INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced in to the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Warm, Thomas Albert

WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE THEORY WITH TESTS OF FINITE LENGTH

The University of Oklahoma
Ph.D. 1985
University
Microfilms

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE THEORY WITH TESTS OF FINITE LENGTH

A DISSERTATION
 SUBMITTED TO THE GRADUATE FACULTY
 in partial fulfillment of the requirements for the degree of
 DOCTOR OF PHILOSOPHY

By
 THOMAS ALBERT WARM
 Norman, Oklahoma
 1985

WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE THEORY WITH TESTS OF FINITE LENGTH

A DISSERTATION
APPROVED FOR THE DEPARTMENT OF PSYCHOLOGY

TABLE OF CONTENTS

Manuscript to be eubmitted for publication
Page
ABSTRACT iv
LIST OF TABLES v
LIST OF FIGURES vi
INTRODUCTION 1
TWO EXPERIMENTS TO EVALUATE THE
WEIGHTED LIKELIHOOD ESTIMATOR 10
METHOD 15
RESULTS 20
DISCUSSION 44
SUMMARY AND CONCLUSIONS 53
REFERENCES 55
APPENDIX A ... PROOF OF THEOREM 62
APPENDIX B ... COMPUTER PROGRAM FOR
CONVENTIONAL TESTS. 76
APPENDIX C ... COMPUTER PROGRAM FOR
TAILORED TESTS 82
APPENDIX D ... ADDITIONAL FIGURES OF
RESULTS 93

WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE THEORY WITH TESTS OF FINITE LENGTH

Abstract

Applications of Item Response Theory, which depend upon its parameter invariance property, require that parameter estimates be unbiased. All current estimation methods produce statistically biased estimates of both item and ability parameters. A new method, weighted Likelihood Estimation (WLE), is derived, and proved to be less biased than Maximum Likelihood Estimation (MLE) with the same asymptotic variance and normal distribution. WLE removes the first order bias term from MLE. Two Monte Carlo studies compare WLE with MLE and Bayeaian Modal Estimation (BME) of ability in conventional tests and tailored tests. The Monte Carlo studies favor WLE over MLE and BME on several criteria over a wide range of the ability scale.

Keywords: Maximum Likelihood Estimation, unbiased
estimation, statistical bias, Bayesian Modal Estimation,
Item Response Theory, tailored testing, adaptive testing.

LIST OF TABLES

TABLE Page1. Minimum, MLE(θ^{-}), and Maximum,MLE(θ^{+}), of "Sensible" MLE(θ, andof $W L E(\theta)$ and $\operatorname{BME}(\theta)$, forConventional Tests with n items, All$a=1$ or 2, Normally Distributed b,and All $\mathrm{c}=0.20$. - - - - - - 50

LIST OF FIGURES

FIGUREPage1. Test Information Curves of the 10
and 60 Item Conventional Testswith $a=1$ and $a=2$21
2. Average Estimation Error of θ^{\wedge} on Conventional Tests with 10 Itemm, All a $=1$, Normally Distributed b, and All $c=0.20$ 22
3. Absolute Average Estimation Errorof WLE(θ) with 10 Items, and ofMLE (θ) with 10,30 , and 60 Items:$a=1$, Normally Distributed b, and
All c $=0.20$ 25
4. Absolute Average Estimation Error of $\operatorname{WLE}(\theta)$ with 10 Items, and of MLE(θ) with 10, 30 , and 60 Items;
All $a=2$, Normally Distributed b, and All $c=0.20$ 26
5. Absolute Average Estimation Error of WLE (8) with 10 Items, and of BME (8) with 10, 30, and 60 Items; All a $=1$, Normally Distributed b, and $A 11 c=0.20$27
6. Absolute Average Estimation Error of WLE(E) with 10 Itang, and of BME (8) with 10, 30, and 60 Itema; All a = 2, Normally Distributed b, and A11 $c=0.2028$
7. Standard Deviation of θ^{\wedge} on Conventional Tests with 10 Items, All a $=1$, Normally Diatributed b, and $A 11 \mathrm{C}=0.20$29
8. Mean Squared Error of θ^{\wedge} on Conventional Tests with 10 Items, All a $=1$, Normally Distributed b, and All $c=0.20$. 30
9. Average Estimation Error of T^{\wedge} on Conventional Tests with 10 Items, All $a=1$, Normally Distributed b,
viii
and A11 $c=0.20$. 32
10. Standard Deviation of T^{\wedge} on
Conventional Tests with 10 Items,
All a $=1$, Normally Distributed b,
and All $C=0.20 \quad 33$
11. Mean Squared Error of T^{\wedge} on
Conventional Tests with 10 Items,
All a $=1$, Normelly Distributad b,
and $A 11 c=0.20$. 34
12. Average Estimation Error of θ^{\wedge} on
Tailored Test with Declining
a-parameter, Optimal b-parameter.
and $A 11 c=0.20 \quad . \quad . \quad 36$
13. Standard Deviation of θ^{\wedge} on
Tailored Test with Deciining
a-parameter, Optimal b-parameter,
and A11 c $=0.20$. 37
14. Standard Deviation of θ^{n} on
Tailored Test with $a=2$, Optimal
b-parameter, and All $c=0.20$. 38
15. Mean Squared Error of θ^{n} on Tailored Teat with Declining a-parameter, Optimal b-parameter, and All $c=0.20$. 39
16. Mean Squared Error of θ^{\wedge} on Tailored Teat with $a=2$, Optimal b-parameter, and All c=0.20. . 40
17. Average Number of Items Administered on Tailored Test with Declining a-parameter, Optimal b-parameter, and All c=0.20 . . 41
18. Average Computation Time Between Items on Tailored Test with Decilning a-parameter, Optimal b-parameter, and All c $=0.20$.
D.1. Average Eatimation Error of θ^{n} on Conventional Tests with 20 Items, All a $=1$, Normally Diatributed b, and All $c=0.20$. 94
D.2. Average Eatimation Error of θ^{\wedge} on Conventional Tests with 30 Items,
All $a=1$, Normally Distributed b,and $A 11 \mathrm{C}=0.20$95
D.3. Average Estimation Error of θ^{\wedge} onConventional Tests with 40 Items,All a $=1$, Normally Distributed b,and All $C=0.20 . \quad . \quad . \quad . \quad . \quad . \quad 96$
D.4. Average Estimation Error of θ^{n} onConventional Teste with 50 Items,All $a=1$. Normally Dietributed b,and $A 11 \mathrm{C}=0.20$97
D.5. Avarage Estimation Error of θ^{\wedge} onConventional Tests with 60 Items,Alla $=1$, Normally Diatributed b,and All $C=0.20$. 98D.6. Average Estimation Error of θ^{\wedge} onConventional Tests with 10 Items,All a = 2, Normally Distributed b,and All $C=0.20$. 99
D.7. Average Estimation Error of θ^{\wedge} onConventional Teate with 20 Items,All a = 2. Normally Distributed b.
xi
and $A 11 c=0.20$ 100
D.8. Average Estimation Error of θ^{\wedge} onConventional Teats with 30 Items,All $a=2$, Normally Diatributed b,and $A 11 C=0.20$101
D.9. Average Estimation Error of $6^{\text {- }}$ onConventional Tests with 40 Items,All a = 2, Normally Distributed b,and All $C=0.20$.102
D.10. Average Estimation Error of θ^{\wedge} onConventional Tests with 50 Items,All $a=2$, Normally Distributed b,and All $C=0.20$. 103
D.11. Average Estimation Error of on onConventional Testa with 60 Items,All a $=2$, Normally Distributed b,and A11 $c=0.20$. 104D.12. Standard Deviation of θ^{\wedge} onConventional Teats with 20 Items,All a $=1$, Normally Diatributed b,and All $C=0.20$105
D.13. Standard Deviation of 8^ onConventional Tests with 30 Items,Alla $=1$, Normally Distributed b,and All $C=0.20$106
D.14. Standard Deviation of θ^{\wedge} onConventional Tests with 40 Items,All a $=1$, Normally Distributed b,and All $\mathrm{C}=0.20$. 107
D.15. Standard Deviation of 0^{\wedge} onConventional Tests with 50 Items,Alla $=1$, Normally Distributed b,and All $\mathrm{C}=0.20$. 108
D.16. Standard Deviation of θ^{\wedge} onConventional Tests with 60 Items,All $a=1$, Normally Distributed b,and All $\mathrm{C}=0.20$. 109D.17. Standard Deviation oz on onConventional Tests with 10 Items,Alla $=2$, Normally Distributed b,and All $\mathrm{c}=0.20$110
xi1i
D.18. Standard Deviation of θ^{\wedge} on Conventional Tests with 20 Items, All a $=2$, Normally Distributed b, and $A 11 c=0.20 . \quad . \quad . \quad . \quad . \quad .111$
D.19. Standard Deviation of θ^{\wedge} on Conventional Tests with 30 Items, All $a=2$, Normally Distributed b, and $A 11 \mathrm{c}=0.20$. 112
D.20. Standard Deviation of 8^{a} on Conventional Teata with 40 Items, All $a=2$, Normally Distributed b, and All $c=0.20$. 113
D.21. Standard Deviation of θ^{\wedge} on Conventional Tests with 50 Itamg, All a $=2$, Normally Diatributed b, and A11 $\mathrm{C}=0.20$. 114
D.22. Standard Deviation of θ° on Conventional Tests with 60 Items, All $a=2$, Normally Distributed b, and All $C=0.20$. 115
D.23. Mean Squared Error of θ^{\wedge} on
$x i v$Conventional Tests with 20 Items,All a $=1$ Normally Diatributed b,
D.24. Mean Squared Error of θ^{\wedge} onConventional Tests with 30 Itens,All a \quad 1, Normally Distributed b,and $A 11 \mathrm{C}=0.20$. 117D.25. Mean Squared Error of θ^{\wedge} onConventional Tests with 40 Items,Alla = 1, Normally Distributed b,and $A l l \mathrm{C}=0.20$. 118D.26. Mean Squared Error of θ^{\wedge} onConventional Tests with 50 Items,All a $=1$, Noraally Distributed b,and $A 11 \mathrm{C}=0.20$. 119D.27. Mean Squared Error of 8~ onConventional Testa with 60 Items,All a $=1$, Normally Distributed b,and All $c=0.20$. 120D.28. Maan Squared Error of θ^{\wedge} onConventional Tests with 10 Items,

All $a=2$, Normally Distributed b,

D.29. Mean Squared Error of θ^{\wedge} on Conventional Tests with 20 Items, All a $=2$, Normally Distributed b, and All c $=0.20$ 122
D.30. Mean Squared Error of 0° on Conventional Tests with 30 Items, All a $=2$, Normally Distributed b, and All $\mathrm{C}=0.20$. 123
D.31. Mean Squared Error of θ^{\wedge} on Conventional Tests with 40 Items, Alla $=2$, Normally Distributed b, and $A 11 c=0.20$. 124
D.32. Mean Squared Error of θ^{\wedge} on Conventional Testa with 50 Items, All $a=2$, Normally Distributad b, and $A 11 c=0.20$. 125
D.33. Mean Squared Error of θ^{\wedge} on Conventional Tests with 60 Items, All a $=2$, Normally Distributed b,
xvi

D.34. Average Estimation Exror of Ta on Conventional Tests with 60 Items, A11 a = 2, Normally Diatributed b, and $A 11 c=0.20127$
D.35. Standard Deviation of T^{\wedge} on Conventional Teate with 60 Iteme, All a = 2, Normally Distributed b, and $A 11 c=0.20 \quad 128$
D.36. Man Squared Error of T^{\wedge} on Conventional Teste with 60 Items, All a $=2$, Normally Distributed b, and $A 11 c=0.20 \quad 129$
D.37. Average Estimation Error of θ^{\wedge} on Tailored Test with a $=2$, Optimal b-parameter, and Allc=0.20. . . 130
D.38. Average Number of Itemas Administered on Tailored Test with All a $=2$, Optimal b-parameter, and A11 C $=0.20$. 131
xvii
D.39. Average Computation Time Between

Items on Tailored Teat with All a $=$
2. Optimal b-paraneter, and All $c=0.20132$

INTRODUCTION

and unit, respectively. The estimates of the parameters then are on their own specific scale, and may not be directly comparable with other estimates.

In principle all parameters are invariant within a linear transformation. Given the true parameters, scaled with respect to any two tests with at least two common items, the linear transformation that links scores and parameters of the two tests is easy to solve for. Since the true parameters are never known, any application of IRT which makes use of the parameter invariance property depends upon an assumption of parameter estimate invariance. Parameter estimates are not invariant because of estimation error. As a result the linear transformation for linking tests is also an estimate. The greater the error of the parameter estimates, the greater will be the error of the linear transformation. Hence, in practice, the invariance principle must be phrased in terms of the expectation of the transformation. In order to minimize the error of transformation, averages of parameter estimates are used in place of the parameters themselves when solving for the linking transformation.

