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WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE
THEORY WITH TESTS OF FINITE LENGTH
Abstract

Applications of Item Response Theory, which depend upon
its parameter invariance property, require that parameter
estimates be unbiased. All current estimation methods
produce statistically biased estimates of both item and
ability parameters. A new method, Weighted Likelihood
Estimation (WLE), is derived, and proved to be less biased
than Maximum Likelihood Estimation (MLE) with the same
asymptotic variance and normal distribution. WLE removes
the firet order bias term from MLE. Two Monte Carlo studies
compare WLE with MLE and Bayesian Modal Estimation (BME) of
ability in conventional tests and tailored testa. The Monte
Carlo studies favor WLE over MLE and BME on several criteria

over a wide range of the ability scale.

Keywords: Maximum Likelihood Estimation, unbiased

estimation, statistical bias, Bayesian Modal Estimation,

Item Reasponse Theory, tailored testing, adaptive testing.
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INTRODUCTION

Item Responase Theory (IRT) is an elegant model of
examinee behavior on multiple-choice tests in termes of item
and person parameters that are invariant within a linear
transformation. The mathematical form of IRT that is almost
exclusively used is the three parameter logistic model,
which gives the probability, P, that a scored item response,
ui, to item i is correct (ujy = 1) is a function of the
ability parameter, e, and three item parameters,

aj, bj, and cjy.

P(uj=1i8;aj,bj,ci) = cj+(l-cj)/(l+exp(-1.7a;(8-bjl)?) 1

The left hand side (LHS) of (1) 4is often abbreviated
Pj(8>, P(8), or 3jJust P, when the context excludes
ambiguity.

The true parameters, of course, are never known, and
must be estimated. The estimates are unidentifiable unless
an origin and unit of the 8 acale are given. Usually, the
mean and standard deviation of the ability estimates, 6~, of
some reference group of examinees is chosen for the origin

1



2
and unit, respectively. The estimates of the parameters
then are on their own sapecific sacale, and may not be
directly comparable with other estimates.

In principle all parameters are invariant within a
linear transformation. Given the true parametere, scaled
with respect to any two teats with at least two common
iteme, the linear tranaformation that 1linkse secores and
paranmetars of the two teste ie easy to solve for. Since the
true paraneters are never known, any application of IRT
which makes use of the parameter invariance property depends
upon an assumption of parameter aestimate invariance.
Parameter estimates are not invariant because of estimation
error. As a result the linear transformation for 1linking
tests is also an estimate. The greater the error of the
parameter estimates, the greater will be the error of the
linear tranasformation. Hence, in practice, the invariance
principle must be phrased in terams of the expectation of the
transformation. In order to m=minimize the error of
tranaformation, averages of parameter eastimates are used in
place of the parameters themselves when s8olving for the
linking transformation.

Averages have reduced variance, a valuable property
which should reduce the variability of the 1linking
transformation. However, if the estimates are astatistically
biased, then the averages will also be biased, and so will

the linking tranaformation. Among the many strengths of IRT,
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the invariance property distinguishea it most clearly from
other approaches. Thus, unbiased estimation is critical to
applications of IRT that make use of the invariance
property, and isa a fundamental requirement of IRT as a
statistical theory. This paper derives and testas by Monte
Carlo methods a new procedure, called Weighted Likelihood
Estimation (WLE), for estimating 6, the ability parameter.
The new estimator is relatively unbiased and is

computationally efficient.

Estination Methods and Bias. There are five basic

eatimation methoda that are wusmed in IRT for parameter
estimation: Maximum Likelihood Esatimation (MLE) (lLord,
1980), Bayeaian Modal Estimation (BME) (Samejima, 1980)
{alao called Modal A-Posteriori (MAP), (Bock, 1983)]1, Owen’s
Sequential Bayesian (OSB) (Owean, 1975, Expected
A-Poateriori (EAP) (Bock, 1983), and Marginal Maximum
Likelihood (MML) <(Bock and Aitkin, 1981). 1In addition to
these, there are variationa such as the Robustified
Jackknife (Wainer & Wright, 1980), h-estimators (Jones,
1982), and biweight estimates (Bock & Mislevy, 1981).

All of thase estimation methode produce estimates that
are biased to some degree. MLE (Lord,1983a), and BME (Lord,
1983b, 1984) were shown to be biased to order n-1l; that
is té say the bias is inversely proportional to n, the

numbar of itema in the test, other thinga being equal. OSB,
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EAP, and MML are all Bayesian procedures (in spite of MML’s
title), and, therefore, also are biased to order n-1, The
biweight and h-estimators are robust M-estimatore fmodified
MLE, (See Andrews et al, 1972)] designed to reduce the
influence of outliers rather than to reduce bias.

The bias of jackknifed estimators, which were
introduced by Quenocuille (1956), is of one order less than
the order of bias of the estimator jackknifed (Kendall &
Stuart, 1973). Therefore, the bias of the Robustified
Jackknife, which jackknifes MLE, should be of order n-2
except for any bias caused by the robustification.
Unfortunately, the reduced bias of jackknifing ia achieved
by increasing the required computations by an order of
magnitude. That is to say, for a test of n-items, the
computational time for the jackknifed MLE is n times the
computational time for the MLE itself. Even on large
computers this computational intensity increases CPU time
from minutes to hours;: thie increase ies unacceptable in most
aettings.

Other methodsa of bias reduction have been used with
some success. For MLE, Cox & Hinkley (1974) suggest
evaluating the bias at the value of the estimate, and then
aubtracting the estimated bias from the eatimate to produce
an improved estimate. Anderson and Richardeon (1979) and
Schaefer (1983) uaed this technique asuccessfully on

discrimination and 1location parametera, respectively, of



S
logistic models. One difficulty with this approach ia that
for models 4in which bias is a monotonic function of the
parameter being estimated (aa is often the cagse in IRT),
error can actually be increased rather than reduced;

Lord (1983c, Personal Communication) haa suggested
using as an estimate of 8 that value of the parameter, which
when added to the biaas evaluated at the value, 1is equal to
the maximum likelihood estimate. There are two difficulties
with this estimator: 1) it is not necessarily unique, and 2)
if the maximum likelihood estimate is infinite, a0 is this
estimator. It is unknown whether this approach, used with
other estimators, would overcome thase difficulties. A
similar, untried estimator is the value of the parameter,
which when added to ite biaa, maximizes the 1l1likelihood

function.

Weighted Likelihood Estimation. For & test of n
items the MLE of 6, MLE(8), is the value of 8 that maximizes

the likelihood function, L(ui8), where

n uj l-ujy
L(uig) = w P(B) = Q(B) , «2)
i=1
and u is the vector of n acored item responsaes
(uj = 1 if item i is correctly answered, and uj = 0 1if

item i is incorrectly anawered; i =1, 2, ---, n), and

Q(8) = 1 - P(8). Hereafter, the subscript i will be dropped
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for convenience, unless it is needed for clarity. MLE(8) is

found at the zero of the likelihood equation,

n
14 = 6/60 1n L(u!@) = zl(u-mp'/po =0 , 3
i=

wvhere P’ = §/606 P.
A clasas of M-estimatora, =z = M(Z2), of the parameter 2

mnay be defined as the value of 2 that maximizes,

n uj 1-uy
£(2)LC(uiB) = f(Z)-w1 P(B) - Q(8) » 4>
i=

wvhere 2 is a function of 6. The M-eatimate of 2 is found at

the zero of the M-estimate esquation,

zn(u-P)P'/PQ + 8§/68 1ln £¢2) = O . (S)
i=1
1f £(2) is a constant, z is a maximum likelihood eatimate of
2, MLE(Z2), and (5) reduces to (3). If £(2) is an aasumed
prior density function of 2, then (4) is the posterior
density function, and z is a Bayesian Modal Estimate of 2,
BME(2).
Lord (1983a) givea the following aaymptotic expression

for the biaa of MLE(8), BIAS(MLE(®)), which 18 of order

n-1:



BIAS(MLE(8)) = ~J/(2I%") 6

where I is teat information,

I =Z3p’2/pPQ ,

J = EP’P*/PQ ,

and P" = §2/66* P . Equation (6) is equivalent to the
general expression of BIAS(MLE(B8)) for a multinomially
distributed variable, given by Cox & Hinkley (1974, p. 310),
Lord (1984) gives the bias of BME(8) with a standard normal

prior.

BIAS(BME(8)>)> = BIAS(MLE(®)) - 8/1 (7)

BIAS(BME(8)) is also of order n-1l. The last term on the

right hand side (RHS) of (7) ias the derivative, with resaspect
to 8, of the log of the standard normal denasity divided by
test information. From this obaservation, we can conjecture

that the bias of the M-estimator defined by (5) is

BIAS(M(2)>) = BIAS(MLE(B)) + (86/866 1ln £(2)>/1 . (8)

Thus, in order to find the M-estimator that is unbiased, we
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only nead set the RHS of (8) equal to zero, and sasolve for

£(2). Substituting (6) into (8), we obtain
6766 1n £(2) = =J/(2I) . (9

Replacing £(.) with w(.) in (5) to emphasize that the function is

now specifically defined, and letting 2 = 6 yields

n
Z (u-PYP’/PQ + 6/68 1ln w(8) = 0 , (10)

i=1

and substituting (9) into (5), gives

n
Z (u-PYP’/PQ@ + J/(2I> = O , (11
i=1

where I and J are as defined in (6). An eatimate satiafying
(11) is called a Weighted Likelihood Estimate (WLE). If the
conjecture above is correct, then BIAS(WLE(8)) should be

only of order n~2, one order less than MLE(8) and BME(8).
THEOREM: WLE(8) ia unbiased to order n-1l, i.e.
BIAS(WLE(8)) = O + o(n-1) ., (12>

Appendix A givea the mathematical proof of the theorem for

rather restrictive conditions. Apparently, however, this
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... method of removing the firast bias tera will work in
conplete generality, and can be extended to any form of
consistent estimating equation where the mathematical fora
of bias ia computable.* (Hinkley, 1985, 'Personal
Communication). WLE(©) is asymptotically normally
distributed with variance equal (asymptotically) to the

variance of MLE(8), i.e.,
VAR(WLE(B8)) = VARCMLE(8)) = I-1

Warm (1985) affirmed (12) in a Monte Carlo satudy of the
asymptotic properties of WLE(8), and found that VAR(WLE(8))
converges to the asymptotic value (I-1) more rapidly than
VAR(MLE(8)).

