
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DISTRIBUTED COMPUTATION OF GRAPH SPECTRUM,

EIGENVECTOR CENTRALITY,

AND SOLUTION TO LINEAR EQUATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MU YANG
Norman, Oklahoma

2017

DISTRIBUTED COMPUTATION OF GRAPH SPECTRUM,
EIGENVECTOR CENTRALITY,

AND SOLUTION TO LINEAR EQUATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Choon Yik Tang, Chair

Dr. J. R. Cruz

Dr. S. Lakshmivarahan

Dr. Thordur Runolfsson

Dr. Krishnaiyan Thulasiraman

c⃝ Copyright by MU YANG 2017

All Rights Reserved.

To my family

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Dr.

Choon Yik Tang, for providing tremendous mentoring and support throughout

my Ph.D. studies. He gave me freedom to pursue my own research interests

and at the same time provided me with valuable feedback and advice. Besides

research, he also gave me insightful suggestions on my career and life.

I am grateful to Dr. J. R. Cruz, Dr. S. Lakshmivarahan, Dr. Thordur

Runolfsson, and Dr. Krishnaiyan Thulasiraman for their interest in my research

and for serving on my dissertation committee. I have greatly benefited from

their involvement and recommendations.

I would like to thank my family. My wife, Jingjue Yi, has been extremely

supportive of me throughout this entire process and has made countless sacri-

fices to help me get to this point. My daughter, Harper, has continually brought

me happiness. My parents, Chengfeng Yang and Yafei Lin, always have faith in

me and give me liberty to choose what I desired. Special thanks to my father-

and mother-in-law, Yong Yi and Huiping Liu, who came to Norman twice and

helped us take care of Harper.

Finally, financial support from the National Science Foundation is grate-

fully acknowledged.

iv

Table of Contents

Acknowledgements iv

List of Figures vii

Abstract viii

Chapter 1. Introduction 1

1.1 Background and Motivation . 1

1.2 Literature Review . 2

1.3 Original Contributions . 4

1.4 Dissertation Outline . 6

Chapter 2. Distributed Estimation of Graph Spectrum 7

2.1 Introduction . 7

2.2 Problem Formulation . 9

2.3 Forming a Set of Linear Equations 11

2.4 Solving the Linear Equations . 16

2.4.1 Scenario 1: Cyclic Case . 16

2.4.2 Scenario 2: Acyclic Case . 21

2.5 Simulation Results . 24

2.5.1 Simulation of Algorithm 2.1 for Scenario 1 24

2.5.2 Simulation of Algorithm 2.2 for Scenario 2 26

2.6 Conclusion . 28

Chapter 3. A Distributed Algorithm for Solving General Linear
Equations 29

3.1 Introduction . 29

3.2 Problem Formulation . 31

3.3 Algorithm Design . 32

v

3.4 Algorithm Analysis . 34

3.5 Convergence Rate Analysis . 42

3.5.1 Proof of Theorem 3.4 . 45

3.5.2 Why Convergence may be Slow 52

3.6 Simulation Results . 53

3.6.1 Two 15-Node Graphs . 54

3.6.2 A 5-Node Graph . 55

3.7 Conclusion . 55

Chapter 4. Continuous-Time Distributed Computation of the
Perron-Frobenius Eigenvector 62

4.1 Introduction . 62

4.2 Problem Formulation . 64

4.3 Design of Continuous-Time Algorithms 67

4.4 Analysis of Continuous-Time Algorithms 71

4.4.1 Convergence Analysis . 71

4.4.2 Convergence Rate . 77

4.4.3 Special Cases . 88

4.5 Simulation Results . 90

4.6 Conclusion . 90

Chapter 5. Asynchronous Gossip Computation of the Perron-
Frobenius Eigenvector 92

5.1 Introduction . 92

5.2 Problem Formulation . 93

5.3 Design of Gossip Algorithm . 94

5.4 Analysis of Gossip Algorithm . 99

5.5 Simulation Results . 110

5.6 Conclusion . 110

Chapter 6. Conclusions 113

6.1 Overall Summary . 113

6.2 Future Work . 115

Bibliography 118

vi

List of Figures

2.1 Distribution of the eigenvalues of a graph’s adjacency matrix,
represented by red crosses, offers insights into the shapes and
sizes of communities in the graph. 8

2.2 Flowchart illustrating our approach to estimating graph spectrum. 10

2.3 Performance of Algorithm 2.1 for Scenario 1. 25

2.4 Performance of Algorithm 2.2 for Scenario 2. 27

3.1 Illustration of the idea behind algorithm (3.5). 33

3.2 Contour plot showing how the lower bound λ∗ on the conver-
gence rate λ1 of algorithm (3.7) depends on the smallest singular

value σ of Â and the algebraic connectivity λmin(L) of G, when
(N,α, β) = (100, 100, 1). 45

3.3 A simple example explaining why algorithm (3.7) may converge
slowly when A is nearly singular. 53

3.4 Performance of algorithm (3.6) when there is a unique solution. 57

3.5 Performance of algorithm (3.6) when there is no solution. 58

3.6 Performance of algorithm (3.6) when there is no solution. 59

3.7 Performance of algorithm (3.6) when there is a unique solution. 60

3.8 Performance of algorithm (3.6) when there are infinitely many
solutions. 61

4.1 Examples illustrating the concept of eigenvector centrality. . . . 63

4.2 Vector field for a 3-node path graph. 73

4.3 Performance of continuous-time algorithm (4.12). 91

5.1 Performance of gossip algorithm. 112

vii

Abstract

DISTRIBUTED COMPUTATION OF GRAPH SPECTRUM,
EIGENVECTOR CENTRALITY,

AND SOLUTION TO LINEAR EQUATIONS

Mu Yang, Ph.D.
The University of Oklahoma, 2017

Supervisor: Choon Yik Tang

This dissertation is devoted to the development of distributed algorithms, with

which nodes in a large decentralized network can accomplish tasks that are

seemingly difficult without an omniscient central node. The tasks include esti-

mating the graph spectrum, from which each node can draw its own conclusion

about the network structure, computing the eigenvector centrality, from which

every node can judge its own importance in the network, and solving a system

of linear equations whose data are scattered across the network or discovering

that no solution exists. The ability to perform these tasks enhances the ca-

pability of existing and emerging networks such as smart power grids, social

networks, and ad hoc sensor networks, potentially allowing them to function

in ways that are not previously thought to be possible.

We begin with the design of a novel, two-stage distributed algorithm

that enables nodes in an undirected and connected graph to jointly estimate the

spectrum of a matrix associated with the graph, which includes the adjacency

and Laplacian matrices as special cases. In the first stage, the algorithm uses

a discrete-time linear iteration and the Cayley-Hamilton theorem to convert

viii

the problem into one of solving linear equations, where each equation is known

to a node. In the second stage, if the nodes happen to know that said matrix

is cyclic, the algorithm uses a Lyapunov approach to asymptotically solve the

equations with an exponential rate of convergence. Otherwise, it uses a random

perturbation approach and a structural controllability result to approximately

solve the equations with an error that can be made small.

We then consider the fundamental problem of cooperatively solving a

general system of linear equations over a network, for which a continuous-time

distributed algorithm is devised. We show that the algorithm enables the nodes

to asymptotically agree on a solution when there are infinitely many solutions,

determine the solution when there is exactly one, and detect that no solution

exists when there are none. We also establish that the algorithm is globally

exponentially convergent, derive an explicit lower bound on its convergence rate

that it can do no worse than, and prove that the larger the network’s algebraic

connectivity, or the further away from being singular the system of equations,

the larger this lower bound.

Finally, we address the open question of whether it is possible to calcu-

late eigenvector centrality over a network. We provide an affirmative answer

by presenting a class of continuous-time distributed algorithms and an asyn-

chronous gossip algorithm, which allow every node i in a graph to compute the

ith entry of the Perron-Frobenius eigenvector of a symmetric, Metzler, and ir-

reducible matrix induced by the graph, as well as the corresponding eigenvalue,

when node i knows only row i of the matrix. We show that each continuous-

time distributed algorithm is a nonlinear networked dynamical system with a

skew-symmetric structure, whose state is guaranteed to stay on a sphere, re-

main nonnegative, and converge asymptotically to said eigenvector at an O(1
t
)

ix

rate. We also show that under a mild assumption on the gossiping pattern, the

gossip algorithm is able to do the same.

x

Chapter 1 Introduction

1.1 Background and Motivation

Recent years have witnessed a tremendous growth in the types and ap-

plications of networked systems. From a network of computers and cell phones

that form the Internet and cellular networks in the last couple of decades, to

a network of tiny wireless sensors and huge wind turbines that monitor activ-

ities and generate renewable energy in the past few years, networked systems

continue to change the way we live. Indeed, new types and applications of

such systems (e.g., social networks) continue to emerge, offering potential that

captures the fascination of scientists and engineers.

In many emerging and future applications of networked systems, systems

in the network—commonly referred to interchangeably as nodes or agents—

often have to cooperatively accomplish sophisticated tasks that require exten-

sive sharing and rapid processing of information, as well as optimal formulation

and precise coordination of actions, under a variety of constraints and uncer-

tainties. For instance, sensors in a wireless network typically have to com-

municate in multi-hop fashion over unreliable physical channels for as long as

possible, despite facing severe bandwidth and battery constraints. Therefore,

although such networked systems offer promising potential, their design and

operation are very challenging, to say the least.

1

A key factor that adds significantly to the challenge is the fact that in

many of these networked systems, for various practical reasons it is often not

feasible, or not advisable, to have a powerful centralized node, who knows all

about the network topology and makes all the necessary decisions. For example,

with the aforementioned wireless sensor network, transmitting information from

every node and relaying it back to the centralized node may be too costly

from a bandwidth and battery standpoint. Such transmission and relay is

also vulnerable to node mobility and single-point failures, making it necessary

to frequently maintain an overlay tree rooted at the centralized node, which

maybe costly. Likewise, for networks deployed in battlefields and for social

networks, doing so may simply be impermissible for vulnerability, security, and

privacy reasons. As a result, the nodes must interact locally—perhaps only with

immediately neighboring nodes—autonomously and collaboratively performing

the tasks as if a centralized node is present. It follows that distributed (or

decentralized) algorithms, which define how the nodes should locally interact,

are critical to effectively realizing a variety of networked systems.

1.2 Literature Review

Recognizing the pressing need for distributed algorithms, researchers

from a number of scientific and engineering disciplines (e.g., systems and con-

trol, computer science, operation research) have invested a great deal of re-

search efforts in designing and analyzing such algorithms. In the field of sys-

tems and control, the efforts may be roughly grouped into three overlapping

areas, namely, distributed consensus, distributed computation, and distributed

optimization.

2

In distributed consensus, nodes or agents in a network seek to achieve

an agreement on what they individually observe or experience. The agreement

may be completely arbitrary (e.g., a platoon of vehicles may want to agree

on a direction along which they all move), or it may be constrained to be

some form of weighted average (e.g., a set of temperature sensors may want

to determine the average of their individual temperature measurements). Be-

ing able to achieve such an agreement is often the basis of cooperation in a

distributed system. Due to its significance, the distributed consensus problem

has been widely studied in the literature, resulting in a rich collection of dis-

tributed algorithms in continuous-time (e.g., [1–13]) and in discrete-time with

synchronous (e.g., [1,3,6–9,11,14–31]) and asynchronous (e.g., [20,32–50]) time

models. In addition, such algorithms have been tailored to a variety of engi-

neering applications, including but not limited to motion coordination [51],

vehicle formation [52,53], and flocking [43,54,55].

In distributed computation, nodes in a network seek to compute a global,

non-trivial quantity of common interest, whose value depends on either the

graph topology or the scattered node observations. In this area, a growing

number of problems have been addressed to date. Over the past decade, for

example, notable research efforts have been devoted to the distributed com-

putation of maximum [34, 37, 56–58], sum/count [14, 33, 34, 57], power mean

[34, 56, 59], resource redistribution [15], Kalman filters gains [12, 60–63], lin-

ear functions [28,64–66], average-max-min [2], log-sum-exp [58], and a class of

general functions [56, 59, 67]. More recently, some attention has been given to

distributed computation of betweenness and closeness centrality [68–72], the

spectrum of a graph and its corresponding eigenvectors [73–79], and the solu-

tion to linear equations [31,62,80–87].

3

Finally, in distributed optimization, each node typically observes a local,

often convex, objective function and some local constraints, and all of the

nodes wish to find an optimizer that minimizes the sum of their local objective

functions subject to satisfying all their local constraints. This problem has

an emerging number of applications, including to power grids [88–90], smart

buildings [91, 92], and sensor networks [93, 94]. Motivated by its potential,

the problem has been gaining much attention, leading to a large collection

of distributed algorithms such as the incremental subgradient algorithms [93,

95–102], non-incremental ones [31,103–110], zero-gradient-sum algorithms [50,

111–116], and various other algorithms [117–120].

1.3 Original Contributions

In this dissertation, we add to the growing literature on distributed com-

putation by focusing on three specific problems of considerable significance:

distributed computation of the spectrum of a graph, the solution to general

linear equations, and the Perron-Frobenius eigenvector. Our original contribu-

tions can be summarized as follows.

First, we construct a novel, two-stage distributed algorithm that enables

nodes in an undirected and connected graph to jointly estimate the spectrum of

a matrix associated with the graph, which includes its adjacency and Laplacian

matrices as special cases. Knowledge of the spectrum allows the nodes to infer

about the graph structure. In the first stage, the algorithm uses a discrete-time

linear iteration and the Cayley-Hamilton theorem to convert the problem into

one of solving a set of linear equations, where each equation is known to a node.

In the second stage, if the nodes happen to know that said matrix is cyclic, the

4

algorithm uses a Lyapunov approach to asymptotically solve the equations with

an exponential rate of convergence. If they do not know whether said matrix

is cyclic, the algorithm uses a random perturbation approach and a structural

controllability result to approximately solve the equations with an error that

can be made small.

Second, we design a continuous-time distributed algorithm that allows

nodes in an undirected and connected graph to collaboratively solve a general

system of linear equations, where the only assumption is that each equation

is known to at least one node. We show that the algorithm enables the nodes

to asymptotically agree on a solution when there are infinitely many solutions,

determine the solution when there is exactly one, and discover that no solution

exists when there are none. In addition, we prove that the algorithm is globally

exponentially convergent, derive an explicit lower bound on its convergence

rate, and show that under certain conditions, the larger the graph’s algebraic

connectivity, or the further away from being singular the system of equations,

the larger this lower bound.

Third, we devise a class of continuous-time distributed algorithms, which

enable each node i in an undirected and connected graph to compute the ith

entry of the Perron-Frobenius eigenvector of a symmetric, Metzler, and irre-

ducible matrix associated with the graph, as well as the corresponding eigen-

value, when node i knows only row i of the matrix. Knowledge of such entries

allows the nodes to determine their eigenvector centrality representing their rel-

ative importance in the graph. We show that each continuous-time distributed

algorithm in the class is a nonlinear networked dynamical system with a skew-

symmetric structure, whose state is guaranteed to stay on a sphere, remain

nonnegative, and converge asymptotically to said eigenvector at an O(1
t
) rate.

5

We also show that the same idea that yields the continuous-time algorithms

can be extended to a discrete-time setting, leading to an asynchronous gossip

algorithm for computing the Perron-Frobenius eigenvector, which is provably

asymptotically convergent at an O(1
k
) rate under a mild assumption on the

gossiping pattern.

1.4 Dissertation Outline

The outline of this dissertation is as follows: Chapter 2 studies dis-

tributed estimation of graph spectrum, in which a two-stage algorithm is devel-

oped. Chapter 3 constructs a continuous-time distributed algorithm for solving

general linear equations over networks. Chapters 4 and 5 address the problem

of distributed computation of the Perron-Frobenius eigenvector. In particu-

lar, Chapter 4 presents a class of continuous-time solutions, while Chapter 5

presents an asynchronous gossip counterpart. Finally, Chapter 6 concludes the

dissertation and suggests a number of possible extensions as future work.

6

Chapter 2 Distributed Estimation of Graph Spectrum

2.1 Introduction

The spectrum of a graph, defined as the set of eigenvalues of either its

adjacency or Laplacian matrix, provide a useful characterization of the prop-

erties of the graph. For instance, as illustrated in Figure 2.1, the distribution

of such eigenvalues offers insights into the shapes and sizes of communities in

a network [121]. Indeed, for the complete graph depicted in Figure 2.1(a),

its eigenvalues form two distinct clusters, with the first cluster having one

dominant, positive eigenvalue and the second cluster having the rest of the

eigenvalues concentrated around −1. For the barely connected graphs with

two communities in Figures 2.1(b) and 2.1(c), their eigenvalues also form two

clusters, but the clusters are much closer to each other, and there may be ei-

ther one or two dominant, positive eigenvalues in the first cluster. For the cycle

graph in Figure 2.1(d), its eigenvalues are more or less uniformly distributed

over an interval centered at zero. As another example, the largest and smallest

of such eigenvalues provides bounds on the maximum, minimum, and average

node degrees [122]. The spectrum of a graph has also been used, for exam-

ple, in chemistry, where it is associated with the stability of molecules [122],

and in quantum mechanics, where it is related to the energy of Hamiltonian

systems [122].

With the continued advances in technology that enable humans to build

7

(a) A complete graph and its spec-
trum.

(b) A graph composed of two identi-
cal complete subgraphs connected by
an edge, and its spectrum.

(c) A graph composed of two differ-
ent complete subgraphs connected by
an edge, and its spectrum.

(d) A cycle graph and its spectrum.

Figure 2.1: Distribution of the eigenvalues of a graph’s adjacency matrix, rep-
resented by red crosses, offers insights into the shapes and sizes of communities
in the graph.

increasingly complex networks, it is becoming desirable that nodes in a network

have the ability to analyze the network themselves, such as decentralizedly

computing the spectrum of the network, so that valuable understanding about,

say, the network structure may be gained. Motivated by this, a number of

distributed algorithms have been proposed in the literature, including [123–125]

that consider estimation of the entire spectrum of the Laplacian matrix, and

8

[77–79] that focus on estimation of its second smallest eigenvalue (i.e., the

algebraic connectivity).

In this chapter, we add to the literature by developing a two-stage

distributed algorithm, which enables nodes in a graph to cooperatively es-

timate the spectrum of a matrix W associated with the graph. Unlike in

[77–79, 123–125], the matrix W can be the adjacency or Laplacian matrix of

the graph, a weighted version of these matrices, or any other matrix induced

by the graph (see Chapter 2.2). To construct the algorithm, we first use a

discrete-time linear iteration and the Cayley-Hamilton theorem to convert the

original problem into an equivalent problem of solving a set of linear equations

of the form Ax = b, where every row of A and b is known to a particular

node (Chapter 2.3). We then show that the matrix A can be made almost

surely nonsingular if the nodes happen to know that W is cyclic, but not nec-

essarily so if they do not (Chapter 2.3). In the case of the former, we use a

Lyapunov approach to asymptotically solve the equations with an exponential

rate of convergence (Chapter 2.4.1). In the case of the latter, we use a random

perturbation approach and a structural controllability result to approximately

solve the equations with an error that can be made small (Chapter 2.4.2). A

flowchart illustrating the aforementioned approach is depicted in Figure 2.2.

Finally, we provide simulation results that demonstrate the effectiveness of our

distributed algorithm (Chapter 2.5).

2.2 Problem Formulation

Consider a network modeled as an undirected, connected graph G =

(V , E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂

9

Figure 2.2: Flowchart illustrating our approach to estimating graph spectrum.

{{i, j} : i, j ∈ V , i ̸= j} denotes the set of edges. Any two nodes i, j ∈ V

are neighbors and can communicate if and only if {i, j} ∈ E . The set of

neighbors of each node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the

communications are assumed to be delay- and error-free, with no quantization.

Suppose associated with the graph G is a square matrix W = [wij] ∈

RN×N satisfying the following assumption:

Assumption 2.1. The matrix W is such that for each i, j ∈ V with i ̸= j, if

{i, j} /∈ E , then wij = wji = 0.

Note that Assumption 2.1 allows wii ∀i ∈ V to be arbitrary. It also

allows wij and wji ∀{i, j} ∈ E to be arbitrary and different. Thus, W can

be the adjacency or Laplacian matrix of graph G, a weighted version of these

matrices, or any other matrix associated with G as long as Assumption 2.1

holds.

Suppose each node i ∈ V knows only Ni, wii, and wij ∀j ∈ Ni, which

it prefers to not share with any of its neighbors due perhaps to security and

privacy reasons. Yet, despite having only such local information about the

graph G and matrix W , suppose every node i ∈ V wants to determine the

10

spectrum of W , i.e., all the N eigenvalues of W , denoted as

λ(1), λ(2), . . . , λ(N) ∈ C, (2.1)

where complex eigenvalues must be in the form of conjugate pairs. Finally,

suppose each node i ∈ V knows the value of N , which is not an unreasonable

assumption since each of them wants to determine the values of N objects.

Given the above, the goal of this chapter is to devise a distributed

algorithm that enables every node i ∈ V to estimate the spectrum (2.1) of W

with a guaranteed accuracy.

2.3 Forming a Set of Linear Equations

In this section, we show that by having the nodes execute a discrete-

time linear iteration N times, the problem of finding the spectrum (2.1) of W

may be converted into one of solving a set of linear equations with appealing

properties.

Observe that although none of the nodes has complete information

about G and W , each node i ∈ V knows the entire row i of W (since it knows

wii and wij ∀j ∈ Ni, and since wij = 0 ∀j /∈ {i}∪Ni by Assumption 2.1). This

makes the nodes well-suited to carry out the discrete-time linear iteration

yi(t+ 1) = wiiyi(t) +
∑
j∈Ni

wijyj(t), ∀i ∈ V , ∀t ∈ Z+, (2.2)

which in matrix form may be written as

y(t+ 1) = Wy(t), ∀t ∈ Z+, (2.3)

where Z+ = {0, 1, 2, . . .}, yi(t) ∈ R is maintained in node i’s local memory, and

y(t) =
[
y1(t) y2(t) · · · yN(t)

]T ∈ RN . (2.4)

11

Indeed, (2.2) or (2.3) can be implemented by having each node i ∈ V repeatedly

send its yi(t) to every neighbor j ∈ Ni.

Since (2.3) is a discrete-time linear system, we can write

y(t) = W ty(0), ∀t ∈ Z+, (2.5)

so that

y(N) = WNy(0). (2.6)

By the Cayley-Hamilton theorem, WN in (2.6) may be expressed as

WN = −x(0)IN − x(1)W − · · · − x(N−1)WN−1, (2.7)

where In ∈ Rn×n is the identity matrix and the scalars x(0), x(1), . . . , x(N−1) ∈ R

are the N coefficients of the characteristic polynomial of W , i.e.,

det(λIN −W) = (λ− λ(1))(λ− λ(2)) · · · (λ− λ(N))

= λN + x(N−1)λN−1 + · · ·+ x(1)λ+ x(0). (2.8)

Substituting (2.7) into (2.6) and using (2.5), we obtain

y(N) = (−x(0)IN − x(1)W − · · · − x(N−1)WN−1)y(0)

= −x(0)y(0)− x(1)y(1)− · · · − x(N−1)y(N − 1). (2.9)

By using (2.4), we can rewrite (2.9) as
y1(0) y1(1) · · · y1(N − 1)
y2(0) y2(1) · · · y2(N − 1)
...

...
. . .

...
yN(0) yN(1) · · · yN(N − 1)


︸ ︷︷ ︸

A


x(0)

x(1)

...
x(N−1)


︸ ︷︷ ︸

x∗

=


−y1(N)
−y2(N)

...
−yN(N)


︸ ︷︷ ︸

b

, (2.10)

12

where, for later convenience, we denote the matrix on the left-hand side of

(2.10) as A ∈ RN×N , the vector of characteristic polynomial coefficients as

x∗ ∈ RN , and the vector on the right-hand side of (2.10) as b ∈ RN .

The matrix equation (2.10) suggests the following approach for finding

the spectrum (2.1) of W : suppose each node i ∈ V selects an initial condition

yi(0) ∈ R. Upon selecting the yi(0)’s, suppose the nodes execute the discrete-

time linear iteration (2.2) or equivalently (2.3) N times for t ∈ {0, 1, . . . , N−1}.

During the execution, suppose each node i ∈ V stores the resulting N + 1

numbers yi(0), yi(1), . . . , yi(N − 1), yi(N) in its local memory. Then, (2.10)

is a set of N linear equations in which each node i ∈ V knows the entire

row i of A and b, and in which the vector x∗ of N characteristic polynomial

coefficients x(0), x(1), . . . , x(N−1) of W are the N unknowns. It follows that if A

is nonsingular, and if the nodes are able to cooperatively solve (2.10) for the

unique x∗, then each of them could determine on its own the N eigenvalues

λ(1), λ(2), . . . , λ(N) of W using (2.8) and a polynomial root-finding algorithm.

To realize the above approach, it is necessary that A in (2.10) is non-

singular. To see whether this can be ensured, observe from (2.4), (2.5), and

(2.10) that A may be expressed as

A =
[
y(0) Wy(0) · · · WN−1y(0)

]
. (2.11)

In the form (2.11), A is, interestingly, the controllability matrix of a fictitious

discrete-time single-input linear system

z(t+ 1) = Wz(t) + y(0)u(t), ∀t ∈ Z+, (2.12)

where z(t) ∈ RN is its state, u(t) ∈ R is its input, W is its state matrix, and

y(0) is its input matrix. Hence:

13

Proposition 2.1. The matrix A in (2.10) or (2.11) is nonsingular if and only

if the pair (W, y(0)) of the system (2.12) is controllable.

Since W is given by the problem but y(0) may be freely selected by the

nodes, it may be possible to select y(0) so that the pair (W, y(0)) is controllable.

The following definition and lemmas examine this possibility:

Definition 2.1 ([126]). A square matrix with real entries is said to be cyclic

if each of its distinct eigenvalues has a geometric multiplicity of 1.

Lemma 2.1. If W is not cyclic, then for every y(0) ∈ RN , the pair (W, y(0))

is not controllable.

