INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106

·

·

Kanchanakpan, Sawitree Bintasan

MOLECULAR THEORETICAL EQUATION OF STATE FOR APPLICATIONS TO SELECTED PURE LIQUIDS AND DENSE FLUIDS OF NATURAL GAS, PETROLEUM HYDROCARBONS AND COAL CHEMICALS

The University of Oklahoma

Рн.D. 1984

University ivitorofilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

. .

·

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $_{-}\sqrt{_{-}}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print
- 3. Photographs with dark background
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Dissertation contains pages with print at a slant, filmed as received _____
- 16. Other Best copy available

University Microfilms International

.

·

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

Geor Pickay.

MOLECULAR THEORETICAL EQUATION OF STATE FOR APPLICATIONS TO SELECTED PURE LIQUIDS AND DENSE FLUIDS OF NATURAL GAS, PETROLEUM HYDROCARBONS AND COAL CHEMICALS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

SAWITREE BINTASAN KANCHANAKPAN

Norman, Oklahoma

MOLECULAR THEORETICAL EQUATION OF STATE FOR APPLICATIONS TO SELECTED PURE LIQUIDS AND DENSE FLUIDS OF NATURAL GAS, PETROLEUM HYDROCARBONS AND COAL CHEMICALS A DISSERTATION APPROVED FOR

THE SCHOOL OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE

By

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to Professor Lloyd L. Lee, dissertation committee chairman, for his keen advice, suggestions, and supportive understanding throughout my graduate studies and this dissertation. My gratitude is further extended to my committee members, Prof. Kenneth E. Starling, Prof. F. Mark Townsend, Prof. Rex T. Ellington, and Prof. Roger E. Frech.

I am deeply grateful to Ms. Anne Million for her sincere concern and patience in reading and correcting my English. However, she is not in any way responsible for the errors that remain.

By appreciation is also extended to Ms. Jana Williams and Ms. Mary Shirazi for their friendship and moral support during my study.

This dissertation is sincerely and affectionately dedicated to my mother and father for their endless encouragement, understanding, and support they have given me.

Last but by no means least, I want to express my appreciation to my husband, Pongsak, for his love, understanding, patience, and help.

- iii -

ABSTRACT

A new equation of state applicable to both nonpolar and polar compounds has been developed. It is modeled after the nonspherical square-well potential. The repulsive pressure is approximated by contributions from the underlying hard conver molecular core and is representd by the hard convex body equation of Nezbeda. Based on the distribution function theories of liquids, the attractive part of pressure exhibited by anisotropic molecules is derived. This procedure leads to a compact, theoretically-based equation of state - a compromise between statistical mechanical rigor and engineering practicality. The equation is first developed to calculate the thermodynamic properties of nonpolar compounds and slightly polar compounds such as normal paraffins, i-butane, and benzene. The results are in close agreement with the experimental measurements on density, vapor pressure and enthalpy values. The equation is extended to polar and associative compounds through the mean-potential model by making the energy parameter of the square-well potential a temperature dependence.

The equation is applied to over sixty selected substances including hydrocarbons (from methane to eicosane), natural gas components (CO_2 , H_2S , N_2), alcohols,

- iv -

amines, ethers, ketones, and nitrogen-, oxygen-, and sulfurcontaining coal compounds. The accuracy in liquid density and vapor pressure prediction, in most cases, is within 1%. Comparison with similar equations of state, such as Peng-Robinson and BACK equations shows that the present equation is uniformly superior.

- v -

CONTENTS

.

.

.

ACKNOWLEDGEMENTS iii							ii																
ABSTRI	ACT .	••	• •	• •	•	•	-	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	i▼
<u>Chapt</u>	<u>er</u>																					<u>D</u>	lde
I.	INTRO	DUCTI	ON	•	-	•	-	•	•	•	•	•	•	-	•	•	•	٠	•	•	•	•	1
II.	DEVELO	OPHEN	IT (OF	TH	2 E	ឲ្	at:	10	N	OF		5 t i	AT	3	•	•	•	•	•	•	•	8
	EQI EQI	UATIC UATIC	ON (OF OF	STI STI	A TE A TE	F F	OR OR	N P	ON OL	PO A F		AR AN I			201 500	JN CI:	DS AT	IVI	Ē	•	•	20
		C	0 M	POU	INDS	5	•	•	-	•	•	•	•	-	٠	•	•	٠	•	•	•	•	32
III.	RESUL	rs af	ID 3	DIS	SCU:	SSI	ON		-	•	•	•	•	-	•	•	•	•	•	•	-	•	38
	API	PLICE	ATI PAR	ON API	OF ZINS	TH S	E .	EQ	UA •	TI •		-	DF	s: •	CA:	re •	Ţ:	0	NO 1	RM.	AL	•	52
	API	PLICA	TI		OF	TH	E	EQ	UA	TI	ON	1 (OF	S	CA!	ΓE	T	0	OTI	HE	R		56
	API	PLIC	ION. ITI	P D I O N	OF	TH	nr E	EQ	ŪA	J. TI		•)F	S	CA:	TE	T(ວ້:	203	- L A I	R	•	50
		1	AND	AS	soo	CIA	TI	VĒ	С	OM	IPC	U	ND :	5	•	-	•	•	-	٠	•	•	57
	DIS	SCUSS	SIO	N C)F B	RES	UL	TS		•	•	٠	•	•	٠	•	٠	•	•	•	•	•	73
IV.	CONCL	USION	IS .		•	•	-	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	1	109
Append	lix																					<u>50</u>	<u>146</u>
λ.	SUMMA	RY OF	? T	HE	EQ	JAT	10	NS	0	F	S1	'A !	ГE	R	ep:	eri	eno	CE	D	•	•	•	112
B.	THERE	ODYNI	ANI	C I	PRO	PER	TY	С	AL	.C [LA	T	EO)	NS	0	P I	<u>1</u> -1	0C	TA	NE	٠	•	120
С.	THERE	ODYNI DIE1	AMI CHY		PROI	PER E	T¥ -	с.	Al •	.CU		T] -	EO 3	NS •	0. •	F •	•	•	•	•	•		126
D.	THERE	odyni Teti	AMI RAH	C I Ydi	PRO ROF	PER Ura	TY B	с •	AL -	.Cī	IL 1	.T.	IO) •	IS •	0	P -	-	•	•	•	•		128
REPERI	ENCES		•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•		130

- vi -

. .

LIST OF TABLES

Table		<u>de</u>
1.	DATA REFERENCES OF NORMAL PARAFFINS, OTHER NONPOLAR, POLAR, AND ASSOCIATIVE COMPOUNDS	40
2.	PHYSICAL PROPERTIES OF NORMAL PAPAPPINS	47
3.	EQUATION OF STATE PARAMETERS FOR NORMAL PARAFFINS	58
4.	EQUATION OF STATE PARAMETERS FOR NONPOLAR COMPOUNDS.	60
5.	EQUATION OF STATE PARAMETERS FOR POLAR AND ASSOCIATIVE COMPOUNDS.	61
6.	PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF NORMAL PARAPPINS.	66
7.	PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF NONPOLAR COMPOUNDS.	68
8.	PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF POLAR AND ASSOCIATIVE COMPOUNDS	69
9.	COMPARISON OF THE THERMODYNAMIC PROPERTY PREDICTIONS	93
10.	COMPARISON OF THERMODYNAMIC PROPERTY PREDICTIONS WITH THE BACK EQUATION	97

LIST OP FIGURES

•

<u>Fiqu</u>		page
1.	GENERAL SHAPE OF A PAIR-POTENTIAL ENERGY FUNCTION	• 5
2.	MODEL PAIR-POTENTIALS	• 7
3.	SQUARE-WELL PAIR-POTENTIAL	. 11
4.	GEOMETRY OF A PAIR OF CONVEX BODIES	• 16
5.	NINE TYPICAL ORIENTATIONS OF MOLECULES	. 18
6.	POTENTIAL BETWEEN NITROGEN MOLECULES AT VARIOUS CRIENTATIONS	. 19
7.	COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF N- BUTANE	. 30
8.	PLOT OF THE COMPRESSIBILITY FACTORS OF N-BUTARE .	. 31
9.	PLOT OF THE ENERGY PARAMETERS	• 54
10.	PLOT OF THE DENSITY-REDUCING PARAMETERS	- 55
11.	COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF NORMAL PARAFFINS	. 79
12.	COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF NONPOLAR COMPOUNDS	- 80
13.	COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF POLAR COMPOUNDS	- 81
14.	COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF PROPANE	. 82
15.	DENSITY CALCULATIONS OF N-BUTANE	. 83
16.	LIQUID DENSITY CALCULATIONS OF O-XYLENE	• 84
17.	PERCENT DEVIATION OF SATURATION DENSITY CALCULATION OF PHENOL	NS 85

	18.	COMPARISON OF THE SATURATION DENSITY CALCULATIONS OF DIMETHYL ETHER
	19.	COMPARISON OF THE SATURATION DENSITY CALCULATIONS OF BENZENE
-	20.	VAPOR PRESSURE CALCULATIONS OF NORMAL PARAFPINS 88
	21.	VAPOR PRESSURE CALCULATIONS OF POLAR COMPOUNDS 89
	22.	COMPARISON OF THE VAPOR PRESSURE CALCULATIONS OF N- DECANE
	23.	COMPARISON OF THE VAPOR PRESSURE CALCULATIONS OF N- EICOSANE
	24.	COMPARISON OF THE VAPOR PRESSURE CALCULATIONS OF ANILINE
	25.	PLOT OF THE SHAPE FACTOR VERSUS MOLECULAR WEIGHT OF NORMAL PARAPPINS
	26.	PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CARBON NUMBER OF NORMAL PARAFFINS
	27.	PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CRITICAL VOLUME OF NORMAL PARAFFINS
	28.	PLOT OF Br VERSUS CRITICAL VOLUME OF NORMAL PARAPFINS
	29.	PLOT OF THE ATTRACTIVE VOLUME VERSUS CRITICAL VOLUME OF NORMAL PARAFFINS
	30.	PLOT OF Br VERSUS Va OF NORMAL PARAFFINS 104
	31.	PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CRITICAL VOLUME
	32.	PLOT OF THE ATTRACTIVE VOLUME VERSUS CRITICAL VOLUME
	33.	PLOT OF BE VERSUS CRITICAL VOLUME 107
	34.	PLOT OF Br VERSUS Va

- ix -

Chapter I

INTRODUCTION

In 1873, van der Waals proposed an equation of state which has since become the basis for numerous empirical and theoretical modifications to describe the thermodynamic behavior of fluids. The pressure equation of van der Waals can be written as:

$$P = Pr + Pa = \frac{RT}{V-Nb} - \frac{a}{V^2}$$
(1)

where P is the pressure, V the molar volume, R the universal gas constant, N the number of moles, and T the absolute temperature. The first term on the right-hand side of Equation (1), Pr = RT/(V-Nb), represents the pressure due to repulsive forces between the impenetrable rigid spheres of The second term, $Pa = -a/V^2$, is due to a volume b. uniform intermolecular attraction where 'a' is a parameter characterizing the strength of the attraction. Since the van der Waals equation fails to give accurate representation of experimental thermodynamic data of real fluids, many modifications have been proposed. Empirical or semiempirical modifications of the van der Waals equation

- 1 -

ate which

ical and

modynamic

der Waals

(1)

universal

absolute

side of

re due to

pheres of

due to a

parameter

Since the

seatation

or semi-

equation

s,

mai.y

usually involved the introduction of temperature and/or density dependence of the parameters a and b resulting in an improvement over the original equation. Examples are the Redlich-Kwong equation, the Soave-Redlich-Kwong equation, and the familiar Peng-Robinson (PR) equation where

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)+b(v-b)}$$
 (2)

is a function of critical temperature, reduced a (T) temperature and an acentric factor. These equations of state are attractive to industrial uses because they are simple and accurate when applied to small hydrocarbons and light gases. However, the disadvantages of these equations are their failure to predict accurately the liquid densities and the properties of polar compounds. These properties become more and more important to engineering design calculations. This research, therefore, focuses on the improvement of the liquid and dense fluid property calculations of both small and large, polar and nonpolar compounds.

Another approach to the development of an equation of state is through statistical mechanics - the study of the fundamental connection between the macroscopic properties of a substance and the forces between the constituent molecules - the intermolecular forces. However, there is still a lack of knowledge of the exact form of the intermolecular forces. Therefore, it is generally approached by assuming an algebraic form for the dependence of the intermolecular force upon intermolecular separation; calculating bulk physical properties through the appropriate molecular theory; and finally comparing these calculations with the experimental data for the same physical property. Agreement between the two sets of data is supposed to indicate the correctness of the assumed intermolecular force law (Maitland, 1981).

In order to calculate thermodynamic properties of fluid by means of the intermolecular potential functions, the following assumptions are usually made (Reed & Gubbins, 1973, Umesi, 1983):

- Intermolecular pair-potential energies are those for an isolated pair of molecules. This assumption is valid only at low densities.
- Total energy is a sum of all possible isolated-pair energies (pairwise additivity).
- 3. Pair-potential energy depends only on the distance between centers of mass (valid only for monatomic molecules).
- 4. Some approximate analytic equations, containing one or more molecular constants characteristic of the type of molecule may be used for the potential energy as a function of the distance between a pair of molecular centers.

The work of van der Waals suggests that the general form of the intermolecular potential energy function be

$$\phi(\mathbf{r}) = \phi_{\mathbf{r}}(\mathbf{r}) + \phi_{\mathbf{s}}(\mathbf{r}) \quad (3)$$

where the intermolecular pair-potential, ϕ (r) is a sum of a positive contribution - the repulsive force, $\phi_r(r)$, and a long-range negative contribution - the attractive force, ϕ_a (r). The general shape of the pair-potential is shown in Figure 1. σ is the separation at which the potential energy is zero. r_0 is the separation at which the energy attains its minimum value ε which is the usual measure of the strength of the interaction.

As mentioned earlier, in order to calculate the macroscopic properties from the microscopic properties, the assumptions of an analytic form for the relationship between pair-potential energy and the intermolecular separation are made. Normally, these functions are written with a number of parameters whose values are to be determined by imposing the condition that the calculated and the experimental data for a particular physical property should be in agreement. Numerous models of the intermolecular potential have been proposed: the simple models - the hard spheres and the square-well model, and the more complicated ones - the Stockmayer potential (see Maitland et al., 1981). However, there is no model available that can satisfactorily

Figure 1: GENERAL SHAPE OF A PAIR-POTENTIAL ENERGY PUNCTION

characterize all the properties of interest for a wide wariety of fluids. Figure 2 shows some pair-potential models for spherical molecules (Hirschfelder et al., 1954).

The objective of this work is to utilize the modern theories of statistical mechanics to develop an equation of state which is valid for pure nonpolar and polar molecules with a fair degree of accuracy. Such an equation of state is used in engineering design calculations to estimate thermodynamic properties of a wide variety of fluids. The new equation, modeled after the nonspherical square-well potential, is derived in Chapter II from the statistical mechanical virial equation of state. The repulsive part is approximated by the expression of hard convex bodies. The attractive part is obtained by introducing the density and temperature dependence approximations to the pair correlation function.

The newly developed equation is first tested for pure normal paraffins from methane to n-eicosane in Chapter III. The values of the adjustable parameters for each compound are obtained from a multiproperty analysis of available thermodynamic property data. The equation is then tested tor other nonpolar compounds, such as ethylene, propylene, benzene, etc. The prediction results, as well as the values of the parameters, are reported in Chapter III. The extension of the new equation to the pure polar and by assigning a semi-theoretical associative compounds temperature dependence to the energy parameter, ϵ , is discussed in Chapter II. The results are reported in Chapter III. Comparisons of the predictions with some other equations of state are also given in Chapter III, followed by the conclusions and recommendations in Chapter IV.

Figure 2: MODEL PAIR-POTENTIALS

.

Chapter II

DEVELOPMENT OF THE EQUATION OF STATE

From statistical mechanics, the relationship between the macroscopic property of a system - pressure and the properties of the particles contained in a system of N identical particles interacting according to a potential $U(r^N)$, in a volume V, at temperature T, is given by an expression

$$P = \frac{k T}{Q} \left[\frac{\delta Q}{\delta V} \right]_{m}$$
(4)

where Q is the configurational partition function

$$Q = \int \dots \int \exp \{-U(r^N)/kT\} dr^N.$$
 (5)

The symbol r^{N} represents the N vector coordinates r_{1} , r_{2} ,..., r_{N} of the N particles. If the potential $U(r^{N})$ is written as a sum of pair-potentials, $\phi(r)$; Equation (4) becomes

- 8 -

$$\frac{p v}{NkT} = 1 - \frac{\rho}{6kT_0} \int_{0}^{\infty} \frac{d\phi}{dr} (r) g(r) 4\pi dr \qquad (6)$$

where k is the Boltzman constant, r is the intermolecular distance, ρ is the particle density, N/V, and g(r) is the radial distribution function (which measures the probability of finding a particle at a given distance from a fixed particle in the fluid). In addition to the distance r, g(r) is also a function of density and temperature (and composition for mixtures),

$$g(\mathbf{r}; \boldsymbol{\rho}, \mathbf{T}) = \underbrace{N(N-1)}_{\boldsymbol{\rho}^2 \mathbf{Z}} \int \cdots \int \exp\{-\beta \mathbf{U}^{N_j} d\mathbf{r}_3 \cdots d\mathbf{r}_{N^*}$$
(7)

The configuration integral 2 is defined as

$$z = \int \dots \int \exp \{-\beta \sigma^{N}\} dr_{1} \dots d_{3N}. \qquad (8)$$

The function g(r) has two important uses: one is used to discuss the structure of fluid and the other is to obtain the thermodynamic properties of the system. Equation (6) is known as the virial equation of state.

We can see that Equation (6) includes the ideal gas term, 1, and a contribution from the two-body interactions of the system. When the three-body and higher order interactions are present, additional terms written as integrals, including many-body distribution functions, are added to the right-hand side of Equation (6).

The actual calculation of either the configurational integral Q, or the radial distribution function g (which depends on ϕ) usually involves considerable difficulties even for the simple pair-potential model molecules such as hard spheres or square-wells. Therefore, various approximation theories on the intermolecular potential model, the radial distribution function, and the relation between them have been introduced. The approximations are such as the hypernetted chain equation, the Percus-Yevick equation, and the Mean Spherical Approximation (Reijhart, 1976).

potential model The square-well is one ot the intermolecular potential models frequently used in the study and development of an equation of state, for example, Alder et al. (1972), Reijnhart (1976), Chen and Kreglewski (1977), and Simmick et al. (1979). It represents the pair-potential energy function by a set of line segments which offers mathematical convenience considerable in evaluating properties from statistical mechanical formulas 'Reed 8 Gubbins, 1973). Besides their simplicity, the equations of state based on the square-well potential model have proven to be a qualitatively reasonable approximation to real

simple fluids compared with the Monte Carlo and molecular dynamic computer simulation results (Smith et al., 1977).

Figure 3: SQUARE-WELL PAIR-POTENTIAL

From Figure 3, d is the collision diameter between two molecules. d(R-1) is the well-width where R is the ratio of the ranges of the attractive and the repulsive parts of the potential. ϵ is the well-depth of the potential measuring the attractive strength of the pair-potential. For a onecomponent isotropic system, d is equal to the molecular diameter of hard spheres. Equation (6) can be integrated analytically for the spherical square-well potential.

$$\frac{\mathbf{p} \mathbf{v}}{\mathbf{N}\mathbf{k}\mathbf{T}} = \mathbf{1} + \frac{2\pi}{3} \rho d^3 \mathbf{g}_{SW} (\mathbf{d}^+)$$

$$- \frac{2\pi}{3} \rho d^3 \mathbf{R}^3 \left\{ \mathbf{g}_{SW} (\mathbf{R}\mathbf{d}^+) + \mathbf{g}_{SW} (\mathbf{R}\mathbf{d}^-) \right\} \quad (9)$$

$$\text{let} \quad \mathbf{y}(\mathbf{r}) = \mathbf{g}(\mathbf{r}) \exp\left\{ \boldsymbol{\beta} \phi(\mathbf{r}) \right\} \qquad (10)$$

$$\text{where} \quad \boldsymbol{\beta} = \mathbf{1} / \mathbf{k}\mathbf{T} - \text{Equation (9) becomes}$$

$$\frac{\mathbf{p} \mathbf{v}}{\mathbf{N}\mathbf{k}\mathbf{T}} = \mathbf{1} + \frac{2\pi}{3} \rho d^3 \exp\left\{ \boldsymbol{\beta} \epsilon \right\} \mathbf{y} \left\{ \mathbf{d} \right\}$$

$$- \frac{2\pi}{3} \rho d^3 \mathbf{R}^3 \left\{ \exp\left(\boldsymbol{\beta} \epsilon \right) - \mathbf{1} \right\} \mathbf{y} \left(\mathbf{R} \mathbf{d} \right) \quad (11)$$

In the equation of state proposed by Reijnhart (1976), an equation of hard spheres was used to represent the

-

12

.

repulsive part of the square-well potential. The expression of the attractive part was obtained by making an approximation of the square-well distribution function with the distribution function of hard spheres, which can be obtained analytically, for example, from the Percus-Yewick's theory (Peter et al., 1979). The equation was tested for its ability to describe the P-V-T data of methane. Satisfactory results were obtained, except in the low density region and in the neighborhood of the critical point.

