
INFORMATION TO U SER S

This manuscript has been reproduced from the microfilm master. UMi films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy subm itted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

®UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DECOM POSITION TECHNIQUES FOR SUPPORT VECTOR

M ACHINES TRAINING A N D APPLICATIONS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

HUSEYIN INGE

Norman. Oklalioma

2002

UMI Number 3070638

UMI
UMI Microform 3070638

Copyright 2003 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and beaming Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECOMPOSITION TECH NIQ UES FOR SUPPO RT V EC TO R

MACHINES T R A IN IN G A N D APPLICATIONS

A Dissertation

APPROVED FOR THE

SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. T.B. TRAFALIS

Dr. P.S. PULAT

D n ^ . CHEUNG

y / - ^
Dr. M.C. COURT

Dr. S.A. MOSES

©Cop\Tight by Hiiseyin Ince 2002

All Rights Reserved.

Acknowledgem ents

I would like to thank the faculty and staff of the University of Oklahoma for having

supported me throughout the course of my studies. In particular, I would like to express

my gratitude to Dr. T.B. Trafalis, Dr. P.S. Pulat, Dr. J.Y. Cheung, Dr. S.A. Moses

and Dr. M.C. Court who have provided careful guidance and advice while serving on my

committee during my doctoral studies. Special thanks to Dr. T.B. Trafalis for having

serv'ed as my advisor. His expertise and guidance were of great importance for this

research. I would like to thank the Republic of Turkey Ministry of Education for giving

me a chance to study in the United States. Finally, I would also like to acknowledge

the support of the National Science Foundation under NSF Grant ECS-9978813 and

ECS-0099378.

IV

Dedicated to my parents, SERIFE INCE and RIFAT INCE

Contents

Acknowledgements iv

Abstract

V

X IV

1 Introduction 1

1.1 O verv iew .. 1

1.2 Research O b jectiv es ... 4

1.3 Scope of the Dissertation .. 5

2 M athematical Formulation of Support Vector Machine 6

2.1 Empirical Risk M inim ization.. 6

2.2 Structural Risk M inim ization.. 8

2.3 Definitions.. 9

2.4 SVM formulation by using li. h.and Loo n o rm s ... 13

2.4.1 1-2 F o rm ula tion ... 14

2.4.2 li norm fo rm ulation .. 22

VI

2.4.3 loo norm form ulation... 25

2.4.4 Kemelization of Linear Programming F orm ulation 27

2.5 Support vector regression formulation by using li, U n o r m s 28

2.5.1 1-2 norm fo rm u la tion ... 28

2.5.2 l\ norm fo rm ula tion ... 34

3 Benders’ Decom position Technique 37

3.1 Introduction... 37

3.2 Benders’ Decomposition Technique for Support Vector Machines 38

4 Training support vector machines w ith very lairge datasets 46

4.1 Clustering and Bagging techniques for Support Vector Machines 46

4.1.1 Support C lu ste rs .. 47

4.1.2 Sub-sampling and Bagging M e th o d s .. 50

4.1.3 Hierarchical Training M e th o d s ... 54

4.2 7 -SVM Algorithm .. 55

4.2.1 7 -SVVI in feature s p a c e ... 56

5 Applications and Computational R esults 63

5.1 Comparison of the methods n ith other decomposition techniques 64

5.1.1 Classification c a s e ... 64

5.1.2 Regression Case .. 6 8

5.2 Applications to Financial Markets ... 70

5.2.1 Prediction of S&P 500 Dailv Return Value 70

V ll

5.2.2 Option Pricing M o d e l... 74

6 Summary, Conclusions and Recomm endations 84

6.1 Sum m arj'-... 84

6.2 Recommendations for Future R esearch.. 85

A Implementation o f Benders Decom position for Support Vector regres­

sion 94

B C-f—t- implementation of e-SVM algorithm 109

C Bagging and Subsampling Codes in M atlab 116

MU

List of Tables

2.1 12

2.2 12

3.1 44

3.2 45

4.1 48

4.2 62

5.1 66

5.2 67

5.3 68

5.4 69

5.5 70

5.6 70

5.7 73

5.8 73

5.9 78

IX

5.1 0 .. 82

5.1 1 .. 82

5.1 2 .. 83

X

List o f Figures

2 .1 Z1.Z2 ,/oo norm d is ta n c e s ... 1 1

2.2 Linear separability of AND fu n c tio n .. 13

2.3 Linearly non-separable C ase ... 14

2.4 Separating hyper-plane and optimal separating hyper-plane. Both solid

lines in (a) and (b) separate the two identical sets described by circles

and triangles. But the solid line in (b) leaves the closest points (filled

circles and triangles) at the maximum distance. The distance between

dashed lines in (b) gives the maximum margin.. 15

2.5 Mapping input space to feature space ... 20

2.6 Maximum margin s e p a ra tio n .. 24

2.7 The soft margin lost setting corresponds for a linear SV Machine [54] . . 30

2 .8 c-insensitive c a s e .. 31

4.1 The checkerboard data without clusters... 51

XI

4.2 Clustering the checker-boaxd data. Red color shows the whole data (486

points) and blue circles are the clusters centers (50 points). We can

represent the whole data set by only 50 points. Those points are used for

the SVM algorithm... 52

4.3 The checkerboard data set and 131 total clusters. The big circle shows

the clusters. We choose only 20 % of data to represent the whole data

set (650 points)... 53

4.4 Support clusters which are found by using the SVM and original data

that we extract by using those clusters. We use the clusters in figure 4.3.

Support clusters are the clusters that we found by SVM........................... 54

4.5 Solution of proximal support vector machine c lass ifie r............................. 58

4.6 Identifying the closest points by using the algorithm we proposed. By

exploring the sparsity of SVM theorv’, we do not need to whole dataset,

we can use only filled data points shown in figure....................................... 59

4.7 First figure(a) shows the decision surface of radial basis function kernel

with cr = 1 . In the second figure depicts the decision surface with cr = 3.2. 60

4.8 (a): In this figure, linear kernel function is used to train whole data set.

(b): Linear kernel function is used with our algorithm. Decision surface

are same for SVM and our algorithm .. 61

5.1 CPU time vs. Number of Clusters SVM.. 71

5.2 Correctly classified test data (percent) vs. number of c lu s te rs 72

5.3 Estimated and actual value of sinx funtion (+ is actual, solid estimated). 74

XII

5.4 MSE's for SVM Regression (MSE vs. RBF Param eter)............................ 75

5.5 MSE's for SVTVI Regression (MSE vs. RBF Param eter)............................ 76

5.6 MSE vs. Number of Hidden Units for MLP N etw ork............................... 77

5.7 Sample path of the stock p r i c e ... 80

X lll

A bstract

The theory- of the Support Vector Machine (SWI) algorithm is based on statistical

learning theorj- and can be applied to pattern recognition and regression. Training of

SVMs leads to either a quadratic programming (QP) problem, or a hnear programming

(LP) problem. This depends on the specific norm that is used when the distance be­

tween the two classes is computed, h or Zœ norm distance leads to a large scale linear

programming problem in the case where the sample size is ver* large. We propose to

apply the Benders Decomposition technique to the resulting LP for the regression case.

In addition to this, other decomposition techniques like support clusters and bagging

methods have been developed. Also, a very efficient data preprocessing method for SVM

which is called "y-SVM has been developed. Tins method reduces the size of the train­

ing set and preserves the important data points which are high candidates as support

vectors for defining the decision function.

Comparisons with other decomposition methods such as SVMTorch and SVMFu

reveal that 7 -SVAI, support clusters, subsampling and bagging methods are more effi­

cient in terms of CPU time. 7 -SVM method outperforms SVMFu and SVMTorch for

generalization error. In the case of support clusters, subsampling and bagging methods,

XIV

generalization error is close or higher than SVMFu and SVMTorch. Some information

is lost for speeding up the algorithm. SVM regression has been applied to an option

pricing model and prediction of S&P 500 daily return. Comparisons with multilayer

perceptron and radial basis function networks is also presented.

XV

Chapter 1

Introduction

1.1 Overview

The amount of data gathered in recent years has been exponentially increasing largely

due to new technologies such as internet related ones: To name a standard example,

the Web has billions of "visible" pages and hundreds of billions connected through the

"deep Web," while the average company has hundreds of thousands of web pages and

is expected to gather hundreds of terabytes of customer data within the next few years

(see also [61] for more examples). However, until now a very small portion of this data

has been analyzed using data mining techniques, and even when this was the case, very-

simple machine learning methods have been used. An important reason that advanced

machine learning methods have not been used in many cases is simply that it is often

practically impossible to train these methods with such amounts of data. It is therefore

an important challenge for advanced learning machines to develop methods for training

with very large datasets (i.e. often millions of data points).

Much work has been done in the direction of speeding up (scaling up) some stan­

dard data mining methods. Provost and Kolluri [49] give a recent review of various

approaches, mostly focusing on learning methods for finding rules and for training de­

cision trees. The paper categorizes the approaches into three groups: designing fast

algorithms, partitioning the data, and using relational representations. In the first

group there are approaches such as building only "good but simple" learning methods

such as one or two level only decision trees [50, 27], or for designing various algorithmic

or programming optimizations [19, 41]. In the second group there are approaches like

sampling (in various proposed ways) a small dataset from the initial large one and us­

ing only that for training [43], using small subsets of features [56], variations of online

learning [35] such as Quinlanss windowing method [51], or training many machines in

parallel each using a small subset of the initial large dataset and then combining the

results [1 2 , 2 0] (see also the proceedings of the workshop on distributed data mining

[32] and references therein). Finally, in the third group there are approaches which have

more to do with forms of data storage and retrieval in databases (see for example [1 , 2]).

The SVM algorithm developed by Vapnik [62] is based on statistical learning theory.

In the classification case [14, 17, 44, 47], we try to find an optimal hyperplane that

separates two classes. In order to find an optimal hyperplane, we need to minimize the

norm of the vector w, which defines the separating hyperplane. This is equivalent to

maximizing the margin between two classes.

At the same time, the recent development of a new family of learning machines,

namely Support Vector Machines (SVMs) [14,17, 62], wrhose training can be formulated

as optimizing a quadratic programing (QP) problem with box constraints, has led to a

series of fast optimization methods for this type of QP problem [46, 44, 52],

Without any decomposition techniques, soMng the SVM problem is very diflScult

if the number of training examples is large. Therefore, some decomposition techniques

should be applied. We can divide decomposition techniques applied to SVM into groups.

The first one is called matrix splitting. The following procedure is proposed by Vapnik

[62] to solve the QP problem efficiently. First, the training data are divided into a

number of portions. Each of the portions has a reasonable small number of data points;

then we start solving the QP problem determined by the first portion of training data.

There are two possibilities: either this portion of data cannot be separated by a hyper­

plane (in this case, the full set of training data as well cannot be separated [62]), or the

optimal hyperplane for separating the first set of the training data is found and defined

by the vector Ai. Specifically, among the coordinates of the vector A%, some are equal

to zero. Therefore some of the training data correspond to non-support vectors of this

portion. After that, make a new set of training data containing the support vectors

from the previous set and the vectors of the second portion that do not satisfy the

separation constraints, where w (vector defining separation hyperplane) is determined

by the previous solution, Ai. For this set a new QP problem is constructed and solved.

Let A-2 be the solution of this problem. W'e continue this process until a solution vector

A, covering all the portions of the training data is found or one finds that is impossible

to separate the training data without error. The draw-back of this procedure is that

we do not know the SV set before solving the problem. Therefore, we choose the first

portion of the data arbitrarily. This is called chunk that fits the memory. Another al­

gorithm for making the solution procedure of the QP problem is the Advanced W'orking

Set Algorithm. The solution is to use only a subset of variables as a working set and

optimize the problem with respect to them while freezing the other variables. For the

pattern recognition case, this method is described in detail in [44]. First, the problem

is extracted into two groups, the working set denoted by and fixed set, 5 /. Another

technique is Sequential Minimum Optimization [46], which uses only two variables as

a working set. An LP boosting algorithm which is a column generation technique and

Bender’s Decomposition technique can also be put on this group [33, 59].

In the second group of methods, we try to reduce the training data into a smaller

group. This can be done by first clustering the data and then using the centroids of the

resulting clusters as the representative of whole data [57]. In addition to the clustering

method, some data points can be chosen randomly to represent the data [34]. Secondly,

data can be divided into k batches randomly and each of the batches can be solved

independently. Then all the SVs are combined and the SVM problem is solved again

by using all SVs.

1.2 Research Objectives

The formulation of the support vector machine for classification and regression yields

quadratic or linear programming problems. The size of the problem increases with

the number of data points. Suppose we have a dataset with I points or observations.

Then the matrix defining the QP problem has dimension I'-, where I could be as large

as thousands or millions. Without any decomposition techniques, it is very- hard to

solve these problems. Decomposition algorithms divide the problem into two sets, the

active set and non active set. This idea has been used with all the techniques in QP

formulation. For the LP formulation, a column generation technique has been proposed

by Bennet [33]. Mangasaxian has suggested a linear chunking algorithm. The SVM

problem can also be formulated without any constraints. This gives an unconstrained

QP problem which is easy to solve [37, 34].

In this study, we propose three algorithms for solving large scale SVM classification

and regression problems. We apply the Benders decomposition technique to the regres­

sion problem. Also, we propose three pre-processing heuristic algorithms to identify the

most important data points in the dataset for classification.

1.3 Scope o f the Dissertation

Chapter 1 gives a brief introduction of SVM methods and decomposition techniques

which have been applied to the SVM problem. Support vector machines for classification

and regression with empirical and structural risk minimization is explained in chapter 2 .

Benders decomposition for SVMs is given in chapter 3. In chapter 4, support clusters,

bagging method and data preprocessing algorithm will be discussed. Comparison of

those method and an application to option pricing model is described in chapter 5 .

Conclusions and future work is discussed in chapter 6 .

Chapter 2

M athem atical Form ulation of

Support Vector M achine

2.1 Empirical Risk M inim ization

The task of learning from data can be formulated in the following way for a two class

pattern classification problem. Suppose (xi,yi), [xo-.yo] , {xi,yi) are given such that

Xi € 3^, and yi € {—1,1} and are taken from an unknown distribution P{x. y).

We are also given a set of decision functions

{A W : A € A}, —>■ (—1; 1}. (2.1)

where A is a set of abstract parameters and fx{x), {fx{x) : A € A} are called hypothesis

and hypothesis space, respectively.

We want to find a which provides the smallest possible value for the expected

risk which is defined as follows.

R(X) = J l/2 \fx ix) - y\\dP{x, y), (2.2)

The problem is that the distribution function P{x,y) is unknown. Therefore, we

can not compute the expected risk given in (2.2). On the other hand, we have examples

(z;, yi) from the distribution P{x,y). Hence, we compute a stochastic approximation of

R{X) which is called empirical risk, Remp-. and defined as follows:

I
RempiX) = 1/21 \M ^ i) - Vil- (2.3)

i=l

As can be seen fi-om above, Remp{X) is a fixed number given a particular choice of

A and training set {zj,yj}. The law of large numbers [62] guarantees that the empirical

risk converges to the expected risk. So, one minimizes the empirical risk instead of

the expected risk [14]. The idea behind minimizing the empiriceil risk is that if Remp

converges to the expected risk, then the minimum of Remp may converge to the minimum

of the expected risk. The quantity :^ |/\(z) — y| is called loss. It can only take values 0

and 1. If f \{x) is equal to y, then the value of this quantity is 0, otherwise it is equal

to 1.

