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WEIGHTED LIKELIHOOD ESTIMATION OF ABILITY IN ITEM RESPONSE 
THEORY WITH TESTS OF FINITE LENGTH 

Abstract
Applications of Item Response Theory, which depend upon 

its parameter invariance property, require that parameter 
estimates be unbiased. All current estimation methods 
produce statistically biased estimates of both item and 
ability parameters. A new method. Weighted Likelihood 
Estimation (WLE), is derived, and proved to be less biased 
than Maximum Likelihood Estimation (MLE) with the same 
asymptotic variance and normal distribution. WLE removes 
the first order bias term from MLE. Two Monte Carlo studies 
compare WLE with MLE and Bayesian Modal Estimation (BME) of 
ability in conventional tests and tailored tests. The Monte 
Carlo studies favor WLE over MLE and BME on several criteria 
over a wide range of the ability scale.

Keywords: Maximum Likelihood Estimation, unbiased
estimation, statistical bias, Bayesian Modal Estimation, 
Item Response Theory, tailored testing, adaptive testing.
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INTRODUCTION

Item Response Theory (IRT) is an elegant model of 
examinee behavior on multiple-choice tests In terms of Item 
and person parameters that are Invariant within a linear 
transformation. The mathematical form of IRT that Is almost 
exclusively used Is the three parameter logistic model, 
which gives the probability, P, that a scored Item response, 
ui, to Item 1 Is correct (ui = 1) Is a function of the 
ability parameter, 6, and three Item parameters, 
ai, bi, and ci.

P(ui=l!0;ai,bi,ci> = ci+(l-ci>/<l+oxp<-l.7ai<8-bi>>) (1)

The left hand side (LHS) of (1 ) Is often abbreviated 
Pj.<6>, P(8), or just P, when the context excludes
ambiguity.

The true parameters, of course, are never known, and 
must be estimated. The estimates are unidentifiable unless 
an origin and unit of the 8 scale are given. Usually, the 
mean and standard deviation of the ability estimates, 8^, of 
some reference group of examinees Is chosen for the origin

1
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and unit, respectively. The estimates o£ the parameters 
then are on their own specific scale, and may not be 
directly comparable with other estimates.

In principle all parameters are invariant within a 
linear transformation. Given the true parameters, scaled 
with respect to any two tests with at least two common 
items, the linear transformation that links scores and 
parameters of the two tests is easy to solve for. Since the 
true parameters are never known, any application of IRT 
which makes use of the parameter invariance property depends 
upon an assumption of parameter estimate invariance. 
Parameter estimates are not invariant because of estimation 
error. As a result the linear transformation for linking 
tests is also an estimate. The greater the error of the 
parameter estimates, the greater will be the error of the 
linear transformation. Hence, in practice, the invariance 
principle must be phrased in terms of the expectation of the 
transformation. In order to minimize the error of 
tranaformation, averages of parameter estimates are used in 
place of the parameters themselves when solving for the 
linking transformation.

Averages have reduced variance, a valuable property 
which should reduce the variability of the linking 
transformation. However, if the estimates are statistically 
biased, then the averages will also be biased, and so will 
the linking transformation. Among the many strengths of IRT,
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the Invariance property distlnguiahes it moat clearly from 
other approaches. Thus, unbiased estimation is critical to 
applications of IRT that make use of the invariance 
property, and is a fundamental requirement of IRT as a 
statistical theory. This paper derives and testa by Monte 
Carlo methods a new procedure, called Weighted Likelihood 
Estimation (WLE), for estimating 6, the ability parameter. 
The new estimator is relatively unbiased and is 
computationally efficient.

Estimation Methods and Bias. There are five basic 
estimation methods that are used in IRT for parameter 
estimation: Maximum Likelihood Estimation (MLE) (Lord,
1980), Bayesian Modal Estimation (BME) (Samejima, 1980) 
[also called Modal A-Posteriori (MAP), (Bock, 1983)3, Owen's 
Sequential Bayesian (OSB) (Owen, 1975), Expected 
A-Poateriori (EAP) (Bock, 1983), and Marginal Maximum 
Likelihood (MML) (Bock and Aitkin, 1981). In addition to 
these, there are variations such as the Robustified 
Jackknife (Wainer & Wright, 1980), h-estimators (Jones, 
1982), and biweight estimates (Bock & Mislevy, 1981).

All of these estimation methods produce estimates that 
are biased to some degree. MLE (Lord,1983a), and BME (Lord, 
1983b, 1984) were shown to be biased to order n"l; that
is to say the bias is inversely proportional to n, the 
number of itema in the test, other things being equal. OSB,
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EAP, and MML are all Bayesian procedures (in apite of MML's 
title), and, therefore, also are biased to order n"l. The 
biweight and h-estimators are robust M-estimators [modified 
MLE, (See Andrews et al, 1972)1 designed to reduce the 
influence of outliers rather than to reduce bias.

The bias of jackknifed estimators, which were 
introduced by Quenouille (1956), is of one order less than 
the order of bias of the estimator jackknifed (Kendall & 
Stuart, 1973). Therefore, the bias of the Robustified 
Jackknife, which jackknifes MLE, should be of order n"2 
except for any bias caused by the robustification. 
Unfortunately, the reduced bias of ]ackknifing is achieved 
by increasing the required computations by an order of 
magnitude. That is to say, for a test of n-items, the 
computational time for the gackknifed MLE is n times the
computational time for the MLE itself. Even on large
computers this computational intensity increases CPU time 
from minutes to hours; this increase is unacceptable in most 
settings.

Other methods of bias reduction have been used with
some success. For MLE, Cox & Hinkley (1974) suggest 
evaluating the bias at the value of the estimate, and then 
subtracting the estimated bias from the estimate to produce 
an improved estimate. Anderson and Richardson (1979) and 
Schaefer (1983) used this technique successfully on 
discrimination and location parameters, respectively, of
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logistic models. One difficulty with this approach is that 
for models in which bias is a monotonie function of the 
parameter being estimated (as is often the case in IRT), 
error can actually be increased rather than reduced.

Lord (1983c, Personal Communication) has suggested 
using as an estimate of 8 that value of the parameter, which 
when added to the bias evaluated at the value, is equal to 
the maximum likelihood estimate. There are two difficulties 
with this estimator: 1) it is not necessarily unique, and 2) 
if the maximum likelihood estimate is infinite, so is this 
estimator. It is unknown whether this approach, used with 
other estimators, would overcome these difficulties. A 
similar, untried estimator is the value of the parameter, 
which when added to its bias, maximizes the likelihood 
function.

Weighted Likelihood Estimation. For a test of n 
items the MLE of 6, MLE(8>, is the value of 8 that maximizes 
the likelihood function, L(u: 8), where

n Ui 1-ui
L(u:8) = TT P(8> ■ 0(8) , (2)i*l

and is the vector of n scored item responses
(ui = 1 if item i is correctly answered, and ui = 0 if
item i is incorrectly answered; i = 1, 2,  , n), and
0(8) = 1 - P(8). Hereafter, the subscript i will be dropped
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for convenience, unless it is needed for clarity. MLEC8) is 
found at the zero of the likelihood equation.

nll ■ 6/60 In L(u:0) * Z (u-P)P'/PQ = 0 , (3)i*l

where P' = 6/60 P.
A class of M-estinators, z * M(Z), of the parameter Z 

may be defined as the value of Z that maximizes.

n Ui 1-Ui
f(Z)'L(ul8) » fCZ)*iT P<0) • 0(8) , (4)i = l

where Z is a function of 0. The M-estimate of Z is found at 
the zero of the M-estimate equation.

nZ (u-P)P'/PO + 6/60 In f(Z) = 0 . (5)
i»l

If f(Z> is a constant, z is a maximum likelihood estimate of 
Z, MLE(Z), and (5) reduces to (3). If f(Z) is an assumed 
prior density function of Z, then (4) is the posterior 
density function, and z is a Bayesian Modal Estimate of Z, 
BME(Z).

Lord (1983a) gives the following asymptotic expression 
for the bias of MLE(0), BIAS(MLE(0)), which is of order 
n-1;



BIAS(MLE<e>) = -J/(2I') (6)

where I le teet information,

I = ZP''/PO ,

J = ZP'P'VPQ ,

and P" » 6*/6B* P . Equation (6) ia equivalent to the
general expression of BIAS<MLE(6>) for a multinomially 
distributed variable, given by Cox & Hinkley (1974, p. 310). 
Lord (1984) gives the bias of BME(6) with a standard normal 
prior.

BIAS(BME(8)) = BIAS(MLE(8)) - 8/1 (7)

BIAS(BME(8)) is also of order n~^. The last term on the 
right hand side (RHS) of (7) is the derivative, with respect
to 8, of the log of the standard normal density divided by
test information. From this observation, we can conjecture 
that the bias of the M-eatimator defined by (5) is

BIAS(M(Z)) = BIAS(NLE(8)) + (6/68 In f(Z))/I . (8)

Thus, in order to find the M-estimator that is unbiased, we
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only nead set the RHS of (8) equal to zero, and solve for 
f(Z). Substituting <6> into (8), we obtain

6/60 In f(Z) * -J/(2I> . (9)

Replacing f(.) with w(.) in (5) to emphasize that the function is 
now specifically defined, and letting Z = 8 yields

nZ (u-P)P'/PO ♦ 6/68 In w(8> = 0 , (10)i=l

and substituting (9) into (5), gives

nZ (u-P)P'/PO ♦ J/(2I) = O , (11)
i = l

where I and J are as defined in (6). An estimate satisfying 
(11) is called a Weighted Likelihood Estimate (WLE). If the 
conjecture above is correct, then BIAS(WLE(8)) should be 
only of order n~^, one order less than MLE(8) and BNE(8).

THEOREM: WLE(8) ia unbiased to order n"l. I.e.