Proof. Suppose W is not cyclic and let y(0) ∈ RN be given. Then, by Defini-

tion 2.1,W has an eigenvalue λ ∈ C whose geometric multiplicity exceeds 1, i.e.,

rank(W−λIN) < N−1. Since y(0) is a column vector, rank([W−λIN | y(0)]) <

N . Therefore, by statements (i) and (iv) of Theorem 3.1 in [126], the pair

(W, y(0)) is not controllable.

Lemma 2.2. If W is cyclic, then for almost every y(0) ∈ RN , the pair (W, y(0))

is controllable.

Proof. According to Lemma 3.12 in [126], if A ∈ Rn×n is cyclic and B ∈ Rn×m

is such that the pair (A,B) is controllable, then for almost every v ∈ Rm, the

pair (A,Bv) is controllable. Applying this lemma with A = W , B = IN , and

v = y(0), and using the fact that the pair (W, IN) is controllable, we conclude

that so is the pair (W, y(0)).

Proposition 2.1 and Lemma 2.1 imply that W being cyclic is necessary

for A in (2.10) or (2.11) to be nonsingular. Lemma 2.2, on the other hand,

14

implies that W being cyclic is essentially sufficient because almost every y(0) ∈

RN would work. This latter result is especially useful in a decentralized network

because the result allows each node i ∈ V to select its yi(0) ∈ R independently

from other nodes and randomly from any continuous probability distribution

before executing (2.2) or (2.3), and be almost sure that the resulting A would

be nonsingular.

Motivated by the above analysis, in the rest of this chapter we consider

separately the following two scenarios:

Scenario 1. The nodes know that W is cyclic.

Scenario 2. The nodes do not know whether W is cyclic, or know that W is

not cyclic.

We consider Scenarios 1 and 2 separately because Scenario 1 is easier

to deal with (in Chapter 2.4.1) and its treatment helps us deal with Scenario 2

(in Chapter 2.4.2). We note that both of these scenarios arise in applications.

For instance, if the graph G represents a sensor network and the entries wii

∀i ∈ V and wij ∀{i, j} ∈ E of W represent random sensor measurements

with continuous probability distributions, then Scenario 1 takes place as the

nodes could say with near certainty that W is cyclic because almost every n-

by-n matrix has n distinct eigenvalues and, thus, is cyclic. In contrast, if W

represents the adjacency or Laplacian matrix of G, then Scenario 2 takes place

as W would be cyclic if G is, say, a path graph [122] and would not be cyclic

if G is, say, a complete or cycle graph [122], which the nodes could not tell

because they only have local information about G.

To summarize, in this section we have transformed the problem of find-

ing the spectrum (2.1) ofW into one of solving the set of linear equations (2.10),

15

in which each node i ∈ V knows the entire row i of A and b, and in which A

can be made almost surely nonsingular in Scenario 1, but not necessarily so in

Scenario 2.

2.4 Solving the Linear Equations

2.4.1 Scenario 1: Cyclic Case

In this subsection, we focus on Scenario 1 and develop a continuous-time

distributed algorithm that enables the nodes to asymptotically solve the set of

linear equations (2.10) with an exponential rate of convergence.

To facilitate the development, we assume that the nodes have executed

(2.2) or (2.3) to arrive at (2.10). Moreover, since A in (2.10) can be made

almost surely nonsingular in this Scenario 1, we assume that it is nonsingular

throughout the subsection. With these assumptions, for each i ∈ V let ai =[
yi(0) yi(1) · · · yi(N − 1)

]T ∈ RN and bi = −yi(N) ∈ R, so that (2.10) may

be stated as 
— aT1 —
— aT2 —

...
— aTN —


︸ ︷︷ ︸

A


x(0)

x(1)

...
x(N−1)


︸ ︷︷ ︸

x∗

=


b1
b2
...
bN


︸ ︷︷ ︸

b

, (2.13)

where ai and bi are known to node i because (2.2) or (2.3) has been executed. In

addition to knowing ai and bi, suppose each node i ∈ V maintains in its local

memory an estimate xi(t) =
[
x
(0)
i (t) x

(1)
i (t) · · · x

(N−1)
i (t)

]T
∈ RN of the

unknown, unique solution x∗ ∈ RN , where here t ∈ [0,∞) denotes continuous-

time (unlike in Chapter 2.3 where t ∈ Z+ denotes discrete-time). Furthermore,

let x(t) = (x1(t), x2(t), . . . , xN(t)) ∈ RN2
and x∗ = (x∗, x∗, . . . , x∗) ∈ RN2

16

be vectors obtained by stacking the N estimates xi(t)’s and N copies of the

solution x∗.

To come up with a distributed algorithm that gradually drives x(t) to

x∗, consider a quadratic Lyapunov function candidate V : RN2 → R, defined

as

V (x) =
∑
i∈V

αi(a
T
i xi − bi)

2

+
∑

{i,j}∈E

β{i,j}(xi − xj)
T (xi − xj), (2.14)

where αi > 0 ∀i ∈ V and β{i,j} > 0 ∀{i, j} ∈ E are parameters. Notice that

each term in the first summation in (2.14) is a measure of how far away from

the hyperplane {z ∈ RN : aTi z = bi} the estimate xi(t) is. Moreover, because A

is nonsingular and because of (2.13), the N hyperplanes {z ∈ RN : aTi z = bi}

∀i ∈ V have a unique intersection at x∗. Furthermore, the second summation

in (2.14) is a measure of the disagreement among the estimates xi(t)’s. Hence,

both the first and second summations in (2.14) are only positive semidefinite

functions of x. However, as the following proposition shows, adding them up

makes V a legitimate Lyapunov function candidate:

Proposition 2.2. If A in (2.13) is nonsingular, then the function V in (2.14)

is positive definite with respect to x∗.

Proof. Clearly, V is a positive semidefinite function of x. To show that it is

positive definite with respect to x∗, we show that V (x) = 0 if and only if

x = x∗. Suppose x = x∗. Then, aTi xi − bi = 0 ∀i ∈ V according to (2.13).

In addition, the second summation in (2.14) drops out. Therefore, V (x) = 0.

17

Next, suppose V (x) = 0. Then,

aTi xi = bi, ∀i ∈ V , (2.15)

xi = xj, ∀{i, j} ∈ E . (2.16)

Since G is connected, (2.16) implies that there exists x̃ ∈ RN such that xi = x̃

∀i ∈ V . Substituting this into (2.15), we get aTi x̃ = bi ∀i ∈ V or, equivalently,

Ax̃ = b. Since A is nonsingular, we have x̃ = x∗, so that x = x∗.

Remark 2.1. Notice that V in (2.14) can also be written as

V (x) = (x− x∗)TP (x− x∗),

where P = P T ∈ RN2×N2
is positive definite and given by

P =


α1a1a

T
1 0

α2a2a
T
2

. . .

0 αNaNa
T
N

+ Lβ ⊗ IN ,

where ⊗ denotes the Kronecker product and Lβ = [Lij] ∈ RN×N is a weighted

Laplacian matrix of G with Lii =
∑

j∈Ni
β{i,j}, Lij = −β{i,j} if {i, j} ∈ E , and

Lij = 0 if i ̸= j and {i, j} /∈ E .

With Proposition 2.2 in hand, we next take the time derivative of V

along the state trajectory x(t) to obtain

V̇ (x(t)) = 2
∑
i∈V

[
αi(a

T
i xi(t)− bi)ai

+
∑
j∈Ni

β{i,j}(xi(t)− xj(t))
]
ẋi(t), ∀t ∈ [0,∞). (2.17)

Examining (2.17), we see that V̇ (x(t)) can be made negative semidefinite—at

the very least—by letting each ẋi(t) be the negative of the expression within

18

the brackets in (2.17), i.e.,

ẋi(t) = −αi(a
T
i xi(t)− bi)ai −

∑
j∈Ni

β{i,j}(xi(t)− xj(t)),

∀i ∈ V , ∀t ∈ [0,∞). (2.18)

The following theorem asserts that the continuous-time system (2.18) possesses

an excellent property:

Theorem 2.1. If A in (2.13) is nonsingular, then the system (2.18) has a

unique equilibrium point at x∗ that is globally exponentially stable, so that

∀x(0) ∈ RN2
, limt→∞ x(t) = x∗, i.e., limt→∞ xi(t) = x∗ ∀i ∈ V.

Proof. For each i ∈ V , setting ẋi(t) in (2.18) to zero yields

0 = −αi(a
T
i xi − bi)ai −

∑
j∈Ni

β{i,j}(xi − xj). (2.19)

Summing both sides of (2.19) over i ∈ V gives

0 =
∑
i∈V

−αi(a
T
i xi − bi)ai. (2.20)

Due to (2.13) and to A being nonsingular, the vectors a1, a2, . . . , aN in (2.20)

are linearly independent in RN . Thus,

0 = −αi(a
T
i xi − bi), ∀i ∈ V . (2.21)

Substituting (2.21) back into (2.19) results in

0 =
∑
j∈Ni

β{i,j}(xi − xj), ∀i ∈ V ,

which is equivalent to

0 = (Lβ ⊗ IN)x, (2.22)

19

where ⊗ and Lβ have been defined in Remark 2.1. Since G is connected, (2.22)

implies that xi = x̃ ∀i ∈ V for some x̃ ∈ RN . Substituting this into (2.21)

yields aTi x̃ = bi ∀i ∈ V . Since A is nonsingular, we have x̃ = x∗, i.e., x = x∗.

Hence, the system (2.18) has a unique equilibrium point at x∗. Since for each

i ∈ V the right-hand side of (2.18) is the negative of the expression within the

brackets in (2.17), V̇ (x(t)) is negative definite with respect to x∗. Therefore,

the equilibrium point x∗ is globally exponentially stable.

Having established Theorem 2.1, we now relate it back to the original

problem of finding the spectrum (2.1) of W . To this end, suppose each node

i ∈ V maintains in its local memory an estimate λ
(ℓ)
i (t) ∈ C of the unknown, ℓth

eigenvalue λ(ℓ) ofW for ℓ ∈ {1, 2, . . . , N}. Also suppose at each time t ∈ [0,∞),

node i lets its N estimates λ
(ℓ)
i (t)’s be the roots of an Nth-order polynomial

formed by the estimate xi(t) =
[
x
(0)
i (t) x

(1)
i (t) · · · x

(N−1)
i (t)

]T
that is also

stored in its local memory, i.e.,

(λ− λ
(1)
i (t))(λ− λ

(2)
i (t)) · · · (λ− λ

(N)
i (t))

= λN + x
(N−1)
i (t)λN−1 + · · ·+ x

(1)
i (t)λ+ x

(0)
i (t),

∀i ∈ V , ∀t ∈ [0,∞), (2.23)

which can be implemented using a polynomial root-finding algorithm that is

embedded in node i. Then, because (λ(1), λ(2), . . . , λ(N)) in (2.8) is a continuous

function of x∗ and because (λ
(1)
i (t), λ

(2)
i (t), . . . , λ

(N)
i (t)) in (2.23) is the same

continuous function of xi(t), Theorem 2.1 implies that

lim
t→∞

λ
(ℓ)
i (t) = λ(ℓ), ∀i ∈ V , ∀ℓ ∈ {1, 2, . . . , N}. (2.24)

Equation (2.24), in turn, implies that the system (2.18) is a continuous-time

20

distributed algorithm that enables the nodes to asymptotically learn the spec-

trum (2.1) of W .

Putting together the development in Sections 2.3 and 2.4.1, we obtain

the following two-stage distributed algorithm, which is applicable to this Sce-

nario 1:

Algorithm 2.1 (For Scenario 1).

1. Each node i ∈ V selects its yi(0) ∈ R independently from other nodes

and randomly from any continuous probability distribution.

2. Upon completion, the nodes execute (2.2) or (2.3) N times for t ∈

{0, 1, . . . , N − 1}, so that each node i ∈ V gradually learns the entire

row i of A and b in (2.10).

3. Upon completion, the nodes execute (2.18) and (2.23) indefinitely for

t ∈ [0,∞), so that each node i ∈ V is able to continuously update its

xi(t) and λ
(ℓ)
i (t)’s. �

Remark 2.2. The current literature offers a number of distributed algorithms

[31,84–86] that may be used to solve linear equations (2.10). These algorithms

are different from (2.18) in that they force the state of each node to stay in

an affine set, whereas (2.18) allows the state to freely roam the state space.

Additional differences between them are discussed in Chapter 3.1.

2.4.2 Scenario 2: Acyclic Case

In this subsection, we focus on Scenario 2 and provide a slightly different

algorithm that enables the nodes to approximately solve (2.10) with an error

that can be made small.

Recall that Scenario 2 represents a situation where the nodes either

21

do not know whether W is cyclic, or somehow know that W is not cyclic.

Consequently, they either do not know whether A in (2.10) is nonsingular, or

know that A is singular. Although the nodes could still apply Algorithm 2.1,

there is no guarantee that their estimates xi(t)’s would converge to x∗. One way

to address this issue is to have the nodes randomly perturb the matrix W and

vector y(0), so that the resulting A in (2.11) is hopefully nonsingular. Of course,

such a random perturbation approach no longer allows them to asymptotically

determine the exact spectrum of W . However, getting an estimate of the

spectrum of W may be sufficient in some applications. Thus, we will adopt

this random perturbation approach in this Scenario 2.

For notational simplicity, let the matrix associated with the graph G

be denoted as W = [wij] ∈ RN×N instead of W = [wij], and let W instead

denote a perturbed version of W . In addition, let x(ℓ)’s and λ
(ℓ)
’s denote,

respectively, the characteristic polynomial coefficients and eigenvalues of W

that the nodes wish to determine, and let x(ℓ)’s and λ(ℓ)’s denote those of W

as before. Moreover, let the perturbed matrix W be obtained from W in a

decentralized manner as follows: prior to executing (2.2) or (2.3), each node

i ∈ V lets

wii = wii + δii, ∀i ∈ V , (2.25)

wij = wij + δij, ∀i ∈ V , ∀j ∈ Ni, (2.26)

where the δii’s and δij’s are independent, uniformly distributed random vari-

ables in the interval [−a, a], so that a > 0 represents the perturbation magni-

tude. Notice that since wij = 0 ∀i ∈ V ∀j /∈ {i} ∪ Ni by Assumption 2.1,

wij = 0, ∀i ∈ V , ∀j /∈ {i} ∪ Ni (2.27)

22

as well. Also note that because the nodes are slated to select their yi(0)’s

independently and randomly from a continuous probability distribution, there

is no need to further randomly perturb these yi(0)’s.

The following lemma uses a structural controllability result to show that

the aforementioned approach is effective:

Lemma 2.3. If W is as defined in (2.25)–(2.27) and y(0) is as defined in

Step 1 of Algorithm 2.1, then A in (2.11) is almost surely nonsingular.

Proof. Reconsider the graph G = (V , E) from Chapter 2.2. Let S = {(A,B) ∈

RN×N × RN : Aij = 0 if i ̸= j and {i, j} /∈ E} and Sc = {(A,B) ∈ S :

(A,B) is controllable} ⊂ S. In addition, let A∗ = diag(1, 2, . . . , N) ∈ RN×N

and B∗ ∈ RN be the all-one vector. Then, (A∗,B∗) ∈ S according to the defi-

nition of S. Moreover, (A∗,B∗) ∈ Sc because the controllability matrix formed

by (A∗,B∗) is a Vandermonde matrix that is nonsingular. These two properties

of (A∗,B∗), along with the definition of structural controllability [127], imply

that every (A,B) ∈ S is structurally controllable. Next, let (A,B) ∈ S and

ϵ > 0 be given. Then, by Proposition 1 of [127], there exists (Ac,Bc) ∈ Sc such

that ∥A−Ac∥ < ϵ and ∥B −Bc∥ < ϵ. Hence, Sc is a dense subset of S. Lastly,

note that (W, y(0)) ∈ S due to Assumption 2.1, (2.25)–(2.27), and Step 1 of

Algorithm 2.1. Since Sc is a dense subset of S, (W, y(0)) is almost surely in Sc.

Therefore, by Proposition 2.1, A in (2.11) is almost surely nonsingular.

As it follows from Lemma 2.3, by having the nodes perform the extra

step described in (2.25)–(2.27), the results developed in Sections 2.3 and 2.4.1

become applicable to this Scenario 2. Furthermore, because both the char-

acteristic polynomial coefficients and eigenvalues of a matrix are continuous

23

functions of its entries, by having the nodes decrease the perturbation mag-

nitude a toward zero, the differences between the x(ℓ)’s and λ(ℓ)’s of W and

the x(ℓ)’s and λ
(ℓ)
’s of W can be made arbitrarily small, at least in principle.

Note, however, that numerical issues may arise when a is too small, or when

the resulting A is ill-conditioned. At present, we do not have answers to these

numerical issues, and we believe they are important future research directions.

Based on the above, we obtain the following two-stage distributed algo-

rithm for this Scenario 2:

Algorithm 2.2 (For Scenario 2).

1. Each node i ∈ V executes (2.25)–(2.27) to obtain a perturbed matrix W .

2. The remaining steps are identical to those of Algorithm 2.1. �

2.5 Simulation Results

In this section, we present two sets of simulation results that demon-

strate the effectiveness of Algorithm 2.1 for Scenario 1 and Algorithm 2.2 for

Scenario 2.

2.5.1 Simulation of Algorithm 2.1 for Scenario 1

Consider a sensor network with N = 6 nodes, modeled as an undi-

rected, connected graph G, whose topology is shown in Figure 2.3(a). Suppose

associated with the graph G is a 6-by-6 matrix W , whose entries satisfy As-

24

1

2

3

4

5
6

(a) A 6-node graph.

0 1 2 3 4 5 6

−20

0

20

40

Time t

y
i(
t)

fo
r
i
∈
{
1
,
2
,
.
.
.,
6
}

y1(t)
y2(t)
y3(t)
y4(t)

y5(t)
y6(t)

(b) Data points yi(t) for i ∈
{1, 2, . . . , 6} and t ∈ {0, 1, . . . , 6}
that form the set of linear equations
(2.10).

0 200 400 600 800 1000 1200
−2

−1

0

1

2

3

Time t

x
(ℓ
)

3
(t
)
a
n
d
x
(ℓ
)

fo
r
ℓ
∈
{
0
,
1
,
.
.
.,
5
} x

(ℓ)
3 (t)

x(ℓ)

(c) Node 3’s estimate x
(ℓ)
3 (t) of the

ℓth characteristic polynomial coeffi-
cient x(ℓ) for ℓ ∈ {0, 1, . . . , 5}.

0 200 400 600 800 1000 1200
−3

−2

−1

0

1

Time t
x
(1
)

i
(t
)
a
n
d
x
(1
)

fo
r
i
∈
{
1
,
2
,
.
.
.,
6
}

x
(1)
i (t)

x(1)

(d) Node i’s estimate x
(1)
i (t) of the

first characteristic polynomial coeffi-
cient x(1) for i ∈ {1, 2, . . . , 6}.

Figure 2.3: Performance of Algorithm 2.1 for Scenario 1.

sumption 2.1 and represent random sensor measurements given by

W =


−0.10 −0.24 0 0.78 0 0
0.24 0.53 0.39 −0.04 0 −0.19
0 0.34 0.21 1.15 −0.13 0.71

−0.26 −0.21 0.32 −0.54 0 0
0 0 −0.45 0 0.39 0
0 0.47 −0.84 0 0 −1.35

 .

Assuming that such measurements are realizations of continuously distributed

random variables, the nodes are almost certain that W is cyclic, so that Sce-

nario 1 takes place. Thus, to determine all the eigenvalues λ(ℓ)’s of W , which

are given by −1.02±0.55i, −0.004±0.46i, 0.38, and 0.81, the nodes may apply

Algorithm 2.1.

Figures 2.3(b)–2.3(d) display the result of simulating Algorithm 2.1 with

αi = 10 ∀i ∈ V and β{i,j} = 10 ∀{i, j} ∈ E . Specifically, Figure 2.3(b) shows the

25

data points yi(t) for i ∈ {1, 2, . . . , 6} and t ∈ {0, 1, . . . , 6} that are used to form

the set of linear equations (2.10). Figure 2.3(c) shows, as a function of time t,

node 3’s estimate x
(ℓ)
3 (t) of the ℓth characteristic polynomial coefficient x(ℓ) of

W for ℓ ∈ {0, 1, . . . , 5}. Likewise, Figure 2.3(d) shows node i’s estimate x
(1)
i (t)

of the first coefficient x(1) for i ∈ {1, 2, . . . , 6}. (Note that instead of including

plots of x
(ℓ)
i (t) for all i ∈ {1, 2, . . . , 6} and ℓ ∈ {0, 1, . . . , 5}, we included only

two representative ones, in Figures 2.3(c) and 2.3(d).) Observe that despite

having only local information about G and W , the nodes are able to utilize

Algorithm 2.1 to asymptotically determine all the characteristic polynomial

coefficients x(ℓ)’s of W and, hence, all its eigenvalues λ(ℓ)’s.

2.5.2 Simulation of Algorithm 2.2 for Scenario 2

Consider next an undirected, connected graph G with N = 6 nodes,

whose topology is shown in Figure 2.4(a). Let W represent the adjacency

matrix of G and suppose the nodes wish to determine all the eigenvalues λ
(ℓ)
’s

of W , which are given by −1.73, −1, −1, −0.41, 1.73, and 2.41. Because they

only have local information about G, the nodes do not know whether W is

cyclic, so that Scenario 2 takes place. (In fact, W in this particular example

is not cyclic because it is symmetric and has repeated eigenvalues, at −1.)

Therefore, the nodes have to apply Algorithm 2.2. In doing so, they let the

perturbation magnitude be a = 0.2 and obtain from (2.25)–(2.27) a perturbed

matrix W given by

W =


0 1.04 0 0 1.01 0.94

0.98 0 1.04 1.12 0 0
0 0.98 0 1.06 0 0
0 0.95 1.01 0 0 0

0.98 0 0 0 0 1.01
0.97 0 0 0 0.92 0

 ,

26

1
2

3

4
5

6

(a) A 6-node graph.

0 1 2 3 4 5 6
−100

0

100

200

Time t

y
i(
t)

fo
r
i
∈
{
1
,
2
,
.
.
.,
6
}

y1(t)
y2(t)

y3(t)
y4(t)
y5(t)
y6(t)

(b) Data points yi(t) for i ∈
{1, 2, . . . , 6} and t ∈ {0, 1, . . . , 6}
that form the set of linear equations
(2.10).

0 100 200 300 400
−15

−10

−5

0

5

10

15

Time t

x
(ℓ
)

2
(t
),

x
(ℓ
) ,
a
n
d
x
(ℓ
)

fo
r
ℓ
∈
{
0
,
1
,
.
.
.,
5
}

x
(ℓ)
2 (t)

x(ℓ)

x(ℓ)

(c) Node 2’s estimate x
(ℓ)
2 (t) of the

ℓth perturbed and true characteristic
polynomial coefficients x(ℓ) and x(ℓ)

for ℓ ∈ {0, 1, . . . , 5}.

0 100 200 300 400
0

5

10

15

Time t
x
(2
)

i
(t
),

x
(2
) ,
a
n
d
x
(2
)

fo
r
i
∈
{
1
,
2
,
.
.
.,
6
}

x
(2)
i (t)

x(2)

x(2)

(d) Node i’s estimate x
(2)
i (t) of the

2nd perturbed and true characteris-
tic polynomial coefficients x(2) and
x(2) for i ∈ {1, 2, . . . , 6}.

Figure 2.4: Performance of Algorithm 2.2 for Scenario 2.

whose eigenvalues λ(ℓ)’s are −1.74, −0.97, −1.03, −0.40, 1.73, and 2.43, which

are all distinct and slightly different from the eigenvalues λ
(ℓ)
’s of W .

Figures 2.4(b)–2.4(d) display the result of simulating Algorithm 2.2 with

αi = 100 ∀i ∈ V and β{i,j} = 10 ∀{i, j} ∈ E , using a format similar to that

of Figures 2.3(b)–2.3(d). The only difference is that Figures 2.4(c) and 2.4(d)

show not only the characteristic polynomial coefficients x(ℓ)’s of the “perturbed”

W , but also the characteristic polynomial coefficients x(ℓ)’s of the “true” W .

Observe that with Algorithm 2.2, the nodes are able to asymptotically de-

termine the x(ℓ)’s and λ(ℓ)’s. In other words, they are able to approximately

calculate the x(ℓ)’s and λ
(ℓ)
’s with small errors.

27

2.6 Conclusion

In this chapter, we have designed and analyzed a two-stage distributed

algorithm that enables nodes in a graph to cooperatively estimate the graph

spectrum. We have shown that asymptotically accurate estimation can be

achieved if the nodes know that the associated matrix is cyclic, and estimation

with small errors can be achieved if they do not.

28

Chapter 3 A Distributed Algorithm for Solving
General Linear Equations

3.1 Introduction

Solving a system of linear equations is a fundamental problem with

countless applications. In this chapter, we address the problem of solving such

equations over a network, where the equation data are scattered across the

network. More specifically, we consider an undirected and connected graph

with N nodes, accompanied by a system ofm linear equations with n unknowns

of the form

Ax = b, (3.1)

where each row of A ∈ Rm×n and b ∈ Rm is known to at least one node, and

where every node wishes to find a solution x ∈ Rn to (3.1), whenever it exists.

Since each node knows only part of the equation data, none of them could solve

(3.1) on its own. As a result, the nodes must cooperatively do so, preferably

in a distributed fashion and preferably without having to share their equation

data with others.

This chapter is intended to create an algorithm that equips the nodes

with such capabilities. We develop a continuous-time distributed algorithm

that allows the nodes to solve a general form of (3.1), where the number of

nodes N , number of equations m, and number of unknowns n may be arbitrary.

29

In addition, the existence and uniqueness of a solution x are not assumed and

not known by the nodes in advance, the set Ki of rows of A and b known

to each node i may be arbitrary or even empty, and the only restriction is

that every row of A and b is known to one or more nodes. We show that the

algorithm enables the nodes to asymptotically agree on a solution when (3.1)

has infinitely many solutions, and asymptotically determine the solution when

(3.1) has exactly one. We also show that the algorithm enables at least one

pair of neighboring nodes to asymptotically discover that no solution exists

when (3.1) has none. Moreover, we prove that the algorithm—which is an

affine networked dynamical system—is globally exponentially convergent and

derive an explicit lower bound on its convergence rate, which it can do no worse

than. Furthermore, we show that when A is square and nonsingular and when

each row of A and b is known to exactly one node, the larger the algebraic

connectivity of the graph, or the larger the smallest singular value of A (which

is its distance to the nearest singular matrix), the larger this lower bound.

