
 

UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

DECOMPOSITION ALGORITHM IN FIXED CHARGE TIME-SPACE NETWORK 

FLOW PROBLEMS 

 

 

 

 

 

 

A THESIS 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

 

 

By 

 

SAMINEH DEHGHAN NAYERI 

 Norman, Oklahoma 

2017 

  



 

 

 

 

 

DECOMPOSITION ALGORITHM IN FIXED CHARGE TIME-SPACE NETWORK 

FLOW PROBLEMS 

 

 

A THESIS APPROVED FOR THE 

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

______________________________ 

Dr. Charles D. Nicholson, Chair 

 

 

______________________________ 

Dr. Theodore Trafalis 

 

 

______________________________ 

Dr. Ziho Kang 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by SAMINEH DEHGHAN NAYERI 2017 

All Rights Reserved. 

  



 

 

 

 

 

 

 

To my beloved husband, and my loving parents 



iv 

Acknowledgements 

I would like to express my sincere gratitude to my adviser Dr. Charles 

Nicholson, for his guidance, patience, and time through my Master's project. Beside my 

adviser, I would like to thank Dr. Theodore Trafalis, and Dr. Ziho Kang to serve on my 

thesis committee. 

I would also like to thank all my friends for their support and help. I will always 

remember the joyful moments we spent together during my course of Master’s 

especially my best friend, Knün, for her support, encouragement, and helpful comments 

on my thesis draft.  

I would like to express my most profound gratitude to my beloved husband, 

Hossein, for his unconditional love, encouragement, and supports during my Master's 

study. Certainly, without his help finishing this work would have been much harder for 

me.  

Last but not least, I also would like to express my deepest gratitude to my 

beloved parents and my sister for their unconditional love, encouragement, and prayers 

throughout my life. 

 

 

 

 

 

 



v 

Table of Contents 

 

Acknowledgements ......................................................................................................... iv 

List of Tables .................................................................................................................. vii 

List of Figures…………………………………………………………………………..ix 

Abstract……………………………………………………………………………...…xii 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Time-Space Fixed Charge Network Flow Problems ............................................ 1 

1.2 Objective and Outline ........................................................................................... 5 

Chapter 2: Literature Review ........................................................................................... 7 

2.1 Fixed charge Network Flow Problems ................................................................. 7 

2.1.1 Exact Approaches to Fixed Charge Network Flow Problems ..................... 7 

2.1.2 Heuristic Approaches in Fixed Charge Network Flow Problems ............... 9 

Chapter 3: Decomposition Algorithm in Time-Space Fixed Charge Network Flow 

Problems ............................................................................................................. 11 

3.1 Introduction ........................................................................................................ 11 

3.2 Notation .............................................................................................................. 12 

3.3 Problem Statement .............................................................................................. 15 

3.4 Methodology ....................................................................................................... 17 

3.4.1 Exact Method ............................................................................................. 17 

3.4.2 Decomposition method .............................................................................. 19 

3.4.3 Decomposition Method with Relaxation ................................................... 25 

3.5 Design of Experiment ......................................................................................... 27 

3.6 Results and Analysis ........................................................................................... 28 



vi 

3.6.1 Statistical Information ............................................................................... 28 

3.6.2 Statistical Analysis .................................................................................... 46 

3.7 Conclusions ........................................................................................................ 58 

Chapter 4: Conclusions and Future Works ..................................................................... 60 

References ...................................................................................................................... 64 

Appendix A: Box plot of the objective value vs. node-period (NP) for three different 

methods ............................................................................................................... 72 

Appendix B: Box plot of the solution time vs. node-period (NP) for three different 

methods ............................................................................................................... 73 

Appendix C: Box plot of difference vs. node-period (NP) for two decomposition 

methods ............................................................................................................... 74 

Appendix D: Normality test of obj value for different TPV in decomposition method . 75 

Appendix E: Normality test of obj value for different TPV in decomposition method 

with relaxation .................................................................................................... 78 

Appendix F: Normality test of objective values for exact method ................................. 81 

Appendix G: Mean objective value of each TPV in each TS network problem for both 

decomposition methods ...................................................................................... 82 

  

 

 

 

 

 



vii 

List of Tables 

 

Table 3.1 Table of notations for single commodity time-space FCNF problem……….14 

Table 3.2 Different levels of requirements, variable cost and fixed cost …...…………16 

Table 3.3 Summary table of solution time for all problems …………………………...30 

Table 3.4 The average solution time (seconds) for all problems based on method and 

TPV…………………………………………………………………………………….39 

Table 3.5 Average solution time ratio (exact average solution time/decomposition 

average solution time) …………………………………………………………………40 

Table 3.6 Average objective values in three 

methods………………………………………………………………………………...41 

Table 3.7 Percentage of average difference between objective value of exact methods 

and decomposition methods……………………………………………………..…….42 

Table 3.8 Problems with large negative value for percentage of difference between 

objective values ………………………………………………………………….….....45 

Table 3.9 Revised solved problem after increasing maximum time limit to four 

hours……………………………………………………..………………………....….45 

Table 3.10 Normality test of objective values at 0.05 confidence level…………….....47 

Table 3.11 Summary table of Bartlett’s test (homogeneity of variances)………….….48 

Table 3.12 Comparison of normality test results before and after removing outliers…49 

Table 3.13 Comparison of homogeneity variances tests before and after removing 

outliers……………………………………………………………………………...….49  

Table 3.14 Revised table of average solution time (seconds) for different methods after 

removing outliers……………………………………………………………………....53 



viii 

Table 3.15 Revised table of average percentage of different between objective value 

exact methods and decomposition methods after removing 

outliers……..…………………………………………………………………………..54 

Table 3.16 Paired t-test for the objective values in decomposition method…………...56 

Table 3.17 Paired t-test for the objective values in decomposition method with 

relaxation ……………………………………………………………………………...57 



ix 

List of Figures 

 

Figure 1.1 (a) A distribution problem [11] and (b) a facility location problem [12] ....... 3 

Figure 1.2 A time-space network with Three nodes and Three time-periods (3,3) ..........4 

Figure 1.3 (a) A time-space network presenting a bank problem [17] and (b) a flight 

scheduling problem with a time-space network [18] …………………………………...4 

Figure 3.1 Branch & bound search tree with nodes and leaf nodes……………………18 

Figure 3.2 A time-space network with four nodes and five time-periods……………...21 

Figure 3.3 (a)-(d) Decomposition algorithm process in a TSN with four nodes and five 

time-periods (4, 5) .......................................................................................................... 23 

Figure 3.4 Flowchart of exact, decomposition and decomposition with relaxation 

methods……………………………………………………………………………..….26 

Figure 3.5 (a)-(c) Pie chart of solved and unsolved problems in three methods………31 

Figure 3.6 Box plot of the objective value vs. NP for exact method…………………..32 

Figure 3.7 Box plot of the objective value vs. TPV in decomposition method ……….33 

Figure 3.8 Box plot of the objective value vs. TPV for decomposition method with 

relaxation ………………………………………………………………………………34 

Figure 3.9 Box plot of the solution time vs. NP for exact method……………………..35 

Figure 3.10 Box plot of the solution time vs. TPV for decomposition method ……….36 

Figure 3.11 Box plot of the solution time vs. TPV for decomposition method with 

relaxation……………………………………………………………………………….37 

Figure 3.12 Percentage of difference between objective value in exact method and both 

decomposition methods……………………………………………………………..….44 



x 

Figure 3.13 Average percentage of difference decomposition method for different 

problems and TPV configurations…………………………………………….………..51 

Figure 3.14 Average percentage of difference decomposition method with relaxation for 

different problems and TPV configurations………………………………..………..…52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

Abstract 

A wide range of network flow problems primarily used in transportation is 

categorized as time-space fixed charge network flow (FCNF) problems. In this family 

of networks, each node is associated with a specific time and is replicated across all 

time-periods. The cost structure in these problems consists of variable and fixed costs 

where continuous and binary variables are required to formulate the problem as a mixed 

integer linear programming. FCNF problems are classified as NP-hard problems, 

therefore, adding another component (i.e., time) to this type of problem results in a 

complex problem which is time-consuming and CPU and memory intensive. Various 

exact and heuristic methods have been proposed and implemented to solve FCNF 

problems.  

In this work, a decomposition heuristic is proposed that subdivides the problem 

into various time epochs to create smaller and more manageable subproblems.  These 

subproblems are solved sequentially to find an overall solution for the original problem. 

To evaluate the capability and efficiency of the decomposition method vs. exact 

method, a total of 1600 problems is generated and solved using Gurobi MIP solver, 

which runs parallel branch & bound algorithm.  

Statistical analysis indicates that depending on the problem specification, the 

average solution time in decomposition methods is improved by up to four orders of 

magnitude. While statistically, there is a significant difference between the mean 

objective value of exact method and each TPV configuration in both decomposition 

methods, however, the average difference (0-2.16% in decomposition and 1.55-7.85% 

in decomposition method with relaxation) may not be a serious concern for many 



xii 

practical large-scale problems. This shows great promise for decomposition method to 

significantly reduce the solution time which has been an outstanding issue in 

complicated large-scale problems. 
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Chapter 1: Introduction 

 

1.1 Time-Space Fixed Charge Network Flow Problems 

 

A directed or undirected graph which contains a set of nodes N connected by a 

set of arcs A is called a network G = (N, A). Each node is classified, as supply, demand, 

and transshipment where the associated value to each node i (Ri) is a positive, negative 

or zero value respectively. Let 𝑥𝑖𝑗 be the decision variable associated with the flow on 

each arc (i, j) and 𝑐𝑖𝑗 be the cost per unit of flow for transferring a single commodity 

from node i to node j. When a fixed cost 𝑓𝑖𝑗 associated with the arc (i, j), is added to the 

network, the problem is called a fixed charge network flow (FCNF) and a binary 

variable 𝑦𝑖𝑗  is required for each arc. The binary variable is set to be one if there is a flow 

on the associated arc. Otherwise, it set to be 0. 

𝑦𝑖𝑗 = {
1,  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤 𝑜𝑛 𝑎𝑟𝑐 (𝑖, 𝑗)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The objective of the FCNF problem is to minimize the total cost including the 

variable and fixed cost in a network flow problem such that satisfying all requirements 

and restrictions. FCNF problems are a subset of minimum cost network flow (MCNF) 

problems. The following set of equations explains the general formulation of a single 

commodity FCNF problem:  
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𝑚𝑖𝑛 ∑  𝑐𝑖𝑗(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗 + ∑  (𝑖,𝑗)∈𝐴 𝑓𝑖𝑗𝑦𝑖𝑗                                                       1.1 

              Subject to 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 =  𝑅𝑖                                            ∀ (𝑖)𝜖 𝑁           1.2 

 0 ≤ 𝑥𝑖𝑗  ≤ 𝑀𝑖𝑗𝑦𝑖𝑗                                                           ∀ (𝑖, 𝑗)𝜖 𝐴          1.3 

 𝑦𝑖𝑗𝜖 {0, 1}                                                                       ∀ (𝑖, 𝑗)𝜖 𝐴         1.4 

 

Equation 1.1 and 1.2 set the objective function composed of a variable cost and 

a fixed cost and the flow balance constraints respectively. Equation 1.3 sets the bounds 

for 𝑥𝑖𝑗 where 𝑀𝑖𝑗 denotes the capacity on each arc (i, j). In other words, Equation 1.3 

guarantees that if 𝑦𝑖𝑗 = 0 then there is no flow between node i and node j. Equation 1.4 

confirms that 𝑦𝑖𝑗 is a binary variable. 

