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ABSTRACT

A multi-stage NxN interconnection network is said to be 
universal if it realizes the set of all permutations on N 
objects. A new bound on the number of stages required for 
the universality of shuffle-exchange network as well as the 
analysis of the combinatorial power for the block-structured 
networks are given. Finally, the complexity of the verifica­
tion of a new sufficient condition for rearrangeability due 
to Benes[35] is analyzed.
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Chapter I 
INTRODUCTION

1.1 PARALLEL COMPUTERS;
The computing power of a machine is often defined as 

the number of floating point operations it can perform in a 
second. In principle, there are two ways to increase the 
computing power, first by increasing the speed of the basic 
hardware and second using parallelism by replication of 
hardware. However, there are two fundamental limiting fac­
tors which determine the speed of the hardware namely 
switching delay of the basic components and the signal pro­
pagation delay. These two factors have been decreasing 
steadily from one generation to the next generation (from 
10”® to 10”® ) by using a variety of technological innova­
tions such as bipolar integrated circuits on silicon chip, 
large scale integration etc. A tremendous reduction in 
overall size of the hardware components and a dramatic de­
crease in cost of the hardware are two major aspects of this 
large scale integration. Based on the concept of computer on 
a chip and using VLSI, the prospect of further reduction in 
the cost of hardware have only become better. While further 
reduction in the switching delay is not impossible, it is 
clear that the signal propagation delay dominates the over­



all speed of the hardware. However, there is a growing con­
sensus among the leading experts that the limit is seen for 
shrinking the size of the integrated circuit elements [Wl]. 
Based on the above argument, we can conclude that until fur­
ther significant advances in VLSI are made the only way to 
increase the computing power is through the replication of 
the hardware while having the present level of switching de­
lay. In other words, parallel computation is perhaps the 
only feasible and viable solution to increase the computing 
power [A3,H5].

The term parallel processing or parallel computation 
refers to performing more than one operation at a time. Ac­
cordingly any computational device which is capable of com­
puting in parallel is is known as a parallel computer. In 
the early days, parallelism was introduced at the level of 
basic arithmetic operations and parallel input/output opera­
tions. Over the past decade, the term parallel computers 
have been used exclusively to denote machines with certain 
architectural features. In section 1.1 several different 
classes of machines are identified based on their architec­
ture and their functionality [H6,K5].

1.1.1 Multiprocessors;
In a multi-processor [K5], more than one computer share 

a common bank of memory units. This is the highest level for 
obtaining parallelism. Several copies of one program or



3
different programs can operate in parallel on different data 
set. The communication between processors can be done di­
rectly or indirectly through a common memory bank using an 
interconnection network as shown in Figure 1.1. Some popu­
lar examples of this type are c.mmp, cm* (of the Carnegie 
Mellon University) and HEP(Betrogeneous Element Processor) 
of Denelcor Inc.. The c.mmp has 16 minicomputers (POP 
11/70's) sharing a bank of 16 memory units through a 16716 
complete cross-bar switch.

1.1.2 Array Processors:
This is an intermediate level of parallelism [K5] which 

consists of an array of identical processing elements and 
they are controlled by a master computer. Each processing 
unit has its own local memory (set of registers) as shown in 
Figure 1.2(a). The array itself is obtained by intercon­
necting the processor elements in a network. Each processing 
unit has a limited number of instruction sets. The master 
computer broadcasts the same instruction to the processing 
units and they operate simultaneously on different data 
sets. ILLIAC IV, STARAN, MPP(massive parallel processor), 
DAP(distributed array processor of ICL)and BSP(Burrough's 
scientific processor) are examples of array processors, as 
shown in Figure 1.2(b). Array processors have gained wide 
acceptance as a viable parallel computer.



Figure 1.1 : An example of a mul^ -processor c.mmp.
and are the i processor aind 

memory processing elements, respectively, 
i=l,2, ----,N.



LH.

PE,

LM.

PE.

Figure 1.2(a): An example of an array of processing 
elements. Each PE. with local memory 
LM., i=l,2, ... ,A, interconnected 
through a network-



PE,1,1

PE.
’2,1 PE2,4

PE3,1 PE3,3

PEPE1,3

PE

PE3,2 PE3,4

PE4,4

PE2,3

PE4,3PE4,2

PE1,2

PE2,2

Figure 1.2(b): An example of a two-dimensional array of 
processing elements. PE. - ^  the pro­
cessing element in the "'^i row and 
j column, i,j=l,2,3,4. For convenience, 
local memories attached to these processors 
are not explicitly shown.



1.1.3 Multi-Functional Dnits:
Providing multiple functional units to perform differ­

ent operations in parallel on different data sets such as 
addition, multiplication, logic and index computation for 
instruction fetch, etc. ATLAS, HEP and CRAY-1 are examples 
of this kind.

1.1.4 Pipelining;
Processes running on a pipelined processor are decom­

posed into a series of sequential subprocesses [F2]. For 
example, floating point addition can be broken into four 
stages: Comparison of exponents, shifting mantissa, addi­
tion and normalizing. Each subprocess is executed on a ded­
icated facility, e.g. Amdahl, Cray-1 and Cyber- 205.

In the literature, the term parallel computer refers 
either to the multi-processors(level 1) or array proces­
sors (level 2). The above classification of the parallel 
computers depends on the architecture of these machines. 
Flynn(1972) [F2] classified these machines based on their
functionality as follows.

a) SISD machines(Single Instruction stream. Single Data 
stream); Conventional(serial) machines may be characterized 
at the functional level as SISD machines, e.g. IBM 360, POP 
11/70 and Vax 11/780.

b) SIMD machines(Single Instruction stream. Multiple 
Data Stream); Parallel computers such as array processors 
are characterized at this level.
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c) MIMD machines(Multiple Instruction stream. Multiple 
Data stream) : Parallel computer such as multi-processors 
are classified in this class.

d) MISD machines(Multiple Instruction stream. Single 
Data stream): Pipeline machines may be classified in this 
class. However, Flynn did not give any example of this cat­
egory.

In order to design a parallel computer, we have to have 
a communication medium between the processing elements. In 
parallel machines, an interconnection network either con­
nects processing units within themselves or connects proces­
sors to memory units. In other words the interconnection 
network in parallel computers dictates the communication ca­
pabilities and hence the computing power of the system. 
This dissertation is concerned with the study of certain 
classes of interconnection networks that play a crucial role 
in parallel computers. Over the years various interconnec­
tion networks have been developed in the literature [L4]. 
In the next section we begin by describing the topology, 
functionality and control of various classes of useful net­
works.



1.2 CLASSIFICATION OF NETWORKS;
The basic building block of an interconnection network 

is a cross-bar switch. An NxN complete cross-bar switch is a 
connecting network of N inputs and N outputs as shown in 
Figure 1.3(a). The intersection of the i^^ input line and 

output line is a cross-point switch. Each switch has two 
states. Figure 1.3(b). If the switch state is "on", then 
there is a connecting link between input i and output j, 
i=^j. If the switch state is "off", then input i is connect­
ed to output i. It is obvious that in a complete NxN cross­
bar switch there are N^ cross-point switches.

Definition 1.1:
Let T be a set of terminals, T = {0,1, ... ,N-1}. A 

permutation P on the set T is a 1-1 and onto function
p. T >T.

A switching network realizes the permutation P if the input 
terminal i can be connected to the output terminal P(i) by 
proper setting of the switches, where i, and P(i) belong to 
T.

Consider any permutation P. By proper setting of the 
switches at the intersection of the i^^ input line and 
P(i)^^ output line of a cross-bar, i=0,2, ... ,N-1 ,P can be 
realized.
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I
M
P
D
T

1

2

3

4

32 41
O U T P U T

Figure 1.3 (a) : An example of a cross-bar switch with N=4.
^  represents the cross-point switching 
elements.

2x2
a

b

a

b

Through-state or "0"—state

a

b

2x2

Crossed-state or *1"-state
Figure 1.3(b): A representation of the 2x2 cross-bar switch.
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Graphically, an NxN complete cross-bar switch can be 
represented as a complete bipartite graph Figure 1.4,
refers to a complete 4x4 cross-bar switch and Figure 1.5, 
refers to a complete 3x2 cross-bar switch and the corre­
sponding graph. Similarly, an incomplete cross-bar switch 
is one which does not have a switching element at every in­
tersection point of the input/output lines. Given a specific 
permutation P the problem of finding the setting for the 
switches in a cross-bar is called control or routing rou­
tine. Given a permutation, the routing algorithm is trivial 
on a cross-bar switch. Furthermore each input-output path 
goes through only one switch and there is only one switching 
delay for a pair of input and output. These are the two 
principal advantages of the cross-bar. Regardless of sup­
porting a high data rate, a cross-bar switch is not practi­
cal for interconnecting a large number of input/output 
ports. The number of cross-points needed for a cross-bar in­
creases with the square of the number of modules connected 
to it and hence the cross-bar is very expensive for very 
large systems. A cross-bar would probably cost more than the 
rest of the system components combined. Therefore, it is 
very difficult to justify the use of cross-bars for large 
systems.

Another building block in the design of interconnection 
networks is the time-shared bus. A single time-shared bus 
can provide flexible, inexpensive communication among a
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Figure 1.4: A graph model of 4x4 complete cross-bgr 
switch- The node (Y.) correspond i 
input(output) terminal of cross-bar 
switch, i=l,2,3,4.

1

2

3

X.1

Figure 1.5: An example of complete 3x2 cross-bar 
switch and its graph.
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small number of modules but bus connection problems make 
this approach impractical for large systems. As the number 
of modules on the bus increases, bus utilization increases 
causes more waiting time for a module to use a nonbusy bus.

A multiple time-shared bus on the other hand has prob­
lems similar to those of the cross-bar switch. In other 
words, the switching points which enable each module to be 
connected with any bus are arranged in a cross-bar configu­
ration. Since the maximum data rate in a bus is fixed, the 
number of buses grows proportionally with the total number 
of modules and the number of switching points increases with 
the square of this number. This further increases the net­
work cost and the time required for signals to propagate 
across a bus.

These interconnection schemes, i.e. the cross-bar and 
time-shared bus, are not desirable for general purpose sys­
tems with very large number of sources because the cost 
grows rapidly with the size of the system. Between these ex­
tremes there are many interesting classes of cost efficient 
networks. In the following subsection we briefly summarize 
their classification by system size. Having the cross-bar as 
the basic building block, we now classify the interconnec­
tion networks as follows [A2,F1,L5,S1,T1,T2,W5].
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1.2.1 Topological Classification;
A network can be represented as a graph of 

nodes(input/output terminals and switches) and edges (inter­
connecting links). The topology of a network defines various 
physical components of the network such as the number of in­
put/output terminals, the number and size of the switches 
and the way of interconnection between these components.

An interconnection network is called a STATIC network 
if there is no cross-bar switch involved as a part of the 
network. Thus, in a static network all units are connected 
through dedicated links. An interconnection network is 
called a DYNAMIC network if there is one or more cross-bar 
switches involved.

Static networks can be classified further based on the 
layout of the network. Figure 1.6, illustrates a one dimen­
sional or linear array. This type of interconnection is 
used in SIMD machines and pipelined computers. Figures 
1.7(a,b,c,d,e) illustrate two-dimensional arrays of standard 
patterns such as trees, stars, rings, mesh connected, and 
the systolic arrays, respectively. These types of networks 
are used in the design of special purpose machines. Figure 
1.8, illustrates multi-dimensional' array. Multi-dimensional 
cubes [Pease 1977] and cube connected cycles (Preparatta and 
Vuillemin 1979) have also been used to develope a number of 
parallel algorithms.
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PE PEPEPE PE

Figure 1.6: An example of a linear array of processing 
elements PE^, i=l,2, --  ,N.

PEPE

PEPE

PEPE

PE

Figure 1.7 (a) : TREE, An example of a two dimensional 
array of processing elements.
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PE

PE

PE

PE

PE

PE

PE

Figure 1.7(b): STAR, An example of a two dimensional 
array of processing elements.
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PE

PE

Figure 1.7(c): RING, An example of a two dimensional 
array of processing elements.
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PE

PE

PE PE

PE

PE

PE PE

PE

Figure 1.7 (d) : MESH-CONNECTED, An example of a two 
dimensional array of processing 
elements.
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Figure 1.7(e) SYSTOLIC ARRAY, An example of a two 
dimensional array of processing 
elements-
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Figure 1.8(a): An example of a 3—cube.

