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Abstract 

Tissue engineering has become a very popular method when combined with 

bioreactors for treating disorders of the musculoskeletal system. A scaffold that is 

biocompatible and bio-absorbable is seeded with the cells then applied a mechanical 

or chemical stimuli and growth factors that differentiate the cells on the construct into 

the accurate cell lineage. Tendon tissue engineering is the bridge between engineering, 

biology, and medicine that has the potential to create a biological substitute for tendon 

ruptures and restore them close to their full function and capabilities. The need for 

functional tendons for reconstructive surgeries is clear. Currently, autographs and 

allographs are a commonly used transplant. However, there are also issues with these 

solutions such as availability or donor site morbidity. Therefore, a tissue-engineered 

construct would be a welcome and more beneficial solution for severe tendon injuries. 

Our hypothesis is that due to the unique regenerative capacity of the human umbilical 

vein, functional tendons can be developed. The end-point of this project is the 

development of bio-functional tendons using this novel bio-matrix, to a point that 

animal studies can be conducted. The ultimate goal is the development of a prosthetic 

graft with success rates exceeding that of the current benchmark ‘autologous tissue’. 

 This study investigated three main parameters of stimulating a human 

umbilical vein (HUV) construct seeded with mesenchymal stem cells (MSCs): 

frequency, duration, and force. The effects employed were varying the duration (0.5, 

1, and 2 hours/day) and the frequency (0.5, 1, 2, cycles/min) of culture in the 

bioreactor for up to 7 and 14 days with a constant strain rate of 2%.  It was found 
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that the highest proliferation rate was observed for the 14 day culture point with the 

extended (2 hours/day at 1 cycle/min) with a 117% increase compared to the 7 day 

extended group. Extracellular matrix fiber alignment and quality along with cellular 

penetration increased significantly with the extended duration and correlates with the 

upregulation of collagen type I (COL I). Although previous studies indicate that at 

earlier time points slower and shorter were best for construct development, at the 14 

day time point longer durations were beneficial.  
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Introduction 

Tissue engineering is a developing field that links biologics with engineering 

to promote tissue regeneration. Key components for successful tissue engineering is 

to have an appropriate cell or stem cell source typically derived from the patient via a 

cell biopsy. A scaffold that is biocompatible and bio-absorbable is seeded with the 

cells then applied a mechanical or chemical stimuli and growth factors that 

differentiate the cells on the construct into the accurate cell lineage. When implanted 

in a patient, the tissue construct is expected to influence extracellular matrix 

organization and construct degradation, limit any immune reactions, all while the 

native tissue remodels and regenerates. Tissue engineering has become a very popular 

method when combined with bioreactors for treating disorders of the musculoskeletal 

system. 

 

Tendon Tissue Engineering 

Tendons transition muscle to bone, a critical function of the musculoskeletal 

system [1]. Those affected by tendon injuries range from athletes who strain 

themselves to the elderly whose tendons degenerate. Mild aches and pains associate 

with less severe symptoms of tendon disorders. For more severe injuries, treatments 

range from electrical stimulation or orthopedic surgery in combination with tissue 

grafts to augment the injuries and promote tissue growth. Tendon injuries especially 

are difficult to treat surgically which is why research has grown considerably in the 

role of tissue engineering as an alternative repair method with increasingly innovative 

techniques. Tendon tissue engineering is the bridge between engineering, biology, and 
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medicine that has the potential to create a biological substitute for tendon ruptures and 

restore them close to their full function and capabilities. 

Tendons provide the necessary mechanical properties to affectively transmit 

high loads and stress between the bone and muscle. They allow for a certain amount 

of elasticity, but also the ability to recover their original shapes during various stress 

conditions [1]. Tendons are mainly made up of collagen type I fibers with small 

amounts of collagen type III and elastin. These tissues consist almost entirely of 

collagen fibers, arranged in parallel bundles containing fibroblasts allowing for the 

tendon to withstand high uniaxial tensile loads as seen in Figure 1 [2]–[4].  

 

 

Figure 1: A collagen protein molecule is arranged (1) into a triple helix 

tropocollagen. The collagen fibril is made up of glycosylated propeptides (2) 

called procollagen in which the ends of the triple helix are trimmed (3) so that 

collagen fibrils can be stacked form a collagen fiber. Multiple collagen fibers (4) 

become a collagen fiber bundle that make up most of the tendon. 
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The collagen fiber bundles have a noticeable crimp pattern to them that tend to 

dampen transmitted forces going across them [5]. These fibroblasts, also known as 

tenocytes in the tendon, are the cells responsible for the production of the nonfibrous 

component of the matrix: the precursors of collagen, elastic fibers, and the 

extracellular matrix (ECM) [2]. Injuries in a tendon are influenced by the amount of 

force produced by the contraction of the muscle to which the tendon is attached and 

the cross-sectional area of the tendon in relation to that of its muscle [2]. Human 

tendons can undergo a strain of 0.10 and elastic stiffness of 700 N/mm2 [3]. Tendons, 

depending on where they are in the body, are able to withstand tensile strengths 

ranging from 30-200 MPa, see Table 1 for more details.  Research is focusing on 

creating tendon grafts as close to the native tendon in a specific anatomic location as 

possible with the condition that these grafts will be able to augment and reattach the 

ends of severed tendons. A variety of cell sources have been utilized in these research 

studies. 

 

Table 1: Typical Mechanical Properties of Tendons within the Human Body.[6]–

[9] 
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Tendon Cell Types and Sources 

Cells are the producers, modifiers, and recruiters that promote tendon tissue 

regeneration: responding to physical and chemical stimuli. There are several cell 

sources used in tendon tissue engineering including bone marrow mesenchymal stem 

cells (MSCs), adipose derived stem cells (ADSC), and adult tenocytes. Tenocytes and 

tenoblasts are the primary cell type found in tendon ECM. Tendon ECM is made up 

of several molecules such as collagens, elastin, proteoglycans, and glycoproteins. 

Studies increasingly stress the translation of physical stimuli to chemical stimuli, 

mechanotransduction, as a component to the differentiation of stem cells [10]. For 

example, tenocytes utilize gap junctions in conjunction with tendon fascicles to 

communicate responses between cells when undergoing tensile forces [11].  These gap 

junctions transport ions or other small molecules between tenocytes in response to 

these loads, coordinating the cell signaling cascade. The forces are potentially sensed 

by integrin receptors, focal adhesions, stretch activated ion channels, and the 

cytoskeleton [12]. Tenocytes express a variety of connexins such as connexins 26, 32, 

and 43 within the gap junctions [13].  The cell signaling cascade is activated in 

response to these components and turns on adaptor proteins such as FAK and paxillin 

[14]. Downstream proteins such as extracellular signal-regulated protein kinases 2 

(ERK) and c-Jun N-terminal kinases (JNK) that activate and regulate signaling 

pathways to include mitogen-activated protein kinase [15], Rho-dependent kinase, