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ABSTRACT

A perturbed Morse oscillator potential function for the 

state of HF is improved for large internuclear separation (r) by adding a 

function of several parameters from ■which “synthetic” higher-order PMO 

parameters can be evaluated. These parameters can then be varied until 

the asymptotic condition (V(r)-*-Z>e as r-^oo -where De is the dissociation 

energy) is achieved.

Values of the PMO parameters (including the non-adiabatic cor

rection parameter A and higher-order PMO parameters) have then been 

obtained by fitting experimental values of 0 ^ , 3 ^ ,  and Dy directly in terms 

of model parameters. The quality of the PMO potential function found is 

determined by the agreement between the eigenenergies it predicts (in this 

■work, through solving the radial Schrodinger equation) and the spectros

copically observed ones.

The PMO potential thus obtained has been improved even more 

by a special method in which some of its parameters are varied in very 

small step size until the difierences — G®® and become as

small as possible.

The vibrational wave functions for this PMO potential were com-

X l i



x i i i

puted by numerical methods. These wave functions were then used in the 

determination of the dipole moment of E +  state of HF as a function of 

r by fitting it to the experimentally deduced vibrational matrix elements.

The dipole moment of the X ^  E"*" state of HP were calculated as 

cubic polynomials in u =  r — re, y =  1 — g— , and z  =  — 1.

In addition, we found a suitable functional form by which we have been 

able to obtain the dipole moment of HF with correct asymptotic behavior 

at both large and small r.



PMO POTENTIAL AND DIPOLE MOMENT FUNCTIONS OF HF 

WITH CORRECT ASYMPTOTIC BEHAVIOR

CHAPTER I

Introduction

Since a relatively large amount of effort has been made by theoreticians 

on the hydrogen fluoride molecule in the past several years [1-4], it was felt 

th a t it would be worthwhile to have an accurate internuclear potential 

energy curve for this system. The potential function is of great importance 

since its knowledge is necessary for calculations of many quantities (such as 

dipole moment, Frank-Condon coefficients, etc.).

In the framework of the Born-Oppenheimer approximation, the 

molecular wavefunction is expressed as the product of electronic and nuclear 

wavefunctions [6-8]. In the particular case of a diatomic molecule, one can 

further separate the variablesfor the nuclear wave function, so th a t the total 

molecular wave functions may be written as

K-w =  (1.1)

where n, v, J , m j  are electronic, vibrational, rotational and magnetic 

quantum numbers.



The ro-vibrational part is the solution of the following

equation

2fi dr"̂  2fir^

■where r is the internuclear distance, n  reduced mass, and V(r)  is the nuclear 

potential energy. Dunham using the WKB method expanded the eigenvalue 

Etj^j of Eq. (1.2) as a double power series in vibrational and rotational 

quantum numbers {v +  1/2) and J  [10] as follows:

. (1.3)
J = 0  f c = 0

1.1. Internuclear Potential Functions for Diatomic Molecules 

Several different potential functions have been used with %'arying 

degrees of success. One of the standard potentials for describing diatomic 

molecules is the Morse potential [13] given by

V{r) =  D e [ l -  e-«(r-T .)]2 == (1.4a)

involving the three parameters De (well depth), rg (equilibrium value of r),

and a. For convenience, we define the Morse potential by three parameters 

p, a, and r, which related to De, Te, and a by the following relations

p — are, 1.46

a  =  [2rDg]^g^, 1.4c

T  — lA d
he



where a =  is approximately the number of bound states of the Morse 

potential. For the Morse potential, Eq. (1.2) is exactly soluble when 7 =  0 . 

In this case, the vibrational term values are found to be [13,14]

V -f è è o
G(v) =  2 r(—^ )  -  t( — . (1.5)

The drawback of this potential is tha t there are not enough parameters to 

accurately reproduce experimental results.

Another potential is the Dunham potential [11,12], which can be 

written as

Vb( 0  =  ^ H----- )> (1.6a)

where ^ . The eigenvalues and parameters üq, Ci, . . .  of this

potential have been found by the WKB method [12]. The drawback of 

this potential is its poor convergence[7] and not producing analj’tic wave 

functions.

Another potential similar to Dunham but with a different variable 

than  Dunham is the Simons-Parr-Finlan (SPF) potential [15]

=  hcTrr^il +  Y ,  Anrt’'), (1.66)
n = l

where 7? =  (r — re)fr.

The generalization of the Dunham and SPF potentials were intro

duced by Thakker[47]:

V(r)  =  eo(p)X^(p)(l +  Y  «»X” (p)), (1.7)
n = l



where X(p) =  5(p)(l — (rc/r)P), and

s(p) = 1 + 1  P > 0  
P < 0

Thakker potential contains both the Dunham and the SPF potentials as 

special cases corresponding to p = + l  and p = - l .

One of the most practical procedures for obtaining a potential 

function directly from spectroscopic constants is a numerical procedure 

known as the Rydberg-Klein-Rees (RKR). This method is based on the 

semi-classical JWKB method [16,17]. In this method the turning points in 

the potential curve are given by

ftnat =  C m<n ( /?  +  ±  / J ,  (1.8»)
ffv J

where C =  A  =  ^  [Gv — (1.86)

and =  f  Bv>[Gv — Gv>]~^d'i/. (1.8c)
Jvn

The lower limit of the integrals, vq, introduced by Kaiser [18] may be 

defined by

Ev,j  =  0 =  loo +  Gvo =  0. (1.9)

HufTaker and Dwivedi [19] showed th a t the perturbed Morse oscil

lator (hereinafter abbreviated as PMO) with potential function of the form

OO
F ( r ) = 7 ( ÿ = + 2 ]  (I.IO)

n = 4



vhere y =  1 — exp(—a(r — r^)), provides an accurate model for the 

vibrational-rotational motion of diatomic molecules. Model parameters p, 

a, r , 64, bn can be determined from spectroscopic constants [10,11]. 

The PMO potential parameters are related to the dissociation energy De 

by 00

D . =  7(1 + 5 ;; *")• (1.11)
n = 4

The PMO potential converges for all values of r except for a singularity at 

r  =  0. A  method vas proposed by Hufifaker [20] to relate an RKR potential 

to  a PMO one, through an explicit relationship between their parameters. 

The PMO potential has a longer range of convergence than the Dunham 

potential,and its leading term represents a potential with finite number 

of bound states; therefore it is a suitable model to describe vibrational- 

rotational states of a diatomic molecule. The SPF potential also has a long 

range of convergence, but because its leading term gives a potential with 

an infinite number of bound states it is not as useful as the PMO potential.

The vibrational term values the rotational constants and 

the centrifugal distortion constants D^, etc., are related to  the Dunham 

coeflScients Yjk as follows:

=  +  ( I . I M
8  2

=  ( " + ? ) ' '  (1.126) 
3=0



D .  =  Y . ^ j ^ ( v  +  \ y ,  (1.12c)
i= o  ^

%  =  +  (1.124
j = 0

The energy eigenvalues Ev, j  are related to Gv, Bv, Dv,  and Hv by

£ . , / =  n o + G » + B »  1A .1 + 1)1+ £ • » ! / ( / + 1) P + J Ï»  [ / ( . I + i ) P + • • •  •

(1.13)

1.2 The Born-Oppenheimer Approximation 

One of the most fundamental approximations of molecular physics 

is the Born-Oppenheimer separation of nuclear and electronic motion. For a 

system of electrons and nuclei interacting through Coulombic interactions, 

the Hamiltonian [5-8] is

H  =  T e - h T N - \ -  V{t,R ) .  (1.14)

where =  = - y X ;
t Ot

and V { r ,R )  =  V e e - \ -VeN =

ZoiZpé^ «V Zqi^

è  a<p  1-^“  ~  ^  “  *̂1

Te and Tjq are electronic and nuclear kinetic energy respectively, and 

V {r ,R )  includes electron-electron, nuclear-nuclear, and electron-nuclear 

interactions. Because TV is a very small term  in this Hamiltonian, we

may calculate the eigenvalues and eigenfunctions of Eq. (1.14) by treating

T/v as a small perturbation [7j.



The Schrôdinger equation for the molecule is then

\Te+V{r,R)]<pr,{r,R) =  E^(A)y)^(r,A). (1.15)

■where En{R)  and (pn{r,R) are energy and wave functions of the electronic 

state. Since the eigenfunctions of equation (1.15) form a complete set of 

states [7], we may expand the total molecular wave function in terms of 

them

ÿ (r ,f i)  =  5 ]ÿ -„(JÎ)p„(r,H ). (1.16)
n

The molecular wave function ip{r, R )  satisfies the Schrodinger equation

[Te +  +  V i r , R M r , R )  =  E^{r ,R ) .  (1.17)

Substituting i}{r,R) from Eq. (1.16) into Eq. (1.17) and using Eq. (1.15), 

we find

J ^ ( E „ ( R )  +  T N ) M R ) P „ , ( r , I i ) ’= E Y , M R ) f > r ^ l . T , R ) .  (1.18)
m m

Multiplying Eq. (1.18) on the left by y?%(r, R), integrating over all electronic 

positions, and using the orthogonality of Pm, we have

'y^^{Pn[r,R)\Tpi\j)m {R)Pm jr, R)) +  En {R)‘>pn ( E)  =  E-lpniR), (1. 19)
m

which can be written as 

\TN-\-En{R)+Ann{R)]- fpn{R)  =  E M R ) -  Y .  Anm1pm{R), (120)
mj^n
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where

Anmi’m{R) =  — • V(pm 4"

By neglecting the off-diagonal elements of A  (i.e., considering Anm

V'm(-R) =  0) we get the adiabatic approximation. We then have

[ T M + E ^ { R ) - ^ A n n { R ) ] M R )  = . E M R ) ,  (1.21)

where the adiabatic potential energy V’“‘̂ (J2) is given by

V °„ \R ) =  E„(R) +  A„„{R).

It can be shown that both the adiabatic and nonadiabatic terms are 

of the order of magnitude ( ^ )  and may be neglected for heavy molecules. 

To the lowest order in A , there is no mixing of the different electronic states, 

that is, in the adiabatic corrections the total molecular wave function can 

be written as

ij{r,R) =  M R ) P n i r , R ) .  (1.22)

The nonadiabatic corrections (— Y m fé n  Anmfpm{R)) mix different electronic 

states, so th a t the total molecular wave function cannot be expressed as a 

simple product of the electronic and nuclear wave function.

Bunker [22,23] studied the effect of both adiabatic and nonadiabatic 

corrections on the effective vibration-rotation Hamiltonian for the ground 

electronic states of diatomic molecules. For considering the non-adiabatic



corrections, he "wrote the radial Schrodinger equation in the following form 

{ -  =  0, (1.23)

where — ^  ̂  and — are the vibrational and rotational kinetic

energy operator respectively, W(r) is the relativistically and adiabatically 

corrected internuclear potential, and Ey,j  are vibration-rotation eigen

values.

As a result of non-adiabatic lag of electrons behind the nuclear 

motion, it is more reasonable to use //^ and Hf [22,23] rather than nuclear 

reduced mass // and atomic reduced mass fiatomic where

H  ^  l^atomic) ^  atomic-

A least-squares optimization of piy and fir was performed [22,23] by fitting 

the eigenvalues of Eq. (1.23) to the experimental energies. Satisfactory fits 

were achieved when fir ~  fi and /z„ =  /i(l -}- A), where A =  ^ .  For HP 

the parameter a is about 2.537 x  10~‘* , and fi —  .95705545a.m.u..

1.3. Electric Dipole Moment and Transition M atrix Elements

In our present work, we are also interested in the dipole mo

ment of HF as a function of the internuclear distance. The knowledge 

of this quantity is necessary for many physical applications (such as tran

sition probability). It may be determined either by empirical or theoretical 

methods.

In the latter approach, the electronic wave functions at a particular
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electronic state need to be known. Techniques such as Hartree-Fock (H- 

F), configuration interaction (Cl), and multi-configuration self consistent 

(MCSCF) are commonly used to  form these electronic wave functions with 

a high degree of accuracy. Typical works on dipole moment of HF are 

those performed by Sileo and Coal [26], Lee [27], and Meyer [28]. In this 

approach, one considers the electric dipole moment operator defined as

eA -|- eZgRoi, (1.24)
i a

where e is the electronic charge, Za is the atomic number of the nucleus, 

and ?i and Ê q, are the center-of- mass coordinates of the electron and 

nucleus, respectively.

The dipole moment function is then determined by the expecta

tion value of the projection of the above dipole moment operator on the 

internuclear axis.

In the empirical method, one needs to  obtain the ro-vibrational 

wave functions satisfying the radial Schrodinger Eq. (1.2) and the ex

perimentally deduced transition m atrix elements.

The electronic transition probability between two molecular states 

JV =  {n,v, J)  and N '  =  [n ' ,v ' , J ' )  is proportioned to  the square of the 

m atrix element u n n ''-

Pn n > =  =  IJ  tp^MjpN' • (1.25)

W ith the Born Oppenheimer wave function given by Eq. (1.1) the in

tegration over rotational eigenfunctions may be performed independently,
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producing a factor Sj^j t,  called the Honl-London factor. The integration 

over electronic eigenfunctions produces a quantity [5,6]. Eence,

Eq. (1.25) can be written as

Pn n ' =  d R f ,  (1.26)

where
Sj,j> =  J  for the P  branch, 

and Sj^ji  =  J - \ - l  for the R  branch.

If the two vibrational levels employed correspond to different electronic

states (i.e., and if we assume that the R  dependence of M^^pAR) is

small [6], then we can write Eq. (1.26) as

Pn n ' =  Sj,j>\MPnP'?<lvv>, (1-27)

where is the average value of , and qw> =  1/ dR\^

is known as the Franck-Condon-Factor (FCF). Theoretically, the FCF is 

ju st the overlap between the vibrational wave functions corresponding to 

two different electronic states.

If the two vibrational levels employed correspond to  the same 

electronic states (i.e., n =  n'), the R  dependence of M^^p.iR) may not

be small enough to  be taken out of the integral in Eq. (1.26) [38]. In this

case, if the internuclear axis is along the z axis, Eq. (1.26) can be written 

as

Pn n ' =  S j j , \ ( ,vJ \{M {R )W J’)\^, (1.28)

where M (R )  =  M.nP is also referred to as the “electric dipole moment 

function.” The square of the ro-vibrational matrix element {vJ\M{R)\v* J')
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may be related to the square of the rotationless matrix element {v\M{R)\v') 

in the follo'wing manner:

\ ! ,vJ \M (R)\v 'J ' ) f  =  (1.29)

■where F ^ J \ m )  is called the Herman-Wallis factor (HWF) representing the 

rotation-vibration interaction and where Fy ' j \ o )  =  1. The behavior of 

the HWF was studied by Herman, Rothery and Rubin [42] for different 

internuclear potentials. The results of their calculations were summarized 

in Ref. [42].

Robert E. Meredith and Frederick G . Smith [36] studied the effects 

of the internuclear potential functions on the vibrational matrix elements 

and concluded that the m atrix elements involving small v were affected very 

little by the potential. However, for large v, the influence of the potential 

is more pronounced.

From vibrational intensity data, one can calculate the squares of 

m atrix elements {v\M{R)\v’), from which the parameters of the electric 

dipole moment function can be determined.