In general there is no closed-form aolution for the
indefinite integral of &6/68 1ln w(B8) in order to solve for
w(8). However, 1if the c-parameters are equal to =zero £for
all itemsa (as they are in the one and two parametar models

of IRT), then

w(g) = 1IX% (cy = O, all i) .



TWO EXPERIMENTS TO EVALUATE WEIGHTED LIKELIHOOD ESTIMATION

The proof in Appendix A and the results of Warm (1985)
speak wall of the asymptotic properties of WLE. While these
properties are crucial to the mathematical atatistician,
they are of lesa interest to users of IRT in practical
testing applicationsa. In real teating sasituations, the
number of items in a test seldom exceeda 100, which may be
too few for asymptotic results to hold.

To be especially useful, an estimation method must be
shown to be practical for conventional testa with fewer then
S50 items (the fewer the better). By "conventional tesat” is
meant a paper and pencil test on which all examineea take
the same items. A limitation of Monte Carlo studies is that
the results are specific to the deaign of the atudy. .The
usual solution for the choice of the design is to select
either an idealized case, which may not generalize to more
than a few realiastic situationa, or to select a ‘*“typical”
case. The second alternative was chosen for thia atudy. The
conventional tests, simulated here, were designed to have a
Teat Information function roughly *“normal®” in shape. Lord &
Novick (1967) point out that this is a common design. This

10
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shape was accomplished by choosing normally distributed
b-parameters for the itemas. Once the groass shape was
decided upon, other details were resolved; namely the values
of the a- and c-parameters, and the range of the number of
items in the simulated testa. Both the a- and c-parameters
affect the amount of test information (but in different
waya). Variability among the a- and c-parameters in a given
teat has '"local" effects, but not important overall effects.
Oon the other hand, the amount of test information ie
important to the behavior of an astimator. To keep the
number of possibile permutationa of the variables in the
design manageable, the c-parameter for all itema in all
teate was held constant at 0.20 - a typical value. Two
values were chosen for the a-parameters, a "moderate’ value
(1.0), and a “high® value (2.0). To avoid the local effects
mentioned above the a-parameters for all itema in a given
test were aet to the same value. A wide range of test
lengths was chosen (10 to 60). The six test lengtha by two
values for the a-parameter give 12 different conventional
tests.

With the pending adoption of tailored testing by the
U.S. Armed Forces (Green et al, 1984) for the ASVAB (Armed
Services Vocational Aptitude Battery), the behavior of the
8-eatimator in tailored tests (Lord, 1980) is of current
intereat. The same conflict between "idealized"™ versus

“typical” occura in this case for the design of the
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hypothetical itea pool. Various solutions have been chosen.
McBride (1977) used both an ideal, <finite item pool and an
infinite 4item pool. MNaurelli (1978) and HcKinley.& Rekase
(1981) used a finite item pool with normally distributed
b-parameters. Gorman (1980) used finite item pools with
both rectangularly and normally distributed b-parameters.
Jensema (1977) showed that the design of the item pool
gstrongly influences the results, and recommended
rectangularly distributed b-parameters.

For the tailored testing experiment in the present
inquiry two item pools with rectangularly distributed
b-parameters were used -- differing only in the a-parameter.
The a-parameters of one pool were held constant to a high
value (2.0) in order to simulate an ideal, infinite item
bank. The a-parameters of the other item bank declined as
the number of items administered increased. The purpoase of
the declining a-parameter was to simulate the depletion of
items with high item information as the tailored test
proceeda; this always occurs with a finite item bank. The
c-parameters of all items in both item banks were held
constant (0.20) as with the conventional test.

The evaluation of a new estimator auch as WLE requires
a standard of comparison. Both MLE and BME were chosen as
“benchmark” methods, representing opposite extremes in
several ways.

The criteria of comparison are also issues. Since the
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mnajor motivation for the development of WLE is unbiasedness,
conditional on 6, bias is an important criterion. The
variance of an estimator is also a common criterion for
evaluating estimation methods. However, it is trivial to
produce small variance in an estimator -- s&imply setting
every estimate to some constant value produces zero variance
(although it wreaks havoc with bias). The mean squared
error combines both criteria, sasince it is the sum of the
variance and the squared bias by a common analysis of
variance identity.

In tailored testing, the number of items administered
is important, reflecting_nboth total testing time required
and the exposure of items to potential compromise. 1In
addition, the speed of eatimating ability between items may
be 4important. If computation time is too slow, total
teating time increases, and '"dead time" may occur, i.e. the
examinee may have to sit and wait for the next item to be
presented. Dead time can induce boredom and cause
underestimation of ability.

The measurement of ability on the 8-acale is not the
only scale of interest. True score, T = T(8) = E P(8), the
expected value of the raw, number-right score on a
conventional test, is often desired. A frequent criticism of
Bayesian estimators is an internal contradiction; the
expected value of the Bayesian estimator of a non-linear

transformation of 8 is not equal to the non-linear
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transformation of the Bayesian estimator of 6. On the other
hand MLE is invariant to non-linear transformation. True
score is a non-linear transformation of 8, and
E(T(BME(6)i6)) =/= T(8), where E ia the expectation
operator. But MLE(T) ie also biased; Thus, sa8ince WLE is
ostensibly less biased than MLE and BME, it would be

interesting to know whether E(T(WLE(8)i{8)) = T(6).



METHOD

Design of the Conventional Tests: For the compariaon of

the three estimators under a wide range of test lengths, 12
conventional tests were constructed. There were two tests
for each of six test lengths, n=10, 20, 30, 40, 350, and 60.
For each test length, the a-parameters of one test were set
to aj§ = 1.0, for all i=1,2,---n, and for the other test

aj = 2.0, all i. The b-parameters of all 12 teata were
distributed “normally*, using the inverse nornal
transformation, ¥-1(.). That is, for a test of length n,

bj = $-1¢((i-.5>/n). The c-parameters of all items in

all tests were set to 0.20 . These item parameters produce
a test information curve that is roughly 'normally' shaped,
and is a commonly used conventional test design.

At each of 17 values of 8 (= -4, -3.5, ---, 4>, 1000
sinulated examinees were administered all 12 tests, and
WLE(B8), MLE(8), and BME(8) waas computed for each examinee
and for each test. The same item responses were used for
all three estimators. The mean, standard deviation, and
mean squared error of the 1000 estimates of 6 was computed
at each of the 17 values of 8 for each teat and each

1S5
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estimator. 1In addition, the mean, satandard deviation, and
mean squared error of estimated True Score, T~ = T(8%), was
comnputed for each of the 1000 estimates of 6 at each of the
17 values of 8 for each estimator on the two testa with most
extreme Test Information functiona. Appendix B contains the
computer program used for the Monte Carlo study of the
conventional test. It ias written in the matrix algebra
language (PROC MATRIX) of the Statistical Analysis System
(SAS, 1980), and was executed on an IBM 3081 m=mainframe

computer.

Deaign of Tailored Tests: Six tailored teats, two for
each estimator, were administered to 100 sirulated examinees
at each of the 17 values of 8. For all tailored tests all
ci = .20 . For each of the three estimators one tailored
teat had all a§ = 2.0 . The other tailored test for each
estimator had declining a-parameters to sirulate the
declining item information available from a finite item
pool, sapecifically aj = (71-1)/35 . Following Weiss &
McBride (1984), the values of the b-parameters for all
tailored teasts were chosen so that the maximum of the item
information for the item a- and c-parameter was at the
current estimate of 8. That i1a&, the b-parameter of the

(1 + 1Oth jtem was

bj+1 = 6~ = 1ln(%(l + (1 + 8c)%))>/¢1.7a) ,
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where 8~ is the current estimate of 6 after the ith itenm.
The stopping rules for administering items were: 1)
stop if test information exceeds 20 at the current estimate
of 8, or 2) stop if the number of items administered (n) =
S50, whichever occurred first. The mean, standard deviation,
and mean squared error of the 100 estimatee was computed for
each of the 17 values of 8 for each test and each estimator.
In addition, for each tailored test and estimator the
average number of itema administered, and the average
iteration computation time per item were computed. Appendix
C contains the computer programr of the tailored teats, which
was written in TURBO PASCAL 3.0 (Borland, 1985), and was
executed on a Corona PC portable computer with an Intel 8087

high speed arithmetic processor chip.

Estimating 6: For the conventional tests, 8 was

iteratively estimated by the interval bisection method with

r = 15 iterations.

8“,.,;- = e“-,r-l + 6n’r » T = 1,2,""‘15,

m = WLE, MLE, or BME, and 6%n,0 = 06 .

For the firet four iterations, r =1, 2, 3, 4, ép,ri =1

with the a&ign the same as the objective function. In the
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remaining iterations, r = 5, 6, ---, 15, (ém,r! =
Sm,r-11/2. This iteration method has sevaral
advantages: 1) i8°-8! < S5, 2) it will find the loca} maximunm
closest to true 6, 3) the magnitude of the difference
between the true maximum and the final estimate < .00l1l, and
4) convergence is guaranteed.