A large group of real-world problems are categorized as FCNF problems such as 

transportation [1], [2] , [3], facility location [4], [5], [6] , distribution [7] and network 

design problems [8], [9], [10]. Figures 1.1 (a) and (b) illustrate a distribution problem 

(with a plant and a set of warehouses and customers) and a facility location problem 

where the objective is to find the optimal location for a new airport which minimizes 

the weighted sum of distances to the potential catchment areas respectively.  
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Figure 1.1 (a) A distribution problem [11] and (b) a facility location problem [12] 

 

A set of network problems are categorized as time-space network (TSN) 

problems. In this family of networks, each node i (i N) is associated with a certain 

time-period r (r T). An additional set of node-time periods are defined such that NTP= 

{(i, r): i ∈ N and  r ∈ T}. In this study, the time-space network has some specifications. 

Firstly, the nodes are replicated in each time-period across the whole network. 

Secondly, backward arcs are not allowed. This means, each arc only connects node (i, r) 

to node (j, s) where 𝑟 ≤ 𝑠. Figure 1.2 illustrates a simple TSN with three nodes and 

three time-periods.  
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Figure 1.2 A time-space network with three nodes and three time-periods 

 

TSN problems have different applications especially in transportation, 

scheduling and traffic management problems [13], [14], [15], [16]. Figure 1.3 (a) and 

(b) illustrate examples of time-space networks. Figure 1.3 (a) illustrates the application 

of TSN in the management of cash flow of a large national bank where transferring the 

flow through TSN is costly. Figure 1.3 (b) illustrates a flight scheduling problem using 

TSN. The objective of this problem is to maximize the profit by optimizing the flow of 

planes while satisfying all the constraints. 

 

 

 

Figure 1.3 (a) A time-space network presenting a bank problem [17] and (b) a  

flight scheduling problem with a time-space network [18] 
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The fixed charge network flow problems are classified as NP-hard problems 

[19]. In 1954, Hirsch and Dantzig presented a solution for FCNF problems [20]. Over 

decades different exact methods were employed to solve FCNF problem to optimality  

[21],  [22], [23], [3]. However, exact methods are time-consuming and computationally 

expensive (CPU and memory extensive). Therefore, there have been continuous efforts 

to employ heuristic algorithms to efficiently (e.g., reduced time or CPU and memory 

demand) solve this type of problems [24], [25], [26]. 

One of the known heuristic methods to solve FCNF problems is decomposition 

algorithm. In this algorithm, the problem is broken into a set of sub-problems. These 

sub-problems are iteratively solved to find an optimal solution for the original problem. 

The earliest works on decomposition algorithm date back to the seminal work of 

Dantzig and Wolfe [27] and Benders [28]. Later, this method was further explored and 

expanded by other researchers to address emerging problems in operation research [29], 

[30], [31]. 

1.2 Objective and Outline 

The primary goal of this project is to minimize the total cost of transferring a 

single commodity through a time-space fixed charge network employing the 

decomposition approach while meeting all requirement and restrictions to find a near 

optimal solution as fast as possible or within a reasonable amount of time. For this 

reason, an experiment with some specifications was designed to solve identical 

problems with exact, decomposition and decomposition with relaxation methods. Then 

the objective values and solution times of the three methods were analyzed, and the best 
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way that solved the problem the fastest with the lowest gap from the exact method 

objective value was introduced.  

Chapter 2 presents further information about the background of FCNF 

problems. Employing and examining the decomposition algorithm for single 

commodity time-space FCNF problems are discussed in Chapter 3. Furthermore, 

Chapter 4 includes conclusions and future works. 
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Chapter 2: Literature Review 

 

2.1 Fixed charge Network Flow Problems 

The fixed charge network flow problems are classified as NP-hard problems. 

Over decades different exact methods were employed to solve FCNF problem to 

optimality. However, exact methods are time-consuming and computationally 

expensive (CPU and memory extensive). Therefore, there have been continuous efforts 

to employ heuristic algorithms to efficiently solve this type of problems. 

This chapter presents information about the background of FCNF problems, and 

development of different exact and heuristic approaches. 

 

2.1.1 Exact Approaches to Fixed Charge Network Flow Problems 

First time in 1954, Hirsch and Dantzig formulated the FCNF problem [20]. In 

1966, Driebeek proposed a method to solve the mixed integer problem in such a way 

that solved the problem without integrality restrictions and then found the optimum 

answer which meets the integrality constraints as well [32].  

In 1968, Murty presented a solution for FCNF problems by ranking the extreme 

points [33]. In 1971, a transportation problem was formulated and solved by Gray 

which was a branch & bound algorithm [21]. He solved the problem by decomposing it 

into a master integer program and a series of transportation subprograms. 

 Another exact solution was presented by Steinberg based upon the branch & 

bound approach which was computationally feasible for large problems [20]. His 
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method added extra features while the amount of required computer storage remained 

constant for a problem of any given size. 

 In 1976, Kennington and Unger formulated and solved a transportation problem 

which included fixed charge as a network using a linear relaxation [34]. Barr et al. in 

1981, modified branch & bound algorithm to solve both dense and sparse transportation 

problems with fixed charge [35].  

Later in 1986, Cabot and Erenguc expanded the last two works to improve the 

branch & bound algorithm by a stronger penalty for branching variable [36].  

Palekar et al. developed a conditional penalty for fixed-cost transportation 

problems which was stronger than other penalties in previous works. They claimed that 

this method significantly could reduce the branch & bound enumeration and solving 

time [37]. This work was slightly improved by Lamar and Wallace to ensure there is an 

optimum solution for the problem.  

More improvement occurred in Bell et al. work in 1999 by adding another 

penalty and employing a new capacity improvement method. It resulted in a noticeable 

improvement in hard problems solutions [38]. 

Cruz et al. employed the branch & bound algorithm to solve a large-scale un-

capacitated fixed charge network flow problem by using Lagrangian relaxation in place 

of standard linear relaxation [39]. 

A branch & cut algorithm was proposed by Ortega and Wolsey to find an 

optimum solution for un-capacitated fixed charge problems. Their method employs two 

heuristics (a minimum cost flow and a dynamic slope scaling heuristic) to find feasible 
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solutions as fast as possible. They believed that this method combined with cutting 

plane algorithm can produce more efficient solutions [40]. 

 

2.1.2 Heuristic Approaches in Fixed Charge Network Flow Problems 

As mentioned before, the fixed charge network flow problem is classified as an 

NP-hard problem. Different exact methods which are typically time demanding and 

memory and CPU extensive were developed to address this problem. Therefore, there is 

a strong demand to develop more heuristic methods to solve these problems as fast as 

possible with a reasonable level of accuracy. 

Cooper and Drebes, and Denzler each presented heuristic methods to solve the 

fixed charge problems based on an adjacent extreme point search [24], [41]. 

Walker proposed a search method as SWIFT algorithm with two phases [42].   

Sun and McKeown used tabu search for the fixed charge problem [43]. Also, 

tabu search has been used by Sun et al. to solve the fixed-charge transportation problem 

[44]. In both investigations, the researchers believed that to find the best tabu 

parameters further research is required.  

Kim and Pardalos developed a dynamic slope scaling procedure which 

combined variable and fixed costs as a new coefficient and solves linear programming 

problem iteratively [45]. A hybrid ant colony optimization algorithm was developed by 

Monteiro et al. to combine exploration and exploitation [46]. 

A large group of recent investigations to address fixed charge problems has 

focused on genetic algorithms. Initially genetic algorithms, which are probabilistic, 
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adaptive algorithms were presented by Holland [47]. These algorithms try to develop a 

population of candidate solutions, towards a global optimal [48], [49]. 
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Chapter 3: Decomposition Algorithm in Time-Space Fixed Charge 

Network Flow Problems 

 

3.1 Introduction 

 

As discussed earlier, a set of optimization problems are categorized as time-

space networks (TSN). In this family of networks, each node i is associated with a 

certain time-period r.  TSN problems have wide applications especially in logistics 

problems such as vehicle-crew scheduling [50], train timetabling [51], and bus 

scheduling [15]. Generally, TSN problems are complicated large-scale problems. 

Various exact and heuristic methods have been proposed and implemented to solve 

TSN problems over the last decades. One of the efficient heuristic algorithms in 

mathematical programming for solving large-scale time-space network problems is 

decomposition algorithm.  

In this work, a decomposition heuristic is proposed that subdivides the problem 

into various time epochs to create smaller and more manageable sub-problems.  These 

sub-problems are solved sequentially to find an overall solution for the original 

problem. The earliest works on decomposition algorithm date back to the seminal work 

of Dantzig and Wolfe [27] and Benders [28]. Later, this method was further explored 

and expanded by other researchers to address emerging problems in operation research 

[29], [30], [31]. 

Decomposition method was primarily focused on linear programming (LP) 

problems [52] however, in the last decades this algorithm has been used to solve mixed 

integer linear programming (MILP) problems [53], [54]. MILP includes problems with 
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integer and continues variables such as transportation and distribution [7], facility 

location [5],  and network design [8] problems as well as other problems. 

The focus of this chapter is on single commodity time-space fixed charge 

network flow problems and is organized as follows: Notations are discussed in Section 

3.2. The problem statement and methodology are described in Sections 3.3 and 3.4.  

The rest of this chapter (Sections 3.5-3.7) details the design of experiment (DOE), data 

analysis, and concluding remarks. 

 

3.2 Notation 

In this work, the time-space network has some specifications as follows: 

1- The number of nodes in all time-periods is equal. In other words, nodes are 

replicated in each time-period across the whole network.  

2- Backward arcs are not allowed. This means, no arc is allowed from node (𝑖, 𝑟) to 

node (𝑗, 𝑠) when 𝑠 < 𝑟 and each arc (𝑖, 𝑟, 𝑗, 𝑠) only connects node (𝑖, 𝑟) to node 

(𝑗, 𝑠) in the future time-period (𝑟 < 𝑠) or in the same time-period (𝑟 = 𝑠). 