We note that the current literature offers a number of distributed al-

gorithms for solving (3.1), including those reported in [31, 84–86]. The results

in [31, 84–86], however, are different from the ones in this chapter in at least

three ways: first, the graphs considered in [31, 84–86] may be directed with

time-varying topologies, whereas the one considered here has to be undirected

with a fixed topology. Second, the algorithms proposed in [31,84–86] force the

state of each node to stay in an affine set, following the idea of constrained con-

sensus. In contrast, the algorithm here allows the state to freely roam the state

space. Third, the convergence rate result here captures not only the impact

of the graph topology, but also that of the problem (e.g., how close to being

parallel the rows of A are). The latter is not captured in [31, 84–86]. Lastly,

30

we note that there is a related line of work [82,83,87] on solving (3.1), but the

setup is different: in [82, 83, 87], A =
∑N

i=1Ai and b =
∑N

i=1 bi, where Ai is a

symmetric positive definite matrix and bi is a vector, both known to and only

to node i.

The outline of this chapter is as follows: Chapter 3.2 formulates the

problem. Chapters 3.3 and 3.4 design and analyze the algorithm. Chapter 3.5

analyzes its convergence rate. Finally, Chapter 3.7 concludes the chapter.

3.2 Problem Formulation

Consider a network modeled as an undirected, connected graph G =

(V , E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂

{{i, j} : i, j ∈ V , i ̸= j} denotes the set of edges. Any two nodes i, j ∈ V

are neighbors and can communicate if and only if {i, j} ∈ E . The set of

neighbors of each node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the

communications are assumed to be delay- and error-free, with no quantization.

Suppose associated with the graph G is a system of linear equations

Ax = Y , which has m ≥ 1 equations and n ≥ 1 unknowns, and which can be

partitioned as 
— aT1 —
— aT2 —

...
— aTm —


︸ ︷︷ ︸

A

x =


y1
y2
...
ym


︸ ︷︷ ︸

Y

, (3.2)

where A ∈ Rm×n, x ∈ Rn, Y ∈ Rm, ak ∈ Rn ∀k ∈ K, yk ∈ R ∀k ∈ K, and

K = {1, 2, . . . ,m}. Note that there is no restriction on the values of m, n, A,

and Y . Thus, (3.2) either has a unique solution x, infinitely many solutions,

or no solution.

31

Suppose each node i ∈ V knows only Ni, ak, and yk ∀k ∈ Ki ⊂ K, which

it prefers to not share with any of its neighbors due perhaps to security and

privacy reasons. Also suppose ∪i∈VKi = K, so that every row of A and Y is

known to at least one node. Notice that for each i ∈ V , the set Ki may be

empty so that node i knows nothing about A and Y , or it may contain multiple

elements so that node i knows multiple rows of A and Y .

Given the above, the goal of this chapter is to design a distributed

algorithm that enables the N nodes to cooperatively find a solution x to (3.2),

or determine that no solution exists.

3.3 Algorithm Design

In this section, we design a distributed algorithm that has the afore-

mentioned features.

Reconsider the graph G and let us focus on a specific node i ∈ V . Recall

that node i knows ak and yk ∀k ∈ Ki. Suppose we associate with node i a

vector xi(t) ∈ Rn, which represents its estimate of the solution of (3.2) at time

t ∈ [0,∞). Although node i does not know the entire matrix A and vector Y ,

it can “do its part” by forcing xi(t) to gradually satisfy

aTk xi(t) = yk, ∀k ∈ Ki, (3.3)

i.e., the portion of A and Y that it knows. One way to satisfy (3.3) is to

consider a Lyapunov-like function V : Rn → R, defined as

V (xi(t)) =
1

2

∑
k∈Ki

(aTk xi(t)− yk)
2. (3.4)

In general, V in (3.4) is not guaranteed to be positive definite and, thus, may

not be a valid Lyapunov function. However, V does represent how far away

32

Figure 3.1: Illustration of the idea behind algorithm (3.5).

xi(t) is from satisfying (3.3). Thus, if node i updates xi(t) in such a way that

V (xi(t)) asymptotically decreases to zero, xi(t) would asymptotically satisfy

(3.3). Motivated by this observation, let us take the time derivative of V (xi(t))

along the trajectory xi(t):

V̇ (xi(t)) =
∑
k∈Ki

(aTk xi(t)− yk)a
T
k ẋi(t).

To make V̇ (xi(t)) ≤ 0, a simple choice is to let

ẋi(t) = −αi

∑
k∈Ki

(aTk xi(t)− yk)ak, (3.5)

where αi > 0 is a design parameter. With (3.5), xi(t) is guaranteed to move

in a direction where V (xi(t)) decreases or stays the same, as illustrated in

Figure 3.1 when n = 2 and |Ki| = 1.

Since the goal is for the N nodes to cooperatively find a solution to (3.2),

and since every row of A and Y is known to at least one node, if we force xi(t)

of every node i ∈ V to not only asymptotically satisfy (3.3), but also achieve

a consensus, the consensus value would be a solution to (3.2). In view of this

33

and the basic idea from continuous-time distributed consensus [1,7], we add to

(3.5) a “consensus” term to arrive at a continuous-time distributed algorithm

ẋi(t) = −αi

∑
k∈Ki

(aTk xi(t)− yk)ak−
∑
j∈Ni

β{i,j}(xi(t)− xj(t)),

∀i ∈ V , ∀t ∈ [0,∞), (3.6)

where β{i,j} > 0 ∀{i, j} ∈ E are also design parameters.

To facilitate its analysis in the next section, note that algorithm (3.6)

can be expressed in a matrix form as follows:

ẋ(t) = −(P+ L)x(t) + q, (3.7)

where x(t) ∈ RnN is a column vector formed by stacking the N xi(t)’s, while

P ∈ RnN×nN , L ∈ RnN×nN , and q ∈ RnN are given by

P =


α1

∑
k∈K1

aka
T
k 0

α2

∑
k∈K2

aka
T
k

. . .

0 αN

∑
k∈KN

aka
T
k

 ,

L = Lβ ⊗ In, q =


α1

∑
k∈K1

ykak
α2

∑
k∈K2

ykak
...

αN

∑
k∈KN

ykak

 ,

where ⊗ denotes the Kronecker product, Ip ∈ Rp×p denotes the identity matrix,

and Lβ = [Lij] ∈ RN×N is a weighted Laplacian matrix of G with Lii =∑
j∈Ni

β{i,j}, Lij = −β{i,j} if {i, j} ∈ E , and Lij = 0 if i ̸= j and {i, j} /∈ E .

3.4 Algorithm Analysis

In this section, we show that algorithm (3.6) or equivalently (3.7) has

several appealing properties, which are reflected in three main results. First,

34

we show that regardless of its initial condition x(0), the state x(t) is guaranteed

to converge exponentially fast to a point x∗ that depends on x(0) as well as

the graph G and problem (3.2). Second, we show that when the solution set

of (3.2) is not empty, all the xi(t)’s are guaranteed to converge exponentially

fast to the same point x∗ in the solution set. Finally, we show that when the

solution set is empty, at least one node in the graph G is able to asymptotically

detect that.

To present the first main result, let

S = {x ∈ RnN : (P+ L)x = q} ⊂ RnN

be the set of equilibrium points of (3.7). In addition, since P+L is symmetric

positive semidefinite, let its nN real eigenvalues be denoted as

0 = λ1 = λ2 = · · · = λr < λr+1 ≤ λr+2 ≤ · · · ≤ λnN ,

where 0 ≤ r ≤ nN , and its corresponding nN orthogonal eigenvectors be

denoted as u1, u2, . . . , unN ∈ RnN . Moreover, let

Λ = diag(λr+1, λr+2, . . . , λnN) ∈ R(nN−r)×(nN−r),

U =
[
u1 u2 · · · unN

]
∈ RnN×nN .

Furthermore, let ∥ · ∥ denote the Euclidean norm and both 0p ∈ Rp×p and

0p×q ∈ Rp×q be the all-zero matrices, which we will write as 0 whenever there

is no confusion in their sizes.

With these notations, the first main result can be stated as follows:

Theorem 3.1. For every x(0) ∈ RnN , there exists a unique x∗ ∈ S such that

∥x(t)− x∗∥ ≤ e−λr+1t∥x(0)− x∗∥, (3.8)

35

where x∗ is given by

x∗ = U

[
Ir 0
0 0nN−r

]
UTx(0) +U

[
0r 0
0 Λ−1

]
UTq. (3.9)

Theorem 3.1 says that algorithm (3.7) is unconditionally exponentially

convergent to a point that depends on the initial condition as well as the graph

G and problem (3.2). In addition, as will be seen shortly, the theorem is

instrumental in establishing a number of key properties of algorithm (3.7).

To prove Theorem 3.1, let 1N ∈ RN denote the all-one vector, N (M)

denote the null space of any matrix M , and

X = {x ∈ Rn : Ax = Y } ⊂ Rn

denote the solution set of (3.2). In addition, let

S̃ = {1N ⊗ x : x ∈ X} ⊂ RnN ,

S0 = {x : x ∈ N (P+ L)} ⊂ RnN ,

S̃0 = {1N ⊗ x : x ∈ N (A)} ⊂ RnN .

Moreover, consider the following lemmas:

Lemma 3.1. S0 = S̃0.

Proof. First, we show that S̃0 ⊂ S0. Let x ∈ S̃0. By definition of S̃0, we have

x = 1N ⊗ x ∈ RnN for some x ∈ N (A). Since x ∈ N (A), aTk x = 0 ∀k ∈ K.

Since Ki ⊂ K ∀i ∈ V , aTk x = 0 ∀k ∈ Ki ∀i ∈ V . Thus, by definition of P,

Px =


α1

∑
k∈K1

aka
T
k x

α2

∑
k∈K2

aka
T
k x

...
αN

∑
k∈KN

aka
T
k x

 = 0.

36

Next, by definition of Lβ, we have

Lx = (Lβ ⊗ In)(1N ⊗ x) = (Lβ1N)⊗ (Inx) = 0.

Hence, (P + L)x = 0, implying that x ∈ S0, so that S̃0 ⊂ S0. Next, we show

that S0 ⊂ S̃0. Let x ∈ S0. Then, (P + L)x = 0 and xT (P + L)x = 0. Since

both P and L are positive semidefinite, x satisfies xTPx = 0 and xTLx = 0.

Since G is connected and L = Lβ ⊗ In, we have x = 1N ⊗ x for some x ∈ Rn.

It follows that

xTPx =
∑
i∈V

∑
k∈Ki

xT (aka
T
k)x = 0.

Thus, aTk x = 0 ∀k ∈ Ki ∀i ∈ V . Since ∪i∈VKi = K, aTk x = 0 ∀k ∈ K. Hence,

x ∈ N (A), implying that x ∈ S̃0, so that S0 ⊂ S̃0.

Lemma 3.2. S ̸= ∅.

Proof. First, we show that q⊥S̃0. Let x ∈ S̃0, so that x = 1N ⊗ x for some

x ∈ N (A). Then, aTk x = 0 ∀k ∈ Ki ∀i ∈ V . As a result,

xTq =
[
xT xT · · · xT

]

α1

∑
k∈K1

ykak
α2

∑
k∈K2

ykak
...

αN

∑
k∈KN

ykak


=

∑
i∈V

(
αi

∑
k∈Ki

yka
T
k x

)
= 0.

Thus, q⊥S̃0. By Lemma 3.1, q⊥S0, i.e., q⊥N (P+L). SinceP+L is symmetric,

its null space is orthogonal to its range space. Hence, q is in the range space

of P+ L, so that S ̸= ∅.

With the above lemmas in hand, we now prove Theorem 3.1:

37

Proof of Theorem 3.1. Let x(0) ∈ RnN be given. Since S ̸= ∅ by Lemma 3.2,

we can pick an x̃ ∈ S. Let x̄(t) = x(t) − x̃, z(t) = UT x̄(t), and z(t) =

(z1(t), z2(t), . . . , zN(t)) where zi(t) ∈ Rn ∀i ∈ V . Then, (3.7) can be written as

ż(t) = −
[
0r 0
0 Λ

]
z(t),

whose solution is

z(t) =

[
Ir 0
0 e−Λt

]
z(0).

Let z∗ = (z1(0), z2(0), . . . , zr(0), 0, 0, . . . , 0) ∈ RnN . Then,

∥z(t)− z∗∥ ≤ e−λr+1t∥z(0)− z∗∥. (3.10)

Let x̄∗ = Uz∗ and x∗ = x̃ + x̄∗. To show that x∗ ∈ S, note that the first r

columns of U are the r eigenvectors associated with the eigenvalue 0 of (P+L).

Thus, the first r columns of (P + L)U are zero, so that (P + L)Uz∗ = 0. It

follows that x̄∗ = Uz∗ ∈ S0. Since x̃ ∈ S, we have x∗ = x̃ + x̄∗ ∈ S. Due to

U being orthogonal and due to (3.10), we obtain (3.8). Clearly, such an x∗ is

unique since (3.8) cannot be satisfied by two distinct x∗.

Next, we show that x∗ is given by (3.9). Since z(t) = UT x̄(t) and

x̄(t) = x(t)− x̃, by definition of z∗ we have

x∗ = x̃+ x̄∗

= x̃+Uz∗

= x̃+U

[
Ir 0
0 0nN−r

]
UT (x(0)− x̃)

= U

[
Ir 0
0 0nN−r

]
UTx(0) +U

[
0r 0
0 InN−r

]
UT x̃. (3.11)

Since x̃ ∈ S and

P+ L = U

[
0r 0
0 Λ

]
UT ,

38

we have

q = (P+ L)x̃ = U

[
0r 0
0 Λ

]
UT x̃.

Pre-multiplying both sides by

U

[
0r 0
0 Λ−1

]
UT ,

we get

U

[
0r 0
0 Λ−1

]
UTq = U

[
0r 0
0 InN−r

]
UT x̃.

Substituting the above into (3.11), we obtain (3.9).

To establish the second main result, consider the following lemma:

Lemma 3.3. If X ̸= ∅, then S = S̃.

Proof. Suppose X ̸= ∅. Pick an x̃ ∈ X and let x̃ = 1N ⊗ x̃. By definition of

Lβ,

Lx̃ = (Lβ ⊗ In)(1N ⊗ x̃) = (Lβ1N)⊗ (Inx̃) = 0.

Thus, we have

(P+ L)x̃− q =


α1

∑
k∈K1

ak(a
T
k x̃− yk)

α2

∑
k∈K2

ak(a
T
k x̃− yk)

...
αN

∑
k∈KN

ak(a
T
k x̃− yk)

 .

Since x̃ ∈ X , aTk x̃−yk = 0 ∀k ∈ Ki ∀i ∈ V . Hence, (P+L)x̃ = q, so that x̃ ∈ S.

Note that S is the set of all solutions to a system of linear equations, x̃ is a

particular solution, and S0 is the set of all homogeneous solutions. Therefore,

S = {x̃+ v : v ∈ S0}. (3.12)

39

Similarly, X is the set of all solutions to another system of linear equations

(i.e., to (3.2) to be precise), x̃ is a particular solution, and N (A) is the set of

all homogeneous solutions. Thus,

X = {x̃+ v : v ∈ N (A)}. (3.13)

Applying S0 = S̃0 from Lemma 3.1 to (3.12), we have

S = {x̃+ v : v ∈ S̃0}

= {(1N ⊗ x̃) + (1N ⊗ v) : v ∈ N (A)}

= {1N ⊗ (x̃+ v) : v ∈ N (A)}. (3.14)

Applying (3.13) to (3.14), we have

S = {1N ⊗ (x̃+ v) : v ∈ N (A)}

= {1N ⊗ (x̃+ v) : x̃+ v ∈ X}

= S̃,

as desired.

With Lemma 3.3, we can now state the second main result:

Theorem 3.2. Let x(0) ∈ RnN be given and let x∗ ∈ S be the limit of x(t)

from Theorem 3.1. If X ̸= ∅, then x∗ = 1N ⊗x∗ for some x∗ ∈ X . In addition,

∥xi(t)− x∗∥ ≤ e−λr+1t∥x(0)− x∗∥, ∀i ∈ V . (3.15)

Proof. Let x(0) ∈ RnN be given and suppose X ̸= ∅. By Theorem 3.1, there

exists a unique x∗ ∈ S such that (3.8) holds. By Lemma 3.3, x∗ ∈ S̃. Hence,

x∗ = 1N ⊗x∗ for some x∗ ∈ X . Because ∥xi(t)−x∗∥ ≤ ∥x(t)−x∗∥ ∀i ∈ V and

because of (3.8), (3.15) holds.

40

Theorem 3.2 shows that with algorithm (3.7), when (3.2) has one or

more solutions, i.e., X ̸= ∅, all the estimates xi(t)’s are guaranteed to converge

exponentially fast to the same solution x∗ ∈ X . Obviously, this implies that

when (3.2) has a unique solution x∗, all the xi(t)’s would go to x∗.

Finally, we address the question of what would happen when (3.2) has

no solution, i.e., X = ∅. We have the following third main result:

Theorem 3.3. Let x(0) ∈ RnN be given and let x∗ = (x∗
1, x

∗
2, . . . , x

∗
N) ∈ S be

the limit of x(t) from Theorem 3.1. Then, X = ∅ if and only if there exists

i ∈ V such that condition (i) or (ii) below holds:

(i) There exists k ∈ Ki such that aTk x
∗
i ̸= yk.

(ii) There exists j ∈ Ni such that x∗
i ̸= x∗

j .

Proof. (⇒) We show that the contrapositive is true. Suppose for every i ∈ V ,

we have: (i’) aTk x
∗
i = yk ∀k ∈ Ki; and (ii’) x∗

i = x∗
j ∀j ∈ Ni. Because (ii’) holds

for each i ∈ V and because G is connected, we have x∗
1 = x∗

2 = · · · = x∗
N = x∗

for some x∗ ∈ Rn. This, along with the fact that condition (i’) holds for each

i ∈ V , implies that aTk x
∗ = yk ∀k ∈ Ki ∀i ∈ V . Because ∪i∈VKi = K and

because of (3.2), we have x∗ ∈ X , so that X ̸= ∅.

(⇐) Again, we show that the contrapositive is true. Suppose X ̸= ∅. Then, by

Theorem 3.2, x∗
i = x∗ ∀i ∈ V for some x∗ ∈ X . It follows that conditions (i)

and (ii) are false for each i ∈ V .

Observe that conditions (i) and (ii) can be checked locally by every node

i ∈ V . Thus, Theorem 3.3 says that when (3.2) has no solution, i.e., X = ∅, at

least one node in the graph G is able to asymptotically detect that.

41

3.5 Convergence Rate Analysis

In this section, we derive for a special case an explicit lower bound on the

convergence rate of algorithm (3.7). We show that this lower bound depends

on the problem (i.e., A), the graph (i.e., the algebraic connectivity of G), and

the algorithm parameters (i.e., the αi’s and β{i,j}’s).

To begin, we define the special case as follows:

Assumption 3.1. Suppose: (i) m = n; (ii) Ki = {i} ∀i ∈ V ; (iii) A is

nonsingular; and (iv) αi = α ∀i ∈ V and β{i,j} = β ∀{i, j} ∈ E .

Note that Assumption 3.1 defines a special case where A is N -by-N and

nonsingular, each node i ∈ V knows row i and only row i of A and Y , and the

parameters αi’s and β{i,j}’s of algorithm (3.7) are identical over graph G. For

this special case, we have the following lemma:

Lemma 3.4. With Assumption 3.1, P+ L is positive definite.

Proof. Since A is nonsingular, (3.2) has a unique solution, so that X has exactly

one element. This implies that S̃ also has exactly one element. By Lemma 3.3,

so does S. Thus, by definition of S, P + L is nonsingular. Since P + L is

symmetric positive semidefinite, this means that it is actually positive definite.

Recall from Chapter 3.4 that the N2 eigenvalues of P + L are denoted

as λ1, λ2, . . . , λN2 , which satisfy

0 = λ1 = λ2 = · · · = λr < λr+1 ≤ λr+2 ≤ · · · ≤ λN2 .

42

By Lemma 3.4, we have r = 0, i.e., λr+1 = λ1 > 0. Observe from Theorems 3.1

and 3.2 that λ1 characterizes the convergence rate of algorithm (3.7). Indeed,

the larger λ1, the faster the exponential convergence.

To derive a lower bound on λ1 that algorithm (3.7) cannot converge

slower than, consider the following notations: let λmin(X) > 0 be the smallest

positive eigenvalue of any symmetric positive semidefinite matrix X that is not

a zero matrix. In addition, let Â ∈ RN×N denote the row-normalized version

of A, i.e.,

Â =


—

aT1
∥a1∥ —

—
aT2
∥a2∥ —
...

—
aTN

∥aN∥ —

 .

Moreover, let µ = λmin(P) > 0, γ = λmin(L) > 0, and σ > 0 be the smallest

singular value of Â.

Observe from the definition of P and from Assumption 3.1 that P is

an N2-by-N2, block diagonal matrix where each of the N blocks is an N -by-

N , rank-1 matrix. Thus, P has N positive eigenvalues at α∥ai∥2 ∀i ∈ V and

N2 −N eigenvalues at 0, so that µ = λmin(P) = αmini∈V(∥ai∥2). In addition,

observe from the definition of L and from Assumption 3.1 that L = Lβ ⊗ IN =

βL ⊗ IN , where L ∈ RN×N is the standard Laplacian matrix of G. Hence,

γ = λmin(L) = βλmin(L), where λmin(L) is the algebraic connectivity of G.

Based on the above, an explicit lower bound λ∗ on the convergence rate

λ1 of algorithm (3.7) can be stated as follows:

Theorem 3.4. If Assumption 3.1 holds, then λ1 ≥ λ∗ > 0, where

λ∗ =
µ+ γ −

√
(µ+ γ)2 − 4µγσ2/N

2
. (3.16)

43

In addition, λ1 = λ∗ if and only if all the positive eigenvalues of P are identical

and all the positive eigenvalues of L are identical.

Proof. See Chapter 3.5.1.

To understand the implication of Theorem 3.4, notice that µ, γ, and

σ are all positive. However, if any of them is near zero, their product µγσ,

which appears in (3.16), would be near zero. As a result, the lower bound

λ∗ in (3.16) would be near zero as well, suggesting that algorithm (3.7) may

converge very slowly. Because µ = αmini∈V(∥ai∥2), γ = βλmin(L), λmin(L) is

the algebraic connectivity of G, and σ is the smallest singular value of Â, this

implies that algorithm (3.7) may converge very slowly if one or more of the

following conditions hold: (i) A is nearly singular, (ii) G is poorly connected,

(iii) α is small, and (iv) β is small. On the contrary, if conditions (i)–(iv) do

not hold—that is, A is far from being singular, G is well-connected, α is large,

and β is large—then the lower bound λ∗ in (3.16) would be large, suggesting

that algorithm (3.7) would converge rapidly. Therefore, Theorem 3.4 offers

meaningful insights into the performance of algorithm (3.7).

Figure 3.2 provides a contour plot that shows how the lower bound λ∗

on the convergence rate λ1 of algorithm (3.7) depends on the smallest singular

value σ of Â and the algebraic connectivity λmin(L) of G, when (N,α, β) =

(100, 100, 1). Computed using Theorem 3.4, this contour plot demonstrates

the interplay among algorithm performance, problem characteristics, and graph

connectivity.

44

Figure 3.2: Contour plot showing how the lower bound λ∗ on the convergence
rate λ1 of algorithm (3.7) depends on the smallest singular value σ of Â and
the algebraic connectivity λmin(L) of G, when (N,α, β) = (100, 100, 1).

3.5.1 Proof of Theorem 3.4

We first show that

(µ+ γ)2 − 4µγσ2/N ≥ 0, (3.17)

so that λ∗ in (3.16) is real. By Assumption 3.4, A is nonsingular. Thus, the

ak’s are linear independent. It follows that Â is also nonsingular, so that σ > 0.

Therefore,

σ2 = λmin(ÂÂ
T) ≤ 1

N
tr (ÂÂT) = 1.

Since N ≥ 1,

(µ+ γ)2 − 4µγσ2/N ≥ (µ+ γ)2 − 4µγ ≥ 0,

thus establishing (3.17). Next, note from (3.16) that λ∗ can be written as

λ∗ =
4µγσ2/N

2(µ+ γ +
√

(µ+ γ)2 − 4µγσ2/N)
.

45

Due to (3.17) and σ > 0, we have λ∗ > 0, confirming part of the claim of

Theorem 3.4.

In the rest of the proof, we will show that λ1 ≥ λ∗. To do so, we first

characterize the eigenvalues and eigenvectors of P and L. For convenience, let

ei ∈ RN ∀i ∈ V be standard basis vectors. We have the following lemma:

Lemma 3.5. The N normalized eigenvectors corresponding to the N positive

eigenvalues α∥a1∥2, α∥a2∥2, . . . , α∥aN∥2 of P are given by

e1 ⊗
a1
∥a1∥

, e2 ⊗
a2
∥a2∥

, . . . , eN ⊗
aN
∥aN∥

.

Proof. By straightforward verification.

Let µ1, µ2, . . . , µN2 ∈ R denote the N2 eigenvalues of P, v1, v2, . . . , vN2 ∈

RN2
denote their corresponding normalized eigenvectors, γ1, γ2, . . . , γN2 ∈ R

denote the N2 eigenvalues of L, and w1, w2, . . . , wN2 ∈ RN2
denote their corre-

sponding normalized eigenvectors. Then, by Lemma 3.5,

µ1 = µ2 = · · · = µN2−N = 0,

µN2−N+i = α∥ai∥2, ∀i ∈ V ,

vN2−N+i = ei ⊗
ai
∥ai∥

, ∀i ∈ V . (3.18)

In addition, since L = βL⊗ IN ,

γ1 = γ2 = · · · = γN = 0,

γN+1, γN+2, . . . , γN2 > 0,

wi =
1√
N
1N ⊗ ei, ∀i ∈ V . (3.19)

Lemma 3.6. The N2 vectors v1, v2, . . . , vN2−N and w1, w2, . . . , wN are linear

independent and form a basis of RN2
.

