___ Slurry ___ Aqueous ___ Solid ___ Others

3. Composition of the Waste:
 Corrosive Waste: _______ consistent _______ variable _______ highly variable
 Ignitable Waste: _______ consistent _______ variable _______ highly variable

4. Is the waste generated from batch or continuous type processes? ___ Yes ___ No

5. Are all of the waste generated combined before disposal? ___ Yes ___ No

6. If not, what kinds of wastes are separated? ______________________________________

 Is corrosive waste pretreated before disposal? ___ Yes ___ No
 Ignitable Waste? ___ Yes ___ No

7. If yes to question 6, what are the methods of pretreatment for corrosive waste?
 Chemical ___Ponding
 Carbon Absorption/Adsorption ___ Dilution
 Flocculation ___ Bio-oxidation
 Neutralization ___ Others

 For ignitable waste ______________________________________

8. What is the pH range of your corrosive waste?
 ___ < 2 ___ > 2 ___ 2-6 ___ 7-12

9. What is the flash point of your ignitable waste?
 ___ < 60°C (140°F) ___ > 60°C (140°F)

10. What is the alcohol content of your ignitable waste?
 ___ less than 24% by volume ___ more than 24% by volume

11. Did you previously have a land application facility? ___ Yes ___ No
 If yes, why was land application discontinued? ______________________________________
12. What was the nature of the waste that was previously land applied?

13. Was Land Application considered for disposal of corrosive/ignitable waste? Yes No

14. Factors considered for not considering Land application:

 Land Availability
 Economics
 Contamination of Groundwater
 Regulations/Federal Constraint
 Others (Name them) __

15. Do you think that land application is a viable means of disposal of corrosive/ignitable waste? Yes No
 If answer is no, why? __

16. Are you willing to participate in a feasibility study for land application to be conducted at the University of Oklahoma in the future? Yes No
 If answer is no, why? __

17. Do you have a Part A and/or Part B permit/application to manage, handle and dispose of hazardous waste? Yes No

18. Volume of corrosive waste produced annually ____________ metric tons/year
 Volume of ignitable waste produced annually ____________ metric tons/year

19. Current methods of disposal of waste: (check one or more)

 Landfill
 Lagoon/Pond
 Incineration
 Contracted out
 Land application
 Others

20. If waste is pretreated before disposal, how is the final sludge/effluent disposed of?

**** Your participation in this survey is highly appreciated. Thank you!
SURVEY FOR LAND APPLICATION OF CORROSIVE/IGNITABLE WASTES

1. Name of Company: __

2. Address: ___
 Name of Contact Person: _________________________Tel. No.________

3. Do you have a Part A or Part B application/Permit to operate/handle/dispose of hazardous waste? ______Yes ______NO
 If No, do you have an interim permit? ______YES ______NO

4. Do you have a land application facility? ______YES ______NO
 If YES, what is the total land area of your land application site? ______acres

5. Are operating records available for those land application facilities identified? ______YES ______NO

6. Is the land treatable waste generated from batch or continuous type processes? ______YES ______NO

7. Is the composition of the waste ______consistent ______variable ______highly variable
 Is it, ______solid ______liquid ______semi-solid ______sludge

8. Do you combine all your waste before disposal? ______YES ______NO
 If no, what kinds of wastes are separated? __________________________

9. How often is the waste applied to the land?
 ______Daily ______Weekly ______Monthly ______Yearly ______Others________

10. What would you consider are the land limiting constituents of your waste?
 ______Metals ______Acids/Bases ______Organics ______Inorganics
 ______PCB's ______Cyanide ______Others______________________________

11. Are wastes pretreated or conditioned in any manner prior to land application?
 ______YES ______NO
 If Yes, what are the pretreatment methods used?
 ______Neutralization ______Flocculation ______Dilution
 ______Chemical Treatment ______Physical treatment (aeration, settling, etc.)
 ______Others______________________________

12. What is the pH range of your corrosive waste?
 ______< 2 ______> 2 ______2-6 ______7-12
12. What is the flash point of your ignitable waste?
 _____ 60°C (140°F) _____60°C (140°F)

13. What is the alcohol content of your waste?
 _____ less than 24% by volume _____ more than 24% by volume

14. Is the soil in the land treatment area conditioned? ____Yes ____No
 If Yes, (check one or more) which of the following are used?
 _____ Fertilizer _____ Lime _____ Others

15. Were there any wastes previously land treated that are no longer treated in this manner? ____Yes ____No. If yes, what was the waste land treated and why was this practice discontinued?

16. Is an unsaturated zone monitoring plan available? ____YES ____No
 If not why?

17. Are analytical results available for unsaturated zone monitoring?
 ____Yes ____No

18. Do you think that land application of corrosive/ignitable waste is a viable means of disposing of this kind of waste? ____YES ____NO
 If NO, Why?