The theory of uniform converge in probability provides bounds on the deviation of

the empirical risk from the expected risk. A typical uniform VC (Vapnik-Chemovenkis)

bound, which holds with probability 1 — 77, has the following form. [13].

R{X) < RempiX) + v^(h(ln2Z/h+l)-lnTj/4)/i, (2.4)

where h is the VC dimension of fx and I is the number of examples.

We can make some observations from this inequality bound. As it can be seen from

(2.4). the right hand side is an upper bound on the expected risk. It is independent

of the distribution of the data, P{x.y). The test data and training data are drawn

independently according to some P{x,y). It is not possible to compute the left-hand

side of the bound in equation (2.4) [17]. Extensive study of the VC dimension can be

found in [14, 17, 31].

2.2 Structural Risk M inimization

Structural risk minimization developed by Vapnik is an attempt to overcome the prob­

lem of choosing an appropriate VC dimension. One can see that a small value of the

empirical risk does not necessarily imply a small value of expected risk. A different in­

duction principle called structural risk minimization (SRM) was developed by Vapnik.

The principle is based on the observation that in order to make the expected risk small,

both sides of (2.4) should be small. Therefore, VC dimension and empirical risk should

be minimized at the same time.

In order to do this, we need a nested structure of the hypothesis space such that

Hi C H2 C Hz C ,..., Hn C ,... with the property that h{n) < h(n -|-1), where h{n) is

the VC dimension of H (n) where n is the number of hypothesis spaces. Therefore we

need to solve the following problem.

+ (&5)

The SRM principle is mathematically well founded. According to [54], it can be

difficult to implement since the VC dimension of Hn may be difficult to compute and

8

even if one computes the VC dimension, it is not easy to solve the above problem. The

SVM algorithm minimizes the bound on the VC dimension and the number of training

errors at the same time.

2.3 Definitions

In this section, we will give the definitions of distance with respect to the L p norm,

margin and linear separability respectively. We will use these definitions for formulating

the SVl^I problem. Our presentation follows Pedroso and Murata(1999) [45].

D efinition 1: Given two parallel hyperplanes in i î” , the distance between these

two hyperplanes is defined as

dp{Hu H2) = min \\x-y\\p, (2 .6)
x£H\,y^H2

where w i s a vector which is perpendicular the hyperplane. bi, bo are the biases, p is an

arbitrary norm. Hi is described by «; • x + 61 = 0 and Ho is described by w - x + 62 = 0

respectively.

Shifting both hyper-planes so that Ho passes through the origin, we obtain two

hyper-planes separated by the same distance. Their evaluations are H{ : w-x+bi~bo = 0

and H '2 '■ w-x = 0 respectively. If we choose y to be the origin, then the distance between

these two hyper-planes is

== nihi tlxWp (2.7)
xSM[

Holders inequality states that for conjugate norm of L p and L q , the following in­

equality holds:

9

i k l i p • \ \ w \ \ g > | z - w | (2 . 8)

where i + | = 1 .

We will use the conjugate norm for defining the distance between two hyper-planes.

Since the equation of is w ■ x + bi — bo- we have that \w -x\ = |6 i — 6 2 !- Therefore,

mma-gfl-illxllplltullg = 1&1 — 6 2 I- Using this formula, we can write the distance between

the two hyper-planes as follows:

= mm llxllp = (2.9)

where q is the conjugate norm of p.

Consider two arbitrary points in lo norm distance is the traditional euclidean

distance from one point to another. Distance can be measured by moving horizontally

and vertically. The /i norm is the summation of horizontal and vertical movements

as in figure 2.1. The Zoo norm distance is the biggest of the horizontal and vertical

distances. As it can be seen from figure 2.1, for any two points x .y the relationship

between distances in the three norms is as follows

I k - yjjoo < I k - y | |2 < I k - y | | i . (2 .10)

Assume that we are given a set S of points Xi 6 with each Xi belongs to either of

two classes defined by % € {—1,1}. The objective is to find a hyperplane that divides S

leaving all the points of the same class on the same side while maximizing the m in im u m

distance between either of the two classes and the hyperplane [42].

1 0

L i

î

Figure 2.1: l i J 2 :loo norm distances

D efinition 2: The set S is linearly separable if there exist w E and 6 E % such

that

w Xi + b > 1, i f yi = l

w - X i + b < - l , i f y i = - l . (2.11)

Let us explain tliis by using the AND function with its truth table given in table

2 . 1.

Figure 2.2 shows the input space. As can be seen from figure 2.2, we can find a

hyperplane that separates class 1 and class —1 respectively. In the nonlinear separable

case as in the case of the XOR problem (see table 2.2 and figure 2.3), there is no

hyperplane that separates class 1 and class —1 linearly.

If w and b are scaled by the same quantity, then the decision surface given by the

above equation is unchanged. In order to remove this redundancy and to make the

1 1

Table 2.1: AND function truth table

X i X-2 y

1 1 1

1 -1 -1

-1 1 -1

-1 -1 -1

XOR function

Xi X2 V

1 1 -1

1 -1 1

-1 1 1

-1 -1 -1

decision surface corresponding to one unique pair (w.b), the following constraint is

imposed:

min |w - %* + 6| = 1. (2.12)

Using the above equation, we can obtain the canonical representation which has VC

dimension n + 1. In the case of linear separability, the separating hyperplane satisfies

the following:

1 2

: , . ^

‘ , -1 4

f__
U -11

———---• • M, 1 ■ — — - .W».

K ~ ' " ;
' ̂ ; ..

- □

Figure 2.2: Linear separability of AND function

Hi • {w ■ Xi + h) > l , i = 1,2,.... I. (2.13)

The distance from a point x to the hyperplane associated to the pair {w, b) is

d{x: w, b) =
\w -x + bl

to
(2.14)

According to the normalization that we made in 2.12, the distance between the

canonical hyperplane and x is

2.4 SVM formulation by using Zô and L o o norms

In this section, Support vector machines for classification formulation will be explained

for different norms. The problem is either a QP problem or an LP problem depending

13

' " o - - O . . .

> «1

O , -1 -

-------------- 1—----- • - ' -z

1 1 :

- o . .

— -......... 'J

Figure 2.3: Linearly non-separable Case

on the norm we choose.

2.4 .1 1-2 Form ulation

2.4.1.1 Linearly Separable Case

The goal of the SVM is to find, among all the hyperplanes that correctly classify the

data the one with the minimum norm, or minimum ||u;||-. As it can be seen from 2.4,

minimizing ||w]|- is equivalent to finding a separating hyperplane for which the distance

between two classes is maximized.

In order to construct the maximum margin, or optimal separating hyperplane, we

need to correctly classify the vectors Xi of the training set into two different classes,

where y, € {—1,1} by sohdng the following problem

14

mino(w) = ^||w||^
w fi Z

subject to (2-15)

yi- (w ■ Xi + b) > 1

1=1,2 I, yi = ±1.

Ù
\

Figure 2.4: Separating hyper-plane and optimal separating hyper-plane. Both solid lines

in (a) and (b) separate the two identical sets described by circles and triangles. But the

solid line in (b) leaves the closest points (filled circles and triangles) at the maximum

distance. The distance between dashed lines in (b) gives the maximum margin.

We need to construct a lagrangian function of (2.15). There are two advantages

of doing this [14]. The constraints of (2.15) will be replaced by constraints on the

lagrangian multipliers themselves, which will be much easier to solve. In addition to

this, the training data will only appear in the form of dot products between vectors.

This will allow us to generalize the procedure to the nonlinear case by using the concept

15

of the kernel function [62].

If we denote by A = (Ai, A2 , A ;) the I nonnegative lagrange multipliers associated

with the constraints, the solution to the problem is equivalent to determining the saddle

point of the lagrangian function

1 ^
L{w,b,K) = - ||w ||- - ^ A i • [yi - { w x i + h) - 1]. (2.16)

i=l

By using saddle point optimality conditions (first derivatives with respect to w and

h. should be equal to zero at optimal point) we have

= w - Xi = 0 (2.17)
i=l

i—l

So, at the optimal point,

I
w* = ^ A - - % - Xi. (2.18)

i=l

Substituting (2.18) in the lagrangian function, we obtain the following expression

I ̂ (z
max F (A) = A; - Aj - %% - %% - 2% - Xj

1=1 “ i=l j=l

subject to
I

3% == 0 (2.19)
1=1

Aj > 0,2 = 1 ,2 ,...,I.

The Karush-Kuhn-Tucker (KKT) optimality conditions play a crucial role in de­

termining the optimal value of the bias (6) and w respectively. By using the KKT

conditions for (2.15) , which are shown below, we can compute w and b.

16

i=l

1 - yi • (lü - Xi + 6) < 0 (2.20)

A i > 0

K • [yi • (w* • Xi + 6*) - 1] = 0.

Specifically, the complementary condition gives b. At the optimal solution, if Ai > 0,

then the second part of the complementary slackness equation should be zero. Therefore,

b* = y i — w” ■ Xi (2.21)

w* = 'V i ' ^ i
2 = 1

Complementary conditions imply that A* > 0 when the constraints in (2.20) are

active. Therefore, the vectors for which A* > 0 are called support vectors. So, the

decision function becomes,

I
/(x) = s ig n Ç ^ A* • %(x • Xi) 4- 6'). (2.22)

i=l

2.4.1.2 Linearly non-separable case (Soft Margin optimal hyperplcine)

Next, we consider the case of linearly non-separable data. In this case, the constraint

y i - {w • Xi + b) >1 is not satisfied for some points. In order to overcome this difficulty,

one introduces a new set of variables, that measure the amount of violation of

17

the constraints. Then we try to minimize ||iüj|-, paying a penalty proportional to the

amount of constraint violation. Specifically, we solve the following problem:

ramô{w,0 = +w,o,5 - i=i

subject to (2.23)

y i-{w-Xi + b)> 1 - ^ i

$: > 0

i — 1,2..... Z,

where parameters C and k are non-negative and determined before the training phase.

Minimizing the first term in (2.23) corresponds to minimizing the VC dimension in

equation (2.4). Minimizing the second term controls the empirical risk (minimizes the

misclassification). In order to solve problem 2.23, we need to construct the lagrangian

function,

1 ^
Z " (w , 6 , (, A,r) = - | t w | | - - • [yi • (l ü • X i -F 6) - 1 - i - Ç i]

i=i
I I

+ (2-24)
i=l

where the non-negative multipliers A = (Ai,A2 ,..., A;) and F = (7 1 , 7 2 , —,7/) are as­

sociated with the constraints in 2.23. The solution is determined by the saddle point

optimality conditions that are shown below:

— = u ; - _ ^ A i - y £ - X i = 0

IS

d L
■^ = = 0 (2.25)

2 = 1

dL ^ - A i - 7 i = 0 f c > l
% = (% ' >■

C — Aj — 7i = 0, 6 = 1

At the optimal solution, we obtain the optimal values of w* and 6*. Specifically,

I
w” = ' ^ X * - yi- Xi. (2.26)

i= l

By substituting the above equations into the lagrangian function, we obtain the dual

problem as shown below:

I 1 ' ^
max ̂ Ai — - ^ ^ Ai • Aj ■ yi • yj • Xi • x j

i= l ~ i= l j = l

subject to
I

] [A i - W = 0 #.27)
i=l

Ai < C, 2 = 1,2,..., I

Ai > 0, i = 1,2,..., 1.

In the linearly non-separable case, one needs to solve this problem. This is a

quadratic programming problem.

We null explain which techniques are available and which are the best selections. But

before we do this, we will continue to explain SVAls with non-linear decision surfaces.

19

2-4.1.3 Non-linear case

If the decision surface is non-linear or more complex, we need to map the input variable

X into a higher dimensional feature space. This is proposed by Vapnik [62]. Specifically,

(2.28)

where are some real numbers and d>n(x) are some real functions (basis func­

tions).

feature spaceinput space

Figure 2.5: Mapping input space to feature space

If we map the input space to a feature space, whose dimension is infinity, then it

is highly probable that we will obtain a linear surface that separates the data into two

groups in the feature space. Then, the discriminant function is defined as follows

/(x) = sign(ç>(x) • w* -f 6') /(x) = s ig n (^ A" % - o(x) - ©(xf) + 6*) (2.29)

2 0

I
E
i=l

As it can be seen from the above equation, we need to compute dot products of the

form <b{x)-o{y). It is convenient to replace these dot products through a kernel function

denoted by K. Specifically,

K (z ,y) = <b{x) - ci>{y) = é{x) - é{y). (2.30)
n=l

Using this, the solution of SVM has the following form:

I
/(z) = s ig n (^ A' . % . .Ff(z, Z() + 6*). (2.31)

i—l

If we replace the dot product of the inputs with the kernel function in the linearly

non separable case, we obtain a similar problem hke the one we have in the linear case.

Specifically,

I IJ' 2
m a x ^ Aj - - ^ ^ Ai ■ Aj ■ y i ■ y j • K { x i , X j)

9i=l i=l j=l

subject to
I

= 0 (2.32)
i=l

0 < A i < C , 2 = 1,2, ...,Z.

Therefore we obtain a quadratic programming problem. The difference between the

linear case and the non-linear case is that in the case of non-linear separabihty, we try

to find a separating hyperplane in the feature space. The next step is to solve this

problem with an efficient and robust algorithm.

2 1

2-4.2 h norm form ulation

If we use the norm to compute the distance between the training points and separating

hyperplane, the problem can be formulated as a linear programming problem.

If we impose w - X i + b = ±1, then we have two hyperplanes, iî"*" : w - X i + b= 1 and

H~ : w - X i + b = —1. The distance between them by using the norm (see section 2.3)

is given by.

llwiloc m a x j \Wj
-, j = l,2 ,...,d . (2.33)

Therefore, we want to solve the following problem:

min max In;,-1. (2.34)
w,b j J ̂ ^

We can convert this to a linear programming problem by introducing a new auxiliary-

variable a and adding a > w j and a > — Wj . Then we obtain the following LP problem:

nun a
w.b,a

subject to

yi ■{w-Xi + b) > l , i = l , 2 , I (2.35)

a > Wj

a > —W j . j = 1,2,..., d.

The support vectors are the training data points for which % - (w - + 6) > 1 is

active. We have explained the linear separable case. If the constraints are not satisfied,

99

we can use the soft margin constraints and include a penalty in the objective function.

By doing that, we penalize the objective function. Soft margin formulation is shown

below:

I
min a + C - V ' 6

subject to

Vi-{w ■ Xi + b) + ^ i > l , i = (2.36)

a > Wj

a > - W j , j = l,2 ,...,d ,

where C is a positive number and is chosen by the user. So far. Hnearly separable and

linearly non-separable cases have been explained. In real-life problems, we have the

nonlinear case. In order to solve real-life problems, we need to map the input space to

feature space by using a kernel function.

Consider the following AND function that is given in table 2.1. Let us look at the

graph of this function again. We want to maximize the distance between these classes

by using the h norm. Since we have the linearly separable case, we use equation (2.35)

to formulate the problem.