In this section, the set of notations used for time-space networks formulation are 

provided. Let N = {1, 2, …, n} and T= {1, 2, …, t} present the set of nodes and time-

periods, respectively. For a time-space network, another set of node- time period can be 

defined as NTP= {(𝑖, 𝑟): 𝑖 ∈ 𝑁 𝑎𝑛𝑑  𝑟 ∈ 𝑇}. Each directed arc in a time-space network, 

links 2 nodes where both of head and tail nodes are defined with two indexes (e.g., ir or 

js). Therefore, the arc set A includes four-tuple arcs as (𝑖, 𝑟, 𝑗, 𝑠) where both 

(𝑖, 𝑟) and (j, s) ∈ 𝑁𝑇𝑃 . In this mixed integer problem, we have two decision variables 

as 𝑥𝑖𝑟𝑗𝑠 and 𝑦𝑖𝑟𝑗𝑠, which are continuous and binary variables, respectively in a single 
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commodity problem. Here, 𝑥𝑖𝑟𝑗𝑠 presents the decision variable associated with the flow 

on arc (𝑖, 𝑟, 𝑗, 𝑠) and should be positive or zero  𝑥𝑖𝑟𝑗𝑠 ≥ 0 .  𝑦𝑖𝑟𝑗𝑠 is a binary variable and 

is set to be one if arc (𝑖, 𝑟, 𝑗, 𝑠) ∈ A has a positive flow, otherwise it set to be zero. 

𝑦𝑖𝑟𝑗𝑠 = {
1,  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤 𝑜𝑛 𝑎𝑟𝑐 (𝑖, 𝑟, 𝑗, 𝑠)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We also have two parameters 𝑐𝑖𝑟𝑗𝑠 and 𝑓𝑖𝑟𝑗𝑠 to define the cost per unit flow 

(variable cost) and the fixed cost on each arc (𝑖, 𝑟, 𝑗, 𝑠). The other parameter in this 

network is 𝑅𝑖𝑟 which denotes the requirement at node (𝑖, 𝑟) where (𝑖, 𝑟) ∈  NTP. Each 

node will be considered as a supply, demand, or transshipment node if the value of 

𝑅𝑖𝑟 is positive, negative or zero, correspondingly.  We have also defined three other sets 

of nodes as S, D and TR to treat each node as a supply, demand or transshipment node: 

𝑆 = {(𝑖, 𝑟): (𝑖, 𝑟) ∈ 𝑁𝑇𝑃 𝑎𝑛𝑑  𝑅𝑖𝑟 > 0} 

𝐷 = {(𝑖, 𝑟): (𝑖, 𝑟) ∈ 𝑁𝑇𝑃 𝑎𝑛𝑑  𝑅𝑖𝑟 <  0} 

𝑇𝑅 = {(𝑖, 𝑟): (𝑖, 𝑟) ∈ 𝑁𝑇𝑃 𝑎𝑛𝑑  𝑅𝑖𝑟 =  0} 

The other parameter is M. One of the most common applications of the big M 

coefficient is on mixed integer linear programming problems that allow the binary 

variable 𝑦𝑖𝑟𝑗𝑠 to activate or deactivate the associated constraint. Because small values 

for M will negate the size of feasible region or could even result in an infeasible model 

this parameter should be sufficiently large.  On the other hand, too large values of M 

will not result in a tight linear relaxation in branch and bound algorithm. Different 

methods have been proposed to set an appropriate value for M in a MILP problem [17], 

[55]. In this work, M is set to be equal to the total supply of the network for all arcs 

(𝑖, 𝑟, 𝑗, 𝑠) [17]. Table 3.1 provides a detailed summary of notations used in this chapter.  
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Table 3.1 Table of notations for single commodity time-space FCNF problem 

 

 Notation Description 

S
et

s 
N Set of nodes in the network N= {1, 2, …, n} 

T Set of time periods T= {1, 2, …, t} 

NTP Set of nodes and time periods (set of all (i, r) nodes) where i ∈

𝑁 𝑎𝑛𝑑 𝑟 ∈ 𝑇 

A Set of directed arcs (i, r, j, s) in the network where (i, r) and    

(j, s) ∈ 𝑁𝑇𝑃 and   (𝑖, 𝑟, 𝑗, 𝑠) ≠ (𝑗, 𝑠, 𝑖, 𝑟)  

S Set of supply nodes in the network  

D Set of demand nodes in the network 

TR Set of transshipment nodes in the network 

P
a
ra

m
et

er
s 

𝑐𝑖𝑟𝑗𝑠  The cost per unit flow on arc (𝑖, 𝑟, 𝑗, 𝑠) 

𝑓𝑖𝑟𝑗𝑠  Fixed cost on arc (𝑖, 𝑟, 𝑗, 𝑠) in the network 

𝑅𝑖𝑟  Requirement value at node (𝑖, 𝑟) 

M The big M coefficient or upper bound (capacity) for each arc  

V
a

ri
a
b

le
s 

𝑥𝑖𝑟𝑗𝑠 Decision variable associated with the flow on the arc between 

nodes (𝑖, 𝑟) and (𝑗, 𝑠) 

𝑦𝑖𝑟𝑗𝑠 Binary variable on each arc (𝑖, 𝑟, 𝑗, 𝑠) in the network 

𝑦𝑖𝑟𝑗𝑠𝜖 {0, 1} 

N
et

w
o

rk
  

G 

 

G = (NTP, A) is a directed time-space network  
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3.3 Problem Statement 

As mentioned in Chapter 1, the fixed charge network flow problems are 

classified as NP-hard problems. Various factors such as the number of variables and 

constraints and the structure of the problem can change the problem complexity. 

Therefore, there have been continuous efforts to employ heuristic algorithms to 

efficiently solve this type of problems. 

The primary objective of this chapter is to employ the proposed decomposition 

method to minimize the total cost of transferring a single commodity through a time-

space fixed charge network while meeting all restrictions and requirements. 

 As described in Section 3.2, in fixed charge network flow problems a binary 

variable 𝑦𝑖𝑟𝑗𝑠, is defined for each arc. This binary variable is required to write the 

equation sets and the objective function for the problem in hand. The value of 𝑦𝑖𝑟𝑗𝑠 is 

set to be one if arc (i, r, j, s) ∈ A is used and there is a positive flow between nodes (i, r) 

and (j, s) otherwise: it is set to be zero. 

The problem formulation for time-space fixed charge network flow problems 

investigated in this chapter, using the notation provided in Table 3.1, is provided below: 

𝑚𝑖𝑛 ∑  (𝑐𝑖𝑟𝑗𝑠(𝑖,𝑟,𝑗,𝑠)∈𝐴 𝑥𝑖𝑟𝑗𝑠 + 𝑓𝑖𝑟𝑗𝑠𝑦𝑖𝑟𝑗𝑠)                                                 3.1 

       Subject to 

∑ 𝑥𝑖𝑟𝑗𝑠(𝑖,𝑟,𝑗,𝑠)∈𝐴  - ∑ 𝑥𝑗𝑠𝑖𝑟(𝑗,𝑠,𝑖,𝑟)∈𝐴 =  𝑅𝑖𝑟              ∀ (𝑖, 𝑟)𝜖 𝑁𝑃                 3.2 

𝑥𝑖𝑟𝑗𝑠 ≤ 𝑀𝑦𝑖𝑟𝑗𝑠                                                     ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴             3.3 

𝑥𝑖𝑟𝑗𝑠 ≥ 0                                                             ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴              3.4 

𝑦𝑖𝑟𝑗𝑠𝜖 {0, 1}                                                         ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴             3.5 
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Equations 3.1, 3.2, 3.4 and 3.5 set the objective function, the flow balance 

constraint for each node (𝑖, 𝑟), continuous and binary variables, respectively. Equation 

3.3 is a forcing constraint to impose a 0 or 1 value to binary variable 𝑦𝑖𝑟𝑗𝑠 (1 for a 

positive flow 𝑥𝑖𝑟𝑗𝑠 on arc (𝑖, 𝑟, 𝑗, 𝑠); otherwise 0). Since all the arcs are un-capacitated, 

and there is not any natural capacity in this problem, big M coefficient which is an 

artificial capacity is required. In other words, Equation 3.3 sets the capacity for all 

directed arcs in the network. Note that M should be chosen wisely and here is set to be 

equal to the total supply of the network. 

Kennington and Nicholson [17] have categorized and examined different types 

of  FCNF problems by varying the range of requirements on each node 𝑅𝑖𝑟, variable 

cost 𝐶𝑖𝑟𝑗𝑠 and fixed cost 𝑓𝑖𝑟𝑗𝑠. In [17], FCNF problems were classified into 27 classes 

such as LLL, LLM, LLH where the first, second and third letter shows the range of 

node requirement, variable cost and fixed cost (L=low, M=medium, H=high). Table 3.2 

summarizes the range of values for each of these three parameters at each level.  

 

Table 3.2 Different levels of requirements, variable cost and fixed cost  

  

Level Requirement for Each Node Variable Cost Fixed Cost 

Low 10-20 0-10 200-600 

Medium 100-200 10-100 2,000-6,000 

High 1,000-2,000 100-1,000 20,000-60,000 

 

In [17], it is concluded that LML, LHL, LHM, MML, MHL, MHM, HMM, 

HHM and HHH problems do not take much CPU time and in contrast, MLM, MLH, 
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MMH, and HLH are most time-consuming problems. Additionally, they have reported 

that among 27 classes of problems those with a low level of variable cost and a high 

level of fixed cost are the most time demanding problems. For these reasons, HLH 

problems, as one of the most challenging types of problems, are explored in this work.   

 

3.4 Methodology 

Each of the time-space fixed charge network flow problems investigated in this 

work was solved by three different techniques by Gurobi MIP solver: exact method, 

decomposition method and decomposition method with relaxation. An overview of each 

of these three methods is detailed in this section. 

3.4.1 Exact Method 

In the exact method, each problem was implemented in python based on the 

formulation of Equations 3-1 to 3-5 and Gurobi Parallel MIP solver was used to solve 

the generated time-space FCNF problems. Generally, linear programming-based branch 

and bound algorithm are used to solve mixed integer linear programming problems. The 

main idea of the branch and bound method, search tree, nodes and leaf nodes are 

illustrated in Figure 3.1.  

In this method, we start with the original MIP and ignore all the integrality 

constraints to generate an LP relaxation and will solve this relaxed problem. While it is 

rare, a solution may be found in this very initial step which satisfies all the integrality 

constraints even though those were not explicitly imposed. If this occurs the problem is 

solved, and the solver will terminate the process. However, in most cases, the branching 

process is required to be continued. Note that branching is only performed on a variable 
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(X) with non-integer value (N). In each branching step, one of the non-integer variables 

is removed and substituted with two new constraints: 𝑋 ≤ [𝑁] 𝑜𝑟 𝑋 ≥ [𝑁] + 1 where 

these new problems are called nodes. Then, the original MIP problem is solved again 

with the newly added constraints. If the optimal solution for each of sub-problems can 

be computed, then the best one is picked as the optimal solution of the original MIP. 