Averages have reduced variance, a valuable property which should reduce the variability of the linking transformation. However, if the estimates are statistically biased, then the averages will also be biased, and so will the linking transformation. Among the many strengths of IRT,
the invariance property distinguishes it most clearly from other approaches. Thus, unbiased estimation is critical to applications of IRT that make use of the invariance property, and is a fundamental requirement of IRT as a statistical theory. This paper derives and testa by Monte Carlo methods a new procedure, called Weighted Likelihood Estimation (WLE), for estimating θ, the ability parameter. The new estimator is relatively unbiased and is computationally efficient.
Estiaation Methods and Bias. There are five basic estimation methods that are used in IRT for parameter estimation: Maximum Likelihood Estimation (MLE) (Lord, 1980), Bayeaian Modal Eatimation (BME) (Samejima, 1980) [also called Modal A-Posteriori (MAP), (Bock, 1983)], Owen's Sequential Bayesian (OSB) (Owan, 1975), Expected A-Posteriori (EAP) (Bock, 1983), and Marginal Maximum Likelihood (MML) (Bock and Aitkin, 1981). In addition to these, there are variations such as the Robustified Jackknife (Wainer \& Wright, 1980), h-estimators (Jones, 1982), and biweight estimates (Bock $\&$ Mislevy, 1981).
All of thase estimation methods produce estimates that are biased to some degree. MLE (Lord,1983a), and BME (Lord, 1983b, 1984) were shown to be biased to order n^{-1}; that is to say the bias is inversely proportional to n, the number of items in the test, other things being equal. OSB,

EAP, and MML are all Bayesian procedures (in apite of MML's title), and, therefore, also are biased to order n^{-1}. The biweight and h-estimators are robust M-estimators [modified MLE, (See Andrews et al, 1972)] designed to reduce the influence of outliers rather than to reduce bias.

The bias of jackinifed astimators, which were introduced by Quenouille (1956), is of one order less than the order of bias of the estimator jackknifed (Kendall \& Stuart, 1973). Therefore, the bias of the Robustified Jackknife, which jeckknifes MLE, should be of order n-2 except for any bias caused by the robustification. Unfortunetely, the reduced bias of jackknifing is achieved by increasing the required computations by an order of magnitude. That is to say, for a test of n-items, the computational time for the jackknifed MLE is n times the computational time for the MLE itself. Even on large computers this computational intensity increases CPU time from minutes to hours; this increase is unacceptable in most settings.

Other methods of bias reduction have been used with some succesa. For MLE, Cox \& Hinkley (1974) suggest evaluating the bias at the value of the eatimate, and then subtracting the estimated bias from the estimate to produce an improved estimate. Anderaon and Richardson (1979) and Schaefer (1983) used this technique successfully on diecrimination and location parameters, respectively, of
logistic models. One difficulty with this approach is that for models in which bias is a monotonic function of the parameter being estimated (as is often the case in IRT), error can actually be increased rather than reduced.

Lord (1983c, Personal Communication) has suggested using as an estimate of θ that value of the parameter, which when added to the bias evaluated at the value, is equal to the maximum likelihood estimate. There are two difficulties with this estimator: 1) it is not necessarily unique, and 2) if the maximum likelihood estimate is infinite, so is this estimator. It is unknown whether this approach, used with other estimators, would overcome these difficulties. A similar, untried estimator is the value of the parameter, which when added to its bias, maximizes the likelihood function.

Weighted Likelihood Estimation. For a test of n items the MLE of θ, MLE (θ), is the value of θ that maximizes the likelihood function, L(uif \boldsymbol{i}, where

$$
\begin{equation*}
L(\underline{u} ; \theta)={\underset{i=1}{n} p(\theta)^{u_{i}} \cdot \theta(\theta)^{1-u_{i}} .}^{n} \tag{2}
\end{equation*}
$$

and u is the vector of n scored item responses $\left\langle u_{i}=1\right.$ if itam is correctly answered, and $u_{i}=0$ if item i is incorrectly answered; $i=1,2, \ldots, n$, and $Q(\theta)=1-P(\theta) . H e r e a f t e r$, the subscript 1 will be dropped
for convenience, unleas it is neaded for clarity. MLE(θ) is found at the zero of the likelihood equation,

$$
\begin{equation*}
1_{1}=\delta / \delta \theta \ln L(\underline{u} ; \theta)=\sum_{i=1}^{n}(u-p) p \cdot / P Q=0 \tag{3}
\end{equation*}
$$

where $P^{\prime}=\delta / \delta \theta$.
A class of M-estimators, $z=M(Z)$, of the parameter Z may be defined as the value of Z that maximizes,

$$
\begin{equation*}
f(Z) \cdot L(\underline{u} ; \theta)=\left\{(Z) \cdot \sum_{i=1}^{n} P(\theta)^{u_{i}} \cdot Q(\theta)^{1-u_{i}}\right. \tag{4}
\end{equation*}
$$

where 2 is a function of θ. The M-estimate of 2 is found at the zero of the M-estimate equation,

$$
\begin{equation*}
\sum_{i=1}^{n}(u-P) P^{\prime} / P Q+\delta / \delta \theta \ln f(Z)=0 \text {. } \tag{5}
\end{equation*}
$$

If $f(2)$ is constant, z is a maximum likelihood estimate of 2, MLE(Z), and (5) reduces to (3). If $f(Z)$ is an assumed prior density function of 2 , then (4) is the posterior density function, and z is a Bayesian Modal Estimate of Z, BME(Z).

Lord (1983a) gives the following asymptotic expression for the bias of MLE(θ), BIAS(MLE(θ)), which $1 \&$ of order $n^{-1}:$
where I is test information,

$$
I=\Sigma P^{\prime 2} / P Q
$$

$$
J=\Sigma P^{\prime} P^{\prime \prime} / P Q
$$

and $p^{\prime \prime}=\delta^{2} / \delta^{2} P$. Equation (6) is equivalent to the general expression of BIAS(MLE(B)) for a multinomially distributed variable, given by Cox E Hinkley (1974, p. 310). Lord (1984) gives the bias of BME(θ) with a standard normal prior.

```
BIAS(BME(0)) = BIAS(MLE(0)) - 0/I
```

BIAS(BME(日)) is aleo of order n^{-1}. The last term on the right hand side (RHS) of (7) is the derivative, with respect to 8 , of the log of the standard normal density divided by test information. From this observation, we can conjecture that the bias of the M-estimator defined by (5) is

$$
\operatorname{BIAS}(M(Z))=\operatorname{BIAS}(\operatorname{MLE}(\theta))+(\delta / \delta \theta \ln f(Z)) / I
$$(8)

Thus, in order to find the M-astimator that is unbiased, we

```
only need set the RHS of (8) equal to zero, and solve for
f(2). Substituting (6) into (8), we obtain
\delta/60 ln f(Z) = -J/(2I) .

Replacing \(f(\).\() with w(\).\() in (5) to emphasize that the function is\) now specifically defined, and letting \(Z=\theta\) yields
\[
\begin{equation*}
\sum_{i=1}^{n}(u-p) P^{\prime} / P Q+\delta / 8 \theta \ln w(\theta)=0 \text {. } \tag{10}
\end{equation*}
\]
and substituting (9) into (5), gives
\[
\begin{equation*}
\sum_{i=1}^{n}(u-P) P \cdot / P Q+J /(2 I)=0 \tag{11}
\end{equation*}
\]
where \(I\) and \(J\) are as defined in (6). An eatimate satiafying (11) is calied a Weighted Likelihood Estimate (WLE). If the conjecture above is correct, then BIAS(WLE (B)) should be only of order \(n^{-2}\), one order legs than MLE( \(\theta\) ) and BME( \(\theta\) ).

THEOREM: WLE(日) 1s unblased to order \(n^{-1}\), i.e.
\[
\begin{equation*}
\operatorname{BIAS}(\operatorname{WLE}(\theta))=0+o\left(n^{-1}\right) \tag{12}
\end{equation*}
\]

Appendix A gives the mathematical proof of the theorem for rather restrictive conditions. Apparently, however, this
"... method of removing the first bias term will work in complete generality, and can be extended to any form of consistent estimating equation where the mathematical form of bias is computable." (Hinkley, 1985, Personal Communication). WLE(日) is asymptotically normally distributed with variance equal (asymptotically) to the variance of MLE( \(\theta\) ), i.e.,
\(\operatorname{VAR}(W L E(\theta))=\operatorname{VAR}(\operatorname{MLE}(\theta))=I^{-1}\).

Warm (1985) affirmed (12) in a Monte Carlo atudy of the asymptotic properties of WLE( \(\theta\) ), and found that VAR(WLE( \(\theta\) )) converges to the asymptotic value (I-1) more rapidily than VAR(MLE( \(\theta)\) ).

In general there is no closed-form solution for the indefinite integral of \(\delta / \delta \theta \ln w(\theta)\) in order to solve for \(\omega(\theta)\). However, if the c-parameters are equal to zero for all items sas they are in the one and two parameter models of IRT), then
\[
w(\theta)=I K \quad\left(c_{i}=0, \quad \text { all } 1\right)
\]

The proof in Appendix A and the results of Warm (1985) speak wall of the asymptotic properties of WLE. While these properties are crucial to the mathematical statistician, they are of leas interest to users of IRT in practical testing applications. In real testing situations, the number of items in a test seldom exceeds 100, which may be too few for asymptotic results to hold.

To be especially useful, an estimation method must be shown to be practical for conventional testa with fewer than 50 items (the fewer the better). By "conventional test" is meant a paper and pencil test on which all examinees take the same items. A limitation of Monte Carlo studies is that the results are specific to the design of the atudy. The usual solution for the choice of the design is to select either an idealized case, which may not generalize to more than a few realistic situations, or to select a "typical" case. The second alternative was chosen for this atudy. The conventional tests, simulated here, were designed to have a Test Information function roughly "normal" in shape. Lord \& Novick (1967) point out that this is a common design. This
shape was accomplished by choosing normally distributed b-parameters for the items. Once the groms shape was decided upon, othar details were resolved; namely the values of the a- and e-parameters, and the range of the number of items in the simulated teata. Both the a- and c-parameters affect the amount of test information cbut in different ways). Variability among the a- and c-parameters in a given test has "local" effects, but not important overall effects. On the other hand, the amount of teat information is important to the behavior of an astimator. To keep the number of possibile permutations of the variables in the design manageable, the c-parameter for all itema in all testa was held constant at 0.20 - a typical value. Two values were chosen for the a-parameters, a "moderate" value (1.0), and a "high" value (2.0). To avoid the local effects mentioned above the a-parameters for all itema in a given test were get to the sane value. A wide range of teat lengths was chosen (10 to 60). The six test lengths by two values for the a-parameter give 12 different conventional tests.

With the pending adoption of tailored teating by the U.S. Armed Forces (Green et al, 1984) for the ASVAB (Armed Services Vocational Aptitude Battery), the behavior of the日-estimator in tailored teats (Lord, 1980) is of current interest. The same conflict between "idealized" versus "typical" occurs in this case for the design of the
hypothetical item pool. Various solutions have been chosen. McBride (1977) used both an ideal, finite item pool and an infinite item pool. Maurelli (1978) and McKinley \& Rekase (1981) used a finite item pool with normally distributed b-parameters. Gorman (1980) used finite item pools with both rectangularly and normally distributed b-parameters. Jensema (1977) showed that the design of the item pool strongly influences the reaults, and recommended rectangularly distributed b-parameters.

For the tailored testing experiment in the present inquiry two item pools with rectangularly distributed b-parameters were used -- differing only in the a-parameter. The a-parameters of one pool were held constant to a high value (2.0) in order to simulate an ideal, infinite iter bank. The a-parameters of the other item bank declined as the number of items administered increased. The purpose of the declining a-parameter was to simulate the depletion of items with high item information as the tailored test proceeds; this always occurs with a finite item bank. The c-parameters of all items in both item banks were held constant (0.20) as with the conventional test.

The evaluation of a new estimator such as WLE requires a standard of comparison. Both MLE and BME were chosen as "benchmari" methods, representing opposite extremes in several ways.

The criteria of comparison are also issues. Since the
major motivation for the developrent of WLE is unbiasedness, conditional on \(\theta\), bias is an important criterion. The variance of an estimator is also a common criterion for evaluating estimation methods. However, it is trivial to produce small variance in an estimator -- simply setting every eatimate to some constant value produces zero variance (although it wreaks havoc with bias). The mean squared error combines both criteria, since it is the sum of the variance and the squared bias by a common analysis of variance identity.

In tailored testing, the number of items administered is important, reflecting both total testing time required and the exposure of items to potential compromise. In addition, the speed of eatimating ability between items may be important. If computation time is too slow, total testing time increases, and "dead time" may occur, i.e. the examinee may have to ait and wait for the next item to be presented. Dead time can induce boredom and cause underestimation of ability.

The measurement of abllity on the \(8-s c a l e\) is not the only scale of interest. True score, \(T \equiv T(\theta)=\Sigma P(\theta)\), the expected value of the raw, number-right score on a conventional test, is often desired. A frequent criticism of Bayesian estimators is an internal contradiction; the expected value of the Bayesian estimator of a non-iinear transformation of \(\theta\) is not equal to the non-iinear
transformation of the Bayesian astimator of \(\theta\). On the other hand MLE is invariant to non-linear transformation. True score is a non-linear transformation of 0 , and \(E(T(\operatorname{BME}(\theta) ; \theta)=1=T(\theta)\), where \(E\) is the expectation operator. But MLE(T) is also biased. Thus, since WLE is ostensibly less biased than MLE and BME, it would be interesting to know whether \(E(T(W L E(\theta) ; \theta))=T(\theta)\).

Desian of the Conventional Tests: For the comparison of the three estimators under a wide range of test lengths, 12 conventional tests were constructed. There were two tests for each of \(81 x\) test lengths, \(n=10,20,30,40,50\), and 60. For each test length, the a-parameters of one test were set to \(a_{i}=1.0\), for all \(1=1,2,---n\), and for the other test \(a_{1}=2.0\), all 1. The b-parameters of all 12 tests were distributed "normally", using the inverse normal transformation, \(\overline{\mathbf{R}-1(.) . ~ T h a t ~ i s, ~ f o r ~ a ~ t e s t ~ o f ~ l e n g t h ~} n\), \(b_{i}=\Phi^{-1}((i-.5) / n)\). The c-parameters of all items in all tests were set to 0.20 . These iten parameters produce a teat information curve that is roughly "normally" shaped, and is a comonly used conventional test design.

At each of 17 values of \(\theta(=-4,-3.5,--4,4), 1000\) simulated examinees were administered all 12 tests, and WLE \((\theta)\), MLE \((\theta)\), and \(\operatorname{BME}(\theta)\) was computed for each examinee and for each test. The same item responses were used for all three estimators. The mean, standard deviation, and mean squared error of the 1000 estimates of \(\theta\) was computed at each of the 17 values of \(B\) for each test and each
estimator. In addition, the mean, standard deviation, and mean squared error of estimated True Score, \(T^{\wedge}=T\left(\theta^{\wedge}\right)\), was computed for each of the 1000 estimates of \(\theta\) at each of the 17 values of \(\theta\) for each estimator on the two tests with most extreme Test Information functions. Appendix B contains the computer program used for the Monte Carlo atudy of the conventional test. It is written in the matrix algebra language (PROC MATRIX) of the Statistical Analysis System (SAS, 1980), and was executed on an IBM 3081 mainframe computer.

Design of Tailored Tests: Six tailored teats, two for each estimator, were administered to 100 simulated examinees at each of the 17 values of 8 . For all tailored tests all \(c_{1}=.20\). For each of the three estimators one tailored test had all \(a_{i}=2.0\). The other tailored teat for each estimator had declining a-parameters to simulate the declining item information available from a finite item pool, specifically \(a_{1}=(71-1) / 35\). Following Weiss \& McBride (1984), the values of the b-parameters for all tailored tests were chosen so that the maximum of the item information for the item a- and c-parameter was at the current estimate of \(\theta\). That 18 , the b-parameter of the (1 + 1)th item was
\[
b_{i+1}=\theta^{n}-\ln \left(y_{2}(1+(1+8 c) / k)\right) /(1.7 a)
\]
where \(\theta^{\circ}\) is the current estimate of \(\theta\) after the ith item.
The stopping rules for administering items were: 1) stop if test information exceeds 20 at the current estimate of \(\theta\), or 2 ) stop if the number of items administered \((n)=\) 50, whichever occurred first. The mean, standard deviation, and mean squared error of the 100 estimates was computed for each of the 17 values of \(\theta\) for each test and each estimator. In addition, for each tailored teat and estimator the average number of items edministered, and the average iteration computation time per item were computed. Appendix C contains the computer program of the tailored tests, which was written in TURBO PASCAL 3.0 (Borland, 1985), and was executed on a Corona PC portable computer with an Intel 8087 high speed arithmetic processor chip.

Estimating e: For the conventional tests, \(\theta\) was iteratively estimated by the interval bisection method with \(r=15\) iterations.
\[
\theta_{n, r}=\theta^{\wedge} m_{n-1}+\delta_{m ; r} \quad r=1,2,---15,
\]
\(m=W L E\), MLE, or BME, and \(\theta^{\wedge} m=0=\theta\).

For the first four iterations, \(r=1,2,3,4, i \delta_{m, r}=1\) with the sign the same as the objective function. In the
```

remaining iterations, }r=5, 6, ---, 15, i\deltam,ri
:\deltam,r-1:/2. This iteration method has several
advantages: 1) : (0^-0: < 5, 2) it will find the local maximum
closest to true 0, 3) the magnitude of the difference
between the true maximum and the final estimate < .001, and
4) convergence is guaranteed.
Iterative estimation of MLE(0) for the tailored tests
was accomplished by a modification of Newton-Raphson, called
"Fisher Scoring" (Lord, 1980). In "Fisher Scoring" the
second derivative of the log likelihood in the denominator
of the Newton-Raphson "delta" is replaced with its expected
value cwhich is equivalent to the negative of test
information). The respective analogies of Fisher Scoring
were used for WLE and BME.

```
\(\theta_{n, r}^{n}=\theta_{m, r-1}+\delta_{m, r}, r=1,2, \cdots\),
\(m=W L E, M L E, B M E\), and \(\theta^{\wedge} m, 0=0\),
with the magnitude of \(\delta_{m p r}\) limitad to 2.0.
For \(n=\) MLE \(\left[w i t h l_{1}\right.\) as defined in (3)],
    \(\delta_{m, r}=\left(l_{1} / I\right)\), evaluated at \(\theta^{\wedge} m_{m-1}\)
For m = BME,
```

