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Abstract

Synthetic Aperture Radar (SAR) is a valuable tool for acquiring information about

landscapes through forming two-dimensional images remotely. SAR has useful

applications for defense, intelligence, humanitarian, and urban planning efforts,

among others [1]. Because of increased competition for suitable transmission fre-

quencies in the electromagnetic spectrum from wireless communication corpora-

tions, passive bistatic radar has been extensively studied over the last few decades

as a means of circumventing that obstacle. However, it does not come without its

own introduced challenges - because telecommunication waveforms are continu-

ally changing, that variability introduces a large computational burden. In order to

model data generation in a simulation environment, it is necessary to develop pro-

cessing methods that will perform in a timely manner. In this work we present the

Reverse Backprojection Algorithm, derived from the adaptable, commonly-used,

yet brute force backprojection imaging algorithm, as a novel approach to gener-

ate simulated passive bistatic SAR data. To demonstrate the algorithm’s effec-

tiveness, we conduct a variety of simulations employing 4G Long Term Evolution

(LTE) waveforms. Because LTE waveforms are not designed for radar usage, self-

ambiguities within the waveform autocorrelation function degrade image quality.

Simulations performed on point scatterers and distributed scenes illustrate these in-

troduced artifacts, and meaningful comparisons are provided to determine which

configurations more suited for SAR operation and identify additional processing

xii
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Chapter 1

Introduction

1.1 Motivation

The motivation for this work is to develop a novel data simulation method to model

synthetic aperture radar (SAR) data formed from a passive bistatic radar (PBR)

employing Long Term Evolution (LTE) cellular communication waveforms as the

chosen illuminators of opportunity. Because SAR data sets are large, SAR image

formation is computationally complex. Therefore, algorithm efficiency and speed

are of great importance to SAR algorithm engineers. In order to test and develop

SAR techniques, SAR engineers rely on high fidelity, efficient simulations. In the

context of passive bistatic SAR (PBSAR), where the waveform is different for each

pulse collection and unknown to the algorithm designer, efficiency is an even greater

priority because of higher computational demand. Because collecting experimental

data is expensive and logistically complicated, developing a faster, reliable means of

modeling radar data is necessary to further explore bistatic radar processing meth-

ods. For the past few decades, SAR algorithm engineers have developed and refined

image formation algorithms that are fast, flexible, and efficient, to suit the needs of

intensive data collection. In this work, we explore the commonly used and flexible

backprojection imaging algorithm - investigating whether we can exploit its flexi-
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bility “in reverse” to generate pulse-compressed radar data from a simulated image

rather than forming an image from collected raw data in order to create a simulation

tool that models SAR systems. Previous work completed in [2] examined passive

bistatic radar geometry and the bistatic and multistatic ambiguity functions using

LTE as a illuminator of opportunity. In Chapter 1 we introduce the concepts of PBR

as well as examine different options for illuminators of opportunity as reviewed in

literature. In Chapter 2 we describe fundamentals of SAR and the geometry of PB-

SAR systems. In Chapter 3 we discuss the need for novel data simulation methods

as well; we follow that discussion with a description of the conventional backpro-

jection algorithm and how we can exploit its features to simulate pulse-compressed

data from an image scene. We present results and analyses from our simulations in

Chapter 4, and give concluding remarks in Chapter 5.

1.2 Introduction to Passive Bistatic Radar

In this section, we will introduce fundamental concepts of passive bistatic radar,

as well as discuss options for illuminators of opportunity. We summarize previ-

ous work exploring these options in passive bistatic radar literature, and discuss

advantages and disadvantages of each modulation scheme. Because we ultimately

decided to use LTE waveforms in our simulations, this section also includes a de-

scription of the properties of LTE waveforms, their composition, and their compo-

nents.

A bistatic radar is a system with separated transmitting and receiving hardware.

The transmitter and receiver can be mounted on the same platform, or be located

kilometers away. Passive bistatic radar systems exploit transmitted waveforms from

external transmitting sources such as communication towers instead of producing

2



Figure 1.1: Basic bistatic radar setup

their own. Using a communication waveform in place of a specially-designed radar

waveform as a transmitted signal introduces many challenges, while the system as

a whole can have key advantages. Passive bistatic radars do not require frequency

allocation in an already cluttered electromagnetic spectrum, weigh less, are more

mobile and agile, and are cheaper to construct due to the lack of transmitting hard-

ware. PBRs may offer a significantly larger radar cross section (RCS) than mono-

static radars, may offer greater information content in SAR data regarding feature

extraction and classification, and may operate more covertly because they do not

transmit their own waveforms [3], [4], [5]. Figure 1.1 illustrates a basic PBR setup

with an airborne receiver and a stationary telecommunications tower.

The added complexity from using a communication waveform requires com-

pensation on the back end. The radar engineer must consider properties such as

effective radiated power, system geometry, operating frequency, antenna patterns,

and bandwidth to optimize system performance [3], [6]. Because radar systems re-
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quire low interference in order to operate in transmit and receive modes, an increas-

ingly congested electromagnetic spectrum has spurred competition between radar

engineers and telecommunication companies [6]. Both radar and telecommunica-

tion systems operate favorably at frequencies less than 5 GHz; because corporations

are willing and able to pay upwards of £12 billion GBP (about 16 billion USD) for

desirable spectrum bandwidth, radar engineers have compensated by adopting spec-

trum sharing techniques, including PBR [7]. Studies have been conducted to eval-

uate the performance of a variety of waveforms such as FM radio, DVB-T, DAB,

LTE, and WiMAX for passive bistatic radar [6], [8]–[12]. Griffiths and Baker de-

termined in [13] that digital waveforms are much more favorable for PBR because

they are much more consistent over time and do not vary greatly on signal content

like analog signal sources; their spectra have noise-like qualities which are advan-

tageous for range compression and Doppler estimation [9]. Additionally, analog

sources have bandwidths on the order of kHz (in contrast to digital sources, which

often have bandwidth on the order of MHz), which does not allow for sufficiently

fine range resolution [14]. Because of these limitations facing analog transmissions,

this work explores usage of various digital transmissions, including DVB and LTE,

as illuminators of opportunity for passive bistatic radar. Additionally, research from

Evers et. al suggest that deterministic features of digital waveforms can be used to

acquire a priori knowledge of the signal and eliminate the need to collect a direct-

path surveillance signal [8], [15].

Digital Video Broadcast-Terrestrial (DVB-T) is a communications standard for

television data used in many regions of the world that employs orthogonal division

multiplexing [9]. DVB-T modulation follows a standard outlined in [16] for a signal

structure that includes data frames, a pilot signal, and guard intervals. DVB-T can

operate in one of two modes, 2k or 8k-mode, with 2048 or 8192 subcarriers, respec-

4



Figure 1.2: DVB-T Frame Structure [16]

tively. Figure 1.2 shows a DVB-T signal’s frame structure and distribution of pilot

signals. 2k-mode offers a bandwidth of 6 MHz and 8k-mode offers a bandwidth of

8 MHz within the ultra high frequency band (UHF) [8] [16]. DVB-T symbols are

grouped into frames consisting of 68 OFDM symbols [9]. Because the contained

MPEG-2 video data passes through bit-randomization and inner and outer-coding

stages before being projected onto the signal constellation, the data on these car-

riers appears random and noise-like [9], [17]. However, signal characteristics of

DVB-T cause peaks to appear in its cross-correlation, resulting in ambiguities in

the range-Doppler domain [9]. Because these ambiguities could negatively impact

target detection and classification when DVB-T is used as an illuminator of oppor-

tunity, Palmer et al. in [9] propose to use mismatched matched filtering techniques

to eliminate the ambiguity in the DVB-T signal’s ambiguity function.

DTV is the standard for digital broadcast television used in North America,

as defined by the Advanced Television Standard Committee (ATSC) [18]. DTV is

modulated using 8-vestigial sideband (VSB), which is not OFDM-based like digital

television standards elsewhere [9]. Perhaps the most obvious advantage of choos-

ing DTV as a passive coherent location waveform is its wide coverage throughout

the United States of America [19], [20]. 8-VSB is a modulation scheme resulting

from an 8-level amplitude-shift-keyed (ASK) signal that has been filtered to a sin-
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gle sideband [21]. The signal bandwidth is limited to 6 MHz by passing the upper

sideband through a root-raised-cosine filter [19]. Like DVB-T, the signal generation

process produces data that resemble a pseudo-random sequence; a constant value

of 1.25 is added to the odd-valued symbols to generate the carrier, but that charac-

teristic can be removed by using mismatched filtering [19]. One disadvantage of

employing DTV is that the received signal must both be decoded and remodulated

to regenerate the direct-path signal and suppress direct path interference [19]. A

radar decoder must be comparable to a DTV television receiver for DTV to be a

feasible waveform selection; because DTV signals are also prone to multipath dis-

tortion, it is challenging to create a filter based on just a training sequence and the

decoder must implement an adaptive equalization filter [19], [22]. Although DVB-

T and DTV are feasible waveform options for passive bistatic radar, we ultimately

decided to extensively study LTE waveforms, which are described in the following

section.

1.3 LTE Waveforms

LTE cellular communication networks employ Orthogonal Frequency Division Mul-

tiple Access (OFDMA), and are structured in a standard defined in [23]. LTE cel-

lular communication towers employ frequency-division duplexing (FDD), which

allocates smaller bands of the the tower’s available frequency spectrum to each

user in proportion to their needs. Figure 1.3 presents an example of OFDMA with

FDD; six color-coded users communicate with the tower simultaneously and are

each given a different number of subcarriers over time to meet their needs. The

most basic element of an LTE transmission is a data symbol with duration Tu. The

symbol is composed of a superposition of either 2048 or 4096 mutually orthogonal,

6



quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-

QAM), or 64 QAM modulated subcarriers [8]. Some of the subcarriers are carry

data, others as part of the DC subcarrier. Each of these channels made up of subcar-

riers are separated by 15 kHz guard intervals [24]. Figure 1.4 gives representation

of an LTE waveform’s frequency domain signal structure, showing the distribution

of subcarriers with respect to frequency. In order to improve communication in a

cluttered environment, the beginning of a data symbol contains a copy of the end

portion of a data symbol, referred to as a cyclic prefix [25]. Different fractions of

the symbol length are used - an LTE symbol can have a normal or extended cyclic

prefix [23], which determine the ratio of the symbols used. Each LTE data symbol

is concatenated in the time domain to form 10 ms radio frames that are made up of

.5 ms slots and 1 ms subframes; the time duration of each of these elements remains

fixed, while the total number of symbols varies depending on the type of cyclic pre-

fix used, as evidenced in Figure 1.5 (which is similar to a Figure given by Anritsu

in [24]) [15]. While the entire radio frame could potentially be used as a radar

pulse, it is in our best interest to use only a portion of the entire waveform in order

to maximize bandwidth, optimize resolution and effects of second-trip echoes, and

decrease the computational expense of data simulation and imaging.

