INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce

this

document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The

following cxplanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

I.

19

The sign or ‘‘target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy becausc of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘‘sectioning’ the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universg'
Microfilms
International

300 N. Zeeb Road
Ann Arbor, M1 48106






8504325
Kapadia, Rajiv J.

A THEORETICAL COMPARISON OF FOUR PARALLEL PROCESSING
NETWORKS

The University of Oklahoma PH.D. 1984

University
Microfilms
International son. zees road, Ann Aror, 148108
Copyright 1985
| by
Kapadia, Rajiv J.
All Rights Reserved



l




THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A THEORETICAL COMPARISON OF FOUR

PARALLEL PROCESSING NETWORKS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

(DOCTOR OF PHILOSOPHY)

BY
RAJIV J. KAPADIA

Norman, Oklahoma

1984



A THEORETICAL COMPARISON OF FOUR
PARALLEL PROCESSING NETWORKS
A DISSERTATION

APPROVED FOR THE SCHOOL OF ELECTRICAL ENGINEERING




© 1985

RAJIV J. KAPADIA

All Rights Reserved



TABLE OF CONTENTS

LIST OF TABLES ........... ceersesset e ceae

Page

iv

LIST OF ILLUSTRATIONS ...t eeevrecioctacsnnsannns V

LIST OF GRAPHS ...ttt nnncans e e e e enan vi
Chapter
I. WHY ANALYZE ALGORITHMS .......... ce et 1
II. A GENERAL COMMUNICATION ORIENTED MODEL ..... ee 5
III. COMMUNICATION OF DATA IN A MULTIPROCESSING
SYSTEM ...veeeen.. te e s esseeaaseans seeeas . 13
IV. PERFORMANCE MEASURES ....... ceessecccnns . 29
V. USING THE PERFORMANCE MEASURES .....cc... ee.. U6
VI. CONCLUSIONS ...cueveccesn ceeseeeeaee ceeane ce.. T3
OTHER RESEARCH DIRECTIONS .v.ceecesessoscesscnass T8
APPENDIX .t erverenncannsnnenn ceseen cececssaseass 80
BIBLIOGRAPHY ........ c et s ersesacannnn P ee e ve.. 86

iii



LIST OF TABLES

Page

TABLE

1.

2.

3a.

3b.

Summary of parallel computation results .... 13
Performance measures ..... c e e e s e e e eeves 45

Communication time to add a vector on various
NELtWOrKS .iveeeescccacancs e e e ea e ceecceenas 50

Comparisons of various networks to add a

vector for different numbers of processors

in a2 network ...eeeeecrececcaceas B V2
Algorithm setup to multiply two matrices ....53
Communication time to multiply two matrices..58
Comparisons of various networks to multiply
twe matrices for different numbers of

processors in a network ..... B 10/

Communication time to sort an array of
NUMDEPrS v eeevosecovsononson Y 1

Comparisons of various networks to sort an
array with different numbers of processors
in the network .....cceceecececccacs cesaesnsesb68

Mean distances between pProcessors ......e..s0.71

iv



LIST OF ILLUSTRATIONS

Page
THE RING NETWORK
THE TREE NETWORK ..... Ceee e Ceeeeeea e 12
A THREE GENERATION TREE NETWORK +.vveeeenvon ce. 20
SORTING ON A MESH CONNECTED NETWORK WITH
DIFFERENT INDEXING cueueeeansn e e ... 26



LIST OF GRAPHS

GRAPHS Page

1. The communication time to add a vector on
VArious NELWOrKS v.veeeeooscscecosesscscssaces 91

2. The communication time to multiply two
matrices ......... - 4

3. The communication time to sort an array on
different NetwWorkS ....ieveececccccsssenonass 87

vi



ABSTRACT

Previous work on the analysis of execution time of parallel
algorithms has either largely ignored communication delays or has
dealt with specific interconnection structures such as the perfect
shuffle and the nearest neighbor. In this paper it is shown that
the communication time is just as significant as the execution
time and that the communication time is dependent upon the data
size. Four networks are compared, using parameters that are
defined in the paper. Using a few representative algorithms it is
determined that the communication time depends on, (1) the average
distance between processors when the number of processors in the
network is large and, (2) the average number of processors a given
processor is connected to when the number of processors in the
network is small. The breakeven point varies from algorithm to

algorithm.
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A THEORETICAL COMPARISON OF FOUR

PARALLEL PROCESSING NETWORKS
CHAPTER I
WHY ANALYZE ALGORITHMS?

In 1966, Flynn, in his classical paper, "Very High
Speed Computing Systems (3)," introduced us to the concept
of multiprocessing. One of his proposals, the single
instruction multiple data machine, 1s gaining a lot of
importance. This is due to the advent of VLSI technology
and the fact that such a machine has been built and found
useful. The Illiac IV is an example of such a machine.

As understanding of the machine grows, the properties
and problems in the machine hardware and software are being
identified. Until recently, most design engineers were of
the belief that problems in the machine were either
hardware related or software related. It is now realized
that proper matching of software with hardware is
essential. One of the factors governing the execution time
of an algorithm is the time used moving data on hardware as
required by the algorithm. This underscores that hardware
and software are not two distinct domains. They are a
blend. It is necessary to have a proper match between the.
two.

Communication in a multiprocessing environment can

become a major problem. Properly designed parallel



structures that need to communicate with their nearest
neighbor will gain the most from a well thought out match
between the algorithm and the interconnection structure.
Precious time and performance are lost when modules that
are far apart must communicate. For example, if data are
to be sent to a processor other than the nearest neighbor,
two or more data transfer cycles will be necessary. The
design engineer must have this communication bhottleneck
uppermost in mind when evaluating possible structures and
interconnect networks to implement an algorithm.

The study of communication time for information flow
in a network is not a new problem. For decades letter
carriers have tried to find the shortest path for their
appointed route. The study of communication time for data
in a multiprocessing system is relatively new. L. Ford
and D. Fulkerson are among the leaders in this study.
Their initial contribution was in 1962 when they studied
flows in networks.

S. Bokhari [8] published a paper in 1979 which showed
one way to schedule two processors with dynamic re-
assignment,.

B. Lint in 1979 has shown that in a multiprocessing
system the time used by a data element moving from one
processor to another is just as important as the time used

by a data element to compute a result.



In 1978 M. Gentelman [5] presented a paper which dealt
with minimizing the communication time for some matrix
operations on the Illiac IV.

In 1981 B. Lint and T. Agerwala [17] talked about
design and analysis of parallel algorithms. Their talk
emphasized the importance of communication time in a
multiprocessing system.

Efforts of these people show that the study of
communication time in a multiprocessing system is of
growing concern to both the designers and users alike.
Most of the recent advances made in the study of
communication time treat the algorithm as a finite state
automata or as a sequential machine. While these analysis
procedures are not wWithout merit I think they are treated
out of context. A sequential machine has one active state
and the next state depends on the input signal and the
current state. This is not so in a multiprocessing system
where, due to local control, some of the processors may
ignore or modify a broadcast instruction.

It is my belief that since the algorithm has to
execute on the network, the communications required by the
algorithm must be those that are most suited to the
network. In other words, if the network and the moves
required by the algorithm match, then the communication
time will be less than any other combination of the network

and the algorithm.



Thus, with communication of data in a multiprocessing
system being one of the key factors affecting the execution
time of an algorithm, I propose to present a method of
matching an algorithm to a network. In the first section I
will present a general communication oriented model. This
model, out of necessity, will be a very general model. Any
particular points will be discussed as, and when necessary
in the course of the presentation. In the next section,
using the model, a lower bound on the execution time is
obtained. Following this, some factors will be found that
affect the communication time in such a way that the lower
bound obtained earlier is not always achieved. These same
factors, and the way they affect the communication time,
prevent the writing of a mathematical formula for
communication time. Next I will show some approximations
that can be used, allowing us to obtain performance
measures. These can be used to measure how well an
algorithm and a network match. Following this will be some
examples that show how these performance measures can be
used to study the match between algorithm and the

interconnect structures.



CHAPTER 2

A GENERAL COMMUNICATION ORIENTED MODEL

In this section several models for parallel processing
are discussed. A model of parallel processing should
include all the factors that affect the execution of an
algorithm on a network. This necessitates the inclusion of
computation as well as communication. The model will
provide a foundation for the design methods. Using this
model, practical multiprocessing systems can be designed.
The models presented will include communication and
computation aspects in varying degrees.

A model for multiprocessing system is basically an
extension of a sequential random access machine. This
description of a model was made by A. Aho, and others in
their book, "The Design and Analysis of Computer
Algorithms." In a synchronous model all processors are
driven by a single clock. In one clock period all
processors that are active execute a single operation.
These processors have some local control and hence, the
operation can be different for different processors. Some

of the operations could be add, store, compare and send.



Even though the operations can be different for different
processors, each processor begins and terminates the
operation simultaneously. Processors with shorter
operations wait.

Now that we have a well defined beginning and
termination of each operation, it is possible to define a
measure of complexity analogous to the computation
complexity measure of a sequential machine. This
complexity is the number of steps needed to execute the
program as a function of the size of the input.

The Unbounded Model. One common synchronous model

assumes K parallel processors. Each processor is identical
to each other and has access to the same storage location.
Communication of data is done by write-—-read cycle. A major
bottleneck occurs at memory access. Since it is assumed
that the computation result of one cycle is available to
any processor on the following cycle, the case when the
number of processors 1is arbitrarily large is known as
unbounded parallelism. Processor complexity in an
unbounded model is equal to the number of processors
necessary to execute the algorithm,.

The Network Model. The unbounded model ignores

communication time by making the processors access the
memory. This memory access is assumed to take place in
constant time. No consideration is given to communication

time. Memory conflicts are considered part of execution



time, A fundamental extension of this model eliminates the
common mass memory and computation results are made
available to the proper processors via a network of
interconnections. Each node on this interconnection scheme
is associated with a processor. Communication of
information is done by store and send approach.

If the network model is used, the architecture of the
multiple processing system would then have all the
processors having their own local memory. 1In this local
memory, the processor will be able to store some control
routines which the processor can execute. Exchange of
information between processors takes place through the
network. Logically neighboring processors can exchange
information in one cycle via hardware links connecting the
processors., Non—-adjacent processors exchange data by
sending the information from processor to processor using a
store and send approach. Information cannot be broadcast
from one processor to every other processor in the system,
but any one processor can send its data value to all of its
logically neighboring processors.