Iterative esatimation of MLE(8) for the tailored tests
was accomplished by a modification of Newton-Raphson, called
“Fisher Scoring™ (Lord, 1980). In *“Fisher Scoring” the
second derivative of the log likelihood in the denominator
of the Newton-Raphson "delta" ias replaced with ites expected
value (which is eaequivalent to the negative of test
information). The reapective analogiea of Fisher Scoring

were used for WLE and BME.

0%myxr = 8%myp-1 * Smyr , r = 1,2,---,

m = WLE, MLE, BME, and 8%y,0 = 0 ,

with the magnitude of 6p,r limitad to 2.0 .

For m = MLE [with 11 as defined in (31,

dprr = (11/1), evaluated at 8%gp,r-1 .

For m = BME,
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Smoyr = (11 - 6)/(I+i), evaluataed at 8%p,r-1 .

For m = ULE,

Smoy = (11 + J/CRINI/ (T - (IJ’-1I’J>X/(C21%*)),

evaluated at 8°p,r-1 . Iterations were continued until

6p,r! € 001 , r© = 21, or i8%g,re+1! > S, whichever

occurred first.

Generating the scored item responges, uj: For each

item response P(8) was calculated, and a pseudo-randonm
number, y, uniformly distributed over the interval (0,1),
was generated. Then uj = 0, if y > P(8); else uj = 1.

The &seeds for the computer program random number generatora
were arbitrarily taken f£from the real-time clock of the

computer.
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Conventional Tests: The resulta for the 12 conventional
tests are remarkably gimilar, and virtually identical with
respect to the relative results among the three estimators.
Therefore, complete results of conventional teastse will be
presented here only for the teat with 10 items and a = 1.
Some results for the 30 and 60 item tests will also be shown
to provide a range of valuea. Figurea showing the results
of the other tests are in Appendix D, labeled D.1, D.2, etc.
To show the range of the designa of the 12
conventional teats, the Teat Information functiona of the 10
and 60 item tests with a = 1 and a = 2 are presented in
Figure 1. Figure 1 sgshows that the Test Information
functiona become higher and broader as the number of items

increases, but more peaked as the a-parametera increase .

Figure 2 (and D.1 through D.11) shows the average error
of each estimator at each of the 17 wvaluea of 6. As

predicted by equationsa (6) and (7) (and demonstrated by
20
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Lord, 1984), the bias of MLE(8) ia positively correlated
with 6, while the bias of BME(8) ia naegatively correlated.
The biaas of WLE(8) ia also negatively correlated with 8. It
is very clear from these figures that WLE(8) is con;iderably
less biased than both MLE(8) and BME(8) over the entire
range of 6, for all test lengtha and both values of the
a-parapeter. Since biases of the three astimators are zero
at slightly different points on the 6-scale, inevitably
there will exist very small intervals when the bias of
WLE(8) will excead the biases of MLE(8) and BME(8).
However, these instances will occur only when the bias of
WLE(8) is itself negligible. Note that the range of 8 over
which the bias of WLE(8) is apparently negligible (i.e.
indistinguishable <from the zero reference line) is
relatively broad, whereas the other two estimators have
small bias essentially at a point.

The relative magnitudes of the biases are difficult ¢to
compare across tests from the figures. Figures 3 and 4,
which display resultas for a = 1 and a = 2 respectively, show
the absolute bias of WLE(8) for the 10 item test and the
absolute bias of MLE(8) for tests with 10, 30 and 60 items.
Figures 3 and 4 indicate that WLE(8) with 10 items is less
biased than MLE(8) with two to six or more times as many
items, depending upon the value of 8. Figures 5 and 6 give
the same comparisons between WLE(8) and BME(8) in terms of

absolute average error. WLE(8) is also leas biased than
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BME(8) in teats with two or three times as many items.

Comparieson of the standard deviatione of estimated 6 in
Figure 7 (and D.12 through D.22) reveals a different picture
than the comparisons on bias. BME(8) has lees variability
than both WLE(8) and MLE(8) at all values of 8. (The decline
of the standard deviations of MLE(8) at high and low values
of 8 were caused by the artificial boundary of !MLE(8Y)-8:! <
S. In some cases all 1000 values of MLE(6) were equal to
the artificial boundary.) As discussed above, it is not
difficult to reduce variability at the expense of bias. This
trade-off accounts for the low standard deviation of BME(S8),
and will be expanded upon below. On the other hand WLE(8)
also has small standard deviation, and is considerably lesas
biased than BME(8).

The mean squared error (MSE) of WLE(8) (See Figures 8
and D.23 through D.33) is smaller than that of MLE(9) at all
values of 6 for all 12 tests. BME(8) has smaller MSE atill
at the more central values of 6. However, as the value of
the a-parameter or the number of items increases, the
advantage of BME(8) over WLE(8) shrinks rapidly. At all

other values of 6, MSE(WLE(8)) is considerably smaller than
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MSE(BME(8)).

True Scores (T) were estimated by evaluating T(8) at
each estimate of 8, T(8"). T(8) = T P(8), and T(®") = Z
P(6~). Figures 9 through 11 (and D.34 through D.36) give the
avarage error (T - T), standard deviation of T, SD(T™),
and MSE(T") of the tests with the lowest and higheat Test
Information functions. 1In general T(MLE(8))sMLE(T) is lesas
biased than T(WLE(8))=WLE(T) and T(BME(6))sBME(T) at all
values of 8 for all tests. BME(T)) is more biased than the
other two estimatore. The biaa of WLE(T) falls roughly half
way between the biases of MLE(T) and BME(T)>. SD(BME(T)) is
smallest on all tests at most values of 8. Except at
extreme 86, where MLE(T) ia severely affected by the
artificial boundary on MLE(8), SD(MLE(T)) is largest. Using
the standard deviation criterion, WLE(T)Y is usually
intermediate falling between BME(T) and MLE(T). MSECWLE(T))
is also usually intermediate in value with respect to
MSE(MLE(T)) and MSE(BME(T)). However, MSE(BME(T)) is
amallest at central values of 6, and largest at extreme
valuea of 8. MSE(MLE(T)), contrary to MSE(BME(T)), is

largest at central 8, and emalleat at extreme 6.

Tailored Tests: Figures 12 through 16 (and D.37) give
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the average error of 8~, SD(8"), and MSE(8*) for the
tailored testa. BME(8) is very biased at all non-zero
values of 8 on both teasts. MLE(8) ia slightly positively
biased at most values of 6 on both tests. WLE(é) is the
least biased estimator at positive values of 6. At low
values of 6 , the biases for WLE(8) and MLE(86) are about
equal and small. SD(WLE(8)) and SD(BME(8)) are about equal
on both tailored testa, as are MSE(WLE(8)) and MSE(BME(6))
at most values of 8. SD(MLE(8)) on the test with declining
a-parameters is also about the same as SD(MLE(O)) and
SD(BME(8)). However, SD(MLE(8)) and MSE(MLE(8)) are very

large at central values of 6 on the tailored test with a =

- - o - ——— - - - e T = > - - —— - Mn e n e e e -

The relative average number of items administered to
reach tﬁe stopping rule under the three estimators are
virtually identical for the two tailored tests. (See Figures
17 and D.38.) At central values of 6, WLE(8) and BME(®) used
about the same number of items, and as few as half as many
itens as MLE(8). Both WLE () and BME(8) required
conaiderably fewer items at central values of 6 than at more
extreme valuea. The number of items required by MLE(B)
declined slightly on both teats as 8 increased.

The average conputation times for estimating 6 between
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items is displayed in Figure 18 <(and D.39). For both
tailored teats, WLE(8) required more computation time than
either of the other two eatimatoras at all valuea of 8.
Computation time for MLE was nearly constant on bo£h tests
and at all values of 8. BME used the leaat computation time
of the three eastimators on both tests at all except extreme

values of 6.



DISCUSSION

WLE(8) is clearly a less biased estimator of 6 than
either MLE(8) or BME(8). In light of the proof in Appendix A
and the results found by Warm (1985), this outcome should
not be surprising in some circumstances. What ia surprising
is that the superiority of WLE(8) was demonstrated in
every condition investigated in thie study: 1i.e., for
test lengths ranging from 10 to 60 items; for a-parameters
of a =1 and a = 2; for all values of 86, and for
conventional tests as well as for tailored tests (utilizing
both infinite . item banka and simulated finite item banka).
Moreover, WLE(8) has small and roughly conastant variance
over a wide range of the 6-scale, as well as small MSE over
a much wider interval than either MLE(8) or BME(8).

For the conventional teats BME(6) also fared better
than MLE(8) on all three criteria -- bilas, SD, and MSE.
However, BME(8) benefitted greatly by the design of the
simulated tests. The tests were designed to have roughly
“normally*" distributed test information. The general effect
of this design was to bias esatimates outwardly (digress
estimates away from the peak of test information). BME(8)

44
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tendas to regress eatimates toward the peak of the prior
probability distribution. Since the peaks of tesat
information for these tests were located near 6 = O (which
was the paak of the atandard normal prior), the digression
of test information and the regression of the prior tended
to cancel out each other. For differently deaigned tests or
a different prior, where the peak of the prior is not nearly
coincident with the peak of test information, BME(8) would
be much worse.

The width of the interval over which an estimator
performs well is an important consideration. It |is
trivially simple to create an estimator that has small bias,
variance, and MSE over a asmall interval of the 8-scale. For
exanple, consider an estimator, £, which ia defined as
= k, where k is a constant. Then, used as an estimate
of 0, BIAS(R) = (k - 8), VAR(Q) = 0, and MSE(R) = (k - 687,
In the interval on the 8-scale where 'k - 8! is sufficiently
small, @ may be superior to any other estimator by all three
criteria. Note that a nonlinear tranaformation of @ is
equally superior over a small interval of the nonlinearly
tranaformed 6-scale. The estimator R can be considered to
be a Bayesian =modal estimator for which the prior has
non-zero density only where 0 = k. 2 compresses all
estimates to the constant k, which hasa no functional
relationship to the teat. Other Bayeasian modal estimators

have the same characteristic -- they ‘*regress®” estimates
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toward the peak of a prior distribution, which algo has no
functional relationship to the test.

This analysis of the estimator & makes it glear why
Bayesian modal estimators asometimes work well -- by
coincidence, they sometimes ‘“regress” estimates in a
direction opposite to the bias of MLE(8). Bayesian
estimators may also, by coincidence, compress the eastimates
into an interval of the 6-scale that is of interest:; this is
exactly the reason that BME(8) had the smallest MSE for
certain relatively small intervala. On the other hand, if
the coincidenceas do not hold, then the “regresaion®” of the
Bayesian estimators will worsen estimation, rather than
improve it. In general, BNE(8) will work well if the prior
approximates w(8), the weighting function for WLE(8). For
the tests in this s8study a normal prior with standard
deviation of two would have approximated w(8) much better
than the standard normal prior. Since the teats in this
atudy have more peaked test information curves than many
actual tests, in practice the priors for BME(8) should have
standard deviations greater than two in order to approximate
w(e).

Apparently, Bayesiana have discovered thia fact by
trial and error. Lord (1984) states that leading Bayesian
testing practitionera prefer to use priors more diffuse than
the atandard normal prior due to practical conaiderations.

Thus, it can be argued that the appeal of BME(8) in JIRT is
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not due to the propertjes of the posterior distribution, but
rather is due to the coincidence that in IRT, w(8) can often
be approximated by a diffuse normal curve.

WLE(8)> also 'raegressea” estimates. However, the
regressing function, w(8), is a function of the test, and is
in no way arbitrary. Its action is alwaysa to regress
estimatea in the direction opposite of the biaa of MLE(®),
and into an interval for which the test has sufficient
information to reduce bias, variance, and MSE.

Pure MLE ia everybody’s whipping boy, (See, for
exanple, Thissen & Wainer, 1983) because (even though it has
very attractive asymptotic properties) its performance with
teats of finite length is miserable by most criteria. The
unbounded nature of MLE(8) is one source of its difficulties
with finite testa. It is well known that if the reaponse
vector u = 1, (all items anawered correctly), then
NLE(8) = +w, and if u = 0 (all items answered
incorrectly), then MLE(8) = -w. The problem is basically
that of mapping the finite set of (2n) possible response
vectors onto the (infinite) set of real numbers. Thus, in
practical applications pure MLE(8) is never used. Upper and
lower bounds on MLE(8) are always set. Even in theoretical
work these bounds are necessary; e.g. in Lord’s (1983a)
derivation of the biasa of MLE(B6), ©6 is assumed to be
bounded. The practical bounds are sat arbitrarily at values

that are not expected to have a significant impact. It has
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not baeen recognized that there exist rational, natural upper
and lower bounds for MLE(8) in IRT. The rational, natural
bounds occur at the points where the slope of BIAS(MLE(8))
is equal to one. That is, MLE(8) should be defined only in
the interval(s) where

8- <= MLE(®) <= 8* ;
vhere 8~ is defined such that

6760 BIAS(MLE(G-)) = 1 ,
and

6$2/668* BIAS(MLE(8~)) < O ;
and, furthermore, where 6* is defined such that

$/60 BIAS(MLE(B*)) = 1 ,
and

627682 BIAS(MLE(S6*)) > O .

Outside these bounds the alope of BIAS(MLE(6)) is always

greater than one, 1i.e. the magnitude of BIAS(MLE(8))
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increases faster than 8 changea. Therefore, the expacted
value of MLE(8) is always farther from true 8 than is the
closer of the two bounds, and the closer bound is a less
biased estimate of 6 than is MLE(6). Moreover, the
replacement of the closer bound for MLE(8) as the estimate
of e reduces the variance of the estimates, and,
consequently, also the MSE of the estimates. Thuas, for all
three of the criteria used in this study (bias, variance,
and MSE), MLE(8) is always degraded by permitting it to fall
outeide the closed interval ([(6~, 8*]. These bounds

are proposed as reasonable or *sensible”™ limits on MLE(S).
Therefore, MLE(8) with these bounds may be termed *“Sensaible

MLE(8)>*", [SMLE(®)1].

- . R - - G TR - - - D S Y - D SR D em P We S e S G D D WS W Em W . G SR - -

Table 1 1lists the minimum and maximum values of
SMLE(9), and the actual minimum and maximum values of WLE(8)
and BME(O) for the 12 conventional tests. Note that the
minima of WLE(8) ias always more extreme (more negative) than
the minima of the other two estimators. In contrast, the
maxima of SMLE(8) are by far the most extreme. This extreme
upper bound on SMLE(8) would do little to reduce bias, but
at least would prevent infinite estimates of 6. The
extraordinary asymmetry of the bounda of SMLE(8) is
apparantly due to the loass of teat information at low 86,

caused by the non-zero c-parameters.
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TABLE 1
Minimum, MLE(86~), and Maximum, MLE(8*), of '"Sensible"
MLE(8), and of WLE(8) and BME(8), for Conventional Testa
with n items, All a = 1 or 2, Normally Distributed b, and

All ¢ = 0.20 .

ssssss—=sscssssscsssssssssEssEssSssmcss=sssEsscssmsssssssss
a=1 a =2
Min Min Min Min
n_ MLE(8-) WLE(S) BME(8)  MLE(8-) WLE(8) BME(8)
10 -1.907 -2.543 -1.769 -1.685 -2.002 -1,763
20 ~2.284 -2.989 -2.175 -2.028 -2.337 -2.068
30 -2.486 -3.242 -2.410 -2.208 -2.519 -2.237
40 -2.623 -3.418 -2.574 -2.329 -2.642 -2.354
50 -2.725 -3.553 -2.701 -2.419 -2.735 -2.444
60 -2.807 -3.664 -2.803 ~2.491 -2.809 -2.515
---------------- Mex  Max  Max  Max
n_ MLE(8*)> WLE(8) BME(8)  MLE(8*) WLE(8) BME(8)
10 22.847 2.347 1.587 12.246 1.903 1.630
20 23.163 2.800 2.009 12.561 2.229 1.941
30 23.331 3.058 2.252 12.729 2.408 2.116
40 23.444 3.238 2.422 12.842 2.530 2.238
50 23.529 3.376 2.553 12.927 2.622 2.330

60 23.596 3.489 2.659 12.995 2.696 2.404



51

For both tailored tests, WLE(8) was only slightly less
biased than MLE(8) (and at high 6 only). For the tailored
teat with a simulated finite item bank, WLE(8) and MLE(@)
were also about the same on the standard deviation and MSE
criteria, although MLE(8) may have some small advantage at
low 8. However, for the tailored test with an infinite item
bank (a = 2), MLE(6) was considerably worse than WLE(8) over
a wide central region of 6 (using the standard deviation and
MSE criteria). This effect is apparently due to the high
values of the a-parameters, and would seem to be a
conditional (on 6) analogy to the “attenuation paradox"
(Lord & Novick, 1967); 4i.e. the conditional variance of
MLE(8) increased (for central 6) when the a-parameters
increased from one to two. If so, then this result suggests
that the selection of items for item banka ao as to maximize
item information may not be optimal for MLE(6).

Since WLE(B), over a wide range of 6, used many fewer
items than MLE(8) in order to achieve the stopping criteria,
tailored teats using WLE(8) would, in general, be much
shorter than if MLE(8) were used to estimate 6. This
advantage translates into savinga in terms of testing time
and the exposure of items to éotential compromise.

Computation time for eatimating 6 (in the interval
between itema in tailored testing) is an important
conaideration for tailored tests. The time required for

WLE(8) is always more than for MLE(8) at all values of 86 --
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ranging from a s8light increase in time to more than three
tines as long. This delay may or may not be aignificant,
howvever. The times found in this study are only relative.
The absolute times required for applicationa will depend
upon several factors, such as the speed of the computer, the
programming language, and the cleverness of the programnmer.
If the actual computation times can be decreased to one
second or lesa, then no harm is caused by the extra

calculations required for WLE(B8).



SUMMARY AND CONCLUSIONS

A new method of estimation , Weighted Likelihood
Estimation (WLE), was derived, and proved to vyield
asymptotically normally distributed estimates, with <£inite
variance, and unbiased estimates to order n-1l. The
unbiasedness of WLE(8) is in contrast to Maximum Likelihood
Eatimation (MLE) and Bayesian Modal Estimation (BME), both
of which are biased to order n-1l. The new estimator was
applied to ability estimation in IRT. Using Monte
Carlo methods, WLE(6) was compared to MLE(8) and BME(8) on
12 conventional testas with 10 to 60 itema, and a-pararetera
of 1 or 2. The three estimators were also compared on two
tailored tests. One tailored test had an infinite item bank
and all a = 2 . The other tailored teat simulated a finite
item bank with declining a-parameters.

In all teatas WLE(8) was leae biased than both of the
other estimators. In addition WLE(8) had small variance
over the entire range of the 8-acale, as well as small mean
squared error even at non-centreal 6. The relative
unbiasedness of WLE(8) makes this estimator particularly
appropriate in applications of Item Response Theory (IRT)

53
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for which the parameter invariance property ia important.

Two new insighta for MLE(8) were qiacovered: 1)
natural, rational bounda, and 2) a conditional apalogy to
the attenuation paradox in tailored tests with high
a~-parameters.