The relationship between various modifled Dunham coefficients 

and the PMO parameters are given in Chapter H. Chapter HI presents a 

technique from which a PMO potential with correct asymptotic behavior 

can be obtained. In Chapter IV, we determine the dipole moment functions 

of HF as cubic polynomials in variables u, y, and z, respectively. Chapter 

IV shows how to construct a dipole moment function of HF with correct 

asymptotic behavior at both small and large r. Concluding remarks on the
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PMO potential and dipole moment function are made in Chapter V.

Appendix A gives formulas for finding coeËcients e„, , and Qn

in terms of In Appendix B, we discuss the convergence of the M{y), 

M{u),  and M{z)  series; and different infinite series used in Chapters HI and 

V  are discussed in Appendix C. The Numerov method used in Chapters m  

and V  is derived in Appendix D. Appendix E gives the relationship between 

coeflBcients of the three expansions of a function of r



CHAPTER n

CALCULATION OF THE MODIFIED DUNHAM COEFFICIENTS 

y  ) IN TERMS OF PMO PARAMETERS

2.1. Purely Vibrational Case ( J  =  0)

Following Dunham [12] the WKB energy condition may be written 

[10] in the dimensionless form

=  2i7(t< +  | ) ,  (2.1)

where p =  are,

P n = 2

=  ^  =
her ’

g
a =  {2hcpr)^/ah  =  — .p^

■§T, (^ )® , and ^  have the series expansions [10]

1 4
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w '

1
=  dnW’̂ , 

n==0
(2.2a)

P

00

=  2W^
n=0

(2.26)

7 )
00

n=0
(2.2c)

w"'
p3

00

=  2iy“  ̂ 5 2  
*1=0

(2.2d)

Since the integration path  in Eq. (2.1) may be deformed such th a t 

\w\ >  I/I everywhere on the path, we can use the binomial theorem to 

expand the half-integral powers of ( /  — w), and then evaluate the integrals. 

The binomial theorem can be written in the following form

( /  _  w)? =  [1 +  +  • • • ]. (2.3)

Substituting Eqs. (2.2) and (2.3) into Eq. (2.1) and using the following 

integral J  dw =  47Ti5—i,p,

we obtain

—̂ [/c^o  +  -((2 /^  +  -d ^ /^  +  — (fg/^ +  +  •••]

47T , . 5 , . 35 2 . 105 ,8 , 1155 4
[62 +  - /6 4  +  — /  66 +  -77 - /  68 4" 100 /  ^10 H" • * • j16a ' 2 8 16 128

+  ^  +  y / / s  +  +  ■ • ■ 1

7 63 1
— 2 X 16[5'6 - f 9 s -^ fÇ io  +  •••]} =  27t(ü -|- - ) .  (2.4)
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After dividing Eq. (2.4) by 27ra and collecting terms, we obtain an equation 

of the form

~  -  4ÿs) +  • • • 1/ +

l A ‘‘‘  ~  ~ ) + "]/^ +

+  • • - l - f ' -------- ^  -  4ss).(2.5a)

The above equation can be written in the form
CO

y —  ^  1 (2.56)
n = l

where y  and the coefficients o„ may be written in terms of powers of S' =  

a~^  as follows;

y — {y -\- —)S -f- çoS^ — tqS^ -j  (2.6a)

Ofi —  Pn — ( 2 .6 6 )

The quantities and r„ are defined in terms of £>n, Fn, En,  and Gn

[10,20] as follows:
Pn =  D n d 2 i n - l ) / 2 ^ ,  (2.7a)

Qn =  E»g2(» +  l)/2"+® , (2.76)

rn =  [49Fn/2(w 4 - 8 ) - 4Gn^2(w +  3)1/2”+ ^  (2.7c)
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The coefficients Dn, En, Fn, and Gn introduced in Eq. (2.7) may be 

calculated iteratively from initial values Di =  1, E q =  Fq =  Gq =  1

[10,20] by

Dn =  {2n — Z)Dn—i f n ,  (2.8o)

En  =  (2n +  3 )£ „ _ i/n , (2.86)

F n  =  (2n +  9)F n _i/n , (2.8c)

G n  =  (2n +  5)G n_i/n . (2.8rf)

The coefficients e„, / „ ,  and Qn introduced in Eq. (2.2) can be 

calculated from the coefficients dn by the following relations (Appendix A)

fl—1
Co — dfj , &n —j  for 1, (2.9c)

3 = 0

n n—J
fn  —  ^  V ^  Ct Cn—j —k, (2.96)

3 = 0  k = 0  

n n —J

ffn — ^  5 3  (y ~h l)( j ~h j —fc. (2.9c)
j= 0  fc=Q

The coefficients dn, which depend on the particular potential func

tion parameters, may be obtained by the following method [10,20]. We 

start with Sandeman’s parameterization [40 ]

e =  • £  (2,10)
n = 0
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Differentiating with respect to we obtain

an.,

where
Co =  rp^ (2.12c)

u  - -  TW—  T{y^ -f- bnV"'). (2.126)
n = 4  . ,

Multiplying Eq. (2.11b) by rp and using Eq. (2.12), we obtain

£ - = ^ y ;  (2.13)
«/ 2 ^ w  n = 0  ^

which is equivalent to Eq. (2.2a) when we make the identification

(2.14)

In order to  relate the PMO parameters to the Sandeman parameters, we 

need to  express ^ in terms of y by

^ ^  =  — lu(l — y)/p- (2.15)

Following Lagrange series method [11] we can express the series coefficients 

Cn and then dn in terms of the PMO parameters:

^  (2.16c)

X  =  w i =  y(l +  bny^)^,
fi= 4
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a: =  X ( l  +  5 3  (2.166)
n = 4

/ ( l )  =  ( 1 + (2. 16c) 
n »=4

g( y )  =  Ç̂ =  / . t l J ( l+ ^ C „ C l ï )  =  - I n ( l - y ) .  (2 .164
n

^ r h /  ^  ^^ ^ n = 0
from ■which we obtain

dn =  (n 4- l )p n + i ,

=  l + Ê Ê ( " ^ f ^ V - W .  (2.17)
f= 0  m = l  ^

■where is a binomial coejBcient defined inductively by

( p = P »  ( ^ ) =  +  (2 .18a)

and ■where fî„i(6) =  6„, (2.186)

n
flnm(6) =  ^  ' 6ffln—i,m— 1 (6). (2.18c)

1 = 0

It is easy to show that for a Morse oscillator all coefficients d„ are 

equal to  1 [10].

2.2. Inclusion of Rotational Effects (ff^O)

If the molecule has nonzero rotational kinetic energy, E/? =

J { J  4" l)/2/zr^, this term  must be added to C7(r) to find the efiective 

vibrational potential. The potential energy function is now

U( r )  =  [ÿ= +  E  6»!/”] +  (2 .19)
fi= 4  "
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Huffaker showed [14,20] that Er  can be expanded as the Taylor series

E r = k ' ^  ^n(p)y” , (2.20)
m=0

where k — and the polynomial (pn{p) can be written in the form

n—1
<Pn{p) =  P“ " E  (2.21)

f7J =  0

and where the numerical coefficients Cnm may be defined inductively by 

Cim  25fn,o> (2.22a)

C^nm —  [(^ l)^ n —l,m—l+ (n — (2.226)

Thus we can write the dimensionless effective potential U{y) in the form

U(y) =  2/̂  +  +  /C Z  (CnZ/" =  2 3  (2.23)
n= 4  n= 0  n= 0

with Ao — k , A i  =  K(pi,A2  =  l  +  /ĉc>2 , ^  =  /cy?s,and +

n > 4 .

We consider a change of variable to  z =  1— wher e 

A(/c) is to be chosen so th a t the resulting series in z  will have the form

[ T ( z ) = c ( , ) +  ^ 6 ^ ( / c ) z " .  (2.24)
n = 2

y 1 _  e -fl(r-r .)  ^  J _  g-A(/c)+A(K)-a(r-re) =  (^ _  1 +

and defining

_  1 =  ^ =  e ~ ‘̂ (2 +  5), (2.25)
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■we then try  to obtain explicit expressions for 5(/c), c(/c), and as power 

series in k, defined by

S{k) =  ^  (2.26a)
m = l

C(/C) =  (2.266)
m—1

6. W  =  " > 2, (2.26c)
m = 0

where powers up through /c® have been included. By substituting y from 

Eq. (2.25) into Eq. (2.23), gathering the coefficients of "various powers of z 

and comparing with Eq. (2.24), Huffaker was able to  find the coefficients 

of the f(/r), c(k), and bn{k) series [21]:

5i — — ]r(pi =  - ,  (2.27a)
z p

2̂ =  +  2̂ £52) =  (2/J — 3)/p®, (2.276)

3̂ =  — - j - 2 ĉ>2 •+39?3) +  2^ 2 (̂ c’i + 2^ 2 )] + - 64 (̂5^,

=  i ( 10p2 _  33/9 +  3 0 -  464/ ) ^ ) / / ,  (2.27c)

6 0̂ ) =  0 , 6̂ 0) =  1, 6^) =  0, 6g) =  hn, for n>A,  (2.28a)

— Pn — 2 (̂ 1 [(^ +  l)^>n+l — ^ 6^], (2.286)

=  —\p  ̂[(” +  +  (n +  2)(n +  1)^?6„ + 2 /8
+  (n +  lypi (2^2 — npi )6„ + i /4
— n p i  \Ap2  — { n — l ) 9?i]6n / 8 , (2.28c)
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+  2 ) (n -{ - 1 )^Pi^„4 . 2 / 8  H" (n +  1 )̂ (Pi(2 ^ 2  — w ^i)v^n+i/4
— n^[4^2  — ( n — l ) ^ i ] P n /S  — (n +  3)(n -f- 2)(n +  l)tp\bn+z/48
— (n +  2)(n +  l)(p^(4p2 — n p i  )6n+2/16 — (n +  l)<Pi {(Pi [Qpz
— 8 n ^ 2 - l - n (n — l)tpi\-{-8(p% — 2(p\b4}bn^illQ-{-n(pi{(pi  

[18^3 — 12(n — l)v 2̂ "f" (w — 1)(ti — 2)^1 ]
+  24̂ c>i -  12^?64 }bn/48  (2.28(f)

Cl =  1, (2.29c)
C2 =  [ P i 5 i + 6 %  (2.296)
C3 =  -{- y?i(^2 — 6j )  (26%62 — 25i)]. (2.29c)

CoefiBcients dn have been found for the case of /  =  0 in Eq. (2.17).

We now modify the coefiBcients dn so th a t they depend on the rotational 

states. For this purpose, we express the quantities dn of Eq. (2.17) in the 

form [101

dn  =  4 ° ’ + ‘» > +  • • •. (2-30)

where (f[f̂  contains non-rotational contribution and d^^\ (f(f), . . .  contain 

rotational contribution. Eqs. (2.17) and (2.18) should also be modified to

4 ‘ > = t r  ^’1 1  « i S ( « + ( 2 . 3 1 4
m = l  (= 0

n g ( 4  =  (2.316)

4 ^ ( 6 )  =  Ê  Z  '’F > H ? - l f l - . ( 6). (2.31c)
y=o (=0

2.3. Formulas for Modified Dunham Coefficients

We now perform a reversion of series of Eq. (2.5b) to obtain an 

expression for /  as a power series in y (a general formula for reversion of
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series is given in reference [11]):

OO

y  — ^   ̂ On—1 (2.32a)
n = l

OO

z  =  ^  ] A.fi—1?/” . (2.326)
n = l

Coefficients A n — \  are given by

n
A q =  A n  —  — K n , m ) a ^ ~ ^ ü n m { 0 ' \  (2.32c)

m = l

■where a{n, m) are defined inductively by

6(n, 1) =  1, h[n, m)  =  —(n +  m)b{n, m  — l) /m . (2.32d)

Performing the reversion of series using Eq. (2.32), one obtains

OO

/ =  ^ ] AnV ^, (2.33)

where

n = l

y =  {y-\~ g)^' +  — roS^ H— ,

An == n — -{----- ,

and Pn, Qn, and Vn are defined as in Eq. (2.7). We then express the 

reversion of series in the form

OO

/ =  2 ] B « ( l - g 5 '^ + r S '4 + . . .  (2.34)
n = l
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■where
p =  Vi,<l =  h l P , r = = r i l p ,

The coefficients Bn can then be calculated from a„ by comparing 

Eq. (2.34) and Eq. (2.33). Using Eq. (2.32) we can write

=  i r  =  p . - j ^  +  n s ^  =  >  -

where =  0 and B^^ =  0,

.   0-2   (?2 — ^2*5 )̂
of (Pi — Ç1-52 H -n 5 4 )3 ’

=  ( - ^  +

where B °̂> =  - p - .  -B?’ =  p  =  “ p .

2ag — flj Os

«1
^  2(P2 -  92^2 +  -  (P1 - 9 1 ^ 2  +  n5")(p3  -  çsS^  +  rsS^)

(pi — H -n  g^)5

=  — [2(p2 — Ç2^^ +  rgS^)^ — (p — gS^ +  r5^)(ps — -j- rs5^)]

( 1 - g S ^  +  r S ^ ) - ^

_ r^pj — PP3 , (—P 2g2+  gP3 + P g3)g^  , (2gi — gg3)g^i 
L p5 +  p5 p5 J

( l - g 5 2 + r 5 ^ ) - s ,

^here  B ?) =  fi? )  =  _ i £ â ^ ± f l ± » ,



2 5

and  -  m )p5

and so on.

General formulas were given in Ref. [20] for and

In particular,

b S")= 4 “’ = " Ë  « ( « -

where a(n, m) and are defined in Eqs. (2.31) and (2.32). The quantities 

and have a similar structure and can be derived by some change 

in Bg)) [20].

Expanding Eq. (2.33), solving for Ev,j ,  using Eq. (1.3), and 

equating the coefficients of different powers of ^ a n d J (J  +  1) ,  we find 

th a t the Dunham coefficients which may be expressed in the form [10]

Yju =  +  Y f J  +  y j ï  +  • - ,  (2.35a)

where the quantities Yjk(21),which are called modified Dunham coefficients, 

are given by

where the operator K k  is defined by

P k  =  K k { p o  4- k p i  +  k ^ P 2  +  • • • K ^ P k  4------ ),

and where and are defined [10,20] as follows:

(̂P) =  g(P) for j >  1,
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+  (2y -  for y >  1,

z f  =  |(nH-l)(n +  2)ç?5 ;2 -2 +(wH-l)[(27i +  l)?o?-ro]4 ° | i

+  (2w — l)(nç^ — H- (n +  l)go5j,%i

H- (2 » - l ) g B g ) + B W .

Bunker [22,23] concluded th a t the nonadiabatic corrections due to 

the breakdown of Born-Oppenheimer approximation could be taken into 

account by introducing vibrational and rotational reduced mass and 

ILry where //„ =  and /i, =  ii. Rewriting Eq. (2.35a) in the following 

form using Eq. (2.35b)

Using K =  we see th a t k in Eq. (2.36) can be inter

preted as rotational quantum number. From Eq. (1.2) it is easy to  see 

tha t j  and I are vibrational quantum numbers. W ith the above piece of 

information and the relationship between a  and fi, one can split a  in Eq. 