BIAS(WLE(8)) = 0 ♦ o(n-l) . (12)

Appendix A gives the mathematical proof of the theorem for 
rather restrictive conditions. Apparently, however, this
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"... method of removing the first bias term will work in 
complete generality, and can be extended to any form of 
consistent estimating equation where the mathematical form 
of bias is computable." (Hinkley, 1985, Personal 
Communication). WLE(6> is asymptotically normally 
distributed with variance equal (asymptotically) to the 
variance of MLE(6), i.e.,

VAR(WLE(0)) = VAR(MLE(0)) = I"! .

Warm (1985) affirmed (12) in a Monte Carlo study of the 
asymptotic properties of WLE(8), and found that VAR(WLE(8)) 
converges to the asymptotic value (I"l) more rapidly than 
VAR(MLE(0)).

In general there ia no closed-form solution for the 
indefinite integral of 6/68 In w(8) in order to solve for 
w(8). However, if the c-parameters are equal to zero for 
all items (am they are in the one and two parameter models 
of IRT), then

w(8) = 1̂ 4 (ci * O, all i)



TWO EXPERIMENTS TO EVALUATE WEIGHTED LIKELIHOOD ESTIMATION

The proof in Appendix A and the results of War* (1985) 
speak well of the asymptotic properties of WLE. While these 
properties are crucial to the mathematical statistician, 
they are of less interest to users of IRT in practical 
testing applications. In real testing situations, the 
number of items in a test seldom exceeds 100, which may be 
too few for asymptotic results to hold.

To be especially useful, an estimation method must be 
shown to be practical for conventional tests with fewer than 
50 items (the fewer the better). By "conventional test" is 
meant a paper and pencil test on which all examinees take 
the same items. A limitation of Monte Carlo studies is that 
the results are specific to the design of the study. The 
usual solution for the choice of the design is to select 
either an idealized case, which may not generalize to more 
than a few realistic situations, or to select a "typical" 
case. The second alternative was chosen for this study. The 
conventional tests, simulated here, were designed to have a 
Teat Information function roughly "normal" in shape. Lord & 
Novick (1967) point out that this is a common design. This

10
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shape was accomplished by choosing normally distributed 
b-parameters for the items. Once the gross shape was 
decided upon, other details were resolved; namely the values 
of the a- and c-parameters, and the range of the number of 
items in the simulated tests. Both the a- and c-parameters 
affect the amount of test information (but in different 
ways). Variability among the a- and c-parameters in a given 
test has "local" effects, but not important overall effects. 
On the other hand, the amount of teat information is 
important to the behavior of an estimator. To keep the 
number of possibile permutations of the variables in the 
design manageable, the c-parameter for all items in all 
tests was held constant at 0.20 - a typical value. Two 
values were chosen for the a-parameters, a "moderate" value 
(1.0), and a "high" value (2.0). To avoid the local effects 
mentioned above the a-parameters for all items in a given 
test were set to the same value. A wide range of test 
lengths was chosen (10 to 60). The six test lengths by two 
values for the a-parameter give 12 different conventional 
tests.

With the pending adoption of tailored testing by the 
U.S. Armed Forces (Green et al, 1984) for the ASVAB (Armed 
Services Vocational Aptitude Battery), the behavior of the 
6-estimator in tailored tests (Lord, 1980) is of current 
interest. The same conflict between "idealized" versus 
"typical" occurs in this case for the design of the
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hypothetical item pool. Various solutions have been chosen. 
McBride (1977) used both an ideal, finite item pool and an 
infinite item pool. Maurelli (1978) and McKinley & Rekase 
(1981) used a finite item pool with normally distributed 
b-parameters. Gorman (1980) used finite item pools with 
both rectangularly and normally distributed b-parameters. 
Jensema (1977) showed that the design of the item pool 
strongly influences the results, and recommended 
rectangularly distributed b-parameters.

For the tailored testing experiment in the present 
inquiry two item pools with rectangularly distributed 
b-parameters were used -- differing only in the a-parameter. 
The a-parameters of one pool were held constant to a high 
value (2.0) in order to simulate an ideal, infinite item 
bank. The a-parameters of the other item bank declined as 
the number of items administered increased. The purpose of 
the declining a-parameter was to simulate the depletion of 
Items with high item information as the tailored test 
proceeds; this always occurs with a finite item bank. The 
c-parameters of all items in both item banks were held 
constant (0.20) as with the conventional test.

The evaluation of a new estimator such as WLE requires 
a standard of comparison. Both MLE and BME were chosen as 
"benchmark" methods, representing opposite extremes in 
several ways.

The criteria of comparison are also issues. Since the
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major motivation for the development of WLE is unbiasedness, 
conditional on 0, bias is an important criterion. The 
variance of an estimator is also a common criterion for 
evaluating estimation methods. However, it is trivial to 
produce small variance In an estimator -- simply setting 
every estimate to some constant value produces zero variance 
(although it wreaks havoc with bias). The mean squared 
error combines both criteria, since it is the sum of the 
variance and the squared bias by a common analysis of 
variance Identity.

In tailored testing, the number of items administered 
is important, reflecting both total testing time required 
and the exposure of items to potential compromise. In 
addition, the speed of estimating ability between Items may 
be Important. If computation time is too slow, total 
testing time Increases, and "dead time" may occur. I.e. the 
examinee may have to sit and wait for the next item to be 
presented. Dead time can induce boredom and cause 
underestimation of ability.

The measurement of ability on the 6-scale is not the 
only scale of interest. True score, T ■ T(0) = S PC6), the 
expected value of the raw, number-right score on a 
conventional test. Is often desired. A frequent criticism of 
Bayesian estimators is an internal contradiction; the 
expected value of the Bayesian estimator of a non-linear 
transformation of 9 is not equal to the non-linear
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transformation of the Bayesian estimator of 6. On the other 
hand MLE Is Invariant to non-linear transformation. True 
score is a non-linear transformation of 6, and 
E(TCBHE<0)10)> =/= T(8), where E is the expectation
operator. But HLE(T) is also biased. Thus, since WLE is 
ostensibly less biased than MLE and BME, it would be 
interesting to know whether E(T(WLE(8)!8)) = T(6).



METHOD

Design of the Conventional Teats: For the comparison of
the three estimators under a wide range of test lengths, 12 
conventional tests were constructed. There were two tests 
for each of six test lengths, n=10, 20, 30, 40, 50, and 60. 
For each test length, the a-parameters of one test were set
to Si = 1.0, for all i=l,2, n, and for the other test
ai = 2.0, all i. The b-parameters of all 12 tests were 
distributed "normally", using the inverse normal 
transformation, S~^(.>. That is, for a test of length n, 
bi = 5~1<<i-.5)/n> . The c-parameters of all items in 
all tests were set to 0.20 . These item parameters produce 
a test information curve that is roughly "normally" shaped, 
and is a commonly used conventional test design.

At each of 17 values of 0 (= -4, -3.5, ---, 4), 1000
simulated examinees were administered all 12 tests, and
WLE(6>, HLE(6>, and BME(8) was computed for each examinee
and for each test. The same item responses were used for
all three estimators. The mean, standard deviation, and
mean squared error of the 1000 estimates of 8 was computed 
at each of the 17 values of 8 for each test and each

15
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estimator. In addition, the mean, standard deviation, and 
mean squared error of estimated True Score, = T(8^), was
computed for each of the 1000 estimates of 6 at each of the 
17 values of 6 for each estimator on the two tests with most 
extreme Test Information functions. Appendix B contains the 
computer program used for the Monte Carlo study of the 
conventional test. It is written in the matrix algebra 
language (PROG MATRIX) of the Statistical Analysis System 
(SAS, 1980), and was executed on an IBM 3081 mainframe 
computer.

Design of Tailored Teats: Six tailored tests, two for
each estimator, were administered to 100 simulated examinees 
at each of the 17 values of 6. For all tailored tests all 
Cl = .20 . For each of the three estimators one tailored 
test had all ai = 2.0 . The other tailored test for each 
estimator had declining a-parameters to simulate the 
declining item information available from a finite item 
pool, specifically ai - (71-i)/35 . Following Weiss S> 
McBride (1984), the values of the b-parameters for all 
tailored tests were chosen so that the maximum of the item 
information for the item a- and c-parameter was at the 
current estimate of 6. That is, the b-parameter of the 
(i + l)th item was

bi+i = 8" - ln(X(l + (1 + 8c)X))/(1.7a) ,
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where 6^ la the current estimate of 6 after the ith item.
The stopping rules for administering items were: 1)

stop if test information exceeds 20 at the current estimate 
of 8, or 2) stop if the number of items administered <n) = 
50, whichever occurred first. The mean, standard deviation, 
and mean squared error of the 100 estimates was computed for 
each of the 17 values of 6 for each test and each estimator. 
In addition, for each tailored test and estimator the 
average number of items administered, and the average 
iteration computation time per item were computed. Appendix 
C contains the computer program of the tailored tests, which 
was written in TURBO PASCAL 3.0 (Borland, 1985), and was 
executed on a Corona PC portable computer with an Intel 8087 
high speed arithmetic processor chip.

Estimating 9 : For the conventional tests, 0 was
iteratively estimated by the interval bisection method with 
r = 15 iterations.

0'‘m,r ~ 8*m»r-l * &m;r » ** = 1,2, 15,

m = WLE, MLE, or BME, and 8^*,o = 8

For the first four iterations, r = 1, 2, 3, 4, 16*,r: = 1 
with the sign the sane as the objective function. In the



18
remaining iterations, r = 5, 6, ---, 15, 26*,r' =
' 6 m , r - l ' T h i s  Iteration method has several
advantages: 1) 18^-8: < 5, 2) it will find the local maximum 
closest to true 8, 3) the magnitude of the difference
between the true maximum and the final estimate < .001, and 
4) convergence is guaranteed.