The following problem has to be solved to find the optimal hyperplane which is also

called decision or discriminant function:

min a

subject to (2.37)

23

X

X ,

Figure 2.6: Maximum margin separation

Wi+W2 + b > l

—Wi +W2 — b > l

W \ — W2 — b > l

—Wi — W2 — 6 ^ 1

+ G > 0

—wi + a > 0

ZG2 + G > 0

—W2 + G > 0

W\,W2 -. b, any sign and g > 0

24

2.4 .3 Zoo norm form ulation

If Zoo norm is used to determine the distance between, the training points and the sepa­

rating hyperplane, the problem can also be formulated as a linear programming problem.

As for the loo formulation, we impose that w • Xi + b = ±1 for support vectors. Then,

the distance between the two hyper-planes for each class is.

é t e l
j = l

We want to maximize this value, which is equivalent to.

m in^^ |wj|. (2.39)

Equation 2.39 can be transformed to a linear programming problem by adding aux­

iliary variables Oj for each Wj, and constraints aj > Wj and aj > —Wj Vj = 1,2,

Then, the problem becomes.

minV^ a,

subject to

yi ■ (w ■ Xi 4- 6) > 1, i = 1,2,..., Z

aj > Wj. j = 1,2, ...,cZ (2.40)

a j > - W j , j = l ,2, . . . ,d

6 € anda > 0.

25

In the problem 2.40, we assume that each class is linearly separable. If this is not

the case, then we use soft margin formulation as we did in l\ and Zo case, respectively.

d I

= l 2=1
subject to

yi • (tt;-Xj+ 6) > 1, z = l,2,...,Z

cij > W j . j = 1 , 2 , . . . , (Z (2 .4 1)

a j > - W j , j = l , 2 , . . . , d

6 E %, w E ^ > 0 and o > 0

In the Zoo case, we have a similar problem like the one we had in the Zi case. In the

next section, we will discuss the c-insensitive support vector regression formulation by

using Zi and Zo norm, respectively. The training problem for the AND function can be

formulated as follows:

m i n o i -I- G2

s u b j e c t t o (2 .4 2)

W i + Wo + b > 1

—W \ 4 - two — 16 > 1

w i — w o — b > l

—w \ — w o — b > l

w \ + C] > 0

26

- w i -r a i > 0

7V2 + a-2 > 0

—W2 + ao ^ 0

(2.43)

where wi, wo: b are unrestricted in sign and ai.ag > 0.

2 .4 .4 K ern elization o f L inear Program m ing Form ulation

Instead of using the I2 norm, if we use the infinity norm for measuring the margin which

is the distance between the supporting hyperplanes for each class, we have the following

formulation:

I
min llzülli

subject to (2.44)

yi{xi • u; + 6) -f Çi > 1

Z i > Q i = \ I, and yi = ±1.

To solve a nonlinear discriminants problem, we need to map this problem into the

feature space. This can be accomplished through the use of the kernel function. From

the original SVIVI formulation, we have come up with the decision function

f (x) = sign{J2Vi-K-K{xi,Xj) + 6). By using this, we obtain the following formulation
i

of equation (2.44).

27

I
m in ||A ! |i+ C y]C i (2.45)

i=i

subject to
I

ViiY. % ■ ^i) + &) + & > !
j = i

2j, Aj > 0 i = 1.....1

I
By minimizing ||A||i = Xi we obtain a solution which is sparse [6].

2=1

2.5 Support vector regression formulation by using l i , lo

norms

2.5.1 I2 norm form ulation

We follow the same structures that we use in the SVM case for classification. First, we

will look at the linearly separable case, then soft margin support vector regression will

be explained and finally, the non-linear case will be given.

The c-insensitive support vector regression will be explained. In the c-insensitive

support vector regression, our goal is to find a function f{x) that has c deviation from

the actually obtained target yi for ail training data and at the same time is as flat as

possible. Suppose /(x) takes the following form:

f{x) = w - x + b, w .x E R'^.b e R. (2.46)

If we have a w with small norm, then we can say that / is flat. One way to make f

fiat is to minimize ||w||- (euclidean norm) [54]. Specifically,

28

subject to (2.47)

y i - w - X i - b < s

W - X i - r b - y i < £

z — 1.2,.... Z.

(2.48)

One has to solve this problem in order to obtain an c-insensitive SV regression

solution. Usually, we need to allow for some errors. We introduce slack variables

to cope with this situation. This case is called soft margin formulation. Specifically,

mini|iu;i|--FC^(^i + ç;)
i=l

subject to (2.49)

y i - w - X i - b < £ + Çi

w-Xi + b - y i < c + ^ i

C > 0

i = 1,2,..., Z,

(2.50)

where C determines the trade-off between the flatness of f{x) and the amount up to

which deviations larger than s are tolerated. This is called loss function |^|s and is

29

described bv.

(2.51)

+

Figure 2.7: The soft margin lost setting corresponds for a linear SV Machine [54]

Figure 2.8 illustrates the case where some of the data are inside the c-insensitive

zone and some outside.

Let us look at the lagrangian function of the above problem. Obtaining the la­

grangian function will help us to formulate the dual problem, which will give us quadratic

programming problem formulation.

We will construct the dual problem. The reason is that solving the primal problem

is difficult due to many variables. If we use the dual problem, we can get rid of some

of these variables and the size of the problem becomes smaller. The lagrangian is as

follows:

1 . ' '
L = + C ■ 53 (?i + i i) + ii - Vi + w ■ Xi + h) (2.52)

1=1

30

Figure 2.8: £-insensitive case

i
ï

2 = 1 i =l

'.Vi^Vi ^ 0 ; * — 1,2,Z

At the optimal solution, the first derivative of lagrangian function with respect to

w, b, ^i, Q should be zero.

dL I
I
i=l

(2.53)^ - Ai) = 0
2 = 1

0 = C - A , - % = O

^ = c - A r - j (. - = o .

We obtain the dual problem by substituting (2.53) into (2.52). Then the dual prob­

lem is as follows

31

1 '■ '
max - - - A*) - (Aj - Aj) • Xi • Xj

“ i=l j=l
I I

+ - î) +
i=l i=l

subject to (2.54)

5Z(^i - AH = 0
i=l

A{,A?e(0,C)

After finding the optimal solution of this problem, we can get the optimal w and b

by using the KKT conditions of the primal problem. Then,

I
w* = ^ (A i — A*) • Xi, and (2.55)

i=l
I

/(z) = ^ (A i - Xi) -X i -x + b*.
1=1

We compute the optimal value of b from the KKT optimality conditions. The

complementaiy- conditions of the problem are shown below:

Ai • (e + Çi - ÿi + tu • Xi + 6) = 0

A* • (c + + ÿi - tu ■ Xi - 6) = 0 (2.56)

{C - Ai) • Çi = 0

(c - A ?) . $ r = o .

One can make some useful conclusion from the above equation [54]. First of all, only

samples (xi, yi) with corresponding Ai = C lie outside the e-insensitive tube around / .

32

The set of dual variables can never be non-zero at the same time, i.e. - A| = 0. If Aj is

non-zero, then A| is zero, and vice versa. Finally, if Ai 6 (0, C), then the corresponding

$i is zero. Therefore, b can be computed by using

b* = y i - w " ■ Xi —s for Aj 6 (0, C) (2.57)

b* = yi — w* • Xi + e for A| e (0, C).

Let us look at the non-linear case briefly. First of all, we need to map the input

space into the feature space and try to find a hyperplane in the feature space. We can

accomplish that by using the kernel function trick as we did in the classification case.

After this process, we use the standard support vector madoine algorithm in the feature

space. Specifically,

k{x,y) = é{x)-é{y), (2.58)

where fc is a kernel function.

Since, in equation (2.58) the dot product of inputs is used, we need to perform this

operation in the feature space by using kernel functions. If we can find a function that

performs this operation, then we obtain a similar quadratic programming problem in the

feature space as in (2.54) by replacing the dot product of Xi,Xj by k{xi,xj). Therefore,

problem (2.54) becomes

• i^j ~ ^j) ■ K{xi,Xj) -
- ;= l

I I
^ (A i + K) + ' ^ y i ' - ^I)£ •

i=l i=l

subject to (2.59)

33

^ (A i - A-) = 0
i=l

Ai,AT6(0,C).

At the optimal solution, we obtain

I
w* = ^ (A i - A?) • k{xi,xi), and (2.60)

2 = 1

/

i=l

The main difference between the linear and non-linear case is that in the non-linear

case w is not given explicitly anymore. On the other hand, by using dot products, it is

defined uniquely [54]. Also, we work in the feature space not in the input space.

2 .5 .2 li norm form ulation

The problem that arises in SVM regression case can be formulated as follows:

I I
(&61)

i=l i=l

subject to
I

V i - Y l - “ j) • X i) - b < e + ^i
i=i

I
X ! Xi) + b - y i < e +
j=i

By rearranging the known and unknown variables and the constraints in (2.61), we

obtain

34

I I
(2j%)

i=l i=l

subject to
I

J 2 (°:j - a;i) + 6 - < c + Vi
i=i

I
- X ! - °^j) • X i) - b - ^ i < s - yi

j=i
> 0.

We solve problem (2.61) or problem (2.62) with respect to and b. C is a

tuning parameter. Generally, this is very large problem since we have 21 constraints and

41 + 1 variables where I is the number of observations. When the number of observations

gets very large, we cannot solve the problem by the simplex method. In order to see

the structure of the problem, we formulate the problem in matrix-vector notation by

defining the following variables.

Q = [oj, Oj, 6]^, i = 1,2,..., I,

y = [y i , y - 2 , (2. 63)

= [i , i , . . . , i ,o]

K = (k(xi.Xj)) kernel matrix.

Then, the following problem is obtained:

min -a + C -e^ ■=. (2.64)

35

subject to

F ■ a-T D ■=, < d

E > 0, and a unrestricted

where.

F =
K - K 1

- K K -1

D i s a diagonal matrix.

[c - r y i , . . . , c + y j , c - y i , y i]

Problem (2.64) cannot be solved efficiently without a decomposition approach since

the problem is large scale in the case of a large sample. In quadratic programming

formulation, several decomposition approaches are proposed and they are very efficient

in terms of speed [38, 54, 62]. For the linear case, linear chunking or successive over

relaxation can be used[ll|. In the next chapter, we develop a decomposition for l\

regression based on Benders decomposition algoritlun.

36

Chapter 3

Benders’ D ecom position

Technique

3.1 Introduction

Many large scale linear programming problems exhibit a block diagonal or 1-shaped

structure that makes to apply decomposition techniques such as Benders' Decomposi­

tion [5] or its dual Dantzig-Wolfe decomposition [18, 4]. Decomposition techniques have

been applied to mixed-integer, stochastic programming , bilinear matrix inequalities,

vehicle routing and facility location problems [40]. These problems have special struc­

tures so that they can be divided into sub problems which are easy to solve. Support

vector machines for classification and regression problems lead to a linear programming

problem which can be solved by using Benders decomposition technique.

37

3.2 Benders’ D ecom position Technique for Support Vec­

tor M achines

Benders’ decomposition will be explained and applied to problem (2.64). The SVM

regression problem can be formulated as an LP problem by using the h norm. Problem

(2.64) has a block diagonal structure. Therefore, we can use a decomposition technique

such as Benders or Dantzing-Wolfe Decomposition. We are interested in applying Ben­

ders decomposition technique, which is the dual of the Dantzing-Wolfe decomposition

technique. Next we discuss the Benders decomposition algorithm. Our exposition fol­

lows Minoux(1986) [40].

Consider the following problem:

mine* • =. + ■ X

subject toD ■ =.-r F ■ X < d

(3.1)

where

and

D =

D i 0 . . . 0

0 Do . . . 0

0 0 . . . Dk

E = [Ei ,H2, ...,Ef],

(3 2)

(3.3)

c = [C. C C].

38

(3.4)

A — [Al; A o ; A ; . A i; A g A^j. (3.5)

/ = [1,1, ...,1,0], (3.6)

where sizes of c and / are equal to 21 and 21 + 1, respectively.

Since D is a block diagonal matrix, we can decompose problem (3.1) into k parts.

Then (3.1) can be written as follows

K
min -Ek + f'^ ■ X

fc=i
subject to

D i • —1 + i^i • A < (il

Do ■ —2 -r To • X ^ d.2

: (3.73

Dk ■ Hx + Fk ■ X < d.K

E i,E2, ■ ..,= .k > 0, A e y

Once the variable A is given, and the following systems Z?fe • — F^- X have

a solution, the solution of the problem restricted to variable E is decomposed into K

independent linear programming problems. The following problem must be solved at

each iteration for fixed A;

m inc^-c. (3.8)

subject to

D - Z < d - F - X

39

E > 0

It is necessary that problem (3.8) has a non-empty feasible region. In order to satisfy

this, we use Farkas and Minkowski lemma [40]. For everj- constraint i of problem (3.8),

there is a dual variable %. Denote by u the row vector of dual variables. Then, according

to this lemma, problem (3.8) has a solution E > 0 if and only i£u- {d — F • X) < 0 for all

u for which u-D < 0 holds. The set {u/u- D < 0} is polyhedral having a finite number

of generators which we denote by u^.v?,vP. The necessary and sufficient condition

of the Farkas and Mikowski lemma is equivalent to the foUov.dng system of inequalities:

v}' • {d — F ' X) 0

u - - { d - F - X) < 0

: (3.9)

u ^ - (d - F - X) < 0 .

If the system of inequalities in (3.9) has no solution in A, then there is no A €

such that (3.8) has a solution. This implies that problem (3.1) itself has no solution.

Because of this, we assume that the problem (3.8) has a solution. Problem (3.1) can be

written as

m n { /^ • A 4 - nun {c^ • E/ D - Ç < d - F - A , Ç > 0}}, (3.10)

where % is the set of vectors A E Y which satisfy (3.9).

For a given A, the dual of (3.8) is

max V ■ (d — F ■ X)

subject to

40

v - D < c (3.11)

where -y is a row vector.

Define V = {v/v ■ D < c}. As it can be seen from (3.11), V does not depend on A.

The (u^, v^ , vP) as defined in (3.9) are extreme rays of the polytope V. If V is empty

then we can conclude that either (3.8) has no solution or is unbounded. In our case,

(3.8) always has a solution because of the structure of the problem. Since in general,

we assume that A 6 %, this implies that (3.8) has a solution. Then problem (3.8) has

an unbounded solution. Therefore, problem (3.1) is unbounded. By using the duality

theorem [40], (3.1) becomes:

min - A + max{u • {d — F ■ X)/u ■ D < c}}. (3.12)

Assuming V is not empty, define (u^, v~...., v^) as vertices of V. The number of vertices

are finitely many. Then (3.12) can be written as:

m in { /^ -A + max {u* - (d - F ■ A)}}. (3.13)

Therefore, equation (3.13) is equivalent to

min 2
(a,A)

subject to

2 > • A + • (d — F ■ X)

2 > • A + - (d — F • X)

(3A4)

41

z > • A + • (rf — F • A),

(3.15)

where A E % and z is unrestricted.

The problem (3.13) is called the master program. Since, (3.8) or (3.11) in our case

always has an optimal solution, we do not need to add the system of inequalities in (3 .7)

to (3.14). In the general case, we have to do so. The number of constraints in (3.14)

is equal to the number of vertices, which means that the number of constraints can be

enormous. On the other hand, the number of active constraints is equal to m+ 1 where

m is the dimension of the A vector. One can solve (3.14) explicitly if the problem size

is small. Otherwise, we have to find an efficient way to solve this problem.

Suppose that at some stage only some constraints of (3.14) are known exphcitly.