19. If land application of corrosive/ignitable waste was discontinued, why?
 _____ Land Availability _____ Government Regulations
 _____ Economics _____ Pollution of Ground Water
 _____ Others

20. What is the total volume of the waste that is land applied?
 Total volume: Metric tons/year
 Corrosive waste (D002) Metric tons/year
 Ignitable waste (D001) Metric tons/year

21. Are you willing to participate in a feasibility study on land application of corrosive/ignitable waste in collaboration with the University of Oklahoma? ____Yes ____No
 If No, why?
APPENDIX D

INDUSTRIAL PROCESS AND WASTE CHARACTERIZATION

This portion of the report deals with process descriptions and waste stream characterization of ICW to enhance understanding of the source and nature of ICW in selected industries.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Estimated Production (Million Metric Tons/Year)</th>
<th>Hazardous Waste Generated (Metric Tons/Year)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Paint Industry</td>
<td>4.0</td>
<td>105,000</td>
<td>USEPA, 1976</td>
</tr>
<tr>
<td>4. Pharmaceutical Industry</td>
<td>1.6</td>
<td>78,995</td>
<td>USEPA, SW-508, 1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arthur D. Little Inc. estimates</td>
</tr>
<tr>
<td>6. Pulp and Paper Industry</td>
<td></td>
<td>1.050×10^9</td>
<td>FWPCA Publication no. IWP-3</td>
</tr>
<tr>
<td>7. Steel Industry</td>
<td>60</td>
<td>2.12×10^5</td>
<td>Battacharya, S. IIT Research Inst. July 1979</td>
</tr>
<tr>
<td>8. Soap and Detergent</td>
<td>-</td>
<td>29</td>
<td>USEPA-600/2-78/140a 1978</td>
</tr>
<tr>
<td>Industry</td>
<td>Estimated Production (Million Metric Tons/Year)</td>
<td>Hazardous Waste Generated (Metric Tons/Year)</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10. Inorganic Chemicals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Titanium Dioxide</td>
<td>0.3</td>
<td>60,000 m3/day</td>
<td>USEPA-UUO/1-79/007, 1979</td>
</tr>
<tr>
<td>b. Hydrofluoric Acid</td>
<td>0.3</td>
<td>2,350 m3/day</td>
<td>USEPA-UUO/1-79/048-D Dec. 1979.</td>
</tr>
</tbody>
</table>
PETROLEUM REFINING

There were a total of 120 firms operating 297 refineries processing 19.37 billion barrels of crude oil on a daily basis (Table D.1). Figure D.1 is the flow diagram for a typical complete refinery.

The waste stream produced by each refinery is dependent on the type of processes employed and the variety of products produced. Estimates of waste generation rate and characteristics may therefore be liberal or conservative depending on the category of the facility used for characterization.

In general, the major sources of ICW are storage tank drainoffs, crude desalting and distillation, thermal and catalytic cracking processes, and solvent refining. Two significant general waste streams are the surfidic sour waters (containing $\text{H}_2\text{S}/\text{NH}_3$), sulfidic spent caustics, sour water steam stripper, phenolic sour waters ($\text{H}_2\text{S}/\text{NH}_3$ and phenols), phenollic spent caustics and water after scrubs, following caustic-scrubs. Figure D.2 presents the different waste streams generated in an oil refinery and in-plant pretreatment methods.
Figure D.1. Processing Plan for Typical Complete Refinery.

Source: USEPA-600/2-83-101, Feb. '1983 (45)
Sulfidic Spent Caustics
Sulfidic Sour Waters
Phenolic Sour Waters
Phenolic Spent Caustics
(4) Water After-Scrubs
(4) Water After-Scrubs (following caustic scrub)

Air/Steam Oxidation Tower

Sour Water Steam stripper

Spent Caustic Neutralizer

Sprung Acid Oils
Water (to sales)

Laboratory Drains

Sodium Thiosulfate and/or Ammonium Thiosulfate

Crude Oil Desalter

Reuse Water

High Contamination Sewer

(1) Usually steam stripped. If no phenols or oil present, may be oxidized.
(2) Will contain about 3000 ppm st. H₂S, 8000 ppm wt. phenol, and 15-30 wt.
% sodium salts. High salt content may cause problems in steam stripper.
(3) Stripper removes about 98% of H₂S, 95% of NH₃ and 20% of phenols. pH
of stripped water will be about 9-10. With some crudes residual NH₃
may require acid neutralization to pH 6.8-7.0 to avoid formation of
salts in desalter.
(4) May require acid neutralization if caustic carryover is excessive.
(5) Desalter removes most of the phenols and H₂S from water. This stream
will contain 0-10 ppm wt. H₂S, 10-15 ppm wt. phenols, 100-300 wt. oil,
50-300 ppm wt. BOD.
(6) H₂S content about 10-150 ppm wt. and NH₃ content about 50-500 ppm wt.
pH about 9-10. Will also contain phenols.

Figure D.2 In-plant pretreatment of high contamination waste streams.

Source: Beychok, M.R. "Trends in treating petroleum refining wastes,"
Industrial Process Design for Water Pollution Control, AICHE
Figure 4.3. Wet Process Phosphoric Acid Flowsheet.

2. **FERTILIZER INDUSTRY**

The fertilizer industry produces several types of fertilizer, principally classified as nitrogen or phosphorus production facilities. Nitrogen fertilizer processes include those that produce anhydrous ammonia, ammonia nitrate, ammonia sulfate or urea. Phosphate fertilizer processes include normal superphosphate, triple superphosphate, ammonium phosphates and ammoniated superphosphates.

It is in the phosphate fertilizer industry where ICW is generated in significant volumes. The total production of phosphate fertilizer in 1971 was \(14.2 \times 10^6\) short tons. The flow chart for phosphate fertilizer production is shown in Figure D.3. ICW is generated in the wet sulfuric acid treatment of phosphate rock. The wet process is the principal method used to produce phosphoric acid and the waste stream may consist of gypsum slurry, off-gas scrubber liquor, acid sludge, and steam condensate. 30-32 percent phosphoric and waste is discharged as a slurry to a gypsum pond. Typical composition of the gypsum pond water are as follows:

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Concentration, mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_2O_5)</td>
<td>6,000 - 12,000</td>
</tr>
<tr>
<td>Fluoride</td>
<td>3,000 - 5,000</td>
</tr>
<tr>
<td>Sulfate</td>
<td>2,000 - 4,000</td>
</tr>
<tr>
<td>Calcium</td>
<td>350 - 1,200</td>
</tr>
<tr>
<td>Ammonia</td>
<td>0 - 100</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0 - 100</td>
</tr>
<tr>
<td>pH</td>
<td>1.0 - 1.5</td>
</tr>
</tbody>
</table>
3. CITRUS PROCESSING INDUSTRY

The total production of the citrus processing industry in 1978 was 14.2×10^6 metric tons. A typical citrus processing plant flow diagram is shown in Figure D.4.