Iterative estimation of MLE(8) for the tailored tests 
was accomplished by a modification of Newton-Raphson, called 
“Fisher Scoring" (Lord, 1980). In "Fisher Scoring" the 
second derivative of the log likelihood in the denominator 
of the Newton-Raphson "delta" is replaced with its expected 
value (which is equivalent to the negative of test 
information). The respective analogies of Fisher Scoring 
were used for WLE and BME.

G^mrr “ G^m»r-1 * 6m»r » ~ 1,2, ,

m = WLE, MLE, BME, and GT*,o = 0 ,

with the magnitude of 6m,r limited to 2.0 .

For m = MLE [with li as defined in (3)1,

6*,r = (ll/I), evaluated at 8*,,r-l

For m = BME,
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6*,r = (Il - 8)/(I+l), evaluated at

For m « WLE,

6*,r “ (ll ♦ J/(2I>>/(I - (IJ'-I'J)/(2I'>),

evaluated at 8**,r-l • Iterations were continued until 
:6*,r: < .001 , r » 21, or :Gr*,r+l: > 5, whichever 
occurred first.

Generating the scored item responses. u<: For each
item response P(0> was calculated, and a pseudo-random 
number, y, uniformly distributed over the interval (0,1), 
was generated. Then ui = O, if y > P(8); else ui » 1.
The seeds for the computer program random number generators 
were arbitrarily taken from the real-time clock of the 
computer.



RESULTS

Conventional Testa: The résulta for the 12 conventional
tests are remarkably similar, and virtually Identical with 
respect to the relative results among the three estimators. 
Therefore, complete results of conventional tests will be 
presented here only for the test with 10 items and a = 1. 
Some results for the 30 and 60 item teats will also be shown 
to provide a range of values. Figures showing the results 
of the other tests are in Appendix D, labeled D.l, D.2, etc.

To show the range of the designs of the 12 
conventional tests, the Test Information functions of the 10 
and 60 item tests with a = 1 and a = 2 are presented in 
Figure 1. Figure 1 shows that the Test Information 
functions become higher and broader as the number of items 
increases, but more peaked as the a-parametera increase .

Insert Figures 1 and 2 about here.

Figure 2 (and D.l through D.ll) shows the average error
of each estimator at each of the 17 values of 6. As
predicted by equations (6) and (7) (and demonstrated by

20
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Figure 1

Test Information Curves of the 10 and 60 Item Conventional tests with a = 1
and a = 2.
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Figure 2
Average Estimation Error of 0'' on Conventional Teat with 10 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Lord, 1984), the bias of MLE(6> la positively correlated 
with 8, while the bias of BME(6> ia negatively correlated. 
The bias of WLE(6) ia also negatively correlated with 6. It 
is very clear from these figures that WLE(6) is considerably 
less biased than both MLECS) and BHE(6) over the entire 
range of 8, for all test lengths and both values of the 
a-paraneter. Since biases of the three estimators are zero 
at slightly different points on the 8-scale, inevitably 
there will exist very small intervals when the bias of 
WLE(8) will exceed the biases of MLE(8) and BME(8). 
However, these instances will occur only when the bias of 
WLE(8> is itself negligible. Note that the range of 6 over 
which the bias of WLE(8) is apparently negligible (i.e. 
indistinguishable from the zero reference line) is 
relatively broad, whereas the other two estimators have 
small bias essentially at a point.

The relative magnitudes of the biases are difficult to 
compare across tests from the figures. Figures 3 and 4, 
which display results for a = 1 and a = 2 respectively, show 
the absolute bias of WLE(8) for the 10 item test and the 
absolute bias of MLE(8) for tests with 10, 30 and 60 items.
Figures 3 and 4 indicate that WLE(6) with 10 items is less 
biased than MLE(6) with two to six or more times as many 
items, depending upon the value of 8. Figures 5 and 6 give 
the same comparisons between WLE(8) and BME(8) in terms of 
absolute average error. WLE(8) is also leas biased than
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BME(6) in teats with two or three times as many items.

Insert Figures 3 through 8 about here.

Comparison of the standard deviations of estimated 8 in 
Figure 7 (and D.12 through D.22) reveals a different picture 
than the comparisons on bias. BME(8) has less variability 
than both WLE(6) and MLE(6> at all values of 0. (The decline 
of the standard deviations of MLE(8) at high and low values 
of 8 were caused by the artificial boundary of 'MLE(8)-8: <
5. In some cases all 1000 values of MLE(0) were equal to 
the artificial boundary.) As discussed above, it is not 
difficult to reduce variability at the expense of bias. This 
trade-off accounts for the low standard deviation of BME(8), 
and will be expanded upon below. On the other hand WLE(8) 
also has small standard deviation, and is considerably less 
biased than BME(6).

The mean squared error (MSE) of WLE(8> (See Figures 8 
and D.23 through D.33) is smaller than that of MLE(8> at all 
values of 8 for all 12 tests. BME(8) has smaller MSE still 
at the more central values of 8. However, as the value of 
the a-parameter or the number of items increases, the 
advantage of BME(8) over WLE(8) shrinks rapidly. At all 
other values of 8, MSE(WLE(8>) is considerably smaller than
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Absolute Average Estimation Error of WLE(0> with 10 Items, and of MLE(6) with
10, 30, and 60 Items; All a = 1, Normally Distributed*b, and All c = 0.20 .
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Absolute Average Estimation Error of WLE<9> with 10 Items, and of MLE(6) with
10, 30, and 60 Items; All a = 2, Normally Distributed b, and All c = 0.20 .
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Figure 5
Absolute Average Estimation Error of WLE(6) with 10 Items, and of BME(6> with

10, 30, and 60 Items; All a = 1, Normally Distributed b, and All c = 0.20 .
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Figure 6
Absolute Average Estimation Error of WLE(0) with 10 Items, and of BME(0> with

10, 30, and 60 Items; All a = 2, Normally Distributed b, and All c = 0.20 .
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Figure 7
Standard Deviation of 0" on Conventional Teat with 10 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Normally Distributed b, and All c = 0.20 . 1 ,
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NSE(BHE(8>>.

In««rt Figure# 9 through 11 about here.

True Scores (T) were estimated by evaluating T(8) at 
each estimate of 8, T(8"). T(8) = Z P(8), and T(8") = 2
P(8*). Figures 9 through 11 (and D.34 through D.36) give the 
average error (T'" - T), standard deviation of T*', SD(T^),
and MSE(T*) of the tests with the lowest and highest Test 
Information functions. In general T(MLE(8))*MLE(T) is less 
biased than T(WLE(8))"WLE(T) and T(BME(8))*BME(T) at all 
values of 8 for all tests. BME(T>> is more biased than the 
other two estimators. The bias of WLE(T) falls roughly half 
way between the biases of MLE(T) and BME(T). SD(BME(T)) is 
smallest on all tests at most values of 8. Except at 
extreme 8, where MLE(T) is severely affected by the 
artificial boundary on MLE(8), SD(MLE(T>> is largest. Using 
the standard deviation criterion, WLE(T) is usually 
intermediate falling between BME(T) and MLE(T). MSE(WLE(T)> 
is also usually intermediate in value with respect to 
KSECHLE(T>> and MSE(BME(T>). However, NSE(BME(T>> is 
smallest at central values of 8, and largest at extreme 
values of 6. HSE(HLE(T>>, contrary to MSE(BME(T)), is 
largest at central 8, and smallest at extreme 8.

Tailored Tests; Figures 12 through 16 (and D.37) give
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Figure 9
Average Estimation Error of T'' on Conventional Test with 10 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure 10
Standard Deviation of T" on Conventional Teat with 10 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of T" on Conventional Teat with 10 Items, All a

Normally Distributed b, and All c = 0.20 . 1,
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the average error of 8^, SD(8*), and MSE(8*) for the
tailored testa. BME(6) ia very biased at all non-zero 
values of 8 on both tests. MLE(8) ia slightly positively 
biased at most values of 8 on both tests. WLE(8) is the 
least biased estimator at positive values of 8. At low
values of 8 , the biases for WLE(8) and MLEC8) are about
equal and small. SD(ULE(8)> and SD(BME(8)) are about equal
on both tailored tests, as are MSE(WLE(8)) and MSE(BME(8)) 
at most values of 8. SD(HLE(8>) on the test with declining 
a-parameters is also about the same as SD(MLE(8)) and 
SD(BME(8)). However, SD(MLE(8)> and MSE(MLE(8>) are very 
large at central values of 8 on the tailored test with a = 
2.

Insert Figures 12 through 18 about here.

The relative average number of items administered to 
reach the stopping rule under the three estimators are
virtually identical for the two tailored tests. (See Figures 
17 and D.38.) At central values of 8, WLE(8) and BME(8> used 
about the same number of items, and as few as half as many 
items as MLE(8). Both WLE(8) and BME(8) required
considerably fewer items at central values of 8 than at more
extreme values. The number of items required by HLE(8)
declined slightly on both tests as 8 increased.

The average computation times for estimating 8 between
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Figure 13
Standard Deviation of 9'̂ on Tailored Teat with Declining a-parameter. Optimal

b-parameter, and All c = 0.20 .
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Figure 14
Standard Deviation of B'' on Tailored Teat with a = 2, Optimal b-parameter, and

All c = 0.20 .
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Mean Squared Error of 9'' on Tailored Test, with Declining a-parameter. Optimal
b-parameter, and All c = 0.20 .
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Mean Squared Error of 0'' on Tailored Teat with a = 2, Optimal b-parameter, and
All c = 0.20 .
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Average Number of Items Administered on Tailored Test with Declining 
a-parameter. Optimal b-parameter, and All c = 0.20 .
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items ia displayed in Figure Id (and D.39). For both 
tailored testa, WLE(6) required more computation time than 
either of the other two estimators at all values of 6. 
Computation time for MLE was nearly constant on both tests 
and at all values of 8. BME used the least computation time 
of the three estimators on both tests at all except extreme 
values of 6.