We can construct another problem called restricted master problem by using subsets of

inequalities selected from the constraints of (3.14). Specifically,

minz

subject to (3.16)

2 > / ^ • A + • (d - F . A), (Vy € .7)

where A E z unrestricted and J C 1,2,.... q.

This problem can be solved by using the simplex or other LP methods for Y =

(like interior point methods). In general, it is easy to solve the dual of (3.16) which

gives nice structures [40].

Next, we explain the algorithm explicitly. Let (Â, z) be an optimal solution of (3.16).

If (3.16) does not have a solution, then this is also true for problem (3.1). Therefore,

42

we stop the computations. Then 5 is a lower bound of z" which is an optimal value

of the master problem and of problem (3.1). We need to check if (A.z) satisfy all the

constraints of (3.14). Then we solve problem (3.11) for A = Â . We assume that (3.11)

has a solution for A € %. Actually. (3.11) has an optimal solution for all A. Then there

are two cases we should consider.

Case 1:

We have a finite value optimal solution for the sub problem in (3.11). Since this is

an LP, the optimal solution is reached at a vertex of V . In addition to this, we have

z > • Â + V • (d — F • X).

This is also true for all vertices of V. So, we can write

~ > / ^ . Â + u ^ . (d - F - Â) , j = l , 2 , . . . ,9 .

It follows that the current solution of (3.16) is an optimal solution of (3.14) and it

is an optimal solution of (3.1). Then, the algorithm terminates.

Case 2:

The optimum of (3.11) is bounded and we have

z < • A + Ü • (d — F • Â)

So, we can say that(z > -X + v- {d— F)-X) is not satisfied by the current solution

of (3.16). The following constraint must be added to (3.16) to form a new restricted

programme.

z > • X -r V • {d — F - A)

43

Initialize:

Let (Â, z) be an optimal solution of (3.16)

Solve the sub problem (3.11)

Main Step:

While z > ■ X- rv ■ {d — F ' X) is not satisfied

-Add to the restricted program constraints not satisfied by

the current solution

-Solve the restricted program with z > • X + v ■ {d — F ■ X)

-Solve the sub problem

End

Table 3.1: Benders Decomposition Algorithm

The algorithm is given in table 3.2.

Problem (3.11), which is called Benders sub problem, has a very nice structure in the

case of SVR formulation, because constraints matrix D is a diagonal, and its diagonal el­

ement is -1. We can find an optimal solution for (3.11) by using the procedure described

in table 3.2. In addition to this, subproblem (3.11) is bounded and always has a solution.

Note that the elements of vector c are the trade off values in SVR. So, we don’t have

to store vector c explicitly. We have explained the Benders Decomposition technique

for support vector regression case(SVR). In SVR case, solving the sub problem is not

difficult comparing with other applications of this technique. On the other hand, we

44

Given y

For i = 1 :2l

] £ { d - F - X) i < 0

Vi = —Ci

Else Vi = 0

End If

Next

Table 3.2: Procedure to solve subproblem in SVR case

need to find an efficient way to solve the master program. Since at each step we have two

matrix vector multiplications efficient matrix multiplication techniques can be applied.

Two problems have to be solved each iteration. Either the simplex algorithm or an

interior point method can be applied to solve these problems. Benders’ sub problems

generates a cut at each iteration for the master problem. If the solution of the subprob­

lem is not optimcd, the cut in Benders decomposition is called inexact cut. For more

information about inexact cut algorithm can be found in [63]. This would improve the

performance of the algorithm. As we mentioned before, the subproblem has very nice

structure and properties. There is no need to use any optimization algorithm at all.

For solving master problem, primal-dual algorithm or analytical center method seem to

be good selection [39, 26]. Bender decomposition algorithm is implemented in CPLEX

[30].

4 5

Chapter 4

Training support vector m achines

w ith very large datasets

We begin by discussing three approaches to training SVAl with very large datasets, and

then we discuss how these can be seen as special cases of a general approach to fast

training that is in the spirit of hierarchical training.

4.1 Clustering and Bagging techniques for Support Vector

Machines

In this section three methods will be discussed which are clustering, sub-sampling and

bagging methods, k-means clustering algorithm will be discussed briefly and shown how­

to apply to the classiflcation.

46

4.1 .1 Support C lusters

Given a finite sampling of points from a space X, the target of clustering is

to group the data into sets of "similar” points [10]. In another way, clustering is the

task of grouping the objects together into meaningful subclasses. Clustering algorithms

can be classified into two categories: partitional and hierarchical. Partitional clustering

algorithms such as k-means, k median, obtain clusters of objects by selecting cluster

representatives and assigning each object to the cluster with its representative closest

to the object. On the other hand, hierarchical clustering algorithms produce a nested

sequence of clusters. We will apply the k-means algorithm to our problem. The reason

is that we need a fast and efficient algorithm to find the clusters of large datasets.

The k-means algorithm tries to find a partition of data which maximally separates

the clusters through the minimization of a cost function. Let us give an explicit definition

of the clustering problem that we deal with. Given I points ...,z^} in the n

dimensional real space R^, and a fixed integer k of clusters, determine k centers in R^,

{c^,cr, ...,</}, such that sum of the distances of each point to a nearest cluster center

is minimized. The clustering problem can be expressed as the following optimization

problem

I
min min ||a;*-c^||. (4.1)

where ||.|| is some arbitrary norm on i î”.

If we consider problem (4.1) with the 2-norm squared, the iterative algorithm is

the k-means approach to clustering [10]. The underlying optimization problem for the

47

k-means algorithm is

k I
min 53 til ■ (0.5 • ||z' - c '|||)

1=1 i= l
I

subject to 53 1 ^ 0 * = 1, —, I- 1 = 1, —, k, (4.2)
/=i

where tn are selection variables.

Given k cluster centers at iteration j, compute

by the following two steps:

1. Cluster assignment : For each 2 = 1,..., I assign z* to cluster Z(i) such that jg

nearest to â in the two norm.

2. Cluster Center Update: For I = 1 ,.... k set to be the mean of all assigned to

c^J.

Stop when ĉ ’-Z = I =

Table 4.1: Prototype of k-mean algoritlun

As a first step, the size of the problem (2.32) can be substantially reduced with the

following preprocessing: instead of using all the example points to train a machine (a

“global" SVM), first we can group the points of each class separately into a number of

clusters and then use one representative point from each cluster, such as the centroid

of each cluster (we could also use a point “difficult" to classify if we can find one), and

train first an SVAl using only these representative points. In a recent paper, a similar

48

idea is proposed [34]. By doing this, we reduce the size of the problem substantially

because the number of clusters can be for example 5 % or 10 % or less of the whole

data. In this case, we spend some time to find the cluster centers but we reduce the

time spent to train the SVM.

Using the characteristics of SVM discussed above, namely that the final solution

depends only on the support vectors, once an SVM is trained using only the centroids

of the clusters we can then reconstruct the initial example data corresponding to the

centroids that are support vectors in this first iteration (call them support clusters).

We can then either train one SVM using all these initial example data if they are not

too many, or repeat an iteration of clustering and training an SVM with the centroids

only, this time though by clustering only the initial example data corresponding to the

support clusters of the first iteration. Furthermore, instead of clustering this subset of

the initial examples using the same support clusters found before, we can increase the

number of clusters used (that is, use more clusters than the number of support clusters

of the first iteration). W*e can repeat this process of clustering, training, using only

the support clusters found, until a condition is satisfied: this can be for example either

that the number of initial examples within the current support clusters is small enough

to train one SVM using all these initial examples, or that the set of initial examples

included nithin the current support clusters does not change significantly firom the

previous iteration.

The justification of a clustering based approach (each iteration in the agorithm

described above) can be explained by using the checker-board data shown in figure 4.1

[34]. First we cluster the data of each of the two classes (separately) for example using

49

the k-means algorithm [7]. As it can. be seen from 4.2, we can represent the class 1

examples with 23 centroids, and if we have those points, we do not need the whole data.

The same argument holds for class -1. As it can be seen from figure 4.2, we can represent

the whole data set (1000 points) with 100 cluster centers. We can then train an SVM

using only those 100 points. This will lead to a set of support vectors - support clusters

- from which we can then reconstruct the initial example points to train another SVM

(or repeat the clustering and then training iteration). Since the size of the new problem

is smaller than the initial one using all the example data, the computation time is less

than the conventional S\T^1 algorithm. Moreover the advantage of this procedure is that

we do not lose any information like in the case of reduced support vector machines [34],

because the procedure we used does not choose the data points randomly. In a sense

the proposed method uses a combination of clustering and S\Tvl as a way to choose the

important data points for the next iteration. Of course on the other hand, we spend

more time to find the cluster centers. If some fast clustering algorithms are used, the

total time to find the optimal li\-perplanes can be reduced. We show experiments of total

computational time and predictive performance of the methods in the next chapter.

4.1 .2 Su b-sam p ling and B agg in g M eth o d s

Training many learning machines each using a small random sub-sample of the initial

example data and then combining the machines through voting has been suggested in

the past as a way for fast training with ver\' large datasets (i.e. [20]). For the case of

SVM, however, one can turn this approach ‘maturaily" into a hierarchical one by using

again the characteristic of SVAI that only the support vectors are important for the final

•50

200

180 .

160

140

120

• , 0

80- ,

60

40.

20 ■ “

0 20 40 60 80 100 120 140 160 180 200

Figure 4.1: The checkerboard data without clusters.

solution. Consider the following method: first generate a number N of small random

sub-samples (say 1 0 % or less of the £ example data) of the whole initial training set,

and then train an SVM with each of the sub-samples separately (which can be done

in parallel). This is the same process as that for bagging learning machines [12]. In

bagging type methods [20, 12] the N resulting machines are combined through a voting

scheme. In this case, however, we can consider only the support vectors of each of the

N machines and then repeat the same process. Specifically, generate a new set of sub­

samples of the support vectors of the first iteration, train an SVM with each of the new

sub-samples, and continue until the following condition is satisfied: either the union of

the support vectors after the iteration is small enough in size in which case train one

SVM using all the support vectors of all the machines, or, if not, the set of all support

vectors of all N machines does not change significantly from the previous iteration in

which case the N machines can be combined through a voting scheme like in bagging.

51

2 0 0

180

160

140

120

100

80

60

40

20

0

O ■

o.
G - ,

. f i - .

--0 ••©.

o-

G.

• ■"‘o-V ■'

o.-.- o..=

--G / • "Q"

o : . '.G-:

o

- - • p

■ o-
•- \ Q / ■

50 100 150 200

Figure 4.2: Clustering the checker-board data. Red color shows the whole data (486

points) and blue circles are the clusters centers (50 points). We can represent the whole

data set by only 50 points. Those points are used for the SVM algorithm.

Notice that at each iteration each of the SYMs can be trained in parallel, and that at

each iteration we "disregard” the initial example points that are not support vectors in

any of the SYMs. Furthermore, each of the SYM is trained using a small set of data.

Hence it can be fast. We have run this approach - only for one iteration however - for

a number of datasets.

The bagging methods can be described by ensembles of kernel machines for support

vector machines. Given kernel machines (decision functions) f i{x). f 2 { x) . f ^ r { x) (e.g.

each fn is found by using different training data or different kernels), we combine them

into the following

52

' • ; : : , ;

1301 ■■■ - '

1 8 0 : .. / j , ' i . ' - : -

1 40- ■ ... - y " • ••'

r ; ^

' . ' . ' : ' . °

W- . .r: : ' ' ' : / : :
60 . ; . ' , '■•' “

40 . J : _ ■ ■'<

2 0- ■ . v:

0 20 40 60 80 100 120 140 160 180 200

Figure 4.3: The checkerboard data set and 131 total clusters. The big circle shows the

clusters. We choose only 20 % of data to represent the whole data set (650 points).

F(x) = C i f i (x) + C 2 / x (2) + . . . + C n f n (^) : (4.3)

N
where c i.cg ,.... c^ > 0 and 2C == 1- We can select the cis to be equal as follows

1=1

Cn = n = l , 2 , N. (4.4)

In this case, each machine is weighted equally. Bagging method may increase the sta­

bility of the algorithm[20, 48]. It can be shown [20] that the error bound for bagging

method for any given ô with probability 1 — t; with sample size a of the training set and

each having a stability ,5 ̂ is

E|(e(-î,F(:r))l = + y ' f - + ^ ^ +1) (4.5)

53

200

180

160-

140 :

1 2 0 :

100

80

60

40

0
20 40 60 80 100 120 140 160 180 200

Figure 4.4; Support clusters wliich are found by using the SVM and original data that

we extract by using those clusters. We use the clusters in figure 4.3. Support clusters

are the clusters that we found by SVM.

where 0a is assumed to be a non-increasing function of a , Dn,a training sets of size

a , 5 > 0 ; and I size of the whole dataset.

4 .1 .3 H ierarchical T raining M eth od s

Both of the methods described above can be seen within a family of methods for fast

training with very large datasets, namely hierarchical training methods. In both cases

the original training problem is approached in a hierarchical way: first a set of smaller

scale SVM problems is solved, and then based on the results of this iteration (in this

case on the support vectors or support clusters found), a next set of SVM problems

is solved. In the case of support clusters, the approach can be seen as solving the

classification problem from a "low" to a "high resolution": at the first iteration all

54

points belonging in the same cluster (points close to each other) are treated as one

point. At each iteration we "increase the resolution of the space” by clustering the

initial example points corresponding to the support clusters of the previous iteration

using however a larger number of clusters - which is equivalent to grouping the example

data at a higher spacial resolution. There has been no formal framework for developing

and studying such hierarchical methods, which can be valuable for designing other such

methods. We now turn to discussing some experimental results that show how these

preliminary hierarchical training methods work.

4.2 7-SVM Algorithm

The main idea behind all the classification techniques is to find a hyperplane that sepa­

rates two classes with very small error. Support vector machines identify two bounding

hyperplanes such that

yi - (w - Xi + b) = I fori € P (4.6)

yi - {w - Xi + b) = —1 fori € N

where P are the positive examples (% = -M) and N are the negative examples {yi = — 1).

If we find a way to obtain the data points that are close to those hyperplanes, then

we reduce the number of data points by using an efficient pre processing algorithm. We

propose an algorithm which is described in table 4.2.

SVM algorithm or other classification algorithms tiy to find a hyperplane that sepa­

rates two classes of points with a minimum error. The solution of the SVM optimization

5 5

problem gives two parallel hj-perplanes which, are defined above in (4.6). The optimal

hyperplane is in equal distance firom each class. Suppose we have obtained the data

points which are close to two hyperplanes defined as above. By obtaining those points

we reduce the size of the training data in the SVM. That help us to solve the problem

efficiently. The question is how can one identify those points. What kind of metric we

need to use?

We can use any norms to compute the distance. Suppose we are given a set 5 of

points Xi € i î” with each Xi belonging to either of two classes defined by t/j € {—1 , 1 }.

The first step is to split the set S into two groups Si, So such that Si contains all the

data points in one group and Sg contains the other one. First take a point firom Si and

compute the distance firom data points in So. Then compare the distance with a user

defined number 7 . If distance is less than 7 put this point to a new set S*. Repeat this

computation for each point in So. After this process, the training set has been reduced

to S ’ which is much smaller in terms of cardinality than the set S. Then the SVM

algoritlun can be applied to the new data set S ’ . The algorithm is given in table 4.2.