The first two terms on the right-hand side of Equation (11) are the repulsive contribution. These two terms can be approximated by the equation of hard spheres for an isotropic system (Smith et al., 1977, Reijnhart, 1976, and Henderson, 1979).

$$\frac{P V}{NkT} = Zhs - \frac{4\pi}{6} \rho d^3 R^3 y (Rd) \{exp(\beta\epsilon) - 1\}$$
(12)

where Zhs is the compressibility factor of hard spheres. The values of Zhs can be evaluated analytically by using, for example, the Carnahan-Starling equation of state (Carnahan and Starling, 1969).

In order to apply Equation (12) to a real fluid system, the behavior of y(r) (or g(r)) must be known. This

knowledge is provided in the distribution function theories (Hansen and McDonald, 1976, Lee and Chung, 1983):

1. The radial distribution function can be written as a Maclaurin's expansion about $\rho = 0$:

$$g(r; \rho, T) = \sum_{n=0}^{\infty} q_n \rho^n$$
$$= g_0 + g_1 \rho + g_2 \rho^2 + \dots \quad (13)$$

where g_0 represents the interaction of molecular pairs, g_1 the interaction of molecular trio, etc. Each g is a function of r and T only (Reed & Gubbins, 1973). For low densities, the radial distribution function may be approximated by (Reijnhart, 1976)

 $g(r) \simeq g_{0} = \exp \{-\beta \phi(r)\}$ (14)

which Leads to

$$\lim_{\rho \to 0} y(r) = 1$$
 (15)

2. y(r) is related to other correlation functions
through the following equation:

$$y(r) = \exp \{h(r) - C(r) + B(r)\}$$
 (16)

where h(r) is the total correlation function, C(r)the direct correlation function, and B(r) the bridge function. Their cluster series, up to the second order in density, are:

$$h(r) - C(r) + B(r) = \int_{1}^{+} \int_{2}^{+} \int_{1}^{+} \int_{2}^{+} \int_{1}^{+} \int_{2}^{+} \int_{$$

where the bond $\frac{0-0}{1-2}$ represents the Mayer factor $f(\tau) = \exp \{-\beta \phi(\tau) -1\}$. The cluster integrals are functions of temperature and the expansion is in terms of density.

If all orders of the expansion are kept, an exact theory for the attractive term can be obtained. However, in practice, in order to make calculations for real fluids, some simplifications are needed. Approximate closures of the above series (where one or more diagrams on the righthand side of Equation (17) are missing) are, for example, the Percus-Vevick closure and the hypernetted chain closure. In this work, an approximation of y(r) is introduced based on Equation (16) and (17). It will be discussed in the next section.

In the case of anisotropic systems, the interaction between two nonspherical molecules is still separated into a short-range repulsive and a long-range attractive force. But in addition to the center to center distance $(R_{1,2})$, the square-well parameters (d,R, ϵ) also depend on the relative orientations of the molecules, i.e. the Euler angles ω_1 and ω_2 . The pair-potential between two nonspherical molecules has the general form of

$$\phi(1, 2) = \phi(R_{12}, \omega_1, \omega_2)$$
 (18)

where $\omega_i = \phi_i \theta_i \chi_i$ (or $\phi_i \theta_i$ for linear molecules) is the orientation of molecule i as shown in Figure 4.

Figure 4: GEOMETRY OF A PAIR OF CONVEX BODIES

The effect of orientation dependent interactions of asymmetric molecules may not be very significant in the gas phase where molecules are widely separated. The spherically symmetric potential, such as the Lennard-Jones potential, can adequately describe the behavior of such system. However, at higher densities and in the liquid phase, the interactions between the nonspherical molecules become significant. Therefore, the nonspherical effects must be included in the intermolecular potential. Figure 5 and 6 show the typical orientations of the nonspherical molecules and the potential energies between nitrogen molecules corresponding to various orientations in Figure 5 as a function of the distance between the centers of molecules (Kihara and Ichimaru, 1976).

Figure 5: NINE TYPICAL ORIENTATIONS OF MOLECULES

FIGURE 6: POTENTIAL BETWEEN NITROGEN MOLECULES AT VARIOUS ORIENTATIONS

2.1 EQUATION OF STATE FOR MONPOLAR COMPOUNDS

Equation (12), previously introduced for spherically symmetric molecules, can be readily extended to the nonspherical system. First, by replacing the repulsive part of Equation (12) - Zhs by the compressibility factor of hard convex bodies - Zhc. Second, the angle-dependent parameters in the attractive part of Equation (12) are replaced by the angular-average values:

$$\langle \Psi (\mathbb{R}_{12}, \omega_1, \omega_2) \rangle = \frac{1}{(4\pi)^2} \int \int V (\mathbb{R}_{12}, \omega_1, \omega_2) \, d\omega_1 \, d\omega_2$$

$$= \frac{1}{(4\pi)^2} \int_{0}^{\pi} d\theta_1 \sin \theta_1 \int_{0}^{2\pi} d\phi_1 \int_{0}^{\pi} d\theta_2 \sin \theta_2 \int_{0}^{2\pi} d\phi_2 \forall \langle R_{12}, \omega_1, \omega_2 \rangle$$
(20)

where < > indicates the average value over the orientations of any parameter V. Equation (18) becomes:

$$- \frac{4\pi}{6} < Rd > {}^{3}\rho \{ exp \{ \beta < \epsilon > \} - 1 \} y (< Rd > \}$$
(21)

Upon employing the mean value theorem in calculus, the angular average can be evaluated at the mean values of the Euler angles, ω_1 and ω_2 . Equation (21) becomes

$$\frac{P V}{NkT} = Zhc$$

$$- \frac{4\pi}{6} \overline{Rd}^{3} \rho \{ \exp (\beta \overline{\epsilon}) - 1 \} y (\overline{Rd})$$
(22)

where the overbar indicates function at the mean values.

In this work, Zhc in Equation (22) is replaced by the equation of state for hard convex bodies developed by Nezbeda (1976) and will be referred to as Znez. The expression of Znez is obtained from an analysis of the second to the fifth virial coefficients of the hard core molecules.
Znez =
$$\frac{1 + (3C-2)y + (C^2 + C - 1)y^2 - C(5C-4)y^3}{(1 - y)^3}$$
 (23)

where C is the hard convex body shape factor, $y = \rho b$ is the packing fraction, ρ is the density, and b is the hard convex molecular volume. For hard spheres, C is equal to 1 and Equation (23) is reduced to the Carnanan-Starling equation of hard spheres. C is greater than 1 for nonspherical molecules.

Substituting Zhc in Equation (22) by Znez from Equation (23):

$$Z = \frac{1 + (3C-2)y + (C^2+C-1)y^2 - C(5C-4)y^3}{(1 - y)^3}$$

- 4 Va* ρ * { exp (1/T*) - 1 } y(\overline{Rd}) (24)

where

÷.

$$\rho * = \rho\sigma^{3}$$

$$T* = kT / \epsilon$$

$$Va* = Va / \sigma^{3} = Rd^{3} \pi / 6$$

 σ^3 is the density-reducing parameter having the unit of volume.

For further evaluation of Equation (24), the following approximation of $y(\overline{Rd})$ is introduced:

$$y(\overline{Rd}) = \exp \{-a^* \rho^* / T^* \}$$
 (25)

The approximation (Equation (25)) is based on Equation (16), Equation (17), and the knowledge that the radial distribution function depends weakly on temperature but depends strongly on density (Beret and Prausnitz, 1975, Watts and McGee, 1976). a' is a constant specifying the temperature and density dependence. Substituting Equation (25) into Equation (24) leads to the following equation:

Z =
$$\frac{1 + (3C-2)y + (C^2 + C - 1)y^2 - C(5C-4)y^3}{(1 - y)^3}$$

- 4
$$Va \neq \rho \neq \{ exp (1/T \neq) - 1 \}$$

$$\exp \{-a^* \rho^* / T^*\}.$$
 (26)

Equation (26) is first applied to n-butane. Comparison between the experimental thermodynamic property data and the calculated values shows good agreement in density prediction. However, poor results are obtained from the predictions of enthalpy and vapor pressure calculations. Further modification of y(Rd) is accomplished by introducing a density dependence term of higher order to Equation (25):

$$y(Rd) = exp \{ -a^{*}p^{*}/T^{*} \}$$

+
$$\rho$$
 = exp { -a" ρ = $/T$ } (27)

where a" is the second constant. The combination of Equation (27) and (26) yields

$$Z = \frac{1 + (3C-2)y + (C^{2}+C-1)y^{2} - C(5C-4)y^{3}}{(1 - y)^{3}}$$

- 4
$$Va \neq \rho \neq \{ exp (1/T^*) - 1 \}$$

$$\{\exp(-a^*\rho^*/T^*) + \rho^* \exp(-a^*\rho^*2/T^*)\}$$
. (28)

The prediction result of Equation (28) shows a significant improvement over Equation (26), especially in the enthalpy calculation.

In order to test the ability of Equation (28) for the low density prediction, the new equation is used to calculate the second virial coefficients (B_2) of n-butane, where

$$B = (1+3C) b - 4 Va \{ exp(\bar{\epsilon} / kT) - 1 \}.$$
(29)

The parameters used in Equation (29) are determined from the regression analysis of the experimental PVT data mentioned earlier. Comparison of B_2 obtained from Equation (29) and the experimental values of Dymond and Smith (1980) is shown in Figure 6. It is obvious that Equation (29) does not represent the second virial coefficients very well, since the calculated values are much higher than the experimental

values. This may due to the fact that the second virial of hard convex bodies is too strong for real molecules which are considered softer. Improvement is made by replacing the second virial of the hard convex bodies by an adjustable parameter Br - the effective repulsive contribution of B_2 . This leads to

 $Z = Znez - (1+3C) y + Br + \rho +$

- 4 Va*
$$\rho$$
* { exp (1/T*) - 1 }

$$\{\exp(-a^{*}\rho^{*}/T^{*}) + \rho^{*} \exp(-a^{*}\rho^{*}^{2}/T^{*})\}$$
(30)

where

Br* = Br / σ^3

and

$$B_2 = Br - 4 Va \{ exp \{ \overline{\epsilon} / kT \} - 1 \}.$$
 (31)

Results from Equation (30) show significant improvement Equation (28) especially in vapor over pressure calculations. The deviation of density reduces from 1.73% to 0.70%; vapor pressure deviation reduces from 3.21% to 1.09%; and the enthalpy departure deviation reduces from 0.39 to 0.34 btu/lb. A better prediction of B, is also obtained as shown in Figure 6. Figure 7 shows the contributions of the repulsive compressibility factor - 2r (the first three terms on the right-hand side ΟĪ Equation (30)) and the attractive compressibility factor - Za (the last term on the right hand-side of Equation (30)) to the total compressibility factor Z at two temperatures (T). Zr is positive and independent of temperature, while Za is negative. The absolute value of Za decreases as temperature Therefore, the behavior of gas at very high increases. temperature and in liquid phase is dominantly controlled by the repulsive forces between molecules.

The density calculation at each temperature and pressure is obtained by solving the pressure expression of Equation (30): $P = \rho ZRT$ which requires iterations until the convergence criteria is satisfied. The density search technique used in this work was developed by Goin (1978). The enthalpy departure is calculated by the expression derived from the classical thermodynamics (Balzriser et al., 1972):

27

$$\frac{H - H}{R T}^{0} = (2-1) - \int_{0}^{0} T^{*} \left[\frac{\partial Z}{\partial T^{*}} \right]_{\rho^{*}} \frac{d\rho^{*}}{\rho^{*}}$$
(32)

where

$$T_{0}^{*} \left[\frac{\partial Z}{\partial T^{*}} \right]_{p*} \frac{d p *}{p *} = -4 \quad \forall a * \quad T *$$

$$\left\{ \frac{1}{2} \left[\frac{1}{2} T^{*} \right]_{p*} \frac{d p *}{p *} \right]_{p*} \frac{d p *}{p *} = -4 \quad \forall a * \quad T *$$

$$\left\{ \frac{e}{T^{*}} \left[\frac{e^{-a^{*}} p * / T^{*}}{a^{*}} + \frac{e^{-a^{*}} p * ^{2} / T^{*}}{a^{*}} \right] - \left(e^{-a^{*}} - 1 \right) \right\}$$

$$\left\{ - \left(e^{-a^{*}} + \frac{p *}{2} e^{-a^{*}} \right) \right\}$$

$$+ T^{*} \left(\frac{e^{-1}}{a^{*}} + \frac{e^{-1}}{2a^{*}} \right) \right\}$$
(33)

,

.

The vapor pressure P of a substance at a given temperature is obtained by satisfying the following criteria:

$$P_{\ell} = P_{v} = P$$

and

$$f_l = f_v$$

where 1 and v are referred to liquid and vapor respectively. The fugacity, f, of a pure component is calculated from the ... relation:

$$f = RT \exp \{ \int_{0}^{\rho^{*}} (Z-1) \frac{d\rho^{*}}{\rho^{*}} + (Z-1) \}$$
(36)

where

$$\int_{0}^{0} \int_{0}^{0} \frac{d\rho^{*}}{(2-1)} \frac{d\rho^{*}}{\rho^{*}} = (5C^{2} - 4C - 1) \ln (1-\gamma)$$

$$+ \frac{(9C^{2} - 9C + 2)}{(1-\gamma)^{2}} + \frac{(-2C^{2} + 4C - 1)}{(1-\gamma)^{2}}$$

$$- (7C^{2} - 5C + 1) - (1 + 3C) \gamma$$

$$+ Br^{*} \rho^{*}$$

$$+ Br^{*} \rho^{*}$$

$$- 4 \operatorname{Va}^{*} T^{*} (e^{-1})$$

$$= \frac{-a^{*}\rho^{*}/T^{*}}{a^{*}} + \frac{-a^{*}\rho^{*2}/T^{*}}{a^{*}}$$

$$= \frac{-a^{*}\rho^{*}/T^{*}}{a^{*}} = \frac{(37)}{a^{*}}$$

= EXPERIMENTAL, \Box = EQUATION (29), Δ = EQUATION (31)

•

FIGURE 8: PLOT OF THE COMPRESSIBILITY FACTORS VERSUS DENSITY ($\rm T_1 > T_2$)

2.2 EQUATION OF STATE FOR POLAR AND ASSOCIATIVE COMPOUNDS

In previous researches, the development of equations of state for polar fluids can be divided into two categories. One is through empirical algebraic expressions. The other consists of the rigorous statistical mechanical studies of polar fluids. Extension of an equation of state for nonpolar to polar fluids often involves assigning an empirical temperature dependence to the equation-of-state parameters (e.g. Nakamura et al., 1976, Soave, 1979, as cited by Whiting and Prausnitz, 1982) or through the perturbation theory. The latter approach is usually resulting in separating the equation-of-state parameters into the nonpolarity contribution and the polarity contribution (e.g. Watanasiri, 1982, Whiting and Prausnitz, 1982, Umesi, 1983, and Chung, Khan, Lee and Starling, 1984).

In a nonpolar molecule, the centers of negative charges and the positive charges are coincident. Intermolecular pair-potential energies of nonpolar molecules are the summation of a short-range repulsive contribution and a long-range attractive contribution mainly from dispersion energies.

In a polar molecule, the centers of negative and positive charges are not coincident. Therefore, there are additional contributions to the pair-potential energies from the polarization or induction energies and the direct electrostatic energies (associated with dipole, quadrupole

32

and higher electric moments characterizing the charge distributions of each molecule in an interacting pair).

For a pair of associated molecules, the attraction interaction between them is sufficiently strong to give empirical evidence of the formation of a new molecular species involving both molecules. In addition to all types of energies in polar molecules, there is a contribution from residual valence interactions. Molecules exhibiting residual valence interactions (i.e., hydrogen-bonding) are called associated molecules. Examples are molecules having -OH, >NH or -SH structure such as H_2O , NH_3 , alcohols, amines and carboxylic acids (Reed & Gubbins, 1973).

From statistical mechanics, the pair-intermolecular potential energy function of polar molecules may be represented by the Lennard-Jones potential function (nonpolar contribution) together with the contributions of dipole, quadrupole and dipole-quadrupole interactions (Stell et al., 1974, Alem and Mansoori, 1984):

$$\phi (\mathbf{r}_{12}, \boldsymbol{\omega}_1, \boldsymbol{\omega}_2) = 4 \varepsilon \left\{ \left[\frac{\sigma}{\mathbf{r}_{12}} \right]^{12} - \left[\frac{\sigma}{\mathbf{r}_{12}} \right]^6 \right\}$$
$$+ \phi^{\mu\mu} (\mathbf{r}_{12}, \boldsymbol{\omega}_1, \boldsymbol{\omega}_2)$$
$$+ \phi^{\muQ} (\mathbf{r}_{12}, \boldsymbol{\omega}_1, \boldsymbol{\omega}_2)$$
$$+ \phi^{QQ} (\mathbf{r}_{12}, \boldsymbol{\omega}_1, \boldsymbol{\omega}_2)$$
(38)

where, for interacting molecules of the same kind

33

$$\phi^{\mu\mu} (\mathbf{r}_{12}, \omega_1, \omega_2) = -\mu^2 \{ 2 \cos\theta_1 \cos\theta_2 \\ -\sin\theta_1 \sin\theta_2 \\ \cos (\phi_1 - \phi_2) \} / \mathbf{r}_{12}^3$$
(39)
$$\phi^{\mu Q} (\mathbf{r}_{12}, \omega_1, \omega_2) = -3 \mu Q \{ \cos\theta_1 \cos\theta_2 \\ -\sin\theta_1 \sin\theta_2 \}$$

$$\cos (\phi_1 - \phi_2) \} / 4r_{12}^4$$
 (40)

$$\phi^{QQ} (r_{12}, \omega_1, \omega_2) = -3 Q^2 \{ 1 - 5 \cos^2 \theta_1 - 5 \cos^2 \theta_2 \\ - 15 \cos^2 \theta_1 \cos^2 \theta_2 \\ + 2 \{ \sin \theta_1 \sin \theta_2 \cos (\phi_1 - \phi_2) \} \\ - 4 \cos \theta_1 \cos \theta_2 \} \} / 16 r_{12}^5 \\ (41)$$

 μ is the dipole moment, Q is the quadrupole moment, ω_{i} is the polar angle of molecule i (see Figure 4).