Figure 1.8(b): An example of a 3-cycle.
Figure 1.8: If each vertex in the cube is replaced 

by a 3-cycle, it becomes a 3-dimensional 
cube connected cycle.
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Dynamic networks can be classified into two subgroups 
namely single stage and multi-staoe networks. Figure 1.9, 
illustrates a single stage and its associated graph. A sin­
gle stage network has a bank or stage of (small size such as 
2x2) cross-bar switches. An NxN full cross-bar switch is a 
trivial example of a single stage network.

A multi-stage dynamic network contains more than one 
stage. The outputs of stage i are connected to the inputs of 
stage i+1 through a link permutation. Figure 1.10 and Figure 
1.11 illustrate examples of one stage and multi-stage net­
works and their associated graphs.

1.2.2 Technological Classification;
The interconnection networks can be further classified 

based on their switching modes, namely, CIRCUIT and PACKET 
switching. In circuit switching a circuit or dedicated path 
makes a connection between a source and a destination by 
proper setting of the switches. In packet switching the 
set of data is divided into a number of slices called pack­
ets of certain fixed size. Each packet has its destination 
address and goes through the network until it reaches the 
destination. Circuit switching is the most popular switch­
ing mode for computer communication and telephone networks. 
Packet switching is very commonly used in computer communi­
cation networks.
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2x2

2x2

2x2

2x2

#  X„

Figure 1.9: An example of a single stage dyneimic
network without output permutation and 
its graph. S. is a 2x2 cross-bar switch 
for i=l,2,3,4-
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Figure 1.10: An example of a two stage dynamic network 
without output permutation and its graph, 

is a 2x2 cross-bar switch for i=l,2,3,4.



X0
X1

X2

X0

X1

X3

X4
Figure 1.11; An example of a three stage dynamic network without output permutation 

and its graph. is a 2x2 cross-bar switch for i=l to 6.

N)
4k
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1.2.3 Functional Classification;
The functionality of a multi-stage network depends on 

the number of edge disjoint paths between various pairs of 
sources and destinations. This relates to the different in­
terconnection patterns that can be realized by the network.

Definition 1.2:
Let MJ(N) be the set of all permutations of N objects, 

clearly | (N) | = NI, and let K Ç  i(i(N) . An NxN interconnec­
tion network is called a K-permutation network if for each K 
there exists at least one set of N edges-disjoint paths be­
tween the input terminal i and the output terminal P(i) for 
i~l,2, ... ,N.

Definition 1.3:
A K-permutation network is referred to asa blocking 

network if |K| < NI. In other words if there is at least one 
permutation which is not realized by the network. On the 
other hand, a K-permutation network is referred to as a non­
blocking network if |K|=NI, as in Figure 1.12. Clearly, a 
non-blocking network realizes all possible permutations. 
Figure 1.13, shows that the permutation

'0 1 2  3/



S3
2x2

«4
2x2

®2
2x3

N)

Figure 1.12: An example of non-blocking interconnection network. Each
component switch is a complete cross-bar switch of specified 
size.
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cannot be realized by that network. Blocking networks of 
various kind, Banyan[Gl], Omega[L3], Delta[P2], and Base­
line [W3] have been extensively studied.

Assume that the input terminal i is already connected 
to the output terminal p(i) for some i, and suppose we now 
want to connect terminal j to p(j) . It may be necessary to 
reroute or rearrange the previous setting to make a new con­
nection. This need for rearrangement leads to the following 
definition.

Definition 1.4:
If a permutation network realizes all possible permuta­

tions (perhaps with some rearrangement) then it is called a 
rearranaeable network.

A non-blocking network does not require any rearrange­
ment of paths for setting up all permutations. Figure 1.11, 
is a rearrangeable network and Figure 1.12, is a non-block­
ing network. It is clear that every non-blocking network is 
rearrangeable but not conversely. Rearrangeable networks 
require less number of switching points compared to non- 
blocking networks but the control of the rearrangeable net­
works is more involved compared to that of non-blocking net­
works. [C1,L5,01,P5]. These three and other classes of 
switching networks are discussed by Feng[FI], Seigel[S2] and 
Thurber[T2].
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Definition 1.5:

Let K be the number of permutations realized by a net­
work. The combinatorial power (CP) is defined as CP=K/N!.

A multi-stage NxN network is said to be UNIVERSAL if it 
realizes the set of all permutations on N objects. Clearly, 
for rearrangeable networks and non-blocking networks CP=1 
and for blocking networks CP < 1. Examples of blocking net­
works include base-line networks[FI,W2], Figure 1.14, Omega 
networks[L3], Figure 1.15, Indirect Binary n-Cube net­
works [P3], Figure 1.16, etc. A Benes network[B6] is an ex­
ample of a rearrangeable network. Figure 1.17, and Clos net­
work [Cl] is an example of non-blocking network. Figure 1.18.

1.3 SCOPE OF THE DISSERTATION:
An NxN (N inputs and N outputs) multi-stage switching 

network is an arrangement of switches and connecting links 
in which a set of N input terminals can be connected to a 
set of N output terminals according to some permutation. A 
number of papers have focused on the universality of a cas­
cade of two or more blocking networks, in general, and shuf­
fle-exchange networks such as Omega networks, in particular. 
For N=2^ and k 2  4, Parker [PI] showed that a cascade of 3k 
shuffle-exchange stages is universal . Wu and Feng [W4] lat­
er proved the same result using only 3k-l stages. An open 
question in this context is whether a cascade of 2k shuffle- 
exchange stages is universal. In chapter two we derive a new
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0

1

0

1

Figure 1.13: An example of a blocking network which
does not realize the permutation j® J ^ | ).

Figure 1.14: A configuration of 8x8 base line network.
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Figure 1.15: An example of 8x8 Omega network.
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Figure 1.16: A  configuration of 8x8 binary n-cube network.
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Figure 1.17: An example of 8x8 Benes network.
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Figure 1.18: A configuration of 6x6 Clos network.
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upper bound by showing that 3k-3 shuffle-exchange stages are 
indeed sufficient for universality. Further, it is shown 
that the cascade of 2k shuffle-exchange stages cannot be 
transformed to the Benes type network. This in turn implies 
that the universality of a cascade of 2k shuffle-exchange 
stages must be settled outside the theory of Benes type sym­
metric networks [K3].

Chapter three introduces the concept of L-stage block- 
structured networks where the link permutations between 
stages satisfy a fundamental property called the distribu­
tive property. It is shown that there exists an intimate 
relation between this class of networks and the well known 
SW-Banyan networks[Gl] and Delta networks[P2]. This class of 
block-structured networks with distributive property in­
cludes the expanding and contracting SW-Banyan networks. 
Computing the number of permutation realized by an L-stage 
block-structured NxM network is by no means trivial and of­
ten gives rise to an interesting class of enumeration prob­
lems. The trade-off between the number of permutations real­
ized, the path blockage and the cost(measured in the term of 
the switching elements)for the set of all block-structured 
NxN networks with distributive property is illustrated 
through an example when N=16 [K2].

Chapter four analyzes certain new sufficient conditions 
due to Benes [B5] for the rearrangeability of switching net­
works. The complexity of this algorithm is analyzed and it
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is shown that these conditions are excessively sufficient in 
the sense that there are a number of simple networxs which 
are rearrangeable but do not satisfy the above sufficient 
conditions. Also, a counter example to the theorem due to 
Afshar[Al] is given in chapter four. This example relates to 
the existence of feed-back free networks which are not rear­
rangeable.

Concluding observations are given in chapter five.
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Chapter II
THE UNIVERSALITY OF SHUFFLE-EXCHANGE NETWORKS

2.1 SHUFFLE-EXCHANGE PROPERTIES;
The Shuffle-Exchange networks have been shown to be a 

very good interconnection network between memory modules and 
processors IG3,L1,L2,L3,P3,S5]. These networks are oon- 
structed of repeated copies of a "perfect shuffle" connec­
tion followed by a column of switches of size 2x2. A shuf­
fle-exchange network of size N=8 is shown in Figure 2.1. 
Each switch can have straight connection, as shown in Figure 
2.2(a) or crossed connection as shown in Figure 2.2(b).

We focus our attention on networks made of 2x2 switch­
es. The input /output terminals are numbered 0,1, ... ,N-1 
and the switches are numbered 0,1, ... ,N/2 -1. Let P be a 
permutation on N objects. A network is said to realize the 
permutation P if there is a proper setting of the switches 
such that the input terminal i can be connected to the out­
put terminal P(i), for i=0,l, ... ,N-1. Recall that the
combinatorial power (CP) of a switching network is defined 
as a ratio of the number of distinct permutations realized 
by a given network to the total number of permutations of N 
objects [B4] . It is clear 0 <. CP ^  1 [B4] .
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Figure 2.1: A  configurartion of Shuffle—exchange network.

a) Straight connection b) Crossed connection 

Figure 2.2: Switching connection.
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The universality of a cascade of two or more passes of 
blocking networks has received considerable attention 
[M1,S3,W4]. Parker [PI] showed that for N = 2^ and k ^ 4 a 
cascade of 3k shuffle-exchange stages is universal. Later WD 
and Feng [W4] improved the above result by showing that for 
k 2 4 indeed (3k-l) shuffle-exchange stages are sufficient. 
For special cases of k=2, 3 shuffle-exchange stages are
necessary for universality, while for k=3, 6 shuffle-ex­
change stages are necessary [Pl,L3,W6]. One of the open 
questions in this context is that for N = 2^ and k > 4, 

whether 2k shuffle-exchange stages are universal or not 
[PI].

In this chapter we focus our attention to the univer­
sality of cascades of shuffle-exchange stages. It is shown 
that for k 2 4, 3k-3 shuffle-exchange stages are universal 
instead of presently known bound which is 3k-l. Further, 
since 3k-3 = 2k for k = 3, the method explains why a cascade 
of two passes of omega network is universal. It is also 
shown that for k 2 4 a cascade of 2k shuffle-exchange stag­
es is not transformable to Benes type networks. As a result, 
the universality of cascades of 2k shuffle-exchange stages 
must be settled outside of the framework of Benes theory of 
rearrangeable symmetric networks [B4,K3].
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2.2 NEW DPPER BOOM):
Our approach is based on transforming a given cascade 

of shuffle-exchange stages to a Benes type network. The der­
ivation would need the structure of the target which is a 
Benes network. Let N = 2^ , k > 2. The Benes network is 
made of 2k-l stages. The middle three stages consist of 

independent 4x4 Benes networks, called 4x4 Benes 
blocks. Figure 2.3(a) shows a typical block and Figure 2.4 
shows a Benes network of size N=16. Any such typical 4x4 
Benes block is topologically equivalent to the graph shown 
in Figure 2.3(b). A 4x4 Benes block has a distinguishing 
feature such that it has three associated pairs of switches 
connected as shown in Figure 2.3(a).

The transformation consists of finding the number of 
shuffle-exchange stages needed in forming the required num­
ber of independent 4x4 Benes blocks. We establish the fol­
lowing notations. Stages of the network are numbered in 
ascending order from input stage to the output stage. The 
switches in each stage are numbered 0 through N/2 -1. The 
inputs and outputs of a switch at position x are numbered 2x 
and 2x+l, respectively, where 0 < x < N/2 -1. Clearly, the 
even numbered terminals are the top terminals and the odd 
numbered terminals are bottom terminals of the 2x2 switches. 
In binary notation, if x=[x%_i x% _ 2  ... X2  Xj] is the posi­
tion of a switch at a given stage, then the inputs and out­
puts of this switch are numbered [x^_^ g * 2  x^ 0] and
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Figure 2.3(a): An example of 4x4 Benes network.

0
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3
Figure 2.3(b): The graph of a typical block of Benes 

network.



Figure 2.4: An example of 16x16 Benes network consists of 4 Benes blocks.
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[x% _ 2  x% _ 2  ... * 2  Xj 1]. In addition, we need to define the 
following terminology.

2.2.1 Perfect Shuffle Permutation:

Definition 2.1:
The perfect shuffle permutation a is defined [S3] by

2x
a(x) = (2x+ )Mod N

N
then the shuffling corresponds to a circular left shift is

O  ([x%_2 x%_2 %o])= [%k-2 *k-3 *** *1 *0 *k-l^'
where x is the index of some input line. The unshuffle cor­
responds to a circular right shift and is given by:

^ ( t^k^l Xjj_2 ... Xj Xq] } =[xq x^_2 ... x^ X2  Xj] .