This process is repeated to generate the search tree with nodes and leaf nodes (nodes 

that are not branched yet). The optimal solution for the MIP problem is found when all 

the leaf nodes are branched or disposed. 

 

Figure 3.1 Branch & bound search tree with nodes and leaf nodes 

 

The best integer solution found at any point in the search process is called 

an incumbent. During the search process, if the solver finds an integer feasible solution 

with a better objective value than the incumbent, the incumbent is updated with this 

new objective value. The branching process for each node will stop upon reaching to 

any of the below conditions: 

1- The solver finds a feasible solution that satisfies all integrality constraints of the 

original MIP.  
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2- The LP relaxation is infeasible, this happens when a feasible integer solution for 

the original MIP problem does not exist.  

3- An optimal solution for LP relaxation is found. However, its objective value is 

not as good as the incumbent objective value. 

Furthermore, in minimization problems, the objective value of the incumbent 

and the minimum value of all optimal objective values of current leaf nodes are set as 

the upper and lower bound (best bound) for the optimal solution of the original MIP, 

respectively. The difference between the current upper and lower bound is known as the 

gap in Gurobi. Apparently, the original problem is solved to the optimality when this 

gap is equal to zero [56]. MIP gap in Gurobi is defined as follows: 

MP Gap = 
|𝑏𝑒𝑠𝑡 𝑏𝑜𝑢𝑛𝑑−𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑|

|𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑|
                                                                      3.6 

 

3.4.2 Decomposition method 

The second approach used to address time-space FCNF problems in this work is 

decomposition algorithm. In this method, the original network is broken into several 

subproblems based on the consecutive sets of time periods. Then these subproblems 

will be solved exactly, and the new solutions present the best approximate solution for 

the original problem. As discussed in Section 3.6, the decomposition method finds the 

approximate solution for the original problem much faster than the exact method.  

Generally, in NP-hard problems heuristic methods are highly desired. By 

sacrificing some factors such as optimality, precision, and accuracy to a certain level, 

heuristic methods can solve most of the time-consuming problems in a shorter time 

[57]. In this work, the proposed decomposition algorithm can be considered as a greedy 
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heuristic. Despite shortcomings, greedy heuristic algorithms can be desirable in 

problems where algorithms that seek global optimality are time-demanding and 

computationally expensive.  

To implement the decomposition idea, all possible groups of time-periods 

should be considered. Note that the minimum number of time-periods in each group is 

two. A time-period variable, TPV, is defined and based on the number of time-periods 

in each TSN problem, a range is considered for this variable to decompose the network.  

A time-space network with n nodes and t time-periods is grouped sequentially 

from two time-periods to half of the time periods ( 
𝑡

2
 ) where t is an even number and to 

half of the time-periods +1 ( 
𝑡+1 

2
) where t is an odd number, respectively. This step is 

considered as the base setting of the decomposition approach. When the original 

problem is decomposed, the decomposition approach will solve the subproblem exactly 

to find the best answer while the rest of original network is ignored.. Figure 3.2 

illustrates a time-space network with four nodes and five time-periods. This TSN 

problem includes 20 nodes, 124 directed arcs, 124 binary variables, 124 continuous 

variables and 144 constraints in exact method formulation and additional 40 slack 

variables in decomposition method formulation. 
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Figure 3.2 A time-space network with four nodes and five time-periods 

 

For instance, in a time-space network with four nodes and five time-periods, the 

decomposition algorithm starts with smallest time period variable (TPV=2), considers 

the first two time-periods (tp=2) and disregards the rest of network (Figure 3.3.a) by 

zeroing the cost of slack variables for later time-periods. Also, slack variables are 

required to balance the flow at each node (i,r) in the early time-periods. This 

subproblem is solved exactly, and the binary variables on arcs with a positive flow are 

fixed for next step. In next step, the algorithm adds the next two time-periods (tp =4) to 

make a new subproblem with four consecutive time-periods (Figure 3.3.b). This 

procedure is repeated, and finally the last time-period of the original problem is added 

(Figure 3.3.c). Solving this subproblem proposes a solution to the original MILP 

problem (Figure 3.3.d). The same process is implemented by grouping every three 

time-periods. The main idea of decomposition algorithm is illustrated in Figures 3.3 (a)-

(d). 
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                                                                     (a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.3 (a)-(d) Decomposition algorithm process in a TSN with four nodes and 

five time-periods (4, 5) 
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To formulate and implement the decomposition method, further variables and 

parameters are required namely S1ir, S2ir, and 𝐶𝑖𝑟 which are two required slack variables 

and the coefficient of slack variables at each node (i, r), respectively. The following set 

of equations explains the mathematical formulation of decomposition method:  

 

𝑚𝑖𝑛 ∑  (𝑐𝑖𝑟𝑗𝑠(𝑖,𝑟,𝑗,𝑠)∈𝐴 𝑥𝑖𝑟𝑗𝑠 + 𝑓𝑖𝑟𝑗𝑠𝑦𝑖𝑟𝑗𝑠) + ∑   𝐶𝑖𝑟 (𝑆1𝑖𝑟 + 𝑆2𝑖𝑟(𝑖,𝑟)∈𝑁𝑃 )            3.7 

        Subject to 

∑ 𝑥𝑖𝑟𝑗𝑠(𝑖,𝑟,𝑗,𝑠)∈𝐴 − ∑ 𝑥𝑗𝑠𝑖𝑟(𝑗,𝑠,𝑖,𝑟)∈𝐴 +  𝑆1𝑖𝑟 − 𝑆2𝑖𝑟 =  𝑅𝑖𝑟       ∀ (𝑖, 𝑟)𝜖 𝑁𝑃          3.8 

𝑥𝑖𝑟𝑗𝑠  ≤ 𝑀𝑦𝑖𝑟𝑗𝑠                                                                       ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴       3.9 

𝑥𝑖𝑟𝑗𝑠 ≥ 0                                                                                 ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴       3.10 

𝑦𝑖𝑟𝑗𝑠𝜖 {0, 1}                                                                            ∀ (𝑖, 𝑟, 𝑗, 𝑠)𝜖 𝐴       3.11 

𝑆1𝑖𝑟 , 𝑆2𝑖𝑟 ≥ 0                                                                       ∀ (𝑖, 𝑟)𝜖 𝑁𝑃          3.12 

 

Equations 3.7 and 3.8 set the objective function and the flow balance constraint 

for each node (i, r) in decomposition method respectively. As you can see, the only 

difference between the general formulation of FCNF problem and our proposed 

formulation here is slack variables. The second part of Equation 3.7 includes a critical 

piece which allows us to solve the early time-periods and ignore the rest of network by 

zeroing the cost of slack variables for those late time-periods. However, this slack cost 

for early time-periods is set to be a high value. Equation 3.8 includes two slack 

variables as S1ir and S2ir which are required to balance the flow at each node (i, r). 

Equation 3.9 is a forcing constraint to impose a 0 or 1 value to binary variable 𝑦𝑖𝑟𝑗𝑠 (1 
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for a positive flow 𝑥𝑖𝑟𝑗𝑠 on arc (𝑖, 𝑟, 𝑗, 𝑠); otherwise 0). Also, equations 3.10, 3.11 and 

3.12 set continuous, binary, and slack variables respectively. 

 

3.4.3 Decomposition Method with Relaxation 

 

The third method studied in this work is decomposition method with relaxation. 

The basic idea of this approach is practically the same as decomposition method with 

some changes. As discussed before, in decomposition method after breaking the TSN 

into two parts, when the algorithm begins to solve the early time-periods, it discards the 

rest of network by zeroing the cost of slack variables for later node-periods. Therefore, 

to keep the flow balanced at each node (i,r) in early time-periods, slack variables are 

required.  

In contrast, decomposition method with relaxation considers the rest of network 

with some changes. It keeps all the binary variables within the early time-periods and 

only changes binary variables in late time-periods to continuous ones and solves the 

problem. For this reason, there is no need for slack variables in decomposition method 

with relaxation. The main motivation for proposing this method is to employ another 

approach which can solve the problem faster and more accurate than the decomposition 

method. Figure 3.4 illustrates the flowchart of three employed methods in this work. 
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Figure 3.4 Flowchart of exact, decomposition and decomposition with relaxation methods 
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3.5 Design of Experiment 

 

The primary goal of this experiment is to generate and solve different time-space 

networks using three methods (Exact, decomposition, and decomposition with 

relaxation) to evaluate the capability and efficiency of the decomposition methods vs. 

exact method. For this reason, a total of 1600 problems is solved including 20 runs for 

each problem (as well as all possible TPVs) within three hours maximum time-limit for 

each run. The time-space networks considered in this experiment are as follows:  

(4, 5), (4, 6), (4, 8), (4, 10), (4, 12), (5, 5), (5, 6), (5,8), (5,10), (6,5), (6,6), (6,8) 

In this project, the required parameters namely variable cost and fixed cost on 

each arc (i, r, j, s) and the requirement at each node (i, r) are generated randomly from a 

uniform probability distribution. To compare the effectiveness of the decomposition 

method vs. exact method, each problem is solved using identical parameters (same seed 

for different methods in each run). As discussed in Section 3.3, the focus of this study is 

on HLH problems where HLH corresponds to a high (1000-2000), low (0-10) and high 

(20,000-60,000) range level for the requirement at each node (i, r), variable cost and 

fixed costs on each arc (i, r, j, s), respectively. Also, the coefficient of the slack 

variables is set to be 75,000. 

In each problem, at first step, all possible arcs are generated and a random cost 

within the defined range is assigned to each arc. Then supply and demand requirements 

are distributed randomly throughout the network. This experiment is designed in such a 

way that 40%, 45% and 15% of time-space nodes are demand, supply, and 

transshipment nodes, respectively. Also, the problem is considered as a feasible 
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problem if the total demand in each time-period does not exceed the total supply in the 

same period. The maximum time limit for each problem is set to be three hours, 

however, later in this chapter for further analysis the maximum time limit is extended to 

four hours as well.  

The numerical computations in this study are performed using Gurobi solver 

7.5.1 and Python 3.6.2 on a computer with an Intel core i7- 7700, 3.600 GHz CPU, 16 

GB RAM memory, Running 64-bit Windows 10 operating system. The default value for 

MIP gap in the Gurobi solver is defined as 1e-4. Also, the statistical analysis was 

performed using R. 

 

3.6 Results and Analysis  

 

3.6.1 Statistical Information 

The main purpose of this project is to employ decomposition algorithm to solve 

the time-space FCNF problems to optimality faster than the exact method while the gap 

between the objective values is the smallest. For this reason, a total of 1600 problems 

was solved in about 447 hours to provide enough outputs for statistical analysis and 

evaluations. Table 3.3 illustrates the summary of solution times for three methods. 