After introducing the configurational angle-average potential function for polar interactions to the above equations, Equations (39) through (41) become:

$$< \phi^{\mu\mu} (r_{12}) > = -\mu^4 / 3 k T r_{12}^6$$
 (42)

$$\langle \phi^{\mu Q}(\mathbf{r}_{12}) \rangle_{\omega} = -\mu^2 Q^2 / \kappa T r_{12}^8$$
 (43)

$$\langle \phi^{QQ}(\mathbf{r}_{12}) \rangle_{(1)} = -7Q^{4}/3 \ k \ T \ r_{12}^{10}$$
 (44)

Therefore, the angle-average pair-potential energy function of two identical polar molecules will be

$$\langle \phi(\mathbf{r}_{12}) \rangle_{\omega} = 4 \varepsilon \left\{ \left[\frac{\sigma}{\mathbf{r}_{12}} \right]^{12} - \left[\frac{\sigma}{\mathbf{r}_{12}} \right]^{6} \right\}$$
$$- \frac{\mu^{4}}{3 \ \mathbf{k} \ \mathbf{T} \ \mathbf{r}_{12}}$$
$$- \frac{\mu^{2} Q^{2}}{\mathbf{k} \ \mathbf{T} \ \mathbf{r}_{12}}$$
$$- \frac{7 \ Q^{4}}{3 \ \mathbf{k} \ \mathbf{T} \ \mathbf{r}_{12}}$$
(45)

As described by Whiting and Prausnitz (1982), the most important term in the multipolar expansion is the dipoledipole term. Dropping off the last two terms in Equation (45), the orientation-average pair-potential becomes

$$\langle \phi (\mathbf{r}_{12}) \rangle_{\omega} = \frac{4 \varepsilon \left\{ \left[\frac{\sigma}{r_{12}} \right]^{12} - \left[\frac{\sigma}{r_{12}} \right]^{6} \right\}}{- \frac{\mu^{4}}{3 \mathbf{k} \operatorname{T} \mathbf{r}_{12}}$$
 (46)

Combining the r^{-6} terms in Equation (46) resulted in

$$\langle \phi(\mathbf{r}_{12}) \rangle_{\omega} = 4 \varepsilon^{4} \left\{ \left[\frac{\sigma^{4}}{\mathbf{r}_{12}} \right]^{12} - \left[\frac{\sigma^{4}}{\mathbf{r}_{12}} \right]^{6} \right\}$$
 (47)

where

۰.

$$\varepsilon' = \varepsilon \{1 + \mu^4 + \cdots \} \quad (48)$$

$$6kT \varepsilon \sigma^6$$

$$\sigma^{*6} = \sigma^{6} / \{ 1 + \mu^{4} + \dots \} (49)$$

$$12 \kappa T \varepsilon \sigma^{6}$$

The truncated terms are all of higher order in reciprocal temperature. Equation (48) can be approximated as

$$\varepsilon' = \varepsilon + \frac{\mu^4}{6\kappa T^0}$$
 (50)

where the potential well-depth parameter, ε^* , is a sum of the nonpolar value (ε) and the polar contribution (μ^4 / 6kT \sigma^6) which is similar to the relationship of the pair-potential in Equation (46). Therefore, for polar fluids, an effective potential well-depth parameter is assigned as

$$\frac{\varepsilon'}{k} = \frac{\varepsilon}{k} + \frac{K}{Tb^2}$$
(51)

to take into account the polarity contribution based on the angle-average interaction between point dipoles. b is the closed-packed molar volume and K is a measure of polarity. For nonpolar fluids, K=0. A similar approach was successfully employed by Whiting and Prausnitz (1982) and Khan (1983) for extending an equation of state to polar fluids.

Chapter III

RESULTS AND DISCUSSION

The new equation of state is applied to a wide variety of pure fluids found in natural gases, petroleum and coal chemicals. The compounds tested are ranged from straightchain nonpolar hydrocarbons - normal paratfins; other nonpolar or slightly polar fluids, such as ethylene, isobutane and benzene: to various classes of polar and associative compounds, including carbon dioxide, ammonia, alcohols, ethers, ketones, amines, many nitrogen-, oxygen-, and sulfur- containing compounds with an emphasis on liquid phase properties. In liquid phase, the interactions between polar molecules play a much more important role than in the gas phase where interactions mostly vanish after averaging with respect to molecular orientations (Rihara & Ichimaru, 1976).

Critical properties of each compound are taken either from Reid et al. (1977) or from the sources where the thermodynamic data are obtained. The data sources of all compounds tested are summarized in Table 1, and the physical properties are in Table 2. The values of the adjustable parameters are determined from the multiproperty regression of the experimental thermodynamic property data (density,

- 38 -

vapor pressure, and enthalpy, where available) using the regression program developed by Goin (1978).

TABLE 1

component	property	number of points	data reference(s)
Methane	RHOL	21	Van Itterbeek et al. (1963),
	RHOV	18	Vennix (1966),
			Yesavage (1968),
	V P	32	Matthews (1946),
	ENTH	33	Douslin et al. (1964)
Ethane	RHOL	39	Sage and Lacey (1950),
	RHOV	7	API-44 (1978),
	٧P	46	Canjar and Manning (1967)
	ENTH	85	
Propane	RHOL	130	Sage and Lacey (1950),
*	RHOV	4	Canjar and Manning (1967),
			Huang (1967),
	VP	55	API-44 (1978),
	ENTH	26	Yesavage (1968)
n-Butane	RHOL	31	API-44 (1978),
	RHOV	9	Sage and Lacey (1950),
	VP	52	Canjar and Manning (1967)
	ENTH	39	
n-Pentane	RHOL	24	API-44 (1978),
	RHOV	15	Sage and Lacey (1950),
	VP	45	Canjar and Manning (1967)
	ENTH	38	
n-Hexane	RHOL	41	API-44 (1978), Canjar and Manning (1967),
	٧P	53	Stewart et al. (1954)
n-Heptane	RHOL	41	API-44 (1978), Stuart et al. (1950),
	٧P	40	Kay (1938),
	ENTH	17	Gilliland and Parekh (1942)

DATA REFERENCES OF NORMAL PARAPFINS, OTHER NONPOLAR, POLAR, AND ASSOCIATIVE COMPOUNDS

component	property number of points		data reference(s)		
n-Octane	RHOL RHOV VP ENTH	47 1 56 54	Reid et al. (1977), API-44 (1978)		
n-Nonane	RHOL VP	43 18	Vargaftik (1975), Ried et al. (1977), API-44 (1978)		
n-Decane	RHOL VP	32 18	Sage and Lacey (1950), Vargaftik (1975), API-44 (1978)		
n-Undecane	VP	19	Vargaftik (1975)		
n-Dodecane	RHOL	17	Vargaftik (1975),		
	VP	21	API-44 (1978)		
n-Tridecane	RHOL	17	Vargaftik (1975),		
	VP	18	Zwolinski and Wilhoit (1971)		
n-Tetra	RHOL	14	Vargaftik (1975),		
decane	VP	15	Zwolinski and Wilhoit (1971)		
n-Penta	RHOL	14	Vargaftik (1975),		
decane	VP	14	Zwolinski and Wilholt (1971)		
n-Hexa	RHOL	9	Varyaftik (1975),		
decane	VP	10	Zwolinski and Wilhoit (1971)		
n-Hepta	RHOL	13	Vargaftik (1975)		
decane	VP	15			
n-Octa	RHOL	13	Vargaftik (1975),		
decane	VP	15	Zwolinski and Wilholt (1971)		

component	property number of points		data reference(s)		
n-Nona decane	RHOL VP	12 15	Vargaftik (1975), Zwolinski and Wilhoit (1971)		
n-Eicosane	RHOL ¥P	25 15	Vargaftik (1975), Zwolinski and Wilhoit (1971)		
Ethylene	F HOL R HOY	11 29	API-44 (1978)		
	VP Enth	35 34	Tickner and Lossing (1951), Canjar and Manning (1967)		
Propylene	EHOL EHOV	22 35	Farrington and Sage (1949), Michels et al. (1953),		
	٧Þ	28	Canjar and Manning (1967))		
i-Butane	RHOL RHOV	87 29	Canjar and Manning (1967), Morris et al. (1940), Bettie et al. (1950),		
	۷P	82	Aston et al. (1940), Sage and Lacey (1950), Connolly (1962), Twolingty and Bilbout (1971)		
	ENTH	73	Macknick et al (1978)		
i-Pentane	RHOL Rhov	13 25	API-44 (1978), Douslin et al. (1964), Aston et al. (1940),		
	٧P	22	Silberberg et al. (1959)		
Toluene	RHOL VP	13 33	Vargaftik (1975), API-44 (1978)		
o-Xylene	RHOL VP	59 43	Vargaftik (1975)		
Bicyclo hexyl	٧P	23	Weiczorek and Kobayashi (1980)		

com ponent	property	number of points	data reference(s)
Benzene	RHOL Ehov	61 41	Kudchadker et al. (1968), Reid et al. (1977), API-44 (1978).
	Ϋ́Р	67	Nicolas et al. (1979), Yaws (1978)
Fluorene	٧P	29	Boublik et al. (1973)
Diphenyl methane	٧P	33	Weiczorek and Kobayashi (1980), Wilson et al. (1981)
Dichloro difluoro	EHOL RHOV	39 143	ASHRAE (1969)
wethane	ENTH	40 40	
Carbon dioxide	RHOL RHOV VP ENTH	24 15 33 39	Din (1961), Canjar and Manning (1967)
Nitrogen	RHOL RHOV VP ENTH	11 27 19 77	Canjar and Manning (1967), Streett and Stavely (1968), Mage et al. (1963), Friedman and White (1950)
Hydrogen sulfide	RHOL RHOV	18 22	Lewis and Frederick (1968), Reamer et al. (1950), Kay and Bamposek (1953).
	¥ P	24	West (1948)

.

.

Component	property	number of points	data reference(s)
• • • • • • •			
Ammonia	RHOV RHOV VP	120 180 172	Garnjost (1974), Haar and Gallagher (1977)
Methyl fluoride	RHOV VP	131 28	ASHRAE (1969)
Butanol	RHOL	32	Kemme and Kreps (1969), Ambrose and Townsend (1963), Ambrose and Sparke (1970).
	٧P	92	Hales and Ellender (1976)
Phenol	RHOL VP	14 15	Kudchadker et al. (1977)
p-Cresol	RHOL VP	23 20	Kudchadker et al. (1978a)
o-Cresol	RHOL VP	24 21	Kudchadker et al. (1978a)
m-C resol	RHOL VP	26 22	Kudchadker et al. (1978a)
2,3 Xylenol	٧P	18	Kudchadker et al. (1978b)
Acetone	RHOL VP	28 20	Int. Crit. Tables (1926)
2-Butanone	∀ P	16	Collerson et al. (1965)
2- Pentanone	RHOL VP	18 18	Collerson et al. (1965), Meyer and Wagner (1966)

component	property	number of points	data reference(s)
Dimethyl ether	RHOL RHOV VP	17 17 19	Int. Crit. Tables (1926)
Methyl ethyl ether	RHOL BHOV VP	17 11 18	Int. Crit. Tables (1926)
Diethyl ether	RHOL RHOV VP	22 21 23	Int. Crit. Tables (1926)
Ethyl propyl ether	RHOL VP	17 18	Int. Crit. Tables (1926)
Diphenyl ether	RHOL VP	12 13	Vargaftik (1975)
Acetic acid	RHOL VP	21 23	Int. Crit. Tables (1926)
Methylamine	VP	17	Int. Crit. Tables (1926)
Dimethyl amine	٧P	18	Int. Crit. Tables (1926)
Ethylamine	V P	19	Int. Crit. Tables (1926)
Diethyl amine	RHOL VP	17 18	Int. Crit. Tables (1926)
Aniline	RHOL VP	29 34	Kudchadker (1982)
Pyridine	RHOL VP	26 25	Kudchadker (1979)

45

component	property	number of points	data reference(s)
4-Methyl pyridine	V ₽	16	Boublik et al. (1973), Reid et al. (1977)
i-	R HOL	18	Viswanath and Wilhoit (1979)
quinoline	VP	63	
Carbazol	٧P	26	Boublik (1973), Kudchadker et al. (1981a)
Acridine	RHOL	12	Kudchadker et al. (1981a),
	VP	23	McNeil (1965)
Formamide	RHOL	67	Int. Crit. Taples (1926)
Ethyl	RHOL	19	Int. Crit. Tables (1926)
mercaptan	VP	20	
Dimethyl	RHOL	20	Int. Crit. Tables (1926)
sulfide	VP	21	
Tetrahydro	RHOL	9	Kudchadker et al. (1981b)
thiophene	VP	26	
Thia napthene	V P	27	Wieczorek and Kobayashi (1980)
Dibenzo thiophene	٧P	19	Sivaraman and Kobayashi (1982)
Dibenzo	RHOL	42	Nasir et al. (1981)
furan	VP	19	Sivaraman and Kobayashi (1932)
Tetrahydro	RHOL	10	Kudchadker et al. (1978c)
furan	VP	25	

RHOL = liquid density
RHOV = vapor density
VP = vapor pressure
ENTH = enthalpy departure

TABLE 2

PHYSICAL PROPERTIES OF NORMAL PARAFFINS.

Component	Molecular weight	Critical Temperature, °R	Critical Pressure, psia	Critical Density, lbmole/cu.ft.
Methane	16.042	343.570	673.100	0.6274
Ethane	30.068	550.000	709.820	0.4218
Propane	44.094	665.640	616.300	0.3121
n-Butane	58.120	765.340	550.700	0-2448
n- Pentane	72.146	845.090	489.500	0.2007
n-Hexane	86.172	913.120	439.700	0.1695
n-Heptane	100-200	972.520	397.000	0.1465
n-Octane	114.220	1023.460	360.600	0.1284
n- Nonane	128.250	1070.170	332.000	0.1150
n-Decare	142.270	1111.570	306.600	0.1037
n-U ndecane	156.310	1149.840	285.102	0.0946
n-Dodecane	170.340	1184.940	264.528	0.08956
n-Tridecane	183.370	1216.440	249.832	0_08004
n-Tetradecane	198.390	1249.200	235.136	0.0/522
n-Pentadecane	212.450	1272.600	220.440	0-07094
n-Hexadecane	225.450	1290.600	205-744	0.05516
n-Heptadecane	240.470	1319.400	191.048	0.05243
n-Octadecane	254.500	1341.000	1/4.882	0.05887
n-Nonadecane	268.530	1360.800	161.656	0.05579
n-Eicosane	282.550	1380.600	161.656	0.05302

.

- .

Component	Molecular weight	Critical Temperature, ^o R	Critical Pressure, psia	Critical Density, Lbmole/cu.ft.
Ethylene	28.050	50 9. 490	728.800	0.50350
Propylene	42.080	657.070	669.000	0.34490
i-Butane	58.120	734.130	526.570	0.24384
i- Pentane	72. 146	828.700	490.410	0.20400
Benzene	78.113	1011.888	710.598	0.21250
Toluene	92.142	1065.100	596.820	0.19800
o-Xylene	106.170	1134.360	540.960	0.16920

1479.996

1386.360

693.000

371.910

523.320

414.540

598.290

Bicyclohexyl

Fluorene

Diphenyl methane

Dichloro

difluoromethane

166.310

166.220

168.240

120.910

TABLE 2 (CONTINUED) PHYSICAL PROPERTIES OF NONPOLAR COMPOUNDS.

0.10820

0-10500

0.11799

TABLE 2 (CONTINUED) PHYSICAL PROPERTIES OF POLAR AND ASSOCIATIVE COMPOUNDS

Component	Nolecular veight	Critical Temperature, °R	Critical Pressure, psia	Critical Density, 1bmole/cu.ft.
Carbon dioxide	44.010	547_470	1069.900	0-6 6410
Nitrogen	28.016	227.070	1296-200	0.69290
Hydrogen sulfide	34.076	672-370	1296.200	0.65/10
Ammonia	17.030	729. 900	1635.700	0.86148
Methyl fluoride	34.042	572.040	852.600	0-50347
Butanol	74.123	1013.220	640.920	0.22780
Phenol	94.113	1249.700	889.170	0.27300
p-Cresol	108.140	1268.370	746.760	0.22538
o-Cresol	108.140	1255.770	726.180	0.22137
m-Cresol	108.140	1270-530	661.500	0.20010
2,3 Xylenol	122.170	1301.300	710.877	0.17400
Acetone	58.080	914.670	682.080	0.298/1
2-Butanone	72.107	964-080	602.100	0.23382
2-Pentanone	86 . 13 4	1015.200	564.480	0.20741

•

Component	Molecular weight	Critical Temperature,°R	Critical Pressure, psia	Critical Density, lbmole/cu.it.
Dimethyl ether	46_069	720.000	779.100	0.35073
Methyl ethyl ether	60-096	788.040	637.980	0.28249
Diethyl ether	74.123	840.060	527.730	0.22295
Ethyl propyl ether	88.150	901.080	471.870	0.182/2
Diphenyl ether	170-219	1378.800	455.700	0.12139
Acetic acid	60.052	1069.920	839.370	0.36509
Methylamine	31_058	774.000	1081_920	0.44592
Dimethylamine	45.085	787.680	770-280	0-33384
Ethylamine	45.082	820-800	815.850	0.35072
Diethylamine	73.139	893-880	538.020	0-20140
Aniline	93.129	1258-470	770.280	0-22780
Pyridine	79.102	1115.910	827.610	0.245/9
4-Methyl pyridine	93.129	1162.800	646-830	0.2000/

Component	Molecular weight	Critical Temperature, ^o R	Critical Pressure, psia	Critical Density, 1bmole/cu.ft.
i-Quinolene	129 . 160	1445.670	722.486	0.15490
Carbazol	167.200	1620.090	476.280	0.19000
Acridine	179.220	1629.360	441.000	0.11500
Formanide	45.031	985.140	3198.720	0.41512
Ethyl mercapta	an 62.134	898.200	796./40	0.30159
Dimethyl sulfide	62.130	905-400	802+620	0.31060
Tetrahydro thiophene	88. 168	1137.570	764.400	0_23827
Thianapthene	134.200	1353.600	555. 545	0.16210
Tetrahydro furan	72.106	972.270	752.950	0.27870
Dibenzo thiophene	184_270	1618.740	579.180	0_11820
Dibenzofuran	168_ 190	1508.040	588.000	0.12391

3.1 APPLICATION OF THE EQUATION OF STATE TO BORMAL PARAPPINS

Equation (30) is applied to twenty pure normal paraffins ranging from a simple fluid with one carbon atom - methane, to a long chain molecule with twenty carbon atoms - neicosane. Initially, Equation (30) has a total of eight adjustable parameters for each compound: the shape factor (C), the hard convex body volume (b), the effective repulsive contribution of the second virial coefficient (Br), the attractive volume (Va), the energy parameter (ε /k), the density-reducing parameter (σ^3), and two constants specifying the temperature and density dependence (a' and a''). These parameters are determined from fitting the available density, vapor pressure and enthalpy data.

From the plot of ϵ / k versus critical temperature Tc, and σ^3 versus critical density ρ_c , for twenty compounds (as shown in Figure 9 and 10), both relations are almost linear. Therefore, following the law of corresponding states, ϵ / k and σ^3 can be correlated to Tc and ρ_c respectively, which results in

$$\epsilon / k = Tc / 2.18601$$
 (52)

$$\sigma^3 = 0.572735 / \rho_c$$
 (53)

52

The values of critical temperatures and critical densities are listed in Table 2.

The final results are reported in terms of the average absolute deviation (aad) in Table 6 with the values of the corresponding parameters tabulated in Table 3. Generally, gives fairly good agreement Equation (30) with the experimental data. The overall and of density for nineteen compounds (637 data points) is 0.68% with a maximum of 1.18% The overall and of vapor pressure for all for n-pentane. twenty compounds (572 data points) is 0.54% with a maximum of 0.99% for methane. For the enthalpy departure calculation, the overall and is 1.21 Btu/1b for seven fluids with 292 data points.

53

FIGURE 9: PLOT OF THE ENERGY PARAMETERS VERSUS CRITICAL TEMPERATURE OF N-PARAFFINS

FIGURE 10: PLOT OF THE DENSITY-REDUCING PARAMETERS VERSUS CRITICAL DENSITY (RHOC) OF N-PARAFFINS

•

3.2 APPLICATION OF THE EQUATION OF STATE TO OTHER NONPOLAR COMPOUNDS

Equation (30) along with Equation (52) and (53) is applied to eleven other nonpolar or slightly polar compounds besides normal paraffins. These compounds represent different classes of fluid including branch-chain hydrocarbons, unsaturated hydrocarbons, ring compounds and halogenated hydrocarbons. The values of the parameters for each compound are summarized in Table 4. The calculation results are given in Table 7. The overall and of 607 data points of density, 435 points of vapor pressure, and 147 points of enthalpy are 0.7%, 0.59% and 1.20 Btu/lb, respectively.

3.3 <u>APPLICATION OF THE EQUATION OF STATE TO POLAR AND</u> ASSOCIATIVE COMPOUNDS

.

As described earlier in Chapter II, Equation (30) is extended to polar and associative compounds by making the effective energy parameter " ε /k" temperature dependent:

$$\frac{\varepsilon}{k} = \frac{\varepsilon}{k} + \frac{K}{Tb^2}$$
(54)

where ε/k is the nonpolar part of the energy parameter. "K" is the parameter assigned to take into account the contributions of the multipolar and association effects.