4.2 .1 7-S V M in feature space

The decision surface in input space X is usually nonlinear. Using the 7 -SVM algorithm

in input space does not always reduce the number of points in the final set. In addition

to this, the distance between the centroids of two sets in input space X is not always

a good approximation to the margin. Because of this flaw, we need to find a good

threshold (7). This can be accomplished in the feature space H. We can compute the

distance between two points in feature space and apply the 7 -SVM algorithm in feature

5 6

space.

Let us explain how to compute norms in the feature space. The norm of a vector

X € in input space can be computed as

Ikllx = ^ x \ + x |-h ... + x^. (4.7)

Norm of a point in feature space can be expressed as

\\<f>{x)\\H = \!< 0(x),o(x) >. (4.8)

As it can be seen from (4.8), norm can be expressed through a dot product. This

can be computed by using kernel functions. Specifically,

||o(^)||h = ^ é{x) ■ 4>{x) (4.9)

llo(x)ii7j = \/k (x ,x).

The distance between two points x. y ia. H can be computed as follows.

||o(x) - 0{y)\\o = \J< o{x) - o{y), o{x) - o{y) > (4.10)

= V 4>{x) • o(x) - é{x) ■ o{y) - é{y) • <j){x) + é{y) • o{y)

= ^Jô{x) - o(x) - 2 - o(x) • à{y) + ô{y) ■ o{y)

= \ J x) - 2 - &(x, y) + k(y, y).

If we use the radial basis kernel function to compute the distance, equation (4.10)

can be simplified by using the fact that k{x. x) is equal to 1. Then we have the following

expression

5 7

(4.11)

Next, we have to compute the threshold in the feature space. This can be done

in two ways. First find the centroids of two sets in feature space and then compute

the distance between them. Second way is that centroids are computed in input space

and then by using equation (4.11), distance is computed in feature space. To deal with

overlapping classes (data points), threshold value should be adjusted. By doing that we

make sure that final set contains non-overlapping data points also.

Separating fiyperptane: x'w b - 0
x'w b - 1 \

. x’w-b = -1

0 -

-2
•15 -10 5 10 15

Figure 4.5: Solution of proximal support vector machine classifier

The relationship between this algorithm and the proximal support vector machines

algorithm (PSVM) [22] is that PSV’M finds two hyperplanes such that data points from

each class clusters around them (see figure 4.5. On the other hand, our algorithm

58

identifies the data points from each class such that distance between them is less than

some threshold value. Those points are possible candidate as support vectors.

□ □

-2
-15 -10

Û ■

10 IS

Figure 4.6: Identifying the closest points by using the algorithm we proposed. By

exploring the sparsity of SVM theory, we do not need to whole dataset, we can use only

filled data points shown in figure.

We will explore how our algorithm works with the following example (see figure 4.6).

First, the number of support vectors, > 0, is less than or equal to the number of

support vectors of other decomposition algorithms. This is what we expect from the

algorithm, because the number of points in the final set is between 1 0 -2 0 percent of the

whole dataset.

The decision surface changes v ith different kernel functions. If the radial basis

function is used (see figure 4.7), the SVTVI algorithm identifies some data points as

59

Figure 4.7: First figure(a) shows the decision surface of radial basis function kernel with

<7 = 1. In the second figure depicts the decision surface with g = 3.2.

support vectors which are not supposed to be identified. This suggest that, the SVh'I

with the radial basis overestimates the number of support vectors. This can be explained

with the following reasoning. The algorithm fits the normal distribution to the dataset

with a standard error a. If the sigma is small,which depends on the data, then all

the points will become important. Then, the decision surface will not classify the data

correctly. On the other hand, if it is large, then less support vectors will be computed.

This can be seen from figure 4.7. The optimal value of the g can be found with trial

and error.

If the linear kernel function is used, then the solution of the SVM and our algorithm

are identical which is shown in figure 4.8.

6 0

Figure 4.8: (a): In this figure, linear kernel function is used to train whole data set. (b):

Linear kernel function is used with our algorithm. Decision surface are same for SVM

and our algorithm

61

Begin

Given data set (x \ ,y i) , {xi,yi) where r , € and y G {—1 , 1 }

If yi = 1 , Put Xi in 5 i, otherwise put in S2

Set l\ to number of data points in Si

Set 1-2 to number of data points in So

For i = 1 to /i

For j = 1 to lo

Coiîipute distance d{xi, xj) where Xi € 5i and Xj G So

If d{xi, X j) < 7 Put X j to set S* with its label

Next

Next

For i = 1 to Zo

For j = 1 to li

Compute distance d{xi,Xj) where z , G So and Xj G 5i

If d{xi.Xj) < 7 Put Xj to set 5* with its label

Next

Next

Apply SVM algorithm to S*

End

Table 4.2: 7 -SVNI Algorithm

6 2

Chapter 5

A pplications and C om putational

R esults

This part consists of two main sections. In the first section we will compare Bender's

decomposition technique, support cluster methods, subsampling and 7 -SVM with other

decomposition techniques. In the second section we apply the SVhl method to S&P 500

daily return value prediction and option pricing model. SVM will be compared with

neural networks and radial basis networks.

63

5.1 Comparison o f the m ethods w ith other decom position

techniques

5.1.1 C lassification case

Let us give some information about the data set we used for classification. For support

clusters, subsampling method, and 7 -SVM algorithm the following datasets have been

used.

A du lt D a tase t comes from the UCI repository of machine learning databases. The

task is to predict if an individual’s annual income exceeds $50,000 based on census data.

There are 16 attributes changing firom age to ethnical background. The total number

of observation is 48000. Different sizes of training data will be used.

B an an a d a ta se t consists of artificial data derived from several Gaussian blobs in

two dimensions. The training set has 4000 patterns and the test set contains 1300

points. For more information on the datasets see also the UCI Repository [9].

Ford challenge data is a time series of 50000 samples produced by a physical system

(10-cylinder internal combustion engine). Each sample k of the time series consists of

four inputs and one output (k = 1 , 2,..., 50000). The first input Xl(k) represents a

binary synchronization pulse related to a natural periodicity in the system (cylinder

identifier). The second and third inputs, X2(k) and X3(k), represent context (engine

crankshaft speed in RPM and load). The fourth input X4(k) (crankshaft acceleration)

has a more direct relationship with the bipolar output Y (k) (normal firing 1 or misfire

4-1, with normals dominating), but the relationship is complicated due to the dynamics

of the system (torsional oscillations of crankshaft depend on speed and load as well as

6 4

presence of misfires prior to time k).

Splice D atase t; The task in this dataset is to recognize two t>-pes of splice junctions

in DNA sequences; exon/intron (El) or intron/exon (IE) sites. A splice junction is a

site in a DNA sequence at which ’superflous’ DNA is removed during protein creation.

Intron refers to the portion of the sequence spliced out while exon is the part of the

sequence retained. The number of cases is 3175.

M ushroom D a tase t is from Audobon Society- Field Guide. Attributes of the data

describe the physical characteristics of a mushroom. The task is to identify the edible

or poisonous mushrooms. The number of instance is 8124.

D iabetes: This dataset also came from UCI repository [9] and consists of a binary

classification task with 8 input attributes. The size of the dataset is 844.

Three different datasets are used to compare support clusters, bagging methods and

subsampling with the conventional SVTVI algorithm. The datasets we used are Banana,

Diabetes and Ford-challenge data. Banana and Ford contain 4000 training data points

and 1300 for testing. Diabetis has 468 points for training and 300 points for testing.

AU the support vector problems are solved by using Svm-Fu [52] or SVMTorch [16].

Training error is used as a stopping criterion. Specifically, we stop when training error

is smaller than 0 .0 0 1 .

We have compared the speed and performance of the algorithms that we propose in

this paper with decomposition techniques proposed by [44, 52, 16].

As it can be seen from table 5.1, support clusters method is superior to other meth­

ods. The reason is that finding the clusters of the dataset does not take much more

time, and the corresponding SVTVI is smaUer size than the other methods.

6 5

BANANA DIABETIES FORD

Support Cluster 335.3 98.7 325.5

Bagging 571 107.3 395.3

Subsampling 758 137.4 493.75

SVM 998.3 427.5 823.3

Table 5.1: Comparison of CPU time (seconds).

The next two tables (5.3, 5.4) show the comparison of 7 -SVM and SVMTorch al­

gorithms. We make two comparisons in terms of speed and generalization. Table 5.3

shows that our proposed algorithm is much faster than the SVMTorch. The reason

for that, is that we preprocess the data with a small amount of time. By doing that

we identify the possible support vectors corresponding A, > 0. The final step of the

algorithm finds only the optimal values. This step is not time consuming.

Since the 7 -SVM algorithm is based on the same theory, we expect that the quality

of the solution has to be as good as other decomposition techniques proposed to solve

the SVTVI classification problem. As it can be seen from table 5.4, generalization error

is either same as in SVM solution or better than that. For example, for ring dataset

and ford challenge dataset, we have better results.

The comparison of Support clusters, bagging and 7 -SVM with each other shows that

7 -SVAI is more efficient in terms of speed and generalization error.

Test performance shows different results than the speed up performance. When

we use the whole data set, without any preprocessing, SVM algorithm finds the global

optimum since the SVM optimization problem is convex. On the other hand, if we

66

BANANA DIABETIES FORD

Support Cluster

(Std. Error)

0.855

(0.034)

0.717

(0.067)

0.808

(0.027)

Bagging

(Std. Error)

0.899

(0.019)

0.717

(0.055)

0.906

(0.029)

Subsampling

(Std. Error)

0.887

(0.037)

0.737

(0.062)

0.837

(0.036)

SVM

(Std. Error)

0.906

(0.034)

0.737

(0.062)

0.907

(0.029)

Table 5.2: Comparison of test performance

preprocess the data like using the clusters, or take the subsample to represent the whole

dataset, the solution is not the optimal solution of conventional SVM but it is very

close to that. There is a trade-off between speed and performance. We can speed up

the process by compromising for the generalization performance. This difficulty can be

achieved by using 7 -S\n\'I because we do not sacrifice any information lost for speeding

up.

In this experiment, the banana data set is used. In table 5.5 the CLUSTERS column

contains the total number of clusters for class -1 and class 1 respectively. As it can be

seen from the above table, when we increase the number of clusters, CPU time is also

increasing. On the other hand, test performance is getting better while we increase the

number of clusters but, then performance starts decreasing. This suggests that there

is an optimal number of clusters that we need to choose in order to get better results.

67

7 -SVM(CPU Time) SVh'ITorch(CPU Time)

Banana 94.33 998.30

Ford Challenge 575.00 823.30

Ring Data 4.27 77.94

Adult 712.90 4471.80

Splice 2.08 2.17

Musliroom 40.61 51.69

Table 5.3: Comparison of 7 -SVM with SVMTorch for CPU speeds in seconds

Since SVM depends on many free parameters such as kernel parameter and trade off

value C, we might get better results for different values for C and kernel parameters.

5.1 .2 R egression C ase

Next we compare the Benders Decomposition algorithm with a standard quadratic pro­

gramming algorithm and linear programming. Primal-Dual algorithm is used to solve

LP and QP problems. We use the S&P 500 daily return value, Boston housing data

and sin function. S&P 500 daily return values are computed by using

- Xt-l
Xt-l

where rt is the return at time t, xi and x t- i are S&P 500 index values at t and (t-1)

respectively. Different training sample sizes are used, from 30 to 300.

The following table shows the results of this experiment. We compare these two

68

7 -SVM SVMTorch

Banana 90.33 90.66

Ford Challenge 92.31 90.70

Ring Data 98.75 98.00

Adult 76.00 76.00

Splice 60.00 54.00

Mushroom 93.27 95.25

Table 5.4; Comparison of 7 -SVM with SVMTorch for generalization error which is the

percentage of correctly classified data

algorithms in terms of speed. Benders Decomposition algorithm is approximately 10

times faster than quadratic programming [see' tables 5.6. 5.7]. As it can be seen from

the table below, when the sample size is getting larger, the time to solve the QP is

increasing exponentially.

Boston data has 506 training data points. The results of our experiments are shown

in tables 5.6, 5.7.

In order to see the speed we gain from decomposition, we need to compare with

other existing algorithms. For comparison, an interior point QP algorithm and LP

algorithm are chosen respectively. The following table (table 5.8) suggests that. Bender's

Decomposition method is faster than the other two methods. We use the sin function

with 104 data points.

69

CLUSTERS TIME (CLUSTERS) TOTAL TIME PERFORMANCE

159 140.72 478.22 0.424615

320 178.95 704.18 0.854615

479 239.42 766.72 0.818462

999 414.3 941.6 0.733077

Table 5.5: Comparison of number of clusters

Number of Examples Benders Decom.(CPU Time) Std. QP Form.(CPU Time)

30 2.6 35.7

50 2.3 24.7

100 50.1 152.7

200 104.3 1489.3

300 107.6 3925.3

Table 5.6: Comparison of Benders Decomposition with standard QP algorithm for dif­

ferent sample sizes

5.2 Applications to Financial Markets

5.2.1 P red iction o f S& P 500 D aily R etu rn V alue

Prediction of the economic indicators of a market is very crucial. If one has robust

forecasting tools, then he/she will increase the return on investment. The financial

forecasting problem is very comphcated due to the number of factors that can influence

the market. In addition to this, choosing the important factors is also very difficult.

7 0

CPU time vs. # of ausiers

SCO

2>»0 830 1000
Numftof of Clusters

Figure 5.1: CPU time vs. Number of Clusters SVM.

Usually, one has to reduce the number of factors in his/her model. This can be done by

using some statistical techniques.

Since, it is very difficult to predict the price of an individual stock, S&tP 500 daily

return data are used for the financial forecast application [58, 29]. Previous daily return

values are used as input. Daily return will be computed by using the following equation

n =
xt - X t-l

(5.1)

where rj is the return at time t,xt is the S&P 500 index value at t, and x^_i is S&P 500

index value at t-1.

Data are gathered from the Yahoo's financial web site. Daily return values are

computed by using the above equation. Training data are sampled from June 9, 1999

to January 10, 2000. Test data are from Januarv- 11, 2000 to March 12, 2000. In our

71

Correctly classified test data (percent] vs. H o(clusters

? 07
a 0.6
■p£ 0.5

2 0.4

0.3

203 «00 600

4 ot C(u!»t«>rs
dco 10Û0 11>00

Figure 5.2: Correctly classified test data (percent) vs. number of clusters

experimentation, we approximate the following dynamical system.

f { , ^ t — — 2 r — A t — o) : (6.2)

where Xt is S&P 500 index value at time t. A Matlab implementation of the SVR

algorithm is used for quadratic programming. The primal dual interior point method

is used for finding an optimal solution. For linear programming problem, Benders

decomposition technique for support vector machines [59] is used. SV regression is

compared with other techniques such as MLP, HBF networks and ARIMA model. There

are several issues that we need to consider in the SVR application. First of all, we need to

determine some parameters before running the particular algorithm. These parameters

are , C and kernel function. We set to C = 1000. Radial basis kernel function is used

with different parameter values. Specifically, width is set to 0.1, 0.15, 0.20,0.25,0.5,

72

Number of Examples Benders Decom.(CPU Time)

30 11.6

50 19.48

100 34.8

200 59.4

300 82.1

Table 5.7: Comparison of CPU time for different sample sizes. Boston housing data is

used.