We can simulate LTE waveforms by utilizing built-in programs within the MAT-

LAB ®LTE System Toolbox [26]; for this work, we will focus primarily on LTE

downlink (DL) transmissions. LTE DL transmissions can occupy bandwidths of

1.4, 3, 5, 10, 15, and 20 MHz, corresponding to 6, 15, 25, 50, 75, and 100 resource

blocks per channel [27]. Figure 1.7, taken from [2], show two sample generated

LTE waveforms using the MATLAB toolbox; Figure 1.7(a) shows the time and fre-

quency domain structure of a single LTE channel with 50 resource blocks, and Fig-

ure 1.7(b) shows a waveform with 6 concatenated channels containing 50 resource

7



Figure 1.3: Each color represents data allotted to a different user in OFDMA mod-
ulation

Figure 1.4: LTE waveform frequency domain structure
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Figure 1.5: LTE frame breakdown
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Figure 1.6: LTE resource block composition

blocks each. Figure 1.6, which is similar to a Figure found in [24], illustrates the

composition of each resource block within an LTE transmission. Because of the

OFDM modulation, the LTE tower can broadcast many channels at once; the re-

sulting waveform has a bandwidth of the concatenated channels. One reason LTE

waveforms are of particular interest to us is their ubiquitous presence in populated

areas, which is advantageous for the potential of real-time data collection in future

work. According to [8], each LTE tower covers a land area of between 5 and 100

km, though smaller coverage regions of 5 km are the most common. The full range

of LTE operation carrier frequencies is 450 MHz to 2.6 GHz [28]. The FCC has

licensed two bands within the evolved universal terrestrial radio access (E-UTRA)

band 5, Class A and Class B to the Oklahoma City metropolitan statistical area

(MSA) [24] [29]; in that band, transmissions can have bandwidths of 1.4, 3, 5, and

10 MHz [24]. We will simulate carrier frequencies consistent to these values in all

simulations described in the following chapters.

10



(a) A single-channel LTE Waveform with 50 resource blocks

(b) A six channel LTE Waveform with 50 resource blocks each.

Figure 1.7: Complex-baseband representation of sample LTE waveforms
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LTE symbols are also formed with deterministic features: cell specific reference

elements (CSREs), primary synchronization signals (PSSs), and secondary syn-

chronization symbols (SSSs), that can be used to mitigate the need for a direct path

signal, as is the case with DVB-T. Unfortunately, these deterministic features can

cause difficulties with cross-ambiguities [15]. The effects from these deterministic

elements are evident in the results featured in later chapters. LTE waveforms are

made up of 504 physical (PHY) level cell-identities (CIDs) so that cellular devices

communicating with LTE transmitters can differentiate information from different

transmitters; each CID is made up of a unique primary and secondary synchroniza-

tion signal (PSS and SSS) pair [23]. The PSS is given as a 62-length Zadoff-Chu

sequence, defined in [23], depending on the CID number, u ∈ {25, 29, 34} [8],

[23]. These values are assigned to 31 subcarriers centered around the DC subcar-

rier on the last symbol in the first (0) and eleventh (10) slots [23]. The remaining

subcarriers in the symbol are modulated normally (using QAM) [8]. Similarly to

the PSS, the SSS is created by interleaving two 31-length sequences and mapped

onto 62 subcarriers around the DC subcarrier in slots 0 and 10 [8], [23]. In order for

a mobile device to further discern the source of received information, cell-specific

resource elements (CSREs) are applied to the transmitted signal [8]. A pseudoran-

dom Gold sequence of length 31 is used to provide complex modulation coefficients

for each CSRE according to a QPSK scheme [8], [23]. The CSREs are contained

within symbols 0 and 4 within a slot for signals employing a normal CP and symbols

0 and 3 for an extended CP [8]. The position of the CSREs is determined by the CID

number; they are placed on every six subcarriers. Consecutive symbols containing

CSREs are offset in frequency (on different subcarriers). More information regard-

ing CSRE positioning is beyond the scope of this work, but can be found in the LTE

Standard [23]. In this work we will primarily examine LTE waveforms as an illumi-
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nator of opportunity because of the availability of LTE transmitters, the noise-like

spectrum of digital waveforms, the relatively high bandwidth of LTE transmissions,

and to explore how frame composition (number of resource blocks and bandwidth)

affects imaging. We present results from a simulation tool that is capable of us-

ing any waveform as a radar pulse, and we will make comparisons between using

bistatic waveforms and conventional linear frequency modulated (LFM) waveforms

in Chapter 4. The flexibility of our simulation tool will greatly benefit SAR algo-

rithm engineers by generating pulse-compressed data that can be used to explore

SAR signal processing and image formation methods. Now that we are familiar

with passive bistatic radar and LTE waveforms from Chapter 1, we will introduce

concepts in SAR and go into detail regarding the geometry of passive bistatic radar

systems in Chapter 2.
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Chapter 2

SAR Theory and Geometry

2.1 Intro to Synthetic Aperture Radar

In this section, we introduce the concepts of synthetic aperture radar (SAR) and

provide equations relevant to our applications of these concepts. The techniques

in this work exploit synthetic aperture radar (SAR) imaging, which is a method of

obtaining fine-resolution, two-dimensional radar images. SAR is an effective imag-

ing technique for remote sensing because the utilized electromagnetic frequencies

allow for imaging that is unaffected by time of day and ambient weather conditions

[30]. In order to obtain good quality images, it is important for the image resolution

to be constant throughout the entire scene [31]. The scene dimensions are defined

as range (or down-range, the direction perpendicular to the platform’s trajectory),

and cross-range (the along-track dimension). Because of the nature of SAR geom-

etry, the system exhibits different image resolutions along the two dimensions. The

basis for SAR is the “synthetic aperture viewpoint”, which is employed because

sufficient cross-range resolution could not be attained otherwise in “real beam”

imaging operation. In real-beam imaging, the cross-range resolution of any given

pixel in the imaged scene can be approximated by the width of the beam at that

point, R0θaz, where R0 is the down-range distance to the given pixel and θaz is

14



the 3-dB azimuthal beamwidth of the radar antenna. By that metric, two scatterers

would need to be the width of the beam apart in order to be resolved. Because

airborne SAR typically operates at ranges on the order of kilometers, real beam op-

eration yields resolution much too coarse to produce meaningful SAR images. In

order to alleviate this problem, the “synthetic aperture viewpoint” utilizes a single

antenna array and the platform motion to construct a “synthetic aperture” as it trans-

mits waveforms and collects data. Each position where transmissions occur act as

an element of the array, and each transmission’s returns are combined so that the

results mimic those of a very large array, allowing for sufficiently fine resolution for

imaging. In order to introduce fundamental principles of SAR, we will first discuss

these principles for monostatic radar, a configuration with a co-located transmitter

and receiver, and then expand our analysis to passive bistatic SAR. For monostatic

SAR, the resolution in down-range is

∆R =
c

2BW
, (2.1)

and the resolution in the cross-range dimension is

∆CR =
λR0

2vTa
, (2.2)

where λ is the wavelength of the transmitted waveform, v is the velocity of the

target with respect to the radar, and Ta is the time it takes for the SAR platform to

travel across the entire aperture. Because of the platform motion, there is a lower

bound on cross range resolution for monostatic, stripmap SAR:

∆CR =
Daz

2
, (2.3)
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which is significant because (2.3) is independent of range. Effects of waveform

frequency and platform motion influence the simulation and will be evident in the

results of the later sections.

Pulse-Doppler radars measure reflectivity by transmitting pulses and recording

the complex-valued voltage of the echo over time [31]. In conventional monos-

tatic radar, the receiver does not collect samples while the antenna is transmitting to

avoid interference from from the transmitted signal. Because for our case, the trans-

mitter and receiver are separate - we will model our system as collecting samples

from both a nearby transmitter and the ground plane beneath it. The receiver sam-

ples the returned voltage at the Nyquist rate, which is the inverse of the received

signal’s bandwidth. The samples will be demodulated and processed as complex

baseband signals. The sampled data will follow a typical pulse-Doppler radar data

structure - the radar will sort the samples from each pulse as a row in a data cube, as

illustrated in Figure 2.1. Each sample in each row corresponds to its own individual

range gate. We will refer to the axis made up of these range gates as the “fast-time”

axis, since each sample represents an echo from a different time delay; the axis has

units of seconds with spacing equal to the sampling rate and represents a discrete

set of observed echo delays. We will call the other axis the “slow-time” axis, and

each row along that axis will be made up of the echoes from a single pulse, for a

total of N rows, which represent the N transmitted pulse and their received echoes.

We can calculate the time delay for each sample as

τ =
2R

c
, (2.4)

whereR is the range to whatever produces the echo. Because each row corresponds

to a different pulse and a different platform position, we can gather information
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Figure 2.1: Pulse-Doppler data arrangement

about platform motion by examining pulse-to-pulse changes. We will use the phase

information from the sampled data in both dimensions to form images, which will

be discussed more in Chapter 3. The way the Pulse-Doppler data is arranged so that

it can be used in our imaging algorithm is given in Figure 2.1; each row consists of

the fast-time samples for that pulse, n, and the N pulses are stacked on top of each

other.

We now expand our discussion to passive bistatic SAR. Because the range RB

in a passive bistatic radar is made up of two components - the range between trans-

mitter and scatterer, RT , and the range between scatterer and receiver, RR. We

express the time delay, τ , as a function of the two-way bistatic range:

τ =
RB

c
. (2.5)

Down-range and cross-range resolution are also altered by the geometry inher-

ent in passive bistatic SAR (PBSAR) systems. The range resolution is dependent

on the bistatic angle, β, the angle between the two range components:

∆R =
c

2BWcos(β/2)
, (2.6)
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where the minimum possible resolution (when cos(β/2) = 0) is equal to the mono-

static range resolution in (2.1), indicating that there is no angle between RR and

RT . This section discussed the fundamentals of SAR; now that we are familiar

with synthetic aperture radar, we will move on to specifics of passive bistatic SAR

geometry.

2.2 Geometry

In order to develop an algorithm that models pulse-compressed data from SAR, we

must first familiarize ourselves with the effects of the geometry of passive bistatic

configurations on collected PBSAR data. Figure 2.2 shows a basic depiction of

stripmap operation mode (though some of our processing methods in described

in Chapter 3 will use conventions employed in spotlight mode). We will model

the platform motion using the typical “move-stop-move” assumption; because the

platform’s velocity is much slower than the speed of light, each pulse is assumed

to be transmitted and received at a fixed location. The surface to be imaged is

referred to as the “ground plane.” The ground plane, or “scattering grid,” P (x, y),

is modeled in a two-dimensional x-and-y coordinate system, broken into discrete,

square grid regions called “patches,” p(x, y). We will consider an airborne radar

platform traveling in the positive x-direction at a constant velocity.