46

Proof. Suppose there exist η1, η2, . . . , ηN2−N ∈ R and ρ1, ρ2, . . . , ρN ∈ R, not

all zero, such that

z1 + z2 = 0, (3.20)

where

z1 = η1v1 + η2v2 + · · ·+ ηN2−NvN2−N ,

z2 = ρ1w1 + ρ2w2 + · · ·+ ρNwN .

Since z1 is a linear combination of the eigenvectors associated with the eigen-

value 0 of P, we have Pz1 = 0. In the same fashion, Lz2 = 0. Thus, from

(3.20),

0 = (z1 + z2)
T (P+ L)(z1 + z2) = zT2 Pz2 + zT1 Lz1.

It follows that

zT1 (P+ L)z1 = 0.

SinceP+L is positive definite by Lemma 3.4, z1 = 0. Due to (3.20), z2 = −z1 =

0. Since v1, v2, . . . , vN2−N are the eigenvectors ofP, they are linear independent.

This, along with z1 = 0, implies that η1 = η2 = · · · = ηN2−N = 0. Similarly,

since w1, w2, . . . , wN are the eigenvectors of L, they are linear independent.

This, together with z2 = 0, implies that ρ1 = ρ2 = · · · = ρN = 0, which

contradicts the hypothesis. Hence, v1, v2, . . . , vN2−N and w1, w2, . . . , wN are

linear independent and form a basis of RN2
.

Lemma 3.7. For any x ∈ RN2
, xT (P+ L)x− λ∗xTx ≥ 0.

Proof. First, let us express P in a dyadic form using the µi’s and vi’s in (3.18):

P =
N2∑
i=1

µiviv
T
i =

N2∑
i=N2−N+1

µiviv
T
i .

47

By definition of µ, we have

P ≥ µ
N2∑

i=N2−N+1

viv
T
i = µ

(
IN2 −

N2−N∑
i=1

viv
T
i

)
. (3.21)

Similarly, we have

L =
N2∑
i=1

γiwiw
T
i =

N2∑
i=N+1

γiwiw
T
i

≥ γ
N2∑

i=N+1

wiw
T
i = γ

(
IN2 −

N∑
i=1

wiw
T
i

)
. (3.22)

Next, let x = x1 + x2 where x1 =
∑N2−N

i=1 pivi, x2 =
∑N

j=1 qjwj, pi ∈ R

∀i ∈ {1, 2, . . . , N2 − N}, and qj ∈ R ∀j ∈ {1, 2, . . . , N}. Using (3.18), (3.19),

(3.21), (3.22), and the expression of x, we can write

xT (P+ L)x = xT
2Px2 + xT

1Lx1

≥ µ
(N∑

j=1

qjwj

)T(
IN2 −

N2−N∑
i=1

viv
T
i

)(N∑
j=1

qjwj

)

+ γ
(N2−N∑

i=1

pivi

)T(
IN2 −

N∑
j=1

wjw
T
j

)(N2−N∑
i=1

pivi

)
= yT

[
γ(IN2−N − ΦTΦ) 0

0 µ(IN − ΦΦT)

]
y, (3.23)

where

y =
[
p1 p2 · · · pN2−N q1 q2 · · · qN

]T ∈ RN2

, (3.24)

Φ =


wT

1

wT
2
...

wT
N

 [
v1 v2 · · · vN2−N

]
∈ RN×(N2−N). (3.25)

Similarly, we can write

xTx =
(N2−N∑

i=1

pivi +
N∑
j=1

qjwj

)T(N2−N∑
i=1

pivi +
N∑
j=1

qjwj

)

48

= yT
[
IN2−N ΦT

Φ IN

]
y. (3.26)

Now, let σ1 ≥ σ2 ≥ · · · ≥ σκ > 0 denote the singular values of Φ, where

κ is the rank of Φ. In addition, let Σκ = diag(σ1, σ2, . . . , σκ), so that the full

singular value decomposition of Φ can be written as

Φ = GΣHT , (3.27)

where

Σ =

[
Σκ 0κ×(N2−N−κ)

0(N−κ)×κ 0(N−κ)×(N2−N−κ)

]
∈ RN×(N2−N),

and G ∈ RN×N and H ∈ R(N2−N)×(N2−N) are orthogonal matrices. Further-

more, let

z =

[
H 0
0 G

]
y.

This, along with (3.27), allows us to rewrite (3.23) and (3.26) as

yT
[
γ(IN2−N − ΦTΦ) 0

0 µ(IN − ΦΦT)

]
y = zT

[
D1 0
0 D2

]
z, (3.28)

yT
[
IN2−N ΦT

Φ IN

]
y = zT

[
IN2−N ΣT

Σ IN

]
z, (3.29)

where D1 ∈ R(N2−N)×(N2−N) and D2 ∈ RN×N are given by

D1 = γ diag(1− σ2
1, 1− σ2

2, . . . , 1− σ2
κ, 1, 1, . . . , 1),

D2 = µ diag(1− σ2
1, 1− σ2

2, . . . , 1− σ2
κ, 1, 1, . . . , 1).

Next, let z̃ = Πz, where Π ∈ RN2×N2
is a permutation matrix such that (3.28)

and (3.29) can be stated as

zT
[
D1 0
0 D2

]
z = z̃T


C1 0

. . .

Cκ

γIN2−N−κ

0 µIN−κ

 z̃, (3.30)

49

zT
[
IN2−N ΣT

Σ IN

]
z = z̃T


C̃1 0

. . .

C̃κ

IN2−N−κ

0 IN−κ

 z̃, (3.31)

where Ci ∈ R2×2 and C̃i ∈ R2×2 for each i ∈ {1, 2, . . . , κ} are given by

Ci =

[
γ(1− σ2

i) 0
0 µ(1− σ2

i)

]
,

C̃i =

[
1 σi

σi 1

]
.

Equations (3.23), (3.26), (3.28), (3.29), (3.30), and (3.31) imply that

xT (P+ L)x− λ∗xTx

≥ z̃T


C1 − λ∗C̃1 0

. . .

Cκ − λ∗C̃κ

(γ − λ∗)IN2−N−κ

0 (µ− λ∗)IN−κ

 z̃.

(3.32)

To show that the right-hand side of (3.32) is nonnegative for any x ∈ RN2
or

equivalently for any z̃ ∈ RN2
, it suffices to show that the following three con-

ditions hold: (i) γ ≥ λ∗, (ii) µ ≥ λ∗, and (iii) Ci− λ∗C̃i is positive semidefinite

∀i ∈ {1, 2, . . . , κ}. Since N ≥ 1 and σ ≤ 1, we have

λ∗ ≤
µ+ γ −

√
(µ+ γ)2 − 4µγ

2
=

µ+ γ − |µ− γ|
2

= min{µ, γ}.

Thus, conditions (i) and (ii) hold. To show that (iii) holds as well, notice from

(3.25), (3.18), and (3.19) that

ΦΦT =


wT

1

wT
2
...

wT
N

 [
v1 v2 · · · vN2−N

]


vT1
vT2
...

vTN2−N

 [
w1 w2 · · · wN

]

50

=


wT

1

wT
2
...

wT
N

(
IN2 −

N2∑
i=N2−N+1

viv
T
i

) [
w1 w2 · · · wN

]

=IN−


wT

1

wT
2
...

wT
N

[vN2−N+1 vN2−N+2 · · · vN2

]

vTN2−N+1

vTN2−N+2
...

vTN2

[w1 w2 · · · wN

]

= IN −
1

N
ÂT Â. (3.33)

By definition of σ and σ1, and using (3.33), we have

σ2
1 = λmax(ΦΦ

T) = λmax(IN −
1

N
ÂT Â)

= 1− 1

N
σ2. (3.34)

Therefore, for all i ∈ {1, 2, . . . , κ},

λ∗ =
µ+ γ −

√
(µ+ γ)2 − 4µγ(1− σ2

1)

2

≤
µ+ γ −

√
(µ+ γ)2 − 4µγ(1− σ2

i)

2

=
4µγ(1− σ2

i)

2(µ+ γ +
√

(µ− γ)2 + 4µγσ2
i)

≤ 2µγ(1− σ2
i)

µ+ γ + |µ− γ|
= min(µ, γ)(1− σ2

i). (3.35)

As a result, for all i ∈ {1, 2, . . . , κ},

det(Ci − λ∗C̃i) = (γ(1− σ2
i)− λ∗)(µ(1− σ2

i)− λ∗)− λ∗2σ2
i

= (1− σ2
i)(λ

∗2 − (µ+ γ)λ∗ + µγ(1− σ2
i)) ≥ 0. (3.36)

Combining (3.35) and (3.36), we see that condition (iii) holds. This establishes

the lemma.

51

By the Rayleigh quotient and Lemma 3.7, we have

λ1 = min
x ̸=0

xT (P+ L)x

xTx
≥ λ∗.

Finally, to prove the second part of Theorem 3.4, note that the inequality

in (3.23) becomes an equality if and only if all the positive eigenvalues of P

are identical and all the positive eigenvalues of L are also identical. Therefore,

λ1 = λ∗ if and only if the latter two conditions hold.

3.5.2 Why Convergence may be Slow

As was mentioned immediately after Theorem 3.4, algorithm (3.7) may

converge slowly when A is nearly singular. In this subsection, we provide a

simple example that explains graphically why its convergence may be slow.

Consider an undirected and connected graph with N = 2 nodes, where A and

Y are given by

A =

[
1 2
2 4.4

]
, Y =

[
3
6.4

]
,

row 1 of A and Y is known to node 1, and row 2 of A and Y is known to node

2. Suppose the nodes use algorithm (3.7) with α1 = α2 = β{1,2} = 1. Then, we

have

ẋ1(t) = −(aT1 x1(t)− y1)a1 − (x1(t)− x2(t))

ẋ2(t) = −(aT2 x2(t)− y2)a2 − (x2(t)− x1(t)). (3.37)

Also suppose at some time t, x1(t) and x2(t) are as shown in Figure 3.3. Since

A is nearly singular, the lines aT1 x = y1 and aT2 x = y2 are nearly parallel but

still have a unique intersection which is the unique solution. Since x1(t) is close

to the line aT1 x = y1, x2(t) is close to the line aT2 x = y2, and x1(t) and x2(t) are

52

Figure 3.3: A simple example explaining why algorithm (3.7) may converge
slowly when A is nearly singular.

close to each other, the right-hand side of (3.37) is small, causing both ẋ1(t)

and ẋ2(t) to be small as well. As a result, both x1(t) and x2(t) would converge

slowly to the unique solution. Note that if A is far from being singular, for

which the lines aT1 x = y1 and aT2 x = y2 are far from being parallel, it would not

have been possible for x1(t) and x2(t) to be simultaneously close to the lines

aT1 x = y1 and aT2 x = y2 and close to each other—unless x1(t) and x2(t) are

already close to the unique solution. This simple example explains why certain

types of A may cause algorithm (3.7) to perform poorly.

3.6 Simulation Results

In this section, we present two sets of simulation results that demon-

strate the effectiveness of algorithm (3.6) or (3.7).

53

3.6.1 Two 15-Node Graphs

Consider an undirected and connected graph G with N = 15 nodes,

whose topology is shown in Figure 3.4(a). Suppose associated with this graph

are a 15-by-15 matrix A and a 15-by-1 vector Y with randomly generated

entries, such that A is nonsingular. Also suppose each node i knows row i of A

and Y , and they wish to find the unique solution x of Ax = Y using algorithm

(3.7).

Figures 3.4(b) and 3.4(c) display the simulation result. Specifically,

Figure 3.4(b) shows node 3’s estimate x
(ℓ)
3 (t) of the ℓth entry of the solution

x(ℓ) (calculated by Theorem 3.1) as a function of time t for ℓ ∈ {1, 2, . . . , 15}.

Figure 3.4(c) shows node i’s estimate x
(1)
i (t) of the 1st entry of the solution

x(1) for i ∈ {1, 2, . . . , 15}. (Note that instead of including plots of x
(ℓ)
i (t) for

every i ∈ {1, 2, . . . , 15} and every ℓ ∈ {1, 2, . . . , 15}, we included only two

representative ones, in Figures 3.4(b) and 3.4(c).) Observe that despite having

only local information on G and partial information on A and Y , the nodes

are able to use algorithm (3.6) to asymptotically find the unique solution x∗ of

Ax = Y .

Next, consider another undirected and connected graph G with N = 15

nodes as shown in Figure 3.5(a). As before, suppose A is a 15-by-15 matrix

and Y is a 15-by-1 vector with randomly generated entries. However, here

A is singular and Y is not in the range space of A. Also suppose the nodes

want to use algorithm (3.7) to find a solution x of Ax = Y , despite each node

i knowing only row i of A and Y , and despite none of them knowing that a

solution actually does not exist.

Figures 3.5(b) and 3.5(c) display the simulation result using a format

54

that is identical to that of Figures 3.4(b) and 3.4(c). Observe that Figure 3.5(b)

is qualitatively similar to Figure 3.4(b). However, Figure 3.5(c) is quite different

from Figure 3.4(c) in that for the latter, all the x
(1)
i (t)’s converge to the same

value x(1), whereas for the former, all the x
(1)
i (t)’s converge to different values.

This implies that at least one node in the graph is able to asymptotically detect

that a solution does not exist simply by comparing its x
(1)
i (t) with its neighbor’s

x
(1)
j (t).

3.6.2 A 5-Node Graph

In this subsection, we present the second set of simulation results, for a

graph G with N = 5 nodes, whose topology is shown in Figures 3.6(a), 3.7(a),

and 3.8(a). Suppose associated with this graph are a 5-by-2 matrix A and a

5-by-1 vector Y , whose entries are shown in Figures 3.6(b), 3.7(b), and 3.8(b),

which correspond to cases when Ax = Y has no solution, a unique solution

and infinitely many solutions, respectively. Also suppose each node i knows

row i of A and Y , and they wish to agree on a solution or discover that no

solution exists using algorithm (3.7). Figures 3.6(c), 3.7(c), 3.8(c), and 3.8(d)

display the simulation result, from which we can see that the xi(t)’s converge to

different values when there is no solution, converge to the unique solution when

there is exactly one, and converge to an initial-condition-dependent solution

when there are infinitely many solutions.

3.7 Conclusion

In this chapter, we have designed a continuous-time distributed algo-

rithm, with which nodes in a network can cooperatively solve a general system

of linear equations, whose data are scattered across the network. We have

55

shown that the algorithm is able to asymptotically detect whether a solution

exists, asymptotically find one when it does, and globally exponentially con-

verge with a rate that can be explicitly bounded from below.

56

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

(a) A 15-node graph.

0 200 400 600 800 1000 1200

−2

−1

0

1

2

3

Time t

x
(ℓ
)

3
(t
)
a
n
d
x
(ℓ
)

fo
r
ℓ
∈
{
1
,
2
,
.
.
.,
1
5
} x

(ℓ)
3 (t)

x(ℓ)

(b) Node 3’s estimate x
(ℓ)
3 (t) of the ℓth entry of the

solution x(ℓ) for ℓ ∈ {1, 2, . . . , 15}.

0 200 400 600 800 1000 1200
−2

−1

Time t

x
(1
)

i
(t
)
a
n
d
x
(1
)

fo
r
i
∈
{
1
,
2
,
.
.
.,
1
5
}

x
(1)
i (t)

x(1)

(c) Node i’s estimate x
(1)
i (t) of the 1st entry of the so-

lution x(1) for i ∈ {1, 2, . . . , 15}.

Figure 3.4: Performance of algorithm (3.6) when there is a unique solution.

57

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

(a) A 15-node graph.

0 200 400 600
−4

−3

−2

−1

0

1

2

3

Time t

x
(ℓ
)

3
(t
)
a
n
d
x
(ℓ
)

fo
r
ℓ
∈
{
1
,
2
,
.
.
.,
1
5
}

x
(ℓ)
3 (t)

x(ℓ)

(b) Node 3’s estimate x
(ℓ)
3 (t) of the ℓth entry of the

equilibrium x(ℓ) from Theorem 3.1 for ℓ ∈ {1, 2, . . . , 15}.

0 200 400 600
−3

−2

−1

0

1

2

Time t

x
(1
)

i
(t
)
a
n
d
x
(1
)

fo
r
i
∈
{
1
,
2
,
.
.
.,
1
5
}

x
(1)
i (t)

(c) Node i’s estimate x
(1)
i (t) of the 1st entry of the equi-

librium x(1) for i ∈ {1, 2, . . . , 15}.

Figure 3.5: Performance of algorithm (3.6) when there is no solution.

58

(a) A 5-node graph. (b) Linear equations where
each node observes one row.

(c) Node i’s estimate xi(t) of the solution
(which does not exist).

Figure 3.6: Performance of algorithm (3.6) when there is no solution.

59

(a) A 5-node graph. (b) Linear equations where
each node observes one row.

(c) Node i’s estimate xi(t) of the solution.

Figure 3.7: Performance of algorithm (3.6) when there is a unique solution.

60

(a) A 5-node graph. (b) Linear equations where
each node observes one row.

(c) Node i’s estimate xi(t) of the so-
lution.

(d) Node i’s estimate xi(t) of the so-
lution.

Figure 3.8: Performance of algorithm (3.6) when there are infinitely many
solutions.

61

Chapter 4 Continuous-Time Distributed Computation
of the Perron-Frobenius Eigenvector

4.1 Introduction

The Perron-Frobenius theorem has numerous applications [128]. For

instance, the theorem plays a central role in the analysis of Markov chains and

has been applied to distributed power control in wireless networks [129], Leon-

tief’s input-output model in commodity pricing [128], and population growth

models [128], to name just a few. The Perron-Frobenius eigenvector, whose ex-

istence and uniqueness is guaranteed by the theorem, can be used to measure

the relative importance of nodes in a graph in what is called their eigenvec-

tor centrality. Indeed, eigenvector centrality has been used by Google in its

well-known PageRank algorithm to measure the relative importance of web-

pages [130] and by Leo Katz to measure the relative degree of influence of

actors within a social network [121]. Basically, what eigenvector centrality

does is it assigns a higher score to a node if the node happens to be connected

to other high-scoring nodes, in a “circular” fashion like how eigenvectors of a

matrix are defined. Figure 4.1 illustrates the concept of eigenvector centrality,

in which the color of a node represents its centrality score, or how important

it is, in the graph (e.g., red indicates a high score while blue indicates a low).

With the emergence of increasingly complex networks that often have to

operate without a designated leader [121], it is becoming desirable that nodes

62

Figure 4.1: Examples illustrating the concept of eigenvector centrality.

in such a network can analyze the network themselves, such as decentralizedly

computing the Perron-Frobenius eigenvector of a matrix associated with the

network. Unfortunately however, most of the existing methods on computing

such an eigenvector are centralized and based on the power method [130,131].

That said, a few distributed algorithms for computing eigenvectors using ran-

dom walk have been proposed in [74–76]. Other related work include [123–125]

that consider distributed estimation of Laplacian eigenvalues, [77–79] that fo-

cus on distributed estimation of the second smallest Laplacian eigenvalue (i.e.,

the algebraic connectivity), and [132] that studies distributed estimation of

arbitrary graph spectra.

In this chapter, we develop a class of continuous-time distributed al-

gorithms, which enable each node i in an undirected and connected graph to

compute the ith entry of the Perron-Frobenius eigenvector of a symmetric,

Metzler, and irreducible matrix associated with the graph, as well as the corre-

63

sponding eigenvalue. The only assumption these algorithms need is that each

node i knows row i of the matrix and who its neighbors are. We show that each

continuous-time distributed algorithm in the class is a nonlinear networked dy-

namical system with a skew-symmetric structure, whose state is guaranteed to

stay on a sphere and remain nonnegative at all times. Moreover, using LaSalle’s

invariance principle [133], we show that the state must converge asymptotically

to said eigenvector, from which the corresponding eigenvalue can then be com-

puted. Furthermore, we show that under some mild conditions, convergence at

an O(1
t
) rate can be achieved.

The outline of this chapter is as follows: Chapter 4.2 formulates the

problem. Chapter 4.3 designs the class of continuous-time distributed algo-

rithms. Chapter 4.4 analyzes their convergence behaviors and considers two

special cases. Chapter 4.5 demonstrates their effectiveness via simulation. Fi-

nally, Chapter 4.6 provides some concluding remarks. Throughout the chapter,

for any x = (x1, x2, . . . , xn) ∈ Rn, we write x ≥ 0 if xi ≥ 0 for all i; x > 0

if x ≥ 0 and x ̸= 0; and x ≫ 0 if xi > 0 for all i. In addition, we let

Z≥0 = {0, 1, . . .} denote the set of nonnegative integers.

4.2 Problem Formulation

Consider a network modeled as an undirected and connected graph G =

(V , E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂

{{i, j} : i, j ∈ V , i ̸= j} denotes the set of edges. Any two nodes i, j ∈ V

are neighbors and can communicate if and only if {i, j} ∈ E . The set of

neighbors of each node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the

communications are assumed to be delay- and error-free, with no quantization.

64

Suppose associated with the graph G is a square matrix W = [wij] ∈

RN×N satisfying the following assumption:

Assumption 4.1. The matrix W is such that: (i) for each i, j ∈ V with i ̸= j,

if {i, j} /∈ E , then wij = wji = 0; (ii) for each i, j ∈ V with i ̸= j, if {i, j} ∈ E ,

then wij = wji ≥ 0; and (iii) W is irreducible.

Notice that statements (i) and (ii) in Assumption 4.1 imply that W is

symmetric, so that all its N eigenvalues are real. Moreover, these two state-

ments require the off-diagonal entries of W to be nonnegative but place no

restriction on its diagonal entries. Thus, W is a Metzler matrix [134]. Fur-

thermore, the two statements allow wij and wji to be zero when {i, j} ∈ E .

Hence, although G is connected, they do not imply that W is irreducible [135].

Therefore, statement (iii) is not redundant. Lastly, note that W can be the

adjacency matrix of graph G, or any other matrix “induced” by G as long as

Assumption 4.1 holds.

In addition to Assumption 4.1, the following slightly more restrictive

assumption on W will be used in the latter part of the chapter:

Assumption 4.2. The matrix W is such that: (i) for each i, j ∈ V with i ̸= j,

if {i, j} /∈ E , then wij = wji = 0; and (ii) for each i, j ∈ V with i ̸= j, if

{i, j} ∈ E , then wij = wji > 0.

Note that statement (i) in Assumption 4.2 is identical to that in Assump-

tion 4.1, whereas statement (ii) in Assumption 4.2 is slightly more stringent

than that in Assumption 4.1. Also note that statement (iii) in Assumption 4.1

is not needed in Assumption 4.2 because the latter and the connectedness of G

imply that W is irreducible. Thus, Assumption 4.2 is mild and is only slightly

65

stronger than Assumption 4.1. This also implies that results obtained under

Assumption 4.1 are valid under Assumption 4.2, but not necessarily the other

way around.

With Assumption 4.1, the following can be said about W :

Proposition 4.1. The matrix W has the following properties: (i) the largest

eigenvalue of W , denoted as λ∗, is simple; (ii) the eigenspace associated with

λ∗, denoted as X ∗, is one-dimensional and is of the form X ∗ = {αx∗ : α ∈

R, α ̸= 0}, where x∗ ∈ RN and x∗ ≫ 0; and (iii) if x > 0 is an eigenvector of

W , then x ∈ X ∗.

Proof. Since W is a Metzler matrix, there exists α ∈ R such that W̃
∆
= W +αI

is a nonnegative matrix. Since W is symmetric and irreducible, so is W̃ . Thus,

the Perron-Frobenius theorem is applicable to W̃ . Next, observe that λ ∈ R

is an eigenvalue of W if and only if λ + α is an eigenvalue of W̃ . In addition,

x ∈ RN is an eigenvector of W if and only if it is an eigenvector of W̃ . These

two observations, along with the Perron-Frobenius theorem as applied to W̃ ,

imply properties (i)–(iii).

Remark 4.1. If W is nonnegative as opposed to just being Metzler, λ∗ in (i) and

x∗ ∈ X ∗ in (ii) of Proposition 4.1 would be the Perron-Frobenius eigenvalue

and eigenvector of W , respectively.

Suppose each node i ∈ V knows only Ni, wii, and wij ∀j ∈ Ni, which

it prefers to not share with any of its neighbors due perhaps to security and

privacy reasons. Yet, despite having only such local information about graph

G and matrix W , suppose every node i ∈ V wants to determine the largest

66

eigenvalue λ∗ ofW and the ith entry x∗
i of an eigenvector x∗ from the eigenspace

X ∗.

Given the above, the goal is to devise a distributed algorithm that en-

ables every node i ∈ V to asymptotically determine the aforementioned λ∗ and

x∗
i .

4.3 Design of Continuous-Time Algorithms

In this section, we develop a class of continuous-time distributed algo-

rithms that achieve the stated goal.

First, let t ≥ 0 denote time. In addition, suppose each node i ∈ V

maintains in its memory a variable xi(t) ∈ R, which represents its estimate of

the ith entry x∗
i of some eigenvector x∗ ∈ X ∗ at time t, and another variable

yi(t) ∈ R, which is defined as

yi(t) = wiixi(t) +
∑
j∈Ni

wijxj(t). (4.1)

Moreover, let

x(t) = (x1(t), x2(t), . . . , xN(t)) ∈ RN ,

y(t) = (y1(t), y2(t), . . . , yN(t)) ∈ RN ,

which we will sometimes write as x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN)

for convenience. Note that since each node i ∈ V knows Ni, wii, and wij

∀j ∈ Ni, it can determine yi(t) by querying every neighbor j ∈ Ni for xj(t).

Furthermore, with the vector notation, (4.1) may be compactly written as

y = Wx. (4.2)

67

Next, observe from Proposition 4.1 that for any x∗ ∈ X ∗ and any x ∈ RN

with ∥x∥ = ∥x∗∥, we have the tight bound

xTWx ≤ x∗TWx∗ = λ∗∥x∗∥2,

where ∥ · ∥ denotes the 2-norm. This observation suggests that, if the N nodes

are able to distributively update their estimates x(t) so that ∥x(t)∥ remains

constant ∀t ≥ 0 while x(t)TWx(t) keeps increasing, then x(t) might converge

to an x∗ ∈ X ∗. Motivated by this idea, suppose the N nodes update x(t) using

ẋ(t) = Sx(t), (4.3)

where S = [sij] ∈ RN×N is a skew-symmetric matrix, i.e., S = −ST or equiva-

lently

sii = 0 and sij = −sji, ∀i, j ∈ V . (4.4)

Since S is skew-symmetric, zTSz = 0 for all z ∈ RN . This, together with (4.3),

implies that

d

dt
∥x(t)∥2 = 2x(t)T ẋ(t) = 2x(t)TSx(t) = 0, ∀t ≥ 0.