Thus, the crucial part of the design of any highly
parallel computing system is the interconnection network.
The network consists of relatively standard microprocessors
with hardware links interconnecting them. An essential
criterion for the network selection 1s physical

feasibility. The network must conform to the practical



building restrictions imposed by electronic technology. A
simple way of modelling these restrictions abstractly is to
insist that each node of any network be connected to no
more than a fixed number C of other nodes, independent of
the total number N of nodes in the network. N can become
very large.

Algorithm execution on this network proceeds in a
sequence of non overlapping cycles. Each cycle consists of
an exectuion phase and a message transfer phase. One phase
can start only after the other phase has finished execution
on each processor in the system. Either one of these
phases could be nil for one or more processors during any
cycle. Each one of these transfer phases is further
subdivided into periods. During any message transfer phase
an active processor can send data to its logically adjacent
processor in one period. This c¢an be further routed during
the next period if necessary. During any execution phase,
the execution of one instruction, like add or compare, is
executed. If more operations need to be performed, they
are executed on subsequent periods.

The message transfer phase and the execution phase can
be of unequal lengths in a cycle. Also the message
transfer phases or the execution phases of different cycles
can be of unequal lengths. The number of periods will
thus, vary from phase to phase and cycle to cycle, but the

number of periods executed by all the processors during any
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given phase of any given cycle will be the same. As a
result of this, all the processors will begin a phase
simultaneously and terminate the same phase simultaneously.
The message transfer proceeds through the interconnection
network with the store and send approach. In this approach
a processor receives data in one period. During the
following period the processor will decide if the data
belongs to it or is to be sent down the line. If it is to
be sent down the line, then during the third clock period
this data will move to the next processor. If during one
period a processor receives two or more data items then one
or more wWill have to wait to be processed and sent forward.

As mentioned earlier all processors have some private
memory. This private memory cannot be accessed by other
processors in the network. The private memory is used to
store variables or constants that the algorithm might need
while executing. It is also used to store tables that the
processor refers to in order to route data through the
shortest conflict free path possible. The processors also
have some limited capacity for local control,. These
control routines are also stored in private memory. 1In
this way, mask generation is done locally. The mask
generation routines are necessary since all the processors
do not execute every instruction of the algorithm.

As mentioned earlier, execution of an algorithm on

such a model proceeds in a sequence of non~overlapping
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cycles of computation and communication phases. Of these,
which phase is more important? Many attempts have been
made at answering this question. A proper answer would be
that both the phases are equally important. If careful
attention is not paid to communication, then moving data
over long paths can eat up all the gains that the algorithm
makes by a brilliant execution technique,.

In a multiprocessing environment, more often than not,
data for the next computation stage is made available
during the current computation stage. This data may be at
some other processor and must be moved to the proper
processing element. In this way, in algorithm execution
the computation and the communication phases alternate.
The communication takes place over the interconnection
network. Careful attention must be paid to the
interconnection network and how it moves data around.

As an example, let us look at how a couple of networks
perform when asked to add a vector of N elements on N/2
processors. The only difference between the two networks
is the interconnection network. One system has a tree-like
network, while the other one is a ring-like structure.

Executing the algorithm on the ring network causes the sum

Function 0(+) is used as a timing function. The variable
used is the controlling parameter and the time is of the
order of magnitude of that variable ex o(N) could be 2N + 5
or any linear function of N.
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to be obtained in o(N) time. This is the same as in a
sequential uniprocessor system. On the tree structure, the
time to execute the algorithm is o(log N). This is a

definite improvement over the ring structure,. Further
study of the ring structure (Figure 1), shows that to
perform the final sum, the data had to be moved a distance
of N/4 processors. On the tree structure (Figure 2), the
data had to be moved only one unit distance to perform any
sum.

The tree structure is known as an asymptotically
optimal network for this particular algorithm. An
asymptotically optimal network is that network which
performs various fundamental computation operations on a
collection of N data items as rapidly as theoretically
possible. Table 1 shows some operation and networks that
should be matched together.

The list in Table 1 and others 1like that which can
be found in other articles are some of the advances made in
this rfield. The various authors in the lists have worked
on each individual algorithm on a network they specified.
All this effort is dedicated in a very narrow field. It
does not help if you do not have a match as the authors
have demanded. The work that I am presenting here is more
of a general nature. It points the direction a network

designer will take when he is trying to build a network.
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SUMMARY OF PARALLEL COMPUTATION RESULTS

TABLE 1

No Process Parallel Time Sequential Time Reference

(L) All partial sums of 0(log N) 0(N) Pease (1968) Stone (1971)
N elements

(2) Merging two lists
of N items 0(log N) 0(N) Batcher (1968)

(3) Sorting N items 0(log2N) 0(NlogN) Batcher (1968)

(4) Fast Fourier trans- 0(log N) O(NlogN) Pease (1968) Stone (1971
forms

(5) Inversion of mat- 9 3/2.81
rices of size N0.356| 0(log™N) 0N ) Csanky (1975)

(6) | Multiplications of 0(logNlog- | O(NlogN- Chandra (1976)
matrices of size logN) loglogh)
(NlogNloglogN)

€1



In 1978 at the International Computer Conference, T.
Agerwala showed that it is possible to devise different
amounts of communication time and computation time by
modifying the algorithm itself. With this knowledge the
designer may be able to trade communication time with
computation time and arrive at an execution time which is
the smallest from the options he has considered. Agerwala
suggested that if this 1s done systematically, then the
effective execution time can be reduced. As an example of
this Agerwala cited a sequential algorithm that requires
o(N2) computation steps and no communication steps to
obtain a FFT, then after some trades are made a similar
algorithm is run on an N processor system, the computation
steps are reduced to o(N Logpy N) while the communication
time is increased to o(N logp N). This is a saving in the
overall execution time for the algorithm.

The distance through which data items have to travel
to reach their destination is another factor that affects
communication time. Properly designed parallel structures
that need to communicate with only their nearest neighbors
will gain the most from a well thought out design. One
reason is very obvious, the shorter the path, the quicker
it is travelled. Another affect of long data paths is
rather subtle. If data items travel over long distances,
then there is a greater probability of having data path

conflicts. Moving data without data path conflicts is one
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goal designers try to achieve. Whenever there is a data
path conflict, one of the data items will be delayed. This

delay increases the communication time.



CHAPTER 3

COMMUNICATION OF DATA IN A MULTIPROCESSING SYSTEM

In the previous section we saw that the communication
time in the execution of an algorithm depends on how data
is moved from one processor to another. This data can be
moved in three different ways. These ways are 'Store and
Retrieve', 'Shared Bus' and 'Message Transfer through an
interconnection network'.

Store and Retrieve. In this method the data item is

placed in a memory that can be accessed by all the
processing elements and whichever processor needs the data
item can access the location and obtain the value. A major
drawback in this method is that all the active processors
will compete, first to'get memory access to place their
data items into the memory and then, once again, to gain
access to obtain the data item they have to use during the
next computation cycle.

Shared Bus, In this method all the processors are

connected to a bus system. These can be single or multiple
buses. A processor places its data on the bus which is

available to all the processors. The destination processor

16



can grab the data while the rest ignore it. The major
drawback to this mecthod is the competition for the bus,
During the data transfer stage all the processors will try
to get control of the bus.

Message transfer through an interconnection network.

In this method, each processor is connected to a fixed
number of other processors and can transfer data only to
these processors. One of these processors will grab the
data and transfer it further along the path to the
destination processor. The major drawback in this method
is the data path conflicts that can occur at the
processors, This conflict occurs when a processor receives
data from two of its neighboring processors at the time.

A comparison of the three methods will show why I
chose the interconnection network as the message transfer
method to use in the previous and the following sections.
To make this comparison, let us assume that there are a
large number of processors in the network. Also let us
assume that one half of them are going to send data to
other processors. By a large number is meant at least
sixty~four processors.

Lemma 1: Under the conditions described above,
*Shared Bus' message transfer is more efficient than 'Store
and Retrieve'.

Proof: Say that ¢N of the N processors have to

transfer data to other processors. (c=1/2). Of these cN
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processors, le¢t m processors transfer data by shared bus,
while (cN-m) processors transfer by 'Store and Retrieve'.

Case 1. cN-m > m
In the first m periods, let m data items be transferred by
shared bus. At the same time, let m of the c¢cN-m data items
be placed in memory for 'Store and Retrieve'. After these
m periods, there will be cN-2m data items left over, to be
placed in memory. This can be done in c¢N-2m periods.
Next, the data items placed in memory can be retrieved in
cN-m periods since that many data items have been placed in
memory. Thus the total time for the message transfer stage
is: T(eN,m) = m + [cN~-2m] + cN-m = 2c¢cN-2m = 2(cN-m).

Case 2. ¢cN-m < m
This time, in the first cN-m periods let cN-m items be
placed in memory and cN-m data items be broadcast. Thus in
the next m-(cN-m) cycles, the remaining data items can be
broadcast. At the same time m-(cN-m) data items can be
read back from the memory. Still, there are
eN-m-[m-(eN-m)] data items in memory which have to be
retrieved. These can be obtained in cN-m-[m-(cN-m)] more
cycles. The total time necessary is T(cN, m) = ¢N-m + m-
(eN-m) + cN-m=[m-(cN-m)]J. T(eN, m) = 2cN-2m = 2(cN-m).

Either way the message transfer is done the time
required is the same. Now:

T(ceN,m+1)~T(eN,m) 2¢N-2(m+1)=-(2cN-2m)

n

T(cN,m+1)-T(cN,m) -2
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The negative result shows that increasing the number
of transfers by shared bus, will decrease the number of
periods in a message transfer stage. Therefore 'Shared
Bus' is more efficient than 'Store and Retrieve'.
Similarly, with the same conditions, it can be shown that
no advantage is gained by 'Shared Bus' message transfer as
compared to 'Message Transfer through an interconnection
network',

In performing a transfer through a network, the
analysis is not so simple. One of the factors that plays
an important part is the distance a data item has to travel
through. It is necessary to define a distance function for
each network.

Definition 1: The number of processors (or nodes)

through which a data item has to go to reach its
destination is the distance the data item has to travel.
Some of the properties of the distance function are:

(1) d(i,3) < d(i,k) + d(k,j)

v

(2) d(i,J) 0

(3) d(i,i) 0

(4) d(i,£(1)) = 1

Here f(i) represents the logically adjacent processor
to processor i in the interconnection network that 1is beﬁng
studied. With these properties, we can compute the
distance function in general for some interconnection

structures. .
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The Ring network. dg(1,§) = min(|i-3§|, N=-|1-3J]) and

max dg(i,J) = N/2.