The platform’s direction of motion will be modeled as the x-axis of the coor-

dinate grid. Instead of considering only the platform/receiver location with respect

to the ground plane as in monostatic SAR, for bistatic SAR we must examine the

effects of transmitter-receiver pair locations on the resulting images. Because of

the separation between the transmitter and receiver, the isorange contours are ellip-

tical and the power contours are Cassini ovals as opposed to the circular contours
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Figure 2.2: Stripmap SAR

in monostatic radar [32]. The elliptical nature of the isorange contours complicates

bistatic radar performance analyses. In the monostatic case, the ambiguity function

depends on the range and Doppler shift with respect to a single point, whereas the

bistatic ambiguity function depends on the two-part bistatic range and a Doppler

shift related to the bistatic angle [31], [33].

Figure 2.3 illustrates the bistatic SAR geometry modeled in this work. The

variables ~RT and ~RR represent the vectors between the transmitter and each patch,

and the platform (receiver) and each patch, respectively. We will refer to the scalar

quantities RT and RR as the length of these vectors. The distance between the

transmitter and receiver, is referred to as the bistatic baseline. The platform po-

sition is RX = (Rx, Ry, 0), the transmitter position is TX = (Tx, Ty, 0), and

each patch has a position (xp, yp, 0). Because the platform is in motion, the re-

ceiver position (Rx, Ry, 0) varies along the x-axis according to the pulse number,

n. The transmitter is assumed to be a stationary communications tower, so its po-

sition will not vary over time. The platform collects data from a region of interest

of an arbitrarily-selected area composed of square patches, p(x, y), with length and

width determined by the radar’s range resolution, ∆R. The receiver samples the

incoming waveform at a rate of BW samples/sec, where BW is the bandwidth of

the LTE waveform. Configurations can also include multiple transmitters or trans-
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Figure 2.3: Bistatic SAR geometry

mitters; those configurations are called “multistatic.” We investigated properties of

multistatic radar for target detection in [2], but further analysis is beyond the scope

of this work.

In monostatic radar, an antenna orthogonal to the direction of motion transmits

pulses, but in bistatic radar, the receiving antenna senses reflections off the region

of interest from a nearby communications tower. Consider a scatterer, P0, located

at (x0, y0), where x0 and y0 are the center of the ground plane. The bistatic range

to P0 is the sum of the transmitter and receiver ranges, RR and RT , which can be

found by applying the distance formula:

RB0(n) = RR0(n) +RT0 (2.7)

where

RT0 =
√

(Tx − x0)2 + (Ty − y0)2, (2.8)
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and

RR0(n) =
√

(Rx(n)− x0)2 + (Ry − y0)2. (2.9)

We can express the quantity (Ry − y0) as a constant, Rp, such that

RR0(n) =
√

(Rx(n)− x0)2 +R2
p, (2.10)

and

RB0(n) = RT0 +Rp

√
1 +

(Rx − x0)2

R2
p

. (2.11)

The range RB0(n) varies hyperbolically as the radar moves along its track. The

pulse length tp is determined by the scene dimensions, since we only need however

many samples it takes to map out the entire ground plane. We can extrapolate (2.7)

to find the bistatic range for each point in the ground plane:

RB(n) = RR(n) +RT . (2.12)

From the range matrix in (2.12), we can find the time delay to every patch:

τ(n) = RB(n)/c, (2.13)

where c is the speed of light, and find the minimum and maximum time delays, τmin

and τmax in τ(n).

For analysis of bistatic radar, it can also be beneficial to be familiar with prop-

erties of ellipses. Contours of equidistant bistatic range lie on ellipses with the

receiver and transmitter locations as their foci. For a bistatic radar, the semi-major
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axis of the ellipse is:

a =
RT +RR

2
. (2.14)

If RR = RT , as is the case with a monostatic radar, the resulting isorange contour

is a circle of radius a [3]. The semi-minor axis of a bistatic isorange contour is [3],

b =

√
a2 − L2

4
. (2.15)

From there, we can derive the generalized equation for an isorange contour [32]:

x2

a2
+

y2

a2 − L2
= 4. (2.16)

The eccentricity, e, of an ellipse is

e =
L

2a
, (2.17)

and an eccentricity e = 0 corresponds to a circular contour evident in a monostatic

radar [3]. Further details regarding isorange contours are discussed in Chapter 4.

As (2.9) suggests, only the x-position with the respect to the radar changes dur-

ing data collection. Because the platform is not transmitting pulses, it operates only

in receiver mode in intervals dependent on the difference between the minimum

and maximum bistatic ranges. Because only the x-coordinate is varying, we can

use an approximation derived from the Taylor series for
√

1 + x = 1 + x
2
− x2

8
. . .

for (2.11) to find the range at each successive position, as long as y is much greater

than 0. Therefore, RB is given by [31]

RB = RT +

[
1 +

(RR(n)− x)2

2R2
p

]
. (2.18)
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From (2.18), we can gather that the collected slow-time data will have quadratic

phase modulation because of the platform data [31]. The modulation will “spread”

the bandwidth in the Doppler dimension and will thus enable fine cross-range reso-

lution.

If the platform moves across a significant distance relative to the size of the

illuminated scene, the range corresponding to the point scatterer P will change. If

this change in range is greater than the range bin size, range migration will occur

and could cause the focusing in the resulting image to be degraded. The difference

in range to P over the synthetic aperture is :

∆Rm =
DSAR

Rp

Rx(n) =
v

Ta
RpRx(n) (2.19)

where DSAR is the length of the synthetic aperture and Ta is the total time it takes

to trek across the entire aperture [31].

So far we have discussed in this chapter the effects of bistatic and SAR geom-

etry on the received data, but we have not yet discussed the effects of the platform

velocity. In a case where both the platform and targets of interest are stationary, the

radar will not observe a Doppler shift, as is the case with conventional monostatic

radar. However, the effects of platform and/or target velocity must be considered

in SAR processing, because the time-varying phase history is used to form images.

However, for many remote sensing applications and our simulations, it is assumed

that the ground-plane is a stationary surface, therefore the Doppler shift will only

depend on the motion of the platform with respect to the ground plane. Because the

platform is moving with respect to each patch, each patch will observe a different

Doppler shift, depending on angles and the direction of motion. If the platform is

moving with some velocity, v, the frequency of the received signal will be shifted
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due to the Doppler effect, which is dependent on the radar waveform’s wavelength.

According to [33], one must consider higher-order terms when analyzing the

effects of target or platform velocity if either has varying acceleration. However,

because we are assuming that the platform is flying at a constant velocity, those

terms are negligible in the context of our analysis. For bistatic radar, usually the

observed Doppler shift of each patch depends on the bistatic angle, β, which can be

found by using the law of cosines:

β = cos−1

(
R2
R +R2

T − L2

2RRRT

)
. (2.20)

Because of the bistatic geometry, the observed Doppler shift is the component in the

direction of the bistatic bisector, β
2
, the line of sight (LOS) visible to the receiver.

In previous work we derived the component in the direction of β
2

[2]. However,

because the transmitter is stationary and the platform is moving in our simulations,

the observed Doppler shift, fD, only depends on the angle φ, the angle between v

and each patch,

fD = ±2v

λc
cos
(
φ
)
, (2.21)

where λc is the wavelength of the carrier frequency. We define patches the platform

is moving toward as having a positive Doppler shift, and patches the platform is

moving away from as having negative Doppler shifts. Now that we have discussed

fundamentals of SAR and passive bistatic radar geometry, we will advance our

discussion to existing data simulation methods and the need for new approaches

given challenges in passive bistatic radar signal processing.
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Chapter 3

Reverse Backprojection Algorithm

In this chapter, we present our received signal model and the matched filter algo-

rithm for data collection. We discuss the impracticality of existing data simulation

methods for usage in passive bistatic radar, and hypothesize that we can adapt exist-

ing efficient image formation algorithms, including the backprojection algorithm,

in order to simulate data. In Section 3.2, we examine the backprojection algorithm,

from its origins in medical imaging to more efficient contemporary adaptations. In

Section 3.3, we present the reverse backprojection method and its implementation

based on the principles given in Section 3.2 that simulates data by employing the

backprojection method in reverse. Lastly, Section 3.4 gives the complexity of our

novel approach and compares its computational expense to more conventional data

simulation methods.

3.1 Need for More Efficient Simulation Methods

In this section, we discuss our models for the received signal and range swath

and the matched filter algorithm for pulse-compressed data simulation. In order

to gather the SAR phase history to reconstruct an image, we model both a direct-

path signal, s(t) and a signal that has been reflected off the ground plane, s(t− τ),
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where τ is the observed delay. After simulating an LTE waveform, we model the

collected direct-path signal for each pulse, sn(t), as a short interval of the desired

length in samples, lp, given in (3.2). In conventional radar operation where the

same pulse is repeatedly transmitted, it is not necessary to collect a matched filtered

waveform for every pulse; however, because of the constantly-changing nature of

LTE DL transmissions, this step must be repeated for each platform position, n, for

all N pulses. This process is repeated in intervals specified by the system’s chosen

pulse repetition interval (PRI), T , which is a constant value much longer than tp.

The entire length of the data collection, the coherent processing interval (CPI), is

therefore NT .

We then model the signals reflected from the ground plane that have been col-

lected by the receiver, sn(t − τ). The received signal, s(n, t − τ(x, y)), is a copy

of the direct-path signal for the nth pulse that has been scaled by the target’s RCS,

σ(x, y), has been delayed by the bistatic propagation delay, τ(x, y),

s(n, t− τ(x, y)) = σ(x, y)sn(t− τ(x, y))exp

(
−jkRB(x, y;n)

c

)
, (3.1)

where ∆RB is the difference in range between each range bin and that of the scene

center, P0. The length of s(n, t− τ) that is recorded is determined from the number

of samples needed to cover the entire range swath.

Because the platform is physically separated from the ground plane, there will

be idle time between pulse transmission and the non-zero minimum propagation

delay, τmin. Therefore the number of samples, lp, we need to map out the entire

scene size is
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lp = (τmax − τmin)Fs, (3.2)

where Fs is the sampling frequency. For our purposes, the waveform is sampled at a

rate of Fs = BW samples per second. The length lp is therefore the time-bandwidth

product.