The heart of WLE ia a weighting function, w(8), which
is multiplied times the likelihood function, and the product
maximized. Thia weighting function, which removes the bias
and uncontrolled variance of MLE(6), is a function of 8 and
the item parametera, and is apecific to each test. It was
shown to be equal to the square root of test information for
the one- and two-parameter models of IRT, and equal to a

closely related function for the three-parameter model.
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APPENDIX A

PROOF THAT THE WEIGHTED LIKELIHOOD ESTIMATE IS UNBIASED

TO ORDER n-1

The approach and techniques of this derivation were taken
from, and parallel closely, the derivations in Lord(1983a,
1983b, & 1984) of the firat order biases of the Maximum
Likelihood and Bayeasian Modal Eatimates in Item Response
Theory (See Lord,1980), both of which biases are of order
n-1., The Weighted Likelihood Estimator removes the first

order biaa term from the Maximum Likelihood estimate. The
derivation is 1limited to a sgingle parameter for a
multinomially distributed variable and a regular, ‘smooth"
nathematical model with rather restrictive assumptionsa.
Apparently, however, thia "... method of removing the firsat
bias term will work in complete generality, and can be
extended to any form of consistent eastimating equation where
the mathematical form of bias 1is computable.*" (Hinkley,

1985, Personal Communication)

Preliminaries: For a set of n independent experiments,
62
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Hij¢4 = 1,2,---,n) with binary outcomes, uj,
(success or failure), 1let P = Pj(8) denote the
probability of a success(uy = 1), and let Q =
Qj(8) = 1 - P3(8) denote the probability of
failure(uj = 0), where Pj(8) is a strictly increasing
function of the common parameter 6 for all n experiments.
P1(8) is not necessarily equal to PL(8), h =/= 1.
Let u = (uj} denote the multinomially

distributed, n x 1 vector of outcomes of the n experiments.

Assumptjions:

(a) 6 is a bounded variable on a continuous acale.

(b) P4(8)> is continuoua and bounded away from O and 1 at
all values of 8, i=1,2,---,n.

(c) At least the first five derivatives with respect to 6 of
Pj(8) exist at all values of 8, and are bounded.

(d) For asymptotic considerations n is considered to be
incremented with replications of all of the original n

experiments.

From these assumptiona and theorems 1(i) and 1(iv) of
Bradley & Gart(1962) it follows that the Maximum Likelihood
Estimate of 6, MLE(8) = 8~, is a consistent estimator of 6,
and that n%-(g~ - @) is asymptotically normally
distributed with zero mean and with variance given by

lim 1/7(nl)> »
n->eu
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where I ias Fisher’e Information. Assumption (d) guarantees

the existence of this limit (Lord, 1983a).

Maximum Likelihood Estimation

The likelihood function, L(ui8), ias given by (A.1).

n uj 1-uj
LCuig) = 1”1 Pi(8) * Q@31¢8) (a.1>

Let

lg = &8/608 In LCu'@),

where §8/688 indicatea the sth partial derivative

with respect to 8, and 1ln indicates the natural logarithnm.

The Maximum Likelihood Eatimate of 8 ia defined aa the value
of 6 that maximizea (A.1). Usually 8~ ia found by aetting

1l equal to zero, and solving for 6, as in (A.2).

6/68 1ln L(uig) = 114 = Z(u - P)P’/PQ = O ’ (4.2)

evaluated at 6~. In (A.2) and hereafter the argument (6)

and index i are usually dropped for convenience.

The asasymptotic variance of MLE(8) is the reciprocal of

Fisher’s Information (Kendall & Stuart, 1973, p. 10).
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I = E(13?) = -E(12) = £ P’*/PQ , (A.3)

where E ia the expectation operator, and P’ = §/68 P.

The bias of MLE(8), BIAS(MLE(8)), from Cox & Hinkley (1974)

ia given by (A.4).

BIAS(MLE(8)) = E(8* - 8) = -J/2I* , (A.4)

where

J = -2E(1112) - E(13) = £ P’P"“/P@ , (A.S)

and P* = §2/8662 p .,

Equation (A.4) is equivalent to Lord’s (1983a) equation (28)

for BIAS(MLE(8)). Note that I and J are of order n, and

that since neither are a function of u, J/2I* is of

order n-1,

Weighted Likelihood Estimation

The Weighted Likelihood Estimate of 8, WLE(8) = 8*,

is defined ags the value of 6, such that the Weighted
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Likelihood Function, given in (A.6) ia maximized,
w(B8) * L(ui8) ’ _ (A.6)

where 6/8668 1ln w(8) = J/2I. WLE(8) is found by solving the

weighted likelihood equation as in (A.7),
17 + J/2I = O » (A.7)

evaluated at 8%, or, letting dg = §8/868 1n w(8),

as in (A.8).

11 +dg = O (A.8)
Note that

dy = J/21 = -I-BIAS(MLE(8)) .

Rather than finding WLE(8) by maximizing (A.6), it will be
useful to maximize the nth root of (A.6), which will
always yield the same eastimate for any given set of data
since n is alwaya positive. The reason for doing so 18 to
help keepktrack of the order of the terms. Letting Tg =
the ath derivative of the log of nth root of <(aA.6),

and Tg* = Ta, @valuated at 8%,
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Ts = 68/668 1n [ w(8) * L(uie) 11/n

= lg/n + di/n ) (A.D)

THEOREM: WLE(8) is unbiased to order n-1, i.e.

BIAS(WLE(8)) = 0 + o(n-1) ,

whaere o(n~Tr) represents terms such that

lim nT=o(n~T) = O .

n->w

These are of order higher than n-f (i.e. n-Tr-1,

n-r-3/2, n-r-2 etc.).

It is sufficient to solve the nth root of (A.6):

T* = 13/n + di/n = O » (A.10)

evaluated at 6*. Letting x = (8% - 6), axpand (A.10)
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in terms of x and 6.

T1®* = ©

= T1 + xT2 + %x*T3 + x3Tq/6 + vxdvs/24, (A.11)

where Vs = Max(Ts) over 8, and iq1!i < 1. This closed

form of the expansion ias always valid, =making the proof of

the convergence of the Taylor series unnecessary. Letting

ds = Els/n.

and

ea = lg/n - gg,

then

lg/n = gg + eg »

and

Ts

gg + €a + da/n . (A.12)

The purpose of (A.12) is to separate Tg into a esum of
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terms not containing <((u - P), ga, & asum of terams

containing (u - P), eg, and a term that is a ratio of

sums not containing (u - P), dg/n.

Subatituting (A.12) into (A.11), s =1, 2, 3, 4, expresses

the expansion of the weighted likelihood equation 4in terms

of gas, eg, da/n, Vs, and powera of x in (A.13).

~(ag + di/n) = g1

+ x(g2 + e2 + d2/m)

+ %x%?(g3 + e3 + dz/n)

+ x3(gq + eq + dgq/nd>/6

+ 1x4vg/24 . (A.13)

We now need to evaluate some of the terma in (A.13), and

their expected values.

gy = O (A.14)

g2 = -n~1le3P’?/PQ = -I/n (A.15)

gz = (=37 + 2K)/n ’ (A.16)
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where

K = =(1-2P)P’3/(P@)* = -3E(1112) - E(13)

di

J/21

d2 = (IJ’ - I’'J)/21?

dz = (I*J" - II“J - 2II°J” + 2I’2*J>/2138

(A.17)

(A.18)

(A.19)

where (’) and (") indicate firat and second derivatives with

respect to 6, reapectively.

Since gg and dg do not contain (u - P),

Egs = gs »

and

Ede = ds .

@1 = n-1lT(Cu-P)P’/PQ

e2 = n~lef (Cu-P)[(P"/PQ)-(1-2P)P’*/(PQ)*1}

(A.20)

(A.21)

(A.22)

(A.23)
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Eag = O (A.24)

Since eg is n-l times the sum of the terms of lg’

that contain (u - P), eg may be expressed as

@z = n~1«2 (u-P)* Rgj , 8=1, 2, 3, 4, 5,

where Rgi is the (8 - 1)th derivative of P’/PQ, and

does not depend on n nor on uj. Since by assumption (b)

P and Q are bounded, and by assumption (¢) the required
derivatives of P are bounded, the Rgi and, thus eg,

are bounded. By assumption (d)> the bound does not depend on

n. The same conclusion is true of gg.

Since by asasumption (d) 11/n in (A.10) is of order n®,

and di/n is of order n-1l, (A.2) and (A.7) are
aayaptotically equivalent, and, asymptotically,
n%(e%*-8) = n%(6~-8). Because n%(8~-0) is
asymptotically normally distributed with =zero mean and
finite variance, 8o is n%(e"-8). Therefore, ExT
(r=1,2,*"+) is of order n-r/2, By similar 1logic
@sT is of the same order. By the Cauchy-Schwartz
inequality ExT+egt <= (Ex2r.eg2t)%, and

therefore ExTegt is of order n-C(r+t)/2 (r,t =

1,2,.").
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The Variance of WLE(B8),

To get the variance of 6*, VAR(6"), square (A.13) and

take expectations.

Ee1? + 2di1Eei/n + di1?*/n* = g2?Ex?

+ goEx’e2 *+ %g2g3Ex3

+ Ex?e2? + %g2ExSe3 + %g2g3Ex3 + %g3Ex4 + e+ (A.25)

The terms in the first line of (A.25) are of order n-1,

in the second line of order n~3/2, and in the third line

of order n~-2 with the remaining terms o(n-2).

Dropping all terms of o(n-1l), we can rewrite (A.25) as

Eei® + 2diEei/m + di’/mn* = g2'Ex* + o(n~1) .

Since Eej* = I/n*, Ee1 = 0, g2* = (-1I>*/n?, and Ex?

= VAR(B8"), (A.25) evaluates as (A.26).

(I + d12)/n* = (I*/n?)VAR(E*) + o(n~1), (A.26)

Solving for VAR(8%*) gives (A.27),
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VAR(8®) = (I + d3?)/I* + o¢n~1)

= I-1 + o(n~1) R  (AL27)

which proves that the asymptotic variance of WLE(8) is equal

to the asymptotic variance of MLE(®).