Thus, ∥x(t)∥ remains constant ∀t ≥ 0, as desired. Because any two nodes

i, j ∈ V can communicate if and only if {i, j} ∈ E , for (4.3) to be distributively

implementable, it is necessary and sufficient that

sij = sji = 0, ∀{i, j} /∈ E . (4.5)

Hence, in what follows, we will impose condition (4.5) on S, in addition to

condition (4.4).

68

To ensure that x(t)TWx(t) keeps increasing, consider a quadratic func-

tion J : RN → R, defined as

J(x) = xTWx. (4.6)

Taking the time derivative of J in (4.6) along the solution x(t) of (4.3) and

using (4.2), (4.4), and (4.5), we obtain

J̇(x(t)) = 2x(t)TWẋ(t) = 2y(t)TSx(t)

= 2
∑
i∈V

∑
j∈V

sijyi(t)xj(t)

= 2
∑

{i,j}∈E

sij(yi(t)xj(t)− yj(t)xi(t)) (4.7a)

= 2
∑

{i,j}∈E

sji(yj(t)xi(t)− yi(t)xj(t)), (4.7b)

where (4.7a) and (4.7b) are equivalent due to (4.4), so that we can just look

at, say, (4.7a). Note that if sij in (4.7a) is such that

sij(yi(t)xj(t)− yj(t)xi(t)) ≥ 0, ∀{i, j} ∈ E , ∀t ≥ 0, (4.8)

then J̇(x(t)) ≥ 0 ∀t ≥ 0, so that J(x(t)) = x(t)TWx(t) in (4.6) increases

monotonically, perhaps even approaches its maximum. A simple way to satisfy

(4.8) is to let sij not be a constant but rather be a function of x, denoted as

sij(x) and defined as

sij(x) = yixj − yjxi, ∀{i, j} ∈ E . (4.9)

Notice from (4.1) or (4.2) that sij(x) in (4.9) is indeed a function of x. In

fact, sij(x) is implementable by each pair of neighboring nodes i and j because

they have access to xi(t), xj(t), yi(t), and yj(t) ∀t ≥ 0. Moreover, with (4.9),

not only that (4.8) holds, J(x(t)) = x(t)TWx(t) is strictly increasing whenever

yi(t)xj(t)− yj(t)xi(t)) ̸= 0 for at least one {i, j} ∈ E .

69

Although (4.9) is a simple way to satisfy (4.8), more general choices are

possible, such as letting

sij(x) = ϕ{i,j}(yixj − yjxi), ∀{i, j} ∈ E , (4.10)

where each function ϕ{i,j} : R → R is selected by neighboring nodes i and j

and has the following properties:

P1. ϕ{i,j} is locally Lipschitz.

P2. ϕ{i,j} is inside the first and third quadrants, i.e., zϕ{i,j}(z) > 0 ∀z ∈ R,

z ̸= 0.

P3. ϕ{i,j} is odd, i.e., ϕ{i,j}(z) = −ϕ{i,j}(−z) ∀z ∈ R.

Property P1, along with (4.1) and (4.10), ensures that the nonlinear dynamical

system (4.3) has a unique solution. Property P2, together with (4.10), ensures

that (4.8) holds and that J(x(t)) = x(t)TWx(t) is strictly increasing whenever

yi(t)xj(t)− yj(t)xi(t)) ̸= 0 for at least one {i, j} ∈ E . Property P3, along with

(4.10), ensures that

sij(x) = ϕ{i,j}(yixj − yjxi)

= −ϕ{i,j}(yjxi − yixj) = −sji(x), ∀{i, j} ∈ E ,

thereby preserving the skew-symmetricity of S.

Putting together the above development, we obtain a class of continuous-

time distributed algorithms described by

ẋ(t) = S(x(t))x(t), (4.11)

70

where S(x(t)) = [sij(x(t))] ∈ RN×N is given by

sij(x(t))=

{
ϕ{i,j}(yi(t)xj(t)− yj(t)xi(t)), if {i, j} ∈ E ,
0, otherwise,

and each ϕ{i,j} is endowed with Properties P1–P3. Distinguished by the choices

of the ϕ{i,j}’s, this class of algorithms can also be expressed as

ẋi(t) =
∑
j∈Ni

ϕ{i,j}(yi(t)xj(t)− yj(t)xi(t))xj(t),

∀i ∈ V , ∀t ≥ 0. (4.12)

As for the initial state x(0) of the algorithms, the only restriction is that x(0) >

0, which the nodes can easily implement, and the reason for that will be clear

shortly.

4.4 Analysis of Continuous-Time Algorithms

4.4.1 Convergence Analysis

In this subsection, we show that each algorithm in the class has certain

appealing features and achieves the goal.

Theorem 4.1. Consider the network modeled in Chapter 4.2 and let As-

sumption 4.1 hold. Suppose the continuous-time algorithm (4.11) with Prop-

erties P1–P3 is used and the initial state x(0) > 0. Then, x(t) asymptotically

converges to x∗ as t→∞, where x∗ ∈ X ∗ and ∥x∗∥ = ∥x(0)∥.

To prove Theorem 4.1, we first introduce the following notations and

lemmas. To begin, let initial state x(0) > 0 be given and let c = ∥x(0)∥ > 0.

In addition, let SN−1 = {z ∈ RN : zT z = c2} be the sphere of radius c centered

at the origin of RN , RN
+ = {z ∈ RN : z ≥ 0} be the nonnegative orthant in RN ,

and Ω = SN−1 ∩ RN
+ be their intersection.

71

With this setup, the following lemmas can be established concerning

algorithm (4.11) or (4.12):

Lemma 4.1. Consider the setup of Theorem 4.1. The following statements

hold: (i) the sphere SN−1 is a positively invariant set; (ii) the nonnegative

orthant RN
+ is a positively invariant set; (iii) the set Ω = SN−1 ∩ RN

+ is a

compact, positively invariant set.

Proof. To prove (i), let τ ≥ 0 and x(τ) ∈ SN−1. Due to (4.11) and the fact

that S(z) is skew-symmetric for all z ∈ RN , we have

d

dt
x(t)Tx(t) = 2x(t)T ẋ(t) = 2x(t)TS(x(t))x(t) = 0, ∀t ≥ τ.

Thus, x(t) ∈ SN−1 ∀t ≥ τ , implying that SN−1 is positively invariant.

To prove (ii), suppose x(t) ∈ RN
+ with xi(t) = 0 for some i ∈ V and

t ≥ 0. Then, from (4.12),

ẋi(t) =
∑
j∈Ni

ϕ{i,j}(yi(t)xj(t))xj(t). (4.13)

Since x(t) ∈ RN
+ , xj(t) ≥ 0 ∀j ∈ Ni. Because xi(t) = 0 and because of

Assumption 4.1 and (4.1), yi(t) =
∑

j∈Ni
wijxj(t) ≥ 0. Thus, yi(t)xj(t) ≥ 0

∀j ∈ Ni. Due to Properties P2 and P3, ϕ{i,j}(yi(t)xj(t)) ≥ 0 ∀j ∈ Ni. Hence,

from (4.13), we have ẋi(t) ≥ 0. It follows that whenever x(t) ∈ RN
+ and

xi(t) = 0, we have ẋi(t) ≥ 0. Therefore, RN
+ is positively invariant.

To prove (iii), note that SN−1 is compact and RN
+ is closed. Thus, being

their intersection, Ω is compact. Since (i) and (ii) hold, both SN−1 and RN
+ are

positively invariant. Hence, being their intersection, so is Ω.

Lemma 4.2. Consider the setup of Theorem 4.1. The intersection of Ω and

X ∗ has exactly one element, denoted as x∗, i.e., Ω ∩ X ∗ = {x∗}. In addition,

x∗ ≫ 0 and ∥x∗∥ = ∥x(0)∥.

72

Figure 4.2: Vector field for a 3-node path graph.

Proof. By statement (ii) of Proposition 4.1, X ∗ is one-dimensional and is of the

form X ∗ = {αz : α ∈ R, α ̸= 0}, where z ∈ RN and z ≫ 0. Thus, RN
+ ∩X ∗ is a

ray of the form {αz : α ∈ R, α > 0}. It follows that Ω∩X ∗ = SN−1 ∩RN
+ ∩X ∗

has exactly one element denoted as x∗. Since x∗ ∈ RN
+ ∩ X ∗, x∗ ≫ 0. Since

x∗ ∈ SN−1, ∥x∗∥ = c = ∥x(0)∥.

Lemmas 4.1 and 4.2 explain why the restriction x(0) > 0 is imposed

on the initial state x(0) of the algorithms. With this restriction, we have

x(0) ∈ SN−1 by definition and x(0) ∈ RN
+ , so that x(0) ∈ Ω. Since Ω is

positively invariant according to Lemma 4.1, x(t) is guaranteed to remain in

Ω ∀t ≥ 0. Since the goal is for x(t) to converge to an eigenvector in X ∗, the

fact that the intersection of Ω and X ∗ has exactly one element x∗ according to

Lemma 4.2, is appealing: it means that we may focus on establishing that the

vector field on Ω must be such that x(t) asymptotically converges to that x∗,

as illustrated in Figure 4.2 for a 3-node path graph. Our tool for doing so is

the LaSalle’s invariance principle.

73

Consider a quadratic function V : RN → R, defined as

V (x) =
1

2
(x∗TWx∗ − xTWx), (4.14)

where x∗ is from Lemma 4.2. Differentiating V in (4.14) with respect to time

t and using (4.2), (4.11), and Properties P2 and P3, we obtain

V̇ (x(t)) = −x(t)TWẋ(t)

= −y(t)TS(x(t))x(t)

= −
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))

× ϕ{i,j}(yi(t)xj(t)− yj(t)xi(t))

≤ 0. (4.15)

Next, let E ⊂ Ω ⊂ RN be defined as

E = {z ∈ Ω : V̇ (z) = 0}. (4.16)

Then, we have:

Lemma 4.3. Consider the setup of Theorem 4.1. Then, set E is given by

E = {x∗}.

Proof. First, we show that x∗ ∈ E. Notice from (4.2) that when x = x∗ =

(x∗
1, x

∗
2, . . . , x

∗
N),

y = Wx∗ = λ∗x∗ = (λ∗x∗
1, λ

∗x∗
2, . . . , λ

∗x∗
N).

Thus,

yixj − yjxi = λ∗x∗
ix

∗
j − λ∗x∗

jx
∗
i = 0, ∀{i, j} ∈ E . (4.17)

Substituting (4.17) into (4.15) yields V̇ (x∗) = 0. Hence, x∗ ∈ E.

74

Next, we show that x∗ is the only element in E. Assume, to the contrary,

that there exists another element x ∈ E with x ̸= x∗. Due to (4.15) and

Properties P2 and P3, we have

(yixj − yjxi)ϕ{i,j}(yixj − yjxi) = 0, ∀{i, j} ∈ E . (4.18)

Again due to Properties P2 and P3, ϕ{i,j}(z) = 0 if and only if z = 0. Thus,

(4.18) implies that

yixj − yjxi = 0, ∀{i, j} ∈ E . (4.19)

Now since x ∈ E ⊂ Ω, we may consider the following two cases: (i)

x ≫ 0, which means that xi > 0 ∀i ∈ V ; and (ii) x > 0 with xi = 0 for some

i ∈ V . For case (i), let αi = yi/xi ∀i ∈ V . Substituting yi = αixi into (4.19)

and using the fact that x≫ 0, we deduce that

αi − αj = 0, ∀{i, j} ∈ E . (4.20)

Since the graph G is connected, (4.20) implies that there exists α such that

αi = α ∀i ∈ V . Since y = Wx = αx, α is an eigenvalue of W and x≫ 0 is the

corresponding eigenvector. By statement (iii) of Proposition 4.1, we conclude

that α = λ∗ and x ∈ X ∗. By Lemma 4.2, x = x∗, which is a contradiction.

For case (ii), let I = {i ∈ V : xi = 0}. Then, I ̸= ∅ and I (V . Let M

denote the number of elements in I. Then, 0 < M < N . Pick any i ∈ I so

that xi = 0. Then, from (4.1) and statements (i) and (ii) of Assumption 4.1,

yi = wiixi +
∑
j∈Ni

wijxj =
∑
j∈Ni

wijxj ≥ 0. (4.21)

From (4.21), either yi > 0 or yi = 0. Suppose yi > 0. By substituting xi = 0

into (4.19), we have yixj = 0 ∀j ∈ Ni. Since yi > 0, xj = 0 ∀j ∈ Ni.

75

Substituting this into (4.21) yields yi = 0, contradicting the assumption that

yi > 0. Therefore, yi = 0. Since i ∈ I is arbitrary, we have yi = 0 ∀i ∈ I.

Next, by permuting the indices of x and y, (4.2) can be written as[
yI

yV−I

]
=

[
W11 W12

W21 W22

] [
xI

xV−I

]
,

where xI ∈ RM , xI = 0, xV−I ∈ RN−M , xV−I ≫ 0, yI ∈ RM , yI = 0,

yV−I ∈ RN−M , W11 ∈ RM×M , W12 ∈ RM×(N−M), W21 ∈ R(N−M)×M , and

W22 ∈ R(N−M)×(N−M). Because xI = 0, xV−I ≫ 0, and yI = 0 and because

of statements (i) and (ii) in Assumption 4.1, we have W12 = 0. This is a

contradiction since W is irreducible by statement (iii) in Assumption 4.1.

Combining the contradiction in case (i) and the one in case (ii), we

conclude that x∗ is the only element in E.

With the above lemmas in hand, we now prove Theorem 4.1:

Proof of Theorem 4.1. Let x(0) > 0 be given and let c, SN−1, and Ω be as

defined earlier. In addition, let x∗ be as defined in Lemma 4.2, V and E ⊂ Ω

be as defined in (4.14) and (4.16), and M ⊂ E be the largest invariant set in

E. Notice from Lemma 4.1 that Ω is compact and positively invariant with

respect to algorithm (4.11), and from (4.15) that V̇ (x) ≤ 0 for all x ∈ Ω. Also

note from Lemma 4.3 that E = {x∗}. Since M ⊂ E = {x∗}, either M = ∅ or

M = {x∗}. Since x∗ is an equilibrium point of (4.11), M = {x∗}. By LaSalle’s

invariance principle [133], x(t) asymptotically converges to x∗ as t → ∞, as

desired.

Note that since limt→∞ x(t) = x∗ and x∗ ≫ 0 by Lemma 4.2, there

exists t′ ≥ 0 such that for all t ≥ t′, x(t) ≫ 0. Hence, for all t ≥ t′, each

76

node i ∈ V could maintain an estimate λi(t) ∈ R of the unknown eigenvalue

λ∗ and define it as λi(t) = yi(t)/xi(t) without facing any division-by-zero issue.

Moreover, since limt→∞ x(t) = x∗, we have limt→∞ y(t) = λ∗x∗ from (4.2),

so that limt→∞ λi(t) = λ∗ ∀i ∈ V . Therefore, the determination of λ∗ is a

by-product of the determination of x∗ using algorithm (4.11) or (4.12).

4.4.2 Convergence Rate

In this subsection, we derive the convergence rate of a class of continuous-

time algorithms. To enable the derivation, let Assumption 4.2 hold. In addi-

tion, let ϕ{i,j}(z) ∀{i, j} ∈ E satisfy Properties P1 and P3 in Chapter 4.3 and

the following property:

P2’. There exists κ > 0 such that zϕ{i,j}(z) ≥ κz2 ∀{i, j} ∈ E ,∀z ∈ R.

Note that Assumption 4.2 and Property P2’ here are slightly more restrictive

than Assumption 4.1 and Property P2, respectively. Therefore, all the results

from Chapters 4.3 and 4.4, which are obtained under the latter, are valid here.

This means that we do not have to show again, for example, that x(t) will

remain on Ω and will asymptotically converge to x∗.

Let D ∈ {1, 2, . . . , N − 1} be the diameter of graph G. In addition, let

λ2 ∈ R and λN ∈ R be the second largest eigenvalue and the smallest eigenvalue

of W , respectively, which by Proposition 4.1 satisfy λN ≤ λ2 < λ∗. Moreover,

let

w̄ = max
i∈V

∑
j∈Ni

wij > 0, (4.22)

w̄′ = max
i∈V
|wii| ≥ 0, (4.23)

w = min
{i,j}∈E

wij > 0, (4.24)

77

β =
2D + 1

D
max{β′, β′′} > 2, (4.25)

β′ = max
{i,j}∈E

|wii|+ |wjj|
wij

≥ 0, (4.26)

β′′ = max
i∈V,j∈Ni

∑
l∈Ni

wil

wij

≥ 1. (4.27)

Since G is connected, wij > 0 ∀{i, j} ∈ E by Assumption 4.2, and D ≥ 1, we see

that the constants β, β′, and β′′ are well-defined and the rightmost inequalities

in (4.22)–(4.27) are satisfied. Lastly, let x(0) > 0 be given and c = ∥x(0)∥ > 0,

so that by Lemmas 4.1 and 4.2,

∥x∗∥ = ∥x(t)∥ = c, ∀t ≥ 0, (4.28)

0 ≤ xi(t) ≤ c, ∀i ∈ V , ∀t ≥ 0. (4.29)

The following theorem characterizes the convergence rate of the afore-

mentioned class of algorithms:

Theorem 4.2. Consider the network modeled in Chapter 4.2 and let Assump-

tion 4.2 hold. Suppose algorithm (4.12) is used. Let Properties P1, P2’, and P3

hold and let the initial state satisfy x(0) > 0. Then, for each t ≥ 0,

V (x(t)) ≤ V (x(0))

V (x(0))γt+ 1
, (4.30)

where V is as defined in (4.14) and

γ =

4κmin
{ 1

D2
,

w2

(2D + 1)2(λ∗ − λN)2

}
β2D2+2DN2

. (4.31)

In addition,

∥x(t)− x∗∥ ≤

√
4V (x(0))

(λ∗ − λ2)(V (x(0))γt+ 1)
. (4.32)

78

To appreciate Theorem 4.2, observe that γ characterizes the convergence

rate. If γ is near zero, algorithm (4.11) may converge very slowly. Because γ

depends on κ, w, D, λ∗ − λN , and β, slow convergence may occur if one or

more of the following conditions hold: (i) the algorithm parameter κ is small,

(ii) graph G has a large diameter D, (iii) the entries of W have large diagonal

elements but small off-diagonal ones so that β is large, and (iv) the eigenvalues

of W are very close to one another so that λ∗ − λN is small. On the flip

side, if conditions (i)–(iv) do not hold, then the value of γ in (4.32) would

be large, suggesting that algorithm (4.11) would converge quickly. Therefore,

Theorem 4.2 provides a glimpse into the performance of algorithm (4.11).

To prove Theorem 4.2, consider the following notations and lemmas.

Let

x(t) = min
i∈V

xi(t) ≥ 0, ∀t ≥ 0, (4.33)

x̄i(t) = max
j∈Ni

xj(t) ≤ c, ∀i ∈ V , ∀t ≥ 0. (4.34)

Due to (4.29), the rightmost inequalities in (4.33) and (4.34) are satisfied.

Lemma 4.4. Suppose Assumption 4.2 holds. For each t ≥ 0, if ∥x(t)∥ = ∥x∗∥

and x(t) > 0, then

∥x(t)− x∗∥ ≤

√
4V (x(t))

λ∗ − λ2

. (4.35)

Proof. Let t ≥ 0 be given and suppose ∥x(t)∥ = ∥x∗∥ and x(t) > 0. Let x(t)

be uniquely decomposed as x(t) = x∥(t) + x⊥(t), where x∥(t) ∈ RN is parallel

to x∗ and x⊥(t) ∈ RN is normal to x∗. Then, we have

∥x(t)∥2 = ∥x⊥(t)∥2 + ∥x∥(t)∥2, (4.36)

x⊥(t)
Tx∥(t) = 0. (4.37)

79

Using (4.36) and (4.37), we obtain

∥x(t)− x∗∥2 = ∥x⊥(t)− (x∗ − x∥(t))∥2

= ∥x⊥(t)∥2 + ∥x∗ − x∥(t)∥2

= ∥x⊥(t)∥2 + ∥x∗∥2 + ∥x∥(t)∥2 − 2x∗Tx∥(t)

= 2∥x⊥(t)∥2 + 2∥x∥(t)∥2 − 2x∗Tx∥(t). (4.38)

Since x∗ > 0 by Proposition 4.1 and x(t) > 0, we have x∗Tx(t) > 0 and so

x∗Tx∥(t) > 0. Thus,

2∥x∥(t)∥2 − 2x∗Tx∥(t) = 2(∥x∥(t)∥(∥x∥(t)∥ − ∥x∗∥)) ≤ 0.

This, along with (4.38), implies that

∥x(t)− x∗∥ ≤
√
2∥x⊥(t)∥. (4.39)

Next, by definition of x⊥(t) and x∥(t), and from (4.36) and (4.37), we

can write (4.14) as

V (x(t)) =
1

2

(
x∗TWx∗ − (x⊥(t) + x∥(t))

TW (x⊥(t) + x∥(t))
)

=
1

2
(λ∗∥x∗∥2 − λ∗∥x∥(t)∥2 − x⊥(t)

TWx⊥(t))

=
1

2
(λ∗∥x⊥(t)∥2 − x⊥(t)

TWx⊥(t))

≥ 1

2
(λ∗∥x⊥(t)∥2 − λ2∥x⊥(t)∥2).

Therefore,

∥x⊥(t)∥ ≤

√
2V (x(t))

λ∗ − λ2

.

This, along with (4.39), implies (4.35).

80

Remark 4.2. Although t is used in Lemma 4.4, it turns out that an identical

result can be proved when t is replaced by discrete-time k with the condition

that ∥x(k)∥ = ∥x∗∥ and x(k) > 0 hold. This property will be exploited later

in Chapter 5.4 when we introduce and analyze a gossip algorithm.

Lemma 4.4 shows that there is a one-to-one relationship between ∥x(t)−

x∗∥ and V (x(t)). Thus, in the following lemmas, we will focus on V (x(t))

instead of x(t).

Lemma 4.5. Consider the setup of Theorem 4.2. For each t ≥ 0, if x(t) > 0,

then

V̇ (x(t)) ≤ −4κx(t)4

c4D2
V (x(t))2, (4.40)

where V̇ is defined in (4.15).

Proof. Let t ≥ 0 be given and suppose x(t) > 0. Then, xi(t) > 0 ∀i ∈ V by

(4.33). Define zi(t) = yi(t)/xi(t) and z̃i(t) = zi(t) − λ∗ ∀i ∈ V . Moreover,

let p ∈ argmaxi∈V z̃i(t) and q ∈ argmini∈V,i ̸=p z̃i(t). By the Perron-Frobenius

theorem, z̃p(t) ≥ 0 and z̃q(t) ≤ 0. Since graph G is connected, there exists a

shortest path between nodes p and q, whose length is less than or equal to D.

Therefore, there exists {r, s} ∈ E lying on that shortest path such that

z̃r(t)− z̃s(t) ≥
1

D
(z̃p(t)− z̃q(t)).

Since z̃p(t) ≥ 0 and z̃q(t) ≤ 0,

z̃r(t)− z̃s(t) ≥ −
1

D
z̃q(t). (4.41)

Next, (4.15), Property P2’, (4.33), and (4.41) imply that

V̇ (x(t)) = −
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))

81

× ϕ{i,j}(yi(t)xj(t)− yj(t)xi(t))

≤ −κ
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))
2

= −κ
∑

{i,j}∈E

(z̃i(t)− z̃j(t))
2xi(t)

2xj(t)
2

≤ −κx(t)4
∑

{i,j}∈E

(z̃i(t)− z̃j(t))
2

≤ −κx(t)4(z̃r(t)− z̃s(t))
2

≤ −κx(t)
4

D2
z̃q(t)

2. (4.42)

Due to (4.14), (4.1), and (4.28),

V (x(t)) =
1

2

(
λ∗c2 −

∑
i∈V

zi(t)xi(t)
2
)

=
1

2

(
λ∗c2 −

∑
i∈V

(z̃i(t) + λ∗)xi(t)
2
)

= −1

2

∑
i∈V

z̃i(t)xi(t)
2 ≤ −1

2
z̃q(t)c

2. (4.43)

Since z̃q ≤ 0, (4.43) implies that

V (x(t))2 ≤ c4

4
z̃q(t)

2.

Combining this with (4.42) yields (4.40).

The above lemma indicates that the larger x(t) and V (x(t)), the faster

V (x(t)) drops to zero. Besides, by Theorem 4.1, x(t) will converge to x∗ as

t→∞ so that x(t) will converge to the smallest entry of vector x∗. Therefore,

if one of the entries of x∗ is close to zero, the rate at which V (x(t)) drops would

be small when x(t) is close to x∗. Actually, when W is “close” to reducible, at

least one entry of x∗ would be close to zero. Indeed, note that x(t) is not given

and it may depend on the initial state x(0), matrix W and other algorithm

82

parameters. Thus, in next few lemmas we study the upper bound of ˙V (x(t))

when x(t) is small.

Lemma 4.6. Suppose Assumption 4.2 holds. For each t ≥ 0, if ∥x(t)∥ = c,

x(t) > 0, and

0 < x(t) <
1

β
D2+D

2

c√
N
, (4.44)

then there exists {u, v} ∈ E such that

wuvxu(t)
2 − w̄x̄u(t)xv(t)− (|wuu|+ |wvv|)xu(t)xv(t)

≥ wc2

(2D + 1)βD2+DN
> 0. (4.45)

Proof. Let t ≥ 0 be given and suppose (4.44) holds. Let p ∈ argmaxi∈V xi(t)

and q ∈ argmini∈V,i̸=p xi(t). Since G is connected, there exists a shortest path

from nodes p to q with length L ∈ {1, 2, . . . , D}. Let the nodes lying on this

shortest path be denoted as r0, r1, . . . , rL−1, rL, where r0 = p and rL = q. It

follows that ∀m ∈ {0, 1, . . . , L − 1}, we have {rm, rm+1} ∈ E and wrmrm+1 > 0

thanks to Assumption 4.2.