(2.35) into and <7r as follows:

^{j+2k+2l) ^  ^[J+2l)^i2k) ^  Z yy+2l)^(2fc)^

and
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By comparing Eq. (2.35) and Eq. (2.37) we see tha t the nonadiabatic 

corrections have been taken into account by introducing a factor (1 — 

.5A)^+^^ in Eq. (2.35). The parameter A then is considered as a free 

parameter which may be varied in the process of reproducing experimental 

data. A  computer program was written by Huffaker [46] for evaluating 

modified Dunham coeflBcients in terms of PMO parameters.



CHAPTER m

ANALYTICAL PMO POTENTIAL FUNCTIONS WITH 

CORRECT ASYMPTOTIC BEHAVIOR

3.1. Introduction 

The main objective of this chapter is to  find a PMO potential 

function satisfying the following asymptotic property

OO

U (r =  oo) =  r ( l  +  6„) =  £>e, (3.1)
n = l

where De is the dissociation energy of the diatomic molecule.

Because of the finite number of spectroscopic data G^, Bv,  and D v , 

only a finite number of independent PMO parameters bn can be determined. 

We note th a t the convergence of the series in Eq. (3.1) requires th a t

as n-voo, (3.2)

i.e., the higher-order PMO coeflBcients bn become increasingly small as 

n  increases. Therefore, it is possible to  approximate higher-order PMO 

coefiBcients so th a t their efiTect may be included in the determination of 

the PMO potential function by expressing them as some suitable function 

decreasing with n and satisfying Eq. (3.2). In this case, the PMO potential

28
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function can be written as

N  OO

y ( r )  =  r ( ! / 2 + 5 2 ' ’» ! '" +  E  '’»!'"). (33)
r» = 4  n = N + l

where 6% are generated higher-order PMO coefficients, and N  should be 

less than the number of available spectroscopic data.

We express the functional form for 6* in terms of n and a set of 

parameters designated as c i, C2 , . . cm,  and B:

The modified PMO potential function (3.3) is also subject to the 

asymptotic condition (3.1), which now can be written as

N  00

< 1 +  E ' ’» +  E  C ) = - D e .  (3-5)
n==4 n=A/-|-l

and which may be satisfied by adjusting one parameter (the one denoted 

by B)  . The PMO parameters (including A and asymptotic parameters 

Cl, C2 , . . . ,  Cm) are determined numerically by a minimization routine [43] 

using experimental data.

3.2. Functional Forms for Asymptotic b*

Theoretically, it is possible to introduce an infinite number of 

different functions of the parameters c%, . . . ,  cm ,and B,  which satisfy the 

asymptotic condition (3.5) and also fit spectroscopic constants Gv, By,  and 

D v . However, we are interested in those functions tha t are well-behaved
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and contain a reasonable number of parameters, so that our problem can 

be easily treated numerically or analytically.

A  suitable set of functional forms ■was introduced by Tran and 

Huffaker[37,38] for use in connection with dipole functions,we applied them 

to potential functions

C  =  (ci +  C2 /W +  C3n)H” , (3.6a)

C  =  (Ci +  Cg/M - f  C 3 / n ( n  - f  (3.66)

.*3 _  f (c i- |-c g /n - j-C 3 /n (n  — 1))H” n > l ,  /o c a

I  (Cl +  Cg)B n =  l ,   ̂ ^

=  (ci-j-cg/n-j-C3 7Z-{-C4/n(n +  1))5 ”, (3 .6d)

f * s    / ( c i  H" Cg/n +  C3 /n (n  — 1) +  C4 /n (n  +  1))H"' n >  1, /or.'»
1 ( c i - f c g - |-G .5c4 )H n =  l .  ’

We must require the parameter B  to have values only bet-ween 0 

and 1, and this is equivalent to expressing B  =  e ~ ^  where 0 <  ^  <  00.

Using the ratio test, it is easy to  verify tha t all five functions above 

produce convergent series:

I T  =
which is a sufficient condition for the convergence of the 6* series.

In addition, these functional forms for 6* given in Eq. (3.6) produce 

PMO potentials in closed forms. Using the following relations derived by 

Tran and Huffaker[37,38](derivations included in Appendix C):
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E ( % ) "  =  ï ^ .  (3-8“)

ê  ( M l  =  _  l n ( i  _  B y ) ,  ( 3 .8 6 )
rx=l ”

OO p

Z  ” («!/)" =  ( Y c t p ,
n = l

OO

E  4 ^ ^  r = ( l - B y )  ln(l -  By)  +  By,  (3.8e)
„ 'Ü  K(« -  1)

we can write the PMO potential (3.3) in a relatively simple form:

v ^ M o i v )  =  i E  i " y ” +  '"(1 -

V%MO (y) =  E  7„ S," +  -  C2 In(l -  By)  +
n = l

C3 ( l +  i ^ ^ I n ( l - B y ) ) ] ,  (3.96)

y ^ M o (y ) =  4  E  7«y” +  -  (2 m (i -  s y )  +

c ^ B y  +  (1  -  B y )  l n ( l  -  B y ) ) ] ,  (3 .9 c)

N

£
n = l

1-
B y  ' ( 1 - B y )2

n«o(y) = t[Ë  '“(1 -  +

'» ( l  +  ^ M l - B y ) ) + c ^ ^ ! % ^ ] ,  (3 .3 J)
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N

V p M o iy )  =  ’■[ 'Yny” +  ~  +
n = l B y

C8 (B y +  (1 — By)ln{l  — By))- \ -C i{ l- \---------- ^  ln(l — By))],

where
7 i =  "“ 1̂» 72 =  1 — f > 2 ,  73 =  —  f > Q ,

and
7 „ =  6„ — 6* for n > 4 .

The asymptotic con(htion (3.5) can also be written in a compact 

form using the same procedure (or by putting y =  1 and =  Be

in Eq. (8.9)):

B \  =  t [ J 2  7n + j ; ^ ^ - C 2 l i i ( l - B ) + ^ ^ ] ,  
n = l

I>1 =  ’■[ 1» +  , '  M l  — # )
„=1 1 “  -®

+  C3ll +  ^ i - ^ | l n ( l - B ) ] ,  (3.106)

D l  =  r I E l »  +  J ^ - C 2 M l - B )
n = l

+  cs(B  +  (1 -  B)  ln(l -  B))], (3.10c)

Bg =  f[  'Yn 4- Y ^ T b  ~
n>=l

+  C3(l +  ^ ^ ~ ~ ) H 1  -  B)) 4- (3.10(f)

B g  =  7n - f  “  (̂ 2 M l  — B ) 4 -

(3.10a)
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+  (1 ~  B )ln (l — B)) +  0 4 ( 1  +  -———-ln (l — B))]. (3.10e)

3.3. Procedure for Determination of PMO Potential Function

Since Gv, Bv,  and are functions of Dunham coeflBlcients ■which 

in turn  are functions of PMO parameters p, a, r, A, 64, . . .  bi2 , c i , . . .  c m , 

and B,  they are also functions of these parameters:

G V ‘ =  +
3=1

=  F i{ p ,a ,T ,A ,b i , . . . , b i 2 , c i , . . . ,C M ,B ) — (3.11c)

= F 2 (p, a, r , A, 6 4 , . .  ■,̂ '12, C l , . . . ,  Cm , B),(3.116)
3 = 0

îj-2( v + ^)^ = B s ( p ,(7, T ,A ,6 4 , . . . , 612, C l , . . . , C m , B),(3.11c)
y=o

where Gg®* is the calculated term value at the v =  0 level. We consider B 

as a dependent parameter and determine the other ones by fitting the above 

expressions directly to  the experimental spectroscopic constants, G®®, B%^, 

and D l^ . After each minimization the dissociation energy of the molecule 

is reconstructed and the asymptotic condition (3.5) is checked. If it is 

not satisfied, a new ■value of B is given and the minimization procedure is 

repeated until the desired accuracy is achieved. In our program, new values 

of B  were approximated using Newton’s method [25].

The accuracy of the resulting PMO function for the considered 

diatomic molecule is determined by the agreement between the eigem-alues 

and spectroscopic constants it predicts and those experimentally deduced 

[30,31]. We calculated the spectroscopic constants by a computer program
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developed by Cashion and Cooley [30,31] for solving the radial Schrodinger 

equation using the Numerov method [30,35]. A  short description of this 

numerical technique is presented in Appendix D.

The rotational constant Bv is defined as: Bv — i'‘Pv\T~^\ipv),

where ipv is vibrational wave function, Bv is in cm“  ̂ units. From Eq. 

(1.8), one can easily see the correlation between Bv and the shape of the 

diatomic molecule potential function. If calculated values of Bv are greater 

or smaller than observed values, we could infer th a t the corresponding 

potential function has tilted toward the left or the right with respect to 

the true potential curve. The rotational constant Dv is a measure of the 

width [5] of the potential curve and is related to Bv by Dv — Of 

course, as shown by their definitions, Bv and Dv can be evaluated by 

integration using vibrational eigenfunctions. An alternative way employed 

by us is to differentiate the Dunham expression for vibrational-rotational 

eigenenergies with respect to J{J  + 1 ) ,  which is considered as a continuous 

variable.

From the relation

=  Too Gv  B v  [ J { J  -f- 1)] +  D v [ J { J  +  1)]̂

we see tha t

Bv =  

Dv =

dE(v, J)  
[ 5 [ / ( 7 - f  1)]J
■ d ^ E (v ,J )

dE(v,  a)

[d [ J { J - j -1)]^ \

J= 0  a r = 0  '

^  d^E{v,Oi)\
/= 0  ^«2  L = o '
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where a  =  J{J  +  1). For numerical computation of and D^,  we used

the first and second central differences to approximate and —

as
dE{v,  a ) 

da
  a  — 2Aa) — 8E(u, a  — A a)
— 12Ao!

, 8 E ( v ,a - \ - A a )  — E ( v ,a - j - 2 A a )
+  Ï2À ^ ’ .

d^Ejv, a) 
da^

  E(v,  a — 2Aa)  +  16£(u, a  — A a) — 30E(v, a)
— 12(Aa)2

- i -16E(v ,a  +  A a ) ~ E ( v , a  +  2Aa)
Ï 2 ( Â ^  '

where A a  is a small increment in / ( /  +  !). Theoretically, computed values 

of J5®“  ̂ and are more accurate if A a  is smaller. However, using a 

computer, one cannot guarantee a continuous Improvement in accuracy 

by decreasing A a indefinitely. As A or decreases, the buildup of round

off error will eventually offset the error reduction which arises from using 

the 2nd-order differences in approximating the first and second derivatives. 

Therefore, the accuracy would approach a highest degree as A a  decreases 

toward an optimum value, which we found to be about 1 x  10~®. For each 

vibrational level v, eigenenergies E {v ,a - \ -nA a)  where n =  - 2 , - 1 , 1 ,  and 

2 were computed for A a  =  1 X 10~® using the Cashion-Cooley program in 

which the effective potential energy included the rotational term ^

The results were substituted in Eq. (3.12) to yield Bv and D v
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Bunker [22,23] showed th a t the non-adiabatic corrections could be 

achieved if the vibrational reduced mass of the vibrational kinetic energy 

in the  effective vibration-rotation Hamiltonian,

(where W(r) is the adiabatically corrected internuclear potential function) 

is replaced by
~  ~f" 2A),

where for H F  A =  1.325 x  10“ ^, 

and A is the Born-Oppenheimer vibrational parameter. This would imply 

an increase in the vibrational reduced mass ,which in turn leads to  an 

energy decrease as a result of the non-adiabatic correction.

3.4. Zero-Order Approximation of ci, C2 , c m , and B  

Since approximate initial values of parameters c i , cm,  and B  

are needed as input to the minimization routine, we develop a method of 

finding good starting values for these parameters, which essentially is the 

zero-order approximation. From Eq. (3.9), we have

—  9i i ( î / i ) c i  +  ? i2 (y i)c2 +  913(2/1)^3 H -914(2^1 )C4 > 

wz{y2) =  521(2/2)01 +  522(2/2)02 -f- 523(2/2)03 -f- 524(2/2)04,

^̂ 3(2/3) =  531(2/3)01 +  532(2/3)02 +  533(2/3)03 +  534(2/3)04,

^4(2/4) =  541(2/4)01 +  542(2/4)02 +  543(2/4)03 +  544(2/4)04,
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where

iV
V(y.)

—  Vi —
n = 4

(Hjivi) =  <pj{yi ) -  Sjivi),

fpiiVi)  =  T — , ^2(2/t) =  — In(l — Bvi ) ,  (pi{Vi) — (1 _  B y.)2 '

m (% ) =  ( ^ ~ £ ^ * ') i j ( i - f i ÿ O  +  i ,

«:(%) =  E (B ÿ < )" ,  S 2 (ÿ i)=  E  «3(%) =  E
n = l  n = l  n = 2

"  (Bj'i)"

The coefficients c i, cg, cs and C4 then can be determined simply by sohing 

a set of four linear inhomogeneous equations, which can be written as:

Wi
3=1

where initial values of PMO parameters 6„ needed here were taken from 

Ref. [44] and w, were approximately evaluated from data of Ref. [32].

3.5. Further Correction of PMO Potential Function 

Calculations as described in Chapter HI would determine a set of 

PMO parameters (p, a, r. A, 64, . . . ,  612, Ci, . . . ,  c m , B)  from which 

a  series of vibrational eigenenergies and rotational constants 

can be evaluated and compared with experimental data  G®® and R®®. 

Unfortunately, the PMO potential function obtained by this approach for
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HF in particular produces values of and which deviate con

siderably from G®® and In order to reduce these discrepancies to 

obtain a more accurate PMO potential, we need to improve the above PMO 

parameters further; the following approach was adopted for this purpose.

The PMO parameters values which produce G®°' and should 

not differ very much from those values th a t would produce G®̂  and B®®. 

Then considering G®“* and B®“  ̂ both denoted by as functions of some 

or all of the PMO parameters, designated as z i ,  zg, . . . ,  Z;,, we can expand 

them as a multivariable Taylor series about values xio, X2 0 , x^o , which 

would correspond to G®* and B®^, using the general formula [24]

°° fn A
f v {x i ,X 2 , . . . , X f , ) =  ~ { Ÿ ^ a i — ) ' 'M x k ) \  , (3.12)

where tat =  z* — Xio. We think tha t most of the contributions to G®°* — 

G®® and B®“' — B®* come from the linear terms, so we expand the sum

mations and keep terms up to linear ones in

^ f v  > 3̂ 20 j • • *j )

=  • (3.13)
dXi \xu=x^o

For each level v, we may write the above equations in the more convenient 

form
Wg Q , ^2

^  (z* — ^‘o ) - ^  =  5 ^  Pifiv,  (3.14)
t= « i * *=Wi

where =  x* — 2*0 is the change in the corresponding PMO parameter, 

and fiv —  flÿ .
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The coefficients then can be determined simply by fitting func

tions A f j  directly to gj defined below. For this purpose, we form the 

quantity S  th a t needs to be minimized:

N  «3

3=1 t=«i

where iV =  40, « =  «2 — wi is the number of parameters, / ÿ  =  ■ and

g, =  a f  -  G f  for j <  20, and / ÿ  =  2 ^  and g, =  B f l ^ ^  -  B f_^^  

for j  >  20. The function S  now can be minimized with respect to [25] 

by setting
d S =  0 for A: =  1 ,2 , . . . ,u.

from which

or

dPk

N  tl2

Ë  — S'y) =  0,
j = i  t= « i

«2
^  ] PiPik — -RAj (3.15)

t= « i

w
where P,* =  ^  w^ f j k f j i ,

3=1
AT

and w^fjkÇj-
3=1

From Eq. (3.15) we see th a t the minimization is reduced to solving a set 

of linear inhomogeneous equations.