\deltam,r = (11 - 0)/(I+I), evaluated at 0^m,r-1 .

```

For \(=W L E\),
\[
\delta_{m, r}=\left(1_{1}+J /(2 I)\right) /\left(I-\left(I J^{\prime}-I^{\prime} J\right) /\left(2 I^{2}\right)\right),
\]
evaluated at \(\theta^{\wedge}\) mor-1 . Iterations were continued until
\(i \delta_{m, r}:<.001, r=21\), or \(1 \theta^{n} m p r+1:>5\), whichever occurred firat.

Generating the scored iten responsese \(u_{1}\) : For each item response \(P(B)\) was calculated, and a pseudo-random number, \(y\), uniformiy distributed over the interval ( 0,1 ), was generated. Then \(u_{i}=0\), if \(y>P(\theta) ;\) ane \(u_{i}=1\). The seeds for the computer program random number generators were arbitrarily taken from the real-time clock of the computer.

\section*{RESULTS}

\begin{abstract}
Conventional Tests: The resulta for the 12 conventional teats are remarkably similar, and virtually identical with respect to the relative results among the three estimatore. Therefore, complete reaults of conventional tests will be presented here only for the test with 10 items and \(a=1\). Some results for the 30 and 60 item tests will also be shown to provide a range of values. Figures showing the results of the other tests are in Appendix D, labeled D.1, D.2, etc. To show the range of the designe of the 12 conventional tests, the Test Information functiona of the 10 and 60 item tests with \(a=1\) and \(a=2\) are presented in Figure 1. Figure 1 shows that the Test Information functions become higher and broader as the number of items increases, but more peaked as tha a-parameters increase.
\end{abstract}

Insert Figures 1 and 2 about here.

Figure 2 (and D. 1 through D.11) shows the average error of each estimator at each of the 17 values of \(\theta\). As predicted by equations (6) and (7) (and demonstrated by 20


Test Information Curves of the 10 and 60 Item Conventional tests with \(a=1\)


Average Eatimation Error of \(\theta^{\wedge}\) on Conventional Teat with 10 Items. All a \(=1\), Normally Diatributed \(b\), and All \(c=0.20\).

Lord，1984），the bias of MLE（ \(\theta\) ，is positively correlated with \(\theta\) ，while the bias of \(B M E(\theta)\) ia negatively correlated． The bias of WLE（B）is also negatively correlated with B．It is very clear from these figures that WLE（日）is considerably less biased than both MLE（B）and BME（B）over the entire range of 0 ，for all test lengths and both values of the a－parameter．Since biames of the three estimators are zero at siightiy different points on the g－scale，inevitably there will exist very small intarvals when the bias of WLE（ \(\theta\) ）will exceed the biases of MLE（日）and BME（日）． However，these instances will occur only when the bias of WLE（ \(\theta\) ）is itself negligible．Note that the range of \(\theta\) over which the bias of \(W L E(\theta)\) is apparently negligible（i．e． indistinguishable from the zero reference line）is relatively broad，whereas the othar two estimators have small bias esaentially at a point．

The relative magnitudes of the biases are difficult to compare across tests from the figures．Figures 3 and 4， which display results for \(a=1\) and \(a=2\) respectively，show the absolute bias of WLE（日）for the 10 item test and the absolute bias of MLE（ \(\theta\) ）for tests with 10,30 and 60 items． Figures 3 and 4 indicate that WLE（ \(\theta\) ）with 10 items is less biased than MLE（ \(\theta\) ）with two to six or more times as many items，depending upon the value of \(\theta\) ．Figures 5 and 6 give the same comparisons between WLE（ \(\theta\) ）and BME（ \(\theta\) ）in terms of absolute average error．WLE（日）is also leas biased than

BME(日) in tasts with two or three times as many items.

Insert Figures 3 through 8 about here.

Comparison of the standard deviations of estimated \(\theta\) in Figure 7 (and D. 12 through D.22) reveals a different picture than the comparisons on bias. BME( \(\theta\) ) has less variability than both WLE ( \(\theta\) ) and MLE( \(\theta\) ) at all values of \(\theta\). (The decline of the standard deviations of \(\mathrm{HLE}(\theta)\) at high and low values of \(\theta\) were caused by the artificial boundary of iMLE( \(\theta\) )- \(\theta\) : < 5. In some cases all 1000 values of MLE ( \(\theta\) ) were equal to the artificial boundary.) As discussed above, it is not difficult to reduce variability at the expense of bias. This trade-off accounts for the low standard deviation of BME \((\theta)\), and will be expanded upon below. On the other hand WLE( \(\theta\) ) also has small standard deviation, and is considerably less biased than BME ( \(\theta\) ).

The mean squared error (MSE) of WLE(B) (Sae Figures 8 and D. 23 through D.33) is smaller than that of MLE( \(\theta\) ) at all values of \(\theta\) for all 12 tasts. BME( \(\theta\) ) has smaller MSE still at the more central values of \(\theta\). However, as the value of the a-parameter or the number of items increases, the advantage of \(B M E(\theta)\) over \(W L E(\theta)\) shrinks rapidly. At all other values of \(\theta\), MSE(WLE( \(\theta)\) ) is considerably smaller than



Figure 4
Absolute Average Estimation Error of WLE ( \(\theta\) ) with 10 Items, and of MLE( \(\theta\) ) with 10, 30, and 60 Items; All \(a=2\), Normally Distributed b, and All \(c=0.20\).



Figure 6
Absolute Average Estimation Error of WLE( \(\theta\) ) with 10 Items, and of BME( \(\theta\) ) with 10, 30 , and 60 Items; All \(a=2\), Normally Distributed \(b\), and All \(c=0.20\).


Figure 7
Standard Deviation of en on Conventional Test with 10 Items, Alla=1, Normally Distributed \(b\), and All \(c=0.20\).


Figure 8
Mean Squared Error of \(\theta^{n}\) on Conventional Test with 10 Items, All a \(=1\). Normally Distributed \(b\), and All \(c=0.20\).

True Scores (T) were estimated by evaluating T( \(\theta\) ) at each estimate of \(\theta, T\left(\theta^{\wedge}\right)\). \(T(\theta)=\Sigma P(\theta)\), and \(T\left(\theta^{\wedge}\right)=\Sigma\) \(P\left(\theta^{\wedge}\right)\). Figurea 9 through 11 (and D. 34 through D.36) give the average error ( \(T^{\wedge}-T\) ), atandard deviation of \(T^{\wedge}\), \(\operatorname{SD}\left(T^{\wedge}\right.\) ), and MSE(T^) of the tests with the lowest and highest Test Information functions. In general \(T(M L E(\theta))=M L E(T)\) ia less biased than \(T(W L E(\theta))=W L E(T)\) and \(T(B M E(\theta))=B M E(T)\) at all values of 8 for all tests. \(B M E(T)\) ) is more biased than the other two estimators. The bias of WLE(T) falls roughly half way between the biases of MLE(T) and BME(T). SD(BME(T)) is smallest on all tests at most values of \(\theta\). Except at extreme 0 , where MLE(T) is severely affected by the artificial boundary on MLE( \(\theta\) ), \(\operatorname{SD}(M L E(T)\) ) is largest. Using the standard deviation criterion, WLE(T) is usually intermediate falling between BME(T) and MLE(T). MSE(WLE(T)) is also usually intermediate in value with respect to MSE(MLE(T)) and MSE(BME(T)). However, MSE(BME(T)) is smallest at central values of \(\theta\), and largest at extreme values of \(\theta\). MSE(MLE(T)), contrary to MSE(BME(T)), is largest at central \(\theta\), and smallest at extrene \(\theta\).

Tailored Tests: Figures 12 through 16 (and D.37) give


Figure 9
Average Estimation Error of \(T^{\wedge}\) on Conventional Test with 10 Items, All \(a=1\), Normally Distributed \(b\), and All \(c=0.20\).


Standard Deviation of \(T^{\wedge}\) on Conventional Test with 10 Items, All \(a=1\), Normally Distributed b, and All \(c=0.20\).


Mean Squared Error of \(T^{\wedge}\) on Conventional Test with 10 Iteme, All a \(=1\), Normally Distributed \(b\), and All \(c=0.20\).
the average error of \(\theta^{\wedge}\) ， \(\operatorname{SD}\left(\theta^{\wedge}\right)\) ，and \(\operatorname{MSE}\left(\theta^{\wedge}\right)\) for the tailored testa．BME（日）is very biased at all non－zero values of \(\theta\) on both tests．MLE（B）is slightly positively biased at most values of \(\theta\) on both tests．WLE（ \(\theta\) ）is the least biased estimator at positive values of \(\theta\) ．At low values of \(\theta\) ，the biases for WLE（ \(\theta\) ）and MLE（ \(\theta\) ）are about equal and small．\(S D(W L E(\theta))\) and \(S D(B M E(\theta))\) are about equal on both tailored testa，as are MSE（WLE（日））and MSE（BME（日）） at most values of \(\theta\) ． \(\operatorname{SD}(\operatorname{MLE}(\theta)\) ）on the test with declining a－parameters is also about the same as SD（MLE（日））and \(\operatorname{SD}(\operatorname{BME}(\theta))\) ．However， \(\operatorname{SD}(\operatorname{MLE}(\theta))\) and \(\operatorname{MSE}(\operatorname{MLE}(\theta))\) are very large at central values of \(\theta\) on the tailored test with \(a=\) 2.

Insert Figures 12 through 18 about here．

The relative average number of items administered to reach the stopping rule under the three estimators are virtually identical for the two tailored tests．（See Figures 17 and D．38．）At central values of \(\theta\) ，WLE（ \(\theta\) ）and BME（ \(\theta\) ）used about the same number of items，and as few as half as many items as MLE（ \(\theta\) ）．Both \(\operatorname{WLE}(\theta)\) and \(\operatorname{BME}(\theta)\) required considerably fewer items at central values of \(\theta\) than at more extreme values．The number of items required by MLE（ \(\theta\) ） declined silightly on both tests as \(\theta\) increased．

The average computation times for estimating \(\theta\) between



Standard Deviation of \(\theta^{\wedge}\) on Tailored Test with Declining a-parameter, Optimal b-parameter, and All \(c=0.20\).


Figure 14
Standard Deviation of \(\theta^{\wedge}\) on Tailored Test with \(a=2\). Optimal b-parameter, and All \(c=0.20\).


Figure 15
Mean Squared Error of \(\theta^{-}\)on Tailored Test with Declining a-parameter, Optimal \(b\)-parameter, and All \(c=0.20\).


Figure 16
Mean Squared Error of \(\theta^{n}\) on Tailored Teat with \(a=2\), Optimal b-parameter, and All c \(=0.20\).


Av Comp Time/Item(Secs)


Figure 18
Average Computation Time Between Items on Tailored Teat with Deciling a-parameter, Optimal b-parameter, and All c = 0.20 .
items is dimplayed in Figure 18 (and D.39). For both
tailored tests, WLE( \(\theta\) ) required more computation time than
either of the other two estimators at all values of \(\theta\).
Computation time for MLE was nearly constant on both tests
and at all values of \(\theta\). BME used the least computation time
of the thres astimators on both tests at all except extreme
values of \(\theta\).

DISCUSSION

\begin{abstract}
WLE( \(\theta\) ) is clearly a less biased estimator of \(\theta\) than either MLE( \(\theta\) ) or BHE ( 8 ). In light of the proof in Appendix \(A\) and the results found by warm (1985), this outcome should not be surprising in some circumstances. What is surprising is that the superiority of WLE(B) was demonstrated in every condition investigated in this atudy: i.e., for test lengths ranging from 10 to 60 items; for a-parameters of \(a=1\) and \(a=2 ;\) for all values of 0 , and for conventional tests as well as for tailored tests (utilizing both infinite item banks and simulated finite item banks). Moreover, WLE( \(\theta\) ) has small and roughly constant variance over a wide range of the \(\theta\)-scale, as well as small MSE over a much wider interval than either MLE( \(\theta\) ) or BME ( \(\theta\) ).

For the conventional testa \(B M E(\theta)\) also fared better than MLE(日) on all three criteria -- bias, SD, and MSE. However, BME ( \(\theta\) ) benefitted greatly by the design of the simulated tests. The tests were designed to have roughly "normally" distributed test information. The general effect of this design was to bias estimates outwardly (digress estimates away from the peak of test information). BME( \(\theta\) )
\end{abstract}
tends to regress estimates toward the peak of the prior probability distribution. Since the peaks of teat information for these tests were located near \(\theta=0\) (which was the paak of the standard normal prior), the digression of test information and the regression of the prior tended to cancel out each other. For differently deaigned teats or a different prior, where the peak of the prior is not nearly coincident with the peak of test information, BME(日) would be much worse.

The width of the interval over which an estimator performs well is an important consideration. It is trivially simpla to create an estimator that has small bias, variance, and MSE over a small interval of the e-scale. For example, consider an eatimator, \(\Omega\), which is defined as \(\Omega=k\), where \(k\) is a constant. Then, used as an estimate of 0. \(\operatorname{BIAS}(\Omega)=(k-\theta), \operatorname{VAR}(\Omega)=0\), and \(\operatorname{MSE}(\Omega)=(k-\theta) \cdot\). In the interval on the e-scale where ik-0: is eufficiently small, \(\Omega\) may be superior to any other estimator by all three criteria. Note that a nonlinear transformation of \(\Omega\) is equally superior over a small interval of the nonlinearly tranaformed e-scale. The estimator \(\Omega\) can be considered to be a Bayesian modal estimator for which the prior has non-zero density only where \(\theta=k . \quad \Omega\) compresees all estimates to the constant \(k\), which has no functional relationship to the teat. Other Bayesian modal estimatora have the same characteristic -- they "regress" estimates
toward the peak of a prior distribution, which also has no functional relationship to the test.

This analysis of the estimator \(\Omega\) makes it clear why Bayesian modal estimators sometimes work well -- by coincidence, they sometimes "regress" estimates in a direction opposite to the bias of MLE(B). Bayesian estimators may also, by coincidence, compress the estimates into an interval of the e-scale that is of interest; this is exactly the reason that BME (8) had the smallest MSE for certain relatively small intervals. On the other hand, if the coincidences do not hold, then the "regression" of the Beyesian estimators will worsen estimation, rather than improve it. In general, \(B M E(\theta)\) will work well if the prior approximates \(w(\theta)\), the weighting function for WLE( \(\theta\) ). For the tests in this study a normal prior with standard deviation of two would have approximated w(B) much better than the standard normal prior. Since the tests in this study have more peaked test information curves than many actual tests, in practice the priors for BME(B) should have standard deviations greater than two in order to approximate \(\omega(\theta)\).

Apparently, Bayesians have discovered this fact by trial and error. Lord (1984) states that leading Bayesian testing practitioners prefer to use priors more diffuse than the standard normal prior due to practical considerations. Thus, it can be argued that the appeal of BME(B) in IRT iB
not due to the properties of the posterior distributione but rather is due to the coincidence that in IRT, w(日) can often be approximated by a diffuse nornal curve.

WLE(8) also "regresses" estimates. However, the regressing function, \(w(\theta)\), is a function of the test, and is in no way arbitrary. Its action is always to regress estimates in the direction opposite of the bias of MLE(B), and into an interval for which the test has sufficient information to reduce bias, variance, and MSE.

Pure MLE is everybody's whipping boy, (See, for example, Thissen \& Wainer, 1983) because (even though it has very attractive asymptotic properties) its performance with tests of finite length is miserable by most criteria. The unbounded nature of MLE( \(\theta\) ) is one source of its difficulties With finite tests. It is well known that if the response vector \(\underline{u}=1\), (all items anawered correctly), then \(\operatorname{MLE}(\theta)=+\infty\) and \(\quad\) af \(\underline{u}=\underline{0}\) (all items answered incorrectly), then MLE( \(\theta\) ) \(=-\infty\). The problem is basically that of mapping the finite set of ( \(2 n\) possible response vectors onto the (infinite) set of real numbers. Thus, in practical applications pure MLE( \(\theta\) ) is never used. Upper and lower bounds on MLE( \(\theta\) ) are alweys sat. Even in theoretical work these bounds are necessary; e.g. in Lord's (1983a) derivation of the bias of MLE ( \(\theta\), \(\theta\) is asaumed to be bounded. The practical bounds are set arbitrarily at values that are not expected to have aignificant impact. It has
```