Note that Gurobi defines some specific values for status that indicates the problem 

optimality.  

The status value for total 119 problems out of 1600 problems is 9. This indicates 

that the optimization process was terminated while an optimal answer was not found. 95 

problems out of 119 unsolved problems occurred in the exact method. Moreover, the 
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majority of 95 unsolved problems occurred in (6, 8), (5, 10), (5, 8) and (6, 6) networks 

with 20, 19, 16 and 16 unsolved problems respectively. In networks (6,8), (5,10) and  

(6, 6), total 24 problems out of 1360 problem solved by decomposition methods, left 

unsolved and the majority of these cases happened in the most complicated network,  

(6, 8), and in largest TPV (TPV:4). Also, the most complicated and time demanding 

networks in exact method were (6, 8),       (5, 10), (6, 6) and (5, 8) with approximately 

60, 57, 51 and 49 hours solution time (for 20 runs each 3 hours maximum time-limit), 

respectively. 
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Table 3.3 Summary table of solution time for all problems (hrs)  
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1 (4,5) 2 20 40 0 0.0005 20 40 0 0.0002 20 0 0.017412 

3 20 0 0.0013 20 0 0.0005 

2 (4,6) 2 20 40 0 0.0009 20 40 0 0.0005 20 0 0.527215 

3 20 0 0.0026 20 0 0.0021 

3 (5,5) 2 20 40 0 0.0041 20 40 0 0.0006 20 1 5.603729 

3 20 0 0.0467 20 0 0.0054 

4 (5,6) 2 20 40 0 0.0058 20 40 0 0.0016 20 3 17.05932 

3 20 0 0.0801 20 0 0.3187 

5 (6,5) 2 20 40 0 0.1385 20 40 0 0.0024 20 7 27.541715 

3 20 0 1.2094 20 0 0.0387 

6 (6,6) 2 20 40 0 0.04068 20 40 0 0.0116 20 16 51.51966 

3 20 1 5.8561 20 1 3.6059 

7 (4,8) 2 20 60 0 0.001 20 60 0 0.0006 20 0 2.451199 

3 20 0 0.0032 20 0 0.0010 

4 20 0 0.0117 20 0 0.0091 

8 (5,8) 2 20 60 0 0.0065 20 60 0 0.0024 20 16 48.64328 

3 20 0 0.2312 20 0 0.0109 

4 20 0 0.9709 20 0 0.4615 

9 (6,8) 2 20 60 0 0.1263 20 60 0 0.0160 20 20 59.68456 

3 20 1 6.7588 20 0 0.2561 

4 20 8 34.11 20 6 21.9003 

10 (4,10) 2 20 80 0 0.0014 20 80 0 0.0008 20 3 22.34277 

3 20 0 0.0054 20 0 0.0013 

4 20 0 0.0195 20 0 0.0059 

5 20 0 0.065 20 0 0.0463 

11 (5,10) 2 20 80 0 0.0095 20 80 0 0.0024 20 19 56.99841 

3 20 0 1.7717 20 0 0.0122 

4 20 1 4.8795 20 0 0.1297 

5 20 3 15.807 20 3 12.6908 

12 (4,12) 2 20 100 0 0.0023 20 100 0 0.0013 20 10 38.54187 

3 20 0 0.0088 20 0 0.0033 

4 20 0 0.0665 20 0 0.0132 

5 20 0 0.0796 20 0 0.0156 

6 20 0 2.695 20 0 1.6405 
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Figures 3.5 (a), (b) and (c) illustrate the pie chart of solved and unsolved problems in 

exact, decomposition method and decomposition method with relaxation, respectively. 

 

   
 

Figure 3.5 (a), (b) and (c) Pie chart of solved and unsolved problems in three 

methods 

 

  

Figures 3.6 - 3.8 illustrate the box plot of the objective value vs. node-period 

and vs. TPV in exact method and both decomposition methods, correspondingly. As 

shown in Figures 3.7 and 3.8, larger TPVs compared to smaller ones show a smaller 

median objective value. When TPV increases, the decomposition approach solves a 

larger group of time-periods which is more similar to the original time-space network. 

Therefore, the chance of finding an answer closer to the optimal answer in exact method 

(a smaller objective value) is higher.   

Figures 3.9 - 3.11 illustrate the box plot of the solution time (log scale) vs. node-

period and vs. TPV in exact and both decomposition methods, respectively. Clearly, 

when TPV increases, the median solution time increases monotonically.  
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Exact Method
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       Figure 3.6 Box plot of the objective value vs. NP for exact method 
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Figure 3.7 Box plot of the objective value vs. TPV in decomposition method 
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Figure 3.8 Box plot of the objective value vs. TPV for decomposition method with 

relaxation 
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Figure 3.9 Box plot of the solution time vs. NP for exact method 

 

As expected, the median solution time in decomposition method with relaxation 

is smaller than other methods. In Figure 3.9, network (5, 10), (5, 8), (6, 6), and (6, 8) 

illustrate a line in place of a box and whisker for the median solution time. This 

indicates that most of the problems in these networks (in the exact method) exceeded 

the three hours maximum time-limit.  
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Figure 3.10 Box Plot of the solution time vs. TPV for decomposition method 
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Figure 3.11 Box plot of the solution time vs. TPV for decomposition method with 

relaxation 
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A breakdown of average solution time for each of the three methods and for 

each TPV is listed in Table 3.4. While TPV increases, the average solution time 

increases as well. Also, Table 3.4 indicates a huge difference between the average 

solution time in exact method and decomposition methods. Although, in all problems 

this difference is evident, however in larger networks this is more noticeable. For 

example, in the network (4,12) the average solution time in exact method compared to 

the average solution time in decomposition method with the largest TPV (TPV:6) is 

increased by 2 orders of magnitude. 

Table 3.5 illustrates the ratio of average solution time in the exact method to 

average solution time in decomposition method and decomposition method with 

relaxation, respectively. As shown in Table 3.5, 1.7, 17343.8 and 2.7, 31534.2 are the 

lowest and highest ratio values in decomposition and decomposition with relaxation 

methods, correspondingly. This means that, depending on the problem size (i.e., number 

of nodes and periods) and TPV configuration used, the average solution time could be 

reduced by up to 4 orders of magnitude (compared to average solution time in Exact 

method) in decomposition and decomposition with relaxation methods. 

Tables 3.6 and 3.7 summarize the average objective value in three methods and 

percentage of the average difference between the objective value of exact method and 

decomposition methods, respectively. It is shown in Table 3.6 that, in all problems, the 

average objective value in decomposition method with relaxation is higher than the 

decomposition method.  
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As shown in table 3.7 the lowest and highest percentage of average difference 

for objective values in decomposition method and decomposition method with 

relaxation is -8.75 and 2.16 and 1.55 and 7.29, respectively. Additionally, the 

percentage of average in problems (6,6), (6,8) and (5,10) is a negative value which 

indicates that the objective value found by decomposition method is smaller than the 

exact method ones. The percentage of average difference shown in Table 3.7 is defined 

as: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
(𝑂𝑏𝑗 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑−𝑜𝑏𝑗 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑒𝑥𝑎𝑐𝑡 𝑚𝑒𝑡ℎ𝑜𝑑)

𝑜𝑏𝑗 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑒𝑥𝑎𝑐𝑡 𝑚𝑒𝑡ℎ𝑜𝑑
∗ 100    3.13 

Figure 3.12 visually indicates that the percentage of the average difference 

between the objective value in exact and decomposition with relaxation methods in all 

problems is larger than the ones between the exact and decomposition methods. 

Additionally, few negative outliers are seen in problems (6,8), (5,10) and (6, 6) solved 

by decomposition method which indicates that the decomposition method found smaller 

objective values compared to the exact method in the same problem.  

There are two possible scenarios that could cause these negative outliers: 

1.  In networks (6,8), (5,10) and (6, 6) majority of the problems left unsolved in the 

exact method. In other words, due to the maximum time-limit, the exact method 

did not solve the problem to optimality and the objective values were not the 

smallest. 

2. The percentage of the average difference for total 61 problems in both 

decomposition methods, shows a negative value. Also, the optimality status 

value for 9 problems (Table 3.8) out of 61 problems is 9 which indicates that the 
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decomposed network has not been solved to optimality within the maximum 

time-limit.  

 

Figure 3.12 Percentage of difference between objective value in exact method and 

both decomposition methods 

 

For further analysis, one problem out of 9 problems with the large negative 

percentage of difference in decomposition method (network (5,10) TPV:5) was solved 

one more time while the maximum time-limit was increased from three to four hours. 

The result is summarized in Table 3.9. As shown in Table 3.9, by increasing the 

maximum time-limit, the optimality status value changed from 9 to 2 and at the same 

time, the objective value increased from 926,500,84 to 1,593,191.88. This results in a 



45 

significant change in the percentage of the difference between the objective value of 

decomposition and exact method. Moreover, the lowest and highest MIP gap in the 

exact method for corresponding problems (9 problems) is 5.6% and 12.9% respectively. 

It shows that these negative outliers are more attributed to the second scenario. Table 

3.8 illustrates the problems (outliers) with the large negative percentage of difference. 

Table 3.8 Problems with large negative value for percentage of difference between 

objective values         

  

Method Seed NP  TPV  Time (s)  Objective  Status 
Difference 

% 

MIP Gap in 

Corresponding 

Exact Method 
Problem 

Decomposition 100 (6,8) 4 10810.77 629170.4 9 -48.72 0.092 

Decomposition 2000 (6,8) 4 10821.65 717189.2 9 -45.79 0.129 

Decomposition 500 (6,8) 4 10824.07 733205.7 9 -44.54 0.095 

Decomposition 1500 (6,8) 4 10814.39 700908.6 9 -43.83 0.102 

Decomposition 1500 (5,10) 5 10820.55 749908.9 9 -42.93 0.087 

Decomposition 1500 (6,6) 3 10813.47 550626.2 9 -41.76 0.069 

Decomposition 400 (5,10) 5 10812.23 926500.8 9 -40.92 0.056 

Decomposition 2000 (6,8) 3 10822.48 1010458 9 -23.63 0.129 

Decomposition 2000 (5,10) 4 10816.01 1146734 9 -19.25 0.090 

 

Table 3.9 Revised solved problem after increasing the maximum time limit to 4 

hours           

   
Maximum 

time-limit 

(hrs) 

NP Seed TPV Time (hrs) Objective Status Difference 

% 

3 (5,10) 400 5 3.0034 926,500.84 9 -40.920 

4 (5,10) 400 5 3.1368 1,593,191.88 2 1.5926 

 

Therefore, as the above discussion indicates, the large negative difference (in 

decomposition method) along with an optimality status value 9 results in an invalid 

solution for decomposition method. For this reason, to implement an accurate statistical 

analysis, all affected problems should be removed from the dataset. 
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3.6.2 Statistical Analysis 

 

As discussed in the previous section, in decomposition method while TPV 

increases, the average solution time will increase similarly. This is evidence that the 

decomposition method with the smallest TPV(TPV=2), is the fastest method to solve 

each network problem compared to other TPVs. However, to verify that, problems can 

be solved to optimality as well, the dependent t-test which is a type of repeated 

measures statistical test was implemented.  