The Grid network. Let m = min (|1-J], N~|1=3]|) then,

dg(1,J) -92 + 0.49) + |m- /N [Z + 0.49]| and max dg
N

N AN
(it.j)" /E.

The Shuffle-Exchange network. Let m = logpo(N)

dgg(i,j) = m + the number of bits in which i differs from j
and max dgg(i,j) = 2m.

The Tree network. A tree network is built by

connecting the K roots of K level i-1 trees to one common
root. This gives a level i1 tree network. A level 0O tree
network is one root by itself. 1In any tree which is level
1 or more, each node has 1 father, K-1 brothers and X sons.
A node can communicate directly with its father or all of
its K sons. The following figure shows a 2 level tree with

three sons per father,.

12 Generation 2

11

Generation 1

2 1! lo Generation 0

The number of processors in a tree is given by

x K:.+1_1

i
N = % K7 = -1 K = # sons
X=0

i = # of generations



In this network a message can be transferred in one step
going from son to father [(Kfi)N] + [x/K]

Then going from father to son K*x = (K-1)#*N +
{-1,0,1,2,......K~2}. Thus in one step the tree network
can transfer data a max distance of (%fJ)N processors.

So: Dp(i,j) = 2 * number of levels in the tree - level
processor i + level of processor j.

And: max dT(i,j) = 2% number of levels in the tree ~1 or
2x[ /N1,

From the distance functions we see that the ring
connected network will take the longest to transfer data
from processor i to j. Thus, if a ring connected network
is more efficient than 'Shared Bus', then all the other
networks will be more efficient. (It can be shown through
exhaustive search that the ring connected network has the
largest max distance function of all the other networks
used to transfer data).

Lemma 2: Under the conditions described earlier,
message transfer through the network is more efficient than

shared bus transfers.

Proof: Say thatcN of the N processors have to
transfer data (¢ = 1/2). Of these cN let m processors

transfer data by message transfer, while c¢cN-m transfer
through a shared bus. It will take at most, N/2 periods to
transfer data by message transfer irrespective of what m

is, as long as (c <1/2). 1In this way the message transfer



o
484

can be accomplished in N/2 periods. Thus, N/2 is a lower
bound on the message transfer stage, Now, suppose ¢ > 1/2.
Even for ¢ > 1/2, all the data items can be transferred in
N/2 periods through message transfer. If broadcasting all
the items i{s tried, then, c¢N perjiods will be required.
Since ¢ > 1/2 more than N/2 periods will be necessary.
This shows that ring network and broadcasting require the
same number of periods when ¢ = 1/2 and the ring network
wins out when ¢ > 1/2. Generalizing this result, we can
say that the breakeven point between a network and message
broadcast occurs when the number of items to be transferred
equals the max distance on the network. Since the max
distance in all the networks that can be used in
multiprocessing systems is definitely less than N/2, the
message transfer should occur through the network and not
by broadcast. This is because of our assumption that c¢ =
1/2.

Now that we know that message transfer through the
interconnection structure is better than any other means of
transferring data in a highly parallel computer consisting
of many relatively standard microprocessors, we want to
examine the factors that affect the message transfer
operation in a multiprocessing systems. Cost is a factor.
This cost factor is the cost of communication which is part
of the execution cost. Therefore, a choice of appropriate

architecture to transfer messages is important, since
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different architectures will have different communication
costs. Some of the factors that affect the communication
cost are:

(1) The interconnection structure

(2) The distance from processor i to j on the

interconnection structure
(3) The number of link contentions encountered
(4) The movement of data required by the algorithm.

The Interconnection structure. In this effort I will

examine four interconnection structures.
(a) The two way ring: This structure is defined as:
R(x) = (x+1) mod N
(b) The two way grid network is defined as:
G1(x) = (x*1) mod N and Gp(x) = (x+n) mod N where
n = VN
(e) The two way shuffle exchange network is defined
as; S(x) = 2(x) mod N
E(Pp-1s Pp=2s +eeeees Py, Pg) = Py_q, Pp-n,
cesess Py, Py
(d) The two way tree network as it has been
described.
These are the networks that will be examined. These
are the common networks and any other network of interest
can be analyzed the same way as these,

2. The distance from processor i to j on the

interconnection structure. In the previous section, we




def{ined the distance function for each of these four
networks obtained and the max distance in the network.
This distance represents the time it would take to move
data from processor i to J on the network. This max
distance, which is the time for the message transfer cycle,
gives the lower bound of a random move on the particular
network., This is not the exact time because (a) All the
moves in almost all algorithms have some symmetry and are
not random. The effect of this is to reduce the number of
periods necessary in a message transfer stage. (b) Often
two or more data items will have to compete for a data path
or node. The effect of these 1link contentions is to
increase the number of periods in a message transfer stage.

3. The number of link contentions. The

interconnection network that we are examining has two-way
links and in each of the networks all the processing
elements are connected to at least two other processors.
It is very possible that some processors may receive a data
item from their two or more neighboring processors in one
period. Whenever this occurs you have a link contention
and one of the data items will be delayed. The number of
link contentions is difficult to evaluate since they depend
on: (a) The move in the algorithm. Algorithms for
different applications require different movement of data
to execute. Because these moves are not known before

executing the algorithm, it is not possible to obtain these



in mathematical form. (b) How these conflicts are
resolved. At design time, the deslign engineer has a few
options that can be used to resolve conflicts. Depending
on the approach taken by the engineer, the periods
necessary for the message transfer stage will vary. The
most common approach is to let one of the conflicting data
items wait its turn. In this way, the number of periods
will be increased by the maximum number of data path
conflicts any one data item will encounter.

4., The movement of data required by the algorithm.

All algorithms for multiprocessing systems require that
some movement of data items take place. Doing this in such
a way that most of the moves are to processors that are
close by will reduce communication time. In some examples,
it has been shown that indexing processors in a different
way c¢can save on communication time. For example, the
problem of sorting on Illiac-IV (grid connections) 1is
examined by C. Thompson and H. Kung [9]. An o(N LogsN)
sorting algorithm based on Batcher's bitonic sort was the
best known algorithm prior to this work. The algorithm by
Thompson and Kung decreases the execution time to o(N). An
important aspect of the o(N) algorithm is that the indexing
of processors is different than that used previously and

requires less data movement during the sort, (see Figure

3). In each algorithm the ith smallest data item must be
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moved to processor number {, where i is defined by the
indexing scheme.

From the above factors we learn that the distance
from processors i to j is a fixed quantity which cannot be
changed once the multiprocessing system is built. The
movement of data required by the algorithm requires an
analysis of individual algorithms. The subject of link
contentions has not been studied previously by anyone.
This is because it is impossible to determine the exact
message conflict without tracing the execution of the
algorithm. A delay at one link impacts the delay at other
links. This in turn impacts the delay at other links. The
pattern of these delays cannot be determined without
analyzing the communication network as a whole. This is a
very complex problem if one is considering each individual
message.

One approach taken is to compute the average delay
based on the number of links and the traffic in the network
or based on simulaton. Simulation may be the most accurate
approach but does not fit with an analytic structure of the
model.

The approach that I propose is based on the fact that
algorithms that specialize in solving large,
computationally intensive problems tend to be phased.
Execution of each phase requires repeated use of the same

move on the network a number of times. The analysis of a



certain type of a move on a network can be carried out.
The link contentions for this type of a move can be
determined.

In fact, during the design process the concern for
communication costs brings up an important point. The
choice of an appropriate architecture for an
interconnection network is very closely related to the
moves necessary in the algorithm. Similarly the choice of
a move in an algorithm is closely related to the
interconnection networks available. Moving data without
data path conflicts is one goal designers try to achieve.
Even more important than this is being able to move data to
its final destination in one move if possible. If both
these conditions are satisfied, then a perfect match
between algorithms and the interconnection network has been
found.

However, as mentioned earlier, algorithms run in
phases and the moves required by different phases are not
identical. Thus, a perfect match is almost impossible. If
that is so, how close to a perfect match can an algorithm
come on a network? Some measures that show how good a
match is possible are necessary. The next chapter explores

this idea,.



CHAPTER 4

PERFORMANCE MEASURES

As we saw in the previous section, the designer's
goal is to construct an algorithm that would execute moves
on the network which are conflict free and which require
only one period to complete. If these goals are achieved,
then this is the best match between the algorithm and the
network and no improvement is possible. In most algorithms
these goals are not achieved because of a couple of
reasons. First, the algorithm runs in phases. Each phase
requires a different move. Since the network is fixed, it
may not be able to execute each move according to the
design goals. Second, the algorithm must be executed on a
network that is available. This may not be the network for
which the algorithm is designed. In the literature, a few
authors have compared a specific algorithm with a specific
network, but a means of comparing a match with an algorithm
in general still needs to be found.

As a first step in such an analysis, a look at the
various moves made by the algorithm is appropriate. By the

very nature of the system, the data transfers required by

29
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an algorithm in a SIMD machine take place according to some
law. The controller will issue an instruction to each
processor to move the data. This instruction is the same
for each processor. Hence, the moves made by the
processors are not random. The machine on which the
algorithms have to run also has limited interconnection
networks. These interconnections are not random, but
follow a logical pattern to obtain most benefit from
modular construction. In the interest of efficiency all
the algorithms are written so that the moves conform with
the hardware links on the interconnection networks.

The fact that the moves in an algorithm and the
hardware links in an interconnection network match each
other, means that the analysis of an algorithm can be
accomplished by comparing how one interconnection network
will simulate another one. Many periods are necessary to
simulate one move of one network on another network.

I will use these specific simulations for several
reasons. Each of the networks we will discuss has been
proposed in some form in the literature and has been shown
to be useful. There is very little in the literature
directly comparing the simulaton abilities of these
networks for the purpose of analyzing algorithms. By using
these simulations, the system designer and/or the algorithm

designer may determine the communication time of the
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algorithm and thereforec be able to compare two algorithms
on cxecution time rather than computation time. Since
these networks have been shown to be useful, {t is very
likely that any network implemented may have to implement
one of the other networks.