Thirty-eight compounds from various classes are tested. The values of the parameters are given in Table 5 along with the prediction results in Table 8. There are a total of 1157 data points of density with the overall and of 1.23%; 1115 data points of vapor pressure with the overall and of 0.40%; and 116 points of enthalpy with the overall and of 1.47 Btu/lb.
EQUATION OF STATE PARAMETERS FOR NORMAL PARAFFINS.

component	C	b		Br	1 a'	a"
		l Cu	.ft./lbmo	le	a \$ 1	
	() () () () () () () () () () () () ()	•		دند دار وه وي <u>دل ون وه م</u> ه هه ه	•	
Nethane	1.02008	0_26151	1.30990	1.15550	3.33802	0.333370
Ethane	1.10299	0 .37 850	2.29115	2.06550	4.13605	0.30654/
Propane	1.19523	0_50932	3.09117	3,23730	3.25146	0.335164
n-Butane	1.33117	0.63804	4.14642	4.13475	3.53153	0-3252/8
n-Pentane	1.37924	0.79020	5.42042	5-40516	3.70428	0.320604
n-Hexane	1.46968	0.91823	6.46905	6.83146	3.42525	0.303150
n-Heptane	1.56411	1.06334	7.85505	7.83293	3.74474	0.294657
n-Octane	1.62814	1.20069	9-66047	10.0424	3.91568	0.312844
n-Nonane	1.73413	1.35103	11-2827	11.2509	4.15130	0.303723
n-Decane	1.7 9693	1.50789	13_0402	13.003/	4.22387	0.300379

TABLE 3 (CONTINUED)

component	C	1 b	Va	Br	a'	a"
		cu	.ft./lbmo	Te	# 	
ین از می اور این اور ای اور این اور این		• • • • • • • • • • • • • • • • • • •	خدهد نه بی بی خت خد هد ه	میں جرب ہیں بالا میں طلع کا قرید خو	•	
n-Undecane	1.88289	1.62949	14.3527	14.3122	4.18223	0.288177
n-Dodecane	1.96885	1.81702	16.8519	16_8044	4.28170	0-296994
n-Tridecane	2.05458	1.97637	18.5097	18_4575	4.17706	0.284571
n-Tetra decane	2.14076	2.11482	21_3019	21.2419	4_49650	0.308393
n-Penta decane	2.21226	2.26042	24.1428	24.0748	4_68490	0.323593
n-Hexa decane	2.29972	2.41321	2 7. 2 7 32	27.1964	4_87208	0.334224
n-Hepta decane	2.38626	2.57808	28-9587	28-8772	4.66210	0.320120
n-Octa decane	2.46985	2.72049	32.3137	32.2227	4.90141	0.337559
n-Nona decane	2.57054	2.88370	34.6525	34.5549	4.76438	0.330749
n-Eicosan e	2.65651	3. 10348	38.7677	38-6586	4.82883	0.341593
					ويدجوه ويشتقيه فتشتروه متشتك ويب	

•

EQUATION OF STATE PARAMETERS FOR NONPOLAR COMPOUNDS.

.

-:

component	C	l b	Va Va	Br	a'	a"
		l Cu.1	Et./lbmol	e		
Ethylene	1.05120	0.33912	1.92641	1.82250	3.55652	0.3507/1
Propylene	1.40083	0.44644	2.91975	2.67811	3.78230	0-352492
i-Butane	1.33986	0.64455	4.38060	3. 96152	4.21284	0.351981
i-Pentane	1.33484	0.77994	5-30007	5.42539	3.65174	0.332185
Benzene	2.05852	0.578552	3. 86595	3.68515	3.00329	0.263120
Toluene	1.95468	0.71273	5 . 7 5532	5.71330	3.75269	0.350970
o-Xylene	1.38407	0.92289	6.56432	7.2201/	3.43890	0.31257/
Bicyclo hexyl	1.89254	1.56007	13.1454	13.5738	3.65351	0,337325
Fluorene	1.66415	1.33095	13.0545	16.5632	4.14114	0.368505
Diphenyl methane	1.82590	1.34159	11.2469	11.5720	3.74952	0.307503
Dichloro difluoro methane	1_69801	0.49593	3.52230	3.5123 8	J. 44508	0.343992

•

EQUATION OF STATE PARAMETERS FOR POLAR AND ASSOCIATIVE COMPOUNDS.

component	C C	1 b	Va	Br	a'	a"	k *
		c	u.ft./1bm	ole	· 		
ن زهن کی چین ہے، کہ اس سی	امة الي حي حي حي حك علم الله عن و	_• <i>•</i>	ويعد عويد الللة الللة كلت كله خله غيبة غريب	وي يين وي	ر ی بی کار که بند نیم رس می ا	ینین این خود میں عمر میں عمر میں میں وقد میں	روی این این این این این این این این این ای
Carbon dioxide	2.20215	0.17624	0.91745	0.85635	2.89222	0.398210	1085-26
Nitrogen	1.10870	0.23647	1.25173	1.24820	3.72372	0.308397	0.0
Hydrogen sulfide	1.36413	0.23583	1.47688	1.39930	3.49562	0.359550	0.0
Ammonia	1.49024	0.17169	1.23586	1.03953	4.44942	0.325048	-8-207
Methyl fluoride	1.93017 9	0.28805	2.25471	2.27156	3.82702	0.389155	-13.015
Butanol	1, 13685	0.76824	3.00670	4.64645	0.33349	0.228705	2733-4
Phenol	1.51368	0.66661	3.79188	5.35046	1.44370	0.314044	7193.3

* in units of (^oR ft³ / lbmole)

- e - 1

component	E C	l b	Va	Br	l a'	a"	k
			cu.ft./1b	mole	1		
و کند چید ۵۰ که سم مدر نمیر سر	الله اللغ والا اللي الله من يلم الله الله ال		ہیں ہیں ہیں ہے۔ خان جے جے دی ہیں اس	میں ہیں ہیں جات قطر کی جات	•	کت هیچ وقت نست اللباغ جوی پرون گت بودی پوری	
Diethyl ether	1,86761	0.65631	5.04592	4.33025	4.26846	0.339499	1589.1
Ethyl propyl ether	1.93416	0 .7 6006	6.14702	5.89930	4.04833	0.382782	5017.1
Diphenyl ether	1,54833	1.38196	10.4663	6.78157	5.99501	0-268902	1583.7
Acetic acid	2.77183	0.35892	4.02370	3.87654	4.22370	0.424646	-333.25
Methyl amine	1.08011	0.37660	2.21522	2.20898	3.82267	0 . 24845 1	421.52
Dimethyl amine	1.64228	0.47275	3.28492	3-28850	3.43135	0.266224	109.06
Ethyl amine	1_44901	0.45092	3.14337	3-13859	3.70964	0.296325	116.91
Diethyl amine	1.76156	0.72730	5.30042	3.72351	5.05142	0.287329	840.42

.

•

•

- . * .

TABLE 5 (CONTINUED)

Tetra 1.28571 0.69624 4.76387 4.13763 4.35552 0.291614 -6993.64 hydro thiophene

Thia 1.38088 0.87804 6.21530 6.84928 3.47042 0.306475 3572.69 napthene

Dibenzo 1.04294 1.10511 13.7391 22.1489 4.42767 0.449223 -28512.0 thiophene

Tetra 1.56977 0.55088 3.71377 4.04419 2.89819 0.325935 -34.519 hydrofuran

Dibenzo 2.40006 1.05989 8.57705 9.87446 2.14375 0.280996 -64982. furan

.

ნე

component	property	number	temperature	pressure	aad
		of points	range, *R	range,psia	
، ها بين شاکه ها بي بين اي اين ها ها ها که			·····		
Methane	RHO	39	206.2-1121.7	129.7-2071.6	0.93
	¥5	32	200.9-343.2	14.7-668.72	0.99
	ENTH	33	209.7-509.7	450.0-2000.0	1.50
Ethane	RHO	46	239.7-769.7	14.7-10000.0	0-95
	¥ P	46	249.7-549.7	0_49-709_80	0.52
	ENTH	85	299.7-769.7	200.0-3000.0	1.42
Propane	R HO	134	162.0-71t.7	14.7-10593.0	0. 82
	V P	55	259.8-665.9	0.019-617.7	0.19
	ENTH	26	309.7-709.7	500.0-2000.0	1.96
n-Butane	RHO	40	259.7-889.7	14.7-7000.0	V. 56
	V P	52	349.7-739.7	0.17-437.30	0-80
	ENTH	39	559.7-889.7	200.0-5000.0	0.72
n-Pentane	RHO	39	299.7-919.7	14.7-10000.0	1.18
	VP	45	401-5-845-6	0.193-489.5	0.67
	ENTH	38	559.7-919.7	200.0-10000.0	1.06
n-Hexane	RHO	41	319.7-779.7	14.7-3977.0	0.57
	A B	53	395.7-914.2	0.02-439.70	0.39
n-Heptane	RHO	41	369.7-919.7	14.7-3081.5	0.11
	VP	40	415.8-956.9	0-008-350-0	0.17
	ENTH	17	971.9-1156.4	78.7-2363.1	0-90
n-Octane	RHO	48	389.7-969.7	14.7-239.0	0.12
	V P	56	414.7-1019.7	0-001-350-0	0.80
	ENTH	54	534 .7-1 059.7	200.0-1400.0	0.19
n-Nonane	RHO	43	455.7-1031.7	0.002-7251.8	0.67
	¥ P	18	442.2-814.7	0.001-29.65	0.05
n-Decane	EHO	32	559.7-919.7	200.0-6000.0	0.41
	VP	18	629.7-646.6	0.505-30.00	0.04

-

PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF NORMAL PARAFFINS.

component	property	number of points	temperature range, °R	pressure range,psia	aad
n-Undecane	VP	19	624.7-899.7	0.182-29.60	0.06
n-Dodecane	RHO	17	581.7-869.7	0.016-12.63	0.30
	VP	21	333° 1- 1 100° 3	0.032-202.5	0.22
n-Tridecane	RHO VP	17 18	617.7-905.8 617.7-1218.9	0.024-12.93 0.024-15.29	U.29 0.27
		•			
n-Tetra decane	RHO ND	14 15	707.7-941.7	0.18-13.54	0-27
_					
n-Penta decane	EHO VP	74 14	743.7-977.7 743.7-995.1	0,24-14.44 0,24-1/.90	0.29
n-Hexa decane	RHO VP	9 10	833.7-971.7	1.00-10.09	0.17 0.17
n-Hepta decane	RHO ND	13 15	779.7-995.7	0.18-8.89 9.18-17.1	0.34 0.21
n-Octa decane	R HO VP	13 15	815.7-1031.7 815.7-1067.7	0.25-10.1	0=27 0=45
		•			
n-Nona decane	RHO VP	12 15	833.7-1031.7 833.7-1085.7	0.23-7.36 0.23-14.2	0.36 0.23
	• =				
n-Eicosane	RHO VP	25 15	671.7-1031.7 851.7-1121.7	725.0-7251.8 0.22-16.100	0.98 0.42
		-			

RHO = density VP = vapor pressure

ENTH = enthalpy departure

and = average absolute deviation; in % for density and vapor pressure calculation, in btu/lb for enthalpy departure calculation

.

component	property	number of points	temperature range, ^o R	pressure range,psia	aad
Ethylene	RHC	40	209.7-719.7	14.7-2000.0	0.91
	VP	35	239.7-509.7	0.885-742.1	0.94
Propylene	ENTH	34	339.7-719.7	100.0-200.0	2.00
	RHO	57	409.7-909.7	16.2-2939.2	1.28
	VP	28	264.5-656.9	0.039-670.3	0.80
i-Butane	RHO	116	349.7-986.6	14.7-5000.0	0./6
	VP	82	334.7-733.9	0.183-526.8	0./5
	ENTH	73	559.7-939.7	14.7-4408.8	1.26
i-Pe ntane	RHO	38	399 .7- 851.6	14 . 7-582.50	0_84
	VP	22	439.7-829.8	1.205-494.7	0_29
Benzene	RHO	102	504.0-981.0	0.768-574.5	0./4
	VP	67	504.0-1012.7	0.768-713.9	0.35
Toluene	RHO	13	491.7-689.7	0.130-14.44	0 . 31
	VP	33	491.7-1049.7	0.130-547.2	0 . 89
o-Xylene	RHO	59	536.7-986.7	14.5-5800.0	0.3/
	VP	43	455.7-1136.8	0.004-552.1	0.25
Bicyclo hexyl	V ₽	23	763.6-1039.0	1.391-50.30	0.36
Fluorene	V2	29	926.2-1103.7	4.031-33.35	0.51
Diphenyl	VP	33	764.3-1109.7	0.566-61.00	0.85
Dichloro	RHO	182	307.7-919.7	0.14-440.00	0-47
difluoro	VP	40	307.7-689.7	0.14-577.03	0-53
methane	ENTH	40	307.7-689.7	0.14-577.03	0-26

-.

PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF NONPOLAR COMPOUNDS.

.

component	property	number of points	temperature range, ^e R	pressure range,psia	aad
		و مرد بو هو ننه جند که مسول بره کند			
Carbon	RHO	39	437.7-743.7	220-5-5580-0	0.39
dioxide	٨b	33	389.7-544.7	75.15-1032.0	0.81
	ENTH	39	437.7-743.7	441.0-7350.0	1.76
Nitrogen	RHO	38	139.2-699.7	14.7-8936.36	U_ 79
	A B	19	150.6-226.7	29.06-492.20	0.69
	ENTH	77	159.7-509.7	200.0-2500.0	1.33
Hydrogen	RHO	40	499.7-799.7	100-0-2000-0	0.53
sulfide	VP	24	383.3-672.4	14.7-1306.00	0.39
Ammonia	RHO	300	428.0-1077.0	12./1-11816.	2.37
	V P	172	398.6-726.50	5.35-1592.00	0-08
Methyl	RHO	131	269.7-899.70	0.62-623.40	0.82
fluoride	V P	28	269.7-538.33	0.62-701.40	0.49
Butanol	EHO	32	455.7-864.27	0.145-156.79	0.50
	٧P	92	532.3-1002.4	0.106-588.09	0.85
Phenol	RHO	14	581.7-1211.7	0.047-739.50	0.78
	A b	15	581.7-1249.7	0.047-888.85	1.33
p-Cresol	RHO	23	563.7-1211.4	0.0073-478.5	0.25
	VP	20	599.7-1175.7	0.0335-371.2	0.55
o-Cresol	RHO	24	563.7-1247.7	0.0179-697.5	0.25
	٧P	21	56 3.7-11 39.7	0.0179-332.2	0.54
m- Cresol	RHO	26	527.7-1247.7	0.0013-555.3	0.43
	V P	22	581.7-1247.7	0.0174-555.3	0.54
2,3 Xylenol	٧P	18	635.7-1283.7	0.077-638.00	1.26

PREDICTIONS OF THE THERMODYNAMIC PROPERTIES OF POLAE AND ASSOCIATIVE COMPOUNDS

، هذه می خبیر عرب خطر چینه می ه

•

• .

-

component	property	number of points	temperature range, °R	pressure range,psia	aad
یہ جب سے حق کہ خاندین کہ ہیں ہے۔		و و به این من خواص هم این می این این این این این این این این این ای	way ay in any in the second		
Acetone	RHO VP	28 20	491 .7 -905.70 592.6-914.70	14.70-648.27 14.70-690.90	0.62 0.24
2-Butanone	۷P	16	578.33-650.9	4.790-19.340	0.005
2- Pentanone	RHO VP	18 18	593.6-692.65 593.6-692.65	2.965-19.338 2.965-19.338	0.017 0.008
Dimethyl ether	RHO VP	34 19	449.01-707.6 449.01-720.1	14.70-680.61 14.70-764.40	2.70 0.46
Methyl ethyl ether	RHO VP	28 18	505 .17- 779.7 505 .17- 788.7	14.70-595.35 14.70-637.98	3.25 0.23
Diethyl ether	RHO VP	43 23	49 1.7- 839.07 491.7-840.51	3.576-517.9 3.576-522.9	1.85 0.35
Ethyl propyl ether	RHO VP	17 18	602.2-887.67 602.2-900.99	14.7-423.36 14.7-471.87	0.55 0.28
Diphenyl ether	R HO V P	12 13	941 .7-11 39.7 941 .7-1 157.7	12.06-86.13 12.06-99.18	0.17 0.27
Acetic acid	RHO VP	21 23	704.9-1049.7 704.9-1070.5	14.7-719.27 14.7-840.99	0-52 0-36
Methylamine	∀ P	17	487.8-714.09	14.7-1081.9	0.27
Dimethyl amine	۷P	18	504-6-787-95	14.7-759.99	0.21
Ethylamine	V P	19	521.5-821.43	14.7-816.34	J .19

component	property	number of points	temperature range, °R	pressure range,psia	aad
Diethyl	Р НО	17	591.4-869.67	14.7-441.00	0.50
amine	VP	18	591_4-887-67	14.7-505.58	0.80
Aniline	RHO	29	491.7-1211.7	0.0014-585.8	0.44
	٧P	34	491.7-1167.5	0.0014-440.6	9.76
Pyridine	EHO	26	455.7-1103.7	0.020-775.45	0.76
-	٧P	25	455.7-1103.7	0.020-755.45	0-88
4-Methyl pyridine	٧P	16	668.6-753.5	3.41-14.74	0.20
i-	e Ho	18	599.7-959.7	0.015-21.15	0.30
quinoline	٧P	63	599.7-1427.1	0.015-661.0	0.44
Carbazol	V P	26	932.3-1211.7	1-07-31-90	0.71
Acridine	R HO	12	707.7-1103.7	0.012-13.08	0.25
	V ₽	23	724.6-1139.7	0.019-19.14	0_43
Formamide	RHO	67	518.7-581.7	324.8-34800.0	0.13
Ethyl	RHO	19	553.7-869.7	14.7-648.3	0.28
mercaptan	VP	20	553.7-88/.7	14.1-742.3	0.27
Dimethyl	RHO	20	556.1-88/.7	14.7-690.9	0.32
sulfide	٧P	21	556-1-905-5	14.7-802.6	0.47
Tetrahydro	RHO	9	491.7-617.7	0.079-2.76	0.43
thiophene	VP	26	497.7-1137.5	0.0/9-/54.0	U-20
Thia napthene	٧P	27	763.9-1135.1	2.23-153.1	0.28

.

•

TABLE 8 (CONTINUED)

-,

component	property	number of points	temperature range, °R	pressure range,psia	aad
Dibenzo thiophene	۷P	19	764.6-1093.5	0.068-15.36	0.28
Dibenzo	№ НО	42	704.8-1013.7	74.1-3394.9	0.64
furan	РНО	19	783.6-1112.5	0.75-42.316	0.64
Tetrahydro	EHO	10	455.6-599.67	0.29-12.064	0.27
furan	VP	25	455.6-972.27	0.28-752.55	0.32

.

3.4 DISCUSSION OF RESULTS

In the previous section, the final results of the new equation of state, applied to 69 compounds, are reported in Table 6, 7 and 8 in terms of the average absolute deviation. Generally, Equation (30) gives fairly good agreement with the experimental values, especially the vapor pressure All together, there are 2229 data points of calculations. density, 2122 data points of vapor pressure, and 555 points of enthalpy data. The average absolute deviation predicted by Equation (30) is 0.95%, 0.47% and 1.26 btu/1b, respectively. The second virial coefficient calculations of Equation (30) are also in fairly good agreement with the smoothed experimental values of Dymond and Smith (1980) for both polar and nonpolar compounds. Comparison of the second virial coefficients (B2) of six normal parattins: methane, ethane, propane, n-butane, n-pentane, and n-hexane is shown in Figure 11. The calculated values are very close to the especially for small molecules. experimental values, However, the deviation becomes slightly larger in the low temperature region as the size of molecule increases. Figure 12 is the comparison of B_2 among four other nonpolar ethylene, propylene, i-butane, and i-pentanc. compounds: Figure 13 shows the comparison of B₂ for three polar compounds: nitrogen, carbon dioxide, and methyl fluoride. The calculated values are generally in good agreement with

the experimental values, especially for ethylene and methyl fluoride.