not been recognized that there exist rational, natural upper
and lower bounds for MLE(0) in IRT. The rational, natural
bounds occur at the points where the slope of BIAS(MLE(0))
is equal to one. That is, MLE(0) should be defined only in
the interval(s) where

```
    \(\theta^{-}<=\operatorname{MLE}(\theta)<=\theta^{+} ;\)
where \(\theta^{-}\)is defined such that
\(\delta / \delta \theta \operatorname{BIAS}\left(\operatorname{MLE}\left(\theta^{-}\right)\right)=1\),
and
\(8^{2} / 68^{2} \operatorname{BIAS}\left(\operatorname{MLE}\left(\theta^{-}\right)\right)<0 ;\)
and, furthermore, where \(\theta^{*}\) is defined such that
    \(8 / 80 \operatorname{BIAS}\left(\operatorname{MLE}\left(\theta^{+}\right)\right)=1\).
and
\(8^{2} / 8 \theta^{2}\) BIAS(MLE( \(\left.\left.\theta^{+}\right)\right)>0\).
Outside these bounds the alope of BIAS(MLE(日)) is always
graater than one, i.e. the magnitude of BIAS(MLE(日))

Increases faster than \(\theta\) changes. Therefore, the expected value of MLE ( 8 ) is always farther from true \(\theta\) than is the closer of the two bounds, and the closer bound is a less biased estimate of \(B\) than is MLE(B). Moreover, the replacement of the closer bound for MLE( \(\theta\) ) as the estimate of \(\theta\) reduces the veriance of the estimates, and, consequently, also the MSE of the estimates. Thus, for all three of the criteria used in this study cbias, variance, and MSE), MLE( \(\theta\) ) is always degraded by permitting it to fall outside the closed interval [ \(\left.\theta^{-}, \theta^{+}\right]\). These bounds are proposed as reasonable or "sensible" limits on MLE( \(\theta\). Therefore, MLE(日) with these bounds may be termed "Sensible MLE(B)", [SMLE(日)].

\footnotetext{
Insert
Table
1
about
here.
}

Table 1 lista the minimum and maximum values of SHLE( \(\theta\) ), and the actual minimum and maximum values of WLE( 8 ) and BME( \(\theta\) ) for the 12 conventional teats. Note that the minima of WLE(B) is always more extreme (more negative) than the minima of the other two estimators. In contrast, the maxima of SMLE ( \(\theta\) ) are by far the most extreme. This extreme upper bound on SMLE( \(\theta\) ) would do little to reduce bias, but at least would prevent infinite estimates of \(\theta\). The extraordinary asymmetry of the bounds of SMLE(B) is apparently due to the loss of teat information at low \(\theta\), caubed by the non-zero c-parameters.

TABLE 1
Minimum, MLE( \(\theta^{-}\)), and Maximum, MLE( \(\theta^{+}\)), of "Sensible" MLE(日), and of \(\operatorname{WLE}(\theta)\) and \(B M E(\theta)\), for Conventional Testa with \(n\) items, \(A l l a=1\) or 2, Normally Distributed b, and
\[
A 11 c=0.20
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underline{n}\) & MLE ( \(\theta\)-) & \[
\begin{aligned}
& =1 \\
& M 1 n \\
& \text { WLE(B) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Min } \\
& \text { BME( } \theta) \\
& \hline
\end{aligned}
\] & MLE ( \(\theta-\mathrm{l}\) & \[
\begin{aligned}
& =2 \\
& \operatorname{Min} \\
& \operatorname{WLE}(\theta)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Min } \\
& \text { BE( } \theta)
\end{aligned}
\] \\
\hline 10 & -1.907 & -2.543 & -1.769 & -1.685 & -2.002 & -1.763 \\
\hline 20 & -2.284 & -2.989 & -2.175 & -2.028 & -2.337 & -2.068 \\
\hline 30 & \(-2.486\) & -3.242 & -2.410 & -2.208 & -2.519 & \(-2.237\) \\
\hline 40 & -2.623 & \(-3.418\) & -2.574 & -2.329 & -2.642 & -2.354 \\
\hline 50 & -2.725 & -3.553 & -2.701 & -2.419 & \(-2.735\) & -2.444 \\
\hline 60 & -2.807 & -3.664 & -2.803 & -2.491 & -2.809 & \(-2.515\) \\
\hline \(\underline{n}\) & MLE ( \(\theta^{+}\)) & \[
\begin{gathered}
\text { Max } \\
\text { WLE( } \theta)
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Max} \\
\operatorname{BE}(\theta)
\end{gathered}
\] & MLE \({ }^{\text {( }}+\) + \()\) & \[
\begin{gathered}
\text { Max } \\
\text { WLE }(\theta)
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Max} \\
\text { ByE( } \theta)
\end{gathered}
\] \\
\hline 10 & 22.847 & 2.347 & 1.587 & 12.246 & 1.903 & 1.630 \\
\hline 20 & 23.163 & 2.800 & 2.009 & 12.561 & 2.229 & 1.941 \\
\hline 30 & 23.331 & 3.058 & 2.252 & 12.729 & 2.408 & 2.116 \\
\hline 40 & 23.444 & 3.238 & 2.422 & 12.842 & 2.530 & 2.238 \\
\hline 50 & 23.529 & 3.376 & 2.553 & 12.927 & 2.622 & 2.330 \\
\hline 60 & 23.596 & 3.489 & 2.659 & 12.995 & 2.696 & 2.404 \\
\hline
\end{tabular}

For both tailored tests，WLE（日）was only slightly less biased than MLE（B）（and at high \(\theta\) only）．For the tailored teat with a simulated finite item bank，WLE（日）and MLE（ \(\theta\) ） were also about the same on the standard deviation and MSE criteria，although MLE（ \(\theta\) ）may have some small advantage at low \(\theta\) ．However，for the tailored test with an infinite item bank（ \(a=2\) ），MLE（ \(\theta\) ）was considerably worse than WLE（ \(\theta\) ）over a wide central region of \(\theta\)（using the standard deviation and MSE criteria）．This effect is apparently due to the high values of the a－parameters，and would seem to be a conditional（on \(\theta\) ）analogy to the＂attenuation paradox＂ （Lord G Novick，1967）：i．e．the conditional variance of MLE（ \(\theta\) ）increased（for central \(\theta\) ）when the a－parameters increased from one to two．If so，then this result suggests that the aelection of items for item banks ao as to maximize item information may not be optimal for MLE（ \(\theta\) ）．

Since WLE（ 8 ），over a wide range of \(\theta\) ，used many fewer items than MLE（e）in order to achieve the stopping criteria， tailored tests using WLE（日）would，in general，be much shorter than if MLE（B）were used to estimate 日．This advantage translates into savings in terms of testing time and the exposure of items to potential compromise．
Computation time for estimating \(\theta\)（in the interval
between items in tailored testing）is an important
consideration for tailored tests．The time required for
WLE（ 8 ）is always more than for MLE（ \(\theta\) ）at all values of \(\theta\)－－
ranging from a slight incraase in time to more than three
times as long. This delay may or may not be aignificant,
however. The times found in this study are oniy relative.
The absolute times required for applications will depend
upon several factors, such as the speed of the computer, the
programming language, and the cleverness of the programer.
If the actual computation times can be decreased to one
second or less, then no harm is caused by the extra
calculations required for wLE( \(\theta\). .

\section*{SUMMARY AND CONCLUSIONS}

for which the parameter invariance property ia important.
Two new insights for MLE(日) were discovered: 1) natural, rational bounds, and 2) a conditional analogy to the attenuation paradox in tailored teata with high a-parameters.

The heart of wLE is a weighting function, w( \(\theta\) ), which is multiplied times the likelihood function, and the product maximized. This weighting function, which removes the bias and uncontrolled variance of MLE( \(\theta\), is a function of \(\theta\) and the item parameters, and is epecific to each test. It was shown to be equal to the square root of teat information for the one- and two-parameter models of IRT, and equal to a closely related function for the three-parameter model.

\section*{REFERENCES}


Estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.

Bock, R.D. \& Mislevy, R.J.(1981) Biweight Estimates of Latent Ability. Manuscript.

Borland(1985) Turbo Pascal, Version 3.0 Reference Manual. Borland International Inc., Scotts Valley, CA 95066

Bradley, R.A. \& Gart, J.J.(1962) The Asymptotic Propertiea of ML Estimators When Sampling From Associated Populations. Bionetrika, 49, 205-214.

Cox, D.R. \& Hinkley, D.V.(1974) Theoretical Statistice. Chapman \& Hall (distributed by Halsted Press, New York).

Gorman, S.(1980) A Comparative Evaluation of Two Bayesian Adaptive Estimation Procedures with a Conventional Test Strategy. Unpublished Doctoral Dissertation. Catholic University of America. Washington D.C.

Green, B.F., Bock, R.D.. Humphreys, L.G., Linn, R.L. Ex Rekase, M.D.(1984) Evaluation Plan for the Computerized Adaptive Vocational Aptitude Battery. MPL TN 85-1, Manpower and Personnel Laboratory, Navy Personnel

Research and Development Center, San Diego, CA 92152.

Gulliksen, H.(1950) Theory of Mental Testa. John Wiley \&
Sons, Inc., New York.

Hinkley, D.V.(1985) Profeasor, Department of Mathematics, The University of Texas at Austin, Austin TX 78712. Personal Communication.

Jensema, C.J.(1977) Bayesian Tailored Testing and the Influence of Item Bank Characteristics. Applied Psychlogical Measurement, 1(1), 111-120.

Jones, D.H. (1982) Redescending M-type Estimators of Latent Ability. Program Statistics Technical Report, 82-30. Educational Teating Service, Princécon, NJ.

Kendall, M.G. \(G\) Stuart,A.(1973) The Advanced Theory of Statistics, vol 2. Hafner Publishing Company, New York.

Kendall, M.G. \& Stuart, A.(1977) The Advanced Theory of Statistics, vol 1. Charles Griffin \& Co., London.

Kullback, S.(1978) Information Theory and Statistics. Peter Smith, Gloucester, MA.

Larson, R.J. \& Marx, M.L.(1981) An Introduction to Mathematical Statistics and Its Applications. Prentice Hall, Inc., Englewood Cliffs, NJ 07632.

LeCam, L.(1953) On Some Asymptotic Properties of Maximum Likelihood Estimates and Related Bayes' Estimates. University of California Publications in

Statistics, \(1(11)\), 277-330.

Lord, F.M.(1980) Applications of Item Response Theory to Practical Testing Problems. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ 07642.

Lord, F.M. (1983a) Unbiased Estimators of Ability Parameters, of Their Variance, and of Their Parallel-Forms Reliability. Paychowetrika, 48(2), 233-245.

Lord, F.M.(1983b) Memorandum for: Ms. Stocking, Ms. M. Wang, Ma. Wingeraky. Subject: Sampling Variance and Bias for MLE and Bayesian Estimation of \(\theta\). August 26, 1983. Internal Memorandum, Educetional Testing Service, Princeton, NJ 08541.

Lord, F.M.(1983c) Distinguished Research Scientist, Educational Testing Service, Princeton, NJ 08541. Personal Communication.
Lord, F.M. (1984) Maximum Likelihood and Bayesian Parameter Estimation in Item Response Theory. Research Report RR-84-30-ONR, Educational Testing Service, Princeton, NJ 08541.
Lord, F.M. G Novick, M.(1967) Statiatical Theories of Mental Test Scores. Addison-Wesley, Reading, MA.
Maurelli, V.A.(1978) A Comparison of Bayesian and Maximum Likelihood Scoring in a Simulated Stradaptive Test. Unpublished Master'a Thesis. St. Mary's University. San Antonio, TX.
```

McBride, J.R.(1977) Some Properties of a Bayesian Adaptive
Ability Testing Strategy. Applied Psychological
Measurement, 1(1), 121-140.

```
McKinley, R.L., E Reckase, M.D.(1981) A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure. Research Report 81-2. Educational Paychology Department. University of Missouri. Columbia, MO 65211.
Quenouille, M.H.(1956) Notes on Bias in Estimation. Bionetrike, 43, 353-360.

Samejima, F.(1980) Is Bayesian Estimation Proper For Estimating the Individual'a Ability. Research Report 80-3, Dept. of Psychology, University of Tennessee, Knoxville, TN 37916.

Schaefer, R.L.(1983) Bias Correction in Maximum Likelihood Logistic Regression. Statistics in Medicine, 2,71-78.

Shenton, L.R. \& Bowman, K.(1963) Higher Moments of a Maximum-iikelihood Estimate. Journal of the Royal Statistical Society, Series B, 25, 305-317.

Thissen, D. \& Steinberg L.(1984) A Response Model for Multiple Choice Iteme. Paychometrika, 49(4), 501-519.

Thisaen, D. \& Wainer, H. (1982) Some Standard Errors in Item Reaponse Theory. Paychonetrika, 47(4), 397-412.

Vale, C.D.s Maurelli,V.A., Gialluca,K.A., Weiss, D.J., \(\&\) Ree, M.J.(1981) Methods For Linking Item Parameters. Technical Report AFHRL-TR-81-10. Air Force Human Resources Laboratory, Brooks Air Force Base, TX 78235.
```

Wainer, H. \& Wright, B.D.(1980) Robust Estimation of Ability
in the Rasch Model. Psychonetrika, 45(3).

```

Warm, T.A.(1979) A Primer of Item Response Theory. Technical Report 940279. National Technical Information Service, AD-A063072. Springfield, VA 22161.

Warm, T.A.(1985) Weighted Likelihood Estimation of Ability In Item Responae Theory. Technical Report CGI-TR-85-01. U.S. Coast Guard Inatitute. Oklahoma City OK 73169. Submitted for publication.

Waiss, D.J. \& McBride, J.R.(1984) Bias and Information of Bayesian Adaptive Testing. Applied Psycholoqical Measurement. \(8(3)\), 273-285.

\section*{APPENDIX A}

\title{
PROOF THAT THE WEIGHTED LIKELIHOOD ESTIMATE IS UNBIASED TO ORDER \(n^{-1}\)
}

The approach and techniques of this derivation were taken from, and parallel closely, the derivations in Lord(1983a, 1983b, \& 1984) of the first order biases of the Maximum Likelihood and Bayesian Modal Estimates in Item Response Theory (See Lord,1980), both of which biases are of order \(n^{-1}\). The Weighted Likelihood Estimator removes the first order bias term from the Maximum Likelihood estimate. The derivation is limited to a single parameter for a multinomially dietributed variable and a regular, "gmooth" mathematical model with rather restrictive assumptions. Apparently, however, this "... method of removing the first bias term willwork in complete generality, and can be extended to any form of consistent eatimating equation where the mathematical form of bias is computable." (Hinkley, 1985, Personal Communication)

Preliminaries: For a set of \(n\) independent experiments,
\(H_{i}(1=1,2,---n)\) with binary outcomes, \(u_{i}\), (succems or failure), let \(p=P_{1}(\theta)\) denote the probability of a success(ui \(=1)\), and let 0 . \(Q_{i}(\theta)=1-P_{i}(\theta)\) denote the probability of failure ( \(u_{i}=0\), where \(P_{i}(\theta)\) is a strictly increasing function of the common parameter 0 for all \(n\) experiments. \(P_{i}(\theta)\) is not necessarily equal to \(P_{h}(\theta), \quad h=/=\) i. Let \(\underline{u}=\left\{u_{i}\right\}\) denote the multinomially distributed, \(n \times 1\) vector of outcomes of the \(n\) experiments.

\section*{Assumptions:}
(a) \(\theta\) is a bounded variable on a continuous scale.
(b) \(P_{i}(\theta)\) is continuous and bounded away from 0 and 1 at all values of \(6, i=1,2, \cdots, n\).
(c) At least the first five derivatives with respect to 0 of \(P_{i}(\theta)\) exist at all values of \(\theta\), and are bounded.
(d) For asymptotic considerations \(n\) is considered to be incramented with replications of all of the original \(n\) experiments.

From these assumptions and theorems \(1(1)\) and \(1(i v)\) of Bradley \& Gart(1962) it follows that the Maximum Likelihood Estimate of \(\theta\), MLE \((\theta)=\theta^{\wedge}\). is a consistent estimator of \(\theta\), and that \(n^{1 /}=\left(\theta^{n}-6\right)\) is asymptotically normally distributed with zero mean and with variance given by
\[
\lim _{n-\infty} 1 /(n I)
\]

\title{
where I is Fisher'e Information. Aasumption (d) guarantees the existence of this limit (Lord, 1983a).
}

\section*{Maximum Likelihood Estimation}

The likelihood function, L(릅), is given by (A.1).
\[
L(\underline{\underline{u}} ; \theta)={\left.\underset{i=1}{n} P_{i}(\theta)^{u_{i}} \cdot Q_{i}(\theta)^{1-u_{i}}\right) .}^{n}
\]
(A.1)

Let
\[
l_{8}=\delta 8 / \delta \theta^{8} \ln L(\underline{u}: \theta),
\]
where \(88 / 808\) indicates the sth partial derivative with respect to \(\theta\), and \(\ln\) indicates the natural logarithm.

The Maximum Likelihood Estimate of \(\theta\) is defined as the value of 8 that maximizes (A.1). Usually \(\theta^{\wedge}\) is found by setting \(l_{1}\) equal to zero, and solving for \(\theta\), as in (A.2).
```

\delta/\delta0 ln L(u
evaluated at θ^{\wedge}. In (A.2) and hereafter the argunent (θ) and index i are usually dropped for convenience.