An alternative to this would be a dynamically re-~
configurable network, if such a network is available to
execute the algorithm. Even then, the ability of the
network to simulate other interconnections is very
important to SIMD machine architects. First, to re-~
configure the network the machine will have to spend a few
periods and then execute the algorithm. Second, the number
of connections that can be implemented in the hardware is
limited by cost and hardware complexity. Therefore, to
decide on which network to implement, the system designer
must consider the time it will take the network to simulate
other interconnections which may be needed to perform
various computational tasks.

As this analysis of how one network simulates another
is carried out, I will evaluate the following measures of
performance for the networks presented here. These
performance measures are model independent and hence, will
have to be adjusted so that the particular effects of the
model at hand are included in a final analysis. This is a
very simple step as will be shown by examples at the end of

this presentation.



The technique that I am presenting can be applied to
interconnection networks not specifically mentioned in this
paper. The model independent nature of the results is
significant because it means that the lower bounds
determined using these techniques will be valid with
respect to programming real SIMD machines to perform these
simulations,

The performance measures that I will determine for
the networks are:

(1) Diameter. The diameter is the max distance

function that a data item has to travel in going from
processor i to processor j, for all i and j on the
interconnection network that is being analyzed.

(2) Bandwidth. The bandwidth is the number of data

transfers possible without any conflicts in one message
transfer stage. This measure is not entirely model
independent, but can be adjusted to whatever model
characteristic is available.

(3) Mean Distance between processors. This is the

sum of distances from i to j, for any i and all j, divided
by the number of processors in the network. (This measure
is for the network that is available, not the one being
simulated).

(4) Message Traffic. The message traffic is the

ratio of the bandwidth and the system diameter. This
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parameter gives the number of data items that c¢an be
transferred in one clock period.

I will first determine these measures to simulate one
move of a network on another network. Then I will use
these results to compare the execution of an algorithm on
the various networks analyzed.

Simulations, Say that you have a ring network. As

we have seen earlier, the ring network is defined as,

R(x) = (x+1) mod N
On this network we wish to simulate the move of a grid
network. In the grid network, the data in one period can
be moved a distance of + n where n = /N. The ring
network can simulate this move in a straightforward way in
n = VYN steps. Thus

Diameter D = /N
To determine the bandwidth, first notice that every
processor on the grid network will move its data a distance
of YN in one step. Since all the data items are moving
to an address x + n, this can be exactly duplicated by the
ring network without any datapath conflicts. So,

Bandwidth B§ = N
The mean distance between processors on a two way ring
network can be obtained by finding the distance from any
one processor to all the other processors. This is a very

straightforward calculation as follows:

. n/2-1
Mean Distance MDR = (0 + 2 i + N/2) ¥ 1/N
i=1
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For large N this is (0 +& (N/2=1)(N/2-1 + 1) + M) « 1

N
= ( ﬁz- N+ Ny » L N
4 2 2 N 4

So MDp = (N/4) and the

Message Traffic MT§ = BE + 0§ = N/ VN = VW
Similar results can be obtained to simulate a move of the
shuffle network on the ring network. On the shuffle
network, the data in one period can be moved a distance of
(2%¥n) mod N, where n is the processor's address. This is
equal to a maximum distance of N/2. It will take the ring
network at least N/2 steps to simulate this move. Thus,

Diameter = Dg = N/2
To simulate a move of the shuffle exchange network, the
processors numbered 1 through [N/2] will have to move their
data forward by 1, while the processors numbered [N/2]
through N-1 will move their data backward by 1. The number
of data items that can be transferred without any conflicts
can be obtained as follows:
Data from processor [N/2] moves to the right. 1In n steps,
this data will have reached processor numbered [N/2] + n.
Data from processors N-1, N~2, etc. moves left. Inn
steps, data from processor N-n will have to processor N-2n.
This can occur without conflict if [N/2] + n and N-2n
differ at least 1. So,

FN/2] + n + 1 = N-2n

or

3n = N - [N/2] -1



or 3n = [N/2] -1 = [N/2]

or n = [N/6]
This shows that from the second half of the processors only
N/6 of these can be allowed to move if there is to be no
conflict. Thus of N/2 processors N/3 of these will have
conflict. Of all the N processors, only 2N/3 processors
can be moved without conflict, or

Bandwidth = Bs = 2N/3

logzN
An exact expression is BR = N-I =
. i
i=1 4
This can be obtcined by fitting the number of conflicts to
S S
a geometric series. Thus the message traffic MTR = By +

D§ = 2N/3 * 2/N = 4/3.

Next, we simulate a move of the tree network on the ring
network. A move on the tree network can move the data a
max distance of [(K-1)N/K]. On the ring network this can
be simulated in [(K-1)N/K] steps, since the ring network
can move the data a max of one processor at a time, So,

Diameter = Dg = [G%?J)N]

The bandwidth that we have determined to simulate the other
networks has been under the assumption that the network
being simulated is able to move data, without cenflict and
in one time period, from each one of its processors to its
logically adjacent processor. The tree cannot match this.
On the tree network, if we ask each of the K sons to
transfer data to its father, then we have a situation where

data path conflicts can occur. On the other hand, if we
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were to transfer data from father to son, then conflict
free data transfers can occur., In this case the data being
sent to the sons 1s not from different processors. Thus,
if we restrict the network to conflict free and one to one
transfers, then only N/K items can be transferred on a
tree.

Of these [N/K] data items, the ring network can
transfer all the [N/K] data items without conflict. This
occurs since either all the data items are moving to a
higher numbered processor (going from son to father ) or
all are moving to a lower processor (going from father to
son). Thus,

Bandwidth = Bg = [N/K]

With these values for diameter and bindwidth obtained, the
message traffic parameter can be calculated as,

MTp = BreDp = [N/KJ+[(K=1)N/K] = 1/K-1
This time let us try with a grid network. As we have seen

earlier, the grid network has been defined as:

Gy (x) (x+1) mod N

Gp (x) = (x*n) mod N n = /N
On this network we wish to first simulate the move of a
ring network. In the ring network, data in one period can
be moved a distance of + 1 step. Since the grid network
itself also has this capacity, it can simulate this move

directly in one step. Thus,

Diameter = Dg = 1
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The determination of bandwidth is a very straightforward

process. This iIs so, because the two way ring network is a

subset of the two way grid network. Thus all the data

items that have to be moved on the ring ecan be moved on the

grid also. Thus,
Bandwidth B = N

The mean distance on the grid network can be obtained as

follows. First, we must obtain the distance to each

processor in the row of the given processor. This will be,

n/2-1
Row (x) = 2 £ i + n/2 for n even n = /N
i-1
n/2
= 2 .z 1 for n odd
i-1

and then the mean distance is given by

-& [2?52—%R0w (x)+n¥i) + Row (x) (n/2+1)]

MDg =
i=1
for n even
[n/2]
= % [2 ?El (Row (x)+n¥*i) + Row (x)] for n odd
The message traffic for this simulation will be

MT§ = B + D§ = N + 1 =

Similarly we will obtain results to simulate a move of the
shuffle network on the grid network. On one move of the
shuffle network, data can be moved a distance of (2%¥x) mod
N, where x is the processor address. This is a maximum
distance of N/2. On the grid network the data can be moved
a distance of n or 1. A combination of both the moves may

be necessary. As an example, move a data item from row to

row until it reaches the correct row. This requires moves
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by n. Next move within the row until it reaches the
correct processor. This requires moves by 1.

From this it is very clear that a max of n/2 moves
from row to row and a max of n/2 moves in the row are
necessary. Thus,

Diameter = D& = 4 +8=n=VN
Determining by bandwidth is almost impossible, since
simulating a move on the grid will depend on the method
employed by the installation, (and there are many different
possibilities). However, once the simulation method is
established the bandwidth can be determined. If we choose
the strategy mentioned earlier, then we can determine the
bandwidth. The moves mentioned earlier resemble exactly
the moves of the ring network with each column as a
different ring. Thus, the number of conflict free moves
will again be approximately 2N/3. So

Bandwidth B§ = 2N/3
So, the message traffic is

MTEE- BE + DR = 2/3 N + v/F = 2/3 % N1/2
Next we simulate a move of the tree network on the grid
network. A move on the tree network will move the data a
distance of [(K-1)N/K]. Since the grid network is capable

of moving the information a distance where /N is

i+1 . 1/2
/N = ['K-;T_L]:/Ki/z

So, the diameter is as follows.
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To determine the bandwidth, an argument similar to the one
given in determining Bg can be followed. Doing this we
find that at the most [N/K] processors will be trying to
move their data. If we restrict the movement of the data
on the grid so that if the destination processor is at
least N away, then the data moves up the column by YN and
then moves by 1 along the row. With this plan the data can
be moved with no datapath conflicts.

The Bandwidth B = [N/K]
With two parameters known the message traffic parameter can

be calculated as follows:
i/2

Message Traffic MTE = Bg : Dg - N *X x K
(K-1)N
i/2 .
Message Traffic =§%I___= x (i-2)/2

This time let us consider the shuffle exchange network.
This network is defined as
S(Pm_-l, Pp~2y -...P1q, Po) = Pp-2 «+. Py Pgp Pm-q;
E(Py-1» PM~-2s +..P7 Pg) = Py-p Py-1 ...> Pg Py
On this network, we wish to first simulate the move of the
ring network. In the ring network, data can be moved from
processor address x to (x + 1) mod N. Such a move can
alter all the bits in processor address Xx. To simulate
this move the shuffle exchange network will alternately

execute shuffles and exchanges until all the necessary bits
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of the processor address have been altered. To address N
processors logoN bits are necessary so that the diameter
will be
R
Diameter = Dgp = 2% logoN
When the shuffle exchange network is trying to simulate the
Ring network it has to move data items a distance of 1
processor away. This will not cause any conflicts during
the shuffle move. During the exchange phase, because the
move is the same for every processor, the bits affected
occur in pairs and the exchange move always has an even
number of items to be moved and placed in an even number of
processors. Thus, both the shuffle and the exchange moves
can be carried out without any data path conflicts. So,
the bandwidth is,
Bandwidth = B;; = N

The mean distance between processors on a shuffle exchange
network can be obtained as follows. If the shuffle and the
exchange are performed alternately, all the processors can
be reached ultimately. When starting from processor x in a
shuffle move, only processor (2x) mod N can be reached. On
the next exchange move two other processors can be reached.
The next shuffle move can start from any one of the three
processors reached and in this way can reach three others.