Inplant waste stream characteristics that generate ICW are spend caustic solutions used to clean equipment and holding tanks.
Figure D.4 Process flow diagram (continued on next page)
Figure D.4. (CONTINUED)

PROCESS FLOW DIAGRAM

Source: EPA, Complete mix activated sludge treatment of citrus process wastes, 1971, p. 36. (50)
4. TEXTILE MILL INDUSTRY

Total production for the textile mill industry in 1978 was 36.4 M metric tons. 64 percent of the total production in this industry generates potentially hazardous waste. The following process categories are potential generators of ICW: Wool fabric dyeing and finishing

- Woven fabric dyeing and finishing
- Knit fabric dyeing and finishing
- Carpet mills
- Stock and yarn dyeing and finishing.

Tables D.2 and D.3 present the characteristics of wastewaters by pH from cotton and wool manufacturing processes. Scouring, mercerizing, bleaching and dyeing all yield caustic waste streams with pH ranging from 6 to 12.
TABLE D.2 CHARACTERISTICS OF WASTEWATER BY pH FROM WOOL WET PROCESSES

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>CHARACTERISTICS</th>
<th>pH UNIT</th>
<th>WATER USE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOURING</td>
<td>High Alkalinity Resulted From Hot Alkali Soap</td>
<td>9.5 - 10</td>
<td>5,500 - 12,000</td>
<td>5</td>
</tr>
<tr>
<td>Detergent - MgSO₄ Method</td>
<td>Natural to High Alkaline</td>
<td>6.4 - 9</td>
<td>5,500 - 12,000</td>
<td>5</td>
</tr>
<tr>
<td>WASHING AFTER</td>
<td>High Alkalinity Resulted From Soap and Detergent Solution</td>
<td>9.0 - 10.7</td>
<td>40,000 - 100,000</td>
<td>5</td>
</tr>
<tr>
<td>STAINING</td>
<td>Acid pH Resulted From Sulfuric Acid</td>
<td>19 - 24</td>
<td>N/I</td>
<td>5</td>
</tr>
<tr>
<td>BLEACHING</td>
<td>Neutral</td>
<td>6.0</td>
<td>300 - 2,600</td>
<td>5</td>
</tr>
<tr>
<td>DYEING</td>
<td>Acid pH in Neutral</td>
<td>48 - 94</td>
<td>N/I</td>
<td>5</td>
</tr>
<tr>
<td>Ammonia Sulfate Used</td>
<td>Neutral</td>
<td>5.0 - 8.3</td>
<td>N/I</td>
<td>5</td>
</tr>
</tbody>
</table>

N/I = No Information Available

TABLE D.3 CHARACTERISTICS OF WASTEWATER BY pH FROM COTTON FABRIC MANUFACTURING PROCESSES

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>CHARACTERISTIC</th>
<th>pH UNIT</th>
<th>WATER USE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLASHING</td>
<td>Neutral</td>
<td>7.0 - 9.5</td>
<td>60 - 940</td>
<td>7</td>
</tr>
<tr>
<td>DESIZING:</td>
<td>Neutral</td>
<td>6.8</td>
<td>1,500</td>
<td>5</td>
</tr>
<tr>
<td>SCOURING</td>
<td>High Alkalinity Resulted From Hot Alkali Detergents or Soap Solutions</td>
<td>12.5</td>
<td>3,000</td>
<td>6</td>
</tr>
<tr>
<td>MERCERIZING</td>
<td>High Alkalinity Resulted from 15 to 30 Percent Solution of Sodium Hydrosulfide Used in Process</td>
<td>12.0</td>
<td>2,000</td>
<td>6</td>
</tr>
<tr>
<td>BLEACHING</td>
<td>Alkaline pH Resulted from Bleaching Solutions</td>
<td>9 - 12</td>
<td>2,000 - 10,000</td>
<td>6</td>
</tr>
<tr>
<td>DYEING</td>
<td>Neutral to Alkaline pH Resulted from Dye Fixed Except Developing Dyeing Which Has Low pH (1-2) Due to Sulfuric Acid Solution Used in Dyeing Process</td>
<td>6 - 12</td>
<td>1,000 - 30,000</td>
<td>6</td>
</tr>
<tr>
<td>PRINTING</td>
<td>Neutral to High Alkaline</td>
<td>6 - 11</td>
<td>1,500 - 4,000</td>
<td>6</td>
</tr>
<tr>
<td>FINISHING</td>
<td>Neutral</td>
<td>6 - 8</td>
<td>1,500</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: USEPA-625/7-77/002, October, 1978 (51)
PHARMACEUTICAL INDUSTRY

The subcategories of concern in terms of ICW generation are the organic and inorganic medicinal chemicals. There are a wide variety of solvents used: benzene, toluene and other similar ring type compounds such as xylene, cyclohexane and pyridine. Essentially all production plants operate solvent recovery facilities that purify contaminated solvent reuse. The final wastes are anhydrous organic compounds which are withdrawn from the base of distillation columns or are residues from solvent extraction operations. Most often they are thick, tarry residues which are very difficult to treat because it is so highly variable. They may contain acids, bases, cyanides, solvents and metals. The pH is extremely variable, pH 1-11.