To check the normality (Table 3.10) and homogeneity of variances (Table 3.11) 

assumptions Shapiro-Wilk and Bartlett’s tests were implemented. As shown in Table 

3.10, the p-value in decomposition method for networks (6, 8) TPV:4 and (5, 10) TPV:5 

is less than the significance level of 0.05. It indicates that the objective value of these 

problems is not normally distributed. 
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Table 3.10 Normality test of objective values at 0.05 confidence level  

 

 

Node- 

Time 

period 

TPV Decomposition Method 
Decomposition with 

Relaxation Method 
Exact Method 

(4,5) 
2 W = 0.9549,   p-value = 0.4477 W = 0.92268, p-value = 0.1116 W = 0.93727,     

p-value = 0.2128 3 W = 0.93747, p-value = 0.2147 W = 0.93809, p-value = 0.2206 

(4,6) 
2 W = 0.94665, p-value = 0.3191 W = 0.95798, p-value = 0.5043 W = 0.95783,     

p-value = 0.5015 3 W = 0.96239, p-value = 0.5927 W = 0.94833, p-value = 0.3425 

(5,5) 
2 W = 0.94687, p-value = 0.3221 W = 0.9218, p-value = 0.1073 W = 0.95006,     

p-value = 0.3681 3 W = 0.96462, p-value = 0.6397 W = 0.96079, p-value = 0.5597 

(5,6) 
2 W = 0.9255,   p-value = 0.1265 W = 0.94817, p-value = 0.3401 W = 0.93984,     

p-value = 0.2381 3 W = 0.9454,   p-value = 0.3026 W = 0.92569, p-value = 0.1275 

(6,5) 
2 W = 0.95521, p-value = 0.4531 W = 0.93353, p-value = 0.1805 W = 0.96032,     

p-value = 0.5503 3 W = 0.9502, p-value = 0.3702 W = 0.94811, p-value = 0.3393 

(6,6) 
2 W = 0.97322, p-value = 0.8208 W = 0.96968, p-value = 0.7481 W = 0.98154,     

p-value = 0.9524 3 W = 0.92423, p-value = 0.1196 W = 0.97683, p-value = 0.8869 

(4,8) 

2 W = 0.9404,   p-value = 0.244 W = 0.96092, p-value = 0.5624 W = 0.95235,     

p-value = 0.4042 3 W = 0.95866, p-value = 0.5174 W = 0.97686, p-value = 0.8874 

4 W = 0.95092, p-value = 0.3813 W = 0.95215, p-value = 0.4009 

(5,8) 

2 W = 0.93105, p-value = 0.1618 W = 0.92312, p-value = 0.1138 W = 0.94138,     

p-value = 0.2546 3 W = 0.94901, p-value = 0.3523 W = 0.9479, p-value = 0.3364 

4 W = 0.93942, p-value = 0.2338 W = 0.90554, p-value = 

0.05243 

(6,8) 

2 W = 0.95921, p-value = 0.5282 W = 0.9154, p-value = 0.08085 W = 0.93431,     

p-value = 0.1868 3 W = 0.93519, p-value = 0.1942 W = 0.91857, p-value = 0.093 

4 W = 0.76494, p-value = 

0.0002712  ***  

W = 0.95807, p-value = 0.5061 

(4,10) 

2 W = 0.95136, p-value = 0.3882 W = 0.95783, p-value = 0.5015 W = 0.95248,     

p-value = 0.4062 3 W = 0.93906, p-value = 0.2301 W = 0.9433, p-value = 0.2766 

4 W = 0.94827, p-value = 0.3415 W = 0.96277, p-value = 0.6004 

5 W = 0.95539, p-value = 0.4563 W = 0.95408, p-value = 0.4333 

(5,10) 

2 W = 0.95926, p-value = 0.5292 W = 0.9771, p-value = 0.8914 W = 0.94426,     

p-value = 0.2882 3 W = 0.95443, p-value = 0.4394 W = 0.96289, p-value = 0.6031 

4 W = 0.94471, p-value = 0.2939 W = 0.96394, p-value = 0.6251 

5 W = 0.78029, p-value = 

0.0004456 *** 

W = 0.9297, p-value = 0.1524 

(4,12) 

2 W = 0.95197, p-value = 0.398 W = 0.94782, p-value = 0.3352 W = 0.93914,     

p-value = 0.231 3 W = 0.94389, p-value = 0.2836 W = 0.94236, p-value = 0.2656 

4 W = 0.94105, p-value = 0.251 W = 0.95539, p-value = 0.4563 

5 W = 0.94618, p-value = 0.3128 W = 0.91877, p-value = 

0.09382 

6 W = 0.94914, p-value = 0.3542 W = 0.94702, p-value = 0.3241 
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Table 3.11 Summary table of Bartlett’s test (Homogeneity of Variances) 

      
No. Node-

Time 

Period 

Decomposition Method Decomposition with 

Relaxation Method 

1 (4,5) Bartlett's K-squared = 0.054385, 

df = 1, p-value = 0.8156 

Bartlett's K-squared = 0.0059358,         

df = 1, p-value = 0.9386 

2 (4,6) Bartlett's K-squared = 0.0033415,  

df = 1, p-value = 0.9539 

Bartlett's K-squared = 0.075765,           

df = 1, p-value = 0.7831 

3 (5,5) Bartlett's K-squared = 0.56673,      

df = 1, p-value = 0.4516 

Bartlett's K-squared = 0.2022,               

df = 1, p-value = 0.653 

4 (5,6) Bartlett's K-squared = 6.699e-07,   

df = 1, p-value = 0.9993 

Bartlett's K-squared = 0.21316,             

df = 1, p-value = 0.6443   

5 (6,5) Bartlett's K-squared = 0.061084,    

df = 1, p-value = 0.8048 

Bartlett's K-squared = 0.12279,             

df = 1, p-value = 0.726 

6 (6,6) Bartlett's K-squared = 2.3531,        

df = 1, p-value = 0.125 

Bartlett's K-squared = 0.068022,           

df = 1, p-value = 0.7942 

7 (4,8) Bartlett's K-squared = 0.059002,     

df = 2, p-value = 0.9709 

Bartlett's K-squared = 0.33418,             

df = 2, p-value = 0.8461 

8 (5,8) Bartlett's K-squared = 0.018475,    

df = 2, p-value = 0.9908 

Bartlett's K-squared = 0.4223,               

df = 2, p-value = 0.8097 

9 (6,8) Bartlett's K-squared = 32.845,        

df = 2, p-value = 7.376e-08* 

Bartlett's K-squared = 0.43458,             

df = 2, p-value = 0.8047 

10 (4,10) Bartlett's K-squared = 0.1231,         

df = 3, p-value = 0.9889 

Bartlett's K-squared = 0.1318,               

df = 3, p-value = 0.9878   

11 (5,10) Bartlett's K-squared = 12.006,        

df = 3, p-value = 0.007364* 

Bartlett's K-squared = 1.2059,               

df = 3, p-value = 0.7516 

12 (4,12) Bartlett's K-squared = 0.042989,     

df = 4, p-value = 0.9998 

Bartlett's K-squared = 0.22502,             

df = 4, p-value = 0.9941 

 

Table 3.11 illustrates that p-value in the same problems ((6,8) and (5,10)), is less 

than the significance level of 0.05. Therefore, we conclude that at least one TPV 

variance in these two network problems is different from the others. Earlier in Table 

3.8, we discussed 9 problems which are noticeable outliers and different two scenarios 

that could cause this situation. However, Tables 3.10 and 3.11 evidence that some 

problems (especially the largest TPV) in networks (6, 8) and 5, 10) violated the 

normality and homogeneity of variances assumptions. This could be concluded that to 

implement a valid statistical analysis, these problems should be removed from the 

original dataset. 
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Table 3.12 Comparison of normality test results before and after removing outliers

  
Node- 

Time 

period 
TPV Before After  

(6,6) 
3 W = 0.92423, p-value = 0.1196 W = 0.98613, p-value = 0.9895 

(6,8) 

3 W = 0.93519, p-value = 0.1942 W = 0.92902, p-value = 0.1661 

4 W = 0.76494, p-value = 0.0002712 * W = 0.94144, p-value = 0.367 

(5,10) 

4 W = 0.94471, p-value = 0.2939 W = 0.93328, p-value = 0.199 

5 W = 0.78029, p-value = 0.0004456 * W = 0.93972, p-value = 0.2866 

 

The normality test results after removing the outliers (in specific problems) are 

shown in Table 3.12. As you can see in this table, after removing 9 outliers from 

effected network problems ((6,8), (5,10)) the corresponding objective values were 

normally distributed. Also, Table 3.13 proves that after removing the outliers, 

statistically there is not any significant difference between TPV variances in problems 

(6,8), (6,6) and (5,10). 

 

Table 3.13 Comparison of homogeneity variances test before and after Removing 

outliers 

 
Node-

Time 

Period 
Before After 

(6,8) Bartlett's K-squared = 32.845, df = 2, 

p-value = 7.376e-08*** 

Bartlett's K-squared = 0.083186, df = 2, 

p-value = 0.9593 

(6,6) Bartlett's K-squared = 2.3531, df = 1, 

p-value = 0.125 

Bartlett's K-squared = 0.071741, df = 1, 

p-value = 0.7888 

(5,10) Bartlett's K-squared = 12.006, df = 3, 

p-value = 0.007364 ** 

Bartlett's K-squared = 0.23306, df = 3, 

p-value = 0.9721 

 

Figure 3.13 and 3.14 visually display the percentage of average difference in 

different problems and different TPV configurations in decomposition method and 
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decomposition method with relaxation, respectively. As shown in Figures 3.13 and 

3.14, in all problems excluding (4,10) and (4,12), while TPV increases the percentage of 

average difference decreases in both decomposition methods. In other words, in larger 

TPV configurations, the decomposed network includes a larger portion of original TS 

network, therefore, in each problem, the objective value found by the largest TPV in 

decomposition methods is closer to the objective value found by exact method.  

Additionally, the lowest and highest percentage of average difference in 

decomposition method is 0% and ~2.2%, respectively which is noticeably smaller than 

the corresponding value in decomposition method with relaxation (~1.5% and ~7.3%). 