Figure 14 is the plot of the experimental second virial coefficients of propane and the values calculated from five different equations of state, including Equation (30). Equation (A1) is the van der Waals equation of state; Equation (A2) is the Peng-Robinson equation; Equation (A3) (Boublik-Alder-Chen-KreqLewski) equation is the BACK developed by Chen and Kreglewski (1977); and Equation (A4) is the equation of state for polar and nonpolar compounds developed by Khan (1983), based on the concept of perturbed hard chain theory and the hard convex body equation of state. The BACK equation is the augmented van der Waalstype equation of state having similar form as Equation That is, the repulsive compressibility factor is (30) represented by the hard convex body equation of Boublik (1975), combined with an attractive expression, which is a power series in (U/kT) and (V'/V) of Alder et al. (1972). The forms of Equation (A1) to (A4) are summarized in Appendix A. In the high temperature region (above 850 °R), the predictions of all five equations agree well with the experimental data, especially Equation (A3) and (A4). In moderate temperature region (from 500 to 850 °R), Equation gives the closest values to the experimental data. (30) Meanwhile, at temperature below 500 °R, Equation (30), along with Equation (A2) and (A3), has about the same accuracy.

Equation (A4) is slightly better in this region, while the prediction from the van der Waals equation becomes inaccurate at low temperatures.

Further comparisons of the thermodynamic property calculations of Equation (30) with Equation (A2) and (A4) are reported in Table 9 for 38 compounds. Table 10 is the comparison of Equation (30) with the BACK equation for 14 compounds. The values of the parameters used in Equation are those reported by the authors. (A3) and (A4) The thermodynamic property predictions of Equation (30) are generally more accurate than Peng-Robinson's and BACK's, for both polar and nonpolar compounds. Improvement of Equation (30) over the Peng-Robinson equation becomes significant as the size of molecules increases. A similar trend is also observed from the BACK equation, in which the prediction is quite accurate for small globular molecules but not so accurate for heavy, long-chain type molecules such as n-Equation (A4), in general, can describe the P-V-T decane. behavior of paraftin hydrocarbons and some polar compounds Equation (A4), as reported by Khan quite accurately. (1983), is superior to the Perturbed-Hard-Chain equation of state developed by Donohue and Prausnitz (1978). However, the accuracy achieved by Equation (30) is, for the most part, as good as, or better than Equation (A4). The overall aad of density, vapor pressure, and enthalpy predicted by Equation (30) are compared with Equation (2) and Equation

(4) at the end of Table 9. The comparison with BACK equation is shown at the end of Table 10.

Figure 15 shows the density calculation of n-butane at various isotherms. The result shows good agreement in both vapor and liquid density regions. Similar results are obtained from the liquid density calculation of o-xylene and the saturation density calculation of phenol, as shown in Figure 16 and 17, respectively. The experimental saturation density of dimethyl ether is compared with the values calculated from Equation (30), Equation (A2), and Equation (A4) in Figure 18. Figure 19 is the comparison of the saturation density of benzene between the experimental values and the calculated values from Equation (30), Equation (A2), and Equation (A3). Both figures show the effectiveness of Equation (30) in predicting both vapor and The improvement over the Peng-Robinson liquid densities. equation is very obvious in the liquid region due to the hard convex body expression used in describing the repulsive pressure in Equation (30).

The newly developed equation of state is particularly effective in predicting the vapor pressures of both polar and nonpolar compounds. For sixty-nine fluids tested, the deviations in vapor pressure calculations are within 1% or less, except two compounds where the deviations are slightly over 1% (phenol, 1.33% and 2,3 xylenol, 1.26%). This accuracy can be seen in Figure 20, a plot of the calculated

vapor pressures versus the observed values for six normal paraffins, and in Figure 21, for some polar compounds. Figure 22, 23, and 24 show the comparisons of vapor pressure calculations of n-decane, n-eicosane, and annline, respectively. The results confirm that the vapor pressure prediction of Equation (30) is as good as or better than the other equations studied.

Values of the parameters of the new equation of state are now available for 69 compounds as summarized in Table 3, 4, and 5. There are six parameters for each nonpolar compound, and seven parameters for each polar and associative compound. Although these parameters are obtained empirically from the regression analysis of the experimental data, they are not totally arbitrary. Some of them have physical meanings and are closely related to other physical properties such as molecular weight or critical volume.

For normal paraffins, the shape factor (C) and the hard convex body volume (b) increase almost linearly with the carbon number. The increase in molecular weight, critical volume, and van der Waals volume (Bondi, 1968) of hormal paraffins has the same nature as the increase in carbon number due to each additional CH group. Therefore, C and b of normal paraffins are also closely related to the molecular weight and the critical volume as shown in Figure 25, 26, and 27. The parameters Br and Va of normal

paraffins are also closely related to the above properties, as shown in Figure 28 and 29. Figure 30 shows the relation between Br and Va. The linear relation between the hard convex body volume and the critical volume of normal fluids also agrees with the study of Bienkowski and Chao (1975). Figure 31, 32, and 33 show the increase of b, Br, and Va of normal paraffins and some other polar and nonpolar compounds with the critical volume. The relation between Br and Va of compounds other than normal paraffins is approximately linear as shown in Figure 34. The regular behavior of these parameters will play a significant role in finding suitable correlations of the parameters. These correlations can add remarkably to the usefulness of the equation of state, especially in an application to mixture systems.

FIGURE 11: COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF NORMAL PARAFFINS

	= EXPERIMENTAL. 🗗 = EQUATION	(30)
	1=METHANE, 2=ETHANE, 3=PROPANE	_
ų	=N-BUTANE, S=N-PENTANE, 6=N-HEXAN	١E

FIGURE 12: COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF NONPOLAR COMPOUNDS

-:

FIGURE 13: COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF POLAR COMPOUNDS

EXPERIMENTAL, C = EQAUTION (30)

1= NITROGEN, 2= CARBON DIOXIDE, 3= METHYL FLUORIDE

FIGURE 14: COMPARISON OF THE SECOND VIRIAL COEFFICIENTS OF PROPANE

1=EXPERIMENTAL, 2=EQUATION (A1), 3=EQUATION (A2), 4=EQUATION (A3), 5=EQUATION (A4), 6=EQUATION (30)

FIGURE 15: DENSITY CALCULATIONS OF N-BUTANE

= EXPERIMENTAL, □ = EQUATION (30) 1=559.7 °R, 2=619.7 °R, 3=679.7 °R, 4=739.7 °R

.

FIGURE 16: LIQUID DENSITY CALCULATIONS OF O-XYLENE

= EXPERIMENTAL, = = EQUATION (30) 1=536.7 °R, 2=581.7 °R, 3=671.7 °R, 4=761.7 °R 5=851.7 °R, 6=941.7 °R, 7=986.7 °R

FIGURE 17: PERCENT DEVIATION OF SATURATION DENSITY CALCULATIONS

OF PHENOL

-:

1 = EXPERIMENTAL, 2 = EQAUTION (30), 3 = EQUATION (A2), 4 = EQUATION (A4)

FIGURE 19: COMPARISON OF THE SATURATION DENSITIES OF BENZENE

> 1 = EXPERIMENTAL, 2 = EQUATION (30) 3 = EQUATION (A2), 4 = EQUATION (A3)

FIGURE 20: VAPOR PRESSURE CALCULATIONS OF NORMAL PARAFFINS

= EXPERI	MENTAL, T	⊐ = E	QUATION	(30)
1=ETHANE,	2=N-PENT	ANE, S	3=n-nonan	IE
4=N-TRIDECANE,	5=N-HEXA	IDECANE	E, 6=N-E]	COSANE

FIGURE 21: VAPOR PRESSURE CALCULATIONS OF POLAR COMPOUNDS

----- = EXPERIMENTAL, = = EQUATION (30) 1=ETHYLAMINE, 2=DIMETHYL SULFIDE, 3=ACETONE 4=TETRAHYDROFURAN, 5=BUTANOL, 6=ACRIDINE

FIGURE 22: COMPARISON OF VAPOR PRESSURE CALCULATIONS OF N-DECANE

1=EXPERIMENTAL, 2=EQUATION (30), 3=EQUATION (A3)

FIGURE 23: COMPARISON OF VAPOR PRESSURE CALCULATIONS OF N-EICOSANE

1=EXPERIMENTAL. 2=EQUATION (30) 3=EQUATION (A2), 4=EQUATION (A4)

1 = EXPERIMENTAL, 2 = EQUATION (30) 3 = EQUATION (A2), 4 = EQUATION (A4)

COMPARISON OF THE THERMODYNAMIC PROPERTY PREDICTIONS

Component	property number of point		aad		
			eq.(30)	eq. (A4)	eg. (A2)
Methane	RHO	39	0.93	0.55	5.43
	VP	32	0.99	0-38	1.45
	ENTH	33	1.50	0-49	2.13
Ethane	PHO	46	0.95	1.96	5-64
	VP	46	0.62	0.65	2.93
	ENTH	85	1.42	7.43	2.23
Propane	RHO	134	0.82	1.67	4.21
-	V P	55	0.79	0.60	3.07
	ENTH	26	1.96	0-91	2.58
n-Butane	BHO	40	0.56	1.31	3.66
	٧P	52	0.80	1.02	4.13
	ENTH	39	0.72	0-74	1,11
n-Pentane	EHO	39	1.18	1.82	3.23
	V P	45	0.67	1.16	1.35
	ENTH	38	1.06	1.63	1.56
n-Hexane	R HO	41	0.34	2.14	1.59
	ΨP	53	0.42	1.01	4.92
n-Heptane	RHO	41	0.77	1.61	1.49
-	٧P	40	0.77	1.97	1.10
	ENTH	17	0.90	0-89	1.10
n-Octane	RHO	48	0.72	2.33	4.13
	A B	56	0.80	1.16	3.73
	ENTH	54	0.70	0.97	2.41
n-Nonane	RHO	43	0.67	1.53	0.67
	٧P	18	0.05	0.34	4.05
n-Decane	8 HO	32	0_47	1.69	0.92
	Ab	18	0_04	0.92	2.09

۰.
TABLE 9 (CONTINUED)

.

		eg. (30)	eg. (A4)	eg. (A2)
<u></u>	· · · · · · · · · · · · · · · · · · ·	• · · · · · · · · · · · · · · · · · · ·	1 1	/
		·	• == ===== == • •	
V P	19	0.06	0.55	5.11
RHO	17	0.30	1.04	5.11
VP	21	0.22	3.24	7.82
RHO	17	0.28	0.93	9_14
VP	18	0.27	2.36	5_19
R HO	14	0.21	0.78	7.78
VP	15	0.14	2.42	3.79
RHO	14	0.29	1.03	8 . 96
VP	14	0.21	0.59	4 . 64
RHO	9	0.17	1.31	10.3
VP	10	0.17	0.81	13.2
RHO	13	0.34	1.03	13. 4
VP	15	0.21	0.73	9 . 99
2 HO	1 3	0.27	1.13	17.1
VP	75	0.45	0.77	11.5
RHO	12	0-36	1.55	20.1
VP	15	0-23	0.79	11.1
RHO	25	0.98	1.78	17.8
VP	15	0.42	1.71	8.48
	Ab KHO KHO KHO KHO KHO KHO KHO KHO	VP 19 RHO 17 P 21 RHO 17 VP 18 RHO 14 VP 15 RHO 14 VP 14 RHO 13 SHO 13 SHO 13 RHO 12 RHO 15 RHO </td <td>VP 19 0.06 RHO VP 17 21 0.30 0.22 BHO VP 17 18 0.28 0.27 RHO VP 14 15 0.21 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 13 0.17 0.34 0.17 RHO VP 13 15 0.27 RHO VP 13 0.27 0.34 RHO VP 13 0.23 0.27 RHO VP 15 0.23 0.98 RHO VP 15 0.42 0.98</td> <td>VP19$0.06$$0.55$RHO17$0.30$$1.04$VP21$0.22$$3.24$BHO17$0.28$$0.93$VP18$0.27$$2.36$RHO14$0.21$$0.78$VP15$0.14$$2.42$RHO14$0.29$$1.03$VP14$0.21$$0.59$RHO9$0.177$$1.31$VP10$0.177$$0.31$RHO13$0.271$$0.73$SHO13$0.277$$1.13$VP15$0.455$$0.77$RHO12$0.36$$1.55$VP15$0.23$$0.79$RHO12$0.36$$1.78$VP15$0.422$$1.78$RHO12$0.98$$1.78$VP15$0.422$$1.71$</td>	VP 19 0.06 RHO VP 17 21 0.30 0.22 BHO VP 17 18 0.28 0.27 RHO VP 14 15 0.21 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 14 0.21 0.29 RHO VP 13 0.17 0.34 0.17 RHO VP 13 15 0.27 RHO VP 13 0.27 0.34 RHO VP 13 0.23 0.27 RHO VP 15 0.23 0.98 RHO VP 15 0.42 0.98	VP19 0.06 0.55 RHO17 0.30 1.04 VP21 0.22 3.24 BHO17 0.28 0.93 VP18 0.27 2.36 RHO14 0.21 0.78 VP15 0.14 2.42 RHO14 0.29 1.03 VP14 0.21 0.59 RHO9 0.177 1.31 VP10 0.177 0.31 RHO13 0.271 0.73 SHO13 0.277 1.13 VP15 0.455 0.77 RHO12 0.36 1.55 VP15 0.23 0.79 RHO12 0.36 1.78 VP15 0.422 1.78 RHO12 0.98 1.78 VP15 0.422 1.71

94

TABLE 9 (CONTINUED)

---.

RHO VP ENTH RHO VP	40 35 34 57	0.91 0.94 2.00	0.99 0.63 0.75	3.19 5.22
RHO VP ENTH RHO VP	40 35 34 57	0.91 0.94 2.00	0.99 0.63 0.75	3.19 5.22
RHO VP ENTH RHO VP	40 35 34 57	0.91 0.94 2.00	0.99 0.63 0.75	3.19 5.22 2.77
VP ENTH RHO VP	35 34 57	0.94 2.00	0.63 0.75	5.22 2.71
ENTH RHO VP	34 57	2.00	0.75	271
RHO VP	57			2011
٧P	20	•28	1.36	2.31
	28	0.80	1.37	3-72
RHO	116	0.79	1.00	3.71
VP	82	0.75	5.93	2.39
ENTH	73	1.34	1.19	1.6/
EHO	38	0.84	1.33	3.01
٧P	22	0.29	0.81	0.90
B HO	102	0.74	2.53	3.35
VP	67	0.35	1.51	1.21
RHO	13	0.31	0_91	0.54
٧P	33	0_89	1.73	2.31
RHO	59	0.37	1.13	1.1/
٧P	43	0.25	0.56	5-27
RHO	182	0.47	1.03	1.69
V P	40	0.53	0.58	2.50
ENTH	40	0.26	0.31	1.36
RHO	39	0.39	0.65	1.89
٧P	33	0.81	0_39	0.61
ENTH	39	1.76	1,73	3.09
RHO	38	0.79	0.30	4_32
٧P	19	0.69	0.62	3-20
ENTH	77	1.33	0.29	1.21
	VP RHO VP ENTH EHO VP RHO VP RHO VP RHO VP RHO VP ENTH RHO VP ENTH RHO VP ENTH	VP 28 RHO 116 VP 82 ENTH 73 EHO 38 VP 22 RHO 102 VP 67 RHO 13 VP 33 RHO 13 VP 33 RHO 182 VP 43 RHO 182 VP 40 ENTH 40 PHO 39 VP 33 ENTH 39 PHO 38 VP 19 ENTH 77	VP 28 0.80 RHO 116 0.79 VP 82 0.75 ENTH 73 1.34 EHO 38 0.84 VP 22 0.29 PHO 102 0.74 VP 67 0.35 RHO 13 0.31 VP 33 0.89 RHO 13 0.31 VP 33 0.89 RHO 182 0.47 VP 40 0.53 RHO 182 0.47 VP 40 0.26 RHO 182 0.47 VP 40 0.26 RHO 39 0.39 VP 33 0.81 ENTH 39 1.76 PHO 38 0.79 VP 19 0.69 ENTH 77 1.33	VP 28 0.80 1.37 RHO 116 0.79 1.00 VP 82 0.75 5.93 ENTH 73 1.34 1.19 RHO 38 0.84 1.33 VP 22 0.29 0.81 P 22 0.29 0.81 P 22 0.29 0.81 P 67 0.35 1.51 RHO 13 0.31 0.91 VP 33 0.89 1.73 RHO 13 0.37 1.13 VP 33 0.25 0.56 RHO 182 0.47 1.03 VP 40 0.53 0.58 ENTH 40 0.26 0.31 P 33 0.81 0.39 ENTH 39 1.76 1.73 PHO 38 0.79 0.30 VP 19 0.69 0.62 ENTH 77 1.33 0.29

TABLE 9 (CONTINUED)

-

component	property number of points		aad		
		-	eq. (30)	eq. (A4)	eg. (A2)
	الحکة مور غریر جریا خلت الحاظات ور بر بر ا		•		, ,
Bydrogen	RHO	40	0.53	0.46	3.69
sulfide	VP	24	0.39	0.66	4.23
Methyl	R HO	131	0 .7 4	2.69	4.14
fluoride	VP	28	0 . 54	1.13	18.1
Phenol	RHO	14	0.78	2.19	10.5
	VP	15	1.33	3.24	6.11
Acetone	RHO	46	0.62	2.90	13.1
	VP	20	0.24	1.46	0.99
Dimethyl	RHO	34	2.90	3.35	3-77
ether	VP	19	0.26	0.53	3-46
Methyl ethyl ether	RHO VP	28 18	3.25 0.23	3.61 1.32	6.51 2.27
Diethyl	RHO	43	1.85	3.82	5.11
ether	VP	23	0.35	0.43	0.95
Aniline	RHO	29	0.44	3.56	2.98
	VP	34	0.76	3.15	8.09
overall prediction	RHO VP ENTH	1668 1155 555	0-79 0-56 1-26	1.68 1.47 0.96	4.16 4.04 1.91

TABLE 10

component	property	number]	aad
			eg.(30)	l eq. (A3)
Methane	R HO	39	0.93	0.40
	٧P	32	0.99	1.07
	ENTH	33	1_50	3.83
Ethane	RHO	46	0.95	1.95
	VP	46	0.62	4-55
	ENTH	85	1.42	3.55
Propane	RHO	116	0.54	1.14
	VP	53	0.65	4_40
	ENTE	26	1.96	5.76
n-Butane	R HO	36	0-42	1.19
	VP	52	0.80	5.08
	ENTH	39	0.72	2.42
n-Pentane	R HO	37	1_11	1.89
	٧P	45	0.67	3.85
	ENTH	38	1.06	2.76
i-Pentane	RHO	38	0.84	1.87
	٧P	22	0.29	3.16
n-Hexane	RHO	29	0.58	0.97
	٧P	49	0.37	3.60
n-Heptane	R HO	36	0-82	2.64
	VP	40	0.77	3.39
	ENTH	17	0-90	1,33
n-Octane	RHO	31	0.49	6.01
	V₽	51	0_80	3.59
	ENTH	46	0.90	1.66
n-Decane	REO	14	0-49	14.3
	VP	13	0.05	6.72

-:

COMPARISON OF THERMODYNAMIC PROPERTY PREDICTIONS WITH THE BACK EQUATION

TABLE 10 (CONTINUED)

component	property	number of points	1	aad
		01 p014 05	eg.(30)	eq. (A3)
	,			•
Benzene	RHO	102	0_79	1.79
	VP	67	0.29	3.16
Toluene	RHO	13	0.31	1.82
	VP	33	0_89	5.24
Nitrogen	RHO	38	0.79	0.30
	V P	19	0_69	0.33
	ENTH	77	1.33	2.36
Hydrogen	RHO	40	0.53	0.74
sulfide	٧P	24	0.39	2.12
overall	RHO	615	0.70	2.15
prediction	VP Enth	546 361	0.65 1.24	3.67 2.93

.

ł

FIGURE 25: PLOT OF THE SHAPE FACTOR VERSUS MOLECULAR WEIGHT OF N-PARAFFINS

-.

. .

FIGURE 26: PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CARBON NUMBER OF N-PARAFFINS

÷.,

FIGURE 27: PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CRITICAL VOLUME OF N-PARAFFINS

٠,

FIGURE 28: PLOT OF BT VERSUS CRITICAL VOLUME OF N-PARAFFINS

-:

FIGURE 29: PLOT OF THE ATTRACTIVE VOLUME VERSUS CRITICAL VOLUME OF N-PARAFFINS

FIGURE 30: PLOT OF Br VERSUS Va OF NORMAL PARAFFINS

-:

FIGURE 31: PLOT OF THE HARD CONVEX BODY VOLUME VERSUS CRITICAL VOLUME

1=N-PARAFFINS, 2=OTHER NONPOLARS, 3=POLAR COMPOUNDS

...