DISCUSSION

WLE(6> Is clearly a less biased estimator of 6 than 
either MLE(8) or BME(6). In light of the proof in Appendix A 
and the results found by Warm (1985), this outcome should 
not be surprising in some circumstances. What ia surprising 
is that the superiority of WLE(6) was demonstrated in 
every condition investigated in this study: i.e., for
test lengths ranging from 10 to 60 items; for a-parameters 
of a = 1 and a = 2; for all values of 8, and for 
conventional tests as well as for tailored tests (utilizing 
both infinite item banks and simulated finite item banks). 
Moreover, WLE(8) has small and roughly constant variance 
over a wide range of the 8-scale, as well as small HSE over 
a much wider interval than either MLE(8) or BME(8).

For the conventional tests BME(8) also fared better 
than MLE(8) on all three criteria -- bias, SD, and MSE. 
However, BME(8) benefitted greatly by the design of the 
simulated tests. The tests were designed to have roughly 
"normally" distributed test information. The general effect 
of this design was to bias estimates outwardly (digress 
estimates away from the peak of test information). BHE(8)

44
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tends to regress estimates toward the peak of the prior 
probability distribution. Since the peaks of test 
information for these tests were located near 6 * 0  (which 
was the peak of the standard normal prior), the digression 
of test information and the regression of the prior tended 
to cancel out each other. For differently designed teats or 
a different prior, where the peak of the prior is not nearly 
coincident with the peak of test information, BME(6) would 
be much worse.

The width of the interval over which an estimator 
performs well is an important consideration. It is 
trivially simple to create an estimator that has small bias, 
variance, and HSE over a small interval of the 9-scale. For 
example, consider an estimator. Si, which is defined as 
Si = k, where k is a constant. Then, used as an estimate 
of 0, BIAS(O) = (k - 8), VAR(O) » 0, and MSE(O) = (k - 8)'. 
In the interval on the 8-scale where Ik - 8 1 is sufficiently 
small, A may be superior to any other estimator by all three 
criteria. Note that a nonlinear transformation of A is 
equally superior over a small interval of the nonlinearly 
transformed 8-scale. The estimator A can be considered to 
be a Bayesian modal estimator for which the prior has 
non-zero density only where 8 = k. A compresses all 
estimates to the constant k, which has no functional 
relationship to the test. Other Bayesian modal estimators 
have the same characteristic -- they "regress" estimates
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toward the peak of a prior distribution, which also has no 
functional relationship to the teat.

This analysis of the estimator A makes it clear why 
Bayesian modal estimators sometimes work well -- by 
coincidence, they sometimes "regress" estimates in a 
direction opposite to the bias of MLE(6>. Bayesian 
estimators may also, by coincidence, compress the estimates 
into an interval of the 8-scale that is of interest; this is 
exactly the reason that BME(8> had the smallest MSE for 
certain relatively small intervals. On the other hand, if 
the coincidences do not hold, then the "regression" of the 
Bayesian estimators will worsen estimation, rather than 
improve it. In general, BME(0) will work well if the prior 
approximates w(8), the weighting function for WLE(9). For 
the tests in this study a normal prior with standard 
deviation of two would have approximated w(8> much better 
than the standard normal prior. Since the tests in this 
study have more peaked test information curves than many 
actual tests, in practice the priors for BME(8) should have 
standard deviations greater than two in order to approximate 
w(8).

Apparently, Bayesians have discovered this fact by 
trial and error. Lord (1984) states that leading Bayesian 
testing practitioners prefer to use priors more diffuse than 
the standard normal prior due to practical considerations. 
Thus, it can be argued that the appeal of BME(8) in IRT is
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not due to the properties of the posterior distribution, but 
rather la due to the coincidence that In IRT. w(8) can often 
be approximated bv a diffuse normal curve.

WLE(6> also "regreasea" estimates. However, the 
regressing function, w(8), is a function of the test, and is 
in no way arbitrary. Its action is always to regress 
estimates in the direction opposite of the bias of HLE(6>, 
and into an interval for which the test has sufficient 
information to reduce bias, variance, and MSE.

Pure MLE is everybody's whipping boy, (See, for 
example, Thissen & Wainer, 1983) because (even though it has 
very attractive asymptotic properties) its performance with 
testa of finite length is miserable by most criteria. The 
unbounded nature of MLE(6) is one source of its difficulties 
with finite tests. It is well known that if the response 
vector u ° Lr (all items answered correctly), then
NLE(8) = *m, and if u = 0 (all items answered
incorrectly), then MLE(8) = -m . The problem is basically 
that of mapping the finite set of (2") possible response 
vectors onto the (infinite) set of real numbers. Thus, in 
practical applications pure MLE(8) is never used. Upper and 
lower bounds on MLE(8) are always set. Even in theoretical 
work these bounds are necessary; e.g. in Lord's (1983a) 
derivation of the bias of MLE(8), 8 is assumed to be
bounded. The practical bounds are set arbitrarily at values 
that are not expected to have a significant impact. It has
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not been recognized that there exiat rational, natural upper 
and lower bounds for MLE(8> in IRT. The rational, natural 
bounds occur at the points where the slope of BIAS(HLE(6))
is equal to one. That is, HLE(6> should be defined only in
the interval(s> where

0- <» MLE(8) <= 8* ;

where 9~ is defined such that

6/68 BIAS(MLE(8->> = 1 ,

and

6*/68* BIAS(MLE(8-)) < O ;

and, furthermore, where 8* is defined such that

6/68 BIAS(MLE(8+)) = 1 ,

and

6'/68* BIAS(MLE(8+)) > O .

Outside these bounds the slope of BIAS(HLE(8>> is always 
greater than one, i.e. the magnitude of BIAS(HLE(6)>
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Increaaea faster than 6 changes. Therefore, the expected 
value of MLE(8) is always farther fro* true 6 than is the 
closer of the two bounds, and the closer bound is a less 
biased estimate of 6 than is MLE(6). Moreover, the 
replacement of the closer bound for MLE(8) as the estimate 
of 6 reduces the variance of the estimates, and, 
consequently, also the MSE of the estimates. Thus, for all 
three of the criteria used in this study (bias, variance, 
and MSE), MLE(8> is always degraded by permitting it to fall 
outside the closed interval C6~, 8*]. These bounds 
are proposed as reasonable or "sensible" limits on MLE(8). 
Therefore, MLE(8> with these bounds may be termed "Sensible 
MLE<8>", CSMLE(8)].

Insert Table 1 about here.

Table 1 lists the minimum and maximum values of 
SMLE(8), and the actual minimum and maximum values of WLE(8) 
and BME(8) for the 12 conventional tests. Note that the 
minima of WLE(8) is always more extreme (more negative) than 
the minima of the other two estimators. In contrast, the 
maxima of SMLE(8) are by far the most extreme. This extreme 
upper bound on SMLE(8) would do little to reduce bias, but 
at least would prevent infinite estimates of 8. The 
extraordinary asymmetry of the bounds of SMLE(8) is 
apparently due to the loss of test information at low 8, 
caused by the non-zero c-parameters.
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TABLE 1
Minimum, HLE(6~>, and Maximum, MLE(8+), of "Sensible" 
MLE(8), and of WLE(G) and BME(8), for Conventional Testa 
with n items. Ail a = 1 or 2, Normally Distributed b, and

Ail c = 0.20 .

a = 1
ssssssssssa

a * 2
n_ MLE(8-)

Min
WLE(8)

Min
BME(8) MLE(8-)

Min
WLEC8)

Min
BME(8)

10 -1.907 -2.543 -1.769 -1.685 -2.002 -1.763
20 -2.284 -2.989 -2.175 -2.028 -2.337 -2.068
30 -2.486 -3.242 -2.410 -2.208 -2.519 -2.237
40 -2.623 -3.418 -2.574 -2.329 -2.642 -2.354
50 -2.725 -3.553 -2.701 -2.419 -2.735 -2.444
60 -2.807 -3.664 -2.803 -2.491 -2.809 -2.515

n_ MLE(8+)
Max

WLE(8)
Max

BME(â> MLE(8+)
Max

WLE(8)
Max

BME(8)

10 22.847 2.347 1.587 12.246 1.903 1.630
20 23.163 2.800 2.009 12.561 2.229 1.941
30 23.331 3.058 2.252 12.729 2.408 2.116
40 23.444 3.238 2.422 12.842 2.530 2.238
50 23.529 3.376 2.553 12.927 2.622 2.330
60 23.596 3.489 2.659 12.995 2.696 2.404



51
For both tailored testa, WLE(8) was only slightly less 

biased than MLE(0) (and at high 6 only). For the tailored 
test with a simulated finite item bank, WLE(6) and HLE(8) 
were also about the same on the standard deviation and MSE 
criteria, although MLE(8) may have some small advantage at 
low 8. However, for the tailored test with an infinite item 
bank (a = 2), MLE(6) was considerably worse than WLE(8) over 
a wide central region of 8 (using the standard deviation and 
MSE criteria). This effect is apparently due to the high 
values of the a-parameters, and would seem to be a
conditional (on 8) analogy to the “attenuation paradox" 
(Lord & Novick, 1967); i.e. the conditional variance of 
MLE(8) increased (for central 8) when the a-parameters 
increased from one to two. If so, then this result suggests 
that the selection of items for item banks so as to maximize 
item information may not be optimal for MLE(6).

Since WLE(8), over a wide range of 8, used many fewer
items than MLE(8) in order to achieve the stopping criteria,
tailored tests using WLE(8) would, in general, be much 
shorter than if MLE(8) were used to estimate 8. This
advantage translates into savings in terms of testing time 
and the exposure of items to potential compromise.

Computation time for estimating 8 (in the interval 
between items in tailored testing) is an important 
consideration for tailored tests. The time required for 
WLEC6) is always more than for MLE(8) at all values of 8
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ranging from a slight Increase In time to more than three 
times as long. This delay may or may not be significant, 
however. The times found in this study are only relative. 
The absolute times required for applications will depend 
upon several factors, such as the speed of the computer, the 
programming language, and the cleverness of the programmer. 
If the actual computation times can be decreased to one 
second or less, then no harm is caused by the extra 
calculations required for WLE(8).