We found th a t only the parameters (6g , . . . , 6i 2 ,c i , . . . ,C 4) needed 

to  be improved because Gy and Bv at high v are more sensitive to their
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change. Solving Eq. (3.15) for ^i ,  "we obtain a new set of PMO parameter 

values given by
b'i =  bi —  A b i,

and c'- =  Ci — Ac,-.

Using these new values and the Cashion-Cooley program we solve 

for the new and and compare with G®® and B l^ . If the differences 

are not reduced enough, further improvement may be made by varying A 6, 

and Aci by a small amount from their initial values and solving the problem 

again. This process may be repeated until the differences G^“* — G®® and 

Bcai _  Qex become adequately small. I t should be noted that, at the end 

of each process, since we have changed PMO parameters bi and Cj, we must 

find a new value for the parameter B  so tha t the asymptotic condition for 

the potential function is satisfied.

3.5. Numerical Results and Discussion 

Approximate values of internuclear potential V{r) as a function of 

internuclear distances r and initial values of PMO parameters are needed 

as input to the zero-order approximation program. These values are taken 

from Ref. [10,32] and are listed in Tables 3.1 and 3.2. Carrying out the 

zero-order approximation for different functional forms of 6* , initial values 

of C l,...,C M , and B  are found and listed in Table 3.4.

These starting values together with those of PMO parameters (including 

the Born-Oppenheimer violation parameter A) then are used in another 

program which minimizes the quantity
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Ê
n = l  w=l

where =  G„, G2 ,v =  C?3,v =  -Dv, and W„,v is a weighting

factor. Since Wn,v is the inverse of the standard deviation, which is a 

measure of the accuracy of the Gn,v, and since the PMO model is less 

accurate for higher values of v, we used a weighting function Wn,v =

1^ % ^  (a i =  5 X 10®, Ü2  — 5 X 10^, a s  =  2 X  10®, =  5, /?2 =

5, Pz =  5). This weighting factor makes absolute errors for large v less 

important than  those for small v. It can be shown th a t the highest- order 

PMO parameter contributing to is 62j-i-*+2t [14]. Theoretically, we 

can include as many PMO parameters as we need for constructing 

or Yjk, but because the series representing and then will

diverge, we choose k -{- 2 / =  20 to be the upper limit.

The fitting procedure was carried out up to v<  ~  10 and the 

results for difiergnt functional forms of 6% are presented in Table 3.5.

Our calculations involve two types of series whose convergence 

needs some careful attention. The first one is the series of Eq. (2.35a), 

which is formed from the terms y ( ^ ,  and Ŷ ^  ̂ (abbreviated as "WTCB 

series). We can see from Table 3.6 tha t the WKB series converges fairly 

well up to j  =  10. So we decided to keep modified Dunham coefficients 

Y(.%') for y<  10, A<3, and l<2.

On the other hand, the series expansions for and

[Eqs. (1.12)] converge less rapidly with increasing v. It is expected th a t Dv 

would diverge as v approaches the dissociation limit [21]. An approximate 

way to check for the convergence of these series is to find v such that
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yjk{v  +  is equal to the leading term of the series [21]. If v found by 

this approximation turns out to be greater than a  =  19 for HF, then the 

series would converge; otherwise it would diverge. From Table 3.7, we see 

that in order to  make the y =  10 term have the same value as the leading 

term [y^o(^ +  h)> ^oi> and Y0 2 ], Tve would need v to be about 26, 20, and 

14, respectively. This suggests th a t the series for Gv and Bv are convergent 

but the series for Dv is divergent.

We tested the Cashion-Cooley program by applying it to  the equiv

alent Morse potential for HF [i.e., the leading term in PMO potential] for 

which energy eigenvalues are exactly known [13]. The results of this part 

are listed in Table 3.8. We then checked the effects of the number of in

tegration cells Nc on the errors — QMorse found out tha t the 

optimum case occurred for Nc =  4000.

The spectroscopic data Gl^,  H®®, and the PMO parameters 

are listed in Tables 3.3 and 3.1. They were fed into a program using 

Cashion-Cooley routine so th a t the quantities — G®®,

Bcai _  Qex^ and could be calculated. Results are presented in

Tables (3.9-3.13).

By comparison, we found th a t the PMO potential function using 

the functional form 6%̂ =  (c i+ C 2 /n-}-C3 /n (n — l)-l-C4/n (n -[-l))R ” with 

four parameters offered more accuracy than  the other ones. Therefore, the 

process as described in § 3.5 was applied to this potential function only; 

and due to the complexity of the numerical approach to the problem, it
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•was carried out in two steps. The differences — G®® and 

•were first minimized Tvith respect to the changes A ci, Acg, Acs, and Ac^ 

in the asymptotic parameters, being subject to the asymptotic condition 

(3.5) from “which B  was determined. New values of these differences then 

were minimized with respect to Abo, Abe, . . . ,  and A 612, being subject to 

the same asymptotic condition. The whole process was repeated twice so 

tha t desired results were obtained as shown in Table 3.14 and 3.15.

In this work, we have shown how to determine a highly accurate 

PMO potential function for a diatomic molecule E +  state of HF) with 

correct asymptotic behavior. Another important feature of our calculations 

is th a t they also include the higher-order "WTCB terms and non-adiabatic 

corrections due to the Born-Oppenheimer approximation.

Our PMO potential with 17 parameters has a very good behavior 

about the  equilibrium point and the dissociation limit. We think tha t 

by including the dipole-dipole interaction into our calculations, it may be 

possible to  have a potential function which is accurate over the whole range 

of internuclear distance [20].

The numerical solution to  the radial Schrodinger equation by Cashion- 

Cooley procedure [30,31] provides a method of testing potential functions.

Its usefulness, however, is not limited to testing potential. It can generate 

eigenvalues and eigenfunctions, from which many other properties of the 

molecule such as B,,, . . .  may be calculated.

Fig. 3.1 shows our PMO potential function based on the model
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6*  ̂ and the potential curve obtained by the R IŒ  method from Ref. [32]. 

Numerical values of these two potentials are also listed in Table 3.16. 

A comparison of our PMO potential function with the R IŒ  method is 

made in Figure 3.2, where the quantity is plotted

against r. The agreement is so good th a t a t t  =  19 vibrational level, 

where V'//ic=49017.71 cm ~^, the discrepancy between our PMO and the 

RKR analysis is only about 8.6 cm ~^. However, we think tha t our PMO 

potential may be a better representation than  the RKR counterpart because 

it includes higher-order \VKB terms while the RKR potential does not.
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Table 3.1. Initial Values of PMO Parameters [10]

p 2.251542
c 19.48903
r 40036.03

6 4 0.0981267
6 5 0.0729912
6 e 0.0429170
6 7 -0.0048765
6 s 0.0277501
6 0 0.0178745

6 1 0 0.0030899
6 1 1 0.0192811
fel2 0.0105170

Table 3.2. Approximate V(r) for HF at Some Values of r [32]

rfA) Vfrjfcm"^)
30 49380
2.86 49026
2.56 48328
2.37 47325
9  01 42S84
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Table 3.3. Molecular Constants of State of HF (cm ~^) [32]

V G o M Bv D v  -10®

0 0 . 0 20.5596 2.117
1 3 961.418 19.7872 2.059
2 7 750.814 19.0328 1.98
3 11 372.807 18.2995 1.940
4 14 831.622 17.5829 1.908
5 18 130.966 16.8792 1.864
6 21 273.69 16.8792 1.838
7 24 262.18 15.5033 1.796
8 27 097.87 14.8266 1.776
0 29 781.33 14.1497 1.756

1 0 32 311.79 13.4729 1.773
1 1 34 687.32 12.7800 1.773
1 2 36 903.88 12.0696 1.804
13 38 995.56 11.3280 1.859
14 40 833.40 10.5428 1.972
15 42 525.06 9.6869 2.104
16 44 013.22 8.7396 2.396
17 45 274.57 7.6528 2.899
18 46 277.52 6.344 3.80
1 ft 46 975.55 4.619 S fiS
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Table 3.4. Initial Values of c i ,  cg, . . . ,  and B  for Different Models

Functional Form Cl C5 Ca C.1 B

(ci +  ^  +  C3 »i)B"

("  +  #  +

(" 1  +  » +  « ( n - l i  +  i i r + l i ) ® ”

0.36510
—0.7352

—0.33777
5.0931

—0.3379

—2.5406
27.734

6.20835
—0.0622

6.208

—0.011741
—261.0529

0.03149
— 132.629

0.0314

0 0.90 
0 0.90 

0 0.90 
1121.7329 0.90 

0 0.90
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Table 3.5. Results for PMO Parameters for Different 
Function Forms ( 8  level fit)

PMO
param.

Functional Model 

p 2 p 3 P 4 p 5

P 2.251279 2.251613 2.251517 2.250645 2.252030
a 19.48794 19.48101 19.48285 19.49836 19.47409
r 40334.59 40318.69 40322.80 40355.39 40305.05
A 1.3254E-4 1.3254E-4 1.3254E-4 1.3254E-4 1.3254E-4
64 9.890209E-2 0.1016067 0.1013802 9.985423 0.101470
65 6.849766E-2 6.437817E-2 6.295135E-2 6.071794E-2 6.445854E-2
6e 4.100268E-2 3.605764E-2 3.776866E-2 5.070443E-2 3.676537E-2
67 —6.16674E-3 9.873132E-3 2.420457E-3 2.405137E-2 2.026553E-2
6s 2.658403E-2 3.051210E-3 1.996225E-2 — 1.638818E-2 2.381092E-2
bo 5.904186E-2 5.426649E-3 1.683443E-2 3.084916E-2 2.238828E-2

610 8.977636E-3 6.933938E-3 2.044549E-2 4.487353E-2 1.541780E-2
6 1 1 1.066200E-2 —4.986487E-3 1.226160E-2 3.013573E-3 9.372035E-3
612 9.804577E-3 —1.432905E-3 7.448849E-3 2.223751E-2 8.000742E-3
Cl 0.253478 —0.6865282 —0.28 5.977427 —0.249230
C2 —3.009061 28.63210 4.893776 — 129.5724 6.199259
C3 —7.269434 —290.1074 — 10.25408 —0.108818 —20.00091

Ca 0 . 0 0 . 0 0 . 0 1000.038 — 15.38407
n 0  0904104 0 .0142407 0.8811.«524 n.820.S132 0.8070642

E-2 stands for 10—2
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Table 3.6. Modified Dunham Coefficients yfj/ ; 
Using Model

k I 3 =  0 3 =  0 7 =  10

0 0 0 —0.234348D-3 0.41630770-9
0 1 0.4042 iDOl —0.342078D-5 -0 .3 6 5 4 5 6 0 -9
0 2 0.10536D-01 0.5551282D-7 0 . 0 0 0

1 0 0.20966D02 0.1783910-6 -0 .1 1 2 0 6 3 0 -1 0
1 1 —0.29902D-03 0.1825320-7 0 . 0 0 0

1 2 0.12963D-04 0.1273720-8 0 . 0 0 0

2 0 —0.21482D-02 0.2253770-9 0.1001010-13
2 1 —0.47657D-06 0.5265720-11 0 . 0 0 0

2 2 —0.56678D-08 -0 .1 9 2 2 0 2 0 -1 1 0 . 0 0 0

3 0 0.164722D-06 -0 .2 4 0 0 9 4 0 -1 2 0.1616120-16
3 1 0.121755D-10 -0 .2 9 2 9 8 4 0 -1 3 0 . 0 0 0

3 2 0  1 —n 9.3439.^0-1 .«> nnnn

D  1 1  stands for 1 0 —11
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Table 3.7. Dunham Coefficients Yjk  Using Model

i k 0 1 2 3

0 0.405268D1 0.20955111D2 — 0.214872540D-2 0.16473925D-6
1 0.413844D4 —0.79701129 0.60314973D-4 —0.27285395D-8
2 —0.9003521D2 0.12686943D-1 — 0.20260698D-5 —0.75638776D-9
3 0.97957502 —0.608038flD-3 0.12234252D-6 0.12597387D-9
4 —0.3180475D-1 0.46196443D-4 —0.74160057D-8 —0.26201486D-10
5 0.2180949D-2 —0.44423369D-5 —0.13511795D-8 0.29415273D-11
6 — 0.2375248D-3 0.19776136D-6 0.22853895D-9 —0.2701129 lD-12
7 0.1406806D-4 —0.45415666D-8 0.30070862D-10 0.17849023D-13
8 — 0.7830740D-6 —0.75926349D-9 0.2S875834D-11 —0.59837803D-15
0 0.2812817D-7 0.1244Y778D-9 —0.21892145D-12 —0.78186633D-16

1 0 0.5078359D -10_ — n 11191.52771-10 0.999690,3471-14 0 161 .39R Sin-16

D-2 stands Joi 10~^
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Table 3.8. and Calculated by The Cashion-Cooley program 
Using the Morse Oscillator Potential

V Gf,*»' Bî.“'

0 2043.341254 0 . 0 20.5557 —0.3817D-2
1 5970.591896 0 . 0 19.7477 —0.3941D-1
2 9685.266715 —0 . 0 0 0 0 0 1 18.9283 —0.1044
3 13187.365711 —0 . 0 0 0 0 0 1 18.0968 —0.2026
4 16476.888883 —0 . 0 0 0 0 0 2 17.2528 —0.3300
5 19553.836233 —0.000004 16.3954 —0.4837
6 22418.207759 —0.000006 15.5237 —0.6629
7 25070.003461 —0.000009 14.6366 —0 . 8 6 6 6

8 27509.223339 —0.000014 13.7327 —0.1093D1
0 29735.867391 —0 . 0 0 0 0 2 2 12.8102 —0.1330D1

1 0 31749.935618 —0.000033 1 1 . 8 6 6 8 —0.1606D1
1 1 33551.428019 —0.000047 10.8998 —0.1880D1
1 2 35140.344595 —0.000063 9.9053 —0.2164D1
13 36516.685350 —0.000077 8.8780 —0.2449D1
14 37680.450287 —0.000087 7.8106 —0.2732D1
15 38631.639409 —0.000090 6.6919 —0.2994D1
16 39370.252720 —0.000079 5.5034 —0.3236D1
17 39896.302414 0.012136 4.2109 —0.3441D1
18 40216  97.S9.54 7 224020 2 .9727 — 0  R R 7 in i

D l stands for 10^
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Table 3.9. and jDJ“' Calculated from the Cashion-Cooley program
along with the Differences — G " ,  J35“* — B " ,  and — BJ*, Using Model

V Gf.“' Gf.“' -  G » Bf,“' Bf.“' — B " Bf.“' B  — — B f,'