The Biaa of WLE(8).

Let Ej1 indicate the expectation operator in which only
terns of order n-1 are retained. To get the first order
statistical biag of 8" take the first order expectation

of (A.13) to obtain (A.28).

~-dy/n = g2E1x + El1xez + Xg3Ejx’ (A.28)

To evaluate Eixe2 multiply (A.13) by e2, and take

first order expectations.

-Ejeje2 = g2Eixe2 (A.29)

To evaluate the LHS of (A.29) asubstitute (A.22) and (A.23),
and take the expectation. Both (A.22) and (A.23) are suns
of n terma indexed with i, each containing the factor
(uj - Pij>. The product is a double aum of n? terms,

each, the product of a term in (A.22), indexed with i, and a
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term in (A.23), indexed with i’, say. Because the n

experiments, Hij, are independent, the expected value of

all termes are equal to zero, except the n terms where i =

i’. Noting from (A.1l6) that

K = I (1 - 2P)P’3/(PQ)?,

then

-Ejeire2 = (~J + K)/n? (A.30)

Substituting (A.15) and (A.30) into (A.29), and solving for

E1xe2 gives

Eixe2 = (J - K)/nI . (A.31)

Substituting (A.15), (A.16), (A.17), (A.27), and (A.31) into

(A.28) obtains

~J/2nI = (-I/NM)Ex + (J-K)/nI + %(-3J + 2K)/nI . (A.32)

Finally, solving (A.32) for Ex,

Ex = E" - 9) 0O + o(n-1) R (A.33)

which completes the proof.
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It is interesting to note that, if the mathematical model

such that
P" = P’?:8/680 (1ln P
as in Item Response Theory when cj = O, all i, then
EC(13412) = O ’
J = K = §/66 I = =-E(13) .
and
w(g) = TI%

Otherwise, w(8) = I“-exp(%jK/I 68) for which there is

no closed form solution for the indefinite integral.

is



APPENDIX B

SAS PROGRAM FOR CONVENTIONAL TEST MONTE CARLO STUDY

7/ EXEC SAS824, REGION=3000K

/."I'lll‘ll.l"l.'.'I".ll.'“.ll!“ll."".'..l.'lll'.l'./

/» THIS PROGRAM PERFORMS A MONTE CARLO COMPARISON OF

/» MAXIMUM LIKELIHOOD, WEIGHTED LIKELIHOOD, AND

/= BAYESIAN MODAL ESTIMATES OF THETA IN ITEM RESPONSE
/= THEORY. THE NUMBER OF ITEMS ARE SET IN THE

/# “XLET N = * LINE, AND THE COMMON A- AND C-PARAMETERS
/» IN THE 2 LINES BELOW IT. THE B-PARAMETERS ARE

/= NORMALLY DISTRIBUTED. 1000 THETA ESTIMATES OF EACH
/» ESTIMATOR ARE MADE AT 17 VALUES OF THETA, USING THE

/= SAME ITEM RESPONSES FOR EACH ESTIMATOR.

/= THOMAS A. WARM
/n UNIVERSITY OF OKLAHOMA
/= JULY 30,1985

"/

*/

"/

®/

»/

=/

»/

"/

"/

*/

«/

"/

/Q.'..i.lﬂ.*...l.lﬂ...'.ﬂ.ﬂ....ll".....'.'I.!.'Il.!'...../

XGLOBAL N N2 NR TA TC H
XLET N = 40 ;
XLET TA = 2.0 ;
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%LET TC = .20 ;

PROC MATRIX ; N = &N ;
/= CREATE VECTORS OF ITEM PARAMETERS =/

A = J(1,N, &TAY)
B = PROBIT(((1:&N) - .S)#/&N)>
C = J(1,N, &TC) ;

CNP = ‘A’ ‘B’ ’C’ ; PAR=A’!IB’IIC’ ;

NN = 1000 ; /% 1000 SIMULATED EXAMINEES =/
REPL = 1 ;

IF (N GT 30 > THEN DO; NN = 500 3; REPL = 2 ; END;

JIN = J(1,N) ; JNN1 = J(NN, 1)

CN1 = *2’ “LZ’ “WZ’ ’BZ2’ ’‘ERLZ’ ‘ERWZ’ ’“ERBZ’ ‘ERLZ2’

“ERWZ2’ ‘ERB22’ ‘INFZ’ ‘BIASMLE2’ “T’ ‘ERLT’

’ERWT’ ‘ERBT’; /= 2 MEANS THETA =/
DO IZ = 1 TO 17;
T2 = J(NN,1,(I2-9)#/2); /# T2 = TRUE THETA =/

/= COMPUTE TEST INF AND BIAS(MLE(THETA)) =/

P 1 + EXP( (TZ2#J1IN - JNN1=BOX#(JNN1=(-1.7#A ) ) ) ;

P JNN1#C + (JNN1#(1-C)X#/P ;
Pl = P(1,Y3 T = JINN,1, (P1(,+)) >
DP1 = 1.7 # &TA # (P1 - &TC) # (1 - Pl) #/ ((1) - (&TC)) ;
INFZ = ( DP1 # DP1 #/ (P1 # (1 ~ P1)))(,+) ;
DP2 = 1.7 # &TA # ((1) + (&TC) =~ (2#P1))> # DP1 #/
(1) - (&TC)) ;

BIASMLEZ = - ((DP1#DP2#/(P1#(1-P13))(,+))#/(28#INFZ#INF2Z) ;
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INFZ = J(NN,1,INF2) ;
BIASMLEZ = J(NN,1,BIASMLEZ) ;

/» BEGIN MONTE CARLO STUDY

DO I2 = 1 TO REPL ;
/%« STARTING VALUES OF ESTIMATES ARE TRUE THETA
LZ = T2 ; W2 = TZ2; BZ = TZ2;
/% MAKE MATRIX OF SCORED ITEM RESPONSES, U
U = (UNIFORMCJ(NN,N,02) LE P> ;
/= MAXIMUM LIKELIHOOD ESTIMATES

LINK MLEZ ; ERLZ = L2 - T2 ; ERLZ22 = ERLZ##2 ;

PH 1 + EXP( (LZ%JIN - JINN1«B)#(JNN1x(-1.7#A ) ) ) ;
ERLT = (JNN1=C + (JNN1=(1-C))>#/PH)(,+) - T ;

/% WEIGHTED LIKELIHOOD ESTIMATES
LINK WLEZ ; ERWZ = W2 - TZ ; ERWZ2 = ERWZ##2 ;

PH = 1 + EXP( (WZ2=J1IN - JINN1#B)#(INN1=(-1.7#A ) > )

..

ERWT = (JNN1=C + C(JINN1#(1-CO)O#/PHX)(,+) - T ;
/» BAYESIAN MODAL ESTIMATES

LINK BMEZ ; ERBZ = B2 - T2 ; ERB22 = ERBZ##2 ;

PH = 1 + EXP( (B2#JAN - JNN1«B)#(JNNi=(-1.7#A > ) ) ;

ERBT (INN1#C + (INN1=(C1-C)I)#/PHX(,+} - T ;

W =TZ:!:LZ:!W2!!B2!!ERLZ! !ERW2! |ERBZ!{ERLZ22} !ERWZ2! |ERBZ2
W = WIIINFZ:IBIASMLEZ:!!T! ERLT!IERWT! |ERBT ;

OUTPUT W OUT=W COLNAME=CN1 ;

END ; END ;

"/

n/

./

"/

-
»
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/= MAXIMUM LIKELIHOOD ESTIMATON SUBROUTINE =/
STOP ; MLEZ:

DO I1 =1 TO 15 ;

PH 1 +« EXP( (LZ2=2JiN - JNN1#B)#(IJNN1=(-1.7#A)> ) ) ;

PH JNN1#C + (JINN1=(1-C)J>#/PH ;

DPH1 = (PH - JNN1«CO)#(1 - PH)#(INN1=(1.7#A#/(1-C)) );

SL ((U-PH)Y#DPH1#/ (PH#(1-PH))) (,+) ;

IF (I1 LE 4) THEN DELTA = 1 ; ELSE DELTA = DELTA #/ 2;
LZ = LZ + DELTA#SIGN(SL) ;
END ;

RETURN ;

/#» WEIGHTED LIKELIHOOD ESTIMATION SUBROUTINE #«/
STOP ; WLEZ:
DO I1 =1 TO 1S ;

PH

1 + EXP( (WZ2»JIN - JINN1#B)#(INN1=(-1.7#A) ) ) ;

PH = JNN1«C + (JNN1«(1-C))#/PH ;

DPH1 = (PH -~ JNN1#CO#(1 - PHY#(JIJNN1=(1.7#A#/(1-C)) );
DPH2 = (JNN1«#(1 + C) =~ 2#PH)#DPH1#(JNN1#(1.7#A#/(1-C))) ;
INFW = (DPH1#DPH1#/(PH#(1-PH)))(,+) ;

JNFW = (DPH1#DPH2#/(PH#(1-PH)))(,+) ;

SW = ((U-PH)#DPH1#/(PH#(1-PH))>) (,+> + JINFW#/(2#INFW) ;

IF (I1 LE 4) THEN DELTA = 1 ; ELSE DELTA = DELTA #/ 2;
W2 = WZ + DELTA#SIGN(SW)
END

RETURN ;
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/% BAYESIAN MODAL ESTIMATION SUBROUTINE */
STOP ; BMEZ:
PO I1 =1 TO 1S ;
PH = 1 + EXP( (BZ2#J1IN - JNN1#BY#(JNN1x%(-1.7#A) ) ) ;
PH = JNN1#C + (JNN1«(1-C)O>#/PH ;
DPH1 = (PH - JNN1#C)Y#(1l - PHY#(JNN1«#(l.7#A#/(1-C)) )>;