FIGURE 32: PLOT OF THE ATTRACTIVE VOLUME VERSUS THE CRITICAL VOLUME

1=N-PARAFFINS, 2=OTHER NONPOLARS, 3=POLAR COMPOUNDS

-:

FIGURE 33: PLOT OF Br VERSUS CRITICAL VOLUME

1=N-PARAFFINS, 2=OTHER NONPOLARS, 3=POLAR COMPOUNDS

• :

FIGURE 34: PLOT OF Br VERSUS Va

1=N-PARAFFINS, 2=OTHER NONPOLARS, 3=POLAR COMPOUNDS

Chapter IV

CONCLUSIONS

Thermodynamic properties of fluids of different structures and electrostatic interactions are accurately predicted by the equation of state presented in this thesis. The fluids tested include some petroleum hydrocarbons, compounds found in natural gas, and some coal chemicals. These compounds represent various classes of fluids: polar, nonpolar, aromatic compound, straight-chain, associative, LIE4 compound, hydrocarbon, nonhydrocarbon, etc. The new equation is developed based on statistical mechanical theories which relate thermodynamic properties to the molecular interactions. The intermolecular potential is assumed to be of the square-well model. The molecular nonsphericity and the size of molecule are taken into account explicitly by the parameters C and b in the hard The effect of the molecular convex body expression. orientation on the square-well parameters are taken into account through angle-averaging.

The new equation not only has a simple functional form buit also offers a very good accuracy in the prediction of thermodynamic properties as compared to other equations such as the Peng-Robinson or the BACK equation. As mentioned

- 109 -

earlier, the improvement is significant in the predictions of gases at high temperatures, liquid phase properties, and the overall predictions of large molecular fluids. In addition to the ability to describe the P-V-T behavior of both polar and nonpolar compounds over a wide range of temperatures and pressures, the new equation offers a fairly good accuracy in the predictions of the enthalpy and the second virial coefficients.

Development of an equation of state of pure fluids is the groundwork for an application to mixtures of different types of compounds, which is the practical interest in engineering design calculations. An equation of state that works for both polar and nonpolar pure compounds of different sizes should lead to a good prediction of similar and dissimilar mixture systems, such as nonpolar-nonpolar, polar-polar, and nonpolar-polar mixtures, provided the appropriate mixing rules are used. The regular behavior of the parameters provides a possibility of correlating them with some known properties or measurable quantities. A generalization of the adjustable parameters will benefit the property calculations of mixture systems. Improvement of the equation of state studied can be made, in the future, by several options. For example, a term of higher order in density can be added to the approximation of y(r)in Equation (17) and (27). A dependent of the hard convex body volumes on temperatures for a 'soft' molecule can be taken

into consideration, as suggested by Blenkowski and Chao (1975). For highly polar and strong hydrogen-bonding compounds such as methanol and water, a simple temperaturedependence of the effective energy parameter ϵ^{i}/k in Equation (51) and the polarity parameter K may not be sufficient to account for such systems. Therefore, modifications of these terms might be necessary.

Appendix A

SUMMARY OF THE EQUATIONS OF STATE REPERENCED

THE VAN DER WAALS EQUATION (Balzhiser, 1972)

- $P + \underline{a} (V b) = RT$ (A1) V^{2}
- where $a = \frac{27}{64} R^2 \frac{Tc^2}{Pc}$
- and $b = \frac{R TC}{8 PC}$

THE PENG-ROBINSON EQUATION (Peng and Robinson, 1976)

 $Z = \frac{V}{V-b} - \frac{a(T) V}{RT(V(V-b)+b(V-b))}$ (A2)

where

$$a(T) = 0.45724 \frac{R^2 Tc^2}{Pc} (Tr.\omega)$$

$$\alpha = (1 + K (1-Tr \frac{1}{2}))^2$$

$$K = 0.37464 + 1.54226 \omega - 0.26992 \omega^2$$

$$b = 0.07780 \frac{RTc}{Pc}$$

- 112 -

THE BACK EQUATION (Boublik-Alder-Chen-Kreglewski Equation) (Chen & Kreglewski, 1977; Sigmick, Lin and Chao, 1979)

$$Z = 2h + Za$$
 (A3)

$$Zh = \frac{1 + (3\alpha - 2)y + (3\alpha^{2} - 3\alpha + 1)y^{2} - \alpha^{2}y^{3}}{(1 - y)^{3}}$$

$$Za = \sum_{n m} \sum_{n m} Dnm (U/kT)^{n} (V'/V)^{n}$$

$$y = 0.74048 V'/V$$

$$V' = V'' (1 - C \exp(-3U'/kT))^{3}$$

$$U = u' (1 + n'/kT)$$

 $n^{*}/k = 0.60 \omega Tc$

والمرجع البارد موروبا بالاتين والمرجع الأب مام مام معاد الأبر والله الجره		
D11	=	-8.8043
D12	=	4.164627
D13	=	-48.203555
D14	=	140_43620
D15	=	-195-23339
D16	. =	113.515
D21	=	2.9396
D22	=	-6-0865383
D23	=	40.137956
D24	=	-76.230797
D25	=	-133.70055
D26	=	860-25349
527	=	-1535-3224
D28	=	1221.4261
D29	=	-409.10539
D31	=	-2-8225
D32	=	4.7600148
D33	=	11.257177
D34	=	-66.382743
035	=	69-248785
D4 1	=	0_3400
D42	=	-3,18750
D42	=	12-231/96
D43	=	-12,110581
544	-	

component	y n cc/mole	Q	u V/K K	n'/k K
flethane	21.576	1.00	190.29	1_00
Ethane	31.118	1.037	298.03	19.0
Propane	42.598	1.041	353.11	34.0
n-Butane	53-855	1.051	399.56	51.0
n-Pentane	65-751	1.0566	435_83	70.72
i-Pentane	64-958	1.0565	43,2.20	62.71
n-Hexane	77.228	1.072	468.33	90.11
n-Heptane	83 , 351	1.0799	491.00	113.77
n-Octane	96.556	1.0981	517.52	134.50
n-Decane	110.72	1_1349	558-07	181.57
Benzene	54- 383	1.0587	532.12	71.50
Toluene	67.013	1.0621	532.12	91.24
Bitrogen	19.457	1_00	123.60	3-0
Hydrojen Sulfide	20.672	1.044	313.66	15.0

TABLE A2: PARAMETERS OF EQUATION (AJ) POR C = 0.12

THE KHAN'S EQUATION (Khan, 1983)

$$Z = 1 + \alpha Z_{c} + (\alpha - 1)Z_{c}$$
 (A4)

$$Z_{c} = \left(A_{1} + \frac{A_{2}}{T} + \frac{A_{3}}{T} + \frac{A_{4}}{T} + \frac{A_{5}}{A_{5}}\right) \rho^{*}$$

$$+ \left(A_{6} + \frac{A_{7}}{T^{*}}\right) \rho^{*2} + A_{3}\rho^{*3}$$

$$+ \left(\frac{A_{9}}{T^{*}} + \frac{A_{10}}{T^{*}} + \frac{A_{11}}{T^{*}}\right) \rho^{*2} \exp(-A_{16}\rho^{*2})$$

$$+ \left(\frac{A_{12}}{T^{*}} + \frac{A_{13}}{T^{*}} + \frac{A_{14}}{T^{*}}\right) \rho^{*4} \exp(-A_{16}\rho^{*2})$$

$$+ \frac{A_{15}}{T^{*}} \rho^{*5}$$
where $\rho^{*} = \rho V^{*}$; $T^{*} = kT/c$

$$A_{1} = \alpha B_{1}^{0} + (\alpha - 1) B_{1}^{P}$$

i	Bi ⁰	Bi ^p
1	2.5023740	0.52182
2	-7.2696120	-0.13780
3	-4.5309120	-2.56040
4	-1.5257331	-5.25270
5	0.3796055	-0.12000
6	5. 3624275	-3.37530
7	-2.8683227	17.10530
8	15-2886580	-19.27400
9	20.9891320	79.29000
10	24.7384980	6.84750
11	- 36. 2897450	15.57000
12	-207.7690100	-104_00000
13	1152.7 599000	-435.80400
14	246.4964200	149.09100

229.8994200

31.6711280

15

16

85**0.0**0000

0.0

TABLE A3: UNIVERSAL CONSTANTS OF EQUATION (A4)

compound	€/k, R	V* cu_ft./1bmole	α	ĸ
methane	270.804	0.25905	1.03331	0.0
Ethane	390.331	0-33585	1_40973	0.0
Propane	449.770	0-42520	1.64696	0.0
n-Butane	501.850	0-51454	1.81894	0.0
n-Pentane	534.200	0.60388	2.05819	0_0
n-Hexan e	556-517	0.69323	2.30282	0.0
n-Heptane	573.681	0.78257	2.55143	0.0
n-Octane	596.236	0.87191	2.72312	0_0
n-Nonane	602-405	0-96126	3.02846	0.0
n- Decane	619.610	1.05060	3.19038	0.0
n-Undecane	624.770	1.13994	3.47422	0_0
n-Dodecane	629 .927	1,22928	3.73635	0.0
n-Tridecane	639.020	1.31863	3.95480	0.0
n-Tetradeccane	645.526	1.40797	4.17842	0_0
n-Pentadecane	650-269	1.49732	4.41929	0.0
n-Hexadecanc	655 . 1 82	1.58666	4.64994	0.0
n-Heptadecane	660-173	1.67600	4.87238	0.0
n-Octadecane	664.333	1.76534	5.09588	0.0
n-Nonadecane	665 .67 9	1.854 69	5.37682	0_0
n-Eicosane	666 .379	1.94403	5.68279	0_0

-

.

•

compound	€/K, R	V* cu.ft./lbmole	α	ĸ
Ethylene	368.844	0.290322	1.35634	0.0
Propylene	448.552	0-385617	1.60734	0_0
i-Butane	486-253	0.526474	1.76444	0.0
i-Pentane	533-891	0-613940	1.933/4	0.0
Benzene	669.312	0-506596	1.82792	0.0
Toluene	658.809	0.610572	2.16520	0.0
o-Xylene	690.612	0.698227	2.31868	0.0
Dichloro- difluoromethane	459 .7 03	0_441159	1. 75124	0.0
Carbon Dioxide	358-899	0.209042	1.36653	930-242
Nitrogen	168 .96 9	0.210863	1.22598	0.0
Hydrogen Sulfide	≥ 498.486	0-254407	1.02500	1590.420
Nethyl Fluoride	351.610	0.292249	1.66552	720.803
Phenol	703.892	0.520417	2.32465	16426.500
Acetone	599.138	0.448461	1.62079	8145.340
Dimethyl Ether	480-569	0.402000	1.33792	5113.510
Methyl- Ethyl Ether	505.499	0.444777	1.76410	2877-160
Diethyl Ether	523.728	0.546213	2.09352	1369-090
Aniline	7 67 . 357	0.549676	2.05710	14413_400

Appendix B

THERNODYNAMIC PROPERTY CALCULATIONS OF N-OCTABE

TABLE B1: DENSITY CALCULATIONS OF N-OCTANE

Temperature,	Pressure,	Experimental	Calculated	Percent
N	psia	ibmole/cu.ft.	lbmole/cu.ft.	
مرد التكريف التي منه مين عنه من عن التي مي التي التي التي التي التي التي التي الت	بدو خت نشدها که که کرد. در در در در د			
389-670	14.696	0.4177	0.40725	-2.5018
399.670	14.696	0.4153	0.40579	-2.2594
409.670	14.695	0.4129	0_40428	-2.08/2
419.670	14.696	0.4105	0.40272	-1.8950
429.670	14.696	0.4081	0.40111	-1./129
439.670	14_696	0-4057	9-39945	-7-5408
449.670	14.696	0.4032	0.39774	-1.3540
459.670	14.696	0-4008	0.39598	-1.2014
469_670	14.696	0.3983	0.39418	-1.0338
479.670	14.696	0.3959	0.39233	-0.9006
489.670	14.696	0.3934	0.39044	-0.1523
499.670	14.696	0.3909	0.38850	-0.6131
509.670	14.696	0.3884	0.38652	-0.4837
519.670	14.696	0_3859	0.38450	-0.3639
529.670	14.696	0.3835	0.38243	-0.2798
539.670	14.696	0.3810	0.38032	-0.1792
549.670	14.696	0.3786	0.37816	-0.1161
559.670	14.696	0.3762	0.37596	-0.0631
569.670	14-696	0.3737	0.37312	0.0059
579_670	14-696	0.3713	0.37144	0.0372
589.670	14.696	0.3688	0.36911	0.0844
599.670	14.696	0.3662	0.36574	0.1478
609-670	14-696	0.3636	0.36433	0.1998
619.670	14.696	0-3610	0.36187	0.2405
629.670	14.696	0-3583	0-35937	0-2912

- 120 -

- .

Temperature, R	Pressure, psia	Experimental density, lbmole/cu.ft.	Calculated density, lbmole/cu.ft.	Percent deviation
<u> </u>	14 696	0. 3557	0-35682	0.3136
649-670	14_696	0.3531	0.35422	0.3173
659-670	14-696	0.3505	0.35158	0.3013
669-670	14,696	0.3477	0.34889	0.3410
679-670	14.696	0.3449	0.34614	0.3608
689-670	14.696	0.3422	0.34335	0.3367
699.670	14-696	0.3393	0.34051	0.3557
709.670	12.928	0.3350	0.33759	0.7336
709-670	14.696	0.3364	0.33761	0.3587
729.670	17.570	0.3290	0.33166	0.8032
749_670	23.420	0.3235	0.32550	0.6183
769.670	30.700	0.3175	0.31909	0.5022
789.670	39.100	0.3115	0.31242	0.2942
809.670	50-000	0.3061	0.30545	-0.2118
829-670	62.000	0,2995	0.29814	-0.4524
849.670	76.500	0.2924	0.29047	-0.6612
859.670	85.000	0.0109	0.01127	3.3803
869.670	95.000	0.2842	0.28239	-0.6382
889.670	116.00	0.2755	0.27380	-0.6156
909.670	140.00	0.2662	0.26402	-0_5924
929.670	169.00	0.2563	0.25473	-0.6123
949.670	201.00	0_2448	0.24397	-0.3410
969.670	239-00	0.2295	0.23205	1.1113

•

ave. abs. deviation = 0.722626 % number of points = 48

.

--

-

Pressure,	Experimental	Calculated	Percent
psia	vapor pressure,	vapor pressure,	deviation
	psia	psia	
، می، جب بین ^{مرو} میں خند میں میں میں میں ا			
0.001415	0.001415	0.001385	-2.0589
0.002960	0.00296	0.00305	3.0594
0.2160	0_2160	0.21760	0.7417
0.2970	0-2970	0-29835	0.4557
0.4020	0.4020	0.40330	0.3234
0.5370	0.5370	0.53800	0.1858
0.7090	0.7090	0.70881	-0.0266
0.7735	0.7735	0.77285	-0.8371
1.1920	1.1920	1.18860	-0.2862
1.5210	1.5210	1.51500	-0.3942
1.9220	1.9220	1.91230	-0.5036
2.4060	2.4060	2.39170	-0.5929
2.9850	2.9850	2.96550	-0-6544
3.6740	3.6740	3.64/10	-0.7322
3.8674	3.8674	3.83990	-0.7117
4.4870	4.4870	4_45080	-0.8062
5,4400	5.4400	5.39210	-0-8810
6.5490	6.5490	6.48780	-0-9340
7.8330	7.8330	7.75500	-0.9962
9.3110	9.3110	9.21240	-1-0590
11.0020	11_0020	10_8810	-1.1037
12.9280	12.9280	12./790	-1-1501
14.6960	14.6960	14.5260	-1.1557
15.1100	15.1100	15.9310	-1.1834
17.5700	17.5700	17.3580	-1.2088
19.3370	19.3370	19.1070	-1.1 881
20.3300	20.3300	20_0830	-1.2139
23.4200	23.4200	23.1333	-1.2258
26.9000	26.9000	26.5300	-1.3736
29.0050	29.0050	29.6760	-1.1350
30.7000	30.7000	30.3060	-1.2820
34.5000	34.5000	34,4860	-0-0410
	Pressure, psia 0.001415 0.002960 0.2160 0.2970 0.4020 0.5370 0.7090 0.7735 1.1920 1.5210 1.9220 2.4060 2.9850 3.6740 3.8674 4.4870 5.4400 6.5490 7.8330 9.3110 11.0020 12.9280 14.6960 15.1100 17.5700 19.3370 20.3300 23.4200 26.9000 29.0050 30.7000 34.5000	Pressure, Experimental psia Vapor pressure, psia 0.001415 0.001415 0.002960 0.00296 0.2160 0.2160 0.2970 0.2970 0.4020 0.4020 0.5370 0.5370 0.7090 0.7090 0.7735 0.7735 1.920 1.9220 2.4060 2.4060 2.9850 2.9850 3.6740 3.6740 3.8674 3.8674 4.4870 4.4870 5.4400 5.4400 6.5490 6.5490 7.8330 7.8330 9.3110 9.3110 11.0020 11.0020 12.9280 12.9280 12.9280 12.9280 14.6960 14.6960 15.1100 15.1100 17.5700 17.5700 19.3370 19.3370 19.3300 20.3300 23.4200 23.4200 26.9000 26.9000 29.0050 29.0050 30.7000 30.7000	Pressure, Experimental Calculated psia vapor pressure, vapor pressure, psia psia psia 0.001415 0.001415 0.001355 0.002960 0.00296 0.00305 0.2160 0.21760 0.29835 0.4020 0.4030 0.40330 0.5370 0.53800 0.7090 0.7090 0.7090 0.70881 0.7735 0.77285 1.18860 1.5210 1.51500 1.51500 1.9220 1.9220 1.91230 2.4060 2.4060 2.39170 2.9850 2.9850 2.96550 3.6740 3.6740 3.64710 3.8674 3.83990 4.4870 4.4870 4.4870 4.45080 5.4400 5.39210 6.5490 6.5490 6.48780 7.75500 7.8330 7.8300 7.75500 9.3110 9.21240 1.0020 11.0020 11.0020 10.8810 12.9280 12.9280 12.7790 1

.....

Temperature,	Pressure,	Experimental	Calculated	Percent
R	psia	vapor pressure,	vapor pressure,	deviation
		psia	psia	
			ی میں اور	ی خرد هو بعد خدهٔ الله <u>می بالد الله جرم می م</u> نالد
799 670	30 100	29 100	39 1197	-0.0070
799-670	14-200	44 200	44,176	-0-0543
809-670	50.000	50,000	49.747	-0.5053
819.670	55.500	55-500	55-829	0-5927
829.670	62.000	62,000	62_489	0.7894
839 670	68 600	68,600	68-732	7-6500
849 670	76 500	76 500	77.697	1.4473
859 670	85 000	85 000	86.149	1.3522
869 670	95 000	95 000	90. 145	0.4160
274 670	105 00	105 00	105 39	0-4739
849 670	105.00	116 00	116 20	0.1689
809.670	127 00	127 00	177 87	0-6426
0/0 470	140 00	140 00	180 31	0.0420
010 670	140.00	140.00	153 76	
970.670	155.00	155.00	160 11	0.4900
929.070	103.00		100.14	-0.0455
939.070	184.00	184.00		-0-09001
949.670	201.00	201.00	200.41	-0.2921
959.670	220.00	220.00	218.11	-0.8611
969.670	239.00	239.00	237.12	-0.7877
979.670	260.00	260.00	257.49	-0.9664
989.670	283.00	283.00	279.18	-1.3496
999.670	310.00	310.00	302.46	-2.4338
1009.67	327.00	327.00	326.92	-0.0236
1019_67	350.00	350-00	352.40	0.6849

ave. abs.	deviation	=	0.80470	%
number of	points	=	56	

	Pressure	Froerimontal	Calculated	Deviation.
B Tembergrare'	nsia	enthalov	enthalpy	Btu/1b
* *	POIL	departure.	departure.	
		Btullb	Btn/lb	
			200720	
		د <u>دو به خدم</u> اور مرد به ب ه مرد به مرد به مود به		
534.570	200.00	-155-80	-156.10	0.3019
534.670	360.00	-155-40	-155-62	0.2211
534.670	400-00	-155-20	-155.50	0-3068
534.670	500.00	-155.00	-155.20	0.1997
534.670	600.00	-154.70	-154.90	0.1982
534.670	800.00	-154-20	-154.29	0.0940
534.670	1000-00	-153.70	-153.69	-0_0118
534.67	1400.00	-152.60	-152.47	-U. 1273
959.670	200-00	-21.00	-18.231	-0_/689
959.670	500.00	-100_40	-96-978	-3.4216
979.670	400-00	-93.40	-92.030	-1.3704
979.670	500.00	-93-50	-93.114	-0.3960
979.670	600-00	-93-70	-93.984	U_283 8
979.670	800.00	-94.50	-95.298	0.7984
979.670	1000-00	-95.70	-96.238	0.5384
979.670	1400.00	-98.20	-97.438	-0.7615
999.670	400-00	-89-00	-87.076	-1-9331
999.670	500.00	-89.90	-88.768	-1,1317
999.670	600.00	-89.20	-90.047	0.8469
999.670	800-00	-92.10	-91.884	-0.2160
999.670	1000-00	-93.40	-93.154	-0_2463
999.670	1400.00	-96.50	-94.759	-1.7411
1009.670	400-00	-85-40	-84.107	-1.2930
1009.670	500.00	-87.10	-86.333	-0.7670
1009.670	600-00	-88.40	-87.910	-0,4902
1009.670	800.00	-89,90	-90.091	0.1912
1009.670	1000-00	-91.90	-91.561	-0.3394
1009.670	1400-00	-95-40	-93.399	-2.0012
1019.670	500.00	-84.30	-83.644	-0.6557
1019.670	600.00	-86.30	-85.62/	-0.6727
1019.670	800.00	-88.00	-88.231	0.2374

-.