The received signal data are stored in the format discussed in Chapter 2 and

illustrated in Figure 2.1. The received signals from each of the n received pulses

are stored on subsequent rows in a pulse-Doppler data matrix. Because the receiv-

ing antenna is illuminating a swath of many patches simultaneously in SAR, the

received signal is a integral of the echoes from the entire swath:

s(n, t− τ(x, y)) =

∫
X

∫
Y

σ(x, y)sn(t− τ(x, y))e(
−jkRB(x,y;n)

c
)dY dX. (3.3)

Because calculating a continuous integral like (3.3) for the response of an entire

scene is impossible in a programming environment, the area must be discretized

to allow for a finite number of computations. Therefore, the simulated SAR radar

scene is modeled as a grid of “patches” - square segments, p(x, y). The scene should

be fragmented in the down-range dimension into patches with width no wider than

w = 1
BW

, so that the minimum image resolution for the bandwidth BW can be ob-

tained. There are no simple equations for cross range resolution for passive bistatic

SAR. Equation 2.2 is dependent on the monostatic propagation path in the down-

range dimension, R0, which of course increases further from the platform. How-

ever, in PBR, this R0 has two components dependent on the transmitter location

with respect to the range swath. Because no simple equations are available, engi-
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neers must evaluate the cross range resolution resulting from various SAR aperture

lengths and transmitter-receiver pair geometries and set the scattering patch width

in the cross range dimension to be smaller than the observed resolution value.

Trying to calculate the returned scattering over each individual patch is still a

highly computationally expensive result, since each patch has its own unique delay,

τ , that occurs on a continuous set of numbers:

s(n, t− τ(x, y)) =
∑
X

∑
Y

σ(x, y)sn(t− τ(x, y))e(
−jkRB(x,y;n)

c
). (3.4)

Equation 3.4 would involve a series of linear interpolations of sn(t − τ(x, y)) for

every patch, for every pulse. From this received signal, sn(t− τ(x, y)), perhaps the

most intuitive way to form an image would be to use the matched filter algorithm,

which optimizes the signal-to-noise ratio (SNR) [21]. We define m as the axis of

range values corresponding to each index of the matched filter. The matched filter

response of a scatterer located at range m is given by

Ψ(m) =
1

NK

N∑
n=1

K∑
l=1

sn(t− τ(x, y))exp

(
−jkRB(x, y;n)

c

)
, (3.5)

where sn(t− τ(x, y)) is the received signal from (3.1). Equation 3.5 would need to

be computed for each pixel within the imaged scene, for every pulse. This calcu-

lation would be too computationally expensive for practical applications, since its

computational complexity is O(N4), where N refers to the number of pixels in the

scattering grid [30]. Additionally, mismatches due to atmospheric turbulence, flight

path trajectory, and coherence of the microwave source will result in phase errors

and negatively affect image resolution [34]. Therefore we must use approximations
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in order to reduce the number of computations in simulating the pulse-compressed

data output. In Section 3.3, we present the reverse backprojection method as a so-

lution to the challenges presented in this section; the approach given in Section 3.3

is dependent on the theory behind the backprojection imaging algorithm, which is

described in detail in the following section.

3.2 Theory of Backprojection

In order to examine the methods applied in the subsequent sections, it is neces-

sary to discuss the theory of image formation for SAR imaging. Image formation

techniques for SAR can be classified in two broad groups: Fourier-based methods

and convolution-backprojection [35]. FFT-based methods require a much lighter

computational load, but require all pulses in the coherent processing interval to be

collected before forming an image [35]. Backprojection is a commonly used image

formation algorithm for SAR based on the matched filter algorithm, that is com-

putationally expensive but flexible [30]. Backprojection is advantageous for SAR

imaging because newly acquired phase information can be updated into the image

during data collection - which is propitious for parallel processing on a Graphi-

cal Processing Unit (GPU). Additionally, backprojection can be applicable for all

trajectories - both for spotlight-mode and stripmap SAR [35].

The basis of the backprojection algorithm for SAR is based on principles of

computer-aided tomography (CAT) utilized for medical images described in [36],

[37]. Computer-aided tomography is an imaging technique that produces a 2D

cross-sectional image of a 3D object by processing projectional views of the ob-

ject taken at many look angles [37]. Tomographic reconstruction is based on the

projection-slice theorem [37]. According to the projection slice theorem, the re-
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Figure 3.1: Illustration of the Projection Slice Theorem

ceived waveform obtained at each look angle approximates a slice of the 1D Fourier

transform of a projection of the ground patch at that look angle [37]. If we define

g(x, y) as a signal to be reconstructed using tomographic methods and pθ(u) as the

projection of g at angle θ, then pθ(u) evaluated at each u is a line integral in the

direction of v:

pθ(u) =

∫ ∞
−∞

g(ucos(θ)− vsin(θ), usin(θ) + vcos(θ))dv, (3.6)

Figure 3.1, similar to a figure given by Munson et al. in [37], illustrates one of

the line integrals in (3.6). In the frequency domain, the Fourier transform of pθ(u),

Pθ(U), is a slice of the 2D Fourier transform ofG(X, Y ) at angle θ and is expressed

in [37] as

Pθ(U) = G(Ucos(θ), Usin(θ)). (3.7)

Tomographic systems commonly reconstruct g(x, y) by employing the convolution-

backprojection method [36]. An important difference between SAR and CAT is that
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SAR data are inherently narrowband because they lie in ground plane segments

whose extents are established by the frequency content of the transmitted signal

[37]. Because the transmitted signal s(t) has finite bandwidth, and the received sig-

nal g(x, y) is the convolution of an echo of the transmitted signal convolved with the

reflectivity of the ground patches, g(x, y) therefore also has finite bandwidth [38].

As the radar moves through the synthetic aperture, backprojection methods project

each imaged scatterer onto the radar line of sight. The radar’s LOS is usually de-

fined as the displacement vector between the platform’s antenna phase center (APC)

and the scene center; for the purposes of this work the LOS will be defined as a vec-

tor representing the projection of each range bin, m, onto the image scene. Each

scatterer will be represented in the LOS vector in range bin corresponding to its

distance to the antenna phase center. Because each pulse can only resolve scatterers

in range, range bins will usually contain reflections from multiple scatterers [39].

As the radar moves along its track and collects more pulses, the scatterers will be

projected onto different range bins, which garners more information about the im-

age scene. This information is evident in the Doppler shift observed by the received

signal. As the radar collects more pulses, the phase history of the received pulses

changes; changes in phase history over the course of the CPI allows the algorithm to

project the scatterers onto the correct pixels within each range bin. Tomographic-

based reconstruction projects the Fourier transform of each radar LOS slice back

onto a user-specified 2D grid of image pixels, I(x, y), hence the origin of the word

backprojection [39]. Because the location of each range bin does not align with

to an exact location on I(x, y), interpolation methods are necessary for successful

imaging; interpolation is performed to the nearest neighbor, which requires upsam-

pling but does not introduce a substantial computational burden [35]. This operation

is different for bistatic SAR because the range to each pixel depends on the two-part
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RB and the isorange contours are elliptical; however, we did not experience sub-

stantial difficulty in imaging since the transmitter is stationary. In order to perform

the intermediate steps of upsampling and interpolating, the carrier phase rotation

must be removed from the data [35]. We accomplish this step by applying a phase

correction as described in [30].

Over the last few decades, algorithm engineers have modified the backprojec-

tion algorithm to be faster and less computationally complex, as traditional back-

projection has O(N3) complexity [40]. Yegulalp in [35] describes methods for

“fast-backprojection” that attempt to circumvent shortcomings in computational

complexity and time expense. Yegulalp proposes implementing backprojection on a

pulse-by-pulse basis rather than a pixel-by-pixel basis. The data from each pulse is

processed as a subaperture, and the final image is formed by coherently adding the

images from each subaperture [35]. The pulse-by pulse subaperture methods reduce

computational complexity from O(N3) to O(N
√
N) for a scene size of N ×N .

In order to implement backprojection in software, we form the image grid,

which has a spacing determined by the system’s range resolution. We will refer to

the x and y-axis of this grid as xi and yi, to specify that the spacing of the imaging

grid is not necessarily the same as that of the scattering grid p(x, y). For each plat-

form position, we calculate the bistatic range,RB, to each point in the grid, I(xi, yi).

Note that the range from the transmitter to each pixel is independent of platform

motion and does not change during the coherent processing interval. We then de-

termine, for each pulse, which pixels lie within the set RB minimum and maximum

bistatic ranges observed in the collected data, RB = {RBmin, . . . , RBmax}:

Ξ(xi, yi, n) = {RB(xi, yi, n) > RBmin ∩RB(xi, yi, n) < RBmax}. (3.8)
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Variable Ξ represents a subset of the grid p(xi, yi) with range from the radar be-

tween the minimum and maximum bistatic range observed over the CPI. We over-

sample the matched filter response given in (3.5) by a factor of 10; oversampling

by a factor of 10 is regarded as a rule of thumb in order to perform the necessary

nearest-neighbor interpolation [30]. We apply a carrier phase correction so that the

scatterer in the center of the scene has zero phase

φ(xi, yi, n) = exp(jk∆RB(x0, y0, n)) (3.9)

where ∆R(x0, y0, n) is the difference in the bistatic range between the platform

location on the nth pulse and pixels, p(xi, yi) [30]. In (3.9), ∆RB represents the

total bistatic range. This ∆RB is usually expressed as a one-way range in literature,

which requires an additional factor of 2. We interpolate the oversampled matched

filter data onto the pixels imaged during each pulse:

Υ(xi, yi, n) = sint(Ψ(mu),Ξ(xi, yi, n)), (3.10)

where the subscript u indicates that the matched filter Ψ has been upsampled and

sint(.) represents the interpolation operation. The interpolation operation projects

the matched filter data defined on a uniformly-spaced upsampled grid, mu, onto

the pixels in the image grid specified by Ξ(xi, yi, n). Because the received signal

is bandlimited, a sinc kernel is ideal for this interpolation [30]. The interpolation

is performed by linear interpolation on the zero-padded inverse Fourier transform.

Because the interpolation is performed on a pulse-by-pulse basis, we combine the

projected range data for each pulse, Υ(xi, yi, n), to produce an image, Ω, defined

on the grid (xi, yi) with the appropriate phase correction to the pixels in Ξ:
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Ω(xi, yi) =
N∑
n=1

Υ(xi, yi, n)φ(Ξ(xi, yi, n)). (3.11)

The result is a matrix with size Pi × Pi = P 2
i where the axes are the x and y co-

ordinates (in meters) of the resulting SAR image that represent the true dimensions

of the illuminated swath.