SB = ((U-PH)#DPH1#/(PH#(1-PH))>)(,+) - B2

IF ¢I1 LE 4> THEN DELTA = 1 ; ELSE DELTA

DELTA #/ 2;
B2 = BZ + DELTA#SIGN(SB) ;
END ;

RETURN ;

/% PRINT AND PLOT OUTPUT =/
PROC SORT DATA=W ; BY 2 T INFZ2 BIASMLEZ;
TITLE 2=TRUE THETA, LZ=MLE(0), WZ=WLE(O0), BZ=BME(O),

INF2=INF(0), N=&N, A=&TA, C=&TC, B= -2, 2;

PROC UNIVARIATE DATA=W PLOT; BY 2 T INFZ BIASMLEZ:
VAR W2 LZ BZ;
QUTPUT OUT=W3 MEAN=AVWZ AVLZ AVBZ STD=SDWZ SDLZ SDBZ
MIN=MINWZ MINLZ MINBZ MAX=MAXWZ MAXLZ MAXBZ
KURTOSIS=KURTWZ KURTLZ KURTBZ

SKEWNESS=SKEWWZ SKEWLZ SKEWB2 N=NN;

PROC UNIVARIATE DATA=W NOPRINT; BY 2 INFZ2 BIASMLEZ;
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VAR ERLZ ERWZ ERBZ ERWT ERLT ERBT ERWZ2 ERLZ22 ERBZ22;
OUTPUT OUT=W4q
MEAN=AVERWZ AVERLZ AVERBZ AVERWT AVERLT AVERBT MSEWZ
MSELZ MSEBZ
STD=SDERWZ SDERLZ SDERBZ SDERWT SDERLT SDERBT
MIN=ERMINWZ2 ERMINLZ ERMINBZ MAX=ERMAXWZ ERMAXLZ ERMAXBZ

N=NN ;

PROC PRINT DATA=W3 ; PROC PRINT DATA=W4 ;

PROC PLOT DATA = W4 ;
PLOT AVERWZ#Z2=’W’ AVERLZ#2=’L’ AVERBZ#Z=’B’/0OVERLAY

ve

PLOT AVERWT»Z=°W’ AVERLT#*I=‘L’ AVERBT#2=’B’/0OVERLAY

e

PLOT SDERWZx*2=’'W’ SDERLZ»Z2=‘L’ SDERBZ#Z=’B’/0OVERLAY

.s

PLOT SDERWT=Z2=’W’ SDERLT»Z=’L’ SDERBT»2=’B’/0OVERLAY

.o

PLOT MSEWZ=2Z='W’ MNSELZ#Z2=’L‘’ MSEBZ2+Z2=‘B’ /OVERLAY

A1}

PLOT ERMINWZ»Z=°W’ ERMINLZ»*Z=°L‘ ERMINBZ#2=°B’ /OVERLAY

we

PLOT ERMAXWZ=Z=’W’ ERMAXLZ=»2=’L’ ERMAXBZ#2=’B’ /OVERLAY

e

TITLE Z=TRUE(O), T=TRUE SCORE, LZ=MLE(0), WZ=WLE(O),

BZ2=BME(O), INF2=INF(O), N=&N, A=&TA, C=&TC, B= -2, 2;

PROC PLOT DATA=W3 ;
PLOT SKEWWZ#KURTWZ2=’W’ SKEWLZ#KURTLZ=’L‘

SKEWBZ=KURTB2=’B’ /OVERLAY;



APPENDIX C

PASCAL PROGRAM FOR TAILORED TEST MONTE CARLO STUDY

PROGRAM W1ttl (INPUT,OUTPUT);
(sC-,U+}
{Thias program performa a Monte Carlo comparison of Maximum
Likelihood, Weighted Likelihood, and Bayesian Modal
estimates of theta in Tailored Tests. 100 estimates of theta
are made at each of 17 values of theta. The c-parameters
= ,2, a-parameters decline from 2.0 in increments of 1/3S5
with each item administered, and b-parameters are chosen to
mnaximize item information for the current estimate of theta,
given the a- and ¢- parameters.
Thomas A. Warnm
Univerasity of Oklahonmra
July 30, 1985 )

type

TimeString atringl(8];

VAR fileA,fileB : TEXT ;
itavzh,avnit,a,b : ARRAYI[1..101] OF REAL:;
u,nnit < ARRAYI[1..1011 OF INTEGER ;

sunmn,d3p,avzh,avzh2,adzh,djnf,dinf,d21nw,sumzh3, sunzhd,
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skewzh,kurtzh: REAL ;
msezh,time,z,zh,c,p,pq9,dp,d2p,dinl,dlnw,TestInf, sumzh,
sunzh2 ¢ REAL;
n,nn,maxn,il1,1i2,i3,id4,method,iz INTEGER;

meth : STRINGI3] ;

PROCEDURE Initializel; BEGIN

ASSIGN(fileA,’wlttla.prt’) ;

REWRITE(fileA) ; (» APPEND(fileA) ; =)
ASSIGN(fileB,’b:wlttlb.prt’) ;
REWRITE(fileB) ; (#« APPEND(fileB) ; =)
RANDOMIZE;

END;

PROCEDURE Initialize2; BEGIN

nn := 100

W
o
o

aumn

n
o
(o]
.

sumzh !
sunzh2 = 0.0 ;
sumzh3 = 0.0 ;
sumzh4 = 0.0 ;

FOR 12 := 1 TO 101 DO BEGIN

avnit[i2] :

.

o
o

nnit (12] :

..
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itavzh(i2] := O ;
END

END ;

FUNCTION realtime: REAL
TYPE
regpack = RECORD
ax,bx,cx,dx,bp,s8i,di,ds,es,flagas: INTEGER;
END;
VAR
recpack: regpack; {asaign record)
ah,al,ch,cl,dh: BYTE;
hour,min,sec: STRING (2] ;
hour2,min2,sec2 : REAL ;
code INTEGER ;
BEGIN ah := S2c; {initialize correct registersl
WITH recpack DO BEGIN
ax := ah SHL 8 + al;
END;
INTR(S21,recpack); {call interrupt}

WITH recpack DO BEGIN

STR(cx SHR 8, hour); {convert to stringl
STR(cx MOD 256,min); L |
STR(dx SHR 8,sgec): £ "

END;
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VAL (hour, hour2, code) ;
VAL(min,min2,code) :
VAL (sec,sec2,code) ;
realtime := 3600«hour2 + 60*min2 + gec2 ;

END ;

FUNCTION Pof (t:REAL;iS:INTEGER) : REAL ; {Compute P(Theta) 1}

BEGIN

+

Pof 2= ¢ + (1.0 - ©)/€1.0 EXP(-1.7 » a[iS] * (t -
bliSl > ) ) ;

END;

FUNCTION dPdz(i6:INTEGER): REAL

e

(1st deriv of P with respect to thetal
BEGIN
dPdz 2= 1.7 = al[i6]l & (p - c) = (1.0 - p)/ (1.0 - c);

END;

PROCEDURE ComputeTestlInf (t:REAL)
VAR 17 : INTEGER ;
BEGIN
TeatInf := 0 ;
FOR 17 := 1 TO n DO BEGIN
p = Pof(t,1i7) ; dp := dpdz(i7) ;
TestInf := TestInf + dp»dp/(p=(1.0 - p)) ;:

END;: END;
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FUNCTION d2Pdz2(i8:INTEGER) : REAL ;
{2nd deriv of P with reapect to thetal
BEGIN
d2Pdz2 := 1.7 » ali8] # (1.0 + ¢ -~ 2.0 # p) » dp /
(1.0 - o)

END;

FUNCTION d3Pdz3(i9:INTEGER) : REAL ;
(3rd deriv of P with reaspect to thetal
BEGIN
d3Pdz3 := aqr(l.7#ali9l#*#(1.0 + c¢ - 2.0 # p)/(l-c))=dp
- 2#1.7%ali9)=sqr(dp)/(l1-c);

END;

FUNCTION nextb : REAL ;
{Get b with max item info at theta“”}
VAR nextp : REAL ;
BEGIN
nextp := (1.0 + SQRT(1.0 + 8,0 = ¢)) / 4.0 ;
nextb =

zh - LN((nextp - ¢)/(1.0 - nextpl)) / (1.7 = alnl) ;

END;

FUNCTION nextu : INTEGER ;

(Get u for next iteml}



BEGIN
p 2= pof(z,n)

nextu = 0 ;
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IF (RANDOM < p) THEN nextu := H

END;

FUNCTION sign(t:REAL) :REAL ;

BEGIN

sign := 0.0 ;

IF (t > 0.0) THEN sign := 1.0 ;

IF (t < 0.0) THEN s&ign = -1

END;

PROCEDURE EstimateThetal22or3 ;

VAR

(1=MLE,

inf,delta: REAL ; nit : INTEGER ;

BEGIN

FOR 11 :=

O
e

1 to n DO BEGIN

p = Pof(zh,il) :

{SIGN function

]

2=WLE, and 3=BME)}
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Pq := p=(l1l - p) ;
dp := dPd=(il1) ;
dlnL := dlnL + (ulill - pl«dp/pq ;
TestInf := TestInf + dprdp/pq ;

CASE method OF

2 : BEGIN
d2p = d2pd=z2(il) ;
d3p = d3Pd23(il) ;
jnf := jnf + dp=d2p/pq :

djnf = djnf + ((d2p»d2p+dp=d3p)/pq)
- ((dp»dp#d2p#(1-2%p))/(pg*pq)) ;
dinf = dinf + (2«dp*d2p/pq)
- (dp#dp#dp=(1-2#p)/{(pg=pq)) ;
END;
END :
END;
CASE method OF
1 : delta = (dlnL )/(TestliInf > ;
{Maximum Likelihood}
2 : BEGIN {Weighted Likelihood}
dlnw = jnf/(2%xTestInf) ;
d2lnw = (TestInf#djnf - dinf#jnf)/
(24gqr(TestInf))> ;
delta := (dlnL + dlnw)/(TestInf - d2lnw);
END;