The asymptotic variance of MLE(θ) is the reciprocal of Fisher's Information (Kendall \& Stuart, 1973, p. 10).

$$
\begin{equation*}
I=E\left(1_{1}\right)=-E\left(1_{2}\right)=\Sigma P^{\prime 2} / P Q \tag{A.3}
\end{equation*}
$$

where E ia the expectation operator, and $P^{\prime}=\delta / \delta 8 P$.

```
The bias of MLE(0), BIAS(MLE(0)), from Cox & Hinkley (1974)
is given by (A.4).
BIAS(MLE(0))EE(0^-0)=-J/2I* .
(A.4)
```

where

$$
J=-2 E\left(1_{1} 1_{2}\right)-E\left(1_{3}\right)=\Sigma P^{\prime} P \cdot / P D \text { (A.5) }
$$

and $P^{*}=\delta^{2} / \delta \theta^{2} P$.

Equation (A.4) is equivalent to Lord's (1983a) equation (28) for BIAS(MLE (8)). Note that I and J are of order n, and that since neither are a function of u, $J / 2 I^{2}$ is of order n^{-1}.

Weighted Likelihood Estimation

The Weighted Likelihood Estimate of θ, WLE(θ) θ^{*}, is defined as the value of θ, such that the Weighted

Likelihood Function, given in (A.6) is maximized,

$$
w(\theta) \cdot L(\underline{u} ; \theta) \quad,
$$

where $\delta / \delta \theta$ in $w(\theta)=J / 2 I$. WLE (θ) is found by solving the weighted likelihood equation as in (A.7),

$$
\begin{equation*}
1_{1}+J / 2 I=0 \text {, } \tag{A.7}
\end{equation*}
$$

evaluated at $\theta *$. or, letting $d_{B}=88 / \delta \theta s \ln w(\theta)$, as in (A.8).

$$
1_{1}+d_{1}=0 \text { (A.8) }
$$

Note that

$$
d_{1}=J / 2 I=-I \cdot \operatorname{BIAS}(\operatorname{MLE}(\theta))
$$

Rather than finding WLE(θ) by maximizing (A.6), it will be useful to maximize the nth root of (A.6), which will always yield the same astimate for any given set of data since n is always positive. The reason for doing so is to help keep track of the order of the terms. Letting $\mathrm{T}_{\mathrm{s}}=$ the $a^{t h}$ derivative of the log of $n^{\text {th }}$ root of (A.6), and $T_{s} *=T_{s}$, evaluated at θ^{*},

```
Ts}=\delta8/\delta0s\operatorname{ln}[w(0)\cdotL(\underline{u}:0) ]1/
= 11/n}+\mp@subsup{d}{1}{}/
(A.9)
```

THEOREM: WLE (θ) is unbiased to order n^{-1}, i.e.

```
BIAS(WLE(0)) = 0 +o(n-1) .
```

where $o\left(n^{-r}\right)$ represents terms such that

$$
\lim _{n \rightarrow \infty} n x: o\left(n^{-r}\right)=0
$$

These are of order higher than n^{-r} (i.e. n^{-r-1}, $n^{-r-3 / 2}, n^{-r-2}$ etc.).

PROOF:

It is sufficient to solve the $\mathrm{n}^{\text {th }}$ root of (A.6):

$$
T_{1} *=1_{1} / n+d_{1} / n=0 \quad(A .10\rangle
$$

evaluated at θ^{*}. Letting $x=\left(\theta^{*}-\theta\right)$, expand (A.10)
in terms of x and θ.

```
T1* = 0
```


(A.11)
where $V_{5}=$ Max (T5) over $\theta_{\text {, }}$ and $\mathbf{i t i}<1$. This closed form of the expansion is always valid, making the proof of the convergence of the Taylor series unneceasary. Letting

$$
g_{s}=E l_{s} / n,
$$

and

$$
e_{a}=l_{B} / n-g_{B},
$$

then

$$
1_{8} / n=9_{5}+\theta_{8}
$$

and

$$
\begin{equation*}
T_{s}=g_{s}+e_{a}+d_{s} / n \tag{A.12}
\end{equation*}
$$

The purpose of (A.12) is to separate T_{s} into a sum of
terms not containing $(u$ - P), ge, a am of terms containing (u - P), eg, and a term that is a ratio of sums not containing $(u-P), d_{s} / n$.

Substituting (A.12) into (A.11), $s=1,2,3,4$, expresses the expansion of the weighted likelihood equation in terms of $\mathrm{g}_{8}, \mathrm{e}_{\mathrm{g}}, \mathrm{d}_{\mathrm{g}} / \mathrm{n}, \mathrm{V}_{5}$, and powers of x in (A.13).

$$
-\left(e_{1}+d_{1} / n\right)=g_{1}
$$

$+x\left(g_{2}+e_{2}+d_{2} / n\right)$
$+x_{2} x^{2}\left(93+03+d_{3} / n\right)$
$+x^{3}\left(94+e 4+d_{4} / n\right) / 6$
$+\quad \pi x^{4} V_{5} / 24$
(A.13)

We now need to evaluate some of the terms in (A.13), and their expected values.

$$
\begin{array}{lll}
91=0 & \text { (A.14) } \\
92=-n^{-1} \cdot \Sigma P \cdot=/ P Q & \text { (A.15) } \\
93=(-3 J+2 K) / n & \text { (A.16) }
\end{array}
$$

where

```
K = \Sigma(1-2P)P/3/(PQ)2 = -3E(1112) - E(13)
di = J/2I
(A.17)
d2 = (IJ' - I'J)/2I'
(A.18)
d3 = (I'J" - II"J - 2II'J" + 2I'^J)/2I3
(A.19)
```

where (') and (") indicate first and second derivatives with respect to θ, respectively.

Since g_{s} and d_{s} do not contain (u - P),

$$
\mathrm{Eg}_{8}=\mathrm{g}_{8}
$$

(A.20)
and

```
Eds = dg . (A.21)
01 = n-1.\sum(u-P)P'/PQ
(A.22)
e2 = n-1.\Sigma ({(u-p)-[(P"/PQ)-(1-2P)P":/(PQ):]}
(A.23)
```

$$
\begin{equation*}
E \theta_{B}=0 \tag{A.24}
\end{equation*}
$$

Since es is n^{-1} times the sum of the terms of is that contain (u - P), es may be expressed as

$$
e_{g}=n^{-1} \cdot \Sigma(u-p) \cdot R_{s i} \quad, \pi=1,2,3,4,5
$$

where $R_{s i}$ is the (s - 1)th derivative of $P / P Q$, and does not depend on n nor on u_{1}. Since by assumption (b) p and a are bounded, and by assumption (c) the required derivatives of p are bounded, the $R_{s i}$ and, thus e_{s}, are bounded. By assumption (d) the bound does not depend on n. The same conclusion is true of gs.

The Variance of WLE(θ).

To get the variance of θ^{*}, Var(θ^{*}), square (A.13) and take expectations.


```
    + g2Ex*e2 + Kg2g3Ex3
```


The terms in the first line of (A.25) are of order n^{-1}. in the second line of order $n^{-3 / 2}$, and in the third line of order n^{-2} with the remaining terme $o\left(n^{-2}\right)$. Dropping all terms of o(n^{-1}), we can rewrite (A.25) as
$E_{Q_{1}}{ }^{2}+2 d_{1} E_{e_{1}} / n+d_{1}{ }^{2} / n^{2}=G 2^{2} E x^{2}+o\left(n^{-1}\right) \quad$.

Since Ee $1^{2}=I / n^{2}$, Eer $=0, g_{1}^{2}=(-I)^{2} / n^{2}$, and $E x^{2}$
$=\operatorname{VAR}\left(B^{*}\right),(A .25)$ evaluates as (A.26).

$$
\begin{equation*}
\left(I+d_{1}^{2}\right) / n^{2}=\left(I^{2} / n^{2}\right) \operatorname{VaR}\left(\theta^{*}\right)+o\left(n^{-1}\right) . \tag{A.26}
\end{equation*}
$$

Solving for VAR(${ }^{*}$) gives (A.27),

```
VAR(8*)=(I+ (1*)/I* +o(n
```

$$
\begin{equation*}
=I-1+O\left(n^{-1}\right) \tag{A.27}
\end{equation*}
$$

which proves that the asymptotic variance of WLE (θ) is equal to the asymptotic variance of MLE(θ).

The Bias of WLE θ).

Let E_{1} indicata the expectation operator in which only terms of order n^{-1} are retained. To get the firat order statistical bias of 8^{*} take the first order expectation of (A.13) to obtain (A.28).

$$
\begin{equation*}
-d_{1} / n=g_{2} E_{1} x+E_{1} x e_{2}+\psi_{93} E_{1} x^{2} \tag{A.28}
\end{equation*}
$$

To evaluate E1xe2 multiply (A.13) by e2, and take first order expectations.

$$
\begin{equation*}
-E_{1} e_{1} e_{2}=g_{2} E_{1 \times e_{2}} \tag{A.29}
\end{equation*}
$$

To evaluate the LHS of (A.29) substitute (A.22) and (A.23), and take the expectation. Both (A.22) and (A.23) are sums of n terms indexed with 1 , each containing the factor ($u_{1}-P_{i}$). The product is a double aum of n^{2} terms, each, the product of a term in (A.22), indexed with i, and a
term in (A.23), indexed with i, say. Because the n experiments, H_{i}, are independent, the expected value of all terms are equal to zero, except the n terms where $i=$ 1'. Noting from (A.16) that

```
K=\Sigma(1-2P)P年/(PQ)*.
```

then

$$
-E_{1} e_{1} e_{2}=(-J+K) / n^{2}
$$

Substituting (A.15) and (A.30) into (A.29), and solving for E1xe2 gives
$E_{1 \times 92}=(J-K) / n I$
(A.31)

Substituting (A.15), (A.16), (A.17), (A.27), and (A.31) into (A.28) obtaina

$$
-J / 2 n I=(-I / n) E x+(J-K) / n I+K(-3 J+2 K) / n I \cdot(A \cdot 32)
$$

Finally, solving (A.32) for Ex,

$$
E x=E\left(\theta^{n}-\theta\right)=0+0\left(n^{-1}\right) \text { (A.33) }
$$

which completes the proof.

```
It is interesting to note that, if the mathematical model is
such that
P": = P'2.8/80 (ln PQ)
as in Item Response Theory when ci = 0, all i, then
    E(1112) = 0 ,
    J = K = %/60I = -E(13)
and
    w(B) = I%
Otherwise, }W(0)=I%\cdot\operatorname{exp}(%\mp@subsup{|}{N/I \delta0) for which there is}{N
no closed form solution for the indefinite integral.
```


APPENDIX B

SAS PROGRAM FOR CONVENTIONAL TEST MONTE CARLO STUDY

```
// EXEC SAS824,REGION=3000K
    /* THIS PROGRAM PERFORMS A MONTE CARLO COMPARISON OF */
    /* MAXIMUM LIKELIHOOD, WEIGHTED LIKELIHOOD, AND */
    /* BAYESIAN MODAL ESTIMATES OF THETA IN ITEM RESPONSE */
    /^ THEORY. THE NUMBER OF ITEMS ARE SET IN THE */
    /* "*LET N = "LINE, AND THE COMMON A- AND C-PARAMETERS */
    /* IN THE 2 LINES BELOW IT. THE B-PARAMETERS ARE //
    /^ NORMALLY DISTRIBUTED. 1000 THETA ESTIMATES OF EACH //
    /* ESTIMATOR ARE MADE AT 17 VALUES OF THETA, USING THE */
    /# SAME ITEM RESPONSES FOR EACH ESTIMATOR. #/
    1* THOMAS A. WARM */
    /* UNIVERSITY OF OKLAHOMA */
    /# JULY 30.1985 %/
    ノ###############################################################/
*GLOBAL N NZ NR TA TC ;
*LET N = 40;
*LET TA = 2.0;
```

```
*LET TC = . 20 ;
```

PROC MATRIX ; $\quad \mathbf{N}=\mathbb{E} \mathbf{N}$: /* CREATE VECTORS OF ITEM PARAMETERS */

```
A = J(1,N, &TA) ;
```