2.2.2 Exchange Permutation:

Definition 2.2:
The Exchange permutation E is defined as:

^^[*k-l *k-2 *1 *0
[Xĵ _l x% _ 2  ... X2  Xj Xq ] if X is in through state

or
[x% _ 2  x% _ 2  ... X2  x^ Xq ] if X is in crossed state

where Xq is 0 or 1 if X q is 1 or 0.
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Let x=[x%_i x% _ 2  *2 ^1 yo  ̂ an output
terminal of a switch at stage i. x is the top output termi­
nal of the switch at position [x%^^ x% _ 2  . X2  ] if
Yq = 0 and the bottom output if yg = 1.

The set of all input terminals at stage i+m of Shuffle- 
exchange network, m > 1, which are reachable from x is de­
noted by:

Rjjj(x) =a(E. a  (x).

Clearly, the number of terminals in this set is 2®“^. Simi­
larly, the set of all input terminals at stage i+k-1 of 
Shuffle-exchange network, k 2  2, which are reachable from x 
is

R%_l(x) = a(E. a (x).

which is

{IYq bj b2 ••• b^_2 Yj ] I b^ C {0,1}, 1 ^ i ^  k—2}.

These 2^"2 input terminals are incident on the set of S of
2^“^ switches where,

S={ [Yq b^ b2 ••• b^_2 ] I bĵ  G {0,1}, 1 i i ^ k—2}«

Thus, if Y q = 0 the switches in S correspond to the top half
of switches at stage (i+k-1) that are numbered 0 through 
N/4-1, and if Yq= 1 the switches in S correspond to the bot­
tom half of switches at stage (i+k-1) that are numbered N/4 
through N/2 -1. Furthermore, any input terminal in Rjç_i(x)
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is the top input to a switch in S if = 0 and it is a bot­
tom input if = 1. Consequently, this leads us to the fol­
lowing observation.

The two top output terminals *k-2 *2 ® 0] and
[x% _ 2  x % _ 2  ... %2 1 0] of two adjacent switches with numbers 
[Xjç. 1  x % _ 2  ... % 2  0] and Xjç-2 *** *2 at stage i,
respectively, after (k-2) shuffle-exchange stages, can be 
made as the two inputs to any single switch numbered 0 to 
N/4 -1 at stage i+k-1. Likewise, the two bottom output ter­
minals [x% _ 2  x% _ 2  ... X2  0 1] and [x% _ 2  *k-2 *2 ^ 1] of
the same set of two adjacent switches can be made as the two 
inputs to any switch numbered N/4 through N/2 -1 at stage 
(i+k-1). This can be done by suitably fixing the state of 
the switches at stages (i+1) through (i+k-2). Two consecu­
tive switches x and x+1, for x=0,2,4, ... ,N/2, can be con­
nected to two switches at stage (i+k-1), as required in the 
4x4 Benes block. Figure 2.3(a).

To obtain the first part of the 4x4 Benes block, con­
sider two consecutive switches x and x+1, for x=0,2,4, ... 
,N/2, at stage i, they are connected under an un-shuffle 
permutation to the switches x/2 and x/2 +2 ^ * 2   ̂ which are 
from switches of the top part numbered (0 to N/4 —1) and 
switches of the bottom part(N/4 to N/2 -1), respectively. 
Thus, by considering a sequence of k+1 stages, one can easi­
ly identify the required number of independent 4x4 Benes 
blocks. The above discussion naturally leads us to the fol­
lowing theorem.
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2.2.3 Constructing Independent Benes Blocks 

Theorem 2.1:
For N=2^ and k2 4, a cascade of k+1 shuffle-exchange 

stages are necessary to obtain all the independent 4x4
Benes blocks.

Proof:
It follows from the above argument that the two top 

terminals, namely, [x%_i x% _ 2  ... X 2  0 0 ] and [x%_i x% _ 2  

... X2  1 0 ], of two consecutive switches [x% _ 2  x% _ 2  ... X2 

0 1 and [x^ 2  ĵç— 2  • • • X2  1 ], (for x=0,2,4, ... ,N/2) in 
stage i cannot reach the two input terminals of a switch in 
stage i+m unless m > k-1. The desired connections are ob­
tained by fixing the states of the switches in at least 
(k-2) intermediate stages. Therefore, (k-2)+3=k+l stages of 
a shuffle-exchange are necessary for construction of 4x4 
Benes blocks. Consider the five stages of shuffle-exchange 
of Figure 2.5, by setting the switches at stage 3 and 4, 
four independent Benes blocks of size 4x4 can be formed, 
namely A, B, C, and D.

2.2.4 Universality of two passes of Omega Networks

Corollary 2.1 
For N =

stages cannot be transformed into Benes type network
For N = 2^ and k 2  4, a cascade of 2k shuffle-exchange



m
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Figure 2.5: Illustration of theorem 2.1 for k=4.
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Proof;

(k+1) shuffle-exchange stages are necessary to 
construct 2 independent 4x4 Benes blocks, which have three 
stages. Thus, we are left with only 2k-(k+l)+3=k+2 stages. 
But a Benes network has 2k-l stages and for k >, 4, (k+2) < 
(2k-l), the corollary follows.

To this date, the only method known for proving the re- 
arrangeability of a cascade of blocking networks is to 
transform it into a Benes type network [K1,P1,S2,W2,W4]. The 
above corollary has a direct impact on the well known open 
question namely whether a cascade of 2k shuffle-exchange 
stages is universal or not. Since it cannot be transformed 
into a Benes type network, the universality of such a net­
work must be settled outside of the framework of the theory 
of symmetric rearrangeable Benes type networks.

From the above discussion it follows that more than 2k 
shuffle-exchange stages are necessary for universality. In 
the following section, we show that indeed 3k-3 shuffle-ex­
change stages are sufficient.

2.3 A TRANSFORMATION TO BENES NETWORK
Given 3k-3 stages of shuffle-exchange, the procedure 

has two phases. The first phase defines a renumbering of the 
switches in some stages and the second phase sets the states 
of the switches in k-2 stages to obtain all independent 
(4x4) blocks. The derivation would need the following ter­
minology.
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2.3.1 Sub-Shuffle, Super-Shuffle and Un-Shuffle 
Permutations;

Definition 2.3:
Let [x^ _ 2  x^ _ 2  ... X2  Xj] be the binary representation 

of X, where 0 ^ x < N/2, then the bit-reversal permuta­
tion, p , is defined by,

P([Xj^-l x%_2 ... %2 %l])= [%1 %2 %k_2 *k-l^ *

The sub-shuffle permutation , , is defined by:

a(i) (x)= a (i) ([xjç-i x % _ 2  ... x^+i Xi_i * 2  *l]) =

[*k-l *k-2 %i+l %i-l *i-2 --  *2 *1 *i^*

The super-shuffle permutation of x is defined by:

(x)= ([Xk_i x% _ 2  ... Xk_i+i Xk_i Xk_i_i ... % 2

*l])= [X-2 *k-3 *k-i+l *k-i *k-l *k-i-l **• *2 *1^*

Clearly, the super-unshuffle permutation of x is defined by:

. -1 . -1
(x)=,&(i) ([%k-l *k-2 •*• *k-i+l *k-i *k-i-l ***

*2 *l]= [%k-i %k-l *k-2 ••• %k-i+l *k-i-l *2 %l])'

In other words, the sub-unshuffle and super-unshuffle permu­
tation of X  is the unshuffle permutation on trailing and 
leading i bits of x.
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Definition 2.4:
Let S be a permutation of m objects, i.e.

S{0)
1

S(1)
2

S(2)
m-1 \ 

S(m-1)/

for 0 < X < m-1, then we define a composition P^fSfx)) as:

Pl(S(x))=S(x)

P^(S(x))=S((x+m/2)Mod m)

if X is even, 

if X is odd.

In other words, Pj^(S(x)) swaps S(x) with S(x+ m/2) if x is 
odd, and 1 < x < m/2 , for example.

X  0 1
S(x) 0 1
Pj(S(x)) 0 3

2
6
6

3
7
5

4
2
2

5
3
1

6 7
4 5
4 7

Define a permutation P2 (S(x))for 0 < x < m-1 as follows.

For 0 < X  It m/2

P2 (S(x))=S(x)

P2 (S(x) ) =S( (x+ni/4)Mod m/2)

For m/2 < X  It m-1

P2 (S(x))=S(x)

P2 (S(x))=S(m/2+(x+m/4)Mod m/2)

if [x/2J is even.

if Lx/2J is odd.

if lx/2J is even.

if Lx/2J is odd.

For example:
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X  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 1 8 9 4 5 12 13 2 3 10 11 6 7 14 15
P2(S(x)) 0 1 12 13 4 5 8 9 2 3 14 15 6 7 10 11
Similarly, define a permutation P^(S(x)) for 0 ^  x ̂  m-1 by:

P^(S(x))=S(x) if (x/4j is even.

P^(S{x))=S((x+m/2)Mod m) if (x/4j is odd.

We now describe the transformation using the following 
algorithm. In all the following 0 ^  x < N/2.

Algorithm 2.1:

Step i: Divide 3k-3 shuffle-exchange stages network into
three groups:
-group I consists of the first k stages,
-group II consists of the next k-2 stages,
-group III consists of the last k-1 stages.

Step 2: Renumbering of the switches in group I.

a) for stage 1 to 2 do
S(x):= X

b) for stage i:=3 to k-1 do

S(x) := ^(i) «^(1+1) (CT(i+2) ••• °^k-l) (*)))'

c) for stage k do
S(x):= X
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Step Zz Renumbering of the switches in group III.

a) for stages 3k-3 downto 3k-4 do
S(x) := X

b) for i:=2 to k-2; in stages (3k-3-i) through (2k-l) 
rename switches as follows

S ( x )  := a(3k-3-i) (3k-4-i) J ^̂ (2) (%)))

c) for stage 2k do
S(x) := (S(x))

d) for stage 2k-l do
S(x) := (P2  {Six)))

This completes the renumbering phases of the algorithm 
for group I and group III. Figure 2.6 and Figure 2.7 illus­
trate the renumbering phases for networks of size 16 and 32, 
respectively.

The second phase consists of setting the switches in 
the (k-2) stages in group II in such a way so as to obtain 
all the 2^”^ of independent 4x4 Benes blocks. The k^^ stage, 
k-2 stages of group II and the (2k-l)^^ stage, together con­
stitute one pass of Omega network [H6]. The problem of ob­
taining all 4x4 Benes blocks is in fact equivalent to the
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Figure 2.6: Renumbering scheme for N=16.
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Figure 2.7; Renumbering scheme for N=32.
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partitioning of an Omega network formed of stages k through 
(2k-l) [S4]. Combining theorems 1 and 6 in [S4],it follows 
that such a partitioning exists. In the following theorem 
we explicitly prove the existance of such a partitioning.

2.3.1.1 Partitioning of Omega Networks
Theorem 2.2:

An NxN Omega network with N=2^ is partitionable into 
2^"2 Benes blocks of size 4x4 blocks.

Proof;
Let N=2 and consider an Omega network of size N. Based 

on the algorithm 2.1, the rank of a switch x, in binary rep­
resentation, in group III is as follows:

Stage Renumbering Scheme

3k-3 [%k-2 *k-3 ••• *2 *1 *0^*
3k-4 [%k_2 %k_3 ... %2 %1 %o]'
3k-5 [%k-3 *k-2 ••• *2 *1 *0^*
3k-6 [%k_4 =k-3 ••• =2 =1 XQ]'

2k“2 [ %2 ^0  ̂*
2k-l X2 ... x%_i x%_2 Xq ].

The composition P^fx) can be written as follows:
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If x%_2=0 (first half) and ( [x/2j is even), then

^2(^*k-2 *k-3 *1 *2 *k-2 *0^

therefore,

^2^^*k-2 *k-3 *1 *0^^ *2 *** *k-2 *0^*

If x%_2=0 (first half) and X2=0 (lx/2j is odd), then
_2 ... Xj Xq ]+2^ ^) Ml

[x^ X 2  ... X^_2 Xg]
P2(([%k-2 %k-3 ••• *1 Xg]+2^"^) Mod 2%-%)

therefore,
^ 2 ( ^ 0  ( I ^ ^ k — g) ... X j  X g ] )  = [ X 2  X 2  ... X ^ _ 2  X g ] .

If x^_2 =l (second half) and x^sO (Lk/2J is even), then

^2([*k-2 *k-3 *1 * 0 ])
=[%1 ••• %k-2 XQ]

therefore,
2 X %—3 ••• * 1  Xg] )  = [ X 2  X 2 ... Xjj_2 Xg] .