یہ ہے جاتے ہے ہے ہے کہ بارے نہیں کے کرنے کے سے سیان کہ بنینے سے میں کے نے بنے پر چارک کے پنے

Temperature,	Pressure,	Experimental	Calculated	Deviation,
ĸ	psia	enthalpy	entnalpy	Btu/15
		departure,	departure,	
		Btu/15	Btu/lb	
				ورو میاد آمد. سی می نف که اعد ورد وی خک خد س
1019.670	1000.00	-90.40	-89.932	-0.4682
1019.670	1400.00	-93-90	-92.026	-1.8741
1029.670	500.00	-81_10	-80.597	-0.5025
1029.670	600.00	-83.40	-83.163	-0.2368
1029.670	800.00	-86.10	-86.298	0.1982
1029.670	1000.00	-88.70	-88.263	-0.4369
1029.670	1400.00	-92.30	-90-639	-1.6614
1039.670	500.00	-77.00	-76.993	-0-0065
1039.670	600.00	-80.80	-80.464	-0.3362
1039.670	800.00	-84.20	-34.280	0.0795
1039.670	1000.00	-87.00	-86.553	-0,4467
1039.670	1400.00	-90.70	-89.238	-1.4624
1049.670	500.00	-72.10	-72.396	0.2958
1049.670	600.00	-77.90	-77-455	-0.4454
1049.670	800.00	-81.90	-82.167	0.2570
1049.670	1000.00	-85.00	-84.798	-0.2021
1049.670	1400.00	-88.80	-81.822	-0.9776
1059.670	200.00	-14-50	-13.862	-0.6377
1059.670	500.00	-66.50	-65.394	-1.1061
1059.670	600.00	-75.00	-74.017	-0.9828
1059.670	800.00	-79.90	-79.946	0-0464
1059.670	1000.00	-83.00	-82.995	-0-0480
1059 670	1400.00	-87 00	-86 393	-11.5064

ave. abs.	deviation	=	0.700435	Btu/lb
ave. abs.	deviation	=	1.02585 %	
number of	points	=	54	

- .

·

Appendiz C

.

THERMODYNAMIC PROPERTY CALCULATIONS OF DIETHYLANINE

TABLE C1: DENSITY CALCULATIONS OF DIETHYLAMINE

.

R R	Pressure, psia	Experimental density, 1bmole/cu.ft.	Calculated density, lbmole/cu.ft.	Percent deviation
	14 740	0 57019	0 5/366	0 6093
599.670	17.052	0.56592	0.55926	0-5894
617-670	23.373	0-55653	0-55941	0.5173
635.670	31.311	0.54629	0.54918	0.5293
653-670	41.454	0.53605	0.53855	0.4665
671.670	52.920	0.52580	0.52747	0.3170
689-670	69.090	0.51556	0.51593	0.0712
707-670	87.024	0.50446	0.50384	-0.1234
725.670	108.633	0.49251	0.49116	-0.2744
743.670	133.770	0.47971	0.47780	-0.3991
761.670	163.170	0.46605	0.46365	-0.5142
779.670	196.980	0.45069	0_44858	-0.4674
797.670	233.730	0.43532	0.43232	-0.6894
815.670	277.830	0.41740	0.41471	-0.6448
833-670	326.340	0.39777	0.39518	-0.6517
851.670	379.260	0.37387	0.37284	-0.2764
869-670	441.000	0.34143	0_34642	1.4602

ave. abs. deviation = 0.50596 % number of points = 17

psiapsia591.39014.70014.70014.663599.67017.05217.05217.101617.67023.37323.37323.484635.67031.31131.31131.563653.67041.45441.45441.632671.67052.92052.92053.963689.67069.09069.09068.883707.67087.02487.02486.709725.670108.633108.633107.780743.670133.770132.500-779.670196.980196.980194.490797.670233.730233.730232.600815.670277.830277.830276.329833.670326.340326.340326.140851.670379.260379.260379.260	R R	psia?	Experimental vapor pressure,	Calculated vapor pressure,	Percent deviatio
591.39014.70014.70014.663-6 599.670 17.05217.05217.1010 617.670 23.37323.37323.4840 635.670 31.31131.31131.5680 653.670 41.45441.45441.6320 671.670 52.92052.92053.9630 689.670 69.09069.09068.883-0 707.670 87.02487.02486.709-0 725.670 108.633108.633107.780-0 743.670 133.770133.770132.500-0 761.670 23.730233.730232.600-0 815.670 277.830277.830276.320-0 833.670 326.340326.340326.140-0 851.670 379.260379.260379.260382.170			psia	psia	
599.670 17.052 17.052 17.101 617.670 23.373 23.373 23.484 635.670 31.311 31.311 31.568 653.670 41.454 41.454 41.632 671.670 52.920 52.920 53.963 689.670 69.090 69.090 68.883 707.670 87.024 87.024 86.709 725.670 108.633 108.633 107.780 743.670 133.770 133.770 132.500 779.670 196.980 196.980 194.490 797.670 233.730 233.730 232.600 815.670 277.830 277.830 276.320 833.670 326.340 326.340 326.140 851.670 379.260 379.260 382.170	91_390	14_700	14.700	14.663	-0.2527
617.670 23.373 23.373 23.484 (635.670) 635.670 31.311 31.311 31.568 653.670 41.454 41.454 41.632 671.670 52.920 52.920 53.963 689.670 69.090 69.090 68.883 707.670 87.024 87.024 86.709 725.670 108.633 108.633 107.780 743.670 133.770 133.770 132.500 761.670 163.170 163.170 161.250 779.670 233.730 233.730 232.600 815.670 277.830 277.830 276.320 833.670 326.340 326.340 326.140 851.670 379.260 379.260 382.170	99.670	17.052	17.052	17.101	0.2865
635.670 31.311 31.311 31.568 31.570 653.670 41.454 41.454 41.632 31.632 671.670 52.920 52.920 53.963 689.670 69.090 69.090 68.883 -69.090 689.670 87.024 87.024 86.709 -69.090 725.670 108.633 108.633 107.780 -69.090 743.670 133.770 133.770 132.500 -69.090 761.670 163.170 163.170 161.250 -69.090 779.670 196.980 196.980 194.490 -79.670 797.670 233.730 233.730 232.600 -69.090 815.670 277.830 277.830 276.320 -69.090 833.670 326.340 326.340 326.140 -69.090 851.670 379.260 379.260 382.170 -69.090	17.670	23.373	23.373	23.484	0.4758
653.670 41.454 41.454 41.632 3.963 671.670 52.920 52.920 53.963 689.670 69.090 69.090 68.883 707.670 87.024 87.024 86.709 725.670 108.633 108.633 107.780 743.670 133.770 133.770 132.500 761.670 163.170 163.170 161.250 779.670 196.980 196.980 194.490 797.670 233.730 233.730 232.600 815.670 277.830 277.830 276.320 833.670 326.340 326.340 326.140 851.670 379.260 379.260 382.170	35.670	31.311	31.311	31.558	0-8212
671.670 52.920 52.920 53.963 689.670 69.090 69.090 68.883 707.670 87.024 87.024 86.709 725.670 108.633 108.633 107.780 743.670 133.770 133.770 132.500 761.670 163.170 163.170 161.250 779.670 196.980 196.980 194.490 797.670 233.730 233.730 232.600 815.670 277.830 277.830 276.320 833.670 326.340 326.140 851.670 379.260 379.260 382.170	53.670	41.454	41_454	41.632	0.4287
689.670 69.090 69.090 68.883 -6 707.670 87.024 87.024 86.709 -6 725.670 108.633 108.633 107.780 -6 743.670 133.770 133.770 132.500 -6 761.670 163.170 163.170 161.250 -6 779.670 196.980 196.980 194.490 -6 797.670 233.730 233.730 232.600 -6 815.670 277.830 277.830 276.320 -6 833.670 326.340 326.340 326.140 -6 851.670 379.260 379.260 382.170 -6	71.670	52.920	52.920	53.963	1.9708
707.670 87.024 87.024 86.709 -6 725.670 108.633 108.633 107.780 -6 743.670 133.770 133.770 132.500 -6 761.670 163.170 163.170 161.250 -7 779.670 196.980 196.980 194.490 -6 797.670 233.730 233.730 232.600 -6 815.670 277.830 277.830 276.329 -6 833.670 326.340 326.340 326.140 -6 851.670 379.260 379.260 382.170 -6	89.670	69.090	69.090	68.883	-0.2999
725.670 108.633 108.633 107.780 -670 743.670 133.770 133.770 132.500 -670 761.670 163.170 163.170 161.250 -779.670 779.670 196.980 196.980 194.490 -797.670 797.670 233.730 233.730 232.600 -6833.670 815.670 277.830 277.830 276.320 -6833.670 833.670 326.340 326.340 326.140 -6832.170 851.670 379.260 379.260 382.170 -6832.170	07.670	87.024	87.024	86.709	-0.3621
743.670 133.770 133.770 132.500 - 761.670 163.170 163.170 161.250 - 779.670 196.980 196.980 194.490 - 797.670 233.730 233.730 232.600 - 815.670 277.830 277.830 276.320 - 833.670 326.340 326.340 326.140 - 851.670 379.260 379.260 382.170 -	25.670 1	108.633	108.633	107.780	-0.7808
761.670 163.170 163.170 161.250 - 779.670 196.980 196.980 194.490 - 797.670 233.730 233.730 232.600 - 815.670 277.830 277.830 276.320 - 833.670 326.340 326.340 326.140 - 851.670 379.260 379.260 382.170 -	43.670 1	33.770	133.770	132.500	-0.9525
779.670 196.980 196.980 194.490 - 797.670 233.730 233.730 232.600 - 815.670 277.830 276.320 - 833.670 326.340 326.340 326.140 - 851.670 379.260 379.260 382.170 -	61.670	163.170	163,170	161.250	-1.1770
797.670 233.730 233.730 232.600 -4 815.670 277.830 276.320 -4 833.670 326.340 326.340 326.140 -4 851.670 379.260 379.260 382.170 4	79.670 1	196.980	196.980	194.490	-1.2625
815.670 277.830 277.830 276.320 - 833.670 326.340 326.340 326.140 - 851.670 379.260 379.260 382.170 -	97.670 2	233.730	233.730	232.600	-0.4813
833.670 326.340 326.340 326.140 - 851.670 379.260 379.260 382.170	15.670 2	277-830	277.830	276.320	-0.5436
851.670 379.260 379.260 382.170	33.670	326.340	326.340	326.140	-0.0611
	51.670 3	379-260	379.260	382.170	0.7668
	169.670 4	41.000	441.000	446.040	1.1434
887.670 505.680 505.680 517.980	187.670 :	05.680	505.680	517.980	2.4329

.

ave. abs. deviation = 0.80558 % number of points = 18

-

Appendix D

THERMODYNAMIC PROPERTY CALCULATIONS OF TETRAHYDROFURAN

TABLE D1: DENSITY CALCULATIONS OF TETRAHYDROFURAN

Temperature, R	Pressure, psia	Experimental density, lbmole/cu.ft.	Calculated density, lbmole/cu.ft.	Percent deviation
455.670 473.670 491.670 509.670 527.670 536.670 545.670 563.670 581.670 599.670	0.28333 0.52707 0.92829 1.55875 2.50850 3.13635 3.89035 5.83480 8.50135 12.0640	0.80000 0.79221 0.78441 0.77627 0.76814 0.76398 0.75965 0.75082 0.75082 0.74147 0.73143	0.80451 0.7959/ 0./8741 0.7/803 0.76864 0./6385 0.75899 0.74906 0.7388/ 0./2840	$\begin{array}{c} 0.5632 \\ 0.4742 \\ 0.3478 \\ 0.2263 \\ 0.0653 \\ -0.01/2 \\ -0.08/4 \\ -0.2343 \\ -0.3511 \\ -0.4144 \end{array}$
ave. abs. do	eviation = oints =	= 0_27814 % = 10		

Temperature,	Pressure,	Experimental	Calculated	Percent
R	psia	vapor pressure,	vapor pressure,	deviation
		psia	psia	
	0 00333		A 20214	
455.070	0.28333	0.28333	0.52715	-0.3233
4/3.0/0	0.032707	0.022707	0.32710	
491.070	U.JZ027 1 55075	U. J202J 1 65076	1 55200	V = 2 + 7 / A - 30 70
509.070	1.00070	1.55075 2.50850		V. 23/3
521.070	2.00000			V-3343
536.670	3.13033	3. 13030	3.14750	0.3004
545.670	3.89035	3-89035	3-90160	0.2898
563.670	5.83480	5.83480	5-84900	0-2431
581.670	8-50135	8.50135	8-51150	0.1205
599.670	12.0640	12.0640	12.0530	-0.0123
608.670	14.2419	14.2419	14-2310	-0-0746
609.670	14.5000	14.5000	14.4890	-0.0730
617.670	16.7185	16.7185	16.6950	-0.1424
635.67 0	22.6780	22.6780	22.6200	-0.2544
653.670	30_1890	30-1890	30.0680	-0_4004
671.670	39.4690	39.4690	39.2830	-0.4705
707.670	63.9450	63.9450	64.0750	0.2033
743.670	99.0350	99.0350	99.2500	0_2168
779.670	146.450	146.450	147.240	0.5384
815.670	210.250	210.250	210.720	0-2213
851.670	291_450	291.450	292.3 80	0.3191
887.670	395.850	395.850	395.560	-0-0/40
923.670	524.900	524.900	522.830	-0.3946
959.670	684.400	684.400	678.160	-0.9116
972 270	725-550	725, 550	737-779	1.6831

TABLE D2: VAPOR PRESSURE CALCULATIONS OF TETRAHYDROFURAN

ave. abs. deviation = 0.32770 % number of points = 25
REFERENCES

- Alder, B. J.; Young, D. A.; and Mark, M. A. "Studies in Nolecular Dynamics, X: Correlations to the Augmented van der Waals Theory for the Square Well Pluid." J. of Chem. Phys. 56 (1972): 3013.
- Alen, A. H. Ph. D. Thesis, University of Illinois, 1982.
- Alem, A. H., and Mansoori, G. A. "The VIM Theory of Molecular Thermodynamics, Part I: Analytical Equation of State for Nonpolar Fluids." <u>AICHE</u> 30 (1984): 468.
- Alem, A. H., and Mansoori, G. A. "The VIM Theory of Molecular Thermodynamics, Part II: Analytical Equation of State for Polar Fluids." <u>AIChE J</u>. 30 (1984): 475.
- Ambrose, D., and Townsend, R. "Thermodynamic Properties of Organic Cxygen Compounds, Part IX: The Critical Properties and Vapor Pressures above Pive Atmospheres of Six Aliphatic Alcohols." J. Chem. Soc. (1963): 3614.
- Ambrose, D., and Sparke, C. H. S. "Thermodynamic Properties of Organic Oxygen Compounds, XXV: Vapor Pressures and Normal Boiling Temperatures of Aliphatic Alcohols." J. <u>Chem. Thermodynamics</u>. 2 (1970): 631.
- API-44/TRC Data Project. <u>Selected Values of Properties of</u> <u>Hydrocarbons and Related Compounds</u>. College Station, Texas: Thermodynamic Research Center, Texas ASM University (looseleat datasheets extant 1978).
- <u>ASHRAE Thermodynamic Properties of Refrigerants.</u> New York: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1969.
- Aston, J. G.; Kennedy, R. M.; and Schumann, S. C. "The Heat Capacity and Entropy, Heat of Fusion and Vaporization and the Vapor Pressure of Isobutane." <u>J. Am. Chem. Soc.</u> 62 (1940): 2059.
- Balzhiser, R. E.; Samuels, M. R.; and Eliassen, J. D. <u>Chemical Engineering Thermodynamics</u>: <u>The Study of Energy</u>, <u>Entropy</u>, <u>and Equilibrium</u>. Englewood Cliffs, New Jersey: Prentice Hall, 1972.

- 130 -

- Beret, S., and Prausnitz, J. M. "Perturbed Hard-Chain Theory: An Equation of State for Fluids Containing Small and Large Holecules." <u>AIChE</u> J. 21 (1976): 1123.
- Beattie, J. A.; Marple, S., Jr.; and Edward, D. G. "The Compressibility of, and an Equation of State for Gaseous Isobutane." J. Chem. Phys. 18 (1950): 127.
- Bienkowski, P. R., and Chao, K. C. "A Hard-Core Augmented
 Virial Equation of State for Simple Fluids." In <u>Chemical</u> <u>Thermodynamics</u>, <u>4</u>: Plenary Lectures, (International Conference on Chemical Thermodynamics, 4th, Montpellier, 1975), p. 28. Edited by J. Rouquerol and R. Sabbah. New York: Pergamon Press, 1976.
- Bienkowski, P. R., and Chao, K. C. "Molecular Hard Cores of Normal Fluids." <u>Journal of Chemical Physics</u> 63 (1975): 4217.
- Bienkowski, P. R.; Dehenholz, H. S.; and Chao, K. C. "A Generalized Hard-Sphere Augmented Virial Equation of State." <u>AIChE Journal</u> 19 (1973): 167.
- Bondi, A. <u>Physical Properties of Molecular Crystals</u>, <u>Liquids and Gases</u>. New York: John Wiley and Sons, 1968.
- Boublik, T.; Fried, V.; and Hala. <u>The Vapor Pressures of</u> <u>Pure Substances</u>. New York: Elservier Pub. Co., 1973.
- Boublik, T.; Nezbeda, I.; and Trinka, O. "Monte Carlo Study of Hard Spherocylinders." <u>Czechoslovak Journal of</u> <u>Physics</u> B 26 (1976): 1081.
- Boublik, T. "Equation of State of Hard Convex Body." <u>Molecular Physics</u> 42 (1981): 209.
- Brule, M. R.; Lee, L. L.; and Starling, K. E. "Predicting Thermodynamic Properties for Fossil-Fuel Cnemicals." <u>Chem. End</u>. 86 (1979): 155.
- Brule, M. R.; Lin, C. T.; Lee, L. L.; and Starling, K. E. "Multiparameter Corresponding-State Correlation of Coal-Fluid Thermodynamic Properties." <u>AIChE</u> J. 28 (1932): 616.
- Canjar, L. N., and Manning, P. S. <u>Thermodynamic Properties</u> <u>and Reduced Correlations for Gases</u>. Houston: Gulf Publishing Company, 1967.
- Carnahan, N. F., and Starling, K. E. "Equation of State for Nonattracting Rigid Spheres." <u>Journal of Chemical</u> <u>Physics</u> 51 (1969): 635.