0 2050.8697 — 0.001893 0.205595D2 —0.5970D-4 0.201464D-2 —0.102355D-3
1 6012.2396 0.001922 0.197864D2 — 0.733D-3 0.218703D-2 0.12803 lD-3
2 0801.6670 0.002340 0.190338D2 0.1099D-2 0.196390D-2 —0.160977D-4
3 13423.6782 — 0.003473 0.182996D2 0.1237D-3 0.193176D-2 —0.823325D-5
4 16882.4600 — 0.071677 0.175817D2 — 0.1178D-2 0.187719D-2 —0.308029D-4
5 2-181.4776 — 0.343985 0.168777D2 —0.1474D-2 0.189114D-2 0.271426D-4
6 23323.3051 — 1.256527 0.161842D2 —0.2443D-2 0.181656D-2 —0.214359D-4
7 26309.4164 — 3.625200 0.154969D2 —0.6310D-2 0.176866D-2 —0.273359D-4
8 29140.0342 — 8.707394 0.148107D2 — 0.1582D-1 0.174380D-2 —0.321954D-4
0 32814.0383 — 18.143297 0.141197D2 —0.2991D-1 0.180686D-2 0.508628D-4

1 0 34328.9156 — 33.775980 0.134175D2 —0.5530D-1 0.183232D-2 0.593286D-4
1 1 36680.7252 — 57.456414 0.126971D2 — 0.8287D-1 0.185294D-2 0.799438D-4
1 2 38864.0552 — 90.726432 0.119505D2 — 0.1190D-1 0.182384D-2 0.198400D-4
13 40871.9580 — 134.453623 0.111688D2 — 0.1591D-1 0.189174D-2 0.327489D-4
14 42695.8640 — 188.407614 0.103415D2 — 0 . 2 0 1 2 0.200816D-2 0.361654D-4
15 44325.5002 —250.431477 0.945615D1 —0.2307 0.217308D-2 0.690860D-4
16 45748.8921 —315.199568 0.849759D1 — 0.2420 0.234770D-2 —0.482910D-4
17 46952.6395 —372.802172 0.744813D1 —0.2046 0.261934D-2 —0.279655D-3
18 48647.6412 319.249527 0.4199977D1 — 0.13442D1 0.357977D-2 —0.220228D-3
19 49121.7119 9.S 2902.52 0 3.570887)1 — 0 104817)1 0.4433487)-2 — 0 .1 2 4 6 .5 in -2

D-4 stands for 10— 4
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Table 3.10. and Calculated from the Cashion-Cooley program
along with the Differences — G " ,  — B " ,  and £>=“' — Usi ng Model

V Gf."' G f “ '  -  G f* Bf."' £ca\  _  Qcx Bf."' Bf.“' — B .«

0 2050.8722 0.0005 0.205597D2 0.103186D-3 0.210222D-2 —0.147787D-4
1 6012.2936 0.0059 0.197862D2 —0.922161D-3 0.199725D-2 —0.617496D-4
2 9801.6738 0.0091 0.190336D2 0.861528D-3 0.201483D-2 0.348339D-4
3 13423.6877 0.0061 0.18299702 0.206693D-3 0.202756D-2 0.875668D-4
4 16882.4988 — 0.0328 0.175820D2 —0.822497D-3 0.184506D-2 — 0.629394D-4
5 20181.6308 — 0.1908 0.168780D2 —0.115356D-2 0.186021D-2 —0.378016D-5
6 23323.9334 — 0.6282 0.16184702 —0.197767D-2 0.179776D-2 —0.402321D-4
7 26311.6522 — 1.3894 0.154993D2 —0.393784D-2 0.17775D-2 —0.188473D-4
8 29146.5416 — 2 . 2 0 0 0 0.148195D2 —0.709524D-2 0.163153D-2 —0.144366D-3
9 31829.9252 — 2.256 0.141427D2 —0.691909D-2 0.162011D-2 — 0.135886D-3

1 0 34362.6102 — 0.0814 0.134663D2 —0.653300D 2 0.170742D-2 — 0.655752D-4
1 1 36744.5893 6.4076 0.127861D2 0.614160D-i. 0.162981D-2 —0.143185D-3
1 2 38974.5038 19.7221 0.120956D2 0.260411D-1 0.162981D-2 —0.174185D-3
13 41048.8670 42.4554 0.113848D2 0.568286D-1 0.162011D-2 — 0.23S886D-3
14 42961.0323 76.7606 0.106384D2 0.956273D-1 0.167832D-2 —0.293679D-3
15 44699.7855 123.8539 0.983302D1 0.1461252 0.179473D-2 —0.309263D-3
16 46247.1863 183.0946 0.893083D1 0.19123307 D.2056670D-2 — 0.339329D-3
17 47574.6046 249.1629 0.786357D1 0.2107718 0.254173D-2 —0.357265D-3
18 4633.5382 305.1466 0.647785D1 0.1338503 0.368648D-2 — 0.113514D-3
19 49321.67.53 295.2536 0 406903111 — 0.549915 , 0.15S32.4D-1 , 0.10152471-2 _

D-3 stands for 10—3
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Table 3.11. and Calculated From the Cashion-Cooley program
along with the Differences — GJ®, Bv“* — -B” , and — D " , Using Model

V Gf,“' g ;.“' — G « Bcal Bf.“' — B f.' Bçal — Df.*

0 2050.8745 0.0029 0.205596D2 0.972047D-4 0.193157D-2 —0.185422D-3
1 6012.2900 0.0024 0.197863D2 — 0.870465D-3 0.214519D-2 0.861948D-4
2 9801.6646 — 0.00006 0.190337D2 0.982836D-3 0.202514D-2 0.451415D-4
3 13423.6818 0 . 0 0 0 1 0.182997D2 0.293593D-3 0.197906D-2 0.390604D-4
4 16882.5102 — 0.0124 0.175821D2 —0.728373D-3 0.192812D-2 0.201287D-4
5 20181.7925 — 0.0291 0.168785D2 — 0.671163D-3 0.188265D-2 0.186540D-4
6 23324.4259 — 0.1357 0.161860D2 — 0.677763D-3 0.182444D-2 —0.135536D-4
7 26312.4749 — 0.5567 0.155011D2 —0.215840D-2 0.178295D-2 0.769527D-4
8 29146.9252 — 1.8164 0.148195D2 —0.704833D-2 0.179170D-2 0.157045D-4
9 31827.4878 — 4.6938 0.141359D2 —0.137301D-1 0.177230D-2 0.1G3020D-4

1 0 34352.3976 — 10.2940 0.134440D2 — 0.288515D-1 0.180625D-2 0.332564D-4
1 1 36718.2158 — 19.9658 0.127362D2 —0.437898D-1 0.175593D-2 —0.170688D-4
1 2 38919.6251 — 35.1564 0.120033D2 — 0.662109D-1 0.175593D-2 —0.480688D-4
13 40949.2051 — 57.2065 0.112346D2 — 0.933825D-1 0.192085D-2 0.61S528D-4
14 42797.1735 — 87.0981 0.104164D2 — 0.1263985 0.190935D-2 —0.264080D-5
15 44451.1018 — 124.8299 0.953183D1 — 0.155062 0.214398D-2 0.39982 lD -4
16 45895.6619 — 168.4297 0.855981D1 — 0.180089 0.248352D-2 0.875268D-4
17 47112.6171 —212.8245 0.747254D1 — 0.1802500 0.269695D-2 —0.202045D-3
18 48081.6804 —246.7111 0.623936D1 — 0.104633 0.325962D-2 —0.540370D-3
IP 49210.9.38.5 184.5168 0.32.5516D1 —n 136383m 0.484093n-2 — 0 8 3 9 0 6 2 n -3

D-3 stands for 10~®



5 5

Table 3.12. BS“*, and Calculated From the Cashion-Cooley Routine
Along with the Differences — B “ , and — BJ®, Using Model F"*

V Gf.“' Gf."' — GÎ.» Bf,“' Bf.“' — B ” Bf.“' —

0 2050.8714 — 0 . 0 0 0 2 0 0.205596D2 0.403397D-4 0.209574D-2 —0.212589D-4
1 6012.2903 0.00271 0.197863D2 —0.849668D-3 0.210032D-2 0.413264D-4
2 9801.6676 0.00298 0.190338D2 0.102163D-2 0.206030D-2 0.803083D-4
3 13423.6816 0.02047 0.182998D-2 0.320792D-3 0.203969D-2 0.99C934D-4
4 16882.5316 0.06171 0.175821D2 —0.777203D-3 0.198633D-2 0.783364D-4
5 20182.0668 0.24814 0.168781D2 —0.109977D-2 0.201968D-2 0.155684D-3
6 23325.2012 0.63955 0.161843D2 —0.230901D-2 0.215125D-2 0.313258D-3
7 26314.1074 1.0658 0.154967D2 —0.656961D-2 0.272774D-2 0.631744D-3
8 29149.6556 0.91400 0.148099D2 —0.166593D-1 0.227009D-2 0.494098D-3
0 31831.2021 — 0.97957 0.141180D2 —0.316922D-1 0.238893D-2 0.632939D-3

1 0 34356.3988 — 6.2928 0.134141D2 —0.587496D-1 0.238590D-2 0.612970D-2
1 1 36721.0581 — 17.1234 0.126908D2 —0.891950D-1 0.252233D-2 0.749331D-3
1 2 38919.0562 — 35.7253 0.119394D2 —0.13301225 0.259994D-2 0.795942D-3
13 40942.2578 — 64.1538 0.111504D2 —0.177548 0.270665D-2 0.847656D-3
14 42780.4608 — 103.8108 0.103123D2 —0.230436 0.281337D-2 0.841370D-3
15 44421.3917 — 154.5399 0.941171D1 —0.275187 0.301709D-2 0.913097D-3
16 45840.8532 —213.2384 0.843248D1 —0.307111 0.324992D-2 0.853927D-3
17 47053.2644 —272.1772 0.735638D1 —0.296417 0.363797D-2 0.738978D-3
18 48013.1007 —315.2903 0.6116446D1 —0.179530 0.412304D-2 0.323042D-3
19 4P16.'î 2117 13% 7000 0.333%40.5D1 —0.1234047)1 0 .S7140.5D-2 0 340.i20n-4

D-3 stands for 10— 3
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Table 3.13. and I>5“* Calculated From the Cashion-Cooley program
along with the Differences , and — D*®, Using Model

V Gf,"' Gçal _  G » B f“' - B « — D5.®

0 2050.8864 0.01478 0.205596D2 0.674461D-4 0.216387D-2 0.468773D-4
1 6012.3032 0.0155 0.197862D2 —0.927256D-3 0.210578D-2 0.467833D-4
2 9801.6783 0.0136 0.190338D2 0.100201D-2 0.198754D-2 0.754908D-5
3 13423.6970 0.0153 0.182998D2 0.379919D-3 0.196693D-2 0.269338D-4
4 16882.5380 0.0063 0.175822D2 —0.640802D-3 0.187780D-2 0.301966D-4
5 20181.8294 0.0078 0.168785D2 —0.652325D-3 0.183839D-2 —0.256080D-4
6 23324.5485 — 0.0131 0.161859D2 —0.714986D-3 0.184263D-2 0.463626D-5
7 26312.8709 — 0.1617 0.155012D2 0.204248D-2 0.175229D-2 —0.437068D-1
8 29148.0455 — 0.6961 0.148203D2 0.626235D-2 0.179898D-2 0.229805D-4
0 31830.1127 — 2.0689 0.141383D2 —0.113707D-1 0.173713D-2 — 0.188651D-4

1 0 34357.7834 — 4.9082 0.134492D2 —0.236073D-1 0.179958D-2 Ü.265368D-4
1 1 36728.1587 — 10.0229 0.127460D2 —0.339936D-1 0.173652D-2 0.364714D-4
1 2 ■ 38936.4683 — 18.3133 0.120196D2 —0.499885D-1 0.175593D-2 —0.480688D-4
13 40975.7427 — 30.6689 0.112590D2 —0.689494D-1 0.184324D-2 — 0.157574D-4
14 42836.4014 —  47.8701 0.104501D2 — 0.9926260D-1 0.194995D-2 — 0.220433D-4
15 44505.7251 — 70.2065 0.957431D1 —0.112580 0.203726D-2 — 0.667318D-4
16 45967.1949 — 96.8966 0.860609D1 —0.133501 0.225069D-2 —0.145303D-3
17 47199.7870 — 125.6546 0.751018D1 —0.142610 0.268725D-2 —0.211746D-3
18 48177.7292 — 150.6623 0.623798D1 —0.106014 0.328873D-2 —0.511267D-3
19 4RR72.84.';0 — 1.53 .576.5 0 473n48D 1 0 1114R.5 n 429766D .2 — 0.1.3R2.3.3D-2

D-3 stands for 10— 3
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Table 3.14. Results for 7 Parameters of the Best HF Potential 
Function Using Model F® and Additional Correction

Symbol
PMO

Parameters Symbol
Improved PMO 

Parameters

P 2.2520300 P 2.2520300
cr 19.474095 a 19.474095
r 40305.041 r 40305.041
A 1.325D-4 A 1.325D-4
6 4 0.10147098 b4 0.10147098
6 5 6.4458544D-2 be 6.4458544D-2
be 3.6765372D-2 be 3.6765372D-2
b7 2.0265535D-2 b j 2.0265535D-2
bs 2.3810927D-2 bs +  A5g 0.24062879D-1
bo 2.2388284D-2 do "f" Abo 0.31662496D-1

6 1 0 1.5417809D-2 dio +  A 6 1 0 0.90408234D-2
6 1 1 9.3720353D-3 d ll A dii 0.4249401 lD-1
6 1 2 8.0007428D-3 di2 -j- Adi2 0.10058756D-1

Cl —0.24923032 Cl +  A Cl —0.15010326
C2 6.1992591 C2  +  AC2 4.7076628
C3 —20.000915 C3  +  AC3 — 19.961683
C4 — 15.384071 C4 4" AC4 — 15.349504
B 0.98706427 B  +  A B 0.92185016

D-3 stands for 10—8
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Table 3.15. and DJ®' Calculated From the Cashion-Cooley program
along with the Differences — GJ*, — B " »  &nd D%°-  ̂ — , 

using the Best D ata from Table 3.16

V Gf.“' Gf,“' — G " Bf.“' Bf.“' — B " Dcal — D ”

0 2050.8794 0.0077 0.205597D2 0.111374D-3 0.216694D-2 0.499469D-4
1 6012.2706 —0.0170 0.197865D2 —0.658130D-3 0.205545D-2 —0.354197D-5
2 2801.6089 —0.0557 0.190346D2 0.189439D-2 0.203787D-2 0.578744D-4
3 13423.6109 — 0.0707 0.183019D2 0.246150D-2 0.194328D-2 0.328701D-5
4 16882.4850 —0.0466 0.175861D2 0.321716D-2 0.192327D-2 0.152781D-4
5 20181.8723 0.0506 0.168846D2 0.548510D-2 0.184566D-2 —0.183320D-4
6 23324.7656 0.2040 0.161948D2 0.812865D-2 0.176S05D-2 —0.699422D-4
7 26313.4182 0.3766 0.155132D2 0.998603D-2 0.179837D-2 0.237419D-5
8 29149.2392 0.4975 0.148362D2 0.969228D-2 0.17715D-2 0.115254D-5
0 31832.6641 0.4824 0.141594D2 0.974647D-2 0.173228D-2 —0.237157D-4