If x^_2 =l (second half) and x^=l (Lx/2J is odd), then

P2(2k"2+(2k-3+[x%_2 x%_3 ... x^ Xg])Mod 2^"^)=
[ X ^  X 2  ... X|^_2 Xg]

therefore,
P 2 ( 2 k " 2 + ( [01000 00]+[ x ^  X 2  ... x % _ 2  X g ] )  Mod 2^~h

• • • x^_2 Xg] â.nâ
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P 2 ( [ 0  (1 @ X % _ 3 )  ... X j  X q ]) = [ X i  X 2  ... X % _ 2  X q ]

After some simplification, function ? 2  becomes:

P 2 ( I 0  ... 0 Xq] )  > [ 0  % 2  0 X g ] .

^2  ̂  ̂  ® 3 ) ... 1 Xq]) ^ [1 X 2  ... 0 Xqj

? 2 ( 11 X ^ _ 2  ... 0 Xg] ) — — — > J 0 X 2  ... 1 Xg] •

? 2  ( [1 (l@Xj^_2) ... 1 Xg] ) — — > [1 % 2  ... 1 X g  j

An Example for N = 1 6  is shown in Table 2 . 1 .
X 22W
0000 00000001 0001
0010 11000011 11010100 0100
0101 0101
0110 10000111 1001
1000 0010
1001 00111010 11101011 nil
1100 01101101 01111110 1010nil 1011

Table 2.1
Binary Representation for a permutation

P2(x) ♦

Define over ? 2  as follows,
1. If Xjj_2=0, %2=0, and X g = 0  then
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Pl(P2([Xk_2 %k-3 *1 XQ]))=
*2 *** *k—2 *0^)"
[x^ %2 ••• %k_2 ^0^ *

2. If x%_2=0, Xi=0, and Xq=1 then

Pl(P2(U|;_2 =k_3 ••• *1 *0>>> =
Pl(lxi %2 ••• %k—2 *0^)
Pl(P2(IXk_2 %k-3 %1 0̂̂  +2^"^)Mod 2*̂ )̂ =

[x^ X 2  ••• X k _ 2  X g ] •

Pl(P2 ([Xk_ 2  %k-3 ••• ^0^ +[1000 ••• 00])Mod 2%-!)=
[x^ X2  ••• Xk_2 %()]

Pl(P2([l %k-3 **• *o]Mod 2^ 1 ))=[%! X2  ... Xk_2 Xg])
Pl(P2([l %k-3 ••• *0 ])) =[%! %2 =k-2 *o])

3. If %k-2=0' xi=l, and Xg=0 then
P l ( P 2 ( [ 0  ( l ® X k _ 3 )  ... x ^  X g ] ) ) =

P ^ C I X j  X 2  ... X k _ l  Xq]) = [ X j  % 2  ... X k _ 2  Xg].

4. If x%_2=0, X]=l, and Xg=l then
P l ( p 2 ( [ 0  ( l ® X k _ 3 )  ••• x j  Xg]))

? l ( P 2 ( [ 0  (l®Xk_3) ... x ^  Xg] + 2 k - 2 ) M o d  2^ 1)

Pl(P2 ( [ 0  (ieXk-3 ) ••• *1 *0^ +[1000 ... 00])Mod 2*
Pl(p2([0 ( l ® X k _ 3 ) ... X j  Xg]) Mod 2^"1)=

[%2 X 2 ... Xk_2 X g ] . 

P j ( P 2 ( [ 0  (l®Xk_3) ... Xj Xg])) =[xi %2 ... Xk _ 2  X g ] .
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5. If x^_2 =l, X2=0f and Xq=0 then

2 *k—3 * * * *1 ) ) —
^l([xi %2 %k_2 Xg]) "[*1 *2 *** *k—2 *0^"

6. If x%_2 =l, Xi=0, and Xq=0 then

Pl(P2([Xk-2 %k-3 ••• Xi Xo3))= Pi([xi %2 ••• %k-2 *0^^
Pl(P2(tXk-2 %k-3 ••* *1 ^0^ +2k-2)Mod 2^~h =

Ix^ X 2  ••• x^_2 XqI ) 
Pl(P2([*k-2 %k-3 +11000 ... 00])Mod 2*'"̂ ) =

[Xi X 2 .*• X % _ 2  Xq]

P l ( P 2 ( [ ( i e x % _ 2 )  x ^ _ 3  ... x ^  X q ])) = [ x i  X 2  ... x % _ 2  X q ]

7. If x%_2 =l, %i=0, and Xq=1 then
P l ( P 2 ( [ 0  (l®xjj_3) x j  X q ])) =

P ^ d X j  X 2  ••• X % _ 1  Xq]) =Ixjl % 2  ••• x % _ 2  X q ] .

8. If x%_2 =l, Xi=l, and Xq=1 then
Pl(P2([l dÔXjç_3) ... x i  X q ] ) )  =

Pl(P2([l (l®x^-3) ••• xi Xq ] +2^"^)Mod 2^ 1)
Pl(P2([0 (1@X;^_3) ... X q ]  +11000 ... 001)Mod 2^ ^
Pl(P2 ([l ( l ^ x ^ _ 3 ) ... X j  Xq]) Mod 2^-1)=

[x^ X 2  ... X^_2 Xq]. 
P l ( P 2 ( [ 0  (l®Xjç_3) ... x ^  X q ] ) )  = [ X i  X 2  ... X % _ 2  X q ] .
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Therefore the composite function P2 (P2 (x)) is:

[0 x^_3 ... X2 0 01  > [0 %2 %k-2
[1 x%_3 ... %2 ®----------  ̂ *2 %k-2
ID (l©Xĵ _3) ... %2 1 0 1 ------> [1 %2 ••• %k-2 0]
[1 (l@Xĵ _3) ... %2 1 1 ] ------> [1 %2 ••• *k-2 1]
[x%_2 x%_3 ... %2 0 01  > [0 X2  ... \ - 2
[(lôxjç_2) Xjç_3 ... %2 ®  ^ *2 *k-2
[1 (l®Xj^_3) ... X2  1 0 1  > [1 %2 •*• %k-2
[0 (l@x^_3) ... %2 1 1 ]  > [1 %2 ••• %k-2

and in general.

[x%_2 %k-3 ' *0^  > 1*1 *2 *k-3 *k-2 *0^'
if %2 = 0  and Xq

[x%_2 *k-3 ••• *1 *0^ ------ ^ [*1 *2 •** *k-3 *k-2 *0^'
if x^sQ and Xq

[x%_2 x%_3 ... x^ Xq] ------ > [xj X2  ... %k-3 *k-2 *0^'
if X3 =l and Xq

[Xk_2 x%_3 ... x^ Xq] ------ > [xj X2  ... %k_3 %k-2 * 0 ]'
if Xj=l and X q =1-

An example for N=16 is shown in Table 2.2.
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z PifPgCz))

oooo 0000
0001 0011
OOlO 1100
0011 0101
0100 0100
0101 0111
0110 1000
0111 1011
1000 0010
1001 0001
1010 1110
1011 1101
1100 0110
1101 0101
1110 1010
1111 1001

Table 2.2
Binary Representation for a Composed permutation

PlfPgfx)).
Construction of Benes blocks of size 4x4 requires the 

partitioning scheme of Siegel[S4]. To define such a parti­
tioning, the following definitions are introduced.

Definitions 2.5: Let:
1. P={0,1, ... ,N-1}, the set of output terminals at

stage 2k-l.
2. 1 1 1 , 'li(w^l)}' set of input termi­

nals in the i^^ partition.
3. is the size of 1^ (that is Il^I=Wĵ ) , where 0 < w^ 

^  N and is a power of two. In this case w^=4.
4. V is the number of partitions which is 2^”^ in this 

case.
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5. I>=1q U I2  U ... ü l(v-i)/ the set of input terminals
at stage k.

6. m is a bijection from P to L such that if m(p^)=i^j 
then m'^d^j) = where Pĵ  C P and l^j G L.

Siegel[S4] stated the following theorem.

Theorem;
In terms of the cycle structure of the cube intercon­

nection function, the network will be partitioned into inde­
pendent sub-networks if and only if m is such that for all 
if 0< i < Vf for each of log^w^ distinct cube functions ex­
actly W 2 / 2  of the cycles contain only elements of P which 
are mapped to elements of 1^ by m. In addition, for 0 < r < 
log^w^f if

Cube^Cm-^d^j) )=m”^(l2jç) (4.3)

then j and k can differ in only the r^^ bit position for 
jfk, 0 < j,k < w^, where

Cubent [s^_2 ... Sj Sq ])= [Sjj_2 ®i+l ®i ®i-l Sg].

In order to verify the criteria of the above theorem, 
consider two consecutive switches at stage k, namely [x^ X2  

... Xjç_ 2  0] and [x^ X 2  ... x% _ 2  1] which are preceded by 
shuffle permutations. The input terminals to switch [x^ X2

... x^ _ 2  0] are [0 x^ X2  *k-2 and [1 x^ X2  x% _ 2

0]. The input terminals to switch [xj X2  ... x% _ 2  1] are [0
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%2 **• %k-2 and [1 Xg *k-2 * After renumber­
ing the switches at stage 2k-l the physical address of the 
switch [x^ % 2  ... Xjç_ 2  0] will be at [x% _ 2  x%_g ... Xj 0] if 
x^=0 and [x% _ 2  *k-3 *1 if x^=l. Likewise, the physi­
cal address of switch [x^ % 2  ... x% _ 2  11 will be at [x% _ 2  

Xk- 3  ... Xj 1] if X2 = 0  and [xĵ _ 2  *k-3 *1 if Xi=l, as
shown in Figure 2.8. Consequently, the output terminals of
switch [Xj X 2  ... x% _ 2  0] at stage 2k-l is [x% _ 2  x% _ 3  ... Xj 
0 0] and [x^ _ 2  x% _ 3  ... Xj 0 1] if x^zQ and it is [xĵ _ 2  

Xk- 3  ... Xj 0 1] and [x% _ 2  x^.g ... x^ 0 1] if x^=l. The 
output terminals of the switch [x^ X 2  ... x% _ 2  1] at stage 
2k-l is [x^ _ 2  x % _ 3  Xj 1 0] and [xĵ _ 2  %k_ 3  1 H  if
Xĵ =0 and it is [x% _ 2  *k-3 *** *1 i and [x% _ 2  Xĵ _ 3  ... Xj 
1 1 ]  if Xjsl, as shown in Figure 2.8.

One of the possible correct choice of m is

m([Xj^_2 x^_3 ... x^ 0 0]— [0 x^ X2  ... ^k—2 ^^ ~ iiO

m {[x^ 2  x^_3 ... x^ 0 11 — [0 x^ X2  ... x^_2 ^1 —

m([Xj^_2 Xjç_3 ... x^ 1 0]= 11 x^ X2  ... ^k—2 ^^ — ^i2

m([Xj^_2 Xjç_3 ... x^ 1 1] = [1 x^ X2  ... *k—2 ~ ^13



triMi k MM* :k I

k :

kl

mw

•*k-l "kl •••«!••

Figure 2.8: A configuration of two consecutive switches 
at stage k and the corresponding switches at 
stage 2k-l.
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As an example, one possible choices of m for N=16 is shown 
in Table 2.3.

m( 0000])=[0000 = 0
m( 0001])=[0001 = 1
m( 0010])=[1010 =10
m( 0011])=[1011 =11
m( 0100])=[0100 = 4
m( 0101])=[0101 = 5
m( 0110])=[1110 =14
m( 0111])=[1111 =15
m( 1000])=[0010 = 2
m( 1001])=[0011 = 3
m( 1010])=[1000 = 8
m( 1011])=[1001 = 9
m( 1100])=[0110 = 6
m( 1101])=[0111 = 7
m( 1110])=[1100 =12
m( nil])= [ 1 1 0 1 =13

Table 3.2: One possible choice of partitioning for N=16.

Clearly, the criterion of theorem 2.5 holds good for 
partitioning one pass of an Omega network for the special

w%=4, and m is a bijection from P to L ascase where v=2^~^'
above.