Methods CPU Time

Bender's Decomposition 4

Standard LP(Without Decomposition) 11.8

Standard QP (Without Decomposition) 240

Table 5.8: Comparison of CPU time for different methods(Bender's Decomposition,

Standard QP and LP algorithms .

0.75, 1, 2.5, 5, 10, 50 and 100. As the width of the radial basis kernel increases from

0.1 to 100, we get worse results in terms of the prediction. In addition to this, we have

very good forecast results for training period when we use small width. On the other

hand, we obtain poor results in testing, period. As we increase , the accuracy of the

prediction also increases. This can be seen from figures 5.4 and 5.5.

For the MLP case, different network architectures are used in order to find the

best solution in terms of mean square error. The problem is that the back-propagation

73

‘J «•

c <

Figure 5.3: Estimated and actual value of sinx funtion (+ is actual, solid estimated).

algorithm does not find the global minimum because the objective function is not convex.

Therefore, the results we have are not as good as in the SVR case. Figure 5.6 illustrates

the mean square error of the different MLP architectures.

For RBF networks and ARIMA model, we use the same structure. For each method,

the best model is chosen. We compare these four models in terms of MSB’s. The table

5.9 is shown the results.

According to the results shown in table 5.9, Linear Programming formulation of

SVR is better then the other methods. Overall, the SVR approach is better than the

time series methods and neural networks approaches.

5.2 .2 O ption P ric in g M odel

One of the goals of financial methods is asset evaluation which means determining the

market price of an asset, predicting what this price will be in the future, and how it

74

M SCs For S*fM

CX00014

0.00012'

-i
- ̂ - J

r ^ *

r“".
►

- ^

;

J 000004-
{

iD 10 20 30 40 90

O

60 70 so so TC»

Figure 5.4: MSB's for SVM Regression (MSB vs. RBF Parameter)

will move with other indicators. This information is valuable for minimizing the risk

of a portfoho. Most of the theoretical work on option pricing has focused on Black-

Scholes option pricing model after the seminal papers of Black-Scholes[8]. The model

was derived under strict assumptions. There has been a lot of research that focused on

what would happen when those assumptions are relaxed [36, 55, 25, 23].

An option pricing model can be used for hedging; that is building a basket of assets

in such a way that their payoff is without risk and equating the price of such baskets to

that of the risk free assets. Combination of basic asset and derivatives will be included in

this basket [3]. In that way, option models control the risk which is related to underlying

assets.

An option is the right to buy or sell an asset in a determined time and price. Option

price depends on the underlying asset price, time to maturity, volatility and risk free

interest rate. A lot of research focus on how one creates a portfolio so that the risk

75

MS ES tor SVM Regress on (Tes ting Perioci)

O jO O I O

O jO O O O

20 40 60 60 100

Figure 5.5: MSB's for SVM Regression (MSB vs. RBF Parameter)

can be minimized. There are several approaches for option pricing models such as

binomial options and Black-Sholes option model[8, 25, 28]. We will focus on Black-

Scholes option pricing model which has been applied to securities ranging &om stock

options to future options. It is a closed-form model that is obtained by using a dynamic

hedging argument and no-arbitrage condition. Since the closed-form expression is not

available in many cases, pricing formulas may still be obtained numerically. The price of

the derivatives depends on the underlying asset's price dynamics. If the specification of

this stochastic process of the asset's price is defined incorrectly, there could be a failure

of the parametric model [29].

There has been been a lot of work on non-parametric approaches the so called data-

driven techniques. Some authors have proposed data-driven methods for pricing and

hedging derivative securities by using minimum assumptions on the dynamics asset's

price and the derivative models. Generally, these methods are called non-parametric

7 6

Maan Square Error for Different MLP Networks

O jO O O T

a oooos

O JO O O T

30

 Trainq Peiiod h6E •Toting Period MSE

Figure 5.6: MSE vs. Number of Hidden Units for MLP Network

pricing models. For instance, radial basis function(RBF), multi-layer perceptron(MLP),

projection pursuit regression(PPR) and linear regression models are used to compare

B-S pricing models in [29, 3, 24, 60]. We propose another non-parametric method for

option pricing which is called support vector regression(SVR). The benefit of SVR is

that we solve a convex optimization problem.

Monte-Carlo Simulations of Black-Scholes Formula

Non parametric approaches such, as neural network and support vector regression can

approximate complex nonlinear functions with very small errors. We are looking for an

answer to the following questions as in [29]. Our contribution is that by using SVR we

solve a convex optimization problem and find the optimal architecture of the resulting

RBF network , wdiile in [29] a nonconvex optimization problem is solved that does not

provide necessarily the best architecture. Can the SVR technique recover/learn the B-S

77

formula?

MSE (Training) MSE (Testing)

SVR 0.0000846 0.0002357

SVR Bender's 0.000122 0.000233

MLP 0.0001317 0.0003217

RBF 0.0000779 0.0002436

ARIMA 0.0001093 0.0002379

Table 5.9; Best Models for Each Technique

The B-S option prices are generated by using Monte-Carlo simulation and trained by

using SVR. The results of the SVR are compared with B-S formula to see how close the

results of the method are to those of B-S formula. First, the stock price(S) is assumed

to follow a geometric Brownian motion which is given by

dS{t) = (5.3)

where 2 is a Wiener process. We draw 506 pseudo random variâtes Zt from the

distribution JV(/i/253, cr~/253) to obtain two years of dahy continuously compounded

returns which are converted to prices with

S{t) = S(0) • exp Z i),t > 0.
i=i

(5.4)

As it can be seen from the following equation, the B-S formula is a function of the

stock prices, time to maturity, the risk-free interest rate r, and the volatility of the

underlying assets continuously compounded return.

7 8

C(() = (5.5)

where

(T V J — t

X is the strike/exercise price, and o(.) is the standard normal normal cumulative dis­

tribution function. We %iH keep r and a fixed trough the training process. By doing

that, we reduce the number of inputs in B-S formula to two, stock price and time to

maturity. One can make <j as an input variance by using the implied standard deviation

from the observed option prices as the current estimate of the volatility [15].

Given simulated stock prices, option call prices are constructed according to CBOE

rules. Expiration date is the third Friday of each month. CBOE puts each stock option

on one of the cycle, which is Januarj', February, or March. For instance, January cycle

consists of January, April, July and October. If the expiration date for the current

month has not been reached, options trade with the current month, next month and

two months in its cycle. If the expiration date has passed, options trade with the next

month, the next but one-month and next two months in its cycle. For example. Stock

Y is January cycle. At the beginning of January, options are traded with Januarv-,

February, April and July expiration dates. At the end of January, the expiration dates

are February, March, April and July. At the beginning of June, they are traded with

June, July, October, January and so on. The CBOE sets the strike prices at multiple

of S5 for stock prices in the S25 to S200 range. If the stock price moves outside of

79

the current strike-price range, another strike-price is added for all expiration dates to

bracket that price. We set fj, = 0.10 and a = 0.20. Then, Z{t) which is normally

distributed with (/i/253, cr/253) is simulated for 2 years. Then Z(t) is used to compute

stock price S(t) by using (5.4) where S(0) is 50. The B-S option call prices, and other

variables, di, do are simulated through 2 years. Figure 5.7 shows the sample stock price

path.

75

70

65

60

1 101 301 401

Number of

Figure 5.7: Sample path of the stock price

Application o f SV R to the B-S Formula

Since the optimization problem that we solve in SVR formulation is convex, we find a

global optimal solution. Other methods, such as neural networks and RBF have a non­

convex error function to minimize, and therefore the solution is not a global optimum

solution. SVR has been applied to several areas such as biotechnology and meteorology.

8 0

In this paper, we try to investigate the behavior of the SVR model in option pricing.

Then, we compare with MLP and RBF networks. We compare the testing error for

those methods.

We consider 6000 data points generated from the B-S formula. We divide the data

into two parts: the first part is used for training SVR, and it consists of 4500 data

points. The second part,consisting of 1500 data points is the set of testing data.

Option call prices depend on the underlying stock price(S(t)), time to maturity,

volatility(c) and risk free interest rate(r). In order to keep the relation simple we

assume as in [29] that the call price (C(t)) is a function of S(t) and time to maturity

(T-t). C(t) and S(t) are normalized by dividing by X .

C (t)/X = / (S (t) /X ,(T - f)) (5.6)

In this experiment, we would like to see how SVR, methods works for out of sample

data points. The prediction is compared with the B-S call prices. We need to specify

some parameters for SVR methods. Specifically, the kernel function, its parameters

and trade-off constant C have to be chosen before finding the solution. Radial Basis

Kernel function (RBF) with different a is used and C is set to 10000. The following

table shows the mean square error(MSE) and standard deviation for different cr values.

Error is defined as the difference between the B-S call price and predicted value.

As it can be seen from table 5.10, when we increase a in radial basis function, the

mean square error of test data becomes smaller. Predicted call prices are very close

to the B-S call price. At this point, we need to compare with other non parametric

8 1

a MSE Std. Deviation

0.25 10.7311 43.6406

0.50 27.2218 22.1256

0.75 21.136 42.4486

1 1.67979 14.1565

1.5 1.00869 5.32272

3 2.74875 9.81067

7 0.443882 0.581088

50 0.014091 0.0877269

100 0.0143457 0.088257

Table 5.10: Test error for different configurations of SVR

approaches such as neural networks and radial basis networks.

MSE Std. Deviation

SVR 0.01409 0.0857

MLP 0.015039 0.0843

RBF 0.0145 0.0877

Table 5.11: Comparison of SVM and MLP

We have compared SVR with multi layer perceptron(MLP) and RBF. One hidden

layer with different number of inputs are chosen. In this experiment, we choose a

network with minimum MSE which is a (2 — 30 — 1) network structure. Then, we

compare this one with the best SVR configuration. The MSE s of these two methods

82

are very close. However, as it can be seen from table 5.11, the SVR method provides

the minimum MSB. This suggest that the SVR method is better than MLP in terms of

generalization.

MSB

Out of Money 0.04392

In the Money 0.00008

At the Money 0.01047

Table 5.12; Comparison of Error for out of money, in the money and at the money

Table 5.12 shows how SVR method behaves with different options such as out of

money, in the money and at the money. With in the money option, the result of SVR

is very close to exact B-S calculations. If the option is in out of money, this method

makes more error. Therefore, it is safe to say that, this method can be used for in the

money option.

83

Chapter 6

Summary, Conclusions and

R ecom m endat ions

6.1 Summary

In this study, we used different decomposition technique to train SVM and SVR. The

Benders Decomposition technique has been applied to regression problems. The sub­

problem, arising from this algorithm has very nice structure. We showed that it can be

solved without any optimization algorithms. We also applied clustering techniques to

reduce the number of data points in the training set. Splitting and bagging techniques

that are stable in terms of generalization are also used. Finally, for the classification

problem, very efficient pre-processing algoritlim has been developed and applied to var­

ious large datasets.

Comparison with other decomposition techniques (SVMFu and SWITorch) shows

that support clusters, bagging and subsampling methods are more efficient in terms

8 4

of speed. On the other hand, generalization error is same or larger for support clus­

ters, bagging and subsampling methods. 7 -SVM method is compared with SVMTorch.

7 -SVM outperforms the SVMTorch in terms of speed and generalization. Since the

estimation of the margin is used as a threshold, 7 -SVM is sensitive. If we chose large

threshold then the final set contains more points and if it is small then the set contains

only overlapping points.

6.2 Recommendations for Future Research

Future research for Benders decomposition technique would be to develop an algorithm

for the classification problem. The structure of the master problem in Benders decompo­

sition method can be investigated for employing more efficient optimization algorithms.

Interior point methods or cutting plane algorithm can be investigated to solve this prob­

lem. In addition to this, matrix approximation technique can be investigated to reduce

the size of the kernel matrix [53, 21].

Hierarchical methods for support vector machines can be investigated in context of

clustering or bagging methods. Instead of using one iteration to reduce the size of the

training data, two or more iterations can be used. Theory' of the clustering algorithm

can be investigated for finding better partitioning algorithms.

Finally, more efficient and stable technique can be investigated for finding a good

threshold for 7 -SVh'I algorithm. This can be done by using the formulation of margin

or radius in SVM.

85

Bibliography

[1] H. Almaullim. Y. Akiba, and S. Kaneda. On handling tree-structure attributes in

decision tree learning. In Proceedings of the Twelfth International Conference on

Machine Learning, pages 12-20. Morgan Kaufmann, 1995.

[2] J. Aronis. V. Kolluri. F. Provost, and B. Buchanan, the world: Knowledge discovery

from multiple distributed databases. In Proceeding of Florida Artificial Intelligence

Research Symposium (FLAIRS 97), 1997.

[3] E. Barucci, L. Landi, and U. Cherubini. Computational methods in finance: Option

pricing. IEEE Computational Science and Engineering, pages 66-80, 1996.

[4] M. S. Bazaraa and H. D. Sherali. Linear Programming and Network Flows. John

Wiley & Sons, 1990.

[5] J. F. Benders. Partitioning precuders for solving mixed-variables programming

problems. Numer. Math, 4:238-252, 1962.

[6] K. P. Bennett and C. Campbell. Support vector machines: Hype or hallelujah?

SIGKDD Explorations, 2(2): 1-6, 2000.

[7] C. Bishop. Neural Networks for Pattern Recognition. Oxford UP, 1995.

86

[8] F. Black and M. Scholes. The pricing options and corparate liabilities. The Journal

of Political Economy, 81(3):637-654, 1973.

[9] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases, 1998.

http: / / www.ics.uci.edu / ~mlearn/MLRepository.html.

[10] P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian. Mathematical programming

for data mining: formulations and challenges. Journal on Computing, 11:217-238,

1999.

[11] P. Bradley and O.L. Mangasarian. Massive data discrimination via Unear suppport

vector machines. Optimization Methods and Software, 13:1-10, 2000.

[12] L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.

[13] C.J.C. Burges and B. Schdlkopf. Improving the accuracy and speed of support

vector machines, pages 375-381. MIT Press, Cambridge, MA.

[14] C..I.C. Burges. A tutorial on support vector machines for pattern classification.

Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

[15] M. Chesney and L. Scott. Pricing european currency options: A comparison of the

modified black-scholes model and random variance model. The Journal of Financial

and Quantitative Analysis, 24(3):267-284, 1989.

[16] R. CoUobert and S. Bengio. Svmtorch: Support vector machines for large-scale

regression problems. Journal of Machine Learning Research, 1:143-160, 2001.

8 7

http://www.ics.uci.edu

[17] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297,

1995.

[18] G.B. Dantzig and P. Wolfe. The decomposition principle for linear programs.

Econometrica, 29:767-778, 1961.

[19] P. Domingos. Linear time rule induction. In Proceedings of the Second International

Conference on Kowledge Discovery and Data Mining, pages 96-101, 1996.

[20] T. Evgeniou, M. Pontil, L. Perez-Breva, and T. Poggio. Bounds on the general­

ization performance of kernel machines ensembles. In International Conference in

Machine Learning. Stanford, California, 2000.

[21] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel represen­

tation. Technical report, IBM T.J. Watson Research Center,NY, December 11,

2000.

[22] G. Fung and O.L. Mangasarian. Proximal support vector machine classifiers. KDD,

2001.

[23] D. Galai. On the boness and black-scholes models for valuation of call options. The

.loumal of Financial and Quantitative Analysis, 13(l):15-27, 1978.