- Chen, S. S., and Kreglewski, A. "Applications of the Augmented van der Waals Theory of Fluids, I: Pure Fluids." <u>Berichte der Bunsen-Gesellschaft fuer</u> <u>Physkalische Chemie</u> 81 (1977): 1048.
- Chen, S. S., and Kreglewski, A. "Applications of the van der Waals Theory of Fluids." <u>Journal de Chimie Physique</u> 75 (1978): 347.
- Chung, T. H.; Khan, M. M.; Lee, L. L.; and Starling, K. E. "A New Equation of State for Polar and Nonpolar Pure Fluids." <u>Fluid Phase Equilibria</u> 17 (1984): 351.
- Collerson, R. R.; Counsell, J. F.; Handley, R.; Martin, J. F.; and Sparke, C. H. S. "Thermodynamic Properties of Organic Oxygen Compounds, Part XV: Purification and Vapor Pressures of Some Ketones and Ethers." J. Chem. Soc. (1965): 3697.
- Connolly, J. F. "Ideality of Normal-Butane-Isobutane Solutions." J. Phys. Chem. 66 (1962): 1082.
- Dannon, F., and Pitzer, K. S. "Volumetric and Thermodynamic Properties of Fluids, VI: Relationship of Molecular Properties to the Acentric Factor." <u>Journal of Chemical</u> <u>Physics</u> 36 (1962): 425.
- De Santis, F.; Gironi, F.; and Marrelli, L. "Vapor-Liquid Equilibrium from Hard-Sphere Equation of State." <u>Industrial & Engineering Chemistry Fundamentals</u> 15 (1976): 183.
- Din, P., ed. <u>Thermodynamic Functions of Gases</u>, <u>Vol. 1</u>: <u>Ammonia</u>, <u>Carbon Dioxide and Carbon Monoxide</u>. London: Butterworths, 1961.
- Donohue, M. D., and Prausnitz, J. M. "Perturbed Hard Chain Theory for Fluid Mixtures: Thermodynamic Properties for Mixtures in Natural Gas and Petroleum Technology." <u>AIChE</u> Journal 24 (1978): 849.
- Douslin, D. R.; Harrison, R. H.; Moore, R. T.; and McCullough, J. P. "P-V-T Relations for Methane." J. <u>Chem. Eng. Data</u> 9 (1964): 358.
- Dymond, J. H., and Smith, E. B. <u>The Virial Coefficients of</u> <u>Gases</u>. Oxford: Clarendon Press, 1980.
- Farrington, P. S., and Sage, B. H. "Volumetric Behavior of Propane." <u>Ind. Eng. Chem</u>. 41 (1949): 1734.
- Friedman, A. S., and White, D. J. <u>J. Am. Chem. Soc</u>. 72 (1950): 3931.

Garnjost, H. Ph. D. Thesis, University of Bochum, Germany, 1974.

- Gibbons, R. M. "The Scaled Particle Theory for Particles of Arbitrary Shape." <u>Nolecular Physics</u> 17 (1969):81.
- Gibbons, R. M. "The Scaled Particle Theory for Mixtures of Hard Convex Particles." <u>Molecular Physics</u> 18 (1970): 809.
- Gilliland, E. R., and Parekh, M. D. "Effect of Pressure on Enthalpy of Pentane, Heptane and Isooctane." <u>Ind. Enq.</u> <u>Chem.</u> 34 (1942): 360.
- Goin, K. M. Ph. D. Thesis, University of Oklahoma, 1978.
- Gray, C. G. "On the Theory of Multipole Interactions." <u>Canadian Journal of Physics</u> 46 (1968): 135.
- Gubbins, K. E., and Twu, C. H. "Thermodynamics of Polyatomic Fluid Mixtures-I: Theory." <u>Chemical Engineering Science</u> 33 (1978): 863.
- Hales, J. L., and Ellender, J. H. "Liquid Densities from 293 to 490 K of Nire Aliphatic Alcohols." J. Chem. <u>Thermodynamics</u> 8 (1976): 1177.
- Hansen, J. P., and McDonald, I. R. <u>Theory of Simple</u> <u>Liquids</u>. New York: Academic Press, 1976.
- Harr, L., and Gallagher, J. S. "Thermodynamic Properties for Ammonia." <u>NBS Report.</u>, 1977.
- Henderson, D.; Madden, W. G.; and Fitts, D. D. "Monte Carlo and Hypernetted Chain Equation of State for the Square-Well Fluids." J. of Chem. Phys. 64 (1976): 5026.
- Hill, T. L. <u>An Introduction to Statistical Thermodynamics</u>. Massachusetts: Addison-Wesley Publishing Company, 1960.
- Hirschfelder, J. O.; Curtiss, C. F.; and Bird, P. E. <u>Molecular Theory of gases and Liquids</u>. New York: John Wiley and Sons, 1954.
- Huang, E. T. S.; Swift, G. W.; and Kurata, P. "Viscosities and Densities of Methane-Propane Mixtures at Low Temperatures and High Pressures." <u>AIChE J</u>. 13 (1967): 846.
- <u>International Critical Tables</u>. Vol. III, New York: McGraw-Hill, 1926.

- Kay, W. B. "Liquid-Vapor Phase Equilibrium Relations in the Ethane-n-Heptane System." <u>Ind. Eng. Chem</u>. 30 (1938): 459.
- Kay, W. B., and Rambosek, G. M. "Vapor-Liquid Equilibrium Relations in Binary Systems. Propane-Hydrogen Sulfide System." <u>Ind. Eng. Chem</u>. 45(1) (1953): 221.
- Kenne, H. R., and Kreps, S. I. "Vapor Pressure of Primary n-Alkyl Chlorides and Alcohols." J. Chem. Eng. Data 14 (1969): 98.
- Khan, M. A. Ph. D. Thesis, University of Oklahoma, 1983.
- Kihara, T. "Virial Coefficients and Models of Molecules in Gases." <u>Reviews of Modern Physics</u> 25 (1953): 831.
- Kihara, T., and Ichimaru, S. <u>Intermolecular Forces</u>. New York: John Wiley and Sons, 1976.
- Kudchadker, A. P. et al. "The Critical Constants of Organic Substances." <u>Chem. Rev.</u> 68 (1968): 695.
- Kudchadker, A. P.; Kudchadker, S. A.; and Wilhoit, R. C. <u>Phenol</u>. Key Chemicals Data Books. Texas: Thermodynamic Research Center, Texas A&M University, 1977.
- Kudchadker, A. P.; Kudchadker, S. A.; and Wilhoit, R. C. <u>Cresols</u>. Key Chemicals Data Books. Texas: Thermodynamic Research Center, Texas A&M University, 1978a.
- Kudchadker, A. P., and Kudchadker, S. A. <u>Xylenols</u>. Key Chemicals Data Books. Texas: Thermodynamic Research Center, Texas ASM University, 1978b.
- Kudchadker, A. P.; Kudchadker, S. A.; and Wilhoit, R. C. <u>Furan, Dihydrofuran, Tetrahydrofuran</u>. Key Chemicals Data Books. Texas: Thermodynamic Research Center, Texas A&M University, 1978c.
- Kudchadker, A. P., and Kudchadker, S. A. <u>Pyridine and</u> <u>Phenylpyridines</u>. API Monograph series, API Pub., no. 710. Washington, D. C.: API, 1979.
- Kudchadker, A. P.; Kudchadker, S. A.; Wilhoit, R. C.; and Gupta, S. K. <u>Carbazole</u>, <u>9-Methylcarbazole</u>, <u>and Acridine</u>. API Monograph series, API Pub., no. 715. Washington, D. C.: API, 1981a.
- Kudchadker, A. P.: Kudchadker, S. A.; Wilhoit, R. C.; and Gupta, S. K. <u>Thiophene</u>, <u>2,3-</u> and <u>2,5-Dihydrothiophene</u>, <u>and Tetrahydrothiophene</u>. API Monograph series, API Pub., no. 717. Washington, D. C.: API, 1981b.

- Kudchadker, A. P. <u>Aniline</u>. API Monograph series, API Pub., no. 718. Washington, D. C.: API, 1982.
- Lee, L. L. and Chung, T. H. "The Perturbation Theories for the Dipolar Fluids." <u>J. Chem. Phys</u>. 78 (1983): 4712.
- Lewis, L. C., and Frederick, W. J. "Volumetric Properties of Supercritical Hydrogen Sulfide." <u>J. Chem. Eng. Data</u> 13 (1968): 482.
- Hacknick, A. B. et al. "Vapor Pressures of High-Boiling Liquid Hydrocarbons." <u>AIChE J.</u> 24 (1978): 731.
- McNeil, D. <u>Coal Tar Data Book</u>. 2nd Ed. England: Coal Tar Research Association, 1965.
- Hackury, T. B., and Steele, W. A. "Statistical Mechanics of Nonspherical Molecules, VIII: Hard-Core Model." J. of Chem. Phys. 66 (1977): 2262.
- Mage, D. T.; Jones, N. L., Jr; Katz, D. L.; and Roebuck, J. B. "Experimental Enthalpies for Nitrogen." <u>Chem. Eng.</u> <u>Prog. Symp. Ser.</u> 59 (1963): 61.
- Maitland, G. C.; Bigby, M.; Smith, E. B.; and Wakeham, W. A. <u>Intermolecular Forces: Their Origin and Determination</u>. Oxford: Clarendon Press, 1981.
- Matthews, C. S., and Hurd, C. O. "Thermodynamic Properties of Methane." <u>AIChE Trans</u> 42 (1946): 55.
- Meyer, E. F., and Wagner, R. E. "Cohesive Energies in Polar Organic Liquids." J. Phys. Chem. 70 (1966): 3162.
- Hichels, A. et al. "Isotherms and Thermodynamic Functions of Propane at Temperatures between 25 and 150 and Densities up to 340 Amagats (Pressure up to 2800 atmospheres)." <u>Physica Utrecht</u> 19 (1953): 287.
- Hohanty, K. E., and Davis, H. T. "An Equation of State for Polyatomic Fluids." <u>AIChE Journal</u> 25 (1979): 731.
- Monson, P. A., and Rigby, N. "Virial Equation of State for Rigid Spherocylinders." <u>Molecular Physics</u> 35 (1978): 1337.
- Morris, W. M.; Sage, B. H.; and Lacey, W. M. <u>Volumetric</u> <u>Behavior of Isobutane</u>. American Institute of Mining, Metallurgical and Petroleum Engineers, Tech. Pub. no. 1128, 1940.

- Nasir, P.: Sivaraman, A.; and Kobayashi, R. <u>An Integrated</u> <u>Experimental/Calculational Approach to Evaluate the</u> <u>Fugacity Function of Dibenzofuran at High Temperatures &</u> <u>Pressures</u>. Houston, Texas: Dept. Eng., Rice University, 1981.
- Nezbeda, I. "Virial Expansion and an Improved Equation of State for Hard Convex Molecule System." <u>Chemical Physics</u> <u>Letters</u> 41 (1976): 55.
- Nezbeda, I. "Approximate Hard Convex Body Equations of State and Boundaries of Their Validity." <u>Czechoslovak</u> Journal of <u>Physics</u> B 26 (1976): 355.
- Nezbeda, I., and Boublik, T. "Monte-Carlo Study of the Equimolar Mixture of Hard-Spheres and Spherocylinders." <u>Czechoslovak Journal of Physics</u> B 30 (1980): 121.
- Nicolas, J. J.; Gubbins, K. E.; Streett, W. B.; and Tildesley, D. J. "Equation of State for the Lenhard-Jones Fluid." Molec. Phys. 37 (1979): 1429.
- Pavlicek, J.; Nezbeda, I.; and Boublik, T. <u>Czechoslovak</u> Journal of Physics B 29 (1979): 1061.
- Peng, D. Y., and Robinson, D. B. "A New Two-Constant Equation of State." <u>Industrial & Engineering</u> <u>Fundamentals</u> 15 (1976): 59.
- Peters, C. J.; Van Der Kooi, H. J.; Reijnhart, R.; and Diepen, G. A. M. "Testing Fundamental Equation of State for Practical Applicability." <u>Physica</u> 98a (19/9): 245.
- Pople, J. A. "The Statistical Mechanics of Assemblies of Axially Symmetric Molecules, I: General Theory." <u>Proc.</u> <u>Royal Soc</u>. (London) A221 (1954): 498.
- Reamer, H. H.; Sage, B. H.; and Lacey, W. N. "Volumetric Properties of Supercritical Hydrogen Sulfide." <u>Ind. &</u> <u>Eng. Chem</u>. 42 (1950): 140.
- Reed, T. M., and Gubbibs, K. E. <u>Applied Statistical</u> <u>Mechanics</u>, <u>Thermodynamics and Transport Properties of</u> <u>Fluids</u>. New York: McGraw-Hill, 1973.
- Reid, R. C.; Praunitz, J. M.; and Sherwood, T. K. <u>The</u> <u>Properties of Gases and Liquids</u>. New York: McGraw-Hill, 1977.
- Reijnhart, R. "New Approximations to the Virial Equation of State for Fluids." <u>Physica</u> 83A (1976): 533.

۰.

- Rossini, F. D. <u>Selected Values of Physical and</u> <u>Thermodynamic Properties of Hydrocarbons and Related</u> <u>Compounds</u>. Pittsburg: Carnegie Press, 1953
- Sage, B. H., and Lacey, W. N. <u>Thermodynamic Properties of</u> <u>Lighter Hydrocarbons and Nitrogen</u>. New York: A. P. I., 1950.
- Sage, B. H., and Lacey, W. N. <u>Some Properties of the Light</u> <u>Hydrocarbons</u>, <u>Hydrogen Sulfide and Carbon Dioxide</u>. New York: A. P. I., 1955.
- Sandler, S. I. "The Use of the Non-Spherical Reference Potential in Statistical Mechanics Perturbation Theory." <u>Molecular Physics</u> 28 (1974): 1207.
- Silberberg, H.; McKetta, J. J.; and Kabe, K. A. "Compressibility of Isopentane with the Burnett Apparatus." J. <u>Chem. Eng. Data</u> 4 (1959): 323.
- Simmick, J. J.; Lin, H. M.; and Chao, K. C. "The BACK Equation of State and Phase Equilibria in Pure Fluids and Mixtures." In <u>Equations of State in Engineering and</u> <u>Research</u> (Advances in Chemistry Series, no. 182), p 209. Edited by K. C. Chao and R. L. Robinson. Washington D. C.: American Chemical Society, 1979.
- Sivaraman, A., and Kobayashi, R. "Investigation of Vapor Pressures and Reat of Vaporization of Condensed Heterocyclic Aromatic Compounds at Elevated Pressures." J. Chem. Eng. Data 27 (1982): 264.
- Smith, W. R.; Henderson, D.; and Tago, Yoshia. "Mean Spherical Approximation and Optimized Cluster Theory for the Square-Well Fluid." J. of Chem. Phys. 67 (1971): 5308.
- Soave, G. "Equilibrium Constant from a Modified Redlich-Kwong Equation of State." <u>Chemical Engineering Science</u> 27 (1972): 1197.
- Starling, K. E. et al. <u>Self-Consistent Correlation of</u> <u>Thermodynamic and Transport Properties</u> (GRI/AGA Project No. BR-111-1). Arlington, Va: Gas Research Institute and American Gas Association, 1978.
- Stell, G.; Rasaiah, J. C.; and Narang, H. "Thermodynamic Perturbation Theory for Simple Polar Fluids, I." <u>Molecular Physics</u> 23 (1972): 393.
- Stell, G.; Rasaiah, J. C.; and Narang, H. "Thermodynamic Perturbation Theory for Simple Polar Fluids, II." <u>Molecular Physics</u> 27 (1974): 1393.

- Stewart, D. E.; Sage, B. H.; and Lacey, W. N. "Volumetric Behavior of Hexane in Liquid Phase." <u>Ind. Eng. Chem</u>. 46 (1954): 2529.
- Streett, W. B.; and Stavely, L. A. K. "The P-V-T Behavior of Liquid Nitrogen at Temperatures from 77 to 120 K and Pressures to 680 Atmospheres." <u>Advances in Cryogenic Enq</u>. 13 (1968): 363.
- Stuart, E. B.; Yu, K. T.; and Couli, J. "Thermodynamic Properties of Heptane." <u>Chem. Eng. Prog.</u> 46(6) (1950): 311.
- Tickner, A. W., and Lossing, F. P. "Measurement of Low Vapor Pressures by Means of a Mass Spectrometer." <u>J.</u> <u>Phys. & Colloid Chem</u>. 55 (1951): 733.
- Tsonopoulos, C. "An Empirical Correlation of Second Virial Coefficients." <u>AIChE Journal</u> 20 (1974): 263.
- Twu, C. H. Ph. D. Thesis, University of Florida, 1976.
- Twu, C. H.; Gubbins, K. E.; and Gray, C. G. "Thermodynamics of Mixtures of Nonspherical Molecules, III: Fluid Phase Equilibria and Critical Loci." <u>Journal of Chemical</u> <u>Physics</u> 64 (1976): 5186.
- Twu, C. H., and Gubbins, K. E. "Thermodynamics of Polyatomic Fluid Mixtures-I: Theory." <u>Chemical</u> <u>Engineering science</u> 33 (1978): 863.
- Twu, C. H., and Gubbins, K. E. "Thermodynamics of Polyatomic Fluid Mixtures-II: Polar, Quadrupolar and Octopolar Molecules." <u>Chemical Engineering science</u> 33 (1978): 879.
- Umesi, N. O. Ph. D. Thesis, Pennsylvania State University, 1983.
- Valderrama, J. O.; Sandler, S. I.; and Fligner, Mark. "The use of a Nonspherical Reference Potential in Statistical Mechanical Perturbation Theory, II: The Pair Correlation Function." <u>Molecular Physics</u> 42 (1981): 1041.
- Van Itterbeek, A.; Verbeke, O.; and Staes, K. "Measurements on the Equation of State Liquid Argon and Methane up to 300 kg cm at Low Temperatures." <u>Physica</u> 29 (1963): 742.
- Vargaftik, N. B. <u>Tables on the Thermophysical Properties of</u> <u>Liquids and Gases</u>. New York: John Wiley and Sons, 1975.

Vennix, J. J. Ph.D. Thesis, Rice University, 1966.

- Vetere, A. "A Semi-Empirical Equation of State for Fluids." Chem. Eng. Sc. 37 (1982): 601.
- Vetere, A. "Vapor-Liquid Equilibria Calculations by means of an Equation of State." <u>Chem. Eng. Sc</u>. 38 (1983): 1281.
- Viswanath, D. S., and Wilhoit, R. C. <u>Isoquinoline</u>. API Honograph series, API Pub., no. 712. Washington, D. C.: API, 1979.
- Watanasiri, S. Ph. D. Thesis, University of Oklahoma, 1982.
- Watts, R. O. and McGee, I. J. <u>Liquid State Chemical</u> <u>Physics</u>. New York: John Wiley and Sons, 19/6.
- West, J. R. "Thermodynamic Properties of Hydrogen Sulfide." <u>Chem. Enq. Prog.</u> 44 (1948): 287.
- Whiting, W. B., and Prausnitz, J. M. "A Local-Composition Equation of State for Asymmetric Mixtures." to be published.
- Whiting, W. B., and Prausnitz, J. M. "Equations of State for Strongly Nonideal Fluid Mixtures: Application of Local Compositions Toward Density-Dependent Mixing Rules." <u>Fluid Phase Equilibria</u> 9 (1982): 119.
- Wieczorek, S. A., and Kobayashi, R. "Vapor Pressure Measurements of Diphenylmethane, Thianapthene, and Bicyclohexyl at Elevated Temperature." J. Che. Eng. Data 25 (1980): 302.
- Wilson, G. M.; Johnston, R. H.; Hwang, S. C.; and Tsonopoulos, C. "Volatility of Coal Liquids at High Temperatures and Pressures." <u>Ind. Eng. Chem. Process</u> <u>Des. Dev.</u> 20 (1981): 94.
- Yaws, C. L. <u>Physical Properties</u>. New York: McGraw-Hill, 1978.
- Yesavage, V. F. Ph. D. Thesis, University of Michigan, 1968.
- Zwolinski, B. J., and Wilholt, R. C. <u>Handbook of Vapor</u> <u>Pressures and Heats of Vaporization of Hydrocarbons and</u> <u>Related Compounds</u>. Fort Worth, Texas: Evans Press, 1971.