We first show that there exists l ∈ {0, 1, . . . , L− 1} such that

xrm(t) ≤ βm+1xrm+1(t), ∀m ∈ {0, 1, . . . , l − 1}, (4.46)

xrl(t) > βl+1xrl+1
(t). (4.47)

Assume, to the contrary, that xrm ≤ βm+1xrm+1 ∀m ∈ {0, 1, . . . , L− 1}. Then,

xrL(t) ≥
1

βL
xrL−1

(t) ≥ 1

βL+(L−1)
xrL−2

(t)

≥ · · · ≥ 1

β
L2+L

2

xr0(t). (4.48)

83

Since xr0(t) = xp(t) ≥ xi(t) ∀i ∈ V and due to (4.28), xr0(t) ≥ c√
N
. This,

together with D ≥ L ≥ 1 and β ≥ 2, as well as (4.33) and (4.48), implies that

x(t) = xrL(t) ≥
1

β
D2+D

2

c√
N
,

which contradicts (4.44).

Next, let l ∈ {0, 1, . . . , L−1} be such that (4.46) and (4.47) hold. Then,

due to (4.46), (4.25), and D ≥ 1,

xrl(t) ≥
1

βl
xrl−1

(t) ≥ 1

βl+(l−1)
xrl−2

(t)

≥ · · · ≥ 1

β
l2+l
2

xr0(t) ≥
1

β
D2+D

2

c√
N

> 0. (4.49)

Let s0 = rl+1 and s1 = rl. In addition, let s2 ∈ argmaxi∈Ns1
xi(t), s3 ∈

argmaxi∈Ns2
xi(t), . . . , sl+2 ∈ argmaxi∈Nsl+1

xi(t). We now show that there

exists h ∈ {1, 2, . . . , l + 1} such that

xsm+1(t) > βl−m+1xsm(t), ∀m ∈ {1, 2, . . . , h− 1}, (4.50)

xsh+1
(t) ≤ βl−h+1xsh(t). (4.51)

Assume, to the contrary, that xsm+1(t) > βl−m+1xsm(t) ∀m ∈ {1, 2, . . . , l + 1}.

Then,

xsl+1
(t) > βxsl(t) > β1+2xsl−1

(t)

> · · · > β
l2+l
2 xs1(t) = β

l2+l
2 xrl(t). (4.52)

Applying (4.49) to (4.52), we have xsl+1
(t) > xr0(t) = xp(t), which contradicts

the definition of p.

Next, let h ∈ {1, 2, . . . , l+1} be such that (4.50) and (4.51) hold. Then,

applying (4.50) and the inequality β > 2 alternately, and using s1 = rl and

(4.49), we obtain

xsh(t) > βl−h+2xsh−1
(t) > xsh−1

(t) > βl−h+3xsh−2
(t)

84

> xsh−2
(t) > · · · > βlxs1(t) > xs1(t) = xrl(t)

≥ 1

β
D2+D

2

c√
N

> 0. (4.53)

Note from the definitions of s0 and s1 and from (4.47) that xs1 > βl+1xs0 . This,

along with (4.50), implies that

xsh(t) > βl−h+2xsh−1
(t). (4.54)

Now, let u = sh and v = sh−1. Then, by definition of sh+1 and (4.34),

x̄u = xsh+1
. Due to (4.53), Assumption 4.2, (4.54), (4.51), (4.25), and (4.24),

and the fact that 0 < 1
βl−h+1 ≤ 1, we have

wuvxu(t)
2 − w̄x̄u(t)xv(t)− (|wuu|+ |wvv|)xu(t)xv(t)

= wshsh−1
xsh(t)

2
(
1− w̄

wshsh−1

xsh−1
(t)

xsh(t)

xsh+1
(t)

xsh(t)

−
|wsh−1sh−1

|+ |wshsh |
wshsh−1

xsh−1
(t)

xsh(t)

)
≥ wshsh−1

xsh(t)
2
(
1− β

D

2D + 1

1

βl−h+2
βl−h+1

− β
D

2D + 1

1

βl−h+2

)
≥ w

2D + 1
xsh(t)

2. (4.55)

Applying (4.53) to (4.55), we obtain the first inequality in (4.45). Due to (4.24)

and (4.25) and sinceD ≥ 1, N ≥ 2, and c > 0, we get the second inequality.

Remark 4.3. As in Remark 4.2, although t is used in Lemma 4.6, it turns out

that an identical result can be proved when t is replaced by discrete-time k with

the condition that ∥x(k)∥ = c and x(k) > 0. We will make use of this property

later in Chapter 5.4 when we introduce and analyze a gossip algorithm.

85

Lemma 4.7. Consider the setup of Theorem 4.2. For each t ≥ 0, if (4.44)

holds, then

V̇ (x(t)) ≤ − κw2c4

(2D + 1)2β2D2+2DN2
. (4.56)

Proof. Let t ≥ 0 be given and suppose (4.44) holds. By Lemma 4.6, there

exists {u, v} ∈ E such that (4.45) holds. Because of (4.1), Assumption 4.2,

(4.29), (4.22), (4.34), and (4.45),

yv(t)xu(t)− yu(t)xv(t)

=
(
wvvxv(t) +

∑
j∈Nv

wvjxj(t)
)
xu(t)

−
(
wuuxu(t) +

∑
j∈Nu

wujxj(t)
)
xv(t)

≥ (−|wvv|xv(t) + wuvxu(t))xu(t)

− (|wuu|xu(t) + w̄x̄u(t))xv(t)

≥ wuvxu(t)
2 − w̄x̄u(t)xv(t)− (|wuu|+ |wvv|)xu(t)xv(t)

≥ wc2

(2D + 1)βD2+DN
> 0. (4.57)

Due to (4.15), Property P2’, and (4.57),

V̇ (x(t)) = −
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))

× ϕ{i,j}(yi(t)xj(t)− yj(t)xi(t))

≤ −κ
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))
2

≤ −κ(yv(t)xu(t)− yu(t)xv(t))
2

≤ − κw2c4

(2D + 1)2β2D2+2DN2
,

which is exactly (4.56).

With the above lemmas in hand, we now prove Theorem 4.2:

86

Proof of Theorem 4.2. Let t ≥ 0 be given. If

x(t) ≥ 1

β
D2+D

2

c√
N

> 0,

then from Lemma 4.5,

V̇ (x(t)) ≤ − 4κ

β2D2+2DD2N2︸ ︷︷ ︸
γ1

V (x(t))2. (4.58)

If, instead,

x(t) <
1

β
D2+D

2

c√
N
,

then from Lemma 4.7,

V̇ (x(t)) ≤ − κw2c4

(2D + 1)2β2D2+2DN2
. (4.59)

Due to (4.28) and the Rayleigh quotient,

V (x(t)) ≤ 1

2
(λ∗c2 − λNc

2).

It follows that

4V (x(t))2

(λ∗ − λN)2c4
≤ 1.

This, along with (4.59), implies that

V̇ (x(t)) ≤ − 4κw2

(2D + 1)2β2D2+2DN2(λ∗ − λN)2︸ ︷︷ ︸
γ2

V (x(t))2. (4.60)

Let γ be as defined in (4.31). Note from (4.24) and (4.25) tha γ > 0. Also note

that γ = min{γ1, γ2}, where γ1 and γ2 are defined in (4.58) and (4.60). Thus,

from (4.58) and (4.60), we have V̇ (x(t)) ≤ −γV (x(t))2. Next, consider the

87

scalar differential equation v̇(t) = −γv(t)2 with initial state v(0) = V (x(0)) ≥

0. The solution to this differential equation is

v(t) =
v(0)

v(0)γt+ 1
, ∀t ≥ 0.

By the comparison lemma [133], V (x(t)) ≤ v(t) ∀t ≥ 0. Therefore, (4.30)

holds. Finally, using (4.30) and Lemma 4.4, we obtain (4.32).

4.4.3 Special Cases

In this subsection, we consider two special cases for which less conser-

vative lower bounds on the convergence rate can be obtained.

Proposition 4.2. Consider the setup of Theorem 4.2 and suppose: G be a

complete graph; W is the adjacency matrix of G; ϕ{i,j}(z) = z ∀{i, j} ∈ E ; and

the initial state x(t) satisfies x(t) > 0 and ∥x(0)∥ = 1. Then, for each t ≥ 0,

e−4tV (x(0)) ≤ V (x(t)) ≤ e−2tV (x(0)). (4.61)

Proof. Let t ≥ 0 be given. Since G is complete and W is its adjacency matrix,

λ∗ = N − 1. It follows from (4.14) that

V (x(t)) =
1

2

(
λ∗

∑
i∈V

xi(t)
2 −

∑
i∈V

∑
j∈V−{i}

xi(t)xj(t)
)

=
1

2

(
(N − 1)

∑
i∈V

xi(t)
2 −

∑
i∈V

∑
j∈V−{i}

xi(t)xj(t)
)

=
1

2

(1
2

∑
i∈V

∑
j∈V−{i}

(xi(t)
2 + xj(t)

2)

−
∑
i∈V

∑
j∈V−{i}

xi(x)xj(t)
)

=
1

4

∑
i∈V

∑
j∈V−{i}

(xi(t)− xj(t))
2

88

=
1

2

∑
{i,j}∈E

(xi(t)− xj(t))
2. (4.62)

Because of (4.1) and (4.62),

V̇ (x(t)) = −
∑

{i,j}∈E

(yi(t)xj(t)− yj(t)xi(t))
2

= −
∑

{i,j}∈E

(
xj(t)

2 + xj(t)
∑

k∈V−{i,j}

xk(t)

− xi(t)
2 − xi(t)

∑
k∈V−{i,j}

xk(t)
)2

= −
∑

{i,j}∈E

(xj(t)− xi(t))
2
(∑

k∈V

xk(t)
)2

= −2
(∑

k∈V

xk(t)
)2

V (x(t)). (4.63)

Since x(t) > 0 and ∥x(t)∥ = ∥x(0)∥ = 1, we have 1 ≤ (
∑

k∈V xk(t))
2 ≤ 2. This,

along with (4.63), implies that −4V (x(t)) ≤ V̇ (x(t)) ≤ −2V (x(t)), so that

(4.61) holds.

Note that unlike (4.30) in Theorem 4.2, V (x(t)) decreases with expo-

nential rate when G is a complete graph.

Corollary 4.1. Consider the setup of Theorem 4.2 and suppose: G is a K-

regular graph with K ≥ 2; W is the adjacency matrix of G; ϕ{i,j}(z) = z

∀{i, j} ∈ E; and the initial state x(t) satisfies x(t) > 0 and ∥x(0)∥ = 1. Then,

for each t ≥ 0, V (x(t)) satisfies (4.30), where

γ =
1

(k − 1)2(2D + 1)2(2D+1
D

(k + 1))2D2+2DN2
. (4.64)

Proof. Since the setup here is a special case of that of Theorem 4.2, V (x(t))

satisfies (4.30). In addition, κ = 1 and c = 1. Moreover, since G is a K-regular

graph and W is its adjacency matrix, we have w̄ = k − 1, w̄′ = 0, w = 1,

89

β′′ = k − 1, β′ = 0, β = 2D+1
D

(k + 1), and λ∗ = K − 1. Since |λN | ≤ λ∗, we

have λN ≥ −(K − 1). Substituting these into (4.31) yields (4.64).

4.5 Simulation Results

In this section, we present simulation results that demonstrate the ef-

fectiveness of the continuous-time algorithm (4.12).

Consider a network with N = 20 nodes, modeled as an undirected and

connected graph G, whose topology is shown in Figure 4.3(a). Suppose W

is the adjacency matrix of G, whose entries satisfy Assumption 4.1. Suppose

algorithm (4.12) is used with each node i ∈ V letting its initial state satisfying

xi(0) > 0 and each pair of neighboring nodes i and j letting ϕ{i,j}(z) = z.

Figures 4.3(b) and 4.3(c) display the simulation result. Specifically,

Figure 4.3(b) shows that node i’s estimate xi(t) converges asymptotically to x∗
i

∀i ∈ V , while Figure 4.3(c) shows that the value of x(t)TWx(t) converges to

x∗TWx∗, both agreeing with expectation.

4.6 Conclusion

In this chapter, we have developed a class of continuous-time distributed

algorithms, with which nodes in an undirected and connected graph can com-

pute the Perron-Frobenius eigenvector of a symmetric, Metzler, and irreducible

matrix associated with the graph, as well as the corresponding eigenvalue, with

only partial information about the graph and the matrix. In addition, explicit

lower bounds on the convergence rate under slightly more restrictive condition

has been derived.

90

1

2

3

4 5

6

7

8

9

10 11

12

13
14

15

16

17

18

19

20

(a) A 20-node graph.

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x
∗

1x
∗

2

x
∗

3

x
∗

4x
∗

5

x
∗

6

x
∗

7

x
∗

8

x
∗

9

x
∗

10x
∗

11

x
∗

12

x
∗

13

x
∗

14

x
∗

15

x
∗

16x
∗

17x
∗

18x
∗

19
x
∗

20

Time t

x
i
(t
)

(b) Node i’s estimate xi(t) of x
∗
i ∀i ∈ V.

5 10 15 20
4.2

4.22

4.24

4.26

4.28

4.3

x
∗T
Wx

∗

Time t

J
(x
(t
))

=
x
(t
)T
W

x
(t
)

(c) Value of x(t)TWx(t).

Figure 4.3: Performance of continuous-time algorithm (4.12).

91

Chapter 5 Asynchronous Gossip Computation of the
Perron-Frobenius Eigenvector

5.1 Introduction

In the previous chapter, we developed a class of continuous-time dis-

tributed algorithms, which enable each node i in an undirected and connected

graph to compute the ith entry of the Perron-Frobenius eigenvector of a sym-

metric, Metzler, and irreducible matrix associated with the graph, as well as

the corresponding eigenvalue. The basic idea is to keep x(t) constant while

maximizing the value of x(t)TWx(t). It turns out that this idea can be ex-

tended to a discrete-time setting, leading to an asynchronous gossip algorithm

for computing the Perron-Frobenius eigenvector, which is provably asymptot-

ically convergent at an O(1
k
) rate under a mild assumption on the gossiping

pattern.

The outline of this chapter is as follows: Chapter 5.2 formulates the

problem. Chapter 5.3 designs the gossip algorithm, while Chapter 5.4 analyzes

its behavior. Chapter 5.5 provides simulation result for the gossip algorithm.

Finally, Chapter 5.6 provides some concluding remarks. As before, throughout

this chapter, for any x = (x1, x2, . . . , xn) ∈ Rn, we write x ≥ 0 if xi ≥ 0 for all

i; x > 0 if x ≥ 0 and x ̸= 0; and x ≫ 0 if xi > 0 for all i. Moreover, we let

Z≥0 = {0, 1, . . .} denote the set of nonnegative integers.

92

5.2 Problem Formulation

Consider a network modeled as an undirected, connected graph G =

(V , E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂

{{i, j} : i, j ∈ V , i ̸= j} denotes the set of edges. Any two nodes i, j ∈ V

are neighbors and can communicate if and only if {i, j} ∈ E . The set of

neighbors of each node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the

communications are assumed to be delay- and error-free, with no quantization.

Suppose associated with the graph G is a square matrix W = [wij] ∈

RN×N satisfying the following assumption:

Assumption 5.1. The matrix W is such that: (i) for each i, j ∈ V with i ̸= j,

if {i, j} /∈ E , then wij = wji = 0; and (ii) for each i, j ∈ V with i ̸= j, if

{i, j} ∈ E , then wij = wji > 0.

As was proved in Proposition 4.1, the matrix W has the following

properties: (i) the largest eigenvalue of W , denoted as λ∗, is simple; (ii) the

eigenspace associated with λ∗, denoted as X ∗, is one-dimensional and is of the

form X ∗ = {αx∗ : α ∈ R, α ̸= 0}, where x∗ ∈ RN and x∗ ≫ 0; and (iii) if x > 0

is an eigenvector of W , then x ∈ X ∗.

In addition to Assumption 5.1, we have another assumption on how

neighboring nodes would gossip in the graph.

Assumption 5.2. There exists a positive integer B such that for each k ∈ Z≥0

and each {i, j} ∈ E , there exists a time ℓ ∈ {k, k + 1, . . . , k +B − 1} such that

nodes i and j gossip at time ℓ.

Assumption 5.2 is mild as it can be satisfied by having, for example,

every pair of neighboring nodes gossip sufficiently often.

93

As in Chapter 4, suppose each node i ∈ V knows only Ni, wii, and wij

∀j ∈ Ni, which it prefers to not share with any of its neighbors due perhaps to

security and privacy reasons. Yet, despite having only such local information

about graph G and matrix W , suppose every node i ∈ V wants to determine

the largest eigenvalue λ∗ of W and the ith entry x∗
i of an eigenvector x∗ from

the eigenspace X ∗. The goal of this chapter is to construct a gossip algorithm

that enables every node i ∈ V to asymptotically determine the aforementioned

λ∗ and x∗
i .

5.3 Design of Gossip Algorithm

In Chapter 4.3, we designed a class of continuous-time distributed algo-

rithms based on forcing ∥x(t)∥ to be constant and making x(t)TWx(t) strictly

increasing whenever possible. As it turns out, this idea may be extended to

a gossip setting with a slightly more restrictive Assumption 5.1 instead of As-

sumption 4.1. In addition, we will show at the end of this section that a

modified version of the gossip algorithm can be used under Assumption 4.1.

To demonstrate the design, let k ∈ Z≥0 denote discrete-time and xi(k)

represent node i’s estimate of x∗ at time k. In addition, let

x(k) = (x1(k), x2(k), . . . , xN(k)),

y(k) = (y1(k), y2(k), . . . , yN(k)),

y(k) = Wx(k),

J(k) = x(k)TWx(k),

as before.

Suppose at each time k ∈ Z≥0, a single pair of neighboring nodes, say

94

nodes i and j, gossip with each other and update their estimates from xi(k)

and xj(k) to xi(k + 1) and xj(k + 1), while the rest of the N nodes remain

idle, i.e., xℓ(k + 1) = xℓ(k) ∀ℓ ∈ V − {i, j}. Following the same idea as in the

continuous-time case, the new vector x(k + 1) should be such that

∥x(k + 1)∥ = ∥x(k)∥, (5.1)

J(k + 1) ≥ J(k). (5.2)

Since the rest of the N nodes do not update their estimates, (5.1) is equivalent

to demanding that

x2
i (k + 1) + x2

j(k + 1) = x2
i (k) + x2

j(k). (5.3)

On the other hand, one way to ensure (5.2) is to select xi(k+1) and xj(k+1)

to maximize J(k + 1) subject to (5.3). Since this is an equality-constrained

maximization problem, by the method of Lagrange multipliers, we have[
∂J(k+1)
∂xi(k+1)
∂J(k+1)
∂xj(k+1)

]
= α

∂(x2
i (k+1)+x2

j (k+1))

∂xi(k+1)
∂(x2

i (k+1)+x2
j (k+1))

∂xj(k+1)

 , (5.4)

where α ∈ R is the Lagrange multiplier. Clearly, (5.4) can be simplified to[
yi(k + 1)
yj(k + 1)

]
= α

[
xi(k + 1)
xj(k + 1)

]
. (5.5)

Although (5.3) and (5.5) provide only a set of necessary conditions for

optimality, as Lemmas 5.1 and 5.2 below show, within the positive orthant

these two equations have a unique solution, which happens to maximize J(k+1)

subject to (5.3):

Lemma 5.1. If x(k) ≫ 0, then within the positive orthant (xi(k + 1), xj(k +

1))≫ 0, (5.3) and (5.5) have a unique solution, denoted as (χi, χj, α
∗).

95

Proof. Let x(k) ≫ 0 and c =
√

x2
i (k) + x2

j(k) > 0. Consider the positive

orthant (xi(k + 1), xj(k + 1))≫ 0. In addition, let

f(xi(k + 1), xj(k + 1)) =
yi(k + 1)

xi(k + 1)
− yj(k + 1)

xj(k + 1)
, (5.6)

which is well-defined. Note that f(xi(k + 1), xj(k + 1)) = 0 if and only if

(5.5) holds for some α ∈ R. Also, because y = Wx and xℓ(k + 1) = xℓ(k)

∀ℓ ∈ V − {i, j},

f(xi(k + 1), xj(k + 1))

= wii +
wijxj(k + 1) +

∑
ℓ∈Ni,ℓ̸=j wiℓxℓ(k)

xi(k + 1)

− wjj −
wjixi(k + 1) +

∑
ℓ∈Nj ,ℓ̸=iwjℓxℓ(k)

xj(k + 1)
. (5.7)

Note that as xi(k + 1) increases from 0 to c, to satisfy (5.3) xj(k + 1) must

strictly and continuously decreases from c to 0. Also note that because x(k)≫

0, ((xi(k + 1), xj(k + 1)) ≫ 0, and W is Metzler and irreducible, we have

wijxj(k+1)+
∑

ℓ∈Ni,ℓ̸=j wiℓxℓ(k) > 0 and wjixi(k+1)+
∑

ℓ∈Nj ,ℓ ̸=i wjℓxℓ(k) > 0.

Thus, as xi(k+1) increases from 0 to c, f(xi(k+1), xj(k+1)) in (5.7) strictly

and continuously decreases from +∞ to −∞. It follows from the intermediate

value theorem that there exists a unique xi(k + 1) ∈ (0, c), denoted as χi, and

the corresponding xj(k + 1) ∈ (0, c), denoted as χj, such that f(χi, χj) = 0.

This, along with (5.6), implies that (5.3) and (5.5) have a unique solution

(χi, χj)≫ 0 and α∗ ∈ R.

Lemma 5.2. If x(k) ≫ 0, then (χi, χj) ≫ 0 from Lemma 5.1 maximizes

J(k + 1) subject to (5.3).

Proof. Let x(k) ≫ 0 and (χi, χj) ≫ 0 be from Lemma 5.1. In addition, let

χ ∈ RN be a vector whose entries i and j are χi and χj, respectively, and whose

96

entry ℓ is xℓ(k) ∀ℓ ∈ V − {i, j}. Moreover, recall that xi(k + 1) and xj(k + 1)

are the optimization variables, and that xℓ(k + 1) = xℓ(k) ∀ℓ ∈ V − {i, j}.

Furthermore, let f(z) = zTWz. With these notations, Lemma 5.2 is proved if

we can show that f(χ) ≥ f(x(k + 1)) for all xi(k + 1) and xj(k + 1) satisfying

(5.3). To this end, let x̃ = χ − x(k + 1) and x̃ℓ denote entry ℓ of x̃ ∀ℓ ∈ V .

Then, since χ2
i +χ2

j = x2
i (k+1)+x2

j(k+1) = x2
i (k)+x2

j(k), it is straightforward

to show that

x̃2
i + x̃2

j = 2χix̃i + 2χjx̃j. (5.8)

Moreover, by using W = W T , α∗ from Lemma 5.1, (5.5), and (5.8), we can

write

f(χ)− f(x(k + 1))

= χTWχ− x(k + 1)TWx(k + 1)

= (χ− x(k + 1))T (Wχ+Wx(k + 1))

=
[
x̃i x̃j

] [2α∗χi − wiix̃i − wijx̃j

2α∗χj − wjjx̃j − wjix̃i

]
=

[
x̃i x̃j

] [α∗ − wii −wij

−wji α∗ − wjj

] [
x̃i

x̃j

]
. (5.9)

Furthermore, due again to (5.5) and to x(k) ≫ 0, (χi, χj) ≫ 0, and W being

Metzler,

α∗ − wii =
wijχj + di

χi

≥ 0,

α∗ − wjj =
wjiχi + dj

χj

≥ 0,

(α∗ − wii)(α
∗ − wjj)− wijwji =

wjiχidi + wijχjdj + didj
χiχj

≥ 0, (5.10)

where di =
∑

ℓ∈Ni,ℓ̸=j wiℓxℓ(k) and dj =
∑

ℓ∈Nj ,ℓ̸=iwjℓxℓ(k). Thus, the 2-by-

2 matrix in (5.9) is positive semidefinite, so that f(χ) ≥ f(x(k + 1)) for all

xi(k + 1) and xj(k + 1) satisfying (5.3), as desired.

97

Lemmas 5.1 and 5.2 call for a few remarks. First, at each time k ∈ Z≥0,

the pair of gossiping nodes, say, nodes i and j, can let xi(k + 1) = χi and

xj(k+1) = χj, where (χi, χj)≫ 0 is from Lemma 5.1. Second, as suggested in

the proof of Lemma 5.1, χi and χj, which are both positive, may be computed

by either node i or node j from

wii +
wijχj +

∑
ℓ∈Ni,ℓ̸=j wiℓxℓ(k)

χi

= wjj +
wjiχi +

∑
ℓ∈Nj ,ℓ̸=iwjℓxℓ(k)

χj

(5.11)

and

χ2
i + χ2

j = x2
i (k) + x2

j(k) (5.12)

using, for example, the bisection method. Third, if x(k)≫ 0, then x(k+1)≫ 0,

implying that if the initial estimates satisfy x(0)≫ 0, then all future estimates

satisfy x(k) ≫ 0 ∀k ∈ {1, 2, . . .}. Finally, the above remarks suggest a gos-

sip algorithm, with which the sequence (J(0), J(1), J(2), . . .) is non-decreasing

and is, in fact, incrementally maximized by the gossiping nodes, according

to Lemma 5.2. A complete description of this gossip algorithm, including its

communication and computation aspects, is given below:

Algorithm 5.1 (Gossip Algorithm).

Initialization:

1. Each node i ∈ V creates a variable xi ∈ R and initializes it: xi ←

random(0, 1).

Operation: At each iteration:

2. A node, say, node i ∈ V , initiates the iteration and selects a neighbor,

say, node j ∈ Ni, to gossip.

98

3. Node i transmits a message to every node ℓ ∈ Ni, ℓ ̸= j, requesting their

xℓ’s.

4. Node j transmits a message to every node ℓ ∈ Nj, ℓ ̸= i, requesting their

xℓ’s.