Figure B.8 is a presentative process for antibiotic production. The final waste effluents from the different manufacturing processes are treated in a biological wastewater treatment plant.
Figure D.5. Representative Process for Antibiotic Production (Procaine Penicillin G).
Figure D.5 Representative process for antibiotic production.
5. **STEEL INDUSTRY**

The iron and steel industry pickles about 60 million tons of steel products every year resulting in the generation of about 1 billion gallons of pickle liquor volume.

A typical steel plant would include the processes shown in Figure D.6. Pickling is the removal of scale through use of acid solutions. This is performed in various ways: batch, semicontinuous or continuous operations. In any case, the steel to be descaled is first immersed in an acid bath for some suitable time and then removed and subsequently washed with water to remove residual acid.

The steel pickling process generates wastes from three distinct sources:

1. waste pickle liquor,
2. rinse water from washing acid drag-out from pickling baths, and
3. acidified water generated in cleaning acid vapors from pickling baths.
Figure D.6. Process Flow Sheet for Steel Production.
H_2SO_4 (Sulfuric Acid) or HCl (Hydrochloric Acid)

The principal products produced in the cyclic crude and cyclic intermediates industries are coal tar, benzene, toluene, xylene, naphthalene and creosote oil. (Figure D.7).

The liquid effluents coming from plants in which coal tar is distilled contain coal tar hydrocarbons, and a variety of spent organic or inorganic chemicals used at various points in the processing sequence to condition cooling water, promote catalysts, improve product separation, or otherwise facilitate the conduct of a particular operation. The composition of the resultant effluents are process, and sometimes even site-dependent, and therefore more research is needed to determine the required disposal technology. The pollution abatement technologies currently being used are electrostatic precipitators for suspended solids or particulates, scrubbers for gaseous pollutants such as SO$_x$ and NO$_x$ which are emitted in large volumes from carbonization, gasification and liquefaction processes. Low concentrations of H$_2$S are incinerated.

Liquid effluents are temporarily contained in a waste treatment pond from which appropriately clarified water is eventually either recycled to the plant or released into a natural water course. Pond sludges are disposed of by landfilling. The process flow diagram for high temperature tar from hard coal is presented in Figure D.7.
<table>
<thead>
<tr>
<th>Light Oil</th>
<th>Carbolic Oil</th>
<th>Napththalene Oil</th>
<th>Wash Oil</th>
<th>Anthracene Oil</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-3%</td>
<td>2-3%</td>
<td>10-12%</td>
<td>7-8%</td>
<td>22-28%</td>
<td>50-55%</td>
</tr>
</tbody>
</table>

Extraction
- Crude bases
- Raw Phenol
- Naphtale
- Carbolic Oil
- Naphthalene Oil

Crystallization
- Neutral Phenols
- Cresols
- Xylenols
- Distillation
- Pyrididine bases
- Technical
- Pyridine bases
- Picolines
- High boiling
- Point pyridine bases

Distillation & Polymerization
- Raw Benzene
- Solvent Naphtha
- Heavy Benzol
- Cumarone resins

Crystallization
- Filtered Anthracene Oil
- Anthracene Residues
- Anthracene Oil

Distillation & Impregnating Oil
- Motor Gasmeter
- Flux Mixed Tar

Individual Components
- Methylphenanthrene
- Acenaphthylene
- Diphenylene
- Acridine
- Fluoranthene
- Fluorene
- Phenanthrene

Tar
- Road Tar
- Foundry Tar
- Roofing Tar
- Corrosion Inhibitors

Preservatives
- Briquet Electrode
- Hard pitch
- Soft pitch
- Special pitch
- Pitch coke

Figure D.7 Processing of high temperature tar from hard coal.
INORGANIC CHEMICALS INDUSTRY

The inorganic chemical industry generates a variety of waste products from a total of sixty-three subcategories of inorganic chemicals.

There are two industries that are significant from the D002 waste point of view that have potential for land treatment. These are: 1) titanium dioxide (sulfate process), and 2) hydrofluoric acid. The total production rate in the titanium dioxide industry is approximately 259 million kg/yr with an average waste flow range of 60,000 cubic meters/day.

The general process flow diagram for production of titanium dioxide by sulfate process is shown in Figure D.8. The flow diagram shows that a strong acid waste stream is produced after water is added to titanyl sulfate solution after removal of copperas, whereby sulfuric acid and the hydrate of titanium dioxide are formed. The concentration of sulfuric acid varies from 15 to 30 percent as H_2SO_4. A part of the acid is returned to the process and the rest is sent to a treatment facility. Other waste streams which may be acidic are the weak acid waste streams from the washing of titanium dioxide hydrate precipitate and scrubber waste water resulting from the scrubbing of vapors emitted during the drying of the ore, during digestion and during kiln drying. The scrubber water contains titanium dioxide particulate, acid mist, sulfur trioxide and sulfur dioxide.
The production rate for hydrofluoric acid is 261 million kg/year. The average waste water flow range is 2,350 cubic meters/day.

Waste sources from this industry are gypsum solids, drip acid which contains high boiling compounds consisting of complex fluorides, especially fluorosulfuric acid, and small amounts of hydrofluoric acid, sulfuric acid and water, and scrubber waste water.

The final fate of gypsum solids are in settling/storage gypsum ponds, after neutralization with lime. Other waste streams such as drip acid, noncontact cooling water, scrubber waste water and distillation wastes are treated in waste water treatment plants.