3 : delta := (dlnL - zh)/(TestInf + 1) ;
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{Bayeaian Modall
END ;

IF (ABS(delta) > 2 ) THEN delta := 2#gign(delta) ;

zh := zh + delta ;

»

UNTIL ((ABS({(delta) < 0.001) OR (ABS(zh) > S.0)
OR <(nit > 20)) :
avnitinl := avnitinl < nit ;

»

itavzhinl] := itavzhinl + zh ;

nnitlnl] := nnitfnl + 1 ;

»

END; (End of EastimateThetal20r3 Procedure)

PROCEDURE WriteHeading:;
BEGIN
WRITELN(fileA) :

WRITELN(fileA,’G’,’A’,” 2,

’ True Bias Skewnesa Kurtoaia
AvTime Aver.’, ’ MSE’ ) ;

WRITELN(fileA,’Method “, ‘8 e~

SD(8*) (8%) (8~) ’,’ (aecs)

itema N (87> *)

3
»

END:;

PROCEDURE Summarize ;
BEGIN
avzh = sumzh/nn ;

avzh2 := sumzh2/nn ;
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adzh := SQRTC(avzh2 - avzhwsavzh) ;
sunzh3 = sumzh3/nn ;
skewzh = (sumzh3 - 3mavzheavzh2 + 2savzh=aqr(avzh))/
(adzh=sqr(adzh)) ;
sunzh4 = gumzh4/nn ;

kurtzh :=( sumzh4 - 4eavzh#gumzh3 + 6#avzh2#aqr (avzh)

3saqr(avzh) sgqr(avzh) )/(agqr(sdzh)*aqr(sdzh));
sumn = sumn/nn ;

avzh := avzh - 2z ;

nsezh = sqr(avzh) + agr(asdzh) ;

CASE method OF

1 : meth = ’“MLE’

2 ¢ meth := ’‘WLE’

3 ¢ meth = ’‘BME’

A L]

END;
Writeln(fileA,meth:6,2:5:1,avzh:10:4,8dzh:10:4,
skewzh:10:4,kurtzh:10:4,
time:7:1,8umn:8:1,’ ‘,nn:3,msezh:8:4) ;
FOR i1 2= 1 TO 101 DO BEGIN
IF (nnit(il1l > O0) THEN BEGIN
avnit(ill = avnit(ill/nnit{ill ;
itavzhi{ill := itavzh(ill/nnit(il]) ;
WRITELN(fileB,’Meth=’,meth:3,"’ =’,z:4:1,’ Ave~=’,
itavzhli1]:8:3,"° n=’,11:3,
’ avNits=’, avnit(fi11:S:1,

’ N=’,nnit(ilj:2) ;
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BEGIN
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END :

END; Writeln(fileB);

L 1]

Initializel;

FOR method := 1 TO 3 DO BEGIN

WriteHeading ;

FOR

iz := 1 TO 17 DO BEGIN

= iz - 9)/72.0 ;

Initialize2 ;

time = realtime ;

FOR 12 := 1 TO nn DO BEGIN

-3
[ ]
&
rr
-
9
h
n
(o]
o]

REPEAT
n:=n-+1;

alnl = 2.0 ( afnl] = (71.0 - n)/35.0 ; }

..

binl := nextb ;

ulnl = nextu

EatimateThetal2or3 : {MLE, WLE, or BME}
UNTIL ((TeatInf > 20) OR (n >= maxn) );
sumn = ((sumn) + ( n))
ComputeTeatInf(zh) ;

Uriteln(method:3,1i2:5,’ =z=’,z:3:4,” zh=’, zh:3:4,
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* I=’,Testinfi:3:4,” n=’,n);
surzh = sumzh + zh :
sunzh2 2= aumzh2 + 2zh#zh ;
sunrnzh3 = suazh3 + zZhraqr(zh) ;
sumzhd4 := sumzh4 + sqr(zh) = sqr(zh) ;
END;
time = (realtime - time)/nn ;
Summarize ;
END;
END;

CLOSE(filed)

e

CLOSE(fileB)

END.
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ADDITIONAL FIGURES OF RESULTS
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Average (6 — ©)
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Figure D.1

Average Estimation Error of 6~ on Conventional Test with 20 Items, All a = 1,

Normally Distributed b, and All ¢ = 0.20 .

76



Average (6 — ©) n=30 a=1
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Figure D.2

Average Estimation Error of 6~ on Conventional Test with 30 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Average (6 — ©) n=40
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Figure D.3
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Average Estimation Error of 8" on Conventional Test with 40 Items, All a =

Normally Diatributed b, and All ¢ = 0.20 .
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Figure D.4
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Average Estimation Error of 8~ on Conventional Teat with SO Itemas, All a =

Normally Diastributed b, and All ¢ = 0.20 .
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Averoge (6 - 0) n=60 q=1
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Figure D.S

Average Estimation Error of 6”7 on Conventional Test with 60 Items, All a =

Normally Distributed b, and All c = 0.20 .
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Average (6 — ©) n=10 q=2
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Figure D.6

Normally Distributed b, and All ¢ = 0.20 ,

2,
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Figure D.7
Average Estimation Error of 6” on Conventional Teat with 20 Items, All a =
Normally Distributed b, and All c¢ = 0.20 .
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Average (6 — ©) n=30 a=2
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Figure D.8
Average Eatimation Error of 8~ on Conventional Test with 30 Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.9
Average Estimation Error of 8~ on Conventional Tesat with 40 Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.10
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Average Eastimation Error of 6~ on Conventional Teat with SO Itema, All a =
Normally Distributed b, and All c = 0.20 .
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Figure D.11
Average Eastimation Error of 6~ on Conventional Test with 60 Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.12
Standard Deviation of 86° on Conventional Test with 20 Items,
Normally Distributed b, and All ¢ = 0.20 .

All a = 1,
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Std Dev(8) n=30 a=1
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Figure D.13
Standard Deviation of 6" on Conventional Test with 30 Items, All a = 1,
Normally Diatributed b, and All ¢ = 0.20 .
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Std Dev(8)
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Figure D.14
Standard Devistion of 8 on Conventional Teat with 40 Itenms,
Normally Distributed b, and All ¢ = 0.20 .
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Standard Deviation of 6~
Normally Distributed b, and All c =

Figure D.1S
on Conventional Test with S0 Items, All a =1,

0.20 .
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Std Dev(8)
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Figure D.16
Standard Deviation of 6° on Conventional Test with 60 Items,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.17
Standard Deviation of 68 on Conven tional Test with 10 Itenms, All a = R

Normally Diastributed b, and All ¢ =

0.20 .
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Figure D.18
Standard Deviation of 8" on Conventional Test with 20 Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.19

Standard Deviation of 6 on Conven tional Test with 30 Items, All a = 2,

Normally Distributed b, and All ¢ = 0.20 .
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Figure D.20

Standard Deviation of 6~ on Conventional Test with 40 Items,
Normally Diatributed b, and All ¢ =

All a =
0.20 .
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Figure D.21
Standard Deviation of 6 on Conven tional Test with SO Items, All a
Normally Distributed b, and All c = 0.20 .
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Figure D.22
Standard Deviation of 6”° on Conventional Test with 60 1Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Mean Squared Error of 0~

Figure D.23
on Conventional Test with 20 Items,
Normally Distributed b, and All ¢ = 0.20 .

All a =

1,
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Figure D.24
Mean Squared Error of 86~ on Conventional Teat with 30 Itena,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.25
Mean Squared Error of 68" on Conventional Test with 40 Items, All a =1,
Normally Distributed b, and All c = 0.20 .
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Figure D.26
Mean Squared Error of 8~ on Conventional Test with S50 Itema, All a = 1,

Normally Distributed b, and All ¢ = 0.20 .
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Figure D.27
Mean Squared Error of 8~ on Conventional Teat with 60 Items,
Normally Distributed b, and All ¢ = 0.20 .

All a =
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Figure D.28
Mean Squared Error of 6~ on Conventional Test with 10 Items, All a =
Normally Digstributed b, and All ¢ = 0.20 .
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Figure D.29
Mean Squared Error of 6~ on Conventional Test with 20 Items, All a
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.30
Hean Squared Error of 8~ on Conventional Test with 30 Items, All a = 2,
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.31
Mean Squared Error of 6~ on Conventional Test with 40 Items,
Normally Distributed b, and All c = 0.20 .
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All a = 2,
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Figure D.32
Mean Squared Error of 86~ on Conventional Test with S0 Itema, All a =
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.33
on Conventional Test with 60 Items,

Normally Distributed b, and All ¢ = 0.20 .

All a = 2,
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Figure D.34
Average Eastimation Error of T" on Conventional Test with 60 Items, All a =
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.35

Standard Deviation of 1* on Conventional Test with 60 Items, All a =
Normally Distributed b, and All ¢ = 0.20 .
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Figure D.36
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on Conventional Teast with 60 Items, All a =
Normally Diastributed b, and All ¢ = 0.20 .
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Figure D.37
Error of 6" on Tailored Test with a = 2, Optimal
b-parameter, and All ¢ = 0.20 .
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Figure D.38
Average Number of Items Administered on Tailored Test with All a = 2, Optimal
b-parameter, and All ¢ = 0.20 .
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Figure D.39 .
Average Computation Time Between Items on Tailored Test with All a = 2,
Optimal b-parameter, and All ¢ = 0.20 .
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