1 0 34362.9845 0.2928 0.134774D2 0.459416D-2 0.181292D-2 0.399261D-4
1 1 36738.1180 —0.0636 0.127839D2 0.399228D-2 0.176563D-2 —0.736761D-5
1 2 38954.953 — 0.4863 0.120707D2 0.119974D-2 0.173652D-2 —0.674714D-4
13 41005.6327 — 0.7789 0.113272D2 — 0.710984D-2 0.188204D-2 0.230477D-4
14 42883.5342 —0.7371 0.105390D2 —0.37398 lD -2 0.193055D-2 —0.414459D-4
15 44575.8285 — 0.1031 0.968573D1 —0.116747D-2 0.208577D-2 —0.182254D-4
16 46065.4682 1.3765 0.873681D1 —0.278340D-2 0.2228960D-2 —0.106498D-3
17 47328.4811 3.0394 0.764352D1 — 0.927988D-2 0.271635D-2 —0.182642D-3
18 48330.6997 2.3080 0.632091D1 —0.230829D-1 0.353126D-2 —0.268735D-3
19 40023 4050 — 3-0166____ n 4fiOR26ni — 0.107.328D-1 _ 0.523868D-2 — 0.44 1 3 1 OD-S

D-4 stands for 10~^
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Table 3.16 Comparison Between RKR Potential Energies and our 
Best PMO Values for the E +  State

of HF

fmtn (A)
Our Best PMO  

Potential 
( c m - i )

rfnaz(À)
Our Best PMO 

potential 
(cm—M

RKR  
potential 
(cm— 1 )

0.8342 2049.98 1.0206 2052.80 2050.76
0.7845 6017.06 1.1131 6012.78 6012.18
0.7548 9808.25 1.1869 9802.27 9801.58
0.7331 13425.79 1.2541 13428.33 13423.56
0.7159 16888.31 1.3181 16887.57 16882.39
0.7018 20169.83 1.3807 20189.76 20181.72
0.6898 23309.58 1.4429 23336.27 23324.52
0.6795 26281.08 1.5054 26326.84 26313.03
0.6705 29102.59 1.5688 29161.41 29148.72
0.6626 31764.16 1.6339 31848.01 31832.11
0.6556 34276.35 1.7011 34374.60 34362.58
0.6494 36629.75 1.7715 36750.00 36738.08
0.6439 38824.62 1.8460 38964.79 38954.72
0.6390 40870.19 1.9261 41014.78 41006.39
0.6347 42739.61 2.0139 42891.03 42884.20
0.6310 44407.19 2.1129 44584.65 44575.74
0.6278 45896.03 2.2286 46075.64 46063.97
0.6261 47187.71 2.3711 47336.14 47325.53
0.6231 48166.47 2.5625 48330.56 48328.10
0.6220 48713.06 2.8692 49017.71 49026.38
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CHAPTER IV

ELECTRIC DIPOLE MOMENT FUNCTION OF X ^ E +  STATE OF HF

4.1. Introduction 

In a homonuclear diatomic molecule the electronic charge distribu

tion is symmetric with respect to  a plane perpendicular to its internuclear 

axis at the mid-point, and therefore the molecule has a zero dipole moment. 

However, in the case of a heteronuclear diatomic molecule such as HF, the 

electronic charge distribution does not possess this kind of symmetry and 

hence may produce an electric dipole moment. The general shape of the 

dipole moment of a diatomic molecule as a function of r  is shown in Fig.

(4.1). The dipole moment of molecules such as CO changes sign a t small r 

while th a t of HF does not [33,34].

In Chapter I  we defined the electric dipole moment vector of a 

diatomic molecule and showed th a t its expectation value M(r)  on the 

internuclear axis was a function of the internuclear distance r. Therefore, 

the dipole moment is usually expanded as a Taylor series in terms of r. It 

can also be expressed in terms of the variables y  and z  defined below, and 

we can write in general:

6 2



6 3

oo
M{q) =  9 0 -1 -2 2  ^ " 9 " ' (4.1)

n—1

•where q is one of the following variables

u =  r — Te, (4.2)

y == 1 _  (4.3)

0 ^ - 1  + ( 4 . 4 )

The first term  ço, which is called the permanent dipole moment, and the 

coefficients rrin are defined as follows:

9o =  M{qe) =  M{fe)

If r is expressed in units of cm and electric charge in units of 

esu, then M{r)  has the unit of esu cm. Another unit which is also com

monly used for electric dipole moment is Debye (abbreviated as D) where 

1D = 10~^^ esu-cm.

A great deal of efibrt has been made to  obtain highly accurate

intensity data  for the E"*" state of HF from which the transition matrix

elements were determined [26,27,28]. These data are presented in Tables

(4.1) and (4.4). Only the uncertainties on jKoi,/fo2 ,and //os are listed in 

Table 4.1. They were determined based on reported informations[26]that 

=  .15,where p is the ratio of two transition m atrix elements.
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The accuracy with which one determines dipole moment matrix 

elements depends in particular on the accuracy of the vibrational wave 

functions. This in turn  depends upon the extent to  which the internuclear 

potential function used in the radial Schrodinger equation truly represents 

the potential of the molecule. W ith the technique described in Chapter 

in, we have obtained for the ground electronic state of HF a highly ac

curate PMO internuclear potential function (within the framework of the 

Born-Oppenheimer approximation). Our next task is to solve the radial 

Schrodinger equation for the vibrational wavefunctions using this PMO 

potential. There are two approaches to this problem.

i) Matrix diagonalization: The PMO wave functions are expanded 

in terms of a set of basis functions (for example Morse basis functions). For 

this purpose, it is necessary to neglect the continuum of the Morse oscillator 

and retain a certain number M  of bound states in order to  have a finite and 

discrete matrix representation. The coejQBcients of the expansion and hence 

the PMO wave functions then can be found by m atrix diagonalization. 

This approach is very suitable and efficient for molecules with many bound 

states. Tran [37,38] applied this method to CO, which has about 77 bound 

states, and got excellent results. We also applied it to the HF molecule with 

about 20 bound states. As we predicted, the results are not satisfactory, 

due to  the small number of HF bound states. We therefore decided to solve 

the problem entirely by numerical method.



6 5

ii) Numerical calculations: The Cashion-Cooley routine was used 

to  solve the radial Schrodinger equation, Eq. (1.2), for vibrational eigen

functions of HF. Their numerical procedure may be summarized below. 

The Schrodinger equation is first written in the form

dr^
+  [ E - y ( r ) M r )  =  0, (4.6)

where xp{r) is the radial eigenfunction multiplied by r, and V{r)  is the 

efiective potential energy. In the above equation, length is measured in the 

Bohr radius a0=0.529172 Â, and energy is measured in unit of 

wavenumbers, where No is the Avagadro,s number and piA is the reduced 

mass in atomic mass unit (a.m.u). The numerical value of this factor is 

60.2198//z>i. Values of ip{r) are obtained obtained by the Numerov method 

[Appendix D] which is characterized by the following relations:

y (+ i +  y ,_ i  -  2Yi =  h^iVi -  E ) ^ i ,  (4.7a)

n  =  [1 -  -  E)]i-i, (4.76)

where h is the step size and E  is a trial eigenvalue. For any E,  there are 

two values of r (classical turning points r i  and rg) such th a t

V i { r ) - E  =  0. (4.8)

xp{r) has increasing exponential behavior for 0 <  r  <  r i ,  oscillatory 

behavior for r i <  r  <  fg, and decreasing exponential behavior for r  >  rg. 

This method is a three point method, i.e., can be found by knowing
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ipi and Tpi—i (the values of (V — E)  are known). The Numerov method is 

of sixth order and produces less roundoff error than lower-order methods 

such as the Runge-Kutta method (which is of fourth order). For using the 

Numerov method, we require the value of if ipi he known. Using the 

WKB method tpi can be found in terms of as

tpi =  ip i^ i exp[r,y_i(V^+i — E)^  — r i{V i — E )^]. (4.8)

Next a correction to E  is determined from the variational method;

D[E)--------------- SET#
The process is repeated until successive values of E  differ by a specified 

small number. Finally the resulting values of ipi can be normalized.

The relative phase of the  various wave functions are arbitrary. In 

analogy to the case of wavefunctions of the Morse oscillator [38], we may 

divide the PMO wave functions into two categories called Class I and Class 

n . All class I  wavefunctions are positive for very large r, while class H 

wavefunctions are negative for very large r. These two classes are related

by

ÿW  =  (4.10)

This means th a t eigenfunctions of the two classes are the same for even 

values of v and have the opposite sign for its odd values. The difference 

in the wavefunction signs results in the difference in the matrix elements 

signs. Using the relation (4.10), one obtains for the m atrix elements of a
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function M (r):

(4.11)

The wave functions generated by the Cashion-Cooley routine are found to 

be class I.

In solving the radial Schrodinger equation by the above numerical 

method, the highly accurate PMO potential function obtained in Chapter 

in  was employed. A  two dimensional array is needed to store vibrational 

wavefunction values for many vibrational levels, which then were used in 

computing various PMO matrix elements by numerical integration using 

the Simpson rule. The range of internuclear distance was chosen from 

=0.60137 Â to =4.37508 Â, and was divided into 2000 equal 

integration steps for obtaining adequately accurate results for HF. Double 

precision was employed throughout our calculations providing accuracy up 

to  16 significant digits.

4.2. HF Dipole Moment Functions as Cubic Polynomials

Highly accurate intensity data were obtained for the (0 — 0) band, 

fundamental (0 — 1) band, and the first two overtone ( 0 — 2 and 0 — 3) 

bands of HF (X ^ S + ) [27], from which reliable absolute values for the 

corresponding rotationless matrix elements were deduced. These empirical 

data are listed in Table (4.1). D ata for other transitions of HF are not so 

accurate and reliable.

This insufficiency of good experimental data  usually limits the
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number of terms th a t one can retain in a Taylor series expansion of the 

dipole moment. For this reason, "we keep up to the cubic term only in the 

Taylor expansion, and write in terms of the variables u, y, and z:

M{u)  =  m o m \ u r r i 2 U ^ , 0 < r <  1.833 (4.12a)

M{y)  =  M o -f -M iy - f  M2 î/  ̂+  Msy®, 0 .634<r< oo (4.126)

M{z)  =  7b +  T i0 -1- 7 b +  7s2®, - 0 0  <  r  <  1.199. (4.12c)

where the inequality following each cubic polynomial shows the range of 

convergence of the corresponding infinite series [Appendix Bj.

W ith the few experimental data listed in Table (4.1) and with 

accurate PMO eigenfunctions available, our next task is to  solve for the 

coefiBcients of the cubic dipole moment functions in variables u, y, and z. 

The coefficients mo, m i, •••, m3 . Mo, M i, •••, M3 and 7b, 7 i ,  , 7b

can be determined simply by solving a set of four linear inhomogeneous 

equations which can be written in the matrix form:
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^ 0 0  Çoi Ço2  ?03 ' c i ' f ÔO

ÔJ Çll  Çl2 Çl3 C2 Moi

^02 ?21 ?22 Ç23 C3 A02

^03 Ç31 982 933 C4 /^03

(4.13)

where 6on =  (0 |R>, g„p =  (0 |uP|n), or (0 ]2/P|n), or (0 |2Pjn).

Cubic polynomial representations of HF dipole moment are ob

tained as follows:

M{u)  =  1.795 -h 1.5232U -  O.OQOTû  — 1.4129u®, (4.13a)

M(y)  =  1.795 4- 0.6213y +  0.2949y^ +  0.0743z/®, (4.136)

M{z)  =  1.795 4- 0.62152 — 0.32032^ +  0.09442®. (4.13c)
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Coefficients of these polynomials are also listed in Table (4,2), and their 

graph versus r are plotted in Fig, (4.2),

Our cubic polynomials in u are in excellent agreement with th a t 

obtained by Meredith and Smith [29] using the RK R potential: M{u)  =  

1.7965 l,5229u — O.OSOBu  ̂— 1.4077u®. We also see th a t the first terms

(permanent dipole moment) of the three cubic polynomials are practically 

the same, and from Fig. (4,2) these functions coincide over a small range of 

r about the equilibrium rg. This feature is of course necessary and provides 

a  way to check the correctness and consistency of the various dipole moment 

functions for the same molecule.

4,3, Anal}’tical Dipole Moment Functions with Correct Asymptotic Behavior 

A t present, most theoretical and experimental treatm ents of the 

dipole moment can give information about it only over a limited range 

of r about the equilibrium Tg, and none provides a detailed picture of the 

dipole moment over the whole range of r. Theoretically, the dipole moment 

function of diatomic molecules such as HF should have the following general 

behavior:

M (r) =  0 for r  =  0 and r  =  oo, (4,14)

The large r  behavior of the  dipole moment function can be explained by 

the fact th a t at large r, the diatomic molecule would dissociate into two 

neutral atoms, and therefore must have a zero dipole moment [36], In the
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limit of r =  0, if the molecule is considered to be transformed into a single 

atom, then its dipole moment should also vanish. However, very much less 

information can be found for the small r behavior of the dipole moment in 

the literature; James et al. [44] suggested th a t M(r)  should go to zero as 

r®.

The main objective of the present chapter is to approximately 

evaluate values of unknown coefficients of the infinite series M{y)  from 

a limited number of intensity data, in such a way th a t the asymptotic 

property M (r =  oo) =  0 is satisfied or
CX>

Mo +  X )  =  0 (4.15)
n = l

For this purpose, we assume a functional form for M „, i.e., we

express

— F{tIj cj , Cg, . . . ,  c^f, H), (4.16)

where F  is a function of the index n and the parameter c i , . . . ,  cm 

and B,  and we require that
OO

Mo -j- ^  F(n,Ci,C2 ,...,C M ,B ) =  0. (4.17c)
n = l

Thus, the series generated by the function F  must be convergent and satisfy 

a necessary condition;

lim F (n ,c i,C 2 , . . . , c m , 5 ) == 0. (4.176)
n—*-oo

Tran and Hufi'aker[37,38]introduced suitable functions for F. Note 

th a t the mathematical treatm ent of the asymptotic behavior of the dipole
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moment is similar to what we have carried out previously for the PMO 

potential function of HF. Of the five functional forms we used in th a t 

case,we found tha t only two worked for HF dipole moment. For the others, 

underfiow or overflow occurred and B  went out of its range. These two 

functional forms are:

Mj, =  F^(n,ci,C2,C3,C4,H)

„  I  (ci - f  C2 /n  +  cs/n (n  — 1) +  C 4 / n { n  - f  1))H” , n >  1
(ci +  C2 H- ^C4 )H , n =  l

M l  =  F'^{n,ci,C2,B)  =  (ci (4.186)

where 0 <  B  <  1.

The corresponding dipole moment functions then can be written 

in a compact form:

OO

M Hv) =  M o + ' Z ,  M i v "  =  Afo +  Cl -  C2 ln(l -  By)
By

4- cs[By 4- (1 — By)  In(l — By)]

m H v) =  Mo +  V  Af=ÿ" =  M„ +  -  % In(l -  By),  (4.196)
n = l  y

as we have done in Chapter HE.