The general process flow diagram for hydrofluoric acid manufacture is presented in Figure D.9.
Figure D.8 General Process flow diagram for production of titanium dioxide by sulfate process. (Source: EPA UUO/1-79/007)
Figure D.9 General process flow diagram, hydrofluoric acid manufacture.
Source, EPA UWO/1-79/007.
Figure D.9. General process flow diagram, Hydrofluoric acid manufacture. Source, EPA UUO/1-79/007.
CHEMICALS AND ALLIED PRODUCTS

The industries under this category are gum and wood chemicals manufacturing, soap and detergent manufacturing, explosives industry, synthetic fiber industry, pesticide chemicals manufacture, synthetic polymers, plastics and resins industry, paint formulating and ink formulating industries.

All of these industries generate different quantities of ICW. The industry that generates ignitable waste which has potential for land application is the paint industry. The other industries have volatile organics in their waste streams but land treatment does not look like a viable alternative because the volumes generated are relatively low.

The total production in the paint industry is approximately 1 billion gallons/year. (Table D.1).
Pigments

Oil and Solvents

Resins

Tints and Thinners

Mixing Tank

Stone or Roller Mill

Pebble Sand or Ball Mill

Dispersing Tank

Thinning and Tinting Tank

Filling Packaging and Shipment

Figure D.10 Flow diagram of manufacturing process for solvent-base paints.
APPENDIX E

PROCEDURES AND METHODS FOR MICROBIOLOGICAL AND

CHEMICAL ANALYSES OF SOIL SAMPLES
GC ANALYSES - SOLVENT RECOVERY WASTE, BASE/NEUTRAL FRACTION

DATA ACQUISITION

METHOD.M

- **Description**: SRS
- **last modified by**: EM
- **Tune file**: *ATUNE.U*
- **Quant. file**: *
- **Lib search file**: POLLUTE.L
- **Acquisition mode**: SCAN
- **Inlet**: GC

Use a softkey, abbrev., or press any key.

Prep to lEdit Acq lEdit Temp lEdit Run l

DATA ACQUISITION

5 Oct 84 3:02 pm**

METHOD.M

Data file: KWBROWN.D

Words available in file are: 384384

Operator: HEM

sample Name: SRS

misc. Info: 1.6 µC Base/Neut. Fr.

```
ZONE ACTUAL SETPOINT ZONE ACTUAL SETPOINT
```
Library Search Results

Scan 543 (9.418 min) of KWBRROWN.D
KWBRROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>match quality (0 to 10000)</th>
<th>library entry number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 9561</td>
<td>26</td>
</tr>
<tr>
<td>2: 7686</td>
<td>27</td>
</tr>
<tr>
<td>3: 1590</td>
<td>45</td>
</tr>
<tr>
<td>4: 1236</td>
<td>41</td>
</tr>
<tr>
<td>5: 1130</td>
<td>25</td>
</tr>
<tr>
<td>6: 964</td>
<td>72</td>
</tr>
<tr>
<td>7: 835</td>
<td>71</td>
</tr>
<tr>
<td>8: 814</td>
<td>67</td>
</tr>
<tr>
<td>9: 633</td>
<td>46</td>
</tr>
<tr>
<td>10: 565</td>
<td>62</td>
</tr>
</tbody>
</table>
T: Scan 446 (8.272 min) of KW
Z: TIC of KWBROWN.D
Y: Set of 3 MS

RETRIEVE
Which match (1 to 10):

![Graph showing a scan of KWBROWN.D]

Scan 996 (14.615 min) of KWBROWN.D
KWBROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>library entry number</th>
<th>match quality (0 to 10000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 43</td>
<td>9857</td>
</tr>
<tr>
<td>2: 42</td>
<td>4337</td>
</tr>
<tr>
<td>3: 59</td>
<td>3178</td>
</tr>
<tr>
<td>4: 108</td>
<td>1362</td>
</tr>
<tr>
<td>5: 60</td>
<td>866</td>
</tr>
<tr>
<td>6: 95</td>
<td>819</td>
</tr>
<tr>
<td>7: 53</td>
<td>740</td>
</tr>
<tr>
<td>8: 74</td>
<td>732</td>
</tr>
<tr>
<td>9: 25</td>
<td>624</td>
</tr>
<tr>
<td>10: 52</td>
<td>463</td>
</tr>
</tbody>
</table>
RETRIEVE
Which match (1 to 10):

<table>
<thead>
<tr>
<th>Match</th>
<th>Quality</th>
<th>Entry Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9884</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>5660</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>4983</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>4857</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>1948</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>1837</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>1338</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>997</td>
<td>33</td>
</tr>
</tbody>
</table>
Library Search Results

Scan 1362 (18.688 min) of KWBROWN.D

KWBROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>match quality (0 to 10000)</th>
<th>library entry number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 9969</td>
<td>52</td>
</tr>
<tr>
<td>2: 6589</td>
<td>53</td>
</tr>
<tr>
<td>3: 1347</td>
<td>42</td>
</tr>
<tr>
<td>4: 854</td>
<td>92</td>
</tr>
<tr>
<td>5: 760</td>
<td>68</td>
</tr>
<tr>
<td>6: 550</td>
<td>43</td>
</tr>
<tr>
<td>7: 530</td>
<td>108</td>
</tr>
<tr>
<td>8: 402</td>
<td>55</td>
</tr>
<tr>
<td>9: 326</td>
<td>91</td>
</tr>
<tr>
<td>10: 282</td>
<td>56</td>
</tr>
</tbody>
</table>
Library Search Results