$B=\operatorname{PROBIT}(((1: \& N)-.5) \# / \& N) \quad ;$
$C=J(1, N, \& T C) ;$
$C N P=A^{\prime} A^{\prime} B^{\prime}{ }^{\prime} C^{\prime} ; \quad P A R=A^{\prime}:!B^{\prime}:!C^{\prime} ;$
NN = 1000 : /* 1000 SIMULATED EXAMINEES */
REPL = 1 ;
IF (N GT 30) THEN DO; NN = 500; REPL $=2$; END;
$J 1 N=J(1, N): \quad J N N 1=J(N N, 1):$
CN1 = 'Z' 'LZ' 'WZ' 'BZ' 'ERLZ' 'ERWZ' 'ERBZ' 'ERLZ2'
'ERWZ2' 'ERBZ2' 'INFZ' 'BIASMLEZ' 'T' 'ERLT'
'ERWT' 'ERBT': /* 2 MEANS THETA */
DO I2 = 1 TO 17;
T2 = J(NN,1,(12-9)\#/2); /* TZ = TRUE THETA */
/* COMPUTE TEST INF AND BIAS(MLE(THETA)) */
$P=1+\operatorname{EXP}((T Z \# J 1 N-J N N 1 * B) \#(J N N 1 *(-1.7 \# A))) ;$
$P=$ JNN1\#C + (JNN1"(1-C))\#/P ;
$P_{1}=P(1):, T=J(N N, 1,(P 1(,+))) ;$
DP1 $=1.7$ \# \&TA \# (P1 - \&TC) \# (1-P1) \#/ ((1) - (\&TC)) ;
INFZ $=(\mathrm{DP} 1$ \# DP1 \#/ (P1 \# (1 - P1))) (, +) :
DP2 = 1.7 \# \&TA \# ((1) + (\&TC) - (2\#P1)) \# DP1 \#/
((1) - (\&TC)) ;
BIASMLEZ $=-((D P 1 \# D P 2 \# /(P 1 \#(1-P 1)))(,+)) \# /(2 \#$ INFZ\#INFZ $) ;$

```
INFZ = J(NN,1,INFZ):
BIASMLEZ = J(NN,1,BIASMLEZ) :
/" BEGIN MONTE CARLO STUDY "/
DO I2 = 1 TO REPL ;
    /* STARTING VALUES OF ESTIMATES ARE TRUE THETA */
LZ = TZ ; WZ = TZ; BZ = TZ;
    /* make matrix of SCORED ITEM RESPONSES, U */
U = (UNIFORM(J(NN,N,O)) LE P) ;
                            /* MAXIMUM LIKELIHOOD ESTIMATES */
LINK MLEZ ; ERLZ = LZ - TZ ; ERLZ2 = ERLZ*#2 ;
PH = 1 + EXP( (LZ*J1N - JNN1#B)#(JNN1#(-1.7#A ) ) ) :
ERLT = (JNN1-C + (JNN1*(1-C))#/PH)(.+) - T ;
/* WEIGHTED LIKELIHOOD ESTIMATES */
LINK WLEZ ; ERWZ = WZ - TZ ; ERWZ2 = ERWZ##2 ;
PH = 1 + EXP( (WZ*J1N - JNN1*B)#(JNN1#(-1.7#A ) ) );
ERWT = (JNN1#C + (JNN1*(1-C))#/PH)(,+) - T ;
                                    /* BAYESIAN MODAL ESTIMATES */
LINK BMEZ ; ERBZ = BZ - TZ ; ERBZ2 = ERBZ*#2 ;
PH = 1 + EXP( (BZ*J1N - JNN1*B)#(JNN1#(-1.7#A ) ) ) ;
ERBT = (JNN1#C + (JNN1#(1-C))#/PH)(.+) - T ;
W =TZ:!LZ:!WZ:!BZ:!ERLZ;:ERW2:!ERBZ:!ERLZ2::ERWZ2:!ERBZ2 ;
\omega = Wi:INFZ:iBIASMLEZ:iT:iERLT:iERWT::ERBT ;
OUTPUT W OUT=W COLNAME=CN1 ;
END ; END ;
```

/* MAXIMUM LIKELIHOOD ESTIMATON SUBROUTINE */

```
STOP : MLEZ:
DO I1 = 1 TO 15;
PH=1 + EXP( <LZ#J1N - JNN1#B)#(JNN1#(-1.7#A) ) ):
PH = JNN1#C + (JNN1*(1-C))#/PH :
DPH1 = (PH - JNN1#C)#(1 - PH)#(JNN1*(1.7#A#/(1-C)) );
SL = ((U-PH)*DPH1#/(PH#(1-PH)))(,+);
IF (I1 LE 4) THEN DELTA = 1 ; ELSE DELTA = DELTA #/ 2;
LZ = LZ + DELTA#SIGN(SL) :
END ;
RETURN :
/* WEIGHTED LIKELIHOOD ESTIMATION SUBROUTINE */
STOP ; WLEZ:
DO I1 = 1 TO 15:
PH=1 + EXP((WZ#J1N - JNN1#B)#(JNN1#(-1.7#A)) );
PH = JNN1*C + (JNN1*(1-C))#/PH ;
DPH1 = (PH - JNN1*C)#(1 - PH)#(JNN1*(1.7#A#/(1-C)) );
DPH2 = (JNN1*(1 + C) - 2#PH)#DPH1#(JNN1*(1.7#A#/(1-C)));
INFW = (DPH1#DPH1#/(PH#(1-PH)))(,+);
JNFW = (DPH1#DPH2#/(PH#(1-PH)))(,+):
SW = ((U-PH)#DPH1#/(PH#(1-PH)))(,+) + JNFW#/(2#INFW);
IF (I1 LE 4) THEN DELTA = 1 ; ELSE DELTA = DELTA */ 2;
WZ = WZ + DELTA#SIGN(SW);
END ;
RETURN ;
```


STOP : BMEZ:

DO I1 = 1 TO 15:
$P H=1+E X P((B Z \pi J 1 N-J N N 1 * B) \#(J N N 1 *(-1.7 \# A))$) :
$\mathrm{PH}=\mathrm{JNN} 1 * \mathrm{C}+(\mathrm{JNN} 1 *(1-\mathrm{C}) \mathrm{O} / \mathrm{PH}:$
DPH1 = (PH - JNN1*C)\#(1-PH)\#(JNN1*(1.7\#A\#/(1-C)));
$\mathrm{SB}=((\mathrm{U}-\mathrm{PH}) \# \mathrm{DPH} 1 \# /(\mathrm{PH} \#(1-\mathrm{PH})))(,+)-\mathrm{BZ} ;$
IF (I1 LE 4) THEN DELTA $=1$: ELSE DELTA = DELTA \#/ 2;
$B Z=B Z+D E L T A \# S I G N(S B):$
END :
RETURN ;
$/$ * PRINT AND PLOT OUTPUT */
PROC SORT DATA=W: BY Z T INFZ BIASMLEZ;
TITLE Z=TRUE THETA, LZ=MLE(O), WZ=WLE(O), BZ=BME(O),
INFZ $=I N F(O), N=\& N, A=\& T A, C=\& T C, B=-2,2 ;$

PROC UNIVARIATE DATA=W PLOT; BY 2 T INFZ BIASMLEZ:
VAR WZ LZ BZ;
OUTPUT OUT=W3 MEAN=AVWZ AVLZ AVBZ STD=SDWZ SDLZ SDBZ MIN=MINWZ MINLZ MINBZ MAX=MAXWZ MAXLZ MAXBZ KURTOSIS=KURTWZ KURTLZ KURTBZ SKEWNESS=SKEWWZ SKEWLZ SKEWBZ $N=N N ;$

PROC UNIVARIATE DATA=W NOPRINT: BY Z INFZ BIASMLEZ;

VAR ERLZ ERWZ ERBZ ERWT ERLT ERBT ERWZ2 ERL22 ERBZ2; OUTPUT OUT $=\mathbf{W 4}$

MEAN=AVERWZ AVERLZ AVERBZ AVERWT AVERLT AVERBT MSEWZ MSELZ MSEBZ

STD=SDERWZ SDERLZ SDERBZ SDERWT SDERLT SDERBT
MIN=ERMINWZ ERMINLZ ERMINBZ MAX=ERMAXWZ ERMAXLZ ERMAXBZ $\mathbf{N}=\mathbf{N N}$;

PROC PRINT DATA=W3 ; PROC PRINT DATA=W4 ;

```
PROC PLOT DATA = W4 ;
    PLOT AVERWZ*Z='W' AVERLZ*Z='L' AVERBZ*Z='B'/OVERLAY ;
    PLOT AVERWT*Z='W' AVERLT*'Z='L' AVERBT*Z='B'/OVERLAY ;
    PLOT SDERWZ*Z='W' SDERLZ*Z='L' SDERBZ*Z='B'/OVERLAY ;
    PLOT SDERWT*Z='W' SDERLT*Z='L' SDERBT*Z='B'/OVERLAY ;
    PLOT MSEWZ*Z='W' MSELZ*Z='L' MSEBZ*Z='B' /OVERLAY ;
    PLOT ERMINWZ*Z='W' ERMINLZ*Z='L' ERMINBZ*Z='B' /OVERLAY ;
    PLOT ERMAXWZ*Z='W' ERMAXLZ*Z='L' ERMAXBZ*Z='B' /OVERLAY ;
```

TITLE $Z=T R U E(O), T=T R U E S C O R E, L Z=M L E(O), W Z=W L E(O)$,
$\mathrm{BZ}=\mathrm{BME}(\mathrm{O}), \operatorname{INFZ}=\operatorname{INF}(\mathrm{O}), \mathrm{N}=\varepsilon \mathrm{N}, \mathrm{A}=6 . \mathrm{TA}, \mathrm{C}=\& \mathrm{TC}, \mathrm{B}=-2,2 ;$

```
PROC PLOT DATA=W3 ;
    PLOT SKEWWZ*KURTWZ='W' SKEWLZ*KURTLZ='L'
    SKEWBZ*KURTBZ='B'/OVERLAY;
```


APPENDIX C
 pascal program for tailored test monte carlo study

PROGRAM Wltt1 (INPUT,OUTPUT):
(5C-, U+)
(This program performa a Monte Carlo comparison of Maximum Likelihood, Weighted Likelihood, and Bayesian Modal estimates of theta in Tailored Tests. 100 estimates of theta are made at each of 17 values of theta. The c-parameters $=.2$ a-parameters decline from 2.0 in increments of $1 / 35$ with each item administered, and b-parameters are chosen to maximize item information for the current eatimate of theta, given the a- and c- parameters.

Thomas A. Warm
University of Oklahoma
July 30, 1985
〕
type

```
            TimeString = string[8];
VAR fileA,fileB : TEXT ;
    itavzh,avnit,a,b : ARRAY[1..101] OF REAL;
    u,nnit : ARRAY[1..101] OF INTEGER :
    sumn,d3p,avzh,avzh2,sdzh,djnf,dinf,d2lnw,sumzh3,sumzh4,
```

skewzh,kurtzh: REAL;
msezh,time, $z, z h, C, P, P q, d p, d 2 p, d i n l, d l n w, T e a t I n f$, sumzh, sumzh2 : REAL;
n,nn,maxn,i1,i2,i3,i4,method,iz INTEGER;
meth : STRING[3]:

```
PROCEDURE Initialize1; BEGIN
    ASSIGN(fileA,'wlttla.prt') :
    REWRITE(fileA) : (* APPEND(fileA) ; *)
    ASSIGN(fileB,'b:wlttlb.prt');
    REWRITE(fileB) : (* APPEND(fileB) ; *)
    RANDOMI2E;
```

 END:
 PROCEDURE Initialize2; BEGIN
nn $:=100$;
$\operatorname{maxn}:=50:$
$c:=0.2:$
sumn $:=0.0$;
sumzh : $=0.0$:
aunzh2 :=0.0;
sumzh3: $=0.0$;
sumzh4 : $=0.0$:
FOR $12:=1$ TO 101 DO BEGIN
avnit[12] :=0:
nnit[12] $:=0$:

END ;

END :

FUNCTION realtime: REAL :
TYPE
regpack x RECORD $a x, b x, c x, d x, b p, s i, d i, d s, e s, f l a g s:$ INTEGER;

END:
VAR
recpack: regpack; \{asaign record)
ah,al,ch,cl,dh: BYTE;
hour,min, sec: STRING[2];
hour2, min2, sec2 : REAL:
code : INTEGER:
BEGIN ah $:=\boldsymbol{m} 2 \mathrm{c}$:
[initialize correct registers)
WITH recpack DO BEGIN
$a x:=a h S H L 8+a l ;$
END;
INTR(\$21, recpack);
\{call interrupt\}
WITH recpack DO BEGIN STR(cx SHR 8,hour): (convert to string)

STR(cx MOD 256,min): \{ " \}
STR(dx SHR 8, sec): \{ " \}
END:

```
    VAL(hour,hour2, code);
    VAL(min,min2,code) ;
    VAL(sec,sec2,code) :
    realtime := 3600*hour2 + 60mmin2 + sec2 ;
    END
```

FUNCTION Pof(t:REAL;i5:INTEGER) : REAL : (Compute P(Theta))
BEGIN

```
Pof := c + (1.0 - c)/(1.0 + EXP(-1.7*a[i5] * (t -
    b[i5] ) ( ) ;
```