The backprojection algorithm is a “brute force” method of imaging that is not

known for being computationally efficient. However, improvements since the al-

gorithm was first proposed in 1992 in [34] have made backprojection far easier to

implement. Figure 3.2 gives the relatively straightforward structure of the backpro-

jection algorithm; there is a single loop, which goes through the N subapertures

corresponding to each pulse, adding the contribution of each to form an image. The

number of operations in producing the SAR image from the matched filter data is

dependent on the size of the image, P 2
i , the number of pulses N , and the length

of the upsampled matched filtered data, lmu = 10lρxx where lρxx is the length of

the autocorrelation function of the pulse (lρxx = 2lp − 1). The total number of

operations for each pulse, n is: 9I2 + lmu . Because, P 2
i = 5002 = 250, 000 for

our simulations, which is an order of magnitude larger than lmu , the computational

expense will be dominated by the desired size of the image, P 2
i .

This concludes our discussion of the backprojection imaging algorithm. The

following section describes the reverse backprojection method for data simulation

that is based on applying principles of backprojection imaging in reverse. Instead of

forming an image from pulse-compressed data, the reverse backprojection method

operates in the opposite direction to simulate pulse-compressed data from a SAR

image.
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Figure 3.2: Backprojection Algorithm

3.3 Reverse Backprojection Algorithm Description

In this section we present the novel reverse backprojection method for pulse-compressed

data simulation, which applies principles of the backprojection imaging algorithm

described in the previous section. In order to describe a data collection simulation,

it is necessary to first explain how pulse-Doppler radars can be used to acquire in-

formation about targets they illuminate. We describe in Section 2.1 how the target’s

range can be determined by the time delay of the received waveform, τ , and in Sec-

tion 2.2 how information regarding velocity (with respect to the platform, in this

work) can be inferred from a frequency shift of the received waveform, fD. We can

isolate the point target response of a SAR scene in range by cross-correlating the re-

ceived signal with its matched filter, which in our case is a flipped, conjugated copy

of the sampled direct-path signal. As we explored the ambiguity function in bistatic

radar system in [2], target detection involves calculating the cross-correlation func-

tion between the direct path signal, sn(t), and a set of received pulses, sn(t− τ):
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ρxx(n, t) =

∫ ∞
−∞

sn(t)s∗n(t− τ)dt (3.12)

as described in [41]. The autocorrelation function has length lρxx , which is equal to

one less than twice the length of sn(t−τ) (the signal sn(t) that has been sampled by

an analog-to-digital converter), assuming that the direct-path signal and the received

pulses have equal lengths. Because the imaged region of interest is assumed to be

some distance away from the radar, the radar’s ADC will wait until the bistatic

time delay of the closest patches before taking samples. We will call the minimum

amount of samples required to cover the range swath, l0 and the maximum, lp; the

number of necessary samples to cover the entire range swath is therefore lp − l0.

Because each sampled LTE pulse is different, we also divide by the energy in the

nth pulse, E[n], to normalize the pulses. From this matched filter data we can

form an image as described in the previous section. Figure 3.3 depicts an example

matched filter output for an LTE pulse and Figure 3.4 shows the autocorrelation

function, ρxx(τm) of 16 randomly generated LTE pulses with the same number of

resource blocks. The matched filter output, ξ(m) has sidelobes approximately 12

dB down from the main peak, which corresponds to the point at which the waveform

overlaps its matched filter completely during convolution.

The method described in Chapter 3.2 would require simulated autocorrelation

functions for every point in the imaged scene on a continuous set of delays. We can

exploit the conventional backprojection algorithm used for imaging by performing

backprojection in reverse to generate simulated SAR data on a set of quantized de-

lays. We calculate the contribution of each patch to the sampled data by scaling

pre-calculated autocorrelation functions by the clutter RCS values, σ(x, y), that are

shifted by a finite number of quantization levels, Q, within a resolution cell. Be-
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Figure 3.3: Matched filter output for an LTE pulse

Figure 3.4: Autocorrelation functions of 16 LTE pulses
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Figure 3.5: Upsampled range bin axis. Red lines correspond to new effective range
bins added by the shifted autocorrelation matrix

cause the center of each patch most likely does not align with the center of a range

bin, by creating an upsampled LOS vector with discrete delay values, τm, we can

accurately simulate the matched filtered data by performing a series of discretized

interpolations. Figure 3.5, consisting of three consecutive range bins on axis, m,

illustrates the upsampled range axis that allows us to simulate a scatterer’s delay to

a fraction of a range bin; for three quantization levels, the two shifted waveforms

correspond to delays one-quarter of the way between adjacent range bin centers.

More effects of the chosen number of quantization levels are discussed in Section

4.5. Instead of calculating these contributions in a pixel-by-pixel manner, we fol-

low a similar approach described in [35] that calculates the contribution of all the

pixels during each pulse collection as a subaperture. Because each range bin in the

radar’s LOS vector corresponds to an elliptical contour, ζ(x, y;m), of pixels in the

scattering grid p(x, y), it is most effective to calculate the contributions of each of

the range bin’s contours at once, since each sample of the matched filtered return

represents an isorange contour in the image scene.

In order to create the autocorrelation matrix, ρxx(q, τm;n), we make Q copies

of each row of ρxx(τm) and apply an array of shifts, κ,

κ =

[
b−Q

2
c . . . 0 . . . bQ

2
c
]

dQ
2
e

(3.13)
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Figure 3.6: Shifted waveforms, ρxx(m− κ)

so that the end result for each platform position, n, is a matrix with an odd num-

ber of rows, ρxx(q, τm), where the center row experiences zero shift. The peaks

of the Q rows of ρxx(q, τm) are, therefore, offset by increments of κ = 1
Q+1

, as κ

approaches ±1
2
. Because each sample in the received radar data corresponds to a

range resolution cell, the shifts chosen are within ± half a sample of the autocor-

relation peak, ρxx(0), the center of the function. We create this matrix of shifted

functions that we can scale shifted copies of the function to better simulate the data

from an upsampled axis of range bin delays; an example with 3 quantization levels

is given in Figure 3.6. To compute the contributions to each range bin, we loop

through each value of m, in set M = {l0, l0 + 1, . . . , lp} and first, calculate the

range corresponding to the center of each range bin, ξ(m) in M :

ξ(m;n) = c(m− 1)Fs −RB0(n), (3.14)
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where RB0(n) is the bistatic range to the center pixel from platform position n;

this value is subtracted so that the center pixel will always occupy the range bin

corresponding to a range of 0. We defineRB∆ as the distance between each scatter’s

bistatic range, RB(x, y;n) (for the current pulse n) and the bistatic range to P0,

RB0(n) and subtract that value from ξ(m) in order to compensate for the range to

the phase center

∆m(x, y) = ξ(m)−RB∆(x, y;n), (3.15)

where ∆m(x, y) is the fraction of a sample between the center of each range bin

in M and the bistatic range of each patch. Samples with an absolute value of 1/2

or less are within half a sample of the range bin center and are in that range bin’s

contour, ζ(x, y;m); therefore the RCS values of these patches contribute to the

range response of that sample:

ζ(x, y;m) =


1 |∆m| < c

2BW

0 |∆m| ≥ c
2BW

(3.16)

The variable ζ(x, y;m) is a Boolean matrix representing the values in p(x, y) corre-

sponding to each particular range bin, m. Those values are quantized to determine

how much the autocorrelation must be shifted to model the range response from

each pixel belonging to the contour, ζ(x, y;m):

ζ(x, y;mq) =

∣∣∣∣∆m(ζ(m))Qβ

c
− Q

2

∣∣∣∣. (3.17)

where ζ(x, y;mq) ranges from q = {1, 2, . . . , Q}. Each value of ζ(x, y;mq) will

correspond to a row of ρxx(q, τm;n); these values determine which shifted autocor-
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relation function has a peak closest to the true delay for each scatterer in ζ(x, y;m).

We choose this range so that each ζ(x, y;mq) can correspond to a matrix row. In

order to properly scale the appropriate ρxx(q, τm;n) of those pixels in ζ(x, y;m),

we must extract the RCS constants from those pixels. We must also add the carrier

phase rotation associated with the exact RB(x, y;n) of each pixel; because these

values are all pre-calculated and stored, this operation is not computationally ex-

pensive and

J = p(ζ(x, y;m))e−jkRB(ζ(x,y;m)), (3.18)

where k is the wavenumber, 2πfc
c

. In order to add the right amounts of each shifted

row of ρxx(q, τm;n) to the updating sum of the SAR data, D, we must loop through

each q in Q and sum the values of J whose indices correspond to each ∆mq:

σq(q) =

Q∑
q=1

J(ζ(x, y;mq) == q). (3.19)

This operation yields the total RCS constant, σq(q) for each q, and determines how

much we scale each row in ρxx(q, τm;n) to represent the contribution from each

scatterer in ζ(x, y;m) to the SAR data. When we calculate the total contribution

of each ζ(x, y;m), we will therefore only have to compute a Q number of prod-

ucts if σq(q) are calculated previously. Because there is an additional time offset

corresponding to where a particular pulse lies within the radar’s CPI, we extract a

separate interval of lp − l0 samples from the Q rows of ρxx(q, τm;n) so that the

peak of the chosen ρxx(q, τm) will be in the mth position with a slight offset. We

determine the starting and ending indices, io(m) and iend(m) for each m:

i0(m) = lcenter − ((m− l0)− 1), (3.20)
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where lcenter is the midpoint of lp − l0, and

iend(m) = i0(m) + lp − 1. (3.21)

Finally, for each range bin we multiply the RCS constant σq(q) associated with

the relevant data points of each row of ρxx(q, τm;n) :

D(n, τm) =

lp∑
m=l0

Q∑
q=1

σq(q)ρxx(q, i0(m) : iend(m)), (3.22)

so that the final result is the simulated data from the entire scene for each of the n

pulses. The data from each of the n pulses is stored in the way described in Chapter

2.1, in a format can be easily used for image formation. The following section will

discuss the computational complexity of the reverse backprojection method and the

improvement in efficiency compared to matched filtering.

3.4 Reverse Backprojection Method Complexity

Now that we have proposed a novel approach to pulse-compressed data simulation,

we must discuss its computational improvement compared to pre-existing simu-

lation methods. Despite being a solution to a computationally expensive problem,

the reverse backprojection algorithm is not computationally “cheap.” The algorithm

contains three nested for loops: a loop to account for all pulses, a loop for all range

bins, and a loop for all quantization numbers; Figure 3.7 shows the flow and struc-

ture of the loops within the reverse backprojection algorithm. However, because the

number of quantization levels,Q, is much smaller than the number of range binsK,

increasing the number of quantization levels does not add a substantial amount of

computational expense. The number of operations also greatly depends on the size,
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Figure 3.7: Reverse Backprojection Algorithm
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P×P , of the grid, p(x, y); even though we are not performing pixel-by-pixel opera-

tions, we have to perform many searches over the entire grid. Therefore, increasing

the size of the grid significantly increases processing time. Some of the operations

are also dependent on the length of ρxx(q, τm;n), lρxx , which is dependent on the

pulse length; using a longer waveform (such as an entire LTE radio frame) will sig-

nificantly increase processing time. Therefore, we use a much smaller fraction of an

entire radio frame as our transmitted signal. Within the outermost loop (over all N

pulses), we calculate the appropriate bistatic range matrix, RB(x, y;n), the bistatic

range to each pixel,RB0, and create the autocorrelation matrix ρxx(q, τm;n). Within

the first nested loop (over all M range bins), we determine which pixels belong to

that range bin, quantize them, add the phase correction, and perform the operation

in (3.22) once the appropriate σq(q) have been determined in the innermost loop.