Scan 1662 (22.039 min) of KWBROWN.D
KWBROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>match quality (0 to 10000)</th>
<th>library entry number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 9920</td>
<td>65</td>
</tr>
<tr>
<td>2: 9834</td>
<td>64</td>
</tr>
<tr>
<td>3: 1656</td>
<td>71</td>
</tr>
<tr>
<td>4: 1532</td>
<td>79</td>
</tr>
<tr>
<td>5: 861</td>
<td>32</td>
</tr>
<tr>
<td>6: 530</td>
<td>96</td>
</tr>
<tr>
<td>7: 454</td>
<td>61</td>
</tr>
<tr>
<td>8: 236</td>
<td>95</td>
</tr>
<tr>
<td>9: 130</td>
<td>23</td>
</tr>
<tr>
<td>10: 129</td>
<td>73</td>
</tr>
</tbody>
</table>
RETRIEVE
Which match (1 to 10):

T: Scan 1641 (21.806 min) of Z: TIC of KWBROWN.D
Y: Set of 3 MS

Scan 1641 (21.806 min) of KWBROWN.D

Scan 1662 (22.039 min) of KWBROWN.D

#65 Fluoranthen (BC13CI)

#54 Pyrene (BC13CI)
Library Search Results

Scan 1711 (22.592 min) of KWBROWN.D

KWBROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>match quality (0 to 10000)</th>
<th>library entry number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 9894</td>
<td>65</td>
</tr>
<tr>
<td>2: 9841</td>
<td>64</td>
</tr>
<tr>
<td>3: 1891</td>
<td>71</td>
</tr>
<tr>
<td>4: 1476</td>
<td>79</td>
</tr>
<tr>
<td>5: 809</td>
<td>96</td>
</tr>
<tr>
<td>6: 768</td>
<td>32</td>
</tr>
<tr>
<td>7: 354</td>
<td>61</td>
</tr>
<tr>
<td>8: 215</td>
<td>23</td>
</tr>
<tr>
<td>9: 210</td>
<td>95</td>
</tr>
<tr>
<td>10: 174</td>
<td>109</td>
</tr>
</tbody>
</table>

RETRIEVE

T: Scan 1662 (22.039 min) of KWBROWN.D

Which match (1 to 10): Z: TIC of KWBROWN.D

Y: Set of 3 MS
GC ANALYSES - SOLVENT RECOVERY WASTE, ACID FRACTION

Scan 128 (4.511 min) of KWBROWN.D
KWBROWN.D

Library file: POLLUTE.L
Library name: PRIORITY POLLUTANTS

<table>
<thead>
<tr>
<th>library entry number</th>
<th>match quality (0 to 10000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>9749</td>
</tr>
<tr>
<td>2:</td>
<td>7407</td>
</tr>
<tr>
<td>3:</td>
<td>4441</td>
</tr>
<tr>
<td>4:</td>
<td>2629</td>
</tr>
<tr>
<td>5:</td>
<td>1975</td>
</tr>
<tr>
<td>6:</td>
<td>1855</td>
</tr>
<tr>
<td>7:</td>
<td>1692</td>
</tr>
<tr>
<td>8:</td>
<td>1598</td>
</tr>
<tr>
<td>9:</td>
<td>1544</td>
</tr>
<tr>
<td>10:</td>
<td>1542</td>
</tr>
</tbody>
</table>

9749 7407 4441 2629 1975 1855 1692 1598 1544 1542
RETRIEVE

Which match (1 to 10):

I: Scan 124 (4.465 min) of KW
Z: TIC of KWBROWN.D
Y: Set of 3 MS

Scan 128 (4.511 min) of KWBROWN.D

#1 Benzene, ethyl- (BC1BC1)

#2 Benzene, methyl- (BC1)

#3 1,2-Benzenedicarboxylic acid, butyl phen
TIC of KHEROWN.D

#80 1,2-Benzenedicarboxylic acid, butyl phen

Scan 128 (4.511 min) of KHEROWN.D

#17 Benzene, ethyl- (8C188C1)
NITRATE DETERMINATION
(colorimetrically with nitrophenoldisulfonic acid)

The phenoldisulfonic acid method for nitrates depends upon the nitration position of 6 of 2, 4-phenoldisulfonic acid in fuming H₂SO₄:

\[C₆H₄OH(HSO₃)₂ + HNO₃ \rightarrow C₆H₂OH(HSO₃)₂NO₂ + H₂O \]

The nitrate solution is dried out previous to determination since the reaction must be effected in the virtual absence of water. The product behaves as a nitrophenolic type indicator with C-Y-Y reaction, that is, is colorless in acid and yellow when neutralized or in alkaline solution. A hydroxide such as KOH or NH₄OH is therefore employed to shift the pH to the yellow range for the colorimetric determination.

APPARATUS--

Needed apparatus includes a torsion balance, a 500-ml extraction bottle and tight-fitting rubber stopper, an 18-cm filter paper and funnel, 8 cm evaporating dishes, 3 by 70 mm glass stirring rods, a 3-ml pipet with its tip cut off to deliver rapidly, volumetric pipet, colorimeter tubes with 40-ml calibration marks (or Nessler tubes), and a colorimeter with 420-mu light maximum.
REAGENTS --

Needed reagents (all tested to be nitrate-free) include 6 N NH₄OH, Ca(OH)₂, MgCO₃ activate charcoal (GElf or Darco G 60), approximately 1 N CuSO₄ (125 gm of CuSO₄•5H₂O) per liter, and the following special reagents.

1. Phenol 2, 4-Disulphonic Acid. Twenty five gm of pure phenol (crystal white in color) is dissolved in 150 ml of concentrated H₂SO₄. Then 75 ml of fuming H₂SO₄ is added. This solution is mixed and heated by placing the flask in boiling water for 2 hours. The resulting phenoldisulfonic acid, C₆H₃O(HSO₃)₂, solution is stored in a brown bottle. Caution: This reagent is highly corrosive.