5. Node j transmits
∑

ℓ∈Nj ,ℓ ̸=i wjℓxℓ, wjj, and xj to node i.

6. Node i computes (χi, χj)≫ 0 from (5.11) and (5.12).

7. Node i updates xi: xi ← χi.

8. Node i transmits χj to node j.

9. Node j updates xj: xj ← χj. �

In Step 1 of Algorithm 5.1, random(0, 1) generates a random number

strictly between 0 and 1, thus ensuring the required x(0) ≫ 0. In Step 2,

how nodes i and j are selected to gossip can be realized either randomly (e.g.,

equiprobably) or deterministically (e.g., periodically).

Remark 5.1. Note that when G is a complete graph and W is its adjacency

matrix, Algorithm 5.1 becomes a pairwise equalizing algorithm, with which

every pair of gossiping nodes i and j simply equalize their state variables while

maintaining their sum-of-squares, i.e., xi(k + 1) = xj(k + 1) =
√

xi(k)2+xj(k)2

2
.

5.4 Analysis of Gossip Algorithm

In this section, we analyze the convergence of Algorithm 5.1 and char-

acterize its convergence rate. The analysis is carried out under Assumption 5.1

and Assumption 5.2.

In addition, similar to Chapter 4.4.2, let D ∈ {1, 2, . . . , N−1} be the di-

ameter of graph G, λN ≤ λ2 < λ∗ be the smallest and second largest eigenvalue

of W as before, and the constant w̄, w̄′, w, β be as defined in (4.22)–(4.25).

99

Moreover, let x(0) ≫ 0 be given and let c = ∥x(0)∥. Thus, by Algo-

rithm 5.1,

∥x∗∥ = ∥x(k)∥ = c, ∀k ∈ Z≥0, (5.13)

0 ≤ xi(k) ≤ c, ∀i ∈ V , ∀k ∈ Z≥0. (5.14)

The following lemma characterizes the convergence rate of the gossip

algorithm.

Theorem 5.1. Consider the network modeled in Chapter 5.2, and let Assump-

tions 5.1 and 5.2 hold. Suppose Algorithm 5.1 is used and the initial state

satisfies x(0)≫ 0. Then, for each k ∈ Z≥0,

V (x(k)) ≤ V (x(0))

V (x(0))γ′
⌊
k
B

⌋
+ 1

, (5.15)

where

γ′ = min{γ′
1, γ

′
2} > 0,

γ′
1 =

2w/(B2c2Nβ2D2+2D)

(β
D2+D

2 (λ∗ − λN) + 4w̄D
√
N)2

,

γ′
2 =

8w(w̄ + w̄′)2
(√

1 + w(w̄+2w̄′)/(w̄+w̄′)

4(2D+1)βD2+DN
− 1

)2

(w̄ + 2w̄′)2B2c2(λ∗ − λN)
. (5.16)

In addition,

∥x(k)− x∗∥ ≤

√
4V (x(0))

(λ∗ − λ2)(V (x(0))γ′
⌊
k
B

⌋
+ 1)

. (5.17)

To prove Theorem 5.1, we first establish the following lemmas:

Lemma 5.3. Suppose Assumption 5.1 holds. For each k ∈ Z≥0, if ∥x(k)∥ =

∥x∗∥ and x(k) > 0, then

∥x(k)− x∗∥ ≤

√
4V (x(k))

λ∗ − λ2

. (5.18)

100

Proof. Replacing t by k in the proof of Lemma 4.4 , we obtain the (5.18).

Similar to the proof in Chapter 4.4.2, we focus on V (x(k)) in the fol-

lowing lemmas:

Lemma 5.4. Consider the setup of Theorem 5.1. Then, for each k ∈ Z≥0,

V (x(k))− V (x(k + 1)) ≥ w∥x(k + 1)− x(k)∥2.

Proof. Let k ∈ Z≥0 be given and let nodes i and j be the pair of gossiping

nodes at time k. In addition, let x̃ = x(k + 1)− x(k) and x̃ℓ denote entry ℓ of

x̃ ∀ℓ ∈ V . Then, in view of (4.14), (5.10), and Assumption 5.1, we can write

V (x(k))− V ((k + 1))

=
[
x̃i x̃j

] [α∗ − wii −wij

−wji α∗ − wjj

] [
x̃i

x̃j

]
≥ w

[
x̃i x̃j

] [xj(k+1)

xi(k+1)
−1

−1 xi(k+1)
xj(k+1)

] [
x̃i

x̃j

]
= w

(xi(k + 1)xj(k)− xj(k + 1)xi(k))
2

xi(k + 1)xj(k + 1)

≥ w
(
(xi(k + 1)− xi(k))

2 + (xj(k + 1)− xj(k))
2
)

= w∥x(k + 1)− x(k)∥2.

Next, for convenience, let

x(k) = min
i∈V

xi(k) > 0, ∀k ∈ Z≥0, (5.19)

x̄i(k) = max
j∈Ni

xj(k) ≤ c, ∀i ∈ V , ∀k ∈ Z≥0, (5.20)

zi(k) =
yi(k)

xi(k)
, ∀i ∈ V , ∀k ∈ Z≥0, (5.21)

z̃i(k) = zi(k)− λ∗, ∀i ∈ V , ∀k ∈ Z≥0. (5.22)

101

Since x(0) ≫ 0 and due to Algorithm 5.1, x(k) ≫ 0 ∀k ∈ Z≥0. Thus, the

inequality in (5.19) holds. Therefore, zi(k) and z̃i(k) in (5.21) and (5.22) are

well-defined. Because of (5.14), inequality in (5.20) holds.

Lemma 5.5. Consider the setup of Theorem 5.1. For each k ∈ Z≥0, if k0 ∈

{k, k + 1, . . . B − 1}, then

xi(k)−Bθ ≤xi(k0 + 1) ≤ xi(k) +Bθ, ∀i ∈ V , (5.23)

where

θ =

√
2(V (x(k))− V (x(k +B)))

w
≥ 0. (5.24)

Proof. Let k ∈ Z≥0 be given. Due to Algorithm 5.1, V (x(k)) ≥ V (x(k + 1)) ≥

· · · ≥ V (x(k + B)) ∀k ∈ Z≥0, so that θ is well-defined and satisfies θ ≥ 0. Let

k0 ∈ {k, k + 1, . . . B − 1} be given. By Lemma 5.4, ∀m ∈ {k, k + 1, . . . , k0},

V (x(k))− V (x(k +B)) ≥ V (x(m))− V (x(m+ 1))

≥ 1

2
w∥x(m)− x(m+ 1)∥2

≥ 1

2
w|xi(m)− xi(m+ 1)|2, ∀i ∈ V . (5.25)

This, together with (5.24), implies that ∀i ∈ V ,

|xi(k0 + 1)− xi(k)|

≤
∑

m∈{k,k+1,...,k0}

|xi(m+ 1)− xi(m)|

≤ (k0 − k + 1)θ ≤ Bθ. (5.26)

Combining (5.25) and (5.26) yields (5.24).

Lemma 5.6. Consider the setup of Theorem 5.1. For each k ∈ Z≥0,

V (x(k))− V (x(k +B))

102

≥ w x(k)4

2B2(x(k)V (x(k)) + 2w̄c3D)2
V (x(k))2. (5.27)

Proof. Let k ∈ Z≥0 be given. In addition, let p ∈ argmaxi∈V z̃i(k) and q ∈

argmini∈V,i ̸=p z̃i(k). Then, either z̃p(k) = z̃q(k) or z̃p(k) > z̃q(k). First, suppose

z̃p(k) = z̃q(k). Then, z̃i(k) ∀i ∈ V are equal, and so do zi(k) ∀i ∈ V . Let

zi(k) = λ ∈ R, ∀i ∈ V . This, together with (5.21) and (4.1), implies that

λx(k) = y(k) = Wx(k), so that λ is an eigenvalue of W with x(k) being its

eigenvector. Since x(k) ≫ 0 and by the Perron-Frobenius theorem, λ = λ∗

and x(k) = x∗. Thus, V (x(k)) = 0. Since V (x(k)) − V (x(k + B)) ≥ 0 by

Algorithm 5.1, (5.27) holds.

Next, suppose z̃p(k) > z̃q(k). Then, since graph G is connected, there

exists a shortest path between nodes p and q, whose length is less than or

equal to D. Thus, there exists {r, s} ∈ E lying on that shortest path such that

z̃r(k) − z̃s(k) ≥ 1
D
(z̃p(k) − z̃q(k)) > 0. By the Perron-Frobenius theorem and

definition of z̃p(k) and z̃q(k), we have z̃p(k) > 0 and z̃q(k) < 0. It follows that

z̃r(k)− z̃s(k) > −
1

D
z̃q(k) > 0. (5.28)

Since (5.13), (4.14) and (5.28),

V (x(k)) =
1

2
(x∗TWx∗ − x(k)TWx(k))

=
1

2

(
λ∗c2 −

∑
i∈V

zi(k)xi(k)
2
)

=
1

2

(
λ∗c2 −

∑
i∈V

(z̃i(k) + λ∗)xi(k)
2
)

= −1

2

(∑
i∈V

z̃i(k)xi(k)
2
)

≤ −1

2
z̃q(k)c

2 ≤ 1

2
c2D(z̃r(k)− z̃s(k)). (5.29)

103

By Assumption 5.2, there exists k0 ∈ {k, k+1, . . . , k+B− 1} such that nodes

r and s gossip at time k0. Thus, from Algorithm 5.1,

zr(k0 + 1) = zs(k0 + 1). (5.30)

Since k0 ∈ {k, k+1, . . . , k+B−1}, by Lemma 5.5, (5.23) holds. We next show

that

θ ≥ x(k)2

B(x(k) + 4w̄c/(z̃r(k)− z̃s(k)))
. (5.31)

Assume, to the contrary, that (5.31) does not hold. Note from (5.23) and (5.14)

that if θ = 0, then xi(k0+1) = xi(k) > 0 ∀i ∈ V . Thus, zr(k0+1)−zs(k0+1) =

zr(k) − zs(k) = z̃r(k) − z̃s(k) > 0, which contradicts (5.30). Now suppose

0 < θ < x(k)2

B(x(k)+4w̄c/(z̃r(k)−z̃s(k)))
. This, along with (5.28), implies that θ < x(k)

B
,

so that x(k)− Bθ > 0 and xi(k)− Bθ > 0 ∀i ∈ V . This, together with (5.23),

(5.13), (5.19), (5.22), (4.1), and (4.22), implies that

z̃r(k)− z̃r(k0 + 1) =
yr(k)

xr(k)
− yr(k0 + 1)

xr(k0 + 1)

=

∑
j∈Nr

wrjxj(k)

xr(k)
−

∑
j∈Nr

wrjxj(k0 + 1)

xr(k0 + 1)

≤
∑

j∈Nr
wrjxj(k)

xr(k)
−

∑
j∈Nr

wrj(xj(k)−Bθ)

xr(k) +Bθ

=
Bθ(

∑
j∈Nr

wrjxj(k) + xr(k)
∑

j∈Nr
wrj)

xr(k)(xr(k) +Bθ)

<
2w̄c

x(k)2/(Bθ) + x(k)
<

z̃r(k)− z̃s(k)

2
. (5.32)

Similarly,

z̃s(k0 + 1)− z̃s(k) =
ys(k0 + 1)

xs(k0 + 1)
− ys(k)

xs(k)

=

∑
j∈Ns

wsjxj(k0 + 1)

xs(k0 + 1)
−

∑
j∈Ns

wsjxj(k)

xs(k)

104

≤
∑

j∈Ns
wsj(xj(k) +Bθ)

xs(k)−Bθ
−

∑
j∈Ns

wsjxj(k)

xs(k)

=
Bθ(

∑
j∈Ns

wsjxj(k) + xs(k)
∑

j∈Ns
wsj)

xs(k)(xs(k)−Bθ)

<
2w̄c

x(k)2/(Bθ)− x(k)
≤ z̃r(k)− z̃s(k)

2
. (5.33)

Adding both sides of (5.32) and (5.33), we obtain z̃r(k0 + 1)− z̃s(k0 + 1) > 0.

This, along with (5.22), implies that zr(k0 + 1) − zs(k0 + 1) = z̃r(k0 + 1) −

z̃s(k0 + 1) > 0, which contradicts (5.30). Thus, (5.31) holds.

Now, replacing z̃r(k)− z̃s(k) and θ in (5.31) with (5.29) and (5.24), we

obtain

V (x(k))− V (x(k +B))

≥ w x(k)4

2B2(x(k) + 2w̄c3D/(V (x(k))))2

=
w x(k)4

2B2(x(k)V (x(k)) + 2w̄c3D)2
V (x(k))2,

as desired.

Lemma 5.7. Suppose Assumption 5.1 holds. For each k ∈ Z≥0, if ∥x(k)∥ = c,

x(k) > 0, and

x(k) <
1

β
D2+D

2

c√
N
, (5.34)

then there exists {u, v} ∈ E such that

wuvxu(k)
2 − w̄x̄uxv(k)− (|wuu|+ |wvv|)xu(k)xv(k)

≥ wc2

(2D + 1)βD2+DN
. (5.35)

Proof. Replace t in the proof of Lemma 4.7 by k, we establish the lemma.

105

Lemma 5.8. Consider the setup of Theorem 5.1. For each k ∈ Z≥0, if (5.34)

holds, then

V (x(k))− V (x(k +B))

≥
(√

1 +
w(w̄ + 2w̄′)/(w̄ + w̄′)

4(2D + 1)βD2+DN
− 1

)24w(w̄ + w̄′)2c2

(w̄ + 2w̄′)2B2
. (5.36)

Proof. Let k ∈ Z≥0 be given and suppose (5.34) holds. By Lemma 5.7, there

exists {u, v} ∈ E such that (5.35) holds. By Assumption 5.2, there exists

k0 ∈ {k, k+1, . . . , k+B− 1} such that nodes u and v gossip at time k0. From

Algorithm 5.1,

yv(k0 + 1)xu(k0 + 1)− yu(k0 + 1)xv(k0 + 1) = 0. (5.37)

In addition, since k0 ∈ {k, k + 1, . . . , k + B − 1}, (5.23) holds. Due to (5.20)

and (5.23),

x̄u(k0 + 1) = max
j∈Nu

xj(k0 + 1)

≤ max
j∈Nu

(xj(k) +Bθ) = x̄u(k) +Bθ.

This, together with Assumption 5.1, (4.1), (5.13), (5.23), (5.35), and (4.22),

implies that

yv(k0 + 1)xu(k0 + 1)− yu(k0 + 1)xv(k0 + 1)

=
(
wvvxv(k0 + 1) +

∑
j∈Nv

wjvxj(k0 + 1)
)
xu(k0 + 1)

−
(
wuuxu(k0 + 1) +

∑
j∈Nu

wjuxj(k0 + 1)
)
xv(k0 + 1)

≥ (−|wvvxv(k0 + 1)|+ wuvxu(k0 + 1))xu(k0 + 1)

− (|wuu|xu(k0 + 1) + w̄x̄u(k0 + 1))xv(k0 + 1)

= wuvxu(k0 + 1)2 − w̄x̄u(k0 + 1)xv(k0 + 1)

106

− (|wuu|+ |wvv|)xu(k0 + 1)xv(k0 + 1)

≥ wuv(xu(k)−Bθ)2 − w̄(x̄u(k) +Bθ)(xv(k) + Bθ)

− (|wuu|+ |wvv|)(xu(k) +Bθ)(xv(k) +Bθ)

= wuvxu(k)
2 − w̄x̄u(k)xv(k)− (|wuu|+ |wvv|)xu(k)xv(k)

−Bθ(2wuvxu(k) + w̄(x̄u(k) + xv(k))

+ (|wuu|+ |wvv|)(xu(k) + xv(k)))

−B2θ2(−wuv + w̄ + |wuu|+ |wvv|)

≥ wc2

(2D + 1)βD2+DN
− 2Bθc(wuv + w̄ + |wuu|+ |wvv|)

−B2θ2(−wuv + w̄ + |wuu|+ |wvv|)

≥ wc2

(2D + 1)βD2+DN
− 4Bθc(w̄ + w̄′)−B2θ2(w̄ + 2w̄′).

This, along with (5.37) and (5.24), implies that

θ ≥
(√

1 +
w(w̄ + 2w̄′)/(w̄ + w̄′)

4(2D + 1)βD2+DN
− 1

) 2(w̄ + w̄′)c

(w̄ + 2w̄′)B
.

Due again to (5.24), we obtain (5.36).

With the above lemmas in hand, we now prove the Theorem 5.1.

Proof of Theorem 5.1. First, we show that ∀k ∈ Z≥0,

V (x(k))− V (x(k +B)) ≥ γ′V (x(k))2, (5.38)

where γ′ is as defined in Theorem 5.1 and satisfies

1

8V (x(k))
≥ γ′ > 0. (5.39)

Let k ∈ Z≥0 be given. Due to (5.13) and the Rayleigh quotient,

V (x(k)) ≤ 1

2
(λ∗c2 − λNc

2). (5.40)

107

Because of (5.40) and since λ∗ > λN ,

0 <
4V (x(k))2

(λ∗ − λN)2c4
≤ 1. (5.41)

Consider the following two cases: (i) x(k) ≥ 1

β
D2+D

2

c√
N
; (ii) x(k) < 1

β
D2+D

2

c√
N
.

For case (i), due to Lemma 5.6 and (5.40) and since λ∗ > λN ,

V (x(k))− V (x(k +B))

≥ w x(k)4

2B2(x(k)V (x(k)) + 2w̄c3D)2
V (x(k))2

≥ w x(k)4

2B2(1
2
x(k)(λ∗ − λN)c2 + 2w̄c3D)2

V (x(k))2.

≥ 2w/(B2c2Nβ2D2+2D)

(β
D2+D

2 (λ∗ − λN) + 4w̄D
√
N)2︸ ︷︷ ︸

γ′
1

V (x(k))2. (5.42)

From (5.42), (4.22), (4.25), and (4.24), and because x(k) ≤ c, λ∗ > λN , B ≥ 1,

D ≥ 1, we have

0 < γ′
1 ≤

w x(k)4

2B2(1
2
x(k)(λ∗ − λN)c2 + 2w̄c3D)2

≤ w x(k)4

2B2(2x(k)(λ∗ − λN)c2w̄c3D)

≤ 1

4(λ∗ − λN)c2
. (5.43)

Due to (5.40) and (5.43),

0 < γ′
1 ≤

1

8V (x(k))
. (5.44)

For case (ii), due to Lemma 5.8 and (5.41),

V (x(k))− V (x(k +B))

≥
8w(w̄ + w̄′)2

(√
1 + w(w̄+2w̄′)/(w̄+w̄′)

4(2D+1)βD2+DN
− 1

)2

(w̄ + 2w̄′)2B2c2(λ∗ − λN)︸ ︷︷ ︸
γ′
2

V (x(k))2. (5.45)

108

Clearly, γ′
2 > 0. Combining this with (5.42), (5.45), (5.44), and (5.16), we

obtain (5.38) and (5.39).

Next, we show by induction that ∀k′ ∈ Z≥0,

V (x(k′B)) ≤ V (x(0))

V (x(0))γ′k′ + 1
. (5.46)

First, (5.46) holds for k′ = 0. Next, suppose (5.46) holds for some k′
0 ≥ 0, i.e.,

V (x(k′
0B)) ≤ V (x(0))

V (x(0))γ′k′
0 + 1

. (5.47)

Due to (5.38), V (x(k′
0B)) ≤ 1

8γ′ < 1
2γ′ . This, along with (5.38) and (5.47),

implies that

V (x((k′
0 + 1)B))

≤ V (x(k′
0B))− γ′V (x(k′

0B))2

≤ V (x(0))

V (x(0))γ′k′
0 + 1

− γ′(
V (x(0))

V (x(0))γ′k′
0 + 1

)2

=
V (x(0))(V (x(0))γ′k′

0 + 1)− V (x(0))2γ′

(V (x(0))γ′k′
0 + 1)2

=
V (x(0))

V (x(0))γ′(k′
0 + 1) + 1

− V (x(0))3γ′2 + 2V (x(0))2γ′

(V (x(0))γ′k′
0 + 1)2(V (x(0))γ′(k′

0 + 1) + 1)

≤ V (x(0))

V (x(0))γ′(k′
0 + 1) + 1

.

It follows that (5.46) holds for k′
0 + 1. Therefore, (5.46) holds.

Finally, let k ∈ Z≥0 be given. Due to Algorithm 5.1 and definition of

⌊·⌋,

V (x(k)) ≤ V (x(
⌊
k
B

⌋
B)). (5.48)

Applying (5.46) to (5.48), we obtain (5.15). From (5.15) and Lemma 5.3, we

obtain (5.17).

109

Remark 5.2. A slightly modified version of Algorithm 5.1 can used with As-

sumption 4.1. To see this, suppose G = {V , E} is as given in Chapter 4.2 and

Assumption 4.1 holds. Let W ′ = W and G ′ = {V ′, E ′}, where V ′ = V and

E ′ = {{i, j} : {i, j} ∈ E and wij > 0}. Then, G ′ is connected since W is

irreducible. Thus, W ′ satisfies Assumption 5.1, so that Algorithm 5.1 can be

used for G ′ and W ′ to find the eigenvector x∗ of W ′, which is also the eigen-

vector of W . Therefore, we can let step 2 of Algorithm 5.1 be such that node

i only picks its neighbor j ∈ Ni to gossip if wij > 0. This algorithm is always

well-defined since W satisfies Assumption 4.1.

5.5 Simulation Results

Consider a network with N = 20 nodes, modeled as an undirected,

connected graph G, whose topology is shown in Figure 5.1(a). Suppose W is

the adjacency matrix of G, whose entries satisfy Assumption 5.1. Also suppose

Algorithm 5.1 is used, where each node i ∈ V lets its initial state satisfying

xi(0) > 0, and each pair of nodes i and j with {i, j} ∈ E is selected to gossip

periodically, so that B in Assumption 5.2 can be taken as B = |E|.

Figures 5.1(b) and 5.1(c) display the simulation result. Specifically, Fig-

ure 5.1(b) shows that node i’s estimate xi(k) asymptotically converges to x∗
i

∀i ∈ V . Figure 5.1(c) shows that the value of x(k)TWx(k)increases monotoni-

cally and converges to x∗TWx∗. Again, the result agrees with expectation.

5.6 Conclusion

In this chapter, we have developed a gossip algorithm, with which nodes

in an undirected and connected graph can compute the Perron-Frobenius eigen-

110

vector of a symmetric, Metzler, and irreducible matrix associated with the

graph, as well as the corresponding eigenvalue, with only partial information

about the graph and the matrix. In addition, we have derived a lower bound

on its convergence rate under a slightly more restrictive condition.

111

1

2

3

4 5

6

7

8

9

10 11

12

13
14

15

16

17

18

19

20

(a) A 20-node graph.

100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
∗

1x
∗

2

x
∗

3

x
∗

4x
∗

5

x
∗

6

x
∗

7

x
∗

8

x
∗

9

x
∗

10x
∗

11

x
∗

12

x
∗

13

x
∗

14

x
∗

15

x
∗

16x
∗

17x
∗

18x
∗

19x
∗

20

Time k

x
i
(k
)

(b) Node i’s estimates xi(k)of x
∗
i ∀i ∈ V.

100 200 300 400 500 600
3.4

3.6

3.8

4

4.2

4.4

x
∗T
Wx

∗

Time k

J
(x
(k
))

=
x
(k
)T
W

x
(k
)

(c) Value of x(k)TWx(k).

Figure 5.1: Performance of gossip algorithm.

112

Chapter 6 Conclusions

6.1 Overall Summary

In this dissertation, we have developed a novel collection of control

theory-based distributed algorithms, which enable nodes in a graph (repre-

senting, for example, a communication/social/transportation/power network)

to cooperatively compute several quantities of common interest, with only local

interaction and without any centralized coordination. These algorithms can be

used to: (i) estimate the spectrum of a graph, thus allowing the nodes to infer

about the graph structure; (ii) calculate the solution to a general system of

linear equations that arise in a variety of ways; and (iii) compute the Perron-

Frobenius eigenvector, thus allowing the nodes to determine their eigenvector

centrality representing their relative importance in the graph.

More specifically, in Chapter 2, a two-stage distributed algorithm has

been constructed, with which nodes can jointly estimate the spectrum of a

matrix associated with the graph. In the first stage, the algorithm uses a

discrete-time linear iteration and the Cayley-Hamilton theorem to convert the

problem into one of solving a set of linear equations, where each equation is

known to a node. In the second stage, if the nodes happen to know that said

matrix is cyclic, the algorithm uses a Lyapunov approach to asymptotically

solve the equations with an exponential rate of convergence. If they do not

know whether said matrix is cyclic, the algorithm uses a random perturba-

113

tion approach and a structural controllability result to approximately solve the

equations with an error that can be made small.

In Chapter 3, a continuous-time distributed algorithm has been devel-

oped that allows nodes in an undirected and connected graph to collaboratively

solve a general system of linear equations, where the only assumption is that

each equation is known to at least one node. We have shown that the algo-

rithm enables the nodes to asymptotically agree on a solution when there are

infinitely many solutions, determine the solution when there is exactly one,

and discover that no solution exists when there are none. In addition, we

have proved that the algorithm is globally exponentially convergent, derived

an explicit lower bound on its convergence rate, and shown that under certain

conditions, the larger the graph’s algebraic connectivity, or the further away

from being singular the system of equations, the larger this lower bound.

In Chapter 4, a class of continuous-time distributed algorithms have

been devised, which enable each node i in an undirected and connected graph

to compute the ith entry of the Perron-Frobenius eigenvector of a symmetric,

Metzler, and irreducible matrix associated with the graph, as well as the cor-

responding eigenvalue, when node i knows only row i of the matrix. We have

shown that each continuous-time distributed algorithm in the class is a nonlin-

ear networked dynamical system with a skew-symmetric structure, whose state

is guaranteed to stay on a sphere, remain nonnegative, and converge asymp-

totically to the said eigenvector at an O(1
t
) rate. In addition, in Chapter 5, we

have shown that the same idea that yields the continuous-time algorithms can

be extended to a discrete-time setting, leading to an asynchronous gossip algo-

rithm for computing the Perron-Frobenius eigenvector, which has been proven

to be asymptotically convergent at an O(1
k
) rate under a mild assumption on

114

the gossiping pattern.