SUMMARY AND CONCLUSIONS

A new method of estimation , Weighted Likelihood 
Estimation (WLE), was derived, and proved to yield
asymptotically normally distributed estimates, with finite 
variance, and unbiased estimates to order n"l. The
unbiasedness of WLEC6) is in contrast to Maximum Likelihood 
Estimation (MLE) and Bayesian Modal Estimation (BME), both 
of which are biased to order n"l. The new estimator was 
applied to ability estimation in IRT. Using Monte 
Carlo methods, WLE(6) was compared to HLE(6) and BME(6) on 
12 conventional tests with 10 to 60 items, and a-parameters 
of 1 or 2. The three estimators were also compared on two 
tailored tests. One tailored test had an infinite item bank
and all a = 2 . The other tailored test simulated a finite
item bank with declining a-parameters.

In all testa WLE(6) was less biased than both of the 
other estimators. In addition WLE(8) had small variance 
over the entire range of the 6-scale, as well as small mean 
squared error even at non-central 6. The relative 
unbiasedness of WLE(6) makes this estimator particularly 
appropriate in applications of Item Response Theory (IRT)

53
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for which the parameter invariance property ia Important.

Two new inalghta for MLE(8) were diacovered: 1)
natural, rational bounda, and 2) a conditional analogy to 
the attenuation paradox in tailored teata with high 
a-parametera.

The heart of WLE ia a weighting function, w(6>, which 
ia multiplied timea the likelihood function, and the product 
maximized. Thia weighting function, which removes the biaa 
and uncontrolled variance of MLE(G), ia a function of 8 and 
the item parametera, and ia apecific to each teat. It waa 
ahown to be equal to the aquare root of teat information for 
the one- and two-parameter modela of IRT, and equal to a 
cloaely related function for the three-parameter model.
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APPENDIX A

PROOF THAT THE WEIGHTED LIKELIHOOD ESTIMATE IS UNBIASED
TO ORDER n-1

The approach and technique* of this derivation were taken 
from, and parallel closely, the derivations in Lord(1983a, 
1983b, & 1984) of the first order biases of the Maximum
Likelihood and Bayesian Modal Estimates in Item Response 
Theory (See Lord,1980), both of which biases are of order 
n"l. The Weighted Likelihood Estimator removes the first 
order bias term from the Maximum Likelihood estimate. The 
derivation is limited to a single parameter for a 
multinomially distributed variable and a regular, "smooth" 
mathematical model with rather restrictive assumptions. 
Apparently, however, this "... method of removing the first 
bias term will work in complete generality, and can be 
extended to any form of consistent estimating equation where 
the mathematical form of bias is computable." (Hinkley, 
1985, Personal Communication)

Preliminaries; For a set of n independent experiments,
62
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Hi(i * 1,2 ,--- ,n> with binary outcomes, ui,
(success or failure), let P ■ Pi(6) denote the 
probability of a successful = 1), and let Q ■
Qi(8 > = 1 - Pi(6 ) denote the probability of 
failureCui « O), where Pi(9> is a strictly increasing 
function of the common parameter 6 for all n experiments.
Pi(6 ) is not necessarily equal to Ph<6 ), h =/= i.
Let u = (ui) denote the multinomially
distributed, n x 1 vector of outcomes of the n experiments. 

Assumptions:
(a) 6 is a bounded variable on a continuous scale.
(b> Pi(6) is continuous and bounded away from 0 and 1 at

all values of 0, 1=1,2 ,---,n.
(c> At least the first five derivatives with respect to 8 of 

Pi(8 ) exist at all values of 8 , and are bounded.
(d) For asymptotic considerations n is considered to be

incremented with replications of all of the original n 
experiments.

From these assumptions and theorems 1(1) and l(iv) of
Bradley & Gart(1962) it follows that the Maximum Likelihood
Estimate of 8, MLE(8) ■ 8^, is a consistent estimator of 8 ,
and that n%-(8* - 6) is asymptotically normally
distributed with zero mean and with variance given by

11m l/(nl) n->*
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where I is Flaher'e Information. Assumption (d) guarantees 
the existence of this limit (Lord, 1983a).

Maximum Likelihood Estimation

The likelihood function, L(u: 8), is given by (A.l).
n Ui 1-ui

L<u!8 ) = X Pi<0) ■ QiC0) (A.l)i=l
Let

la ' 6«/60« In L(u:0),

where 6^/5qs indicates the sth partial derivative 
with respect to 0, and In indicates the natural logarithm.

The Maximum Likelihood Estimate of 8 is defined as the value 
of 0 that maximizes (A.l). Usually 6  ̂ is found by setting 
ll equal to zero, and solving for 0, as in (A.2).

6/60 In L(u!0) " 1% = Z(u - P)P'/PQ = 0 , CA.2)

evaluated at 0"'. In (A.2) and hereafter the argument (8) 
and index i are usually dropped for convenience.

The asymptotic variance of MLE(6) is the reciprocal of 
Fisher's Information (Kendall & Stuart, 1973, p. 10).
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I = E(ii') = -E(l2 > = Z P'*/PO , (A.3)

where E la the expectation operator, and P' = 6/66 P.

The bias of MLE(6 ), BIAS(MLE(6 )), fro* Cox & Hinkley (1974) 
ia given by (A.4).

BIAS(MLE(8 )) ■ E(8* - 8) = -J/2I* , (A.4)

where

J = -2E(lil2) - E(l3 ) = 2 P'P'VPQ , (A.5)

and P" = 6 '/6 8' P .

Equation (A.4) ia equivalent to Lord's (1983a) equation (28) 
for BIAS(MLE(6 )). Note that I and J are of order n, and
that since neither are a function of u, J/2I* is of
order n“l.

Weighted Likelihood Estimation

The Weighted Likelihood Estimate of 8 , WLE(8> « 8*, 
is defined as the value of 8 , such that the Weighted
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Likelihood Function, given in (A.6 ) is maximized,

w<8 > - L<u!0) , (A.6 )

where 6/66 In w(8) = J/2I. WLE(8 ) is found by solving the
weighted likelihood equation as in (A.7),

ll ♦ J/2I = O , (A.7)

evaluated at 8*, or, letting dg = 6*/68* In w(6 ),
as in (A.8 ).

ll + di = O (A.8 )

Note that

di = J/2I = -I-BIAS(MLE<8 >)

Rather than finding WLE(8) by maximizing (A.6 ), it will be 
useful to maximize the nth root of (A.6 ), which will 
always yield the same estimate for any given set of data
since n is always positive. The reason for doing so is to
help keep track of the order of the terms. Letting Tg = 
the sth derivative of the log of nth root of (A.6 ), 
and Tg* = Tg, evaluated at 8*,
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Ta = 6B/608 In I w<0) • L(u!0) ]!/"

il/n + dx/n (A.9)

THEOREMI WLE(0) is unbiased to order n"l, i.e.

BIAS(WLE<0)) = 0 + o(n-l) ,

where oCn~^) represents terms such that

lim nr»oCn~r) = o 
n->*

These are of order higher than n"*" (i.e. nrr-1, 
n-r-3/2, n-r-2 etc.).

PROOF;

It is sufficient to solve the n^h root of (A.6 )

Ti* = li/n + di/n = 0  , (A.10)

evaluated at 0*. Letting x = (0* - 0), expand (A.10)
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in terms o£ x and 6.

Ti* = 0

Ti ♦ xT2 * %x'T3 ♦ x3T4/6 ♦ ?x4V5/24, (A.11)

where V5 ■ MaxCTg) over 6, and i'rS < 1. This closed 
form of the expansion is always valid, making the proof of 
the convergence of the Taylor series unnecessary. Letting

9s = Els/n,

and

®s ~ la/n - 3ai

then

Is/n = 9s + e*

and

Ta = ga + ®s + da/n . (A.12)

The purpose of (A.12) is to separate Ta into a sum of
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terma not containing (u - P), g*, a aum of terms
containing <u - P), Sg, and a term that ia a ratio of 
auna not containing (u - P), dg/n.

Substituting (A.12) into (A.11), a = 1, 2, 3, 4, expresses
the expansion of the weighted likelihood equation in terms 
of gg, eg, dg/n, V5 , and powers of x in (A.13).

-(ei ♦ di/n) » gi

♦ x<g2 ♦ 02 ♦ d2/n)

♦ Xx'Cgg + 03 dg/n)

♦ x3(g4 + e* + d4/n)/6

+ t x 4V5/24 . (A.13)

We now need to evaluate some of the terma in (A.13), and
their expected values.

gi = O (A.14)

32 = -n"l»ZP'*/PQ = -I/n (A.15)

ga = (-3J ♦ 2K)/n , (A.16)
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where

K = 2<l-2P)P'3/<pQ)i = -3E<lil2> - E(l3>

di = J/2I (A.17)

d2 = CIJ' - I'J)/2I* (A.18)

d3 « d'J" - II”J - 2 1 1 ' J' ♦ 2I"J)/2I3 (A.19)

where (') and (") indicate flrat and second derivatives with 
respect to 6 , respectively.

Since 9a and da do not contain (u - P),

Ega — 9s » (A.20)

and

Eda “ da • (A.21)

ei = n-l"E(u-P)P'/PO (A.22)

e2 *= n-l'Z {(u-P) • [<P'VPQ)-<l-2P)P'*/<PO)*3 ) (A.23)
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E@a = 0  ( A . 2 4 )

Since e* is n~^ times the sum of the terms of Ig 
that contain (u - P), eg may be expressed as

eg = n'l'Z <u-P)■ Rgi , s = 1, 2, 3, 4, 5,

where Rgj. is the (s - l)th derivative of P'/PQ, and
does not depend on n nor on ui. Since by assumption (b)
P and Q are bounded, and by assumption <c> the required
derivatives of P are bounded, the Rgi and, thus eg, 
are bounded. By assumption (d) the bound does not depend on 
n. The same conclusion is true of gg.