2.4 CONCLUSION
While the open problem whether the cascade of 2k shuf­

fle-exchange stages is universal is not yet settled, theorem
2.1 implies that the universality of this cascade must be 
settled outside of the framework of the Benes network. Curi­
ously enough it has been verified by exhaustive enumeration 
that for k=3, a cascade of five shuffle-exchange stages in­
deed realizes the set of all permutations over eight ob­
jects. Benes[B5] recently gave a set of sufficient condi­
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tions in the form of a new factorization of the symmetric 
groups of composite degree. Even this new criterion for re- 
arrangeability is too sufficient a condition that is not of­
ten satisfied by many rearrangeable networks. For example, 
it can be easily verified that a cascade of five shuffle-ex­
change stages is universal, yet it does not satisfy the new 
set of Benes conditions [B5]. Another example of a rear­
rangeable network that does not satisfy the condition in 
[B5] is the 4x4 Benes network corresponding to the graph in 
Figure 2.3(a). All these results indicate that the resolu­
tion of the above open problem must await the development of 
newer techniques for proving universality of interconnection 
networks.
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Chapter III
COMPUTING THE NUMBER OP PERMUTATIONS REALIZED BY 

SW-BANYAN NETWORKS

3.1 INTRODUCTION;
Coke and Lipovski[Gl] introduced a fundamental class of 

networks, in the context of multi-processor systems, called 
the Banyan network. A Banyan network is defined a by cer­
tain kind of directed graph G. A vertex of G is called a 
base of G if and only if there are no arcs incident into it 
in G and is called an apex of G if and only if there are no 
arcs incident out of it. The useful property of a Banyan 
network is that there is one and only one path from any base 
to any apex (unique path network). The Banyan class con­
tains a very rich and useful subclass of networks called L- 
stage Banyan networks[G1,D1]. A variety of special cases of 
L-stage Banyan networks have received considerable atten­
tions in the design and in the literature. Large Banyan 
networks can be synthesized from smaller ones. This is il­
lustrated in Figure 3.1(a). The interconnections of these 
Banyans can be represented by a graph such as in Figure 
3.1(b). A cross-bar is a trivial Banyan network. L-stage 
Banyans are synthesized recursively from cross-bar switches 
as in Figure 3.1(b). An example of a non-L-level Banyan is



L=0

L=l

L=2

L=3

apex(output)
0 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15

Vi

10 11 12 13 14 15

base(Input)
Figure 3.1(a): An example of L-Ievel banyan,

where F=(2,2,4) and S={4,2,2).



0 1 2 3
output

6 7 6 9 10 11 Uu u u

nTT
0 1  2 3  4 5 6 7  8 9  10 11input

Figure 3.1(b): The corresponding network of Figure 3.1(a).

m00

14 15
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given in Figure 3.2. One of the most notable subclasses of 
an L-stage Banyan network is an SW-Banyan [G2] and Delta Net­
work [D2,K4,P2] .

The well known networks such as Omega networks[L3], In­
direct Binary n-cube networks[P4] and Base-line networks[W2] 
are all special cases of Delta networks. The characteristic 
property of a Delta network is that it permits simple decen­
tralized routing based on "destination" tags.

The primary emphasis of this chapter is to compute the 
number of permutations realizeable by a class of SW-Banyan 
networks. It is shown that the method due to Bhuyan and 
Agrawal [B7] is incorrect and a new method is suggested. 
This method gives rise to an interesting class of enumera­
tion problems. Our notations follow those given in De- 
Groot[D1,K2].

3.2 PROPERTIES OF BANYAN NETWORKS;
An L-level Banyan is a Banyan graph in which the path 

between each base to apex( or apex to base) has length L. 
Therefore, in an L-level Banyan, there are L+1 level of 
nodes and L-level of edges. The apex is considered to be at 
level 0 and the base is at level L.

SW-Banyan is the proper subset of L-level Banyan net­
works. A Banyan is an SW-Banyan if and only if for any two 
bases b^ and b 2  (or any apexes a^ and 8 2 ), their level-x 
reachability sets are disjoint or identical, where the lev-
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apex(output) 
0 1

654320 1
base(input)

Figure 3.2(a): An excimple of non-L-level banyan.

output 
0 1

input« i.  ̂ .
Figure 3.2(b): The corresponding network of 

Figure 3.2(a).
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el-x reachability set for any base b is defined as the set 
of all nodes at level x (0 ^ x ^  L) that can be reached by 
directed paths from b.

Graph Representation of Banyan Networks:

Definition 3.1:
A base of a Banyan graph is any vertex with in-degree 

zero and an apex is any vertex with out-degree zero. All 
other vertices are called intermediate vertices, where the 
direction is taken from base to apex. In our treatment, base 
is taken to be the input and apex is taken to be the output.

Definition 3.2:
In a Banyan network, the spread of a vertex is the out- 

degree of a node and the fanout of a vertex is the in-degree 
of a node (the direction is from base to apex).

Definition 3.3:
If all vertices within the same level of a Banyan net­

work have identical spread and fanout values then the Banyan 
is called uniform Figure 3.3, otherwise it is called non-u­
niform, Figure 3.4.

In a uniform Banyan network, the fanout values and the 
spread values may be characterized by L component vectors 
F=(fQ,fj^, ... anid S=(S2 ,S2 f ... ,s^) as fanout vector



apex(output)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L=0

L= 1

L= 2

I»=3
12 13 14 158 9 10 114 5 4 71 2 30

•JN)

base(input)
Figure 3.3(a): An example of Uniform banyan,

where F=(2,2,4) and S=(2,2,4).



output
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 148 104 620 input

w

Figure 3.3(b): The corresponding network of Figure 3.3(a)



1=0

1=1

1=2

74

apex(output)
0 1 2 3

s40 2 31 base(input)

Figure 3.4(a): An example of non- Dniform banyaui-

0 1 output 2 3

0 1 2  3 input 4 5

Figure 3.4(b): The corresponding network 
of Figure 3.4(a).
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and spread vector, respectively, where s^ and f^ denote the 
spread and the fanout of a node at level i. Note that s^x 
f^ _ 2  is the size of the switches at level i, for 1  ^  i < L. 
Clearly, fj^=SQ=0.

Definition 3.4:
If s^^2 =f^ for 1 ^  i < L-1, that is S=F then the Banyan 

network is called rectangular. Figure 3.5. If for
some 0 ^  i < L-1, then it is called non-rectangular. Figure 
3.6.

Definition 3.5:
If every component of S is equal to some constant s and 

every component of F is equal to some constant f then the 
Banyan is called regular. Figure 3.7, otherwise it is irreg­
ular, Figure 3.8.

If s=f this implies that F=S and the Banyan network is 
both regular and rectangular which is called strongly rec­
tangular. Figure 3.9 and Figure 3.10 show strongly and
weakly rectangular Banyan networks, respectively.

Recently DeGroot[Dl] introduced an interesting class of 
expanding and contracting SW-Banyan networks. Given a non­
prime integer N, a variety of SW-Banyan networks can be 
built by considering different sets of factors of N. It is 
shown through examples[Dl] that an expanding and contracting 
SW-Banyan has less path blockage, i.e. when one base is con­
nected to one apex by a directed communication path, no oth-
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L=0

L* 1

L= 2

L=3

apex(output)

base(input)
Figure 3.5(a): An example of Rectangular banyan 

where F=(2,4,2) and S=(2,4,2).

0 1

0 1

2 3

2 3

4 5
output 

6 7 8 9 10 11 12 13 14 15
u u

r  n - r  T
4 S 10 11 12 13 14 156 7. 8 »input

Figure 3.5 (b): The corresponding network of Figure 
3.5(a) .



Ij=0

L= 1

L=2

L«3
0 1 2 3

apex(output)
10 11 12 13 14 15

4 5 6 7 8 9
base(input)

10 11 12 13 14 15

Figure 3.6(a): An example of non-RectanguIar banyan,where F=(2,2,4) and S=(2,4,2).



0 1
output

nnnnnnnn 00

n
10 II 1 2 13 14 ISInput

Figure 3.6(b): The corresponding network of Figure 3.6(a).
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L=0

L=1

L=2

apex (output)

base(input)
Figure 3.7(a): An example of Regular banyan, 

where F=(4,4) and S=(4,4).
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0 2
output

4 6 8 10 12 14

0 2 4 6 B 10
input

12 14

Figure 3.7(b): The corresponding network of 
Figure 3.7(a).



L=0 0 1 2  3 4

t=l

L= 2

L=J

apex(output)
5 6 7 8 9 10 It 12 13 14 15

base (Input)

00

Figure 3.8(a): An example of Irregular banyanwhere F=(2,4,2) and S=(2,2,4).



output
0 1  2 3  4 5  6 7  B 9 10 U

4 6 input 8 10

12 13 14 15U

rm
12 14

00
N)

Figure 3.8(b): The corresponding network of
Figure 3.8(a).



L=0

L= 1

L=2

L=3

0 1 2 3 4 5
apex(output)
6 7 0 9 10 11 12 13 14 15

2 31 5 7 06 10 110 9 12 13 14 15
base(input)

Figure 3.9(a): An example of Strongly Rectangular
banyan where F=(4,2,2) and S=(4,2,2).

00



0 1 8 9 lü 11 12 11 14 lb
Input

Figure 3.9(b); The corresponding netwok of Figure 3.9(a)

00



L»0

L=l

L=2

apex(output)
8 9 10 li 12 13 14 15

b 7 8

base(Input)
10 11 12 11 14 15

Figure 3.10(a): An example of Weakly Rectangular banyan,
where F=(2,8) and S=(2,8).

oocn



0 1 2 3 4 5
output

6 7 8 9 10 11 12 13 14 15

00ON

Input 10 12 14

Figure 3.10(b): The corresponding network of
Figure 3.10(a).
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er new base-apex connection can be made if the the new con­
nection requires a link in use by the first connection. The 
second connection is blocked by the first one. As a result 
less path blockage could imply more permutations to be real­
ized by the network.

In this chapter, the concept of an L-stage block-struc­
tured network and the relation between this class and SW- 
Banyan network will be studied. Computing the number of per­
mutations realized by an L-stage block-structured network is 
not trivial and often gives rise to an interesting class of 
enumeration problems. It will be shown that the method due 
to Bhir^an and Agrawal[B7] for computing the number of permu­
tations realized is incorrect. A new method for computing 
the combinatorial power of these networks is introduced. We 
illustrate this method using a number of examples. Finally, 
the trade off between path blockages and combinatorial power 
of a network will be discussed.

3.3 SW-BANYAN AND BLOCK-STRDCTDRED NETWORKS:
Let A be the set of apexes (output terminals) and B be 

the set of bases (input terminals). Given b C B  and a CA, de­
fine R^(a) to be a set of all nodes at level x (0 ^ x le L) 
which are reachable from apex a, and R^(b) to be a set of 
all nodes at level x (0 ^ x le L) which are reachable from 
base b. Clearly,

Rj^(a)=B, the set of input terminals (bases) .
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RQ(b)=A, the set of output terminals(apexes). 
Kl.(b)={b}

Definition 3.6:
An L-stage uniform Banyan is called an SW-Banyan if and 

only if either one or both of the following conditions is 
true.

1 ) or ( a A  R^(aj)5 ^ 0

2 ) %x(bi)=Rx(bj) or R^(b^) A  Ry(bj):f= 0

for all a  ̂ a j G Ay b y bj SB and 0 ^  x ^ L.
If an L-stage uniform Banyan network satisfies either 

1) or 2) but not both, then it is called a one-way SW-Ban­
yan network. If 1) is true then it is called an input SW- 
Banyan and if 2) is true then it is called an output SW- 
Banyan. If both 1) and 2) are true, then it is called a 
Two-way SW-Banyan.

From the definition of the L-stage Uniform NxM Banyan 
networks it follows[Dl] that

L L—1
N =  n  S .  M = n  f

i=l ^ i= 0

Given this factorization for N and M, an L-stage input 
block-structured network is defined recursively as follows: 
The input stage (stage L) is made of N/s^ cross-bar switch-
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es, each of size s^ % ^l-1 * This stage is followed by 
number of (L-1) stage input block-structured networks called 
blocks for simplicity. Each of these blocks at its input 
stage contains ^/®l®L- 1  cross-bar switches of size 
Sj^_j^xf• The recursion stops at stage I. Refer to Figure 
3.11. An output block-structured network is likewise de­
fined, Figure 3.12.

The output terminal of switches in stage i are connect­
ed to the input terminals of blocks in stage i+1. An impor­
tant consequence of blocking is that the interconnections 
between stages are confined to switches within a given 
block. In other words, there are no inter-block connections.

We now define a general class of interconnection 
schemes, also called a link permutation, between stages. The 
link permutation between input stage L and the set of all fĵ  
number of blocks ( each of which is an (L-1) input block- 
structured network) is said to be distributive if and only 
if each of the output terminals of a switch in stage L
is connected to one of the f^ blocks. Within each block the 
interconnections are likwise defined.