Also, Tables 3.14 and 3.15 display the updated version of Tables 3.4 and 3.7, average 

solution time and the average percentage of difference tables, after removing the 

outliers. 

As shown in Table 3. 15, by removing the outliers from problems (6,8), (6,6) and (5,10) 

solved by decomposition method, the lowest percentage of average difference increased 

from -8.75 to 0.  
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Figure 3.13 Average percentage of difference in decomposition method for 

different problems and TPV configurations 
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Figure 3.14 Average percentage of difference in decomposition method with 

relaxation for different problems and TPV configurations 
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To verify the accuracy and efficiency of proposed decomposition methods to 

find near-optimal objective values, the dependent t-test which is a type of repeated 

measures statistical test was implemented. Tables 3.16 and 3.17 indicate the paired t-

test results for decomposition method and decomposition method with relaxation, 

respectively (after removing outliers). Note that the significance level was set to be 

0.05. These two tables include information namely node-period, tested-pair, the degree 

of freedom, lower bound and upper bound of 95% confidence interval, mean of 

differences (sample estimate), t-value, and p-value.  
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Table 3.16 Paired t-test for the objective values in decomposition method  

Paired t-test for objective value in decomposition method  

NP Tested Pair Df 

95% confidence interval Sample estimate 

t-value p-value 
lower bound upper bound Mean of the differences 

(4,5) 
TPV2-Exact 19 -18690.92 -6207.36 -12449.14 -4.17 0.000514 

TPV3-Exact 19 -3520.56 101.01 -1709.78 -1.98 0.06283 

(4,6) 
TPV2-Exact 19 -9641.87 -3219.77 -6430.82 -4.19 0.000495 

TPV3-Exact 19 -5145.12 -1401.96 -3273.54 -3.66 0.001662 

(5,5) 
TPV2-Exact 19 -30882.84 -6898.24 -18890.54 -3.30 0.003791 

TPV3-Exact 19 -10854.20 -2077.25 -6465.72 -3.08 0.006113 

(5,6) 
TPV2-Exact 19 -12169.33 -4845.43 -8507.38 -4.86 0.000108 

TPV3-Exact 19 -5941.48 -1806.85 -3874.16 -3.92 0.000915 

(6,5) 
TPV2-Exact 19 -21663.52 -8736.07 -15199.80 -4.92 9.47E-05 

TPV3-Exact 19 -11784.85 -2926.12 -7355.48 -3.48 0.002531 

(6,6) 
TPV2-Exact 19 -15980.30 -6538.93 -11259.61 -4.99 8.09E-05 

TPV3-Exact 18 -12505.68 -3845.78 -8175.73 -3.97 0.000904 

(4,8) 

TPV2-Exact 19 -10609.28 -5046.02 -7827.65 -5.89 1.14E-05 

TPV3-Exact 19 -10202.86 -3740.34 -6971.60 -4.52 0.000237 

TPV4-Exact 19 -4283.51 -911.93 -2597.72 -3.23 0.004455 

(5,8) 

TPV2-Exact 19 -25339.75 -12076.84 -18708.30 -5.90 1.10E-05 

TPV3-Exact 19 -11352.27 -5070.79 -8211.53 -5.47 2.80E-05 

TPV4-Exact 19 -7352.39 -2589.71 -4971.05 -4.37 0.00033 

(6,8) 

TPV2-Exact 19 -23800.13 -12278.04 -18039.09 -6.55 2.83E-06 

TPV3-Exact 18 -20675.58 -9163.26 -14919.42 -5.45 3.58E-05 

TPV4-Exact 15 -11751.67 -711.74 -6231.71 -2.41 0.02946 

(4,10) 

TPV2-Exact 19 -23567.74 -9713.18 -16640.46 -5.03 7.47E-05 

TPV3-Exact 19 -11894.04 -3647.88 -7770.96 -3.94 0.000869 

TPV4-Exact 19 -13662.63 -1802.61 -7732.62 -2.73 0.01332 

TPV5-Exact 19 -4785.44 -471.38 -2628.41 -2.55 0.01954 

(5,10) 

TPV2-Exact 19 -29700.83 -15096.68 -22398.76 -6.42 3.72E-06 

TPV3-Exact 19 -20676.94 -9369.65 -15023.30 -5.56 2.30E-05 

TPV4-Exact 18 -11833.82 -4003.57 -7918.70 -4.25 0.000482 

TPV5-Exact 17 -9560.33 -1387.60 -5473.97 -2.83 0.01164 

(4,12) 

TPV2-Exact 19 -37234.80 -17488.06 -27361.43 -5.80 1.38E-05 

TPV3-Exact 19 -22386.52 -11543.33 -16964.92 -6.55 2.85E-06 

TPV4-Exact 19 -9700.95 -2254.10 -5977.52 -3.36 0.003288 

TPV5-Exact 19 -9978.21 -2539.06 -6258.63 -3.52 0.00228 

TPV6-Exact 19 -9670.847 -2200.685 -5935.766 -3.326 0.003549 
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Table 3.17 Paired t-test for the objective values in decomposition method with 

relaxation 

Paired t-test for objective value in decomposition method with relaxation 

NP Tested Pair Df 

95% confidence interval Sample estimate 

t-value p-value 
lower bound upper bound Mean of the differences 

(4,5) 
TPV2-Exact 19 -38313.62 -20382.53 -29348.07 -6.85 0.000001544 

TPV3-Exact 19 -25112.76 -12388.73 -18750.74 -6.17 0.000006287 

(4,6) 
TPV2-Exact 19 -32783.90 -17851.65 -25317.78 -7.10 9.454E-07 

TPV3-Exact 19 -21209.76 -7946.77 -14578.26 -4.60 0.0001949 

(5,5) 
TPV2-Exact 19 -58323.85 -36260.91 -47292.38 -8.97 2.927E-08 

TPV3-Exact 19 -27098.14 -12120.60 -19609.37 -5.48 0.00002749 

(5,6) 
TPV2-Exact 19 -55311.15 -36551.23 -45931.19 -10.25 3.536E-09 

TPV3-Exact 19 -22521.38 -10554.83 -16538.11 -5.79 0.00001421 

(6,5) 
TPV2-Exact 19 -63333.03 -37663.40 -50498.22 -8.23 1.087E-07 

TPV3-Exact 19 -29109.77 -14342.90 -21726.34 -6.16 0.000006419 

(6,6) 
TPV2-Exact 19 -55211.05 -32718.46 -43964.75 -8.18 1.20E-07 

TPV3-Exact 19 -37210.48 -19308.35 -28259.42 -6.61 0.00000253 

(4,8) 

TPV2-Exact 19 -74452.43 -49020.70 -61736.57 -10.16 4.06E-09 

TPV3-Exact 19 -56183.62 -32137.54 -44160.58 -7.69 3.012E-07 

TPV4-Exact 19 -28342.15 -11333.34 -19837.75 -4.88 0.0001035 

(5,8) 

TPV2-Exact 19 -77105.96 -50429.62 -63767.79 -10.01 5.21E-09 

TPV3-Exact 19 -55389.65 -39839.82 -47614.73 -12.82 8.44E-11 

TPV4-Exact 19 -26681.95 -15542.89 -21112.42 -7.93 1.895E-07 

(6,8) 

TPV2-Exact 19 -87574.48 -59628.95 -73601.72 -11.03 1.07E-09 

TPV3-Exact 19 -61848.04 -41061.10 -51454.57 -10.36 2.96E-09 

TPV4-Exact 19 -42603.45 -22764.11 -32683.78 -6.90 0.000001412 

(4,10) 

TPV2-Exact 19 -75298.30 -55674.24 -65486.27 -13.97 1.91E-11 

TPV3-Exact 19 -72300.90 -49396.89 -60848.89 -11.12 9.258E-10 

TPV4-Exact 19 -52515.38 -30254.61 -41384.99 -7.78 2.519E-07 

TPV5-Exact 19 -25151.25 -10593.25 -17872.25 -5.14 0.00005833 

(5,10) 

TPV2-Exact 19 -103275.68 -63204.98 -83240.33 -8.70 4.75E-08 

TPV3-Exact 19 -92743.08 -56475.28 -74609.18 -8.61 5.52E-08 

TPV4-Exact 19 -58330.38 -30267.41 -44298.89 -6.61 0.00000253 

TPV5-Exact 19 -45332.55 -28533.85 -36933.20 -9.20 1.97E-08 

(4,12) 

TPV2-Exact 19 -123233.74 -88531.37 -105882.60 -12.77 8.97E-11 

TPV3-Exact 19 -77945.38 -54171.71 -66058.55 -11.63 4.38E-10 

TPV4-Exact 19 -53149.34 -25314.79 -39232.07 -5.90 0.00001111 

TPV5-Exact 19 -57812.68 -30243.29 -44027.99 -6.69 0.000002162 

TPV6-Exact 19 -37080.45 -20472.79 -28776.62 -7.2533 6.958E-07 
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Table 3.16 and 3.17 indicate that the p-value for all problems is less than the 

significance level of 0.05 except problem (4,5), where the corresponding p-value in 

comparison of the mean objective value of exact method and decomposition method 

with TPV:3 is roughly greater than the significance level of 0.05. Therefore, we 

conclude that statistically there is a significant difference in the mean objective value of 

each TPV configuration and corresponding objective value in the exact method. In other 

words, regardless of which TPV configuration was used to solve a problem, the mean 

objective values for various TPVs are statistically different from the mean objective 

value in the exact method.  

According to the above discussion, while the average solution time for each 

problem set is significantly shorter when smaller TPV configurations are used, the mean 

objective values are statistically significant between different TPV configuration and 

exact method in both decomposition methods.  

 

3.7 Conclusions 

In this chapter, a decomposition heuristic is proposed that subdivides the single-

commodity time-space FCNF problem into various time epochs to create smaller and 

more manageable subproblems. These subproblems are solved sequentially to find an 

overall solution for the original problem. To evaluate the efficiency of the investigated 

method an experiment included a total of 1600 problem is designed. All required 

parameters generated randomly from a uniform probability distribution and problems 

were solved using Gurobi MIP solver, which runs parallel branch & bound algorithm.  
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Analysis indicates that 112 problems out of 1600 problems are not solved to 

optimality due to the maximum time-limit of three hours. Also, 95 problems out of 112 

unsolved problems occurred in the exact method. Dependent t-test which is a type of 

repeated measures statistical test is implemented and the outputs indicate that 

statistically, there is a significant difference between the mean objective value of each 

TPV configuration and the exact method.  

Additionally, depending on the problem specification (i.e., number of nodes and 

periods) and TPV configuration used, the average solution time could be reduced by up 

to four orders of magnitude in both decomposition methods compared to the exact 

method (maximum gap in decomposition method ~ 2.2%).  