6.2 Future Work

In our opinion, distributed computation over networks will remain a

vibrant area of research for years to come. In terms of the three topics addressed

in this dissertation, we see the following possible future work:

• Making the graph spectrum estimation algorithm converge faster in large

networks: Although the two-stage algorithm we developed in Chapter 2

is capable of estimating, at least in theory, the spectrum of a graph of

arbitrary size as long as the required assumptions are met, its actual con-

vergence rate may decrease substantially as the size of the graph grows.

Indeed, this phenomenon has been observed in our simulation results.

An explanation for the phenomenon is that the matrix constructed in

the first stage of the algorithm tends to be poorly conditioned or nearly

singular in a large network, triggering a very slow convergence rate in the

second stage. Therefore, a possible future research direction is to come up

with a brand new distributed algorithm, which completely sidesteps the

need to form a potentially poorly-conditioned or nearly-singular matrix,

or quickly solves the resulting linear equations despite the matrix having

these issues.

• Extension of the continuous-time eigenvector centrality computation algo-

rithm to handle non-symmetric matrices and directed graphs: The class of

continuous-time distributed algorithms we developed in Chapter 4 is able

to compute the Perron-Frobenius eigenvector of any symmetric, Metzler,

115

and irreducible matrix associated with any undirected graph. In particu-

lar, the symmetricity allows us to introduce a Lyapunov function candi-

date for algorithm derivation and analysis. Given that non-symmetric

matrices and directed graphs not uncommon in applications, another

worthy future research direction is to extend our results to the follow-

ing two cases: (i) the graph is still undirected but the matrix may not

be symmetric; and (ii) the graph is directed so that the matrix is neces-

sarily non-symmetric. For case (i), our simulation results indicate that

the continuous-time algorithms would still converge to the right point,

suggesting that what is needed may just be a new way of establishing

their convergence, using perhaps a new Lyapunov function candidate.

For case (ii), a reasonable starting point is to consider forcing the state

to remain on the unit sphere and nonnegative orthant despite having di-

rected information flows, and then trying to drive the state toward the

eigenvector.

• Eliminating the “neighboring nodes must gossip sufficiently often” as-

sumption needed by the gossip eigenvector centrality computation algo-

rithm: The gossip algorithm we developed in Chapter 5 is guaranteed

to converge if there exists a finite constant B such that every pair of

neighboring nodes gossip at least once per B iterations. While this as-

sumption is often met in practice, it is of interest to see whether the

gossip algorithm would still manage to converge without the assumption.

In distributed consensus, removal of such an assumption has been shown

to be possible. Thus, it is reasonable to conjecture that the same can be

done for the gossip algorithm.

116

• Analysis of the algorithms in the presence of communication delays, er-

rors, and quantization: In this dissertation, for simplicity we have as-

sumed that all communications between neighboring nodes are ideal, i.e.,

there are no delays and errors, nor quantization. Since internode com-

munications are not ideal in many real networks (especially wireless net-

works), one possible future research thrust is to investigate the impact

of such non-idealities on algorithm performance, such as quantifying how

the size of communication delays and errors and the level of quantization

affect the steady-state accuracy of the algorithm estimates.

117

Bibliography

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of

agents with switching topology and time-delays,” IEEE Transactions on

Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[2] J. Cortés, “Finite-time convergent gradient flows with applications to

network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

[3] A. Tahbaz-Salehi and A. Jadbabaie, “Small world phenomenon, rapidly

mixing Markov chains, and average consensus algorithms,” in Proc. IEEE

Conference on Decision and Control, New Orleans, LA, 2007, pp. 276–

281.

[4] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in Proc.

American Control Conference, Portland, OR, 2005, pp. 2371–2378.

[5] J. Wang and N. Elia, “Consensus over networks with dynamic channels,”

in Proc. American Control Conference, Seattle, WA, 2008, pp. 2637–2642.

[6] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE

Transactions on Automatic Control, vol. 50, no. 11, pp. 1867–1872, 2005.

[7] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems

under dynamically changing interaction topologies,” IEEE Transactions

on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[8] A. Tahbaz-Salehi and A. Jadbabaie, “Necessary and sufficient condi-

tions for consensus over random independent and identically distributed

switching graphs,” in Proc. IEEE Conference on Decision and Control,

New Orleans, LA, 2007, pp. 4209–4214.

[9] S. Di Cairano, A. Pasini, A. Bemporad, and R. M. Murray, “Convergence

properties of dynamic agents consensus networks with broken links,” in

Proc. American Control Conference, Seattle, WA, 2008, pp. 1362–1367.

118

[10] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks of

dynamic agents,” in Proc. American Control Conference, Denver, CO,

2003, pp. 951–956.

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coopera-

tion in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,

no. 1, pp. 215–233, 2007.

[12] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks

and distributed sensor fusion,” in Proc. IEEE Conference on Decision

and Control and European Control Conference, Seville, Spain, 2005, pp.

6698–6703.

[13] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus

for mobile networks,” in Proc. IFAC World Congress, Prague, Czech

Republic, 2005.

[14] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of ag-

gregate information,” in Proc. IEEE Symposium on Foundations of Com-

puter Science, Cambridge, MA, 2003, pp. 482–491.

[15] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”

Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[16] D. S. Scherber and H. C. Papadopoulos, “Distributed computation of av-

erages over ad hoc networks,” IEEE Journal on Selected Areas in Com-

munications, vol. 23, no. 4, pp. 776–787, 2005.

[17] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under

switching network topologies,” in Proc. American Control Conference,

Minneapolis, MN, 2006, pp. 3551–3556.

[18] A. Olshevsky and J. N. Tsitsiklis, “Convergence rates in distributed con-

sensus and averaging,” in Proc. IEEE Conference on Decision and Con-

trol, San Diego, CA, 2006, pp. 3387–3392.

[19] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with

least-mean-square deviation,” Journal of Parallel and Distributed Com-

puting, vol. 67, no. 1, pp. 33–46, 2007.

[20] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over

large scale networks,” IEEE Journal on Selected Areas in Communica-

tions, vol. 26, no. 4, pp. 634–649, 2008.

119

[21] M. Zhu and S. Mart́ınez, “Dynamic average consensus on synchronous

communication networks,” in Proc. American Control Conference, Seat-

tle, WA, 2008, pp. 4382–4387.

[22] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed

consensus and averaging,” SIAM Journal on Control and Optimization,

vol. 48, no. 1, pp. 33–55, 2009.

[23] B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Optimization and

analysis of distributed averaging with short node memory,” IEEE Trans-

actions on Signal Processing, vol. 58, no. 5, pp. 2850–2865, 2010.

[24] M. H. DeGroot, “Reaching a consensus,” Journal of the American Sta-

tistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[25] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile

autonomous agents using nearest neighbor rules,” IEEE Transactions on

Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[26] M. Cao, D. A. Spielman, and A. S. Morse, “A lower bound on con-

vergence of a distributed network consensus algorithm,” in Proc. IEEE

Conference on Decision and Control and European Control Conference,

Seville, Spain, 2005, pp. 2356–2361.

[27] L. Moreau, “Stability of multiagent systems with time-dependent com-

munication links,” IEEE Transactions on Automatic Control, vol. 50,

no. 2, pp. 169–182, 2005.

[28] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus

in graphs with time-invariant topologies,” in Proc. American Control

Conference, New York, NY, 2007, pp. 711–716.

[29] A. Olshevsky and J. N. Tsitsiklis, “On the nonexistence of quadratic

Lyapunov functions for consensus algorithms,” IEEE Transactions on

Automatic Control, vol. 53, no. 11, pp. 2642–2645, 2008.

[30] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic station-

ary graph processes,” IEEE Transactions on Automatic Control, vol. 55,

no. 1, pp. 225–230, 2010.

[31] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and

optimization in multi-agent networks,” IEEE Transactions on Automatic

Control, vol. 55, no. 4, pp. 922–938, 2010.

120

[32] J. N. Tsitsiklis, “Problems in decentralized decision making and computa-

tion,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,

MA, 1984.

[33] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in

large overlay networks,” in Proc. IEEE International Conference on Dis-

tributed Computing Systems, Tokyo, Japan, 2004, pp. 102–109.

[34] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation proto-

cols for large-scale overlay networks,” in Proc. IEEE/IFIP International

Conference on Dependable Systems and Networks, Florence, Italy, 2004,

pp. 19–28.

[35] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip

algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,

pp. 2508–2530, 2006.

[36] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip algorithms

for distributed computation,” in Proc. Allerton Conference on Commu-

nication, Control, and Computing, Monticello, IL, 2006, pp. 952–959.

[37] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of ag-

gregates in wireless sensor networks: Distributed randomized algorithms

and analysis,” IEEE Transactions on Parallel and Distributed Systems,

vol. 17, no. 9, pp. 987–1000, 2006.

[38] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE Trans-

actions on Information Theory, vol. 52, no. 11, pp. 4753–4766, 2006.

[39] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Mur-

ray, “Asynchronous distributed averaging on communication networks,”

IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 512–520,

2007.

[40] V. Borkar and P. P. Varaiya, “Asymptotic agreement in distributed es-

timation,” IEEE Transactions on Automatic Control, vol. 27, no. 3, pp.

650–655, 1982.

[41] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement

in distributed decision problems,” IEEE Transactions on Automatic Con-

trol, vol. 29, no. 1, pp. 42–50, 1984.

121

[42] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms,”

IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,

1986.

[43] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Con-

vergence in multiagent coordination, consensus, and flocking,” in Proc.

IEEE Conference on Decision and Control and European Control Con-

ference, Seville, Spain, 2005, pp. 2996–3000.

[44] M. Cao, A. S. Morse, and B. D. O. Anderson, “Coordination of an

asynchronous multi-agent system via averaging,” in Proc. IFAC World

Congress, Prague, Czech Republic, 2005.

[45] L. Fang and P. J. Antsaklis, “Information consensus of asynchronous

discrete-time multi-agent systems,” in Proc. American Control Confer-

ence, Portland, OR, 2005, pp. 1883–1888.

[46] L. Fang, P. J. Antsaklis, and A. Tzimas, “Asynchronous consensus proto-

cols: Preliminary results, simulations and open questions,” in Proc. IEEE

Conference on Decision and Control and European Control Conference,

Seville, Spain, 2005, pp. 2194–2199.

[47] L. Fang and P. J. Antsaklis, “On communication requirements for multi-

agent consensus seeking,” in Networked Embedded Sensing and Control,

ser. Lecture Notes in Control and Information Sciences, P. J. Antsaklis

and P. Tabuada, Eds. Berlin, Germany: Springer-Verlag, 2006, vol. 331,

pp. 53–67.

[48] C. Y. Tang and J. Lu, “Controlled hopwise averaging:

Bandwidth/energy-efficient asynchronous distributed averaging for

wireless networks,” in Proc. American Control Conference, St. Louis,

MO, 2009, pp. 1561–1568.

[49] J. Lu and C. Y. Tang, “Convergence rate of controlled hopwise averaging

on various graphs,” in Proc. IEEE Conference on Decision and Control,

Orlando, FL, 2011, pp. 4290–4295.

[50] ——, “Controlled hopwise averaging and its convergence rate,” IEEE

Transactions on Automatic Control, vol. 57, no. 4, pp. 1005–1012, 2012.

122

[51] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with dis-

tributed information,” IEEE Control Systems Magazine, vol. 27, no. 4,

pp. 75–88, 2007.

[52] J. Fax and R. Murray, “Information flow and cooperative control of vehi-

cle formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9,

pp. 1465–1476, 2004.

[53] W. Ren and R. Beard, “Distributed consensus in multi-vehicle coopera-

tive control,,” in Proc. Springer-Verlag, London, 2008.

[54] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms

and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,

pp. 401–420, 2006.

[55] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and

switching networks,” IEEE Transactions on Automatic Control, vol. 52,

no. 5, pp. 863–868, 2007.

[56] J. Cortés, “Distributed algorithms for reaching consensus on general func-

tions,” Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[57] D. Mosk-Aoyama and D. Shah, “Computing separable functions via gos-

sip,” in Proc. ACM Symposium on Principles of Distributed Computing,

Denver, CO, 2006, pp. 113–122.

[58] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of dis-

tributed consensus algorithms with boundary: From shortest paths to

mean hitting times,” in Proc. IEEE Conference on Decision and Con-

trol, San Diego, CA, 2006, pp. 4664–4669.

[59] D. Bauso, L. Giarré, and R. Pesenti, “Non-linear protocols for optimal

distributed consensus in networks of dynamic agents,” Systems & Control

Letters, vol. 55, no. 11, pp. 918–928, 2006.

[60] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus

filters,” in Proc. IEEE Conference on Decision and Control and European

Control Conference, Seville, Spain, 2005, pp. 8179–8184.

[61] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Approximate dis-

tributed Kalman filtering in sensor networks with quantifiable perfor-

mance,” in Proc. International Symposium on Information Processing in

Sensor Networks, Los Angeles, CA, 2005, pp. 133–139.

123

[62] ——, “Distributed sensor fusion using dynamic consensus,” in Proc.

IFAC World Congress, Prague, Czech Republic, 2005.

[63] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in

Proc. IEEE Conference on Decision and Control, New Orleans, LA, 2007,

pp. 5492–5498.

[64] S. Roy, A. Saberi, and K. Herlugson, “A control-theoretic perspective

on the design of distributed agreement protocols,” in Proc. American

Control Conference, Portland, OR, 2005, pp. 1672–1679.

[65] S. Roy, K. Herlugson, and A. Saberi, “A control-theoretic approach to dis-

tributed discrete-valued decision-making in networks of sensing agents,”

IEEE Transactions on Mobile Computing, vol. 5, no. 8, pp. 945–957,

2006.

[66] S. Sundaram and C. N. Hadjicostis, “Distributed consensus and lin-

ear functional calculation in networks: An observability perspective,”

in Proc. International Conference on Information Processing in Sensor

Networks, Cambridge, MA, 2007, pp. 99–108.

[67] J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Distributed anony-

mous discrete function computation,” IEEE Transactions on Automatic

Control, vol. 56, no. 10, pp. 2276–2289, 2011.

[68] K. A. Lehmann and M. Kaufmann, “Decentralized algorithms for evalu-

ating centrality in complex networks,” University of Tübingen, Tübingen,

Germany, Technical Report, 2003.

[69] W. Wang and C. Y. Tang, “Distributed computation of node and edge

betweenness on tree graphs,” in Proc. IEEE Conference on Decision and

Control, Florence, Italy, 2013, pp. 43–48.

[70] ——, “Distributed computation of classic and exponential closeness on

tree graphs,” in Proc. American Control Conference, Portland, OR, 2014,

pp. 2090–2095.

[71] ——, “Distributed estimation of betweenness centrality,” in Proc. Aller-

ton Conference on Communication, Control, and Computing, Monticello,

IL, 2015, pp. 250–257.

[72] ——, “Distributed estimation of closeness centrality,” in Proc. IEEE

Conference on Decision and Control, Osaka, Japan, 2015, pp. 4860–4865.

124

[73] C. Li and Z. Qu, “Distributed estimation of algebraic connectivity of

directed networks,” Systems & Control Letters, vol. 62, no. 6, pp. 517–

524, 2013.

[74] D. Kempe and F. McSherry, “A decentralized algorithm for spectral anal-

ysis,” in Proc. ACM Symposium on Theory of Computing, 2004, pp. 561–

568.

[75] H. Ishii and R. Tempo, “Distributed randomized algorithms for the

PageRank computation,” IEEE Transactions on Automatic Control,

vol. 55, no. 9, pp. 1987–2002, 2010.

[76] A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast dis-

tributed PageRank computation,” in Proc. International Conference on

Distributed Computing and Networking, 2013, pp. 11–26.

[77] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,

and R. Sukthankar, “Decentralized estimation and control of graph con-

nectivity for mobile sensor networks,” Automatica, vol. 46, no. 2, pp.

390–396, 2010.

[78] R. Aragues, G. Shi, D. V. Dimarogonas, C. Sagues, and K. H. Johans-

son, “Distributed algebraic connectivity estimation for adaptive event-

triggered consensus,” in Proc. American Control Conference, Montreal,

Canada, 2012, pp. 32–37.

[79] C. Li and Z. Qu, “Distributed estimation of algebraic connectivity of

directed networks,” Systems & Control Letters, vol. 62, no. 6, pp. 517–

524, 2013.

[80] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor

fusion based on average consensus,” in Proc. International Symposium

on Information Processing in Sensor Networks, Los Angeles, CA, 2005,

pp. 63–70.

[81] ——, “A space-time diffusion scheme for peer-to-peer least-squares esti-

mation,” in Proc. International Conference on Information Processing in

Sensor Networks, Nashville, TN, 2006, pp. 168–176.

[82] J. Lu and C. Y. Tang, “Distributed asynchronous algorithms for solving

positive definite linear equations over networks—Part I: Agent networks,”

in Proc. IFAC Workshop on Estimation and Control of Networked Sys-

tems, Venice, Italy, 2009, pp. 252–257.

125

[83] ——, “Distributed asynchronous algorithms for solving positive defi-

nite linear equations over networks—Part II: Wireless networks,” in

Proc. IFAC Workshop on Estimation and Control of Networked Systems,

Venice, Italy, 2009, pp. 258–263.

[84] S. Mou and A. S. Morse, “A fixed-neighbor, distributed algorithm for

solving a linear algebraic equation,” in Proc. European Control Confer-

ence, Zurich, Switzerland, 2013, pp. 2269–2273.

[85] J. Liu, S. Mou, and A. S. Morse, “An asynchronous distributed algorithm

for solving a linear algebraic equation,” in Proc. IEEE Conference on

Decision and Control, Florence, Italy, 2013, pp. 5409–5414.

[86] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving

a linear algebraic equation,” IEEE Transactions on Automatic Control,

vol. 60, no. 11, pp. 2863–2878, 2015.

[87] J. Lu and C. Y. Tang, “A distributed algorithm for solving positive def-

inite linear equations over networks with membership dynamics,” IEEE

Transactions on Control of Network Systems, 2016, to appear.

[88] S. T. Cady, A. D. Domı́nguez-Garćıa, and C. N. Hadjicostis, “A dis-

tributed generation control architecture for islanded AC microgrids,”

IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp.

1717–1735, 2015.

[89] A. Cherukuri and J. Cortes, “Initialization-free distributed coordination

for economic dispatch under varying loads and generator commitment,”

Automatica, vol. 74, pp. 183–193, 2016.

[90] A. Cherukuri and J. Cortés, “Decentralized Nash equilibrium seeking by

strategic generators for DC optimal power flow,” in Proc. Conference on

Information Sciences and Systems, 2017, pp. 1–6.

[91] J. Cai, D. Kim, R. Jaramillo, J. E. Braun, and J. Hu, “A general multi-

agent control approach for building energy system optimization,” Energy

and Buildings, vol. 127, pp. 337–351, 2016.

[92] X. Hou, Y. Xiao, J. Cai, J. Hu, and J. E. Braun, “Distributed model

predictive control via proximal Jacobian ADMM for building control ap-

plications,” in Proc. American Control Conference, 2017, pp. 37–43.

126

[93] M. G. Rabbat and R. D. Nowak, “Distributed optimization in sensor

networks,” in Proc. International Symposium on Information Processing

in Sensor Networks, Berkeley, CA, 2004, pp. 20–27.

[94] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization

in sensor networks,” in Proc. International Conference on Information

Processing in Sensor Networks, 2009, pp. 49–60.

[95] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for

nondifferentiable optimization,” SIAM Journal on Optimization, vol. 12,

no. 1, pp. 109–138, 2001.

[96] A. Nedić, D. P. Bertsekas, and V. S. Borkar, “Distributed asynchronous

incremental subgradient methods,” in Inherently Parallel Algorithms

in Feasibility and Optimization and Their Applications, D. Butnariu,

Y. Censor, and S. Reich, Eds. Amsterdam, Holland: Elsevier, 2001,

pp. 381–407.

[97] A. Nedić and D. P. Bertsekas, “Convergence rate of incremental subgra-

dient algorithms,” in Stochastic Optimization: Algorithms and Applica-

tions, S. P. Uryasev and P. M. Pardalos, Eds. Norwell, MA: Kluwer

Academic Publishers, 2001, pp. 223–264.

[98] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for

distributed optimization,” IEEE Journal on Selected Areas in Commu-

nications, vol. 23, no. 4, pp. 798–808, 2005.

[99] S.-H. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz, “The value of

clustering in distributed estimation for sensor networks,” in Proc. Inter-

national Conference on Wireless Networks, Communications and Mobile

Computing, Maui, HI, 2005, pp. 969–974.

[100] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer al-

gorithm for distributed optimization in sensor networks,” in Proc. IEEE

Conference on Decision and Control, New Orleans, LA, 2007, pp. 4705–

4710.

[101] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Stochastic incremental gra-

dient descent for estimation in sensor networks,” in Proc. Asilomar Con-

ference on Signals, Systems, and Computers, Pacific Grove, CA, 2007,

pp. 582–586.

127

[102] ——, “Incremental stochastic subgradient algorithms for convex opti-

mization,” SIAM Journal on Optimization, vol. 20, no. 2, pp. 691–717,

2009.

[103] A. Nedić and A. Ozdaglar, “On the rate of convergence of distributed

subgradient methods for multi-agent optimization,” in Proc. IEEE Con-

ference on Decision and Control, New Orleans, LA, 2007, pp. 4711–4716.

[104] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgra-

dient methods and consensus algorithms for solving convex optimization

problems,” in Proc. IEEE Conference on Decision and Control, Cancun,

Mexico, 2008, pp. 4185–4190.

[105] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed subgra-

dient methods over random networks,” in Proc. Allerton Conference on

Communication, Control, and Computing, Monticello, IL, 2008, pp. 353–

360.

[106] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed

subgradient methods and quantization effects,” in Proc. IEEE Conference

on Decision and Control, Cancun, Mexico, 2008, pp. 4177–4184.

[107] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-

agent optimization,” IEEE Transactions on Automatic Control, vol. 54,

no. 1, pp. 48–61, 2009.

[108] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Asynchronous gossip algo-

rithms for stochastic optimization,” in Proc. IEEE Conference on Deci-

sion and Control, Shanghai, China, 2009, pp. 3581–3586.

[109] ——, “Distributed stochastic subgradient projection algorithms for con-

vex optimization,” Journal of Optimization Theory and Applications, vol.

147, no. 3, pp. 516–545, 2010.

[110] M. Zhu and S. Mart́ınez, “On distributed convex optimization under

inequality and equality constraints,” IEEE Transactions on Automatic

Control, vol. 57, no. 1, pp. 151–164, 2012.

[111] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed con-

vex optimization: The continuous-time case,” in Proc. American Control

Conference, San Francisco, CA, 2011, pp. 5474–5479.

128

[112] J. Lu, C. Y. Tang, P. R. Regier, and T. D. Bow, “A gossip algorithm

for convex consensus optimization over networks,” in Proc. American

Control Conference, Baltimore, MD, 2010, pp. 301–308.

[113] ——, “Gossip algorithms for convex consensus optimization over net-

works,” IEEE Transactions on Automatic Control, vol. 56, no. 12, pp.

2917–2923, 2011.

[114] S. Nikookhoy, J. Lu, and C. Y. Tang, “Distributed convex optimization

with identical constraints,” in Proc. IEEE Conference on Decision and

Control, Orlando, FL, 2011, pp. 2926–2931.

[115] T. T. Doan and C. Y. Tang, “Continuous-time constrained distributed

convex optimization,” in Proc. Allerton Conference on Communication,

Control, and Computing, Monticello, IL, 2012.

[116] W. Chen and W. Ren, “Event-triggered zero-gradient-sum distributed

consensus optimization over directed networks,” Automatica, vol. 65, pp.

90–97, 2016.

[117] J. Wang and N. Elia, “Control approach to distributed optimization,” in

Proc. Allerton Conference on Communication, Control and Computation,

2010, pp. 557–561.

[118] ——, “A control perspective for centralized and distributed convex opti-

mization,” in Proc. IEEE Conference on Decision and Control and Eu-

ropean Control Conference, 2011, pp. 3800–3805.

[119] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-

tributed optimization: Convergence analysis and network scaling,” IEEE

Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.

[120] B. Gharesifard and J. Cortés, “Distributed continuous-time convex op-

timization on weight-balanced digraphs,” IEEE Transactions on Auto-

matic Control, vol. 59, no. 3, pp. 781–786, 2014.

[121] M. E. J. Newman, Networks: An Introduction. New York, NY: Oxford

University Press, 2010.

[122] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society,

1997.

129

[123] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a

graph: A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24,

2012.

[124] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized

estimation of Laplacian eigenvalues in multi-agent systems,” Automatica,

vol. 49, no. 4, pp. 1031–1036, 2013.

[125] T.-M. D. Tran and A. Y. Kibangou, “Distributed estimation of graph

Laplacian eigenvalues by the alternating direction of multipliers method,”

in Proc. IFAC World Congress, Cape Town, South Africa, 2014, pp. 5526–

5531.

[126] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper

Saddle River, NJ: Prentice Hall, 1996.

[127] C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic

Control, vol. 19, no. 3, pp. 201–208, 1974.

[128] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: Some

of its applications,” IEEE Signal Processing Magazine, vol. 22, no. 2, pp.

62–75, 2005.

[129] S. A. Grandhi, R. Vijayan, and D. J. Goodman, “Distributed power con-

trol in cellular radio systems,” IEEE Transactions on Communications,

vol. 42, no. 234, pp. 226–228, 1994.

[130] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7,

pp. 107–117, 1998.

[131] S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods for the

computation of PageRank,” Linear Algebra and its Applications, vol. 386,

pp. 51–65, 2004.

[132] M. Yang and C. Y. Tang, “Distributed estimation of graph spectrum,” in

Proc. American Control Conference, Chicago, IL, 2015, pp. 2703–2708.

[133] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:

Prentice Hall, 2002.

[134] R. S. Varga, Matrix Iterative Analysis, 2nd ed. Berlin, Germany:

Springer-Verlag, 2009.

130

[135] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY: Cam-

bridge University Press, 2012.

131