Similarly, one can readily define output block-struc­
tured networks. An immediate consequence of the above defi­
nition is the following:

Theorem 3.1:
The interconnection graph of an NxN L-stage in­

put (output) block-structured network with a distributive 
link permutation is an output (input) SW-Banyan network.
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OOTPOT

Figure 3.11(a): An example of Input block-structured
banyan, where F=(2,2,2) and S=(2,2,2)
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5

B L O C K  1

B L O C K  2
5
6

Figure 3.11(b) The corresponding network of 
Figure 3.11(a).
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IMPOT

Figure 3.12(a): An example of Output block-structured
banycUi, where F=(2,2,2) euid S=(2,2,2).
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2
3

4
5

4
5

Figure 3.12(b): The corresponding netwok of
Figure 3.12(a).
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We now define a special class of distributive link per­
mutations as follows.

Condition Ç;

The i^^ output terminal of every switch stage 1 is connected 
to the i*-̂  block and likewise within each block. Combining 
the above condition C and the definition given in [D3] imme­
diately leads to the following:

Theorem 3.2:
The NxN input or output block-structured network with 

the link permutation satisfying the condition C is in fact a 
Delta network. Further, if the network is both input and 
output block-structured then condition C implies that it is 
a network. Figure 3.13.

Thus, every input (output) block-structured network ad­
mits a destination tag based routing algorithm. Refer to 
Figure 3.14 for an illustration. Thus given the factors of 
N the concept of block-structured networks with distributive 
link permutations provides a ready means for synthesising 
SW-Banyan networks.
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INPOT 4 OUTPUT

Figure 3.13(a): An example of Two way block-structured 
banyan, where F=(3,3) and S=(3,3).

0
1
2

— 7

3
4
5

6
7
8

Figure 3.13(b): The corresponding network of
Figure 3.13(a).
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Figure 3.14(a): An example of non-regular,non-
recteuagular block-stxucture banyan 
where F=(2,2,4) and S=(4,2,2).
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2 (0010]

[1000] 8

10
11

10
11

12
13

12
13

14
15

14
15

Figure 3.14(b): The corresponding network of
Figure 3.14(a)
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3.4 COMPUTING THE NOMBER OF PERMUTATIONS REALIZED 
BY A CLASS OP SW-BAMYAN NETWORK;

Consider a non-prime integer N 2  2. Let 
N=nj X n2  X ... x n^ 

be a factorization of N, where all factors are not necessar­
ily distinct. Let npfn^yn^, ... ,nĵ ) be a vector of L fac­
tors. Let F=(fQ,f^, ... rf|̂ _2 ) and S^^s^yS^, ... »Sĵ ) be two 
not necessarily distinct permutations of the components of 
n. Given S and F, consider an L-stage SW-Banyan network 
where the i^^ stage is made up of complete cross-bar switch­
es of size s^x fi_ 2  [Gl/Dl]. Clearly, the number of switches 
in stage 1  is N/s^ and in stage i is given by Ns^S2

^2 fi for 1 ^  i < L. Let r be the number of dis­
tinct permutations of the L factors of N, then there are r^ 
such networks. By exhausting the set of all factors of N, a 
class of all SW-Banyan networks with N inputs and N outputs 
can be obtained.
Example; If 1^2x2x4 then there are three distinct permuta­

tions, (2,2,4), (4,2,2) and (2,4,2) and hence there are nine 
networks. For N=16 there are 16 different SW-Banyan net­
works including the 16x16 cross-bar switch which are illus­
trated in Table 3.1 This class of networks includes all the 
well known Delta networks such as Omega networks, indirect 
binary networks as well as the class of expanding and con­
tracting SW-Banyan networks [Dl,K4].
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TABLE 3.1
PROPERTIES OF SW-BANYAN NETWORKS WITH N=16.

I In—
1 stances f s

Number of 1Path 
Switching fBlock- 
Elements jage

a(N), Number I 
of Permuta- j 
tion Realized I

1 1 (16) (16) 256 1
1 0 

. _ ! _ _  __
161 1

I 2 (4,4) (4,4) 128
I --
1 9 

___1 ____ __ i

1 3 (2,8) (2,8) 160
—  1-------

1
1 7 
1__ 1_____

(81)fx I
(24)3= 1
2^^x992,25 1

1 4 (2,8) (8,2) 256
— — 1 —  —  

1
1 1 
1__ 1_____

2l6x 1
f(8,{0,1},2), 1 

=187530840 I

1 5 (8,2) (8,2) 160
— — 1 —  —  

1
I 7 
1__1_____

(81)2% 1 
(24)3= 1
2/^x992,25 1

1 6 (8,2) (2,8) 64 I 49 
__1____ __ 0 1

! 7 (2,4,2) (4,2,2) 160
—  1------

I
I 9 
I— — I __

224xf2 i
f(4,{0,1},2), 1 

= 90 I
I 8 (2,4,2) (2,4,2) 128 I 13 

11_____ _
i

1 9 (2,4,2) (2,2,4) 96 1 25 __1_____ 0 1

1 10 (2,2,4) (2,4,2) 160
—  1 —  —  

1
1 9 
1

2f4xf2 1
f(4,{0,l},2), I 

= 90 I
1 11 (2,2,4) (4,2,2) 192

I
! 5 
1

2^®x 1 
f (4,{0,1,2},4)1

I 12 (2,2,4) (2,2,4) 128 1 13 __1_____ 22^x3* 1
I 13 (4,2,2) (2,2,4) 80 I 33 0 1
1 14 (4,2,2) (2,4,2) 96 1 25 __1______ 0 I
I 15 (4,2,2) (4,2,2) 128 I 13 22^x3* i
1 16 (2,2,2,2) (2,2,2,2) 128 I 17 232 1
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If F-S that is S j ^ = f for 1 ^  i ^ L, then each stage 
is made of square cross-bar switches. If S F, that is 
there exists j, 1  < j ^  L such that s^ =jt= f^, then there is 
at least one stage made of rectangular cross-bar switches. 
For example, consider S=(2,2,4) and F=(2,4,2), then stage 
one is made of 2 x 2  switches and the second and third stages 
are made of switches of size 2x4 and 4x2, respectively. Re­
fer to Figure 3.15. If S = ^ F ,  the network is called an Ex­
panding-contracting SW-Banyan network[Dl].

The path properties of Expanding-contracting networks 
have been analyzed by DeGroot [Dl]. A parameter called the 
blockage is introduced which is defined as the number of 
paths in the network that are blocked when an input/output 
pair of terminals is connected. For any x, 0 < x < L, de­
fine a(x), the number of apexes reachable by a node at level 
X and b(x), the number of bases reachable by a node at level 
X  . Then bl(x), the number of blocked paths that pass 
through the busy node at level x is simply 
(a(x)-a(x-l)) (b(x)-l), for 1 ^  x ^  L-1. Through several ex­
amples, [Dl] it is shown that for a given factorization, the 
Expanding-contracting SW-Banyan networks have less blockage 
compared to the rectangular Banyan networks with the same 
number of inputs and outputs. Table 1 illustrates the block­
age for the set of all 16x16 SW-Banyan networks using De­
Groot *s formula. While there is a reason to believe that 
networks with less blockage may realize more number of per-
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Figure 3.15(a): An example of Expanding and Contracting
banyan, where F=(2,2,4) and S=(2,4,2).



1 0 2

BLOCK A  -•

BLOCK B

Figure 3.15(b): The corresponding network ofFigure 3.15(a).
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mutations, computing the latter quantity for the Expanding- 
contracting SW-Banyan networks is by no means trivial and in 
fact it is equivalent to a class of enumeration problems 
which are of independent interest. Two different cases will 
be analyzed, one for S = P and the other for S F.

Case A: If F = S, then all the switches of each stage
have the same size, i.e. (S2 %f^_^), 1 < i < L, where L is 
the number of stages of the network. Each switch is capable 
of realizing s^i. Then the number of permutations a(N) re­
alized by an NxN SW-Banyan network is given by:

L
a(N) = n  (s. I)® 

i=l 1

where m^ is the number of switches in stage i. The instances
1,2,3,5,8,12,15 and 16 in Table 1 correspond to this case.

Case B: If F ^  S, then it is not always necessary
that a(N) > 0. For example if F=(8,2) and S=(2,8), then 
stage 1  is made of two copies of 2 x 8  switches and stage 2  

contains two copies of 8x2 switches. Figure 3.16 illus­
trates the network. Since the output of stage one contains 
only 4 output ports, 12 of the 16 inputs are blocked by 
stage 1 and hence a(N)=0. Consequently, the following theo­
rem is immediate.

Theorem 3.3:
Let the stage of an L-stage NxN SW-Banyan network

is made of cross-bar switches of size SjXfj_2 » 1 ^  j ^  L.
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L= 0

L= 1

L=2

apex(output)

1 2 6 7 8 9 10 11 12 13 14 15

base(input)
Figure 3.16(a): An example of SW-banyan which hasa (N)=0, where S = (8,2) and F=(2,8)



105

output

20 4 6 8 10 12 14input
Figure 3.16(b): The corresponding network of

Figure 3.16(a).
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Then a necessary and sufficient condition for a (N) > 0  is 
that nyxSj > H, where nij is the number of switches in stage
j.

The above condition is equivalent to the following 
statement:

It is easy to see that a(N) =0 for instances 6,9,13 
and 14. The remaining four instances namely 4,7,10 and 11 
satisfy the condition of the above theorem. The computation 
of a(N) for later instances of the SW-Banyan network gives 
rise to an interesting class of enumeration problems. We il­
lustrate using one example of the instance 1 0 , where 
F=(2,2,4) and S=(2,4,2). This network is given in Figure 
3.15. Refering to Figure 3.15, consider the first block 
which consists of switches to A^ and to B^. The struc­
ture of the network induces the following natural con­
straints. Each of the switches A^(i < i ^  4) has four output 
ports, since there are only two input ports to A^, only two 
out of four output ports can actually carry the two inputs. 
Likewise, each switch Bj(l ^ j ^  4) through the link permu­
tation can receive only four inputs, since it has only two 
output links. To avoid the blockage within the switches Bj( 
l ^ j < 4 ) ,  it is required that Bj receives exactly two in­
puts from any two of the four input ports. A similar re­
quirement holds for the switches in the second block. In
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Other words, each switch in stage 2 and 3 receives exactly 
two inputs and acts as though if were a 2x2 switch. Thus, 
within the first block, the number of permutations realized 
by the network crucially depends on the number of ways in 
which each of the switches sends its two outputs to the 
switches Bj under the constraint that each Bj can receive 
exactly two inputs. This number, as it can be seen, is the 
same as the number of distinct 4x4 matrices where the ele­
ments of the matrices belong to the set {0 ,1 } and the sum of 
each row and the sum of each column is equal to 2 .
The following matrix corresponds to the first(second) block.

'4
B,

B.
Bn

1
0
1
0

0
1
1
0

0

0
0

1

0
1
0

where the i^^ row corresponds to the i^^ switch (B^) and the 
column corresponds to the switch (B^). The (i,j)^^ 

element is 1  if and only if Bj receives an input from A^.
Let f(a,A,b) be the number of distinct matrices whose 

elements belong to the set A and every row and column sum is 
b. For the above matrix, this number is f(4,{0,1},2). It
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can be easily seen that this number is 90. Notice that the 
first block and the second block of Figure 3.15 can be con­
trolled independently. With this constraint, each of the 
4x2 and 2x4 switches acts as a 2x2 switch only. Thus each of 
the switches at stage 1, 2, and 3 realizes two permutations, 
there are 24 switches involved in the network, therefore the 
number of permutations realized by the network is;

a(N)= 224f2(4,{0,l},2) .

Referring to Table 3.1, the networks corresponding to the 
instance 4 and 13 give rise to the computation of 
f (8 ,{0,1},2) and f{4,{0,1},4), respectively. These latter 
enumeration problems are of intrinsic interest.