On the exchange move starting from any of these three

processors, three more can be reached and



continue on this way. Therefore, the mean distance between
processors is,

MD= 1%] + 2%2 + 3%3 + UX3J + 5%6 + 6%¥6 + 7*12 +8%12,.,

N
which is equal to logzN
z
MD =(1_+ U4 + n=3_(3%2N~3(h*n-5))
N

This expression is approximately equal to logyN.
The message traffic on the shuffle exchange network, when
it is trying to simulate the ring network, is
R R R

Message Traffic = MTgg = Bgg + Dgg = N/(2log,N)
Similar results can be obtained for the grid network. 1In
fact there is absolutely no difference between the results
obtained for the ring and the results that can be obtained
for the grid. This is due to the shuffle exchange network.
On the shuffle exchange network, any data item can be moved
from any processor to any other processor in a fixed time
of (2logpN). Thus, the diameter of any move being
simulated by a shuffle exchange network is (2log2N).

Any

Diameter = Dgg = 2 logp N
When looking at the bandwidth, we find that any law which
moves data items from processor x to (x + a) mod N for all

a can be simulated by the shuffle network any conflicts.

Thus, Bandwidth:
Any (x-x+a)

Bandwidth = Bgg =N
Any (x»x+a)
and hence Message Traffic = MTgg = N/(2]og2N)

In simulating the tree network on the shuffle exchange

network, we have only to find the bandwidth since the
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diameter is known, For this, an argument similar to the
one given in determining Bg can be followed to find that at
the most [N/K] processors will be trying to move their
data. If the data is to move from father to son, then the
data follows the law x ==-> x + a mod N and a is negative
and does not have to be the same for each father. Then,
since each father is moving data to only one of a group of
sons no date path conflicts are found. Thus the bandwidth
equals the number of data items moving.
Bandwidth = égg = [N/K]

Hence, the message traffic is

T T
Message Traffic = MTggp = Bgg + DgE = é?é:]N
2
N
= 2K log2 N

Finally, we can obtain similar results on the tree
network. To simulate a move of the ring network, the tree
network has to move data from processor n to processor
n + 1. To do this, the tree network will have to move at
least one data item from one of its leaves through the root
and back to the leaf on the other side of the tree. This
will require 2i + 1 steps. Hence the diameter is

Diameter = D% = 21 + 1
If we restrict the tree network so that one son sends
information to his father or the father sends information
to one of his sons at a time, then we can move [N/K] data
items without any conflicts. Thus, the bandwidth to

simulate a ring on the tree has an upper bound at [N/KJ.
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However, on trees of level three or more, additional
conflicts are present. If the trece size is increased by 1

level then the number of conflicts are doubled. (See

appendix for discussion). Therefore,

R .

Bandwidth = By = [N/K] - 2i=3 -1 = %%—
R R
Message Traffic = MTry = B + Dg =—%% + 2 loggN
7N

= for lar .
32 log gN ge N

When we simulate the move of the grid network on the tree
network we have two different types of moves to simulate.
Moving data from processor x to (x:1) mod N is exactly the
same as described above. The other move requires moving
data a distance of YN away. This type of move produces
VN conflicts. To resolve all these conflicts we need VN
data transfer cycles. So in one data transfer cycle YN/K
items can be made to reach their destination. (See
Appendix for discussion). Therefore:

Bandwidth = By = /F/K

Diameter D% = (2KloggN)

Message Traffic = MT% = B% %Dg = (Jﬁ)/(ZKlogKN)
When we simulate the move of the shuffle network on the
tree network we have to move data from processor x to
processor 2x. This means that at least one data item will
have to move from a leaf through the root and down to
another leaf. This, as we have seen earlier, would take
2i-1 steps. As the number of levels on the tree increase,

the number of data path conflicts also increase. 0f the
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N/K data items that we try to move each time only (3N/LK)
are able to reach their final destination without
conflicts. (See Appendix for discussion). Therefore:
Diameter = D$E= 2i-1 = 2loggN
Bandwidth = B$E= (3N/8)

SE SE SE
Message Traffic = MTpe = Bp + Dpr = (3N/161logygN)
T T T K



TABLE 2

OF

\\BN\////' RING GRID SHUFFLE EXCHANGE TREE
Diameter 1 VN N/2 =[(K-1)N/K]

RING | pandwidth N N = 2N/3 ~ [N/K]
Message ~
Traffic N /N 4/3 1/K-1
Diameter 1 1 /N = Kll2

GRID | pandwidth N N . 2N/3 = gl ogx
Message — . _
Traffic N N - 2/3/5 = g/t
Diameter 2*log2N Z*logZN 1 = 2i-17 (210g2N)

, - Li-1_

S.E Bandwidth N N N = K = N/K
Message 4
Traffic N/210g2N N/ZlogzN N FK /(2i—l)=N/2KlogzN
Diameter 21ogKN 21ogKN 219gKN 1

TREE | Bandwidth 7N/ 16 /N/K IN/8 N/K
Message
Traffic 7N/321og,N /_N/ZI(logKN 3N/16log, N N/K

PERFORMANCE MEASURES



CHAPTER 5
USING THE PERFORMANCE MEASURES

Now that we have these measures it is appropriate to
see how they will help in matching an algorithm to a
network. To do this I propose to examine three algorithms.
One of these algorithms will require moves according to the
laws of one of these networks. Another will require moves
which do not match any of the networks that we have
covered, and the third one will require data dependent
moves.

The first algorithm that I chose is that of adding
all the entries of a vector.

This algorithm does not match any of the networks
discussed. The algorithm, as discussed earlier, can be
written as follows:

(1) Let C = 1

(2) Add the data elements present in each processor

(3) Move data from processor (2i+C) to processor 2i¥

(4) If C > N/2 STOP

(5) C = 2%C

(6) Go to step 2

46
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We will determine the time taken to run this
algorithm on each the networks when we have N processors
and 2N data items. All the data items have been placed Iin
the N processors previously and we are ready to execute the
algorithm,.

If the algorithm is to be run on a ring network;

(1) The first step will take only 1 step, since it is
not part of the loop.

(2) Each time the loop is executed, step 2 is
executed once on each processor. Since half of the
elements are added each time the loop executes, the loop
will have to execute logo N times. Thus, step 2 will be
executed logo N times.

(3) This is the data communication step. Because it
is part of the loop, it will be executed (logy N) times.
However, each time this is executed, data will have to move
a distance of {(1,2,4,....C steps). Thus communication time
for this algorithm is:

logzN ]
.z 2%

i=0

(4) (5) These two steps are computation. Each takes one
step. Since they are part of the loop, they will be
executed (logy N) times each.

Thus, the total time to execute the algorithm on the ring

network is communication time plus computation time, where:
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logzN
Communication time =i£6 2l and Computation time = 1 +
4*1og2N.

To run the algorithm on a grid network, we will have
to once again execute the loop logp, N times. Next, steps
(2, 4 and 5) will be executed logp N times each. Step 3,
which is a communication step, will also be executed logp N
vimes. Each time the communication step is executed, the
data can be moved either North-South or East-West. As long
as C < YN the communication will have to take place
according to the law x —> x + 1, After C has become >
YN the communication will be according to the law x ——>
X + n, In this way, the first half of the loop will be
executed according to the first law and the second half of
the loop will be executed according to the second law.
Thus, the number of moves necessary for this step is:

1/2(log2N)

2 : 213
i=0
and the time for the whole algorithm is communication time

plus computation time, where

l/2(10g2N)
Communication time = 2{¢Z 21} and Computation time =
i=0

1 + 4 logy N.
To run the algorithm as we have defined it on the tree
network we would need to execute the loop logy N times,.

Steps (2, 4, 5, and 6) will be executed log» N. Step 3,

which is a communication step, will also be executed logs N
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times. On this network, each time the communication step
executes, data has to be moved from the left half of the
tree to the right half. Each move is similar to the move
of the grid network and requires 2%i steps where i is the
number of levels of the tree network. As we have seen
earlier, when the tree is simulating a grid netword, only
VN/2 data items can be moved at a time. Each
communication step will require 2%i%(2/N) steps to
execute,

The shuffle exchange network can finish each
communication step in 2logp N periods. The communication
time for the whole algorithm is 2¥log, N¥log, N.

Comparing the times on all four networks, {(see Table
3B) we see that the computation time on all the networks is
the same. The difference is the communication time. The
ring network is the slowest. The grid and the shuffle
exchange network compete for the fastest network. As long
as the number of processors in the network is less than
16K, the grid network is faster. When there are more than
16K processors, then the shuffle network becomes faster.
The results obtained are for the algorithm as it is
written. If we are permitted to change the algorithm so
that the transfer of data is from each son to his father
(assuming two sons per father), then each communication

step on the tree network would need two time periods. This



would make the total communication time 2¥%¥logp N which is

faster than on any other network.

Network Computation Communication
logzN
Ring 1 + 4 logo N rc el
. i=0
|
S.E. i 1+ 4 logy N 2% (logy N)2
1/21032N
Grid i 1 + 4 logs N 2% ¢ 2t
{ 1=0
! —
Tree ‘1 + 4 logs, N ! U4/N logo N
TABLE 3A

As a second algorithm to analyze, I will obtain a
product of two matrices. We will assume that both the
matrices are square. We are using square matrices because
modification is simple and it is easier to obtain the
transposition of a square matrix on a shuffle network. We
will assume that the two matrices conform with each other.
We will start with the two matrices as shown in Table 4.
Also assume that each processor has at least two free
registers that can be used by the algorithm.

The algorithm is:

(1) Transpose the second matrix.
(2) Let C = 0.

Loop (3) Multiply the two elements of the matrices

in place.

(4) Add all the elements of row i and store the
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RING NETWORK

GRID NETWORK

|

Comparisons of various networks to add a vector for different
processors in a network.