Since by assumption <d> li/n in (A.10) is of order nO, 
and di/n is of order n"l, (A.2) and (A.7) are
asymptotically equivalent, and, asymptotically,
n%(8*-8) = n%(8*-8). Because n%(8*-8) is
asymptotically normally distributed with zero mean and
finite variance, so is n%(8"-6 ). Therefore, Ex^ 
<r=l,2,*"*) is of order n~r/2. By similar logic
eg^ is of the same order. By the Cauchy-Schwartz
inequality Ex^'egt <= (Ex2r.gg2t)%, and 
therefore Ex^egt is of order n"(r*t)/2 <r,t =
1,2, ').
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The Variance of WLE(6).

To get the variance of 6*, VAR(6*), square (A.13) and 
take expectations.

Eei* * 2diEei/n + di'/n' = g2*Ex*

+ g2Ex'S2 + %g293Ex3

» Ex*e2 * + Xg2Ex3e3 + Xg293Ex3 + KgsEx* ♦ (A.25)

The terms in the first line of (A.25) are of order n"l, 
in the second line of order n~3/2, and in the third line 
of order n~2 with the remaining terms o(n"2 ). 
Dropping all terms of o(n"l), we can rewrite (A.25) as

Eei* * 2diEei/n ♦ di*/n* = g2*Ex* + o(n"l)

Since Eei* = I/n*, Eei = 0» 92' = <-I)*/n*, and Ex*
= VAR(8"), (A.25) evaluates as (A.26).

(I + di*)/n* = (I*/n*)VAR<0*) ♦ o(n-l). (A.26)

Solving for VAR(8 ") gives (A.27),
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VAR(8") * (I ♦ + o(n-l)

= I-l ♦ o(n-l) , (A.27)

which proves that the asymptotic variance of WLE(8) is equal 
to the asymptotic variance of MLE(0>.

The Bias of WLE(8).

Let El indicate the expectation operator in which only
terms of order ti~^ are retained. To get the first order
statistical bias of 6* take the first order expectation
of (A.13) to obtain (A.28).

-di/n = 92Eix ♦ Eixe2 ♦ XggEix' (A.28)

To evaluate Eixe2 multiply (A.13) by e2 * and take
first order expectations.

-Eieie2 = 92Elxe2 (A.29)

To evaluate the LHS of (A.29) substitute (A.22) and (A.23), 
and take the expectation. Both (A.22) and (A.23) are sums 
of n terms indexed with i, each containing the factor
(ui - Pi). The product is a double sum of n* terms,
each, the product of a term in (A.22), indexed with i, and a
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term in (A.23), indexed with i', say. Because the n 
experiments. Hi, are Independent, the expected value of 
all terms are equal to zero, except the n terms where i = 
i'. Noting from (A.16) that

K = E (1 - 2P)P'3/<p q )»,

then

-Eieie2 = (-J ♦ K)/n* (A.30)

Substituting (A.15) and (A.30) into (A.29), and solving for 
Eixs2 gives

Eixe2 - <J - K)/nI . (A.31)

Substituting (A.15), (A.16), (A.17), (A.27), and (A.31) into 
(A.28) obtains

-J/2nI = (-I/n)Ex ♦ <J-K)/nI ♦ XC-3J ♦ 2K)/nI . (A.32)

Finally, solving (A.32) for Ex,

Ex = E(8" - 0) = O + o(n-l) , (A.33)

which completes the proof.
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It Is Interesting to note that, if the mathematical model is 
such that

P" = P''"6/68 (In PQ)

as in Item Response Theory when ci = O, all i, then

E(lil2> * 0

J * K = 6/60 I = -E(l3 >

and

w(0 ) * IX .

Otherwise, w(8 ) = I%'exp(%JK/I 68) for which there is 

no closed form solution for the indefinite integral.



APPENDIX B

SAS PROGRAM FOR CONVENTIONAL TEST MONTE CARLO STUDY

EXEC SAS824,REGION=3000K

THIS PROGRAM PERFORMS A MONTE CARLO COMPARISON OF 
MAXIMUM LIKELIHOOD, WEIGHTED LIKELIHOOD, AND 
BAYESIAN MODAL ESTIMATES OF THETA IN ITEM RESPONSE 
THEORY. THE NUMBER OF ITEMS ARE SET IN THE 
"%LET N = " LINE, AND THE COMMON A- AND C-PARAMETERS 
IN THE 2 LINES BELOW IT. THE B-PARAMETERS ARE 
NORMALLY DISTRIBUTED. 1000 THETA ESTIMATES OF EACH 
ESTIMATOR ARE MADE AT 17 VALUES OF THETA, USING THE 
SAME ITEM RESPONSES FOR EACH ESTIMATOR.

THOMAS A. WARM 
UNIVERSITY OF OKLAHOMA 

JULY 30,1985

XGLOBAL N NZ NR TA TC ; 
%LET N = 40 ;
%LET TA = 2.0 ;
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stLET TC = .20 ;

PROG MATRIX ; N = &N ;
/* CREATE VECTORS OF ITEM PARAMETERS */

A = 6.TA) ;
B = PR0BIT(((1:&N) - .5)#/&N) ;
C = J(1,N, &TC) ;
CNF = 'A' 'C' ; PAR=A'!:B'I!C' ;
NN = 1000 ; /» 1000 SIMULATED EXAMINEES •/
REPL = 1 ;
IF (N GT 30 > THEN DO; NN = 500 ; REPL = 2 ; END;
JIN a J(1,N) ; JNNl = J(NN,1) ;
CNl = 'Z' 'LZ' 'VZ' 'BZ' 'ERLZ' 'ERWZ' 'ERBZ' 'ERLZ2' 

'ERWZ2' 'ERBZ2' INFZ' 'BIASMLEZ' 'T' 'ERLT'
'ERWT' 'ERBT'; /* Z MEANS THETA */

DO IZ = 1 TO 17;
TZ = J(NN,l,(IZ-9)#/2); /* TZ = TRUE THETA */

/* COMPUTE TEST INF AND BIAS<MLE<THETA)) */
P = 1 ♦ EXP( (TZ"J1N - JNN1«B)#(JNNl*(-1.7#A ) ) ) ;
P = JNN1*C + <JNN1*(1-C))#/P ;
PI = P(l,); T = J(NN,1, (Pl(,+)) ) ;
DPI = 1.7 # ScTA # (PI - &TC) # (1 - PI) #/ <<1) - (&TC)) ;
INFZ = C DPI # DPI #/ (PI # (1 - PI)))(,+) ;
DP2 = 1.7 # &TA # ((1) + (&TC) - (2#PD) # DPI #/

((1) - (&TC)) ;
BIASMLEZ = -((DP1#DP2#/(PI#(1-Pl)))(,*))#/(2#INFZ#INFZ) ;
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INFZ = J(NM,1,INFZ) ;
BIASMLEZ = J(NN,1,BIASMLEZ) ;

/* BEGIN MONTE CARLO STUDY */

DO 12 = 1 TO REPL ;
/* STARTING VALUES OF ESTIMATES ARE TRUE THETA */ 

LZ = TZ ; WZ = TZ; BZ = TZ;
/* MAKE MATRIX OF SCORED ITEM RESPONSES, Ü •/ 

U = (UNIF0RM(J(NN,N,0)> LE P) ;
/• MAXIMUM LIKELIHOOD ESTIMATES */ 

LINK MLEZ ; ERLZ = LZ - TZ ; ERLZ2 * ERLZ##2 ;
PH = 1 + EXP( <LZ*J1N - JNN1«B)#<JNN1*<-1.7#A ) ) ) ;
ERLT = <JNN1*C ♦ (JNN1*(1-C))#/PH)(,*) - T ;

/• WEIGHTED LIKELIHOOD ESTIMATES */ 
LINK WLEZ ; ERWZ = WZ - TZ ; ERWZ2 = ERWZ##2 ;
PH = 1 + EXP( (WZ"J1N - JNNl*B)#(JNNl*(-1.7#A ) ) ) ;
ERWT = (JNN1*C * <JNN1*(1-C))#/PH)<,♦) - T ;

/* BAYESIAN MODAL ESTIMATES */ 
LINK BMEZ ; ERBZ = BZ - TZ ; ERBZ2 = ERBZ##2 ;
PH = 1 + EXP( (BZ"J1N - JNNl«B)#(JNNl*(-1.7#A > ) ) ;
ERBT = (JNN1"C + (JNN1»(1-C))#/PH)(,+) - T ;
w -TZ! ;L Z : !WZ: !B Z : !e r l z i :e r w z 11e r b z : :e r l z 2 ; :e r w z 2 i :e r b z 2 ;
W = Wl!INFZ!IBIASMLEZI:T:!ERLT!!ERWT;!ERBT ;
OUTPUT W OUT=W C0LNAME=CN1 ;
END ; END ;
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/* MAXIMUM LIKELIHOOD ESTIMATON SUBROUTINE "/ 

STOP ; MLEZ:
DO II = 1 TO 15 ;
PH = 1 + EXP< (LZ"J1N - JNN1*B)#(JNN1*(-1.7#A) ) ) ;
PH = JNN1*C ♦ <JNN1*C1-C)>#/PH ;
DPHl = (PH - JNN1"C)#(1 - PH>#<JNN1*(1.7#A#/<1-C)) );
SL = ((U-PH)#DPH1#/(PH#(1-PH)))(,+) ;
IF <11 LE 4> THEN DELTA = 1 ; ELSE DELTA = DELTA #/ 2;
LZ = LZ + DELTA#SIGN(SL) ;
END ;
RETURN ;