As shown in Figures 3.13 and 3.14 there is always a trade-off between the 

accuracy and solution time. While statistically there is a significant difference between 

the mean objective value of exact method and each TPV configuration, however, the 

average difference may not be a serious concern for many practical large-scale time-

consuming problems. In other words, it still can show a great promise for 

decomposition method to significantly reduce the solution time which has been an 

outstanding issue in complicated large-scale problems up to four orders of magnitude, 

while the average gap between the objective value of exact method and decomposition 

method is reasonably small (min and max gap is 0.0 and 2.16%) 
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Chapter 4: Conclusions and Future Works 

 

A wide range of network flow problems primarily used in the area of 

transportation and logistics is categorized as time-space fixed charge network flow 

(FCNF) problems. In this family of networks, each node i is associated with a specific 

time r and is replicated across all time-periods. There is another specification (in this 

work) such that each arc only connects each node to another node in the future or the 

same time-period. The cost structure in fixed charge network flow problems consists of 

variable and fixed costs where continuous and binary variables are required to formulate 

the problem in hand as a mixed integer linear programming.  

FCNF problems are classified as NP-hard problems, by increasing the size of the 

problem the solution time and complexity of problem will exponentially increase. 

Moreover, adding another component (i.e., time) results in a more complex, time-

consuming and CPU and memory intensive. Generally, in NP-hard problems heuristic 

methods are highly desired. By sacrificing some factors such as optimality, precision, 

and accuracy to a certain level, heuristic methods can solve most of the time-consuming 

problems much faster.  

One of the efficient heuristic algorithms in mathematical programming for 

solving large-scale problems is decomposition algorithm. In this algorithm, the problem 

is broken into a set of subproblems where these subproblems are iteratively solved to 

find an optimal solution for the original problem. The earliest works on decomposition 

algorithm date back to the seminal work of Dantzig and Wolfe and Benders. Later, this 
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method was further explored and expanded by other researchers to address emerging 

problems in operation research. 

In this study, a heuristic method based on decomposition algorithm is 

investigated. An experiment which includes a total of 1600 problems (12 time-space 

networks) is implemented. The primary goal of this experiment is to evaluate the 

capability and efficiency of the decomposition methods vs. the exact method. The main 

required parameters namely requirement at each node, variable cost and fixed cost on 

each arc are generated randomly from a uniform probability distribution. The 

experiment is designed in such a way that 40%, 45% and 15% of time-space nodes are 

demand, supply, and transshipment nodes, respectively. Also, the problem is considered 

as a feasible problem if the total demand in each time-period does not exceed the total 

supply in the same period. 

 Kennington and Nicholson [17] have categorized and examined different types 

of  FCNF problems by varying the range of requirements. In [17], FCNF problems were 

classified into 27 classes such as LLL, LLM, LLH where the first, second and third 

letter shows the range of node requirement, variable cost and fixed cost (L=low, 

M=medium, H=high), correspondingly. Their study indicates that among 27 classes of 

problems those with a low level of variable cost and a high level of fixed cost are the 

most time-consuming problems. For this reason, HLH problems, as one of the most 

challenging types of problems, are explored in this work.  

Generally, linear programming-based branch and bound algorithm are used to 

solve mixed integer linear programming problems. In this study, the problems are 

solved by Gurobi MIP solver, which runs parallel branch & bound algorithm. The 
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investigated decomposition approach subdivides the problem into various time epochs 

to create smaller and more manageable subproblems.  These subproblems are solved 

sequentially to find an overall solution for the original problem. 

Analysis indicates that 112 problems out of 1600 problems were not solved to 

optimality due to the maximum time-limit of three hours and 95 problems out of 119 

unsolved problems occurred in the exact method. The most complicated and time-

consuming networks in the exact method are (6, 8), (5, 10), (6, 6) and (5, 8) with 

approximately 60, 57, 51 and 49 hours solution time (for 20 runs), respectively.  

Further analysis indicates that depending on the problem specification (i.e., 

number of nodes and periods) and TPV configuration used, the average solution time 

could be reduced by up to four orders of magnitude (compared to average solution time 

in Exact method) in decomposition methods. Also, in decomposition method, while 

TPV increases, the average solution time will increase similarly. This is evidence that 

the decomposition method with the smallest TPV configuration(TPV=2), can be 

considered as the fastest method to solve each network problem to optimality compared 

to larger TPV configurations.  

To validate the above statement, dependent t-test (paired t-test) which is a type 

of repeated measures statistical test is implemented. Statistical analysis indicates that 

there is statistically a significant difference between the mean objective value of exact 

method and each TPV configuration in both decomposition methods excluding problem 

(4,5) in decomposition method which roughly does not indicate any significant 

difference between the mean objective value of the exact method and TPV:3 at 0.05 

significance level.  
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While there is a significant difference between the mean objective value of the 

exact method and each TPV in decomposition methods, however, the percentage of the 

average difference between the objective values is reasonably small (average between 

0-2.16% in decomposition method).  

According to the above discussion, we conclude that despite the statistically 

significant difference between the mean objective value of exact method and each TPV 

configuration in decomposition method, still, this approach is considered as a fast and 

efficient method to solve the time-space FCNF problems with a reasonable level of 

accuracy. In other words, there is always a trade-off between the accuracy and solution 

time. Finally, this shows great promise for decomposition method to significantly 

reduce the solution time which has been an outstanding issue in complicated large-scale 

problems. 

Compared to single commodity FCNF problems the multi-commodity problems 

are more complicated, time-consuming and memory and CPU intensive. Adding 

another component (i.e., time) to this type of networks increases the complexity of 

problem which will increase the solution time remarkably. Therefore, as a future study, 

the decomposition approach will be expanded to the multi-commodity time-space 

FCNF problems and the same statistical analysis will be implemented to validate this 

methodology.  
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Appendix A: Box plot of the objective value vs. node-period (NP) for three 

different methods 
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Appendix B: Box plot of the solution time vs. node-period (NP) for three different 

methods 
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Appendix C: Box plot of difference vs. node-period (NP) for two decomposition 

methods 
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Appendix D: Normality test of obj value for different TPV in decomposition 

method 
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Appendix E: Normality test of obj value for different TPV in decomposition 

method with relaxation 
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Appendix F: Normality test of objective values for exact method 
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Appendix G: Mean objective value of each TPV in each TS network problem for 

both decomposition methods 

No. Node-

Time 

Period 

Decomposition Method Decomposition with Relaxation 

Method 

1 (4,5)      TPV.config  count     mean       sd 

1      TPV:2    20    581173.6   61103.97 

2      TPV:3    20    570434.3   57879.50 

TPV.config count     mean       sd 

1      TPV:2    20  598072.6   60201.01 

2      TPV:3    20  587475.2   59132.61 

2 (4,6) TPV.config count     mean       sd 

   

1      TPV:2    20  702869.9   65477.17 

2      TPV:3    20  699712.7   64603.36 

TPV.config count     mean       sd 

1      TPV:2    20  721756.9   64751.73 

2      TPV:3    20  711017.4   69031.00 

3 (5,5) TPV.config count     mean       sd 

1      TPV:2    20  696580.3  84113.54 

2      TPV:3    20  684155.5  70580.64 

TPV.config count     mean       sd 

1      TPV:2    20  724982.1  79828.69 

2      TPV:3    20  697299.1  71900.23 

4 (5,6) TPV.config count     mean       sd 

1      TPV:2    20  830589.5  85746.31 

2      TPV:3    20  825956.3  85762.63 

TPV.config count     mean       sd 

1      TPV:2    20  868013.3  95368.22 

2      TPV:3    20  838620.2  85655.85 

5 (6, 5)   TPV.config count     mean       sd 

1      TPV:2    20 795255.2 86204.93 

2      TPV:3    20 787410.9 81391.42 

 

  TPV.config count     mean       sd 

1      TPV:2    20 830553.6 85708.23 

2      TPV:3    20 801781.7 79001.04 

 

6 (6, 6) TPV.config count     mean        sd 

1      TPV:2    20 949060.5  89171.31 

2      TPV:3    20 925828.7 127850.91 

 

  TPV.config count     mean       sd 

1      TPV:2    20 981765.7 94456.94 

2      TPV:3    20 966060.3 88899.74 

 

7 (4,8) TPV.config count     mean       sd 

1      TPV:2    20 942164.6 69949.26 

2      TPV:3    20 941308.5 66907.76 

3      TPV:4    20 936934.6 66413.73 

TPV.config count     mean       sd 

1      TPV:2    20  996073.5   71372.61 

2      TPV:3    20  978497.5   73226.52 

3      TPV:4    20  954174.7   64410.61 

8 (5,8) TPV.config count    mean       sd 

1      TPV:2    20 1139825 90048.96 

2      TPV:3    20 1129328 91723.95 

3      TPV:4    20 1126088 88892.36 

TPV.config count    mean        sd 

1      TPV:2    20  1184885   102214.45 

2      TPV:3    20   1168732   94264.28 

3      TPV:4    20   1142229   87930.02 

9 (6,8) TPV.config count    mean        sd 

1      TPV:2    20  1286807  70817.64 

2      TPV:3    20  1267312  92460.93 

3      TPV:4    20  1156794 246907.67 

TPV.config count    mean       sd 

1      TPV:2    20  1342369   79692.00 

2      TPV:3    20  1320222   68480.49 

3      TPV:4    20  1301452   75757.09 

10 (4,10) TPV.config count    mean        sd 

1      TPV:2    20  1192023  101384.93 

2      TPV:3    20  1183154  100346.40 

3       TPV:4    20   1183115   94861.15 

4       TPV:5    20   1178011   95749.04 

TPV.config count    mean        sd 

1      TPV:2    20  1240869   101389.75 

2      TPV:3    20  1236232   98568.42 

3      TPV:4    20  1216768  100042.62 

4      TPV:5    20  1193255   93667.24 

11 (5,10) TPV.config count    mean        sd 

1      TPV:2    20  1403642   99540.27 

2      TPV:3    20  1396267  100784.45 

3      TPV:4    20  1375098  112334.24 

4      TPV:5    20  1325881  190004.71 

TPV.config count    mean        sd 

1      TPV:2    20  1464484  122777.35 

2      TPV:3    20  1455853  110528.99 

3      TPV:4    20  1425542  115450.00 

4      TPV:5    20   1418177   95677.23 
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12 (4,12) TPV.config count    mean       sd 

1      TPV:2    20  1483713   118684.4 

2      TPV:3    20  1473317   114555.1 

3      TPV:4    20  1462329   114806.0 

4      TPV:5    20  1462610   113713.7 

5      TPV:6    20  1462287   114469.4 

TPV.config count    mean       sd 

1      TPV:2    20  1562234   124099.8 

2      TPV:3    20  1522410   115490.3 

3      TPV:4    20  1495584   120892.1 

4      TPV:5    20  1500380   128026.6 

5      TPV:6    20  1485128   119567.3 

 