} # of ‘ Computation
peocess TR T o T [y e
o2t 31)  1.824]  0.646 14| 0.824] 0.452 17
: 2° 127 5.08/ 0.836 30| 1.20 .545 25
P28 511/ 15.485] 0.939 62| 1.88 .653 33
o 280 2047| 49.93] o0.980] 126] 3.07 .754 41
: 22 g191! 167.16] 0.994 254| 5.18 .838 49
219 327670 s74.86] 0.998] s10| 8.95 .899 57
f 216‘131071 2016.48/ 0.999| 1022 15.72 .940 65
i 2181 5242871 7182.01] 1.000] 2046| 28.03 .966 73
|
SHUFFLE EXCHANGE TREE
2" 32{ 1.88 0.653 64 3.77 .790 17
28 72| 2.88) 0.742] 192 7.68] 0.885 25
28 128/  3.88] 0.795 512] 15.52] 0.939 33
210 500{ 4.880 0.830] 1280 31.22] 0.969 41
212 288] 5.88] 0.855] 3072] 62.69] 0.984 49
214 392 6.88 0.873| 7168 125.75| 0.992 57
218 519l 7.88]  0.887| 16384| 252.06] 0.996 65
218 648  8.88 0.899] 36864] 504.99] 0.998 73
TABLE 3B

numbers of
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4 b 5 f 6 3 7 n
8 ¢ 9 g 10 k 11 o
12 4 13 h 14 1 15 p
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i
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a 5 e 6 i 7 m
8 b 9 £ 10 j 11 n
12 ¢ 13 g 14 k 15 o
TABLE 4

Start algorithm with
the two matrices in

this position.

After transposition the
matrices are in this
position. Multiply and
add. Underlined positions

have final result.

Multiply and add. Underlined

positions have final result.

Multiply and add. Underlined

positions have final result.

Matrix product obtained

in proper position.

Algorithm setup to multiply two matrices.



result in a processor that {s in (C+1)
column mod vN.

(5) Move the elements of the transposcd matrix
to processor address (x+v/N).

(6) C = C + 1.

(7) If C < VYN go to step 2, otherwise stop.

This algorithm has all the characteristics that we
would expect to find in an algorithm. It runs in phases.
Phase one requires you to transpose a matrix. Phase two
requires multiplication of two matrices. Both the phases
obey different laws for communication. The communication
laws followed by both the phases of the algorithm are
exactly the same as the laws of two of the networks that we
have analyzed. Thus, we will be able to utilize the
performance measures that we have developed.

Running the algorithm on the ring network:

(1) The first step, which requires transposing the
second matrix, can be done on the shuffle exchange network
without any conflict in a minimum of m shuffles. Thus, for
this step the ring network has to simulate the shuffle
network.

(2) Step three is a process of adding the contents of
YN consequentive processors. This is the same as the
previous algorithm analyzed.

(3) The next step is that of moving the elements of

the transposed matrix by a distance of /N. This step can
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be accomplished by the grid network in one step. Here we
are simulating the grid network.

(4) The loop has to be executed VN times.

Time to run the algorithm on a ring network can be
calculated as follows:

(1) To simulate a move of the shuffle network, the
ring network needs N/2 steps. Since each time a shuffle
has to be executed, the ring network can move 2N/3
elements, the ring network will need:

m* N/2%¥ [N/(2N/37 or m¥N steps.

(2)(3) Step two and three on the ring will require one
step each.

(4) Step four on the ring will require

l/210g2N
[4log(V/N) + 'EO zilsteps.

(5) This step ig_a simulation of the grid network on
the ring network. Since the D% = ¥N and the bandwidth is
N, this move can be accomplished in Jﬁ_steps.

(6)(7) These two steps can be done in one step.

Computation time = 1 + (1 + 4 logp VN + 2) * yN

1/2log2 N

Communication time = (logs N) * N + [‘EO 21

RI% /R )

Running this algorithm on a shuffle exchange network,

the first step being a shuffle step, this one move can be

executed in m steps (Stone (4)). The next communication
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step is the same as that on the previous algorithm. The
final communication step will need 2m steps since the
diameter o the grid network on the shuffle exchange
network is 2m and the bandwidth is N. This results in the
following:

Computation time = 1 + (1 + l4logp VN + 2) * /N

Communication time = logp N + [2¥%¥(logp N)Z +

2 logpy VN] * VN

The next step is to run this algorithm on the grid
network. To do this, we need to simulate the shuffle move
first. As seen previously, the diameter of a shuffle
network on a grid is YN and the bandwidth is %N. The m
shuffle moves will need,

m¥ JN ¥ [N/(2N/3)] = 2m VN steps.

The next communication move is similar to the
algorithm already examined., The time is according to that
previously obtained. The next communication step is to
shift data VN distance away. This can be done on the
grid network in one step. Hence, the time to execute the
algorithm on the grid network can be written as,

Computation time = 1 + (1 + Ulogp, VN + 2) * VN

1/4 log,N

Communication time = 2(logp N) VN +(2 + £ 21 +

1) * fﬁ i=0
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Finally when running this algorithm on the tree

network, the shuffle move will require

3N

16
3N _ 2
16log,N "~ 3 (logp N)

m ¥ N +

The next communication move is similar to the
algorithm already examined and the times for step four are
already known. Step five requires simulating the move of
the grid network. Thus time required to execute step five
is

VN ¥ [N+(2Klog,N) 1= /N * (4/Nlogs N) = UNlogoN

Thus the Computation time is 1 + (1 + 4 logy, VN + 2) *
YN and the Communication time is lg (logp N)2 + 4Nlogy N +
UNlogo N

Once again, for this algorithm, we obtain similar
results. The computation time stays constant as long as
the algorithm is not changed. The execution times follow
similar patterns as before. The ring network is the
slowest network when the number of processors is large.
Notice, however, that the tree network is the slowest to
begin with. This is seen initially because, during the
step of adding the products of each row, the ring network
behaves as if it is made up of ¥N chains /ﬁ-processors
long and this reduces its diameter. However, as the number
of processors gets larger, even this help from the

algorithm is not enough. This shows that the ring network
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can cxecute algorithms faster than the tree¢ network.

Communication time to multiply two matrices.

Network Computation Communication
! 1/21og,N
Ring 1+(3+410ogs/N)*/N |Nlogs N+[ © 2i+/NI/N
|
: i=0

| —_ —_— —
S.E. {1+(3+U41logy/N)*/N [logpN+(2%(logpN2+21logpVN)VN

' 5 _ l/élogzN .
Grid :1+(3+ulog2/ﬁ)*/N .2VN 1og2N-+(3 + T fﬂ * /N
1 i:o

Tree 1+(3+4logsVN)*/N Jf—(logg N)2 + 8Nlogy N

TABLE 5
Also notice that the addition of all the elements of a row
on the ring and the grid network require the same time.
This is because the grid can use only + 1 function for this
addition. This is how the ring network is defined. Hence,
for this step of the algorithm it makes no difference
whether the ring or the grid network is used.

As the number of processors becomes larger, the
shuffle exchange network once again becomes the most
efficient network. This is not true when the number of
processors is small.

The third algorithm that I will analyze is a sorting
algorithm. This algorithm was originally introduced by
Batcher. It sorts by merging. Since this is a sorting
algorithm, it will test our networks to their fullest. A
sorting algorithm must be able to move data anywhere in the

network., The final goal of this algorithm is the same as
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# of RING NETWORK GRID NETWORK Computation
processes comm./ |[comm./ comm./ | comm./ time
comm. comp. total commu.l comp. total
24 108 2.400 {.706 72 1.600 | 0.615 45
2% 568 | 4.694 |.824 240 | 1.983 | 0.665 121
28 2800 9.180 |.902 800 2.623 | 0.724 305
210 13280 18.019 |.947 2752 3.734 1 0.789 737
212 61376 | 35.498 [.973 9856 5.700 | 0.851 1729
224 | 278400 | 70.144 |.989 | 36608 | 9.223 | 0.902 3969
216 1244928 1138.927 |.993 139776 15.584 | 0.940 8961
218 5504512 275.652 [.996 543744 27.229 0.965 19969
TREE

!
SHUFF¥LE EXCHAKGE

2 164 3.644 | .785 597 13.267| 0.930 45
28 678 _5.603 849 3264 26.975| 0.964 121
28 | 2312 7.580 | .883| 16725 | 54.836] 0.982 305
210 1 7050 9.566 | .905| 82453 | 111.877] 0.991 737
212 | 19080 | 11.556 | .920 | 393984 | 227.868| 0.996 1729
1% | 53774 | 13.549 | .9311 | 836053 | 462.598| 0.998 3969
216 11309280 | 15.543 | .9408 | 389973 | 936.276| 0.999 8961
28 1350226 | 17.538 | .946 | 3775064 | 1890.453| 1.000 19969

TABLE 6

Comparisons of various networks to multiply two matrices for different numbers
of processors in a network.
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that of any other sorting algorithm: arrange the data in
such a way that the smallest key is located in processor
numbered 0 and so0 on. To do this, the algorithm requires a
compare and exchange step. This step is executed as
follows.

First, move the data to be compared from a higher
numbered processor to a lower numbered processor. Then
execute the compare step in the lower numbered processor.
Leave the smalle. valued data there and move the higher
valued data back to the higher numbered processor. These
moves from high numbered processor and back to the higher
number processor make up the communication times.

The distance the data has to be moved for each
comparison is not a fixed value. It is dependent on the
index value of the outer and the inner loops. There is
also a third constant that is used as a mask to inhibit
some of the processors from sending out their data. 1In
general we can say that for every execution of the inner
loop, N/2 data items have to travel from a higher numbered
processor to a lower numbered processor and the same number
of data items have to return. The communication time
required for data items to reach the designated processor
for comparison is the same as the time required to return
after the comparisons are made. The algorithm:

(1) Set t = [logs N] =1 and?P = ot t
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(2) Set q = 2t"1, r =« 0, d = p

(3) For all i such that o ¢ § < N-d and (i and p) =
r, step four.

(4) Move data item from processor (i + d + 1) to
processor (i + 1)

(5) Compare the two data items in processors.

(6) Return the high valued data to processor
(i + d + 1),

(7) If 9 = p, then go to 9.

(8) Set d — qg-p then q = q/2 r = p, go to U

(9) set p = [p/2]

(10) If p > 2 go to 2
(11) Stop.

In this algorithm the communication takes place in
step 4 and step 6. The comparison in step 5 and the
calculations in the rest of the steps are book-keeping.
The book—-keeping and the comparison times are independent
of the network: they require the same number of periods on
all the networks. We will analyze step 4 for each network.
This will give us the information we are looking for.

The ring network., Since in one period this network

can move the data a distance of 1 unit, the number of
periods required for step 4 on this network is

[logzN]—l

n

PN n.

n=1 [ mgo 2 2m]-

This can be written in a form easier to calculate.
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[log,¥)-1 [ (2".1)n  w
N (Eﬁo X ] +2n).

Thus, the communication time on the ring nectwork is twice
the above expression. The computation time, which is the
same for all networks, Is given by the following
expression.