/* WEIGHTED LIKELIHOOD ESTIMATION SUBROUTINE */ 
STOP ; WLEZ:
DO II = 1 TO 15 ;
PH = 1 + EXP( (WZ"J1N - JNN1*B)#(JNN1*<-1.7#A) ) ) ;
PH = JNN1*C + (JNNl*< 1 - 0 )#/PH ;
DPHl = (PH - JNN1*C)#(1 - PH)#(JNN1«(1.7#A#/(1-C>> );
DPH2 = (JNN1*(1 + C) - 2#PH)#DPH1#(JNNl*(1.7#A#/<1-0)> ; 
INFW = (DPH1#DPH1#/(PH#(1-PH)))(,+) ;
JNFW = (DPH1#DPH2#/(PH#(1-PH>))(,+) ;
SW = (<U-PH)#DPH1#/(PH#(1-PH>>) (,♦> JNFW#/(2#INFW) ;
IF <11 LE 4) THEN DELTA * 1 ; ELSE DELTA = DELTA #/ 2;
WZ = WZ + DELTA#SIGN(SW) ;
END ;
RETURN ;
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/* BAYESIAN MODAL ESTIMATION SUBROUTINE */
STOP ; BMEZ:
DO II = 1 TO 15 ;
PH = 1 + EXP< (BZ*J1N - JNN1*B)#(JNN1"(-1.7#A) ) ) ;
PH = JNN1*C ♦ (JNN1*(1-C))#/PH ;
DPHl = (PH - JNN1*C)#(1 - PH)#(JNN1*(1.7#A#/(1-C)) );
SB = ((U-PH)#DPH1#/(PH#(1-PH)))(,+) - BZ ;
IF (II LE 4) THEN DELTA = 1 ; ELSE DELTA = DELTA #/ 2;
BZ = BZ + DELTA#SIGN(SB) ;
END ;
RETURN ;

/* PRINT AND PLOT OUTPUT */ 
PROG SORT DATA=W ; BY 2 T INFZ BIASMLEZ;
TITLE Z=TRUE THETA, LZ=MLE(0>, WZ=WLE(0), BZ=BME(0), 

INFZ=INF(0), N=&N, A=&TA, C=&TC, B= -2, 2;

PROG UNIVARIATE DATA=W PLOT; BY Z T INFZ BIASMLEZ;
VAR WZ LZ BZ;
OUTPUT 0UT=W3 MEAN=AVWZ AVLZ AVBZ STD=SDWZ SDLZ SDBZ 

MIN=MINWZ MINLZ MINBZ MAX=MAXWZ MAXLZ MAXBZ 
KURTOSIS=KURTWZ KURTLZ KURTBZ 
SKEUNESS=SKEUUZ SKEWLZ SKEWBZ N=NN;

PROG UNIVARIATE DATA=W NOPRINT; BY Z INFZ BIASMLEZ;
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VAR ERLZ ERWZ ERBZ ERWT ERLT ERBT ERWZ2 ERLZ2 ERBZ2; 
OUTPUT QUT=W4

MEAN=AVERWZ AVERLZ AVERBZ AVERWT AVERLT AVERBT MSEWZ 
HSELZ MSEBZ

STD=SDERWZ SDERLZ SDERBZ SDERWT SDERLT SDERBT 
MIN=ERMINWZ ERHINLZ ERMINBZ MAX=ERMAXWZ ERHAXLZ ERHAXBZ 

N=NN ;

PROG PRINT DATA=W3 ; PROG PRINT DATA=W4 ;

PROG PLOT DATA = W4 ;
PLOT AVERWZ*Z='W' AVERLZ"Z='L' AVERBZ*Z='B'/OVERLAY ; 
PLOT AVERWT*Z='W' AVERLT"Z='L' AVERBT*Z='B'/OVERLAY 
PLOT SDERWZ*Z='W' SDERLZ*Z='L' SDERBZ»Z='B'/OVERLAY 
PLOT SDERWT*Z='W' SDERLT"Z='L' SDERBT*Z='B'/OVERLAY 
PLOT MSEWZ"Z='W' MSELZ*Z='L' MSEBZ*Z='B' /OVERLAY 

PLOT ERMINWZ*Z='W' ERMINLZ*Z='L' ERMINBZ»Z="B' /OVERLAY ; 
PLOT ERMAXWZ*Z='W' ERMAXLZ"Z='L' ERMAXBZ*Z='B' /OVERLAY ;

TITLE Z=TRUE(0), T=TRUE SGORE, LZ=MLE(0), WZ=WLE(0),
BZ=BME(0), INFZ=INF(0), N=&N, A=&TA, G=&TG, B= -2, 2;

PROG PLOT DATA=W3 ;
PLOT SKEWWZ*KURTWZ='W' SKEWLZ*KURTLZ='L '

SKEWBZ»KURTBZ='B'/OVERLAY;



APPENDIX C
PASCAL PROGRAM FOR TAILORED TEST MONTE CARLO STUDY

PROGRAM Wlttl(INPUT,OUTPUT);
(SC-,U+)
(This program performa a Monte Carlo comparison of Maximum 
Likelihood, Weighted Likelihood, and Bayesian Modal 
estimates of theta in Tailored Tests. 100 estimates of theta 
are made at each of 17 values of theta. The c-parameters 
= .2, a-parameters decline from 2.0 in increments of 1/35 
with each item administered, and b-parameters are chosen to 
maximize item information for the current estimate of theta, 
given the a- and c- parameters.

Thomas A. Warm 
University of Oklahoma

July 30, 1985 )
type

TimeString = string[81 ;
VAR fileA,filsB : TEXT ;

itavzh,avnit,a,b : ARRAY Cl..1013 OF REAL; 
u,nnit : ARRAY Cl..1013 OF INTEGER ;

sumn,d3p,avzh,avzh2,sdzh,d]nf,dinf,d21nw,aumzh3,sumzh4,
82
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skewzh,kurtzh: REAL ; 
maezh,tlme,z,zh,c,p,pq,dp,d2p,dinL,dinw,Testing,sunzh, 

aunzh2 : REAL;
n,nn,maxn,il,i2,i3,14,method,iz INTEGER; 
math : STRING[33 ;

PROCEDURE Inltiallzel; BEGIN
ASSIGN(fileA,'wlttla.prt') ;
REWRITE(fileA) ; <• APPEND(fileA) ; *)
ASSIGN(fileB,'b:wlttlb.prt') ;
REWRITE<fileB) ; (* APPEND(fileB) ; *)
RANDOMIZE;

END;

PROCEDURE InitializeZ; BEGIN 
nn := 100 ;
maxn ;= 50 ; 
c := 0.2 ; 
aumn := 0.0 ;
aunzh := 0.0 ; 
aunzh2 := 0.0 ; 
aumzhS := 0.0 ; 
aumzh4 := 0.0 ;
FOR 12 := 1 TO 101 DO BEGIN 

avnit[123 := O ; 
nnitC123 := 0 ;
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ltavzhC12] := 0 ;
END 

END ;

FUNCTION realtime: REAL ;
TYPE

regpack = RECORD
ax,bx,cx,dx,bp,al,di,ds,es,flags: INTEGER;

END;
VAR

recpack: 
ah,al,ch,cl,dh: 
hour,min,sec: 
hour2,ain2,sec2 : REAL ; 
code :

BEGIN ah := 82c;
WITH recpack DO BEGIN 

ax := ah SHL 8 + al; 
END;
INTR < 821,recpack);
WITH recpack DO BEGIN 

STR(cx SHR 8 ,hour); 
STR(cx MOD 256,min); 
STR(dx SHR 8 ,sec); 

END;

(assign record)regpack; 
BYTE; 
STRING(23

INTEGER ;
(initialize correct registers)

(call interrupt)

(convert to string) 
{ " )
( " )
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VAL(hour,hour2 ,code) ;
VAL(min,min2,code) ;
VAL(sec,sec2,code) ;
realtime := 3600»hour2 + 60*min2 + sec2 ;

END ;

FUNCTION Pof(t:REAL;i5;INTEGER) : REAL ;(Compute P(Theta) ) 
BEGIN

Pof := c + <1.0 - c)/(1.0 + EXP(-1.7 • aCiS] * (t - 
bCiS] ) ) ) ;

END;

FUNCTION dPdz<i6 :INTEGER): REAL ;
(1st deriv of P with respect to theta)

BEGIN
dPdz := 1.7 « a(i6] * (p - c) * <1.0 - p)/ <1.0 - c) ; 

END;

PROCEDURE ComputeTestInf<t:REAL) ;
VAR i7 : INTEGER ;
BEGIN

Testinf := 0 ;
FOR i7 := 1 TO n DO BEGIN

p := Pof<t,17) ; dp := dpdz<i7) ;
Testinf := Testinf ♦ dp*dp/<p*<1.0 - p)) ;

END; END;
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FUNCTION d2Pdz2(18:INTEGER) : REAL ;
(2nd deriv of P with respect to theta)

BEGIN
d2Pdz2 := 1.7 * atiS) • (1.0 + c - 2.0 * p) * dp /

<1.0 - c) ;
END;

FUNCTION d3Pdz3(19:INTEGER) : REAL ;
(3rd deriv of P with respect to theta)

BEGIN
d3Pdz3 := sqr(1.7»aC193»(1.0 ♦ c - 2.0 * p)/ (1-c))*dp 

- 2*1.7*aCi9)*sqr(dp)/<l-c>;
END;

FUNCTION nextb : REAL ;
(Get b with max item info at theta'')

VAR nextp : REAL ;
BEGIN

nextp := (1.0 + SORT(1.0 + 8.0 » c)) / 4.0 ; 
nextb :=

zh - LN((nextp - c)/(1.0 - nextp)) / (1.7 * aCn)) ;
END;

FUNCTION nextu : INTEGER ;
(Get u for next item)
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BEGIN
p := pof(z,n) ; 
nextu := 0 ;
IF (RANDOM < p) THEN nextu := 1 ;