The innermost loop (over Q quantization levels) finds the total σq(q) for each Q.

For this loop, computation speed is greatly improved by employing the MATLAB

built-in functions arrayfun and bsxfun, which sort the σq(q) in cell arrays that can

quickly be summed and concatenated into a single matrix. Because Q is assumed

to be considerably smaller than M and N , using arrayfun and bsxfun on this loop

does demand an unendurable amount of RAM. Because each patch of p(x, y) be-

longs to only one range bin contour, ζ(x, y;m) (which contain a variable number of

patches, pζ(x,y;m)), the total number of operations performed to each patch in each

contour is therefore Mpζ(x,y;m) = M(P ×P ) = MP 2. For most of our simulations

in Chapter 4, the chosen grid size is 2000x2000 and the associated autocorrelation

length is 1,255. Because 2, 0002 = 4, 000, 000 is much larger than 1,255, it is only

necessary to consider the operations dependent on grid size for complexity charac-

terization. For each pulse, the number of calculations is therefore approximately:

P 2(3MQ + 10M). This concludes our discussion of the reverse backprojection
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method for data simulation; Chapter 4 presents results using the methods described

in this chapter.
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Chapter 4

Results

In this chapter we present our results employing the novel reverse backprojection

method for pulse-compressed SAR data simulation described in Chapter 3 for var-

ious passive bistatic radar configurations. In Section 4.1, we discuss simulation

parameters and the data generated from the point scatterer response (PSR). We de-

scribe observed ambiguities in the resulting data and images originating from deter-

ministic features contained within LTE waveform pulses in Section 4.2, and validate

the effectiveness of our simulation method in accounting for nuances in generated

data resulting from various waveform characteristics in Sections 4.2 and 4.3. In

Section 4.4, we expand our analysis to distributed SAR scenes more closely resem-

bling those in real-time SAR data collection. Finally, in Section 4.5, we discuss the

effects of changing the number of quantization levels (as described in Section 3.3)

on the simulated pulse-compressed data.

4.1 Point Scatterer Response

The image formed from the data collected from the SAR system in response to

a single point scatterer in the center of the scene is known as the point scatterer

response (PSR). The PSR will serve as an effective visualization tool to examine

46



PRI 1 ms
Platform velocity 200 m

s

LTE NDLRB [25 25 25 25 25 25]
Bandwidth 29 MHz

Carrier Frequency 728 MHz
Platform positions 1024

Pulse length 628 samples
Quantization levels 3
Scene size levels 2.59x2.59 km

Table 4.1: Canonical Simulation Properties

how differences in waveform properties, geometry, and the number of quantization

levels effect the resulting SAR image produced by our simulation. To do this, it is

important to describe our canonical case; that is, the simulation properties that will

be assumed to be unchanged for all simulations.

Table 4.1 lists the characteristics that will be assumed (unless otherwise noted)

for each of the simulations presented in this chapter. The PRI and platform velocity

are chosen so that we can visualize the effects of range migration in the simulated

pulse-compressed data. The chosen LTE waveform with 6 channels containing

25 resource blocks each is chosen because waveforms with higher bandwidth give

better resolution; the spectrum for the standard waveform is given in Figure 4.1.

The given carrier frequency was selected because that is the center frequency of

one of the allocated bands assigned by the FCC to Norman, Oklahoma for cellular

communications. The scene size was chosen on the order of kilometers to model an

airborne SAR system, and the pulse length is calculated from (2.1). The number of

quantization levels is chosen to be 3, to examine the performance of the simulation

using the lowest number of quantization levels (and computation time).

In order to illustrate the the point scatterer response, we performed simulations

with a single point scatterer, P0, located in the center of our imaged scene, as seen
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Figure 4.1: Spectrum of LTE waveform when NDLRB = [25 25 25 25 25 25]

in Figure 4.2 with an RCS amplitude of 5 and a random phase. Figure 4.3 shows the

simulated pulse-compressed data output. Because the platform collects data over

1,024 positions, the response from the pixel P0 migrates through range bins as the

platform approaches the scatter’s x-coordinate can be seen by close inspection of

Figure 4.3. Because of periodic cross-ambiguities in the LTE pulsed waveform,

some of the energy is distributed in range bins not corresponding to the correct

range. Figure 4.4 is the zoomed-in image output when the data in Figure 4.3 is

used in the backprojection imaging algorithm; because the data is collected over

1,024 pulses using a pulse corresponding to a fine resolution, the data appears very

focused in both range and Doppler. We upsampled the image in Figure 4.4 by a

factor of 10 so that fine details in the image could be more easily interpreted. Range

ambiguities appear along the y-axis and Doppler ambiguities appear alongside the

x-axis. These Doppler ambiguities result from aliasing in azimuth due to sidelobes
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Figure 4.2: Clutter matrix for the PSR (zoomed in)

in the antenna pattern, and will always exist because of pulse repetition frequency

(PRF) constraints [42]. The Doppler aliasing results in “ghost targets” that appear

in the image because the matched filter perceives the aliased parts of the received

signal’s phase patterns to be identical [42].

In order to examine the effects of the LTE waveform, which has not been de-

signed for radar usage, on radar performance, we performed a series of simulations

on LFM pulses. If amplitude modulation is not employed in the waveform, its am-

plitude will be sustained at its maximum value,A, which results in a pulse energy of

A2τ [31]. This presents a challenge because higher pulse energies (longer pulses)

improve estimation and detection performance (SNR), while increased resolution

requires more bandwidth. Therefore, radar engineers employ pulse compression

to improve both detection performance and resolution without compromising the

other. Pulse compression is performed by frequency or phase modulating a simple
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Figure 4.3: Generated pulse-compressed data for the PSR

Figure 4.4: Zoomed in image of the PSR
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pulse. The instantaneous frequency, Fi(t), of an LFM waveform linearly sweeps

across β Hz of bandwidth in τ seconds. The LFM pulse offers a signal process-

ing gain by a factor of its compression ratio, the time bandwidth product, βτ , in

comparison to a non-modulated waveform with the same range resolution. There-

fore, a radar waveform can be designed to offer both a long duration and a narrowly

concentrated autocorrelation [31]. For our simulations with a pulse time of 1 ms,

we choose a similar bandwidth as the standard LTE waveform and obtain a βτ of

30,000. The reverse backprojection algorithm is flexible enough to be used with

any transmitted waveform, whether it is a conventionally used LFM pulse, another

specifically-engineered radar pulse, an LTE waveform, or alternate communication

waveform.

In order to determine how LTE waveform self-ambiguities affect simulation

performance we compare the point scatterer response of the reverse and “forward”

backprojection algorithms using LTE waveforms and conventional LFM waveforms.

Using a the PSR from a single pulse can also be useful, since the image will not

be focused in Doppler. Figures 4.5 and 4.6 illustrate the generated data and im-

age when a single LFM pulse is employed. Because only one pulse is used, the

image is not resolved in Doppler and is therefore the entire isorange contour cor-

responding to the range to P0. The PSR resulting from simulations with a single

pulse are also useful because they illustrate how features of the LTE waveform are

translated into the pulse-compressed data output and final constructed image; more

details about LTE waveform features observed in the PSR will be discussed in Sec-

tion 4.3. In Figure 4.7, resulting from the same properties except using an LTE

pulse instead, many range ambiguities are present because the LTE waveform has

high cross-correlation with itself over time. When simulations are performed using

more pulses over long apertures, these self-ambiguities are also evident in the im-
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Figure 4.5: Generated pulse-compressed data for the PSR using an LFM waveform
and only one pulse

age point spread responses. The data collected for a simulation utilizing an LFM

pulse is featured in Figure 4.8, and Figure 4.9 features the image formed (PSR) us-

ing that data that has been upsampled by a factor of 10 for interpretation purposes.

In contrast to the generated pulse-compressed data and image featured in Figures

4.3 and 4.4, which show ambiguities in range in the data, defocusing in range in

the image, and multiple Doppler ambiguities, from Figure 4.9), it is evident that

the image is tightly focused in range and Doppler, with almost no ambiguities in

either dimension. Therefore, because of the self-ambiguities, using passive bistatic

waveform sources such as LTE is not ideal for radar purposes and is not superior to

more conventional waveforms such as LFM chirps.
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Figure 4.6: Image of the PSR using an LFM waveform and only one pulse

Figure 4.7: Image of the PSR using an LTE waveform and only one pulse
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Figure 4.8: Generated pulse-compressed data for the PSR using an LFM waveform
and 1,024 pulses

Figure 4.9: Zoomed in image of the PSR using an LFM waveform and 1,024 pulses
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4.2 LTE Waveform Self-Ambiguities

As discussed in Chapter 2, LTE waveforms contain deterministic features neces-

sary to their usage as communication waveforms that cause self-ambiguities in the

autocorrelation that can be unfavorable for usage as radar waveforms. LTE wave-

forms also contain nulls between bursts of data; if a “pulse” is extracted during

one of those nulls, we will be unable to perform matched filtering with that pulse.

An example of an LTE waveform plotted over time is given in Figure 4.10, which

features a single radio frame of a waveform with [25 25 25 25 25 25] resource

blocks; nulls (periods of time with zero amplitude) are evident around the middle

of the transmission. As discussed in previous work in [2], different LTE pulses will

also contain different amounts of energy, making normalization required for coher-

ent processing. In Figure 4.11, which features a single radio frame with [25 25]

resource blocks, the LTE waveform exhibits “bursts” of data through parts of the

transmission, with visible separation between and similar nulls nearing the middle

of the transmission; accordingly, pulses extracted from the “bursts” will contain

much more energy than pulses extracted from guard periods or nulls. Determin-

istic features that can cause ambiguities include the CP, PSS, SSS, and CSREs.

As Evers and Jackson discussed in [8], self-ambiguities caused by the PSS, SSS,

and CSREs are so low energy that they do not have a significant effect on the per-

formance of LTE waveforms for radar applications; however, their effects are still

visible in simulated pulse-compressed data. Because the cyclic prefix has a higher

amount of energy than the other deterministic features, self-ambiguities resulting

from symbols containing a cyclic prefix do influence the waveform’s autocorrela-

tion and subsequent data generation and image formation.