[24] .J. Galindo. A framework for comparative analysis of statistical and machine learn­

ing methods: An application to the black scholes option pricing equations. Tech­

nical report. Banco de Mexico, Mexico, DF, 04930, 1998.

[25] R. Geske and R. Roll. On valuing american call options with the black-scholes

european formula. The Journal of Finance, 39(2):443-455, 1984.

88

[26] J. Gondzio, R. Saikissian, and J.-P. Vial. Using an interior point method for the

master problem in a decomposition approach. Technical report, Logilab, EEC,

Section of Management Studies, University of Geneva, Switzerland, 1996.

[27] R. Holte. Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 3:63-91, 1993.

28] J.C. Hull. Options, Futures, and Other Derivative Securities. Printice Hall, Engle­

wood Cliffs, New Jersey, 2nd edition, 1993.

[29] J. M. Hutchinson, A. W. Lo, and T. Poggio. A nonparametic approach to pricing

and hedging derivative securities via learning networks. The Journal of Finance,

XLIX(3):851-889, 1994.

[30] ILOG. CPLEX 6.5 Reference Manual. ILOG, 1999.

[31] T. Joachims. Making large-scale svm learning practical. In B. Schdlkopf, C.J.C.

Burges, and A.J. Smola, editors. Advances in Kernel Methods: Support Vector

Learning, pages 169-184. MIT Press, 1999.

H. Kargupta and P. Chan. Kdd-98 workshop on distributed data mining. AAAI

Press, 1998.

A. Demiriz K. Bennett and J. Shawe-Taylor. A column generation algorithm for

boosting. In P. Langley, editor, Proc. of 17. International Conferance on Machine

Learning, pages 65-72. Morgan Kau&nan, San Francisco, 2000.

[34] Y.-J. Lee and O.L. Mangasarian. Rsvm: Reduced support vector machines. CD

Proceedings of the First SIAM International Conference on Data Mining, 2001.

89

[35] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information

and Computation, 108(2):212-261, 1994.

[36] J. D. Macbeth and L. .1. Merville. Tests of the black-scholes and cox call option

valuation models. The Journal of Finance, 35(2):285-301, 1979.

[37] O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support vector

machine. IEEE Transaction on Neural Networks, 10:1032-1037, 1999.

[38] O.L. Mangasarian, W.N. Street, and W.H. Wolberg. Breast cancer diagnosis and

prognosis \da linear programming. Operations Research, 43(4):570-577, 1995.

[39] R.K. Martinson and J. Tind. An interior point method in dantzig-wolfe decompo­

sition. Computers and Operation Research, 26:1195-1216, 1999.

[40] M. Minoux. Mathematical Programming: Theory and Algorithms. John Willey and

Sons, 1996.

[41] A. Moore and M. Lee. Cached sufficient statistics for efficient machines learning

with large datasets. Journal of Artificial Intelligence Research, 8:67-91, 1998.

[42] R. Rifkin M. Pontil and T. Evgeniou. From regression to classification in support

vector machines. Technical report, Massachusetts Institute of Technology, Artificial

Intelligence Laboratory, 1997.

[43] T. Oates and D. Jensen. The effects of training set size of decision tree complexity.

In Proceedings of the Fourteenth International Conference on Machine Learning,

1997.

90

[44] E. Osuna, R. Preund, and F. Girosi. Training support vector machines; An ap­

plication to face detection. Proc. Computer Vision and Pattern Recognition '97,

pages 130-136, 1997.

[45] J. P. Pedroso and N. Murata. Support vector machines for linear programming:

motivation and formulation. Technical Report 99-2.

[46] .J. Platt. Fast training of support vector machines using sequential minimal opti­

mization. In B. Schdlkopf, C.J.C. Burges, and A.J. Smola, editors. Advances in

Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1999.

[47] M. Pontil and A. Verri. Properties of support vector machines. Technical report,

Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1997.

[48] M. Pontil. Stability of kernel machines and their ensembles. Technical report.

Department of Information Engineering, University of Siena, Italy, 2002.

[49] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms.

Machine Learning, pages 1-42, 1999.

[50] R. Holte P. Auer and W. Maas. Theory and applications of agnostic pac-leaming

with small decision trees. In A. Prieditis and S. Russell, editors. Proceedings of the

12th International Conference on Machine Learning (ML'95), pages 21-29, 1995.

[51] J. Quinlan. Learning efficient classification procedures and their application to

chess endgames. In Machine Learning: an A I approach. Morgan Kaufinann, Los

Altos. CA. 1983.

91

[52] R. Rifkin. Svmfu a support vector machine package, 2000. http;//five-percent-

nation.mit.edu/PersonalPages/rif/SvmFu/mdex.htmi.

[53] A. J. Smola and B. Scholkôpf. Sparse greedy matrix approximation for machine

learning. In Proceedings of the 17th International Conference on Machine Learning.

pages 911-918. Morgan Kaufmann Publishers, 2000.

[54] A. Smola and B. Schdlkopf. A tutorial on support vector regression. Techni­

cal report, NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College,

University of London, UK, 1998.

[55] W. E. Sterk. Comperative performance of the black-scholes and roll-geske-

whaley option pricing model. The Journal of Financial and Quantitative Analysis,

18(3)-.345-354, 1983.

[56] J.P. Mesirov D. Slonim A. Verri S. Mukherjee, P. Tamayo and T.Poggio. Support

vector machine classification of microarray data. Technical report, MIT Center for

Biological and Computational Learning Paper 182 and MIT Artificial Intelligence

Memo 1676, 1997.

[57] T.B. Trafalis, T. Evgeniou, and H. Ince. Hierarchical methods for training support

vector machines with veiy large datasets. In Proceedings of the 30th International

Conference on Computers and Industrial Engineering. Tinos Island, Greece, 2002.

[58] T.B. Trafalis and H. Ince. Support vector machine for regression and applications

to financial forecasting. In Neural Networks, 2000. IJCNN 2000. Proceedings of the

92

lEEE-INNS-ENNS International Joint Conference on, volume 6, pages 348- 353.

IEEE, 2000.

[591 T.B. Trafalis and H. Ince. Benders decomposition technique for support vector

regression. In Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 Inter­

national Joint Conference on, volume 3, pages 2767- 2772. IEEE. 2002.

[60] R. Tsaili. Sensitivity analysis, neural networks and, the finance. In IEEE Inter­

national Joint Conference on Neural Networks, volume 6, pages 3830-3835. IEEE,

1999.

[61] G. Piatetsky-Shapiro U. Fayyad and P. Smj-th. From data mining to knowledge dis­

covery: an overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-

rusamy, editors. Advances in Knowledge Discovery and Data Mining, pages 1-36.

MIT Press, Cambridge, Mass., 1996.

[62] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[63] G. Zakeri, A. B. Philpott, and D. M. Ryan. Inexact cuts in benders decompostion.

SIAM J. Optim., 10(3):643-657, 2000.

93

Appendix A

Im plem entation of Benders

D ecom position for Support

Vector regression

/ * This program uses th e CPLEX to solve th e m aster problem in

Bender’s Decomposition a r is in g form SVR * /

/*= = = = == =

HUSEYIN INCE

A pril 2002

UNIVERSITY OF OKLAHOMA

= = = = = = =

#include <stdio.h>

#include < std lib .h>

9 4

#include <fstream.h>

#include <iostream.h>

#include <assert.h>

#irLclude <math.h>

#include <string.3i>

#include <time.h>

#include "cplex.h"

in t CplexAddrow(CPXENVptr env,CPXLPptr Ip , double * g rad ien t,

double *vd, in t n) ; void Find_v(double *v, double * x); double

Sub1(double *v, double ^ g ra d ie n t) ; in t main O {

/ / I n i t i a l i z e CPLEX main func tions

i n t s iz e ;

in t i t e r = 1;

double o b jv a l,o b jv a ll,C ;

double *x = NULL;

double to t= 0 .0 ;

double *c = NULL;

double *lb = NULL;

double *ub = NULL;

in t cur_numrows, cur_numcols;

tim e_t s t a r t , e n d l;

double d if ;

tim e C& start);

9 5

CPXENVptr env = îrjLL;

CPXLPptr Ip = NULL;

s ta t i c in t s ta tu s = 0;

in t i ,n ;

env = CPXopenCPLEX(festatus);

if(en v == NULL)

{

fp rin tfC std err ,"C o u ld not open CPEX env ironm ent,\n");

/ / C PEX geterrorrstring(env, s t a tu s , errm sg);

/ / f p r in t f (s td e r r ," % s " , errm sg);

goto TERMINATE;

}

Ip = CPXcreateprob (env, festatus, "bender.cp lex");

i f (I p == NULL)

{

f p r in t f (s td e r r , "Failed to open L P ,\n ");

goto TERMINATE;

}

cur.numrows = CPXgetnumrows (env. Ip) ;

cur_numcols = CPXgetnumcols (env. Ip) ;

cout « " \n Number of rows: " « cur.numrows « endl;

cout « " \n Number of co ls : " « cur.numcols « endl;

double *v, ^grad ien t ;

96

cout « "\uPlesise en te r the number of d a ta p o in ts :

cin » n;

s ize = 2 * n +2;

cout « "\nPlease en te r the trad e o ff value: ";

c in » C;

V = (double *) malloc ((2*n) * s izeo f(d o u b le)) ;

X = (double *) malloc ((2*n +2) * s izeo f(d o u b le)) ;

g rad ien t = (double *) malloc ((2*n+2) * s izeo f(d o u b le));

fo r (i= 0; i < (2*n+2); i++)

x [i] = 0 .0 ;

/ / Find the optimal so lu tio n of Sub problem given x;

Find_v(v, x) ; / / This fin d s the opt. s o l. of Sub problem given x.

double vd;

/ / Finds the cu rren t row of A m atrix fo r

/ / Master problem with r ig h t hand s id e ,

vd =Subl(v, g ra d ie n t) ;

g ra d ie n t[s iz e -1] = -1 .0 ;

/ / S ta r t Bender’s Decompostion main loop here

to t = 0.0;

f o r (i = 0; i < 2*n+2; i++)

t o t = t o t + g ra d ie n t[i] * x [i] ;

/ / Here, i n i t i a l i z e the CPLEX fo r th e f i r s t tim e

/ / and w rite a function fo r adding new rows

97

/ / This p a r t i s i n i t i a l i z a t io n of th e problem

/ / =

c = (double *j malloc ((2*n+2) * s izeo f(d o u b le));

lb = (double *) malloc ((2*n+2) * s izeo f(d o u b le)) ;

ub = (double *) malloc ((2*n+2) * s izeo f(d o u b le));

fo r (i = 0; i < 2*n; i++)

{

c [i] = 0 ;

lb [i] = 0;

ub[i] = C;

}

c [size-2] = 0;

c [size-1] = 1;

lb [size-2] = -C*1000000;

lb [s iz e - 1] = -C*1000000;

u b [s iz e - i] = C*1000000;

ub [size-2] = C*1000000;

s ta tu s = CPXnewcols(env, I p , s iz e , c , lb , ub, NULL,NULL);

i f (s ta tu s) goto TERMINATE;

/ / =

i f (s ta tu s) {

f p r in t f (s td e r r , "Failed to add c o n s tra in t to p ro b lem .\n");

goto TERMINATE;

98

ctLr_mimrcws = CPXgetn'umrows (env. Ip) ;

cnr_nnmcols = CPXgetnnmcols (env. I p) ;

cout « " \n Number of rows: " « cur_numrows « endl;

cout « " \n Number of co ls: " « cur_numcols « endl;

ob jval = -1000000000000;

o b jv a ll = 1000000000000;

while ((fab s(o b jv a l - o b jv a ll) > 0.01))

{

cout « " t o t - vd = " « (to t - vd) « endl;

s ta tu s =CplexAddrow(env, Ip , g ra d ie n t, &vd, s i z e) ;

o b jv a ll = ob jval;

s ta tu s = CPXprimopt(env, I p) ;

s ta tu s = CPXgetobjval (env. Ip , feobjval);

cout « " O bjective value a t i te r a t io n ;

cout « i t e r « " : " « objval « endl;

cout « " D ifference a t i te r a t io n ";

cout « i t e r « " : " « fab s(o b jv a l - o b jv a ll) « endl;

i f (s ta tu s) {

f p r in t f (s td e r r , "Failed to optim ize p ro b lem .\n ");

goto TERMINATE;

>

/ / Get the cu rren t optim al so lu tio n

99

s ta tu s = CPXgetx(euv,lp,x, 0, s iz e - 1) ;

i f (s ta tu s) {

f p r iu t f (s td e r r , "Failed to ge t x . \n ") ;

goto TERMINATE;

>

Fiud_v(v, x) ; / / Find the next so lu tio n fo r sub problem

/ / Finds the cu rren t row of A m atrix of

/ / Master problem with r ig h t hand s id e ,

vd =Subl(v, g ra d ie n t);

t o t = 0 .0 ;

f o r (i = 0; i < 2*n+2; i++)

to t = t o t + g rad ien t[i] * x [i] ;

cur_numrows = CPXgetnumrows (env. Ip) ;

cout « " \n Number of rows: " « cur_numrows « endl;

i f (s ta tu s) {

f p r in t f (s td e r r , "Failed to add co n s tra in t to p ro b lem .\n");

goto TERMINATE;

>

i t e r = i t e r + 1;

i f (i t e r < 80 I I fab s(o b jv a l - o b jv a ll) == 0.0)

o b jv a ll = 0 .0;

}

s ta tu s = CPXwritesol (env. Ip , "m y file .tx t" , NULL); time (feendl);

100

cout « "\uOptimal so lu tio n : \n " ;

f o r d = 0; i < s iz e ; i++)

cout « x [i] « endl;

d if = d ifftim e (e n d l ,s ta r t) ;

p r in t f ("CPU Time (seconds): % .21f\n", d i f) ;

TERMINATE:

i f (Ip != NULL) {

s ta tu s = CPXfreeprob (env, & lp);

i f (s ta tu s) {

f p r in t f (s td e r r , "CPXfreeprob f a i l e d , " % d.\n", s ta tu s) ;

>

}

/* Free up the CPLEX environment, i f necessary * /

i f (env != NULL) {

s ta tu s = CPXcloseCPLEX (&env);

i f (s ta tu s) {

char errmsg[1024];

f p r in t f (s td e r r , "Could not close CPLEX environment. \n") ;

CPX geterrorstring (env, s ta tu s , errm sg);

f p r in t f (s td e r r , "%s", errm sg);

}

101

}

re tu rn s ta tu s ; }

void Find_v(double *v, double *x) {

/ / Solving the Sub problem a r is in g from SVR bender’s implementation

in t n , m ,i , j ;

double r e s u l t = 0.0;

ifs tream in P ile2 ;

char *filename4 = " c o s t . tx t" ; / / rh s of o r ig in a l problem

in P ile 2 .open(f ilename4, io s : : i n) ;

i f (! in P ile2)

{

cout«"U nable to open "<<filename4;

e x i t (l) ;

>

a s s e r t (! in F ile 2 .e o f()) ;

ifstream in F i le l ;

char ^filenam es = "m a trix .tx t" ; / / Kernel M atrix / /

in F ile l.o p en C filen am eS ,io s ::in);

i f (! in F ile l)

{

cout«"U nable to open "« f ile n a m e s ;

e x i t (l) ;