END;

FUNCTION sign<t:REAL);REAL ; (SIGN function J
BEGIN

sign := 0.0 ;
IF <t > 0.0) THEN sign := 1.0 ;
IF (t < 0.0) THEN sign := -1.0 ;

END;

PROCEDURE EstimateThotal2or3 ; (1=MLE, 2=WLE, and 3=BME)
VAR

3nf,delta: REAL ; nit : INTEGER ;
BEGIN

nit := 0 ; REPEAT 
nit := nit + 1 ; 
dlnL := 0.0 ;
]nf := 0.0 ; 
djnf := 0.0 ; 
dinf := 0.0 ;
Testinf := 0.0 ;
FOR il := 1 to n DO BEGIN 

p := Pof(zh,il) ;
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pq := p*(l - p) ; 
dp := dPdz(il) ;
dlnL dlnL (uCil] - p)»dp/pq ;
Testinf := Testinf + dp»dp/pq ;
CASE method OF 
2 : BEGIN

d2p := d2pdz2 (ll> ;
d3p := d3PdZ3(il) ;
jnf := jnf dp«d2p/pq ;
djnf := d]nf ♦ ((d2p*d2p+dp*d3p)/pq)

- ((dp*dp*d2p*(l-2*p))/(pq*pq)) ; 
dinf := dinf + (2*dp*d2p/pq)

- (dp*dp*dp*(l-2*p)/(pq*pq)) ;
END;

END ;
END;
CASE method OF

1 : delta := (dlnL )/(Testinf > ;
(Maximum Likelihood)

2 : BEGIN (Weighted Likelihood)
dlnw :* jnf/ (2»TestInf) ;
d21nw ;= (Testinf«d^nf - dinf*jnf)/

(2«sqr(Testinf > > ; 
delta := (dlnL ♦ dlnw)/(Testinf - d21nw); 

END;
3 : delta := (dlnL - zh)/ (Testinf + 1 )  ;
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(Bayesian Modal)
END ;
IF <ABS(delta) > 2 > THEN delta := 2«sign(delta) ; 
zh := zh + delta ;

UNTIL ((ABS(delta) < 0.001) OR (ABS(zh) > 5.0)
OR (nit > 20)) ; 

avnitCn) := avnitCn) ♦ nit ; 
itavzhCn) := itavzhCn) + zh ; 
nnitCn) := nnitCn) + 1 ;

END; (End of EstimateThetal2or3 Procedure)

PROCEDURE WriteHeading;
BEGIN

WRITELN(fileA) ; 
WRITELN(fileA,'G','A','2',
' True Bias

AvTime Aver.', ' 
WRITELN(fileA,'Method ', '8 
SD(0'‘) (GT) (GT) ',' 
items N (GT) ') ;

END;

Skewness Kurtosia 
MSE' ) ;

(8")
(secs)

PROCEDURE Summarize ;
BEGIN

avzh := sumzh/nn ; 
avzh2 := sumzh2/nn ;



90
adzh := SQRT(avzh2 - avzh*avzh> ;
«unzhS := sumzh3/nn ;
skewzh := (auazhS - 3*avzh*avzh2 * 2»avzh*aqr(avzh)>/ 

(adzh»aqr(adzh)) ; 
sunzh4 := aumzh4/nn ;
kurtzh :-( au*zh4 - 4*avzh*aumzh3 * 6*avzh2*aqr(avzh)

- 3»aqr(avzh)»aqr(avzh) )/(aqr(adzh)«aqr(adzh)); 
aumn :* aumn/nn ; 
avzh := avzh - z ; 
maezh aqr(avzh) + aqr(adzh) ;
CASE method OF

1 : math := 'MLE' ;
2 : meth := 'WLE' ;
3 : meth := 'BME' ;

END;
Writeln(fileA,meth:6,z:5:l,avzh:10:4,adzh:10:4, 

akewzh:10:4,kurtzh:10:4,
time:7:l,aumn:8:l," ',nn:3,maezh:8:4) ;

FOR 11 := 1 TO 101 DO BEGIN
IF (nnltCll] > 0) THEN BEGIN

avnit[11] := avnitCll]/nnltCll] ;
ItavzhCll] := ItavzhCll]/nnlt [113 ;
WRITELN(£lloB,'Meth=',meth:3,' 8=',z:4:l,' Av8*=',

ItavzhCll]:8:3,' n=',11:3,
' avNlta=', avnitCll]:5:1,
' N=',nnltCll]:2) ;
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END ;
END; Writeln(flleB);

END ;

BEGIN 
Initialize!;
FOR method := 1 TO 3 DO BEGIN 
WriteHeading ;
FOR iz :* 1 TO 17 DO BEGIN
z := (iz - 9)/2.0 ;
Initialize2 ; 
time := realtime ;
FOR i2 := 1 TO nn DO BEGIN 

n := 0 ; 
zh := 0.0 ;
Teatinf := 0.0 ;
REPEAT

n := n * 1 ;
aCn] := 2.0 ; ( aCn] := <71.0 - n)/35.0 ; )
bCnl := nextb ;
u tnl := nextu ;
EatimateThetal2or3 ; (MLE, WLE, or BME)

UNTIL <(Testinf > 20) OR (n >= maxn) );
aumn := ((aumn) + ( n)) ;
ComputeTestInf(zh) ;
Writeln(method:3,i2:5,' z= ,z:3:4,' zh=', zh:3:4.
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' I»',T*«tIn£;3:4,' n=',n);

suRzh := sumzh * zh ; 
sumzh2 := sunzh2 zh*zh ; 
suRzhS := auRzhS + zh»sqr(zh> ; 
suRZh4 := auRZh4 * aqr(zh) « aqr(zh) ; 

END;
time := (realtime - time)/nn ;
Summarize ;

END;
END;
CLOSE(fileA) ;
CLOSE(fileB) ;

END.
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Average Estimation Error of 6^ on Conventional Test with 20 Items, All a = 1,
Normally Distributed b, and All c = 0.20 .
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Figure D.2
Average Estimation Error of 0'' on Conventional Test with 30 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Average Estimation Error of 0”' on Conventional Test with 40 Items, All a = 1,
Normally Distributed b, and All c = 0.20 .
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Figure D.4
Average Estimation Error of 0'' on Conventional Teat with 50 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.5
Average Estimation Error of S'* on Conventional Test with 60 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.6
Average Estimation Error of 0'' on Conventional Teat with 10 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Average Estimation Error of 0'' on Conventional Test with 20 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Average Estimation Error of 0^ on Conventional Test with 30 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Average Eetimation Error of 0'' on Conventional Test with 40 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Average Estimation Error of 0'' on Conventional Test with 60 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Figure D.12
Standard Deviation of 8"' on Conventional Test with 20 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.13
Standard Deviation of 0^ on Conventional Teat with 30 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.14
Standard Deviation of S'" on Conventional Test with 40 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.15
Standard Deviation of 8  ̂ on Conventional Test with 50 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.16
Standard Deviation of 0^ on Conventional Teat with 60 Items, All a = 1,

Normally Distributed b, and All c = 0.20 .
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Figure D.17
Standard Deviation o£ 0^ on Conventional Test with 10 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Standard Deviation of 0^ on Conventional Teat with 20 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Figure D.19
Standard Deviation of S'' on Conventional Test with 30 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Standard Deviation of 0^ on Conventional Test with 40 Items, All a
Normally Distributed b, and All c = 0.20 . = 2,
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Standard Deviation of G'" on Conventional Teat with 50 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Figure D.22
Standard Deviation of 0'' on Conventional Teat with 60 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of 0'' on Conventional Test with 20 Items, All a = 1,
Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of 0^ on Conventional Teat with 30 Itema, All a
Normally Distributed b, and All c = 0.20 . 1,
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Mean Squared Error of 9^ on Conventional Test with 40 Items, All a = 1,
Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of 9^ on Conventional Teat with 50 Items, All a
Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of 0^ on Conventional Teat with 60 Items, All a = 1,
Normally Distributed b, and All c = 0.20 .
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Mean Squared Error of 0^ on Conventional Teat with lO Items, All a
Normally Distributed b, and All c = 0.20 . 2,
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Error of O'* on Conventional Test with 20 Items,
Normally Distributed b, and All c = 0.20 . All a 2 .
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Figure D.30
Mean Squared Error of 8^ on Conventional Teat with 30 Items, All a

Normally Distributed b, and All c = 0.20 . 2,
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Figure D.31
Mean Squared Error of 0^ on Conventional Test with 40 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Figure D.32

Mean Squared Error of 0'' on Conventional Teat with 50 Items, All a
Normally Distributed b, and All c = 0.20 .

to
VJI

2,



Mean Squore(ê =60 0=2
-MLE

 BME

3 4THETA
Mean Squared

Figure D.33
Error of S'' on Conventional Teat with 60 Items,

Normally Distributed b, and All c = 0.20 .
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Figure D.34

Average Estimation Error of T'' on Conventional Teat with 60 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Figure D.35
Standard Deviation of T ̂ on Conventional Test with 60 Items, All a = 2,

Normally Distributed b, and All c = 0.20 .
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Figure D.36

Mean Squared Error of T'' on Conventional Test with 60 Items, All a = 2,
Normally Distributed b, and All c = 0.20 .
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Figure D.37
Average Estimation Error of 9'' on Tailored Test with a

b-parameter, and All c = 0.20 .
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Figure D.38

Average Number of Items Administered on Tailored Test with All a = 2, Optimal
b-parameter, and All c = 0.20 .



Av C o m p  Time/Item (Secs)

- 4 - 3 -2

 WLE
 M LE
 BME

Tailored Test 
0=2

J I I I I 1 L J I L
- 1 3 4THETA

u
ro

Figure D.39
Average Computation Time Between Items on Tailored Teat with All a - 2,

Optimal b-parameter, and All c = 0.20 .