2. Standard Nitrate Solution. Exactly 0.7221 gm of pure dry KNO₃ is dissolved in water and the solution is diluted to exactly 1 liter, giving 0.1 mg N per ml, or 100 ppm stock solution. This stock solution is then diluted, 20 ml to 200 ml in a volumetric flask. This latter solution contains 0.01 mg N per ml, or 10 ppm. Aliquots (2, 5, 10 and 15 ml) of the 10 ppm N standard nitrate solution are placed in separate 8-cm porcelain evaporating dishes and evaporated to dryness on the steam bath in an atmosphere free from HNO₃ fumes. Color development follows.

3. Nitrate Extraction Solution. This is prepared by mixing 200 ml of 1 N CuSO₄ solution and 1 liter of 0.6 per cent Ag₂SO₄ solution and diluted to 10 liters with H₂O. The Ag₂SO₄ is equivalent to 338 ppm Cl⁻ present in 50 gm soil, or 0.03 per cent Cl⁻. If 10 ppm of Cl⁻ is present in soil, the Ag₂SO₄ may be omitted from the extraction solution. If more than 0.03 per cent Cl⁻ is present, as in acid
soils, 2.25 gm of powdered Ag$_2$SO$_4$ salt for each 1 per cent Cl$^-$ present is mixed with the soil prior to extraction, or the Cl$^-$ in the soil is determined and a Cl$^-$ correction factor is established by addition of Cl$^-$ to a standard nitrate series.

PROCEDURE—

1. **Soil Sampling and Preparation.** Composite soil samples are obtained freshly from the field or pot. The soil is mixed thoroughly by passing it through a 6-mm sieve. Clayey soils that have dried and contain hard granules are pulverized to pass a 2-mm sieve, to facilitate complete wetting of the sample by the extractant in the time allowed.

2. **Extraction of Nitrate from the Soil.** Fifty gm of soil (25 gm peat) is weighed out and placed in a 500-ml wide mouthed bottle, and 250 ml of extraction solution is added. (At the same time, a 25 gm sample is weighed out for moisture determination). The suspension is shaken for 10 minutes and then 0.4 gm Ca(OH)$_2$ is added. This is followed by 5 minutes further shaking and the addition of 1 gm of MgCO$_3$. These 2 reagents precipitate the copper and silver and clarify the suspension. The suspension is filtered in a dry filter paper, and the first 20 ml of filtrate discarded. A 10-ml portion of the clear filtrate is pipetted into an 8-cm evaporating dish and evaporated to dryness in an atmosphere free of HNO$_3$ fumes. Color development follows.

3. **Development of the Nitrophenoldisulfonic Color.** The 8-cm evaporating dishes are allowed to cool, and 3 ml of phenoldisulfonic acid is added rapidly directly in the center of each. The dish is
rotated to effect contact with all of the residual salt, and the reagent is allowed to act for 10 minutes. Then 15 ml of cold water is added, and the solution is stirred with a glass rod until all the residue is in solution. After the dishes are cool, 6 N NH₄OH is added slowly until the solution is distinctly alkaline as indicated by the development of a yellow color, then 3 ml more is added. The standard series is diluted to 100 ml and contains 0.2, 0.5, 1 and 1.5 ppm of nitrate nitrogen. Soils extract is usually diluted to 100 ml. Runoff nitrate is conveniently diluted to 40 ml in calibrated tubes.

4. The transmission percentage of the nitrate solutions is read in a colorimeter with 420 mu light maximum. Alternately, the color may be evaluated by visual comparison to the standard solution by means of Nessler tubes.

5. Preparation of the Standard Colorimetric Curve. A calibration curve is plotted from the standard nitrates on semilogarithmic paper, the log scale being employed for the transmission percentage readings. This curve is usually not exactly linear, and thus it is best to refer to the graph to determine the nitrate concentration in the test sample.

6. Calculation of Results. The results are reported in parts of N (nitrate form) per million parts of oven-dry soil. The concentration of the nitrate test solution is ppm N is obtained from the standard curve. Then the calculation is as follows:
ppm N in soil = ppm N in test soln \times Aliquot dilution \times soil dilution
\hspace{1cm} \text{(nitrate form)}

\begin{align*}
= & \text{ppm N in test soln.} \times \frac{\text{ml final color vol.}}{\text{ml aliquot evaporated}} \times \frac{\text{ml extraction solution}}{\text{gm O.D. soil extracted}} \\
= & \text{ppm N in test soln.} \times \frac{100}{10} \times \frac{250 + \text{ml H}_2\text{O}}{50 - \text{ml H}_2\text{O}} \\
\end{align*}
PHOSPHORUS DETERMINATION

This method has been used as an index of available P in soils. The combination of HCl and NH₄F is designed to remove easily acid-soluble forms of P, largely calcium phosphates, and a portion of the aluminum and iron phosphates. The NH₄F dissolves aluminum and iron phosphates by its complex ion formation with these metal ions in acid solution. In general, this method has been most successful on acid soils.

REAGENTS--

1. Ammonium fluoride (NH₄F), 1 N: Dissolve 37 gm of NH₄F in distilled water, and dilute the solution to 1 liter. Store this solution in a polyethylene bottle.

2. Hydrochloric Acid (HCl), 0.5 N: Dilute 20.2 ml of concentrated HCl to a volume of 500 ml with distilled water.

3. Extracting Solution. Add 15 ml of 1.0 N NH₄F and 25 ml of 0.5 N HCl to 460 ml of distilled water. This gives a solution 0.03 N in NH₄F and 0.025 N in HCl. It will keep in glass more than 1 year.