END :

FUNCTION dPdz(i6:INTEGER): REAL:

(1st deriv of P with respect to theta]
BEGIN
$\mathrm{dPdz}:=1.7 \times(16] \cdot(p-c)(1.0-p) /(1.0-c) ;$ END:

PROCEDURE ComputeTestInf(t:REAL) ;
VAR 17: INTEGER :
BEGIN
TeatInf:=0:
FOR i7:= 1 TO n DO BEGIN
$p:=\operatorname{Pof}(t, 17): \mathbf{d p}:=\operatorname{dpdz}(17) ;$
TestInf $:=$ TestInf $+\operatorname{dp*dp/(p*(1.0-p));~}$
END: END;

```
FUNCTION d2Pdz2(i8:INTEGER) : REAL ;
    (2nd deriv of P with respect to theta)
    BEGIN
    d2Pdz2 := 1.7 * a[i8] * (1.0 + c - 2.0 * p) * dp /
        (1.0 - c) :
```

 END;
 FUNCTION d3Pdz3(i9:INTEGER) : REAL :
(3rd deriv of P with respect to theta)

BEGIN

```
d3Pdz3 := sqr(1.7*a[i9]*(1.0 + c - 2.0 * p)/(1-c))*dp
    - 2*1.7*a[i9]*8qr(dp)/(1-c):
```

 END:
 FUNCTION nextb : REAL ;
[Get b with max item info at theta^]
VAR nextp : REAL ;
BEGIN
nextp : $=(1.0+\operatorname{SQRT}(1.0+8.0$. c) $) / 4.0$:
nextb :=
zh - LN ((nextp - c)/(1.0 - nextp)) / (1.7 a[n]) ;
END:
FUNCTION nextu : INTEGER :
(Get u for next item)

BEGIN
$p:=\operatorname{pof}(z, n) ;$
nextu : $=0$;
IF (RANDOM < p) THEN nextu : $=1$;
END;

FUNCTION sign(t:REAL):REAL :
\{SIGN function \}
BEGIN
sign : $=0.0$;
IF 〈t>0.0) THEN sign $:=1.0$;
IF (t <0.0) THEN sign $:=-1.0$;
END;

PROCEDURE EstimateTheta12or3; (1=MLE, 2=WLE, and 3=BME)
VAR
jnf, delta: REAL : nit: INTEGER:
BEGIN

```
nit := 0 ; REPEAT
        nit := nit + 1 ;
        dlnL:=0.0;
        jnf:=0.0;
        djnf:=0.0:
        dinf := 0.0:
        TestInf:=0.0:
        FOR 11:= 1 to n DO BEGIN
        p:= POf(zh,i1);
```

```
pq := p*(1 - p) ;
dp := dPdz(i1) :
dlnL := dlnL + (u[i1] - p)wdp/pq ;
TestInf := TestInf + dp*dp/pq :
CASE method OF
2 : BEGIN
    d2p := d2pdz2(11) :
    d3p:= d3PdZ3(i1):
    jnf := jnf + dp*d2p/pq;
    djnf := djnf +((d2p*d2p+dp*d3p)/pq)
                            - ((dp*dp*d2p*(1-2*p))/(pq*pq)) :
    dinf := dinf + (2*dp*d2p/pq)
                            -(dp*dp*dp*(1-2*p)/(pq*pq)):
```

 END:
 END :
END:

CASE method OF

```
    1 : delta := (dlnL )/(TestInf ) ;
                                    (Maximum Likelihood)
    2 : BEGIN
                                    {Weighted Likelihood}
            dlnw:= jnf/(2*TestInf):
            d2lnw := (TestInf*djnf - dinf*jnf)/
                (2*eqr(TestInf)) :
            delta := (dlnL + dlnw)/(TestInf - d2lnw);
            END:
    3 : delta := (dlnL - zh)/(TestInf + 1);
```


(Bayesian Modal)

```
        END :
        IF (ABS(delta) > 2 ) THEN delta := 2*aign(delta) :
        zh := zh + delta ;
    UNTIL ((ABS(delta) < 0.001) OR (ABS(zh) > S.0)
        OR (nit > 20)) ;
    avnit[n] := avnit[n] + nit ;
    itavzh[n] := itavzh[n] + zh :
    nnit[n] := nnit[n] + 1 ;
```

END: (End of EstimateThetal2or3 Procedure)

PROCEDURE WriteHeading:
BEGIN
WRITELN(fileA) ;
WRITELN(fileA, $G^{\prime},^{\prime} A^{\prime},^{\prime} 2^{\prime}$,

END;

PROCEDURE Summarize :
BEGIN

```
avzh := sumzh/nn ;
avzh2 := sumzh2/nn ;
```

```
sdzh := SQRT(avzh2 - avzhwavzh) ;
sumzh3 := sumzh3/nn ;
skawzh := (sumzh3 - 3*avzh*avzh2 + 2*avzh*aqr(avzh))/
    (adzh*Bqr(adzh)) ;
sumzh4 := sumzh4/nn ;
kurtzh :=( sumzh4 - 4*avzh*sumzh3 + 6*avzh2*aqr(avzh)
    - 3*sqr(avzh)*sqr(avzh) )/(sqr(sdzh)*sqr(sdzh)):
sumn := बumn/nn ;
avzh := avzh - z ;
msezh := sqr(avzh) + sqr(sdzh) :
CASE method OF
    1 : meth := 'MLE' :
    2 : meth := 'WLE' :
    3 : meth := 'BME' ;
END;
Writeln<fileA,meth:6,z:5:1,avzh:10:4,sdzh:10:4,
            skewzh:10:4,kurtzh:10:4,
    time:7:1,gumn:8:1,' ',nn:3,msezh:8:4) :
FOR 11 := 1 TO 101 DO BEGIN
    IF (nnit[i1] > 0) THEN BEGIN
        avnit[i1] := avnit[i1]/nnit[11] ;
        itavzh[i1] := itavzh[i1]/nnit[i1] ;
        WRITELN<fileB,'Meth=',meth:3,' 暚,z:4:1,' Av*^=',
            itavzh[i1]:8:3," n=',i1:3,
                , avNits=', avnit[il]:5:1,
                ,N=',nnit[ilJ:2) ;
```


END :

END; Writeln(fileB):
END :

```
BEGIN
    Initialize1;
    FOR method := 1 TO 3 DO BEGIN
    WriteHeading ;
    FOR iz:= 1 TO 17 DO BEGIN
        z := (iz - 9)/2.0 :
        Initialize2 :
    time := realtime:
    FOR 12:= 1 TO nn DO BEGIN
        n:=0;
        2h:=0.0;
        TestInf :=0.0:
        REPEAT
            n:=n+1;
            a[n]:=2.0; (a[n]:= (71.0-n)/35.0:]
            b[n] := nextb;
            u[n] := nextu;
            EatimateTheta12or3 : (MLE, WLE, or BME)
        UNTIL (<TestInf > 20) OR (n >= maxn) ):
        gumn := ((gumn) + (n)) ;
        ComputeTestInf(zh) ;
        Writeln(method:3,12:5,' z=',z:3:4,' zh=', zh:3:4,
```

```
            , I=',TestInf:3:4,' n=',n);
        gunzh := sumzh + zh ;
        sumzh2 := &umzh2 + zh*zh ;
        sunzh3 := munzh3 + zh#eqr(zh) ;
        mumzh4 := mumzh4 + eqr(zh) sqr(zh):
        END;
        time := (realtime - time)/nn ;
        Summarize:
        END:
    END:
    CLOSE(fileA) ;
    CLOSE(fileB) :
```


END.

APPENDIX D

ADDITIONAL FIGURES OF RESULTS

Average Estimation Error of θ^{\wedge} on Conventional Test with 20 Items, All $a=1$. Normally Distributed b, and All $c=0.20$.

Figure D. 2
Average Estimation Error of θ^{n} on Conventional Test with 30 Items, Alla=1. Normally Distributed b, and All $c=0.20$.

Figure D. 3
Average Eatimation Error of θ^{\wedge} on Conventional Test with 40 Items, All $a=1$, Normally Distributed b, and All $c=0.20$.

Average Eatimation Error of θ^{n} on Conventional Teat with 50 Itema, All a $=1$, Normally Distributed b, and All $c=0.20$.

Figure D. 5
Average Estimation Error of θ^{n} on Conventional Test with 60 Items, All $a=1$. Normally Distributed b, and All $c=0.20$.

Figure D. 6
Average Estimation Error of θ^{\wedge} on Conventional Test with 10 Items, All a $=2$. Normally Distributed b, and All $c=0.20$.

Figure D. 7
Average Estimation Error of θ^{\wedge} on Conventional Test with 20 Items, All a $=2$, Normally Distributed b, and $A l l c=0.20$.

Figure D. 8
Average Eatimation Error of θ^{\wedge} on Conventional Test with 30 Items, Alla $=2$, Normally Distributed b, and All $c=0.20$.

Average Eatimation Error of θ^{\wedge} on Conventional Test with 40 Items, All $a=2$. Normally Distributed b, and $A l l c=0.20$.

Figure D. 10
Average Estimation Error of θ^{n} on Conventional Test with 50 Itema, A11 a $=2$, Normally Distributed b, and All $c=0.20$.

[^0]

Figure D. 12
Standard Deviation of θ^{n} on Conventional Test with 20 Items, All a $=1$. Normally Distributed b, and All $c=0.20$.

Figure D. 13
Standard Deviation of θ^{n} on Conventional Test with 30 Items, All $a=1$, Normally Distributed b, and $A l l c=0.20$.

[^1]

Standard Deviation of θ^{\wedge} on Conventional Test with 50 Items, Alla $=1$. Normally Distributed b, and All $c=0.20$.

Figure D. 16
Standard Deviation of θ^{\wedge} on Conventional Test with 60 Items, Alla $=1$, Normally Distributed b, and All $c=0.20$.

Figure D. 17
Standard Deviation of θ^{\wedge} on Conventional Test with 10 Items, All $a=2$, Normally Distributed b, and All c $=0.20$.

[^2]

Figure D. 20
Standard Deviation of θ^{\wedge} on Conventional Teat with 40 Items. All a $=2$, Normally Distributed b, and All $c=0.20$.

Standard Deviation of θ^{\wedge} on Conventional Teat with 60 Items, Alla $=2$. Normally Distributed b, and All $c=0.20$.

Mean Squared Error of θ^{\wedge} on Conventional Test with 20 Items, Alla=1, Normally Distributed b, and $A l l c=0.20$.

Figure D. 24
Mean Squared Error of θ^{\wedge} on Conventional Test with 30 Itema, All a $=1$. Normally Distributed b, and All $c=0.20$.

Figure D. 25
Mean Squared Error of θ^{\wedge} on Conventional Test with 40 Items, All $a=1$, Normally Distributed b, and All $c=0.20$.

Figure D. 26
Mean Squared Error of θ^{\wedge} on Conventional Teat with 50 Items, Alla $=1$, Normally Distributed b, and All $c=0.20$.

Mean Squared Error of θ^{\wedge} on Conventional Test with 60 Items, All a $=1$. Normally Distributed b, and $A l l c=0.20$.

Mean Squared Error of θ^{n} on Conventional Test with 10 Items, All a $=2$. Normally Distributed b, and All $c=0.20$.

Mean Squared Error of θ^{\wedge} on Conventional Test with 20 Items, All $a=2$, Normally Distributed b, and All c $=0.20$.

Figure D. 30
Mean Squared Error of θ^{n} on Conventional Test with 30 Items, All a $=2$, Normally Distributed b, and All $c=0.20$.

Figure D． 31
Mean Squared Error of θ^{\wedge} on Conventional Test with 40 Items，Alla＝2， Normally Distributed b，and All $c=0.20$ ．

Figure D. 34
Average Estimation Error of T^{\wedge} on Conventional Teat with 60 Items, All $a=2$, Normally Distributed b, and All $c=0.20$.

Figure D. 35
Standard Deviation of T^{\wedge} on Conventional Test with 60 Items, All a $=2$, Normally Diatributed b, and All $c=0.20$

Mean Squared Error of T^{\prime} Figure D. 36 Conventional Teat with 60 Items, All $a=2$, Normally Distributed b, and All $c=0.20$.

[^3]Figure D. 37

[^4]
[^0]: Average Estimation Error of θ^{\wedge} on Conventional Test with 60 Items, All a $=2$, Normally Distributed b, and All $c=0.20$.

[^1]: Standard Deviation of θ^{\wedge} on Conventional Test with 40 Items. Alla a, Normally Distributed b, and $A l l c=0.20$.

[^2]: Figure D. 18
 Standard Deviation of θ^{\wedge} on Conventional Test with 20 Items, All a $=2$, Normally Distributed b, and $A 1 l c=0.20$.

[^3]: Average Estimation Error of θ^{\wedge} on Tailored Test with a = Optimal b-parameter, and All $c=0.20$.

[^4]: Figure D. 39
 Average Computation Time Between Items on Tailored Test with All a $=2$, Optimal b-parameter, and All $c=0.20$.