We generated a set of data to visualize how extracting pulses from different
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Figure 4.10: LTE waveform radio frame when NDLRB = [25 25 25 25 25 25]

Figure 4.11: LTE waveform radio frame when NDLRB = [25 25]
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PRI 1 ms 1 ms
Platform velocity 200 m

s
200 m

s

LTE NDLRB [50] [25 25]
Bandwidth 10 MHz 9.8 MHz

Carrier Frequency 728 MHz 728 MHz
Platform positions 1 1

Pulse length 676 samples 676 samples
Quantization levels 3 3
Scene size levels 7.65x7.65 km2 7.65x7.65 km2

Table 4.2: Simulation Properties

placements, ν, within the waveforms affect the waveform autocorrelation and gen-

erated pulse-compressed data; for this illustration, we will deviate from the standard

simulation by using waveforms with [25 25] NDLRB. Figures 4.12 and 4.13 show

the generated pulse-compressed data for the PSR for one pulse extracted from two

different placements: one at .422 through the waveform and another at .500 through

the waveform; this data allows us to visualize autocorrelation characteristics, since

the generated data is made up of shifted and scaled copies of the waveform auto-

correlation. Compared to the pulse used to produce the data in Figure 4.12, the

pulse used to produce the data in Figure 4.13 exhibits stronger artifacts from self-

ambiguities in the autocorrelation. These artifacts cause sidelobes that are evident

in the image, shown in Figure 4.15, whereas the image formed from the data with

low self-ambiguities given in Figure 4.14 has very low sidelobes.

One parameter that influences radar performance is the pulse bandwidth. Be-

cause the LTE waveforms transmitted by a tower are not controlled by radar en-

gineers, performance may vary based on the tower’s current bandwidth demand.

We performed various simulations employing waveforms with different bandwidths

and channel structures. Each pulse transmitted within each simulation is a dif-

ferent randomly generated waveform with the specified structure. The “standard”
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waveform with 6 channels containing 25 resource blocks each has a bandwidth

of 29 MHz. In LTE waveforms, waveform bandwidth is determined by the num-

ber of allocated resource blocks (NDLRB). However, it is important to note that

two waveforms with a different structure albeit identical bandwidths, will produce

two different images because of that structure. Below we compare the structure

and resulting images from two LTE waveforms: one with one channel containing

50 resource blocks ([50]) and another with two channels containing 25 resource

blocks each ([25 25]). A full list of simulation parameters is given in Table 4.2.

If we compare Figures 4.16 and 4.17, we can see that both waveforms have the

same bandwidth because they have the same number of resource blocks. The LTE

waveform in Figure 4.16 has a slight guard band between the two orthogonal fre-

quency channels, but the occupied bandwidth is the same as the signal shown in

Figure 4.17: each waveform has approximately 8 MHz of occupied bandwidth. We

performed simulations with one pulse to generate pulse-compressed data from the

PSRs for the same waveforms. In Figure 4.22, which compares the autocorrelation

function between the two waveforms, it is evident that both waveforms’ autocorre-

lation functions have similar structures because of the way the data are modulated,

but that the two-channel waveform has higher sidelobes due to the guard interval

between the channels; these differences are also evident in the pulse-compressed

data from the PSRs visible in Figures 4.18 and 4.19. These sidelobes are also evi-

dent in the images - the image in Figure 4.20 has more visible sidelobe effects than

the image in Figure 4.21. Therefore, bandwidth and NDLRB are not enough by

themselves to completely characterize the autocorrelation function of a particular

LTE waveform.

58



Figure 4.12: Generated pulse-compressed data for the PSR when NDLRB = [25
25] and .422

Figure 4.13: Generated pulse-compressed data for the PSR when NDLRB = [25
25] and .500
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Figure 4.14: Image for the PSR when NDLRB = [25 25] and .422

Figure 4.15: Image for the PSR when NDLRB = [25 25] and .500
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Figure 4.16: Spectrum of LTE waveform when NDLRB = [25 25]

Figure 4.17: Spectrum of LTE waveform when NDLRB = [50]
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Figure 4.18: Generated pulse-compressed data for the PSR when NDLRB = [25
25] and .500

Figure 4.19: Generated pulse-compressed data for the PSR when NDLRB = [50]
and .500
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Figure 4.20: Image for the PSR when NDLRB = [25 25] and .500

Figure 4.21: Image for the PSR when NDLRB = [50] and .500
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Figure 4.22: Comparison of autocorrelation matrices when NDLRB = [25 25] and
[50]

4.3 LTE Bistatic SAR Range Resolution

In order to more directly compare range resolution between simulations using pulses

from LTE waveforms with [25 25] resource blocks and [25 25 25 25 25 25] re-

source blocks, we performed side-looking simulations, with parameters given in

Table 4.3, positioning the transmitter at the same location as a point scatterer, with

an x-coordinate located in the middle of the platform’s trajectory and a y-coordinate

located in the midpoint of the range swath in y. This geometry allows us to visu-

alize the Doppler sidelobes; the width of the mainlobe will be proportional to the

range resolution because most of the energy from the imaged pixel will be observed

in the main lobe. Figure 4.23 compares the intensity of the image for both wave-

forms. From a zoomed in perspective in Figure 4.24, we can see that the width of

the mainlobe in the [25 25] case spans about 20 m and the width of the mainlobe in
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PRI 1 ms 1 ms
Platform velocity 200 m

s
200 m

s

LTE NDLRB [25 25 25 25 25 25] [25 25]
Bandwidth 29 MHz 9.8 MHz

Carrier Frequency 728 MHz 728 MHz
Platform positions 1024 1024

Pulse length 628 samples 676 samples
Quantization levels 3 3
Scene size levels 2.59x2.59 km2 7.65x7.65 km2

Table 4.3: Range Resolution Simulation Properties

the standard case spans roughly 8 m, corresponding to theoretical minimum range

resolutions of 16 and 5 m, respectively. Therefore, LTE waveforms with higher

bandwidths will form images with finer range resolution. Therefore, our simulation

tool validates that finer resolution is attained as a result of using waveforms with

higher bandwidths.

4.4 Results from Distributed Scenes

Now that we have examined PSRs formed with data from the reverse backpro-

jection algorithm, we can understand and interpret images formed from simulated

distributed scenes - scenes where all clutter patches have unique RCS constants

like those to be observed in real-time SAR data collection. We will examine sets

of simulations performed on two different distributed scenes: one swath with an

“OU” logo, a zoomed in piece of which is features in Figure 4.27, and another with

a clutter pattern of a flower seen in Figure 4.32. Each of these clutter patterns was

formed on a scattering grid of 2001x2001 pixels; the pixels corresponding to the

“OU” logo have an RCS value of 500 and the pixels corresponding to the flower

have values mapped to an 8-point gray scale. All pixels with non-zero RCS val-

ues in both clutter patterns have a random phase component. Data formed from
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Figure 4.23: Comparison of side-looking Doppler cuts when NDLRB = [25 25] and
[25 25 25 25 25 25]

Figure 4.24: Zoomed in comparison of side-looking Doppler cuts when NDLRB =
[25 25] and [25 25 25 25 25 25]
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both patterns is projected onto 501x501 imaging grids with spacing corresponding

to that simulation’s range resolution. For both sets, we will be primarily interested

in examining the outputs from the backprojection imaging algorithm, since imag-

ing performance is not easily interpreted from visualizing the sampled radar data

created with methods described in Chapter 3.

Because the algorithm presented in Chapter 3 utilizes shifted, scaled copies of

the waveform ρxx(q, τm;n), our ability to construct a high-quality image will de-

pend on self-ambiguities in the captured pulses. Even though the simulations em-

ployed capture a pulse, sized to the range swath, from different LTE waveforms,

because the radio frame generated has the same resource block structure and the

pulses are extracted from the same placement within the waveforms for each plat-

form position, the pulses extracted for each platform position will exhibit similar

autocorrelation behavior. Features (sidelobes, etc) are therefore present in images

formed from shifted, scaled ρxx(q, τm;n) featuring self-ambiguities.

In order to visualize the effects that the waveform bandwidth and autocorre-

lation self-ambiguities have on image formation capabilities, we performed four

simulations: one set of two involving waveforms with [25 25] structure, and an-

other with waveforms with [25 25 25 25 25 25] structure. Within both sets, we

performed simulations utilizing a pulse beginning halfway through the waveform

and another at a random starting place (chosen to be .422) through the waveforms.

For each of these sets we will reference Figures 4.12, 4.13, 4.25, and 4.26, which

feature the generated pulse-compressed data from simulations with one pulse for all

four of the aforementioned sets. The comparison within that set is intended to show

the effect of cross ambiguities, while the second set of simulations are intended to

show how increasing the waveform bandwidth yields finer image resolution.

The first set of images we will examine are the returns from simulations imag-
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Figure 4.25: Generated pulse-compressed data for the PSR when NDLRB = [25 25
25 25 25 25] and .422

Figure 4.26: Generated pulse-compressed data for the PSR when NDLRB = [25 25
25 25 25 25] and .500
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ing the “OU” pattern in Figure 4.27 using 1,024 pulses and 3 quantization levels.

Figures 4.28 and 4.30 show images taken using pulses with low self-ambiguities.

Because data is captured over 1,024 pulses and has low sidelobes, the images appear

to be well-focused in both range and Doppler and the “OU” pattern is clearly visi-

ble. Because the simulations with [25 25] and [25 25 25 25 25 25] where the pulse

is taken .500 through the radio frame result in received data with higher sidelobes,

the images generated from that data, featured in Figures 4.25 and 4.29 is not nearly

as focused in Doppler. Because more of the energy in the pulse-compressed data

output is located outside of the peak corresponding to the target delay, that energy

is interpolated by the backprojection algorithm as belonging at a different range en-

tirely - as a result, the images look much more unfocused in Doppler. Because the

data featured in Figure 4.26 contains low sidelobes at many ranges outside the peak,

the image in Figure 4.31 does not contain any prominent ghost targets, but rather

many faint ghost targets. In comparison to the data in Figure 4.26, the data in Figure

4.13 contains prominent sidelobes corresponding to bistatic ranges approximately

5 and 5.5 km away from the target’s true bistatic range. These prominent sidelobes

cause prominent ghost targets in the image in Figure 4.29; anyone interpreting the

image will be able to see the two prominent “OU” pattern repeating itself at incor-

rect ranges. Therefore, the chosen segment of waveform matters - choosing pulses

from placements yielding low sidelobes from self-ambiguities will result in clearer,

more focused images.