Table 3.1 illustrates a(N), path blockagelDl] and the 
cost of each network. The cost of a network is measured in 
terms of the total number of switching elements and is com­
puted as:

C— Z m*f 'S^« 
i=l ^ ^ ^

It follows that the less blockage means the more combinato­
rial power measured in terms of the number of permutations 
realized. Further, among the networks with the same 
cost(instances 2,8,12,15,and 16) instance 2 has a minimum 
number of blockage and a maximum value of a(N) and instance 
16 has a maximum number of blockage and a minimum value for 
a(N). Another fact that emerges from this analysis is that
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among the networks with the same cost, those with the larger 
switches have less blockage and a larger value for a(N) . 
Another immediate consequence of our analysis is that the 
formula for the number of permutations given in Theorem 3 of 
[B7] is incorrect, as the following example illustrates. 
Example:

Consider the network of block A of Figure 3.15, it con­
sists of two stages of 2x4 and 4x2 switches, respectively. 
Bhuyan and Agrawal [B7] showed that the number of permuta­
tion realized by a generalized interconnection network can 
be obtained by,

r k^ p= n S.  ̂
i=l ^

where k^ is the number of switches at the i^^ satge and

S^= I m^I for m^ < n^

S^= I n^! for m^ > n^

where is the number of permutations achieveable by an m̂  ̂

X n^ cross-bar switch at 
of stages of the network.
X n^ cross-bar switch at the i^^ stage and r is the number

For the network of block A of Figure 3.15, m2 =2 , n^=4, 
n2 —2 , r— 2  and k^—4, for i~l, 2  then



C)

1 1 0

4'
■ 2 ! =12 

2  ■

=2 = 2 ! = 1 2

10 Ic •
P= n s. i (12)4(12)4=128 

i=l ^

The number of permutations realizeable by block A of Figure
3.15 is computed by the new method and it is 90.

3.5 CONCLDSIONî
This chapter introduced the concept of block-structured 

networks where the link permutations satisfy a "distribu­
tive" condition. The intimate relation between block-struc­
tured networks and other well known classes of networks are 
shown. The main result of this chapter consists in computing 
the number of permutations realized by the SW-Banyan net­
works. It is shown that the known method for computing this 
number is incorrect and the correct method is given. This 
method gives rise to an interesting class of enumeration 
problems. Finally, combinatorial power, cost and path block­
age are discussed.
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Chapter IV
ON THE COMPLEXITY OF VERIFICATION OF 

REARRANGEABLE NETWORKS

The group methodology and combinatorics have been used 
to prove the rearrangeability of three stage Clos[Cl] net­
works. Clos in 1953 [Cl], for the first time, in a funda­
mental paper exhibited a three stage switching network which 
is non-blocking. Later, Benes in a series of papers analyzed 
a rich class of rearrangeable switching net­
works [B1,B2,B3,B4] . The concepts and calculations from 
group theory have been used to determine the rearrangeabili­
ty of a switching network made of stages of square switch- 
es[B3,B5,01]. It has been shown by using the Slepian-Du- 
guid[S5] rearrangeability theorem that a cascade of two NxN 
networks, alternatively connected between three stages of 
switches, is rearrangeable if it satisfies a set of group 
theoretic conditions. The group methodology and mathematical 
notations are given in section one. In section two the above 
criterion will be analyzed. This new condition for rear­
rangeability is too sufficient and is not often satisfied by 
many rearrangeable networks. The complexity of the verifica­
tion of rearrangeable networks based on the above condition 
will be analyzed in section three. Section four provides a 
counter example to the recent claim due to Afshar[Al] that a
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feed-back free network that realizes one-to-one and onto 
mapping of any two input to any output terminals is rear­
rangeable.

4.1 GROUP THEORY APPLICATIONS;
In this section, the concepts of permutation groups, 

symmetric groups, composition of groups and switching permu­
tations will be discussed[Hl,H3,H4].

4.1.1 Permutation Groups;
Definition; A group G is called a Permutation Group if 

G is a subgroup of the group of all permutations on a fixed 
set N.

Definition; The group of permutations on the set 
{1 ,2 , ... ,n} is called the symmetric group on n objects.

Let G and H be sets of group elements , the G.H is the 
set of products g.h such that g G and h H. The operation (.) 
is the composite operation on symmetric groups.

Conventions; It is convenient to use the notation 
P=(P(1) P{2) ... p(N)) as a permutation function, where

/ I  2 3 ... N \
\P(1) P(2) P(3) ... P(N)/

Also, it is convenient to use exponent operation for the di­
rect product of a group with itself some number of times.
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Thus, if G is a group then is the k-fold direct product 
of G with itself.
Example;

(321) eSj and (213) SSg, then (321). (213) = (231) GSg.

4.2 CLASSICAL THEOREM (HALL'S THEOREM);
There exists a system of representatives for a family of 
sets S^ S2  Sjjj if and only if the union of any k of these 
sets contains at least k-elements, 1 < k< m.

Consider a column of r nxn switches as shown in Figure 
4.1. This network realizes the subgroup that permutes the 
first n ports among themselves, the second n ports among 
themselves, etc. up to the last n ports among themselves. 
Such a subgroup is called imprimitive subgroup. This sub­
group is isomorphic to the r-fold direct product of S^ with
itself and is denoted as(S^,

4.2.1 Switch Permutation;
Let N=nr, ( r=f=l) define the switch permutation function 

as follows;
SW; {1,2, ... ,nr} {1, ... ,r},

where each switch is of size nxn, and there are r switches 
involved, i.e.

SW^=k,
where nk-n+l< i^ nk and 1 ^ k< r.
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nxn

nxn

Figure 4.1: A  configuration of direct product 
group interpretation of one stage 
of square switches.
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4.2.2 Hall's Decomposition;
Let n be a permutation in A Hall's decomposition

[B6 ] of n is a partition

n
n =  Ü p_ 

s=l ®
of n into n submaps p^ such that for s=l,2 , ... ,n, the set

gg={(SM\fSWj):(i,j) Pg}

is an r-permutation. i.e. es^.
Using Hall's theorem on distinct representatives of 

subsets implies that every p e has Hall's decomposi­
tions [B6 ] .

Let U be a network. The switch permutations generated 
by the network is defined to be the set D(U) such that an 
element <q^,q2  ... q^> e(S^)^ belongs to D(U) if and only if 
there exists aep(U) with Hall's decompositionr where P(U) 
is the set of all permutations realizable by the network U. 
Benes[B13] stated the following theorem.

Theorem:
If U and V are networks with nr inputs and nr outputs 

such that
(Sp^CD(U).D(V) (4.1)

then the network obtained by cascading U and V alternately 
between three stages of r (nxn)-switches# is rearrangeable# 
as shown in Figure 4.2.



a\

Figure 4.2: A configuration of cascading networks U and V alternately between three stages of nxn switches,
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The above verification theorem involves (i) the compu­
tation of the set of all permutations realizable by the net­
works D and V: (ii) the set of all switch permutations (D(ü) 
and D(V)) induced by P(D) and P(V) , respectively; (iii) the 
computation of n-fold products of and testing of the in­
clusion given in (4.1). The analysis and the complexity of 
such a verification are given in the next section.

4.3 VERIFICATION COMPLEXITY
For simplicity, let the sub-networks U and V be identical 
and made of switches of size (2 x 2 ) , euid each stage consists 
of r=N/2 such switches. The number of stages, k, in D and V 
are taken to be less than logN. The overall network ob­
tained by cascading the networks D and V alternately between 
three stages of r=N/2 (2x2) switches has the configuration 
of Figure 4.3.

The first step in the verification of the Hall's theo­
rem consists in computing D(U) and D(V) , the set of all
switch permutations realizable by D and V, respectively. 
D(D) and D(V) are induced by P(D) and P(V) , which are the 
set of all permutations realized by D and V, respectively.
The computations require setting of all the switches of D
and V in all possible ways. The number of such settings is 
exponential in number of switches involved in D and V.
Thus, if the network Ü and V each have kN/2 switches, then



00

Figure 4.3i A configuration of five stages shuffle-exchange network, ü and 
V are one column of 2x2 switches preceded and followed by 
shuffle permutation.
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P(D) and P(V) each have 2^^^^ permutations. Thus, finding 
D(D) and D(V) is exponentially complex. Given a permuta­
tion, it has at least one Hall's decomposition. Marshal Hall 
has given an algorithm [H2] to compute one Hall's decompo- 
siton. It involves a matching problem and it is not practi­
cal for large values of N. It also gives only one set of 
distinct representatives while the above verification theo­
rem needs all possible Hall's decompositions.

The second phase of the problem is computing D(U).D(V). 
The elements of the sets D(D) and D(V) have the form

" ^ ^ 1 92
where is a switch permutation of size r (N/2 in this 

case).
Let |D(D)| = ID(V) |=m, then computing the product of D(D) 

and D(V) is proportional to (r!)^.
The third phase is testing whether (S^)® Ç  D(D).D(V) 

or not. Clearly, IS^I=rI, each element of the set (S^)^ is 
a vector of n components and each component is an r-permuta­
tion. Computationally, it is not practical for large N to 
verify whether (4.1) holds or not.

In spite of the computational complexity of (4.1) , this 
new criterion for rearrangeability is too sufficient, that 
is, this condition is not satisfied by many rearrangeable 
networks. For example, it can be easily verified that a cas­
cade of five stages of shuffle-exchange stages is universal 
yet it does not satisfy the new set of Benes conditions, Ap-
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pendix B. Another example of a rearrangeable network that 
does not satisfy (4.1) is the 4x4 Benes network, appendix A.

4.4 ROUTING ALGORITHM
Let n G be a permutation, it has Ball's decomposi­

tion

inducing switch permutation SgEfS^). Thus, for each s=l,2, 
... ,n, there exist a^ and bg in such that gg=bgag with
agCD(D) and bgGD (V) . For case n=2,

(::) -c:) (')
Given and gg, S2'^l ^2 to be computed as.
( 1  2  ... r %
'qi(i) qi(2 ) ... gi(r)'

/ I  2  ... r \ / I 2  ... r \
b^(l) bi(2 ) ... b^Cr) / \ai(l) 3^(2) ... ajCr)/

and

, 1  2  ... r X
\g2 (l) q2 (2 ) ... q2 (r)'

1  2  ... r  ̂ 1  2  ... r ^

bgtl) b2 (2 ) ... bgtr) ^agd) 32(2) ... 3 3 (1 )
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Since for each (i/j)cPgr SW^ and SWj are connected to the 
same middle stage switch[B3], we have

then

and

SWj=bg[ag(SW\)]

ag(SHi)=b-lg{SWj)

, 1  2  ... r \
'q^d) qi(2 ) ... qi(r)/

^^(l) 3j {2) ... aj(r)
q^tl) qi(2 ) ... qj{

or

r)\ / I  2  ... r \
r) * Xa^fl) 3 ]_(2 ) ... a^tr)*

( 1 2  ... r ,

^ 2 (1 ) q2 (2 ) ... q 2 (r)/

/ (1 ) a2  (2 ) ... a^fr) \ / I 2  ... r \
q2 (1) ^2 d) ... q2 (r) / 'a2 ( 1 ) &2 (2) ... 2̂ d)

such that

/ (1 ) @ 2 (2 ) ... a^Cr)^ &2 (2 ) •••
'qi(l) qi(2 ) ... qi(r)/ \q2 (l) q2 (2 ) ... ^2^̂ ^
are induced by a permutation a S D(V) and

/ I  2  ... r % / I  2  ... r \I land I I
(1 ) a 2 (2 ) ... a^Cr)/ a2 (l) 32^) ... a^tr)
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are induced by a permutation (îeD(ü). Consider the example
of Benes[B3] in Figure 4.6 and consider the permutation,

/I 2 3 4 5 6 \n= ( )
V 5 2 3 6  1 4 /

to be realized, n induces the switch permutation,

(:;)■(: : :i<32

which can be decomposed as

3 1 2 \ ( 1 3 2\
1 3j ^3 2 ij

Given bg or Sg, there is more than one way of setting the 
switches. For example, each of the following permutations 
induces such switch permutations

^s

6 3 1 5 4 2  1 5 6 4 3 2
6 3 2 5 4 1  1 5 6 3 4 2
6 4 1 5 3 2  1 6 5 3 4 2
5 3 1 6 4 2  1 6 5 4 3 2
5 3 2 6 4 1  2 5 6 3 4 1

We need to setup the switches of D or V in such a way that 
realizes one of the above permutations.



123

4.5 UNIVERSALITY OF FEED-BACK FREE NETWORKS;
Consider an NxN (N inputs and N outputs) permutation 

network made of 2 x 2  switches arranged in k stages (k>0 ) with 
N/2 switches in each stage. Let refer to the switch 
at the i^^ stage where j=l,2, ... ,N/2 and i=l,2, ... ,k. To 
simplify the notation we use the symbol to refer to both 
a switch as well as the "state" of the switch. Thus, S^j 
corresponds to the direct connection (on-state) and S^j re­
fers to the crossed connection (off-state) as shown in Fig­
ure 4.5.

The number of stages clearly depends on the nature of 
the network. For Benes network [B4] k=2LogN -1 and for a 
wide variety of networks including Omega networks. Base-line 
networks. Indirect-binary n-cube networks etc.[L3,P4,W4], 
k=logN.