Step 1 -=-> 1

Step 2 ~--> 1

Step 3 ~=> 3% [logpo N + 1]

Step 5 ~=> 1% [logs N][logs N + 1] * 1/2

Step 7, 8 ==-> 4* [logpy Nl[logo N + 1] * 1/2
Step 9, 10 -->2% [logpy N + 1]
Total computation time on all networks is,

2 + [logp N + 1] [3 + 1/210gp N + 2%logy N + 2]

2 + [logo N + 1] [5 + 2.5 logp NJ]

On the shuffle exchange network each time step U is
executed, irrespective of the distance the data has to
move, we will need 2 [logy N] communication steps. Step 4
is executed [logy N1 ¥ [logp N + 1] times.

The communication time on the shuffle exchange
network is given by twice the following expression.

2[logy N] * [logp NJ * [logpy N + 1]

2[log>s N]2 * [logo N + 1]

Executing the same algorithm on the grid network, we need

to look at the distance the items have to be moved. Some
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of these moves can be made by moving the data a distance of
N each time, while the others requirce a move of a distance
of one. The distance the various data ltems have to move
was seen earlier. In that expression, as long as 2n/J is
less than v N the moves can be made along VYN distances.
For all values of 20/J greater than /ﬁ, the moves have to

be made by moving the data items one unit away, each time.
Thus, the time to execute the communication step can be

written as,

log, /N o . .
12 ([zi(2d-1)/N728] + /h/2i) +
i=1 j=0
logN-1 1ogN -1
) I - $ (23-1) N/217 +
i=log vN+1 J i-log vN+1
logN-1 i-log A
. z L( L (2J-1)N/721) + Ns217.
i=l+log /N j=0

In this expression, the first two terms account for all the
moves that can be made by moving the data items a distance
on VN on each move. The remaining moves, which have to

made by moving the data a distance of 1 each time, are
accounted for in the third term. The above expression
accounts for the time required to execute step U4 in the
algorithm. Step 6 has a similar expression. Thus, the
communication time to execute the entire algorithm is twice

that of the above expression.
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Performing a similar analysis on the last network
that I am using, we find each communication step requires
data to be moved across the root of the tree. Data will
move from the left half to the right half during step 6 and
from the right half to the left half during step 4. There
is a very good possibility of data path conflicts occurring
here. Also, the moves are not according to any fixed
pattern that can be analyzed on the tree network. Some
moves can be made in i + 1 steps, while others require 2i +
1 steps. To complete this analysis, I will choose the
average value of steps required for each move. The average
value of steps that each move will take is (@i)/2 + 1
steps. Next, to account for the data path conflicts, we
need to multiply by N/2 because only N/2 processors are
sending out the data. We then divide it by the bandwidth,
which is approximately N/5. Each communication step will
require [5/27 * [ (3i)/2+ 1] steps.

Since step U4 is executed (1/2)logp N*(logpo N + 1)
times, step 4 and step 6 each will require,
3%¥[(3/2)logp N + 1] ¥(1/2)1logpy N *[logy N+1] time to

execute.
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Network Communication time
[lngN‘l] i
Ring b [(z(23=-1)Ns21) + N/21)
i=1 i=0
Shuffle [logp NJ2 * [logp N + 1]
Tree (372)*([(3/2)1ogo N + 1]1) * logo N * [logs N +1]
logz/ﬁ> i ] _
Grid by ([x(23=-1)V/Ns21] + /N/s21) +
i=1 j=0
[logzN-l] i ' .
T (L I __ (23-1)/N/21] +
i=[1og2/ﬁ+1]j=i-1og/m+1
i-log/N . .
[ b (2J-1YN/2Y + N/211])
j=0

TABLE 7
The computation time on all networks is,

5 % logy N * [1 +1/2 + (1/2)(logp N + 1)1 + 2

From the three algorithms analyzed, a few patterns
seem to emerge. A careful étudy shows that:

(1) Communication between processors requires the
least amount of time if the move required by the algorithm
exactly matches the move that can be executed by the
network in one step. The reasoning is obvious.
Unfortunately, during the 1ife of a network, it will be
asked to simulate moves not native to it. Some degradation
is to be expected on almost all algorithms.

(2) Communication between processors begins to
degrade when the network has to simulate a move that is

foreign to it. The amount of degradation varies from
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i of SHUFFLE EXCHANGE TREE ~ Computation
proceaom: | somm:/ 163801/ [comn. gomm./  [egpmy/ | Time

2" 80 |  0.975 | 0.494 469 5.720 0.851 82
2° 256 | 1.658 | 0.624 2112 | 13.895 0.933 | 152
28 576 2.380 | 0.704 7509 |  31.030 0.969 242
219 1 1100 3,125 | 0.758] 23573 | 66.969 0.985 | 352
212 1872 3.884 0.795| 68352 | 141.809 0.993 482
oY | g040 | 4.652 | 0.823] 187413 | 269.540 0.997 632
21 | 4352 5.426 | 0.844| 492885 | 614.570 0.998 802
218 | 6156 6.206 | 0.861| 1255104 | 1265.276 0.999 992

_GRID_ _RING |
2% 19 0.232 0.188 68 0.829 0.453 82
2% 76 | 0.500 | 0.333 516 3.395 0.772 152
28 237 | 0.979 | o0.a95| 3076 | 12.711 0.927 242
p10 654 1.858 | 0.650| 16388 46.557 0.979 352
212 | 1679 3.483 | 0.777| 81924 | 169.967 0.994 | 482
o 14 4112 6.506 | 0.867 | 393220 | 662.184 0.998 632
2% | 9745 | 12.151 | 0.924 | 1064964 |1327.885 0.999 | 802
218 | 22546 | 22.728 | 0.958 | 2056756 | 2526.972 1.000 992
TABLE 8

Communication time for the Sorting Algorithm
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network to network and it is a function of (a) the network
itself, (b) the number of times the simulation has to be
performed, and (c) the diameter and the bandwidth of the
move being simulated.

From the analysis of the algorithms, we can see that
th communication time depends on the diameter and the
pandwidth. If the diameter of the move being simulated is
small, then the message can reach its destination in fewer
steps. The diameter on a network can be reduced by
increasing the number of processors any one processor is
connected to, or by switching the interconnecting structure
on the processors so that it matches the move required by
the algorithm. Increasing the number of processors any one
processor is connected to has some limitations. First, it
is very expensive and next, there are physical limitations.
Each processor has a fixed number of I/0 ports available.
Switching the interconnection structure so that the network
matches the move on the algorithm is being examined by
researchers. A machine capable of this will require
special hardware. Even with switching hardware, the
network will have its limitations as to how many different
interconnections are possible. In addition, the time used
to switch hardware from one type of network to another and
then back will have to be accounted for and included in the
communication time. This time will have to include the

time required for any changes necessary in the processor
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memory for various tables. Thus, the engineer will have to
decide if switching the network is time saving, or time
consuming. Another factor that will be affected is the
bandwidth. On any move, a large bandwidth is desired since
this would indicate that many data items will reach their
final destinations without conflicts. Increasing the
bandwidth can be done the same way that the diameter is
reduced. However, extra care should be exercised because
increasing the number of interconnections could also
decrease the bandwidth by introducing extra data path
conflicts,

The effect of the diameter and the bandwidth can be
studied simultancesously by the use of the message traffic
parameter. This parameter was earlier defined as the ratio
of the bandwidth to the diameter. Thus, either increasing
the bandwidth or decreasing the diameter will increase the
message traffic parameter. A large message traffic
parameter is desired. The limits on the message traffic
parameter are from N to 1/N. The message traffic parameter
of N indicates that all the N processors can transfer data
in one step and an exact match between the network and the
move required by the algorithm is achieved.

(3) As the number of processors in the
interconnection network increases, the communication time
for each message traffic stage is also increased. These

two increases do not have a linear relationship. This can
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be seen by comparing the execution times of the algorithms
analyzed. For values of N that are small, we see that the
grid network takes less time to execute than the shuffle
exchange. As the number of processors in the network
increase the grid network requires more time to finish
execution. At some point the shuffle exchange network
becomes better than the grid network. A similar result can
be seen between the tree network and three ring network.
This effect can be summarized as follows.

(4) A network with a smaller average distance between
processors will be the more efficient network of the two as
the number of processors in the network becomes very large.

For the four networks analyéed the average distances

between processors are:

Ring O0(N/2)
Tree O0(N1/2)

Grid 0(N1/2)

S.E. 0(logp N)

Average distance between processors on various networks
TABLE 9

Looking at the three algorithms analyzed, we see that for a

large value of N, the ring network needs the most time and

the shuffle exchange network needs the least time. The

grid network and the tree network fall in between the ring

and the shuffle exchange network as Table 9 indicates. The

average distance between the processors is a parameter that



{3 similar to the network diamcter. This parameter can be
altered just as the network difameter {35 altcred. If the
number of processors cach processor {is connected to is
increased, then both the network diameter and the average
distance between processors is reduced.

The number of processors each processor in a grid
network is connected to is 4(1-1//N) and each processor
in the shuffle exchange network is connected to 3-2/N.
Even though each processor in the grid network is connected
to more processors than each processor in the shuffle
exchange network, the average distance between processors
on a shuffle exchange network is less than that on the grid
network. This shows that the interconnection geometry is a
factor in the communication time. Indiscriminately adding
interconnections to reduce the diameter in hope of reducing
communication time is not the answer.

If the number of processors is not arbitrarily large,
then a different effect is noticed from the graphs shown.
In the region from about 28 - 212 processors in the
network, the grid network is the more efficient. Then
comes the shuffle exchange followed by the tree, and the
ring is last, being the slowest. In this region the
geometry of the network is not the dominating factor. In
this region, the rn.mber of processors each processor is
connected to dominates the communication time. As a

result, the grid network is the most efficient of the four.



CHAPTER 6
CONCLUSIONS

The rapid reduction in the cost of microprocessors
and the advances in VLSI technology have made it feasible
for us to have a computer with 210 to 216 processing
elements, In order to design such a system, one capable of
operating as a SIMD machine, an analysis of the
interconnection network is necessary.

The analysis presented in this paper is intentionally
system independent and hence, may be generalized and used
to compare other possible networks. The direction taken in
this article is from the network point of view. Many other
authors have done analysis as far as communication time is
concerned. Their major thrust has been analyzing different
algorithms and mofifying one of them so that it executes
most efficiently on a given network. That 1s the thrust so
far has been from the algorithm point of view. What this
analysis shows is:

(1) Communication of data on a single instruction,

multiple data machine is a very important factor which must
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be considered when the machine is being designed and when
algorithims are being executed on it.