In order to visualize imaging capabilities for a more complex distributed scene,

we performed simulations using the clutter matrix featured in Figure 4.32, which

will be referred to as the “flower” image. The 8-point gray-scale values of the im-

age were used to represent the real part of it’s RCS values, σ, with each image pixel

containing four scattering patches, p(x, y) with RCS values σ and random phases,
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Figure 4.27: Clutter matrix of the “OU” distributed scene

Figure 4.28: Image for the “OU” distributed scene when NDLRB = [25 25] and
.422
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Figure 4.29: Image for the “OU” distributed scene when NDLRB = [25 25] and
.500

Figure 4.30: Image for the “OU” distributed scene when NDLRB = [25 25 25 25
25 25] and .422
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Figure 4.31: Image for the “OU” distributed scene when NDLRB = [25 25 25 25
25 25] and .500

e(−j∗φrand), where φrand is a uniformly-distributed random number in the interval

[0, 2π]. This particular image was chosen because it is a high contrast photo - the

flower in the center is bright against a relatively dark foreground. The flower petals

feature shading, while its pistil contains many fine details. The background is also

a useful photo for determining image formation performance because it features

straight lines and other more circular-shaped objects. Like in the set with the “OU”

pattern, simulations performed with pulses taken from segments of the radio frame

with low self-ambiguities yield superior images than those with pulses taken from

segments with higher self ambiguities. Because each image grid pixel contains four

scattering patches, the complex phases of the scattering patches combine and the

images all appear speckled. Upon examining Figure 4.33 and Figure 4.35, we can

detect many characteristics of the original image. In both images, the petals and

other auxiliary shapes are distinguishable from the background, petal shading is
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Figure 4.32: Clutter matrix of the ’flower’ distributed scene

visible, and some artifacts of the pistil are well-formed. When we contrast the two

images, the image formed using the higher bandwidth waveform (with [25 25 25 25

25 25] NDRLB) is considerably brighter against the dark background, with smaller

details more well-defined because of the finer range resolution. Likewise, simulated

pulse-compressed data formed with pulses containing higher self-ambiguities con-

struct less well-formed images. The flower foreground in Figures 4.34 and 4.37 is

still distinguishable from the background, but the image quality has been degraded

by misplacing energy from the self-ambiguity sidelobes in the pulse-compressed

data. As is the case with the images formed from ν = .500, smaller details within

the image are more distinguishable in the image formed with the higher bandwidth

waveform. Therefore, radio frames with higher bandwidth and pulses extracted

from regions with lower self-ambiguity sidelobes produce better quality images.

In order to further examine the role of pulse extraction timing within the radio
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Figure 4.33: Image for the ’flower’ distributed scene when NDLRB = [25 25] and
.422

Figure 4.34: Image for the ’flower’ distributed scene when NDLRB = [25 25] and
.500
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Figure 4.35: Image for the ’flower’ distributed scene when NDLRB = [25 25 25 25
25 25] and .422

Figure 4.36: Image for the ’flower’ distributed scene when NDLRB = [25 25 25 25
25 25] and .422, upsampled for range resolution comparison
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Figure 4.37: Image for the ’flower’ distributed scene when NDLRB = [25 25 25 25
25 25] and .500

frame, we performed simulations extracting pulses starting from random indices

within the radio frame. Because some pulses will inevitably be extracted from nulls

or other regions with low energy, we disregard data generated from low-energy re-

gions - since that data will have a significantly negative effect on image quality. The

data would then be fed into the backprojection imaging algorithm to form an image.

The energy-level threshold, which we will call η, which determines whether or not

a pulse is fit to contribute to the data simulation is up to the engineer’s discretion.

Upon examining 1,000 sets of energy levels of 100 pulses extracted from random

locations within radio frames, 65-70% on average were determined to be within re-

gions with sufficiently high energy level. Figures 4.38 and 4.39 are images resulting

from simulations where a [25 25 25 25 25 25] NDLRB is used with random pulse

extraction with η selected to be .02 and .05, respectively. The general shape of the

flower foreground is distinguishable from the background, but the image features
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Figure 4.38: Image for the ’flower’ distributed scene when NDLRB = [25 25 25 25
25 25] and random pulse placement, with η = .02

are not well formed. When the same approach is applied to the “OU” pattern, the

results are less favorable, the pattern is not recognizable against its background in

Figure 4.40. This is because a considerable amount of the pulses are discarded for

not meeting the necessary energy threshold - the phase history from pulse-to-pulse

is too fragmented in the generated data to form a high fidelity image.

4.5 Quantization Effects

We also performed simulations to investigate the effects of the number of quanti-

zation levels on image formation. In order to more easily visualize comparisons

between various numbers of quantization levels, we performed a series of side-

looking simulations - placing the scatterer in the middle of the receiver’s trajectory

and the transmitter in the same along-track location as the scatterer - so that we
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Figure 4.39: Image for the ’flower’ distributed scene when NDLRB = [25 25 25 25
25 25] and random pulse placement, with η = .05

Figure 4.40: Image for the ’OU’ distributed scene when NDLRB = [25 25] and
random pulse placement, with η = .35
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PRI 1 ms
Platform velocity 200 m

s

LTE NDLRB [25 25 25 25 25 25]
Bandwidth 29 MHz

Carrier Frequency 728 MHz
Platform positions 256

Pulse length 628 samples
Quantization levels various
Scene size levels 2.59x2.59 km2

Table 4.4: Quantization Level Simulation Properties

could view the Doppler sidelobes in the resulting image since the differences are

not evident to the human eye in the final images. A full list of parameters is given

in Table 4.4. We performed simulations with no quantization, 3 levels, 5 levels, 35

levels, and 105 levels. The results are presented in Figure 4.41. From Figure 4.41,

we can see that compared to not employing any quantization, utilizing the quantized

approach lowers Doppler sidelobes and results in a narrower main beam. Without

quantization, the mainlobe to sidelobe levels vary by approximately -15.6 dB, with

three levels they differ by approximately -16.4 dB, and five or more levels results

in a difference of -16.9 dB; using five or more quantization levels yields results that

are nearly indistinguishable from each other. From Figure 4.41 we can conclude

that utilizing more than five quantization levels has a negligible improvement on

image formation; for the sake of computational efficiency, we have used three lev-

els for most of our simulations. This concludes our discussion of simulation results

employing the reverse backprojection method.
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Figure 4.41: Doppler sidelobes for various Q
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Chapter 5

Conclusion

In this thesis we introduced the concepts behind the reverse backprojection algo-

rithm for passive bistatic SAR. An introduction to passive bistatic radar and a dis-

cussion of waveform selection was presented in Section 1.2. Pertinent background

information regarding SAR and the geometry of passive bistatic SAR systems - par-

ticularly the two-part bistatic range - was described in Sections 2.1 and 2.2, respec-

tively. In Section 3.1 we explained the need for more efficient simulation methods,

and the increased computational burden inherent in passive bistatic SAR simula-

tions originating from the variability of waveforms throughout the aperture length;

because it would be computationally impractical to calculate the delay, in a contin-

uous set of numbers, of each echo from the range swath, we define the scattering

grad and divide the range swath into discretized “patches”. We discussed our inten-

tions to exploit favorable characteristics of the backprojection imaging algorithm

in reverse in order to model passive bistatic SAR data. In the following section

(Section 3.2), we reviewed SAR imaging algorithms used in practice, giving the

advantages and disadvantages of using backprojection. We examined the origins of

backprojection, from tomographic imaging formation methods based on the projec-

tion slice theorem, from their first implementations in computer-aided tomography

(CAT) medical imaging in the 1970s. We traced the algorithm’s evolution over the
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decades and described approaches taken to improve its efficiency, since backpro-

jection is still considered to be computationally expensive despite its flexibility and

wide-scale usage in SAR imaging. Lastly, we outlined the implementation of the

backprojection method in software and roughly calculated the algorithm’s compu-

tational burden, since we employed “forward” backprojection to validate the data

generated in our simulation.

In Section 3.3 we explain the role of the autocorrelation function in matched

filtering. We discuss how we can model the received echoes on a finite set of delays

that in agreement with the number of samples necessary to receive the echoes from

the entire range swath. We define the shifted autocorrelation matrix for each pulse

as the autocorrelation function repeated for an arbitrarily-selected number of quan-

tization levels that has been shifted by sub-sample amounts that can more accurately

represent a scatter’s delay if the scatterer is not located in the center of the patch it

lies within. We explain our methods for identifying which patches correspond to

each quantized delay (contour), and which patches within the contour correspond

to each row of the shifted autocorrelation matrix. We then describe how we extract

the RCS constants for each of those patches, and scale the chosen copies of the au-

tocorrelation matrix to adequately represent the contributions of each patch in the

resulting generated raw data. To conclude our discussion in Section 3.3 we charac-

terize the total computational burden of the algorithm, which we found to primarily

depend on the number of simulated scattering patches.

In Chapter 4 we analyze the results from our simulations. In Section 4.1, we

present comparisons between simulations performed with LFM and LTE pulses to

show how self-ambiguities in the LTE waveform are evident in the image’s point

spread response; these self-ambiguities confirm that LTE waveforms are not as

promising for radar usage as conventional chirp waveforms. In Section 4.2 we
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examine how waveforms with higher bandwidths yield finer range resolution. In

Section 4.3, we present results from simulations performed over distributed scenes

and discuss the effects of self-ambiguities in the image. Because of the presence

of deterministic elements in the LTE waveforms, image quality is dependent on

how correlated the waveform is with itself; waveforms that are less correlated over

time produce clearer images. Because each waveform also has a different amount

of energy, it is also necessary to normalize the data and only consider returns from

pulses with a sufficient energy level. When pulses are selected from random indices

within an LTE waveform throughout a CPI, image quality is also degraded and fur-

ther processing methods will be necessary to produce clearer images. In Section 4.4

we compared the image intensity when various numbers of quantization levels were

used and found that our simulation yields diminishing improvements when more

than five quantization levels are employed. We conclude that the reverse backpro-

jection method can be used to simulate raw data collection for passive bistatic SAR,

though self-ambiguities present challenges that may require additional processing

methods when employing LTE waveforms as illuminators of opportunity.

Over the course of this work, we developed a simulation method that utilizes

the backprojection algorithm in reverse to model received raw data from a passive

bistatic SAR system using LTE as an illuminator of opportunity. The novel simula-

tion method presented is shown to be computationally faster than existing methods,

including the matched filter algorithm. Additionally, the simulation method accu-

rately accounts for artifacts in waveforms resulting from deterministic features and

nuances in waveform structure from non-cooperative sources. Future work will

explore further processing methods to create high fidelity images to combat com-

plications resulting from self-ambiguities in digital waveforms.
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