4. Stannous Chloride (SnCl₂.2H₂O), stock solution. Dissolve 10 g. of reagent grade SnCl₂.2H₂O, in 25 ml concentrated HCl. Keep the solution in a black, glass-stoppered bottle, and prepare a fresh solution every 6 weeks. Store the solution in a refrigerator in a polyethylene bottle to lengthen the life of the reagent.

5. Ammonium molybdate (NH₄)₆Mo₇O₂₄·4H₂O. Dissolve 15 gm of reagent-grade (NH₄)₆Mo₇O₂₄·4H₂O in 350 ml of distilled water. Add 350 ml of 10 N HCl to the flask slowly, with stirring. Cool the contents to
room temperature, and add water to obtain a volume of 1 liter. Store the solution in a black, glass-stoppered bottle. Prepare a fresh solution every 2 months.

6. Stannous Chloride, dilute solution. Mix 1 ml of SnCl₂ stock solution with 333 ml of water. Make a fresh solution every 2 hours as needed.

PROCEDURE—

Weigh 1 gm of soil into an extraction bottle or tube, and add 7 ml of the extracting solution. Shake the container 1 minute, and filter the contents through Whatman no. 42 paper. If the filtrate is not clear, pour the solution back through the filter. To 2 ml of the filtrate, add 5 ml of distilled water. Add 2 ml of the ammonium molybdate solution, and mix the contents well. Add 1 ml of the SnCl₂ dilute solution, and mix the solution again. After 5 or 6 minutes and before 20 minutes, measure the color photometrically using 660 μm incident light.

Prepare a standard curve including the 2 ml of extracting solution in the range of 0.1 to 1 ug of P per ml. Plot the transmittances of the standards against the ug of P per ml on semilogarithmic graph paper.

Calculate the concentration of extractable phosphorus as follows:

ppm of P in soil = ppm P in solution × 35

The soil test values are interpreted in general as follows: less than 3 ppm, very low; 3 to 7 ppm, low; 7 to 20 ppm, medium; and greater than 20 ppm, very high.
MICROBIOLOGICAL TECHNIQUES

I. Nutrient Agar

Peptone 5 g
Beef Extract 3 g
Agar 15.0 g
Distilled Water 1 L

Sterilize in an autoclave at standard temperature and pressure for 30 minutes. pH should be approximately 6.8 after sterilization.

II. Standard Plate Count for Soil Samples

The Standard Plate Count procedure provides a standardized means of determining the density of aerobic and facultative anaerobic heterotrophic bacteria in soil samples.

A. Melting Medium - Melt sterile solid agar medium in boiling water or by exposure to flowing steam in a partially closed container. Discard melted agar that contains precipitate. Maintain melted medium in a water bath between 44 °C and 46 °C until used.

B. Sample Dilution - Select the dilutions so that the total number of colonies on a plate will be between 20 and 200.
C. **Pouring Plates:** Limit the number of samples to be plated in any one series so that no more than 20 minutes (preferably 10 minutes) elapse between dilution of the first sample and pouring of the last plate in the series. Pour at least 10 to 12 ml liquefied medium at 44 to 46°C into each dish by gently lifting cover just high enough to pour. As each plate is poured, mix melted medium thoroughly with test portions in a petri dish, taking care not to splash mixture over the edge, or rotating and tilting. Let plates solidify (within 10 minutes) on a level surface. After medium solidifies, invert plates and incubate at room temperature for 48 + 3 hr.

D. **Sterility Counts** - Check sterility of medium and dilution water blanks by pouring control plates for each series of samples.

E. **Counting and Recording** - Count all colonies on selected plates promptly after incubation. If counting must be delayed temporarily, store plates at 5 to 10°C for no more than 24 hr. Compute bacterial count per gram by multiplying average number of colonies per plate by the dilution used.
MICROBIOLOGICAL TECHNIQUES

I. Nutrient Agar

Peptone 5 g
Beef Extract 3 g
Agar 15.0 g
Distilled Water 1 L

Sterilize in an autoclave at standard temperature and pressure for 30 minutes. pH should be approximately 6.8 after sterilization.

II. Standard Plate Count for Soil Samples

The Standard Plate Count procedure provides a standardized means of determining the density of aerobic and facultative anaerobic heterotrophic bacteria in soil samples.

A. Melting Medium - Melt sterile solid agar medium in boiling water or by exposure to flowing steam in a partially closed container. Discard melted agar that contains precipitate. Maintain melted medium in a water bath between 44 °C and 46 °C until used.

B. Sample Dilution - Select the dilutions so that the total number of colonies on a plate will be between 20 and 200.
C. **Pouring Plates:** Limit the number of samples to be plated in any one series so that no more than 20 minutes (preferably 10 minutes) elapse between dilution of the first sample and pouring of the last plate in the series. Pour at least 10 to 12 ml liquefied medium at 44 to 46°C into each dish by gently lifting cover just high enough to pour. As each plate is poured, mix melted medium thoroughly with test portions in a petri dish, taking care not to splash mixture over the edge, or rotating and tilting. Let plates solidify (within 10 minutes) on a level surface. After medium solidifies, invert plates and incubate at room temperature for 48 ± 3 hr.

D. **Sterility Counts** - Check sterility of medium and dilution water blanks by pouring control plates for each series of samples.

E. **Counting and Recording** - Count all colonies on selected plates promptly after incubation. If counting must be delayed temporarily, store plates at 5 to 10°C for no more than 24 hr. Compute bacterial count per gram by multiplying average number of colonies per plate by the dilution used.
Figure D.11 Standard Plating Technique used for soil samples.