Let %2 ,X2  ••• Xjj and yi»y2  ••• Yn denote the N input 
and N output terminals, respectively. Given an input/output 
pair, say (Xp,yq) , in general there could be more than one 
path from to y^ through the network. Every such path can 
be uniquely represented by the sequence of states of switch­
es. Let path(Xp,Yg) refer to a path from Xp to yg. Then

path(x ,y )=Ti Tjp ... T^p
1 2  K

where T^j e {S^j, S^j} and the input Xp connected to the 
switch S^p and output yg is connected to the switch S%p. For 
example , in Figure 4.7, there are two paths between x^ and 

^ 1 :
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0 _ 
1 —

3 -

— 0
_ 1

— 2

— 3

Figure 4.4: A configuration of 4x4 Benes network, 
D emd V have fixed permutations-

State *1 State zQ

Figure 4.5: A configuration of state of switches.
a) Direct connection (state=l) and
b) Crossed connection (state=0).



Nin

Figure 4.6: Network based on cross-connect field corresponding to 
the permutation (13) (25)(46).
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path(x2 ,yj)= S1 1 S2 1 S3 1  or S2 2 S2 2 S3 1  

But in Figure 4.8, there is only one path between and y^

path(%2 ,y2 ) = S 2 2

An NxN permutation network is said to be feed-back free 
network if there is no path from an input terminal to an 
output terminal that passes through a 2 x2  switch more than 
once. The networks of Figure 4.7 and Figure 4.8 are examples 
of feed-back free network and Figure 4.9 is an example of a 
feed-back networks.

Given an NxN network, if there is a unique path between 
every possible input/output terminal, then the network is 
said to possess the unique path property. These networks 
constitute a class called DP-Networks. The standard Omega 
network, the base-line network, the indirect binary n-cube 
network all belong to the class but the standard Benes net­
work does not [B4]. With a view to relating the path proper­
ties of a given NxN network to the set of all permutations 
realized by the network, Af shar [All used the concept of an 
NxN matrix F called the transmitance matrix of the network. 
Thus, F=[Fqp] where Fgp is the boolean expression in {S^j 

I i=l,2, ... ,k, j=l,2, ... ,N/2} such that on assigning 
S^j=l and S^j= 0  to these latter variables, Fgp evaluates to 
be 1  if and only if there exists a path from the input ter­
minal Xp to the output terminal yg. For the network in Fig­
ure 4.8 it can be seen that
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Figure 4.7: An example of4x4 Benes network.
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—  1

22 —  3

Figure 4.8: Anexample of 4x4 Omega network.
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F =

^11^21 ^11^21 ^12^21 ®12®21

1̂1^21 ^11^21 ®12^21 1̂2®21

^11®22 ^11^22 ®12^22 ^12^22

S1 1 S2 2  S1 1 S2 2  %2^22 S1 2 S2 2

Let

o= (a(l) 0(2) o(N))
be a permutation. In [Al], Afshar proved that many standard 
networks such as indirect binary cube networks, regular Ban­
yan networks with F=S=2, modified data manipulator network, 
flip networks. Omega networks and base line networks all 
satisfy the following:

A permutation a is realizeable by a network if and only if 

^ 0 (i),i * ®‘a(j) ,j (4*2)

for all i and j, 1 <: i,j N, where F is the transmitance 
matrix of the network.

Afshar proved this result for the base line network and 
since all the other networks listed above are topologically 
equivalent to the base line network[W4], the property 4.2 is
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true for all these networks. Afshar then conjectured that 
the property 4.2 is true for all feed-back free networks. 
In the following section, the direct proof for the necessary 
condition of property 4.2 will be given and the sufficiency 
part will be shown to be untrue.

4.6 UNIVERSALITY OF ÜP-NETWORKSî
Theorem 4.1: The permutation a is realizable by a DP-Net­
work if and only if

^a(i) ,i*^a(j) ,j (4'3)
for all i and j, 1^ i,j^ N, where F is the transmitance ma­
trix of the network.
Proof: Clearly, if the permutation a is realizable then 4.3
is true for any feed-back free network. To prove the con­
verse, assume that a is not realizable. Then there exist two 
distinct pairs (*irYa(i)) and (Xj,yg(j)) of input/output 
terminals such that the PATH(x^,yQ^^j ) and the 
PATH(Xj ,y^^ jj ) pass through a common switch, say where
1 < a ^  k and 1 ^  b ^  N/2, with the condition that switch 

is to be "on" for one path and "off" for the other path 
simultaneously. In other words, there is a conflict in set­
ting up the PATH(x^,yQj£j ) and the PATH(Xj ,ygj jj ) . From 
this we obtain(on assigning S^j=l and S^j=0 ) that either 
^a(i) ,i~® ^a(j) ,j”®' in order to resolve the conflict,
one of these paths has to be rerouted. However, rerouting 
is impossible since the network is a member of the UP-Net-
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work class. Thus if g is not realizable, then there exists 
i=5 ŝj such that

^o(i) ,i*Fg(j) ,j=°* 
and the proof is complete.

Now consider the extended Omega network[P4] given in 
Figure 4.10. It can be easily verified that in this network 
there are exactly two distinct paths between every input/ 
output pair terminal. For example:

^12^24^33^41
PATH(x^,y2 )= < or

S1 2 S2 3 S3 1 S4 1

Similarly,

^12^23^31^41 
PATH(x2 ,y^)=  ̂ or

^12®24®33®41
The above two paths can be realized without conflict. The 
entire transmitance matrix for this feed-back free network 
can be easily found. It is easy to verify that any two dis­
tinct input terminals can be connected to any distinct out­
put terminals. In other words, the transmitance matrix F is 
such that there exist a setting of the states of the switch­
es that satisfies the condition

fab'fcd'O- (4-4)
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21

22

11

Figure 4.9: An example of feed-back network.

Sll =41^21 =31

Figure 4.10: An example of extended 8x8 Omega network.
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for all a,bfC and d such that 1< a,b,c,d< N, a=^c and b^d. 
Notice that (4.4) is in fact the condition of the corollary 
to the theorem 1 in [Al]. Yet, unfortunately, the following 
three paths

P A T H f y ^)r 

PATH(%2 f
PATHfXgyyg)

cannot be realized simultaneously by this network. To verify 
this observe that:

!®11®21^31®41 or

®11®22®33®41

1^11^22^33^41 
PATH(x2 ,y2 )= I or'®11®21®31®41

®13®21®31®42

and

PATH(Xg,yg)= < or

^13^22^33^42

Assume the switches and are on. Then* in setting up 
the PATHCxj/y^) and the PATB(X2 ,y2 ) r it is necessary and 
sufficient that the switches , 8 2 2  and S3 3  are all
on. For this assignment, clearly, PATH(Xg,y3 ) cannot be set 
up. The same conclusion follows if the switches and S4 2

are off instead. In other words, any permutation 0  with 
the subassignment 0(1)=1, 6(2}=2 and 0(5)=3 such as.
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0 = (1 2 3 4 5 6 7  8 %

1 2 5 6 3 4 8  7 /

cannot be realized by the network in Figure 4.10. Hence, 
this network is not rearrangeable[B4]. Indeed the network in 
Figure 4.10 is not a member of the DP-Network class but it 
is a feed-back free network.

4.7 CONCLUSIONt
In this chapter we analyzed the Benes sufficient condi­

tion for rearrangeability of a certain classes of networks. 
It is shown that the verification of this criterion is expo­
nentially complex. We discuss a routing algorithm for this 
network, given that it is rearrangeable. This chapter ends 
with a discussion of a counter example for a theorem due to 
Afshar on the rearrangeability of feed-back free network.
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Chapter V 
CONCLUSIONS

This chapter presents a summary of the results present­
ed in this dissertation and suggests some problems for the 
future work in the area of interconnection networks.

1) The first result relates to the universality of 
shuffle-exchange networks. A well known open problem on the 
rearrangeability of a cascade of blocking networks has been 
studied. Parker[PI] proved that for any N, a cascade of 
three(three copies connected in series) Omega networks is 
rearrangeable. Wu and Feng[W4] improved the above result and 
showed that SLog^^-l stages are sufficient for rearrange­
ability. There are two related results in this part. The 
first part proves that for N=2 ^ and k 2  4, a cascade of two 
copies of an Omega network is not transformable to a well 
known class of rearrangeable networks, namely Benes class 
networks [B4]. Consequently, the universality of a cascade 
of blocking networks must be settled outside of the frame­
work of the Benes network. The second part provides a new 
upper bound namely that for N=2^, k > 4, 3k-3 stages (of 2x2 
switches and shuffle link permutations) is rearrangeable. 
It should be interesting to note that the only currently 
available method for rearrangeability of a cascade of non­
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blocking networks is to recast it, by suitable transforma­
tion, in the form of Benes a network. Except for N=4 and 
N=8 , the question whether or not a cascade of two Omega net­
works is rearrangeable still remains open. Our analysis 
shows that this question must be settled outside the Benes 
framework.

2) The second result relates to the problem of comput­
ing the combinatorial power of the block-structured net­
works. To this end a very rich and useful subclasses of 
Banyan networks called L-stage Banyan networks have been in­
troduced. One of the notable subclass of L-stage SW-Banyan 
networks is expanding and contracting SW-Banyan networks. 
Expanding and contracting SW-Banyan networks have less 
blockage compared to the rectangular Banyan networks[ Dl]. 
While it stands to reason to guess that networks with less 
blockage may realize more permutations, computing the number 
of permutations realized by an expanding and contracting SW- 
Banyan networks is by no means trivial. It is shown that 
the known method for computing this number is incorrect. 
Chapter three covers the necessary and sufficient condition 
to have positive combinatorial power. The number of permuta­
tions realizeable by a class of expanding and contracting 
SW-Banyan networks is proportional to the number of differ­
ent matrices satisfying certain conditions.

3) The third result corresponds to the verification of 
the universality of a network. It has been shown [B3] that a
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cascade of two NxN networks alternately connected between 
three stages of switches is rearrangeable if it satisfies a 
set of group theoretic conditions. Verification of this new 
criterion has exponential complexity. Further, this condi­
tion is too sufficient in the sense that it is not often 
satisfied by many rearrangeable networks. For N=2^ and k=2,3 
the above condition does not hold while both networks are 
rearrangeable. All these results indicate that the resolu­
tion of the above open problem namely universality of the 
cascade of blocking networks must await the development of a 
new technique for proving the universality of interconnec­
tion networks.

4) The final result relates to the corollary in [Al] on 
the rearrangeability of feed-back free networks. It has been 
stated that a feed-back free switching network is rearrange­
able if and only if it realizes one-to-one and onto mapping 
of any two input terminals to any output terminals. It is 
shown by a counter-example that the sufficiency part does 
not hold for any feed-back free network.
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Appendix A

Note: for the simplicity of the calculations, we define a 
permutation

(0 1 2 ... N-1

P(0) P(l) P(2) ... P(N-l))
as ( P(0) P(l) P(2) ... P(N-D).

Consider the following 4x4 Benes network

0 _ — 0

_ 2
—  3

Ü and V are fixed permutation networks, i.e.

P(U)=P(V)={ (0 2 1 3)}.

D{U) and D(v) are the set of all switch permutations induced 
by D and V respectively, i.e. D(D)=D(V)={(01 10) (10 01)}.

The direct product of Sg with itself is (S^) fi.e.
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(S2)2={(01 01), (01 10), (10 01), (10 10)} 

the direct product of D(D) and D(V) is 

D(U)D(V)={(01 01), (10 10)}

Clearly, (Sg)^ ^D(D)D(V). In otherwords (01 10) and (10
01) are not in D(ü)D(V).

But the above network is rearrangeable.
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Appendix B

Consider five stages of a shuffle-exchange network ex­
cluding the first shuffle, i.e. (E. a)^E.

This network is obtained by cascading D and V alternatif be­
tween three stages of four 2x2 switches. Each of the net­
works D and V are made of one stage of four 2x2 swithes pre­
ceded and followed by the shuffle permutation. D(D) and 
D(v) are the set of all switch permutations induced by U and 
V, respectively. Each of which has 48 pairs. The direct 
product of with itself has (24)^ elements while the di­
rect product of D(D)D(V) has only 312 elements. Clearly, 
(8 2 )^ D(D)D(V). In other words, the following are some
pairs which are not included in D(D)D(V).
{(0123 3120), (0123 0213), (0123 0312), (0123 2130),
(0123 3021), (0123 1203), (0123 1302), (0123 2031)}.