(2) The network selected for the machine
interconnection structure will be asked to simulate other
networks in its lifetime. How well this network simulates
other networks will determine how efficient this machine is
under different operating conditions.

(3) I have shown the factors that affect the
simulations and the parameters that measure the match
between the algorithm and the network on which the
algorithm has to execute.

(4) No single network can be shown to be the best
network for a SIMD machine but some networks are better
than others. (a) A superset network is at least as
efficient as the subset network, most of the times more
efficient. (b) A network with smaller average distance
between processors is better than a network with a larger
average distance between processors when the number of data
items to be moved during a communication step is large.
(e) A network which has each of its processors connected to
more processors than another will be the more efficient
network when the number of data items involved in a
communication step is small. The analysis shows that even
under the limited constraint of the least execution time,
the various networks lead or fall back as the number of

processors in the network varies.



(5) I have shown that in the SIMD machine, the time
to execute the algorithm depends on: (a) the average
distance between processors, when the number of processors
in the network is large, and (b) the average number of
processors a given processor is connected to when the
number of processors in a network is not so large.

The break even point between two networks in not
clearly defined. It depends on the networks being
considered and the algorithm being executed. As a result
of this, superset networks are being considered by many
designers.

(6) A network that is the superset of another network
will require less execution time, irrespective of how many
processors are in the network. This can be seen by
comparing the ring and the grid networks. The ring network
is the subset of the grid network. Each processor in the
superset network will always be connected to more
processors and hence, will be more efficient when the
number of processor is not large. The superset network
will also have a smaller average distance between
processors and therefore will be more efficient when the
number of processors in a network lis large.

The forming of a superset of a network can be carried
out by increasing the number of processors that are
connected to anyone processor. This has the effect of

reducing the diameter and the average distance between
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processors. This c¢could possibly increase the bandwidth,
All thesc factors point towards reducing the execution time
of an algorithm on a superset network. Unfortunately, the
forming of a superset network increases the cost of the
network.

When examining the shuffle exchange network, we find
that this network can simulate any move, of any algorithm,
in a fixed number of steps. This gives us the upper bound
on the execution time of an algorithm. A given network
should require less time, otherwise the shuffle network
should be used. The shuffle network for smaller values of
N is not as efficient as the grid network. The break even
point between these two networks is not a fixed value of N.

If a systems architect is concerned with minimizing
hardware cost, but is willing to use 2logp N moves for any
simulation, then the shuffle exchange network would be a
good choice. If execution speed is the architect's chief
concern, then some superset of the shuffle exchange network
would be a good choice.

A superset of the shuffle exchange network can be
formed by connecting each processor x to x*¥21 mod N, where
i can take on different values. For i = 1 we obtain the
shuffle exchange network. A hybrid superset network can be
formed by connecting the processors both as a grid, and as

a shuffle exchange network.
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Judging from the algorithms analyzed and the
conclusions drawn, such a hybrid network would be an
excellent choice. As long as the number of processors in a
network is small, then the grid connection would provide
excellent speed and the shuffle exchange network would
provide the upper 1limit as the number of processors in the
network increase. This type of hybrid network would be a
very flexible network and have a good computational speed.
The cost of the interconnections would still be a
relatively small portion of the total cost of the system.

The results of this study provide a means by which
algorithms and networks for SIMD machines can be compared.
The comparisons made will aid both the system designer and
the algorithm author. The system engineer will be able to
compare between various networks and evaluate their
simulation abilities. The algorithm author will design his
algorithms so that data transfer can be easily
accomplished.

Currently more and more super computers based on SIMD
machines are being proposed. The study, simulation and
construction of different designs will require comparisons
between them. This study provides one means to achieve

this.



OTHER RESEARCH DIRECTIONS

This article has shown that different networks are
more efficient under different conditions. Also a super
set network is more efficient than a subset network.
Future research can be done to determine how to construct
the super set networks. Some possible ideas would be:

(1) It is obvious that a fully connected network is
the most efficient of all networks. The cost of fully
connecting a network of 212 to 2% processes is probatively
large. Everyone today is resigned to a subset of a fully
congected network. A subset of a fully connected network
could be nodes of say 4 processors each with each node
connected to another and the four processors in the node
being fully connected. How should the interconnections
between the nodes be made? With todays technology it is
possible to place these four fully connected processors on
a single chip. How to connect these chips? Which pins
must be brought out of these chips?

(2) In the paper we have seen that a super set
network is more efficient than a subset network. How

should this super set network be constructed? For example,
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the S.E. network can be defined as x => st If instead of
this connection a net with x => x*¥2J with j having two or
three or possibly more values wWe will have a super set
network. Of all the possible choices of j some will have a
definite advantage over others. Which values of j provide
the most speed up of communication time?

(3) Another research direction would be in the
direction of re~configurable networks. Which networks
should be used? How does the time to re-configure a
network effect the communication time? Since each
processor has a limited number of ports, are these ports

effectively utilized?



APPENDIX I

To move the data on a tree network from processor x
to processor (x + A) Mod N, we will use the following
scheme. As we have seen earlier, each time a move is made,
we will move N/K data items at a time. When these N/K data
times have reached their destination, another batch of N/K
items will be started. The N/K data items that have to be
moved will not be selected at random. To select N/K data
items, we select any one of the K sons which have a common
father. Call this son X. Next, we go over to an adjacent
father and select a son that is numbered (K + x + 1) mod K.
This son will be from a father with a higher number. If we
go to a father that has a lower number, then, the son
selected will be numbered (X-K-1) mod K. This way when a
son is selected from each father, we will have selected N/K
sons. These N/K sons %ill be allowed to transfer data.
For the next N/K data item moves, the first son we select
will be numbered (x + 1) mod K and the rest of the sons as
described above. For such a selection scheme, the data
movements and the conflicts that occur follow a pattern and

can be studied.
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To see how and where conflicts occur, I will examine
two trees. One of level 3 and one of level 4 will be
examined. All the trees will have two sons per father,
since i1n each of the algorithms, I have used tree networks
that have two sons per father.

When a=1, simulate the ring network.

Level 3 tree

® & & ® 6 ® @ ©

From this tree, in accordance with the selection scheme
described, we can choose either 0,3,4,7,8,11,12, or
1,2,5,6,9,10,13,14, as a group of sons to transfer data.

Thus the datapaths will be:

0 -8 -1 1 -8 =-12~-9 -2
3 -9 - 12 -~ 14 = 13 ~ 10 - 4 2 -9 -3

Yy - 10 - 5 5 - 10 - 13 = 11 - 6
7 - 11 - 13 ~ 14 - 12 - 8 6 - 11 - 7

8 ~ 12 ~9 9 - 12 - 14 - 13 - 10
11 ~ 13 = 14 -~ 12 10 = 13 = 11

12 - 14 = 13 13 = 14



82

In the first group, if we block data item number 7, and in
the second group, if we block data item number 9 or 14,
then all the other data items can reach their destinations
without conflicts. We have one conflict for each group of
N/2 data items for a level 3 tree.

In a'level 4 tree;

(39

(27 (2) (%) (%)
(2) (2) () (7] (15) O30

DBDEOWOOOOOOOOOLO

From this tree the following groups of processors selected

and the paths for data are shown below.

1 - 16 - 24 =17 - 2
0 - 16 - 1 2 - 17 = 3
3 - 17- 24 -28 ~-25 ~18 -4 5 - 18 - 25 - 19 - 6
4y - 18 - 5 6 - 19 ~ 7
7 -19 -25 =28 -30 -29 -26 -20 -8 9 - 20 - 26 - 21 - 10
8 - 20 -9 10 - 21 - 11
11 - 21 - 26 - 29 =27 ~22 =12 13 ~ 22 - 27 ~ 23 - 14

12 -~ 22 -~ 13 14 ~ 23 - 15
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15 =23 -27 -29 -30 -28 -24 -16 17 24 28 -25 - 18

16 - 24 - 17 18 25 19

19 - 25 - 28 - 30 - 29 - 26 - 20 21 26 29 - 27 - 22
20 - 26 - 21 22 27 23

23 - 27 - 29 - 30 - 28 - 24 25 28 30 - 29 - 26
24 - 28 - 25 26 29 217

27 - 29 - 30 - 28 29 30

28 - 30 - 29 30 ~ 28 - 24 - 16 - 0O

Notice carefully that the conflicting processor on the
level 3 tree was the leaf on the left most end of the tree.
level 3 trees as shown

In a level 4 tree, we can find 2 + 1

in the figure below.

[ 4

In a level 4 tree we have three processors which have

conflicts if they send their data items out. From this,

the following hypothesis can be made.

For a tree of level i there will be (213 + 1)

conflicts if the data is to be transferred according to the

law x =~> x + 1. This hypothesis can be proved very easily

by using induction. Thus in one message transfer stage, we
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can move about TN/16 data items. If the data has to be
moved from x =-=-> x + /ﬁ, simulate a grid network. To do
this, we will once again divide the processors into K
groups on N/K processors each. Only one of these groups
will be allowed to transfer data at a time. lc is very
easy to see that the bottleneck occurs at processors at
level i and i-1. Performance of the moves, as I did for
the ring network above, will show that at most /N data
items arrive at these nodes simultaneously. Because only
one of them can go through at a time, we will need /N
complete transfer stages to simulate this move or in one
move (N/K)/ VN or /N/K data items can be transferred to
their destination without conflicts.

During a shuffle exchange move, the tree network has
to move data from processor x to processor 2x mod N. To
perform this move on the tree, we will once again divide
the processors into groups of N/K each with only one group
transferring data at a time. It is obvious that all the
processors whose number is greater than N/2 will be
transferring data to one of their sons. (We are assuming
two sons per father). Therefore, there are no conflicts
for them. Among the processors numbered 0 to (N/2 - 1)
there are conflicts present. Simulating the moves, as we
did, for the x --> x + 1 move, we find that there are two
conflicts for a tree of level 3. With an increase in every

level of the tree, the number of conflicts double. Thus,



for a tree of level 4, we will have 4 or 212 conflicts for
every N/K data items. Since we are using K = 2, this leads

to N/2 minus 21-2, Because N =21*1, then N/2-N/8 = 3N/8.
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