}

102

in F i le l » n;

in F i le l » m;

double ^d iffe ren ce ;

d iffe ren ce = (double *) malloc (n * s izeo f(d o u b le)) ;

double ^g rad ien t;

g rad ien t = (double *) malloc ((2*n) * s izeo f(d o u b le)) ;

double * to t;

t ô t = (double *) m alloc (n * s izeo f(d o u b le)) ;

/ / Computing d-Fy from bender’s decomposition

/ /w h ic h i s cost v ec to r of sub problem then

/ / f in d th e optimal so lu tio n of SUB problem

fo r (i = 0; i < n; i++)

d iffe ren c e [i] = x [i] - x[n+i] ;

f o r (j = 0; j < n; j++)

{

fo r(i= 0 ; i < m; i++)

in F i le l » g ra d ie n t[i] ;

r e s u l t = 0 .0 ;

fo r(i= 0 ; i < m; i++)

r e s u l t = r e s u l t + d if fe re n c e [i] * g r a d ie n t [i] ;

t o t [j] = r e s u l t + X[2*m];

}

103

}

fo r (i= 0; i < m; i++)

{

V [i] = t ô t [i] ;

V[i+m] = - t ô t [i] ;

}

/ / Finding the (d-F*y)

double C;

inF ile2 » C;

forCi = 0; i < 2*m; i++)

{

in F ile2 » r e s u l t ;

V[i] = re s u l t - v [i] ;

i f (v [i] < 0)

v [i] = -C;

e lse

vCi] = 0;

in F i le l .c lo s e () ;

in F ile 2 .c lo s e () ;

re tu rn ;

104

double Subi(double *v, double ^gradient) {

/ / g e ttin g th e cost vecto r

in t n, m , i , j ;

double r e s u l t = 0 .0 ;

double vd = 0 .0;

ifstream in F i le l ;

char ^filenam es = "m a trix .tx t" ;

in F ile l.o p en C filen am eS ,io s ::in);

i f (! in F i le l)

{

cout«"U nable to open "« filen am es;

e x i t (l) ;

}

in F i le l » n;

in F i le l »m ;

double ^d iffe rence ;

double * to t;

d iffe ren ce = (double *) m alloc (n * s izeo f(d o u b le)) ;

t o t = (double *) malloc (n * s izeo f(d o u b le));

/ / Computing (f - vF)

fo r (i = 0; i < m; i++)

d iffe ren ce [i] = v [i] - v[m+i] ;

1 0 5

forCj = 0 ; j < n; j++)

{

forCi=0; i < m; i++)

in F i le l » g ra d ie n t[i] ;

r e s u l t = 0 .0 ;

fo r(i= 0 ; i < m; i++)

r e s u l t = r e s u l t + d iffe re n c e [i] * g ra d ie n t[i] ;

t o t [j] = r e s u l t ;

>

fo r (i= 0; i < m; i++)

g ra d ie n t[i] = t o t [i] ;

gradient[i+m] = - t o t [i] ;

}

fo r (i= 0; i < 2*m; i++)

g ra d ie n t[i] = 1 - g r a d ie n t[i] ;

r e s u l t = 0 .0 ;

fo r(i= 0 ; i < n; i++)

r e s u l t = re su lt + d if f e r e n c e [i] ;

gradient[2*m] = - r e s u l t ;

gradient[2*m+l] = -1 .0 ;

in F i le l .c lo s e 0 ;

/ / Finding the vd r ig h t hand side of Master problem

106

}

ifs tream in F ile2 ;

char *filename4 = " c o s t .tx t" ;

in F ile 2 .o p e n (f ile n a m e 4 ,io s ::in) ;

i f (! in F ile 2)

{

cont« "Unable to open "<<filename4;

e x i t (l) ;

}

a s s e r t (! in F i le 2 . e o f()) ;

double rh s = 0 .0 ;

in F ile2 » r e s u l t ;

fo r (i= 0; i < 2*n; i++)

{

in F ile2 » rh s;

vd = vd + rh s * v [i] ;

}

in F i le 2 .c lo s e () ;

re tu rn -vd;

in t CplexAddrow(CPXENVptr env,CPXLPptr Ip , double ^g rad ien t,

double *vd, in t n) {

/ / g rad ien t: c o e f f ic ie n ts th a t w ill be added to problem

107

/ / vd: rh s of master problem

/ / n: s iz e of the problem or number of v a ria b le s

//T h is contéiins only one v a riab le and always zero

in t *rmatbeg = NULL;

//S iz e of t h i s one i s equal to number of v a riab le s

in t *rmatind = NULL;

/ / counter v a riab le

in t i , s ta tu s = 0;

char sense[1];

rmatbeg = (in t *) malloc (1 * s izeo f(d o u b le));

rmatind = (in t *) malloc (n * s izeo f(d o u b le));

sense [0] = ’L’ ;

rmatbeg[0] = 0;

f o r (i = 0; i < n; i++)

rm atindCi] = i ;

s ta tu s = CPXaddrows (env. Ip , 0, 1, n , vd, sense, rmatbeg,

rm atind, g rad ien t, NULL, NULL);

i f (s ta tu s) goto TERMINATE;

TERMINATE;

re tu rn (s ta tu s) ;

1 0 8

Appendix B

im plem entation of e-SVM

algorithm

/ /

/ / HUSEYIN INCE AUGUST 2002

#include <stdio.h>

#include < std lib .h>

#include <fstream.h>

#include <iostream.h>

#include <assert.h.>

#include <math.h>

#include <string .h>

#include <time.h>

109

in t mainO {

double *A = NULL, *B = NULL;

double *a = NULL, *b = NULL, *cl = NULL, *c2= NULL;

in t *rb.sl=NULL, *rhs2=NULL ;

double sigma, te m p ,d is tl;

in t * l i s t l , * l is t2 ;

char filenam e[32], filenam e2[32];

in t i , n ,m ,t ,k ,n l ,m l , j ;

tim e_t s ta r t ,e n d l ;

double d if ;

/ / This p a r t in te ra c ts w ith th e u ser to ge t the req u ired inform ation

cout « " \n lnput F ile name fo r c la s s 1(example: b a n _ p o s .tx t) :" ;

c in » filenam e;

cout « " \n lnpu t F ile name fo r c la s s - 1 (example: ban_m inus.tx t):" ;

c in » filenam e2;

cout « "\nPlease e n te r th e RBF k ern e l param eter (sigm a): ” ;

cin » sigma;

ifs tream in F ile , in F i le l ;

ofstream o u tF ile ;

in F i le .o p e n (f ile n a m e ,io s ::in) ;

i f (! in F ile)

cout «"U nable to open "« filen am e;

110

in F ile » n;

in F ile » m;

A = (double *) mailloc ((m * n) * s iz e o f (double)) ;

a = (double *) malloc (m * s ize o f(d o u b le));

fo r (i = 0; i < m * n; i ++)

in F ile » A [i] ;

in F i le .c lo s e 0 ;

/ / For Class -1

in F ile .o p e n (f ile n a m e 2 ,io s ;:in) ;

i f (! in F ile)

cout«"U nable to open "« filen am e;

in F ile » n l ;

in F ile » ml;

B = (double *) malloc ((ml * n l)* s iz e o f(d o u b le));

b = (double *) malloc (m * s izeo f(d o u b le)) ;

fo r (i = 0; i < ml * n l ; i ++)

in F ile » B[i] ;

in F i le .c lo s e 0 ;

l i s t l = (in t *) m alloc(n * s i z e o f (in t)) ;

l i s t 2 = (in t *) mcQ.loc(nl * s i z e o f (in t)) ;

fo r (i = 0; i < n; i++)

l i s t l [i] = 0;

fo r (i = 0; i < n l ; i++)

111

I i s t 2 [i] = 0;

outFile.openC"f i n a l s e t . t x t " , io s ; to u t) ;

i f (!ou tF ile)

cout«"U nable to open m a tr ix .tx t" ;

/ / Computing Centers fo r s e ts

c l = (double *) malloc(m * sizeo f(doub le)) ;

c2 = (double *) malloc(m * s izeof(doub le)) ;

f o r (i = 0 ; i < m; i++){

c l [i] = 0 .0 ;

c2 [i] = 0.0;

>

time (fe s ta rt) ;

f o r (j = 0; j < n; j++){

k = m * j ;

fo r (t = 0; t < m; t++)

clCt] = c l [t] + A [k+t] ;

}

fo r (j = 0; j < n l; j++){

k = m * j ;

fo r (t = 0; t < m; t++)

c2 [t] = c2 [t] + B [k+t] ;

}

fo r (i = 0; i < m; i++){

112

c l [i] = c l [i] / n ;

c2 [i] = c 2 [i] /n l ;

}

d i s t l = 0 .0 ;

forC t = 0; t < m; t++)

d i s t l = d i s t l + (c l [t] - c 2 [t]) * (c l [t] - c2 [t]) ;

d i s t l = d i s t l / (2 * sigma * sigm a);

d i s t l = ex p (-l * d i s t l) ;

d i s t l = sq r t(2 - 2* d i s t l) ;

cout « "Distance fo r cen ters " « d i s t l « endl;

in t count = 0;

forC i = 0; i < n; i++){

/ / You know th i s p a r t g e t i t from svm_cplex

k = m * i;

fo r (t = 0; t < m; t++)

aCt] = A [k + t];

forCj = 0; j < n l; j++){

k = m * j ;

fo r (t = 0; t < m; t++)

b [t] = B [k+t] ;

temp = 0;

fo r (t = 0; t < m; t++)

temp = temp + (a [t] - b [t]) * Ca[t] - b [t]) ;

113

temp = temp / (2 * sigma * sigm a);

temp = e x p (-l * temp);

temp = s q r t (2 - 2 * tem p);

i f (temp < d i s t l){

i f (l i s t l [i] == 0){

l i s t l [i] = 1;

count = count + 1;

fo r(k = 0; k < m; k++)

o u tF ile « a[k] « " ";

o u tF ile « 1 « endl;

}

i f (l i s t 2 [j] == 0){

l i s t 2 [j] = 1;

count = count + 1;

fo r(k = 0 ; k < m; k++)

o u tF ile « b[k] « " ";

o u tF ile « -1 « endl;

}

>

cout « "Number of data p o in ts in f in a l s e t : ";

count « endl;

114

}

o u tF ile . c lo se () ;

time (feendl);

d if = d i f f tim e (e n d l ,s ta r t) ;

p r iu t f ("CPU Time (seconds): % .21f\n", d i f) ;

cout « "The number of po in ts in f in a l s e t

count « e n d l ;

cout « "Process i s com pleteeeee.............." « endl;

re tu rn 0;

115

Appendix C

Bagging and Subsam pling Codes

in M atlab

\ te x tb f {function [te s t_ b , t e s t .random] = bagging (trainD , te stD ,

k e r, C, p , s p l i t) }

% This function computes the support vectors of la rg e da ta s e ts

% by s p l i t t in g i t sm aller s e t w ithout randomly and randomly.

% and then fin d s th e t e s t r e s u l ts . Returns the t e s t re s u l ts

7o fo r each s e t .

7.

% Explanation of V ariables

% trainD = Training data s e t . Last column must be Y values 1, or-1

7o testD = Test da ta without output columns

116

% ker = Kernel fonction

C = T rade-off value

p = RBF function param eter o r degree of polynomial

s p l i t = number of da ta in each s p l i t

Output V ariables

te s t_ b = t e s t of each sp lit(w ith o u t random)

test_random = t e s t of each random s p l i t

/.

/« [te s t_ b , t e s t .random] = bagging (tra in D , te stD , k e r, C, p , s p l i t)

% HUSEYIN INCE

% 08-15-2001

%

[n m] = s iz e (tra in D); [nl ml] = s iz e (testD); k = n / s p l i t ; t e s t .b =

z e ro s (n l,k) ; test.random = zeros(n l,k+ 1); j = 1; s t = cputime; fo r

i = 1: k

[nsv alpha b ias] = sv c (tra in D (j: s p l i t * ! , l :m - l) , —

tra in D (j : s p l i t* ! ,m) ,k e r ,C ,p) ;

t e s t . b (; , i) = sv co u tp u t(tra in D (j:s p l i t * ! ,1 ;m -l) , . . .

tra in D (j ; s p l i t* ! ,m),

te s tD ,k e r ,a lp h a ,b ia s ,p) ;

j = j+ s p l i t

117

s p l i t* !

end

fo r i = 1: k+1

sp litD = random split CtrainD, s p l i t) ;

[nsv alpha b ia s] = sv cC sp litD C :,l:m -l) .sp litD C ;,m),k er,C ,p);

te s t_ ran d o m (:,i) = s v c o u t p u t (s p l i t D (: , s p l i t D(: , m) .

te s tD ,k e r ,a lp h a ,b ia s ,p) ;

end

f p r i n t f (’T otal execution tim e; %4.1f seconds\n’ .cputime - s t) ;

\ te x tb f { function [nsv, alpha, b ia s , f in a l .d a ta , p redict_y] =

subsam pling(trainD , te stD , k e r , C, p , s p l i t) >

% This fu n c tio n computes th e support v ec to rs of la rg e da ta s e ts

% by s p l i t t i n g i t sm aller s e t w ithout randomly and randomly.

% and then f in d s th e t e s t r e s u l t s . Returns th e t e s t r e s u l ts

% fo r each s e t .

7.

% Explanation of V ariables

% trainD = T rain ing d a ta s e t . Last column must be Y values 1, or-1

% testD = Test d a ta w ithout output columns

% ker = Kernel func tion

118

% c = T rade-off value

% p = RBF function parameter or degree of polynomial

% s p l i t = number of da ta in each s p l i t

% Output V ariab les

% te s t_ b = t e s t of each sp lit(w ith o u t random)

% test_random = t e s t of each random s p l i t

%

% [nsv, alpha, b ia s , f in a l_ d a ta , p redict_y] =

% subsam pling(trainD , te stD , k e r, C, p , s p l i t)

7.

%

% HUSEYIN INCE

% 08-15-2001

%

[n m] = s iz e (tra in D); [nl ml] = s iz e (te s tD);

k = n / s p l i t ; te s t_ b =

z e ro s (n l ,k) ; test.random = zeros(n l,k+ 1) ;

j = 1;

f in a l_ d a ta = []; s t = cputime; fo r i = 1: k

[nsv alpha b ias] = s v c (t r a in D (j : s p l i t* i , l :m - l) , . . .

t r a in D (j:s p li t* i ,m) ,k e r ,C ,p) ;

a = fin d (a lp h a > ab s(0.000001));

119

fin a l_ d a ta = [fin a l_ d a ta ; f in d s p l i t (a , t r a in D (j : s p l i t* i , :))] ;

j = j+ s p l i t ;

s p l i t* ! ;

end

if (s iz e (f in a l_ d a ta ,1) > 1000)

save f in a l_ d a ta .tx t f in a l_ d a ta - a s c i i ;

e lse

f p r i n t f (' FINAL SVM RESULTS : \ n ’) ;

[nsv alpha b ia s]= sv c (f in a l_ d a ta (:, l :m - l) ,f in a l_ d a ta (: ,m) ,k e r ,C ,p) ;

pred ict_y = s v c o u tp u t (f in a l_ d a ta (; , l ;m - l) , f in a l_ d a ta (; ,m) .

te s tD ,k e r , alpha,b ia s ,p) ;

end

f p r i n t f (’Total execution tim e: %4.1f seconds\n’ , cputime - s t) ;

120