The asymptotic conditions (4.15) can also be written in a similar 

form by letting y =  \  and M°^{y) =  0 in Eq. (4.19)
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Af^ (1) =  0 =  Mo -{- — -®) “}“ C3 [jB +  (1 — 5 ) ln ( l  — B)]

+  C4[1 +  ln(l -  B)] (4.20a)

M ^(l) =  0 =  Mo - f  — C2 ln(l — B). (4.206)
1   J J

Using equations (4.19a) and (4.19b), -we can -write the m atrix ele

ments of M^(y)  and M^{y)  as 

y-vv> =  {v\M^{y)\v')

=  Mo6rjv> +  c i( t;|j  — C2 (v|In(l — By)\v'),

Cz{v\[By +  (1 — Bt/)In(l — By)]\v')

+  c«M |I +  ln(l -  B y V ) ,

— MqÔvv' -|- Ci<Pv<\ +  <̂2 <Pv!2  ■+ (4.21a)

l^vv' =  {v\M^{y)\v')

=  M q6vv' 4- Cl(z;|-  ̂ — C2 (vlln(l — By)\v'),

=  Mo6„«f +  Ci^JJ,! -j- C2V?JJf2, (4.216)

■where ------ '*'1'°'^ “

î^v'3 =  {v\[By +  (1 — B y)ln(l — By)\\v'),

Pl<i =  («in +  '“(1 -  B»)ll«').

All the  matrix elements in the right hand side of Eq. (4.21) can 

be evaluated by numerical integration using Simpson’s rule and different
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vibrational eigenfunction values produced by the Cashion-Cooley program.

Since equations (4.21a) and (4.21b) are linear in Mo, Ci, c , . . . ,  cm 

and non-linear in B,  we can use the linear minimization iteration method 

developed in § (IQ.5) to determine parameters Ci, C2 , . . . ,  cm • Parameter B  

is an iterative parameter and varies in the process of minimization until the 

asymptotic condition (4.20) is satisfied within a desired degree of accuracy.

The linear minimization approach is much easier to understand 

and work with than the general minimization routine which was used for 

finding PMO parameters [43]. If the number of experimental transition 

m atrix elements are equal to  the number of parameters in the

least-squares fitting for determining parameters M o, Cj, . . . ,  cm is reduced 

to  a set of linear inhomogeneous equations written in the form

<P i jC j=^h  (4.22)

<p̂ j are defined in Eq. (4.21) and are experimental transition matrix 

elements.

4.4. Results and Discussion

4.4.a. Dipole Moment Function with Correct Large-r Behavior 

We first fit the m atrix elements {v\M^(y)\v') and {v\M^{y)\v')

directly to the empirical m atrix elements f iw'  whose values are given in

Table (4.1). The parameter B  is iterated until the asymptotic condition is 

satisfied within the desired accuracy. Final values obtained for the set of 

parameters {Mo,Ci,C2 , . . . , c , „ , B }  of the functional models M ^ and M ^
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are listed in Table 4.3. Using these parameters the dipole moment functions 

M^{y)  and M^{y)  were plotted in Figs. (4.3) and (4.4).

4.4.b. Dipole Moment Functions with Correct Large and Small-r Behavior 

Although the dipole moment functions M^{y)  and M^{y)  obtained 

above as an infinite power series in y have the correct large-r property, 

they are not convergent for 0 <  r <  1.833 Â in case of HF and therefore 

display a wrong general behavior at small-r. In order to force these dipole 

moment curves to pass through the origin we can add to them an extra term 

which is Mcî/(1 — y), where Me is an additional adjustable parameter to 

be determined by iteration. This term was first used by Tran and Huffaker 

[37,38] in achieving the correct small-r behavior of CO dipole moment. 

Equations (4.19) then are modified as

M '  (y) =  Mo +  -  '2 >“(1 -  B y )

H" C3 [By -f- (1 — By)  ln(l — By)]

+  C4 [l +  ( ^ - ^ ) I n ( l  -  By)] +  M ,y (l -  y), (4.23a)

M=(y) =  Mo +   C2 ln(l -  By)  +  M ,y (l -  y). (4.236)
1 — rfy

For each trial value of Me the whole process of calculations carried 

out above for the large-r behavior was repeated. The parameter Me was 

varied until the dipole moment function vanishes at r =  0. Results thus 

obtained for all parameters (including Me)  are listed in Table 4.5 and plots 

of the corresponding dipole moment functions are shown in Figs. 4.6 and
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4.7. We see tha t while both functions go to  zero as r goes to 0 or oo, the 

dipole moment function (y) does not behave in a physically acceptable 

manner, exhibiting a peculiar hump in the small-r range 0 <  r <  rg. The 

cause of this second maximum can be explained by plotting each factor of 

Cl, C2 , C3 and C4 of (y) separately in Fig. 4.5. As shown, the third term 

[By +  (!-{- By)In(l — By)] (which is due to B ^y^ /n {n  — 1)) in the M \  

model may be responsible for the occurrence of this misbehavior, because 

it changes much more rapidly than the other terms as r decreases to zero. 

We removed the third term and repeated the calculations. The resulting 

dipole moment function, however, still did not behave satisfactorily at 

small-r range. Therefore, we decided to  remove both the third and the 

fourth term to obtain the second model M^{y),  which as expected and 

shown in Fig 4.4 has only one maximum and decreases monotonically to 

zero as r approaches zero. For comparison we plot M^{y)  in Fig. 4.9 

together with the HF ah in itio  dipole moment obtained by Lie [27], the 

HF experimental dipole moment listed in this reference, and our cubic 

polynomials (4.13a). Agreement between the two curves is excellent about 

the equilibrium distance but rather poor at large r.

For the dipole moment function M^{y)  we use only the most ac

curate transition matrix elements in Table 4.1 in the fitting; since M^(y)  

was the most suitable function to best represent HF dipole moments, we 

fitted it to all available m atrix element data (empirical or semi-empirical) 

recorded in Table (4.4).
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One problem one usually faces is an ambiguity in the sign of 

the dipole moment matrix elements which arises from the fact that the 

experimental intensity data depend on the square of the dipole moment 

matrix elements and therefore determine only the magnitude, and not the 

sign of the matrix elements. One way to remove this sign ambiguity is to 

reconstruct the m atrix elements using the dipole moment function M^{y)  

with parameters found by minimization [45]. A rule for determining the 

sign of the dipole moment m atrix elements of HF was predicted by Cashion 

[26] and developed by Sileo and Cool [26]. According to  this rule, the 

sign of the m atrix element {v\M^^\y)\v')  is positive (negative) \i v — v' is 

odd (even). The rule was confirmed as we applied it to the results [Table 

4.4] which are reconstructed vibrational m atrix elements calculated by the 

HF dipole moment function M^{y).  The m atrix elements generated by 

the ab initio dipole moment function(modeI l)and our best dipole moment 

function(model 2)were compared with the experimental data in Table 4.4. 

For transitions between the lower vibrational levels both models compare 

well with the experimental data. However,for transitions between the 

higher vibrational levels model 2 agrees more closely with the experimental 

data than model 1.

4.4.C. Equivalent Infinite Series Representing Dipole Moment Function of HF

W ith the parameters c\ , cg and B,  one can calculate all the coefficients 

of the infinite power series in y, which is an analytical continuation of the 

dipole moment function l \^ { y )  (our best form). Values of a number of these
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coefficients Mn are listed in Table 4.6 and plotted against the index n in Fig.

4.8. We then write out the dipole moment in y explicitly to the cubic 

term;

M{y)  =  1.7979 - f  0.6317y - f  0.2051y^ +  0.6883y® H  (4.24)

In previous § 4.2 we have determined HF cubic dipole moment 

function in y  as

M{y)  =  1.795 +  0.6213y +  0.2949y^ +  0 .0 7 4 3 2 /. (4.25)

Comparing Eq. (4.24) and Eq. (4.25), we see th a t the corresponding 

coefficients do not differ very considerably, showing th a t truncation of the 

power series to the cubic term  would not drastically affect the retained 

dipole moment coefficients.

The function M^{y)  can also be expanded as an infinite power 

series in u as
OO

M{u) — m o-\- ^ 2  (4.26)
R=1

which actually is a Taylor series. Since this series is of practical interest, 

it is worthwhile to determine its coefficients from the coefficients Mn by a 

relationship derived in Appendix E.

We list the results in Table 4.7 and write the power series in u explicitly 

up to  cubic term:

M \ u )  =  1.7979 +  1.5516m -  0 . 6 6 6 1 -  0.4642m® -\------ (4.28)
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Comparing these first few terms to the cubic polynomial obtained previously

M{u)  =  1.795 +  1.5232U -  0.0807u^ -  1.4129u®

shows th a t the truncation and the inclusion of a large number of the 

transition matrix elements in the minimization would afiect the linear term 

only slightly. This is also the reason why cubic polynomials in w or y have 

been widely used to represent the dipole moment of the diatomic molecules.

To conclude this chapter, we may say th a t the functional form 

M^{y)  is the most suitable to represent the dipole moment th a t changes 

sign as in the case of CO [33,34,37,38] while M^[y)  (so far being the only 

choice) should be used to represent the dipole moment which does not 

change signs as in our case.
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Table 4.1. Most Reliable Experimental Vibrational 
Matrix Elements /Xpt,/ (units of del  ̂e)

#̂ 00 Moi M02 Mo 3
1.819 9.850D-2 — 1.253D-2 1.628D-3

Ref [231 + .370D -2 T .047D -2 T .061D -3

Ml 2 M13 M23

1.374D-1 — 1.909D-2 1.392D-1
Ref [251 Ref [261 Ref [261

D-2 stands for 10—"2

Table 4.2. Coefficients of Various Cubic Poly nomials in 
Variables u, y,  and z  as HF Dipole Moment

Pn Pi P2 Pa

M(u) 1.7958 1.523 —8.065D-2 — 1.412
M (y) 1.7958 6.213D-1 2.949D-1 7.432D-2
M(z ) 1.7958 6.215D-1 —3.203D-1 9.439D-2

D-2 stands for 10 ^

Table 4.3. Coefficients in the Dipole Moment Functions 
M^[y)  and M^{y)  with Correct Large-r Behavior

Mn Ĉ Ca C4 B

Af2(y)
1.790488
1.797887

—45.017124
—0.21179768

225.40443
0.87378465

— 12.419533
0

—358.40518
0

0.5552209
0.95514959
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Table 4.4. Comparison of the matrix e lem ents  generated  
by various m odels with those  obtained experimentally

1 r

Model 1: ab initio dipole Model 2: our best dipole Experimental
data

"ii* ^ 2 " i r ^3
•xp

"ii*
0 0 1.823 -0.404D-2 1.819 0.0 1.819
0 1 0.439D- 1 0.545D- 1 0.993D-1 -0.008D-1 0.985D- 1
0 2 -0.723D-2 -0.546D-2 -0.155D-1 0.028D- 1 -0.127D-1
0 3 0.136D-.2 0.S10D-3 0.307D-2 -0.12D-2 0.187D-2
0 4 -0.326D-3 -0.335D-4 - 0.804D- 3 0.444D-3 - 0.36D- 3
0 5 0.944D-4 -0.128D-4 0.254D-3 -0.172D-3 0.81 6D-4
0 6 -0.314D-4 0.962D-5 -0.919D-4 -0.701 D-4 -0.218D-4
1 2 0.0603 0.776D- 1 0.137 0.001 0.138
1 3 -0.126D-1 -0.064D-1 -0.271D-1 0.043D- 1 -0.228D-1
1 4 0.275D-2 0.114D-2 0.614D-2 -0.224D-2 0.389D-2
1 5 -0.737D-3 -0.124D-3 -0.178D-2 0.682D-2 - 0.862D- 3
1 6 0.233D-3 -0 .1 32D-4 0.613D-3 -0.393D-3 0.22D-3
1 7 - 0.838D- 4 0.205D-4 -0.238D-3 1.75D-4 0.633D-4
2 3 0.71 3D-1 0.094 0.164 0.002 0.166
2 4 -0.179D-1 -0.154D-1 -0.384D-1 0.05D-1 -0.334D-1
2 5 0.440D-2 0.199D-2 0.972D-2 -0.332D-2 0.64D-2
2 6 -0.129D-2 -0.028D-2 -0.306D-3 0.148D-2 -0.158D-2
2 7 0.441D-3 0.002D-3 0.113D-2 -0.069D-2 0.444D-3
2 8 -0.169D-3 0.03D-3 -0.470D-3 0.331D-3 -0.139D-3
3 4 0.789D-1 0.108 0.183 0.004 0.187
3 5 -0.233D-1 -0.213D-1 -0.499D-1 0.052D- 1 -0.447D-1
3 6 0.630D-2 0.31 ID-2 0.137D-1 -0.043D-1 0.942D-2
3 7 -0.200D-2 -0.56D-2 -0.466D-2 0.209D-2 -0.257D-2
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Table 4.4 (Continued)

Model 1: ab initio dipole Model 2: our beat dipole Experimental
data

i r 4 1 ' ^2 Mij. As
exp

"ii*
3 8 0.730D-3 0.049D-3 0.183D-2 -1.0D-3 0.780D-3
3 9 -0.298D-3 0.038D-3 -0.805D-3 0.546D-3 -0.259D-3
4 5 0.839D-1 1.18D-1 0.197 -0.005 0.202
4 6 -0.286D-1 -0.282D-1 - 0.615D- 1 0.0460D-1 - 0.569D- 1
4 7 0.084D- 1 0.044D- 1 0.183D-1 -0.054D-1 0.129D-1
4 8 -0.287D-2 -0.095D-2 -0  658D-2 0.275D-2 - 0.383D- 2
4 9 0.111D02 0.01 4D-2 0.273D-2 -0.147D-2 0.126D-2
5 6 0.866D- 1 0.125 0.207 -0.005 0.212
5 7 -0  340D-1 -0.360D-1 -0.731D-1 0.030D-1 -0.701 D-1
5 8 Ü.108D-1 0.061 D-1 0.233D- 1 -0.063D-1 0.170D-1
5 9 -0.393D-2 -0.149D-2 - 0.885D- 2 0.34D-2 -0.543D-2
6 7 0.871D-1 1.27D-1 0.21 ID-1 -0.014D-1 0.215D-1
6 8 -0.393D-Î -0.454D-1 -0.849D-1 0.001 D-1 - 0.848D- 1
6 9 Ü.135D-1 0.080D-1 0.289D- 1 -0.074D-1 0.215D-1
7 8 D.853D- 1 0.125 0.212 -0.001 0.211
7 9 -0.044 -0.056 -0.097 0.004 -0.101
8 9 0.081 0.116 0.207 -0.009 0.198

A L ,  = 0.52D-1

note 1:

note 2: rms

exp
11"

Is the root mean squre error between  
model j and experimental data.

note 3: 1.D-1 stands for 10-1
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Table 4.5. Values of the Parameters Afo, c i ,  cg, C3 , C4 , B ,and Me 
For the Generating Functions and Af^

Functional
Form

Mo Cl C2 C3 C4 B Me

M l 1.790 —50.865 266.6.3 —26.731 —425.24 0.55047 —1.0750

M l 1.79T9 —0.21118 0.87231 0 0 0.955249 0.7062
D-,3
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4.6. Comparison Between our HF Dipole Moment Function with Correct 
Asymptotic Behavior at Both Small and Large r, and those

determined theoretically and experimentally by other authors

r(A) (Debye) (Debye) our best M^{y)

0.0 * 0.0
0.100 * * 0.230
0.200 * * 0.449
0.300 * * 0.659
0.400 * $ 0.862
0.500 * * 1.060
0.662 1.446 1.422 1.364
0.688 1.485 1.457 1.412
0.741 1.563 1.532 1.506
0.794 1.640 1.609 1.597
0.847 1.719 1.689 1.686
0.917 1.816 1.797 1.798
1.005 1.917 1.929 1.930
1.058 1.969 2.005 2.003
1.164 2.031 2.143 2.134
1.323 2.004 2.298 2.283
1.587 1.641 2.332 2.373
2.117 0.600 0.997 1.838
2.646 0.155 -3.250 0.871
3.704 0.012 * 0.085
5 ^ 9 2 - 0 002 $ 0.002

from Ref. (27)
C) not listed in this Ref.
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Table 4.7. CoefDcients of the HF Dipole Moment as an Infinite 
Power Series in y  Given by the Model =  (cj +  cz /n )B "  and coefScients 

of the equivalent infinite power series in u

Coefficients of the 
y  Series

Coefificients of the 
equivalent u Series

Af„ value Wl* value

M q +1.79790 TT»; + 1 .7 9
M \ +0.63165 < +1.55155
M i +0.20542 wig —0.66612
M s +0.68828E-1 m s —0.46417
M i +0.52203E-2 m l —0.16422
M s —0.29705E-1 < —0.18061E-1
M s —0.50468E-1 m % +0.64834E-1
M j —0.63284E-1 m l +0.30882E-1
M s —0.71252E-1 m l —0.20909E-1
Mo —0.76087Frl #

m g —0.40876E-2
Mio —0.78814E-1 ” 1*0 —0.37228E-2
M i l —0.80b(i0E"l ” 1*1 —0.45489E-2
M i 2 — 0.8031 IE* 1 ”1*2 —0.10325E-2
M i s —0.7980 IE-1 ” 1*3 +0.59331E -4
M i i —0.78755E-1 ” 1*4 +0.60910E-3
M i s —0.77321E-1 ” lT.; +0.30590E-3
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M

0

Fig. 4 .1 . General shape of the dipole moment o f  diatomic 
molecules as a function o f  the internuclear d istan ce .

: Dipole moment with unique p o la r ity .
: Dipole moment with reversal o f  p o la r ity .
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Fiq. 4 .2 . Dipole moment o f  HF as a cubic polynomial in u 
(curve 1 ) ,  in  y (curve 2 ) ,  and in z (curve 3 ) .
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Fiq. 4 .3 . HF dipole moment function M (y) with correct large-r
behavior, obtained by minimization using a small number of
experimental transition matrix elements.
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M (D)
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Fiq. 4 .4 . HF dipole moment function M (y) with correct large-r
behavior, obtained by minimization using a large number of
experimental transition matrix elements.
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5 . 0 -

r (A)

/ 2

Ursi_n Urt
rvi rnC53

Fig. 4 .5 .  Variation with r o f  the factors  o f  Cg, Cg, and 
in  the dipole  moment function M^(y).
Curve 1: By/(1-By) ; Curve 2: - ln ( l -B y )  ;
Curve 3: By + ( l -B y ) ln ( l-B y )  ; Curve 4: 1 + (1-B y)ln(l-B y)/B y.
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Fiq. 4 .6 . HF dipole moment function M^(y) with correct large-r
and small-r behavior, obtained by minimization using a small
number of experimental transition matrix elements.
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Fiq. 4 .7 . HF dipole moment function M (y) with correct large-r
and small-r behavior, obtained by minimization using a large
number of experimental transition matrix elements.
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s a c a
UJ La LO

Fi g. 4 .8 .  Plot of the generating function = (c^ + 0 2 ) 8 " 
versus the index n.
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M (D)

2 . 5 -

p-i m =r
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Fiq. 4 . 9 . Comparison o f  various dipole  moment functions fo r  HF.
2

---------------  : Our b est  d ipole  moment function M (y ) .
---------------  : Our cubic dipole moment function M(u).

Cubic d ipole moment function from R e f . (29).
+ + + + + :  Ab i n i t i o  dipole  moment by Lie (R e f .(2 7 ) ) .



CHAPTER V 

CONCLUSIONS

In this -work "we have shovn that the infinite series in powers of y is a 

very useful representation of many quantities of a diatomic molecule, as we 

have applied it to determine the internuclear potential energy and the dipole 

moment of HF. In case of a heavy molecules such as CO, a truncated version 

of this series is sujEBcient to represent its internuclear potential for many 

bound-state levels. However, for lighter molecules like HF, the truncated 

series still can be used, but the breakdown of the Born-Oppenheimer ap

proximation should be accomodated in the modified Dunham’s coefficients.

We have gone further by developing a method to determine the HF 

internuclear potential function which has the correct asymptotic behavior 

and at the same time is capable of reproducing not only accurate vibrational 

eigenenergies but also accurate term values and rotational constants. For 

this purpose, we have expressed higher-order PMO parameters bn with n >  

12 as a function of n, which goes to zero as n approaches infinity. Several 

functional forms have been tested, and the one giving the best results is 

found to be (ci +  C2 /n  -j- CQ /n {n  — 1) c ^ / n { n  In this way

the potential is represented by an infinite power series in y,  which however
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can be cast in a finite analj'tical form containing a reasonable number 

of parameters. These parameters then have been determined by a least- 

squares fitting of experimental spectroscopic data. Our PMO potential 

function thus obtained is at least as accurate as the RIvR counterpart but 

obviously ofiers a lot more of convenience and economy.

The same idea has been applied to obtain the dipole moment of 

HF with correct large-r asymptotic property, to which a suitable corrective 

term has been added so that its correct small-r behavior can also be at

tained. Among the various functional forms proposed, we have found that 

only the model =  (ci -}- C2 /n )B ^  works best for HF whose dipole mo

ment has unique polarity. The calculation of this dipole moment function 

has been performed numerically, using the highly accurate PMO potential 

obtained previously to solve for the vibrational eigenfunctions, and a large 

number of available transition matrix elements (experimentally deduced) 

in the process of minimization.

The dipole moment functions of HF as cubic polynomials in u, y 

and z have also been determined because they are of practical interest and 

besides their calculation is rather easy and straightforward.
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APPENDIX A

CALCULATION OF e„, U  AND IN TERMS OF

1. Calculation of Sn 

Multiplying Eq. (2.2a) and Eq. (2.2b) by each other, we obtain

[10]

1 =  (A.1)
m,n=0

Since the coefficients of every power of w except must vanish in Eq. 

(A.l), we have the following:

1 do^oj Co dg

di Cocodi - f  Cl do =  0; Ci
do ’

Cidi +  Cod2
Codg +  Cl di +  C2do =  0; C2 =

Cadi 4" Cld2 Cods +  csdo =  0; cg =

do

 Ca di H~ Cl d2  ~t~ Co dg
do

AT—11
Cod;V H" Cl div 4 “ • • • , +C ;vdo =  Oj Cy\i =  — —  / Z  ^n^N-n-  ( ^  2)

° n = 0
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2. Calculation of /„

Raisiijg Eq. (2.2b) to the third power, we obtain

f :  c e , e , „ » i ± ^ = S « , î  f ;
/: , l , tn =  0 ri — 0

and equating cocfDcients of w ^ ,  we get

n n — k
fn — 2̂ X )  M-3)

k ~ 0  1 = 0

3. Calculation of

Differentiating Eq. (2.2b) with respect to (^ is defined in Eq. 

(2.10)), we have

 ̂ n=0 ^

=  2 (n -b
n = 0  
m •= 0

where w '  =  ^ .

Differentiating again and dividing again by p  yields

w ' "  'ç—\ {n  m  — 2 ) v j '
—  =  2 ^{n - i- l){n -] -m )en em yJ  %------------ ,
P n = 0   ̂ P

m  =  0

=  —  (n +  l)(n +  m)gmgrnez
m ,n,l

=  — ^  •

y / w  j = o

Equating coefiScients o f  , we find

n y—yn
9 j  ^   ̂ ^   ̂ (^ ~1~ 1)(^ “f" 6m —n—-m . (.'4.4)

rri=0 n  =  0



APPENDIX B

C O m ^R G E N C E  OF THE INFINITE PO'WTIR SERIES M{u), M{y) AND M{z) 

Given an infinite power series in variable q in the form
OO

M (g) =  Mo +  X ) ^ n 9"- (B . l )
n = l

This series will be convergent if the following condition is satisfied

M„+1
lim — ——-—  =  lim

n —foo I J\dnQ * n —♦■oo Mn
-q\ <  1, (R.2)

which is equivalent to

|g |- lim < 1 .  (B.3)
n —►OO Mn

If l i m ] I <  1 then we must have |g |< l  so that the inequality (B.3) is 

satisifed.

The dipole moment function as an infinite power series in u =  

r — re can be written as
OO OO

M{u) =  mo +  ^  =  mo -{- ( “---- ~ T  •
n — l  n = l

Assuming that lim„_»ool“i ^ ^ ^ e |  <  1, then from Eq. (B.3) this series willI *̂ n+l .

converge if or | r — Te\<Te, or

0 < r < 2 r e .  (R.4)
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For HF,

0 < r <  1.8336 Â. (5.5)

For the power series in the variable y =  1 — g—«(r—
00

M{y) =  M„ +  2 3  M „ÿ",
n = l

if lim] I <  1, then from Eq. (B.3) the condition for its convergence is

[38]

|y |< l  or — \ < y  <  1.

This imposes a condition on r:

Tg — - l n 2 < r < o o .  (5.6)
a

In particular, for HF the convergence range is

0.6346 Â < r <  (50. (5.7)

Similarly, the convergence of the infinite power series in z =  g“(’'—’'=) —
OO

M W  =  r „ +  2 3  T . r ,
n — l

requires that

| z | < l  or - l < z < l ,

or

—00 <  r <  Te +  -  In 2. (5.8)
a

Applying this relation to HF, we obtain

—00 < r <  1.1990 (5.9)



A PPEN D IX  C

EVALUATING DIFFERENT POWER SERIES 

The following infinite power series can be represented by simple 

analytical functions [38,39]:

OO

5 3  a:” =  x{l +  x - \ -x ^ -]  ) =  — (C. l )
n = i
OO OO , o o

' ^ n x ^  =  x Ÿ ,
n = l  R= 1  R= 1

x^ , x^ x^ a:” .
L - T  ~ ---------------------------- ------- IT *'n = l

=  — ln(l — x)", (C.3 )

=  ^ / a : "  z "  y  Y ' £ ! . _ l y ' £ ! Î 3

=  -  M l  -  a:) -  ^ ( - a :  +  ê  % ) ,
^ n = l  ”

=  — ln(l — x ) — g (—z — ln(l — a;)),

=  l  +  ( i ^ l n ( l - a : ) :  {CA)

1 0 1



1 0 2

oo

n = 2 n(n — 1)

_ z" z " - :

„ ? 2  "  “" S ” - ! ’

^  z ” z ”

n = l  n.= l

z +  ln(l — z) — z ln(l — z),

=  z +  (1 — z)ln(l — z). (C.5)



APPENDIX D 

NUMEROV METHOD 

The Numerov method is usually used for solving a linear, second 

order, and self adjoint differential equation of the form [35]

f  = F { x ,y ) .

We proceed by the method of undetermined coefficients:

Vk+i =  Ar/fc +  B yk—i +  h^{CFk+i +  DFk +  EFk—i ) -}- -R- (D .l)

We start from the Taylor series expansions of yk+ i, yk—i,  P ft+ i, and 

Fk—i,  around point x:

Vk+i =  V k +  hyf> +  +  li*® !'?’

4! 51 6!

-  3,V k - i  — y k -

+  4- (D.26)

h^Fk+i =

+  (D.2c)

ĥ Fk-i =  -  h ŷP +  +  J*®!''®’- (-D M)
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Substituing yk+i, Vk—i h ^ F k ^ i ,  and h^Fk—i from Eq. (D.2) into Eq. 

(D .l) and matching the coefficients of different powers of h (up to h'^) on 

both sides of Eq. (D .l) we get

1 5  1A = l ,  D =  - l ,  C =  - ,  D = | ,  E  =  and R  =  - ± l ^ .

Thus, we obtain

Vk+i =  ^yk — Vk—i +  — h^(Fk+i +  lOF* +  Fk—i ) + R ,  (D.8)

which is the basic formula of the Numerov method. The radial Schrodinger 

equation can be written in a unitless form as

^ = . [ V , - E ] i , i .  (23.4)

Using Eq. (D.3) we can find the numerical solution to Eq. (D.4) as [35]

^  j_l_ 1 — 1 ( Vj-j-1 — E )+ lO ^ i (Fj — E)-\-ipi— 1 [Vi— I — E)],

which is equivalent to  the pair of equations

n + i  +  r i _ i  -  2Yi =  hHVi -  E)i>i

Vi =  [1 -  i h ^ / U W i  -  E)l.

where h is the separation between adjacent r values and E  is a trial 

eigenvalue.



APPEN D IX  E

1. Relationship Between rrin and Mn 

In Chapter IV we introduced three infinite power series [Eq. (4.1)],

[38],

OO

M{u)  =  mo +  ^  m „îi” , (E .l)
n = l

oo
M (y)  =  M„ +  (B.2)

n = l
oo

and M {z)  =  To +  (E.3)
n = l

where mo =  Mq =  To- If the coefiSicients of one series are known, then 

corresponding coefficients of the other two series can be evaluated as shown 

in the following. Using y  =  \  — exp(—cm) and the binomial theorem, we 

can write

!/" =  ( l - e - “” ) " =  è ( - l ) ‘ ( ^ ) e - « “‘ ,

- Ê

The summation ik)  shown to be zero (replace by
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1 in both sides of the Eq. (E.4a)). The Eq. (E.4b) can now be written as

OO

!/" =  E  (g .5)
m = n

where =  1, and (%) =  Putting

Eq. (E.5) into Eq. (E.2) and changing the order of summations, then 

comparing to  Eq. (E .l), we finally get

m_ rrim=  (£ .6) 

where satisfy the following recurrence relation [38]

^   ̂ '’n(m — A: +  1) — A:

k=n
A l .  (E .l)

2. Relationship Between rrin and Tn 

Using z =  and the binomial theorem, we write

z" =  (e““ -  I f  = ( - ! ) ”
fc=o ^ /

m=l  fc=l ^ ■'
oo oo /  \  . m

m=n fc=l

The summation (—1)” E m = \ E " = i  [(— t urns out to be zero in 

Eq. (E.Bb), which hence reduces to
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o o

^” =  E  ( a t t r ,  (£.9)
m=n

where is given by

Substituting Eq. (E.9) into Eq(E.3) and comparing with Eq. (E.l)

we find

m.
m

(£.11)
n = l

Tn can also be evaluated in terms of by matrix inversion [38];

Tn =
m=l

where

k=m

n{n — +  1) — A
n — A: +  1

D T . (E.12)

3. Relationship Between Mn and Tn 

Using y — z{ l-\-  z)~^  and the binomial theorem, we can write

S'” =

where m — n - \-k .  Substituting Eq. (E.13b) into Eq. (E.2) and comparing 

with Eq. (E.3) we get [38]

n = 0
( B . 1 4 )



1 0 8

where

/-̂ n   / 1 \m—n f ^   ̂A   / -i \m—n

=  r ~ l 7 ” ] g r ^  XE.15)

G :  =  1.

To obtain Mn  in terms of Tm> we substitute z =  y{l — y)~^  into Eq. 

(E.3); and comparing to Eq. (E.2), we find [38]

M „ = ' £  H 'STm,  
m = 0

where

HI  =  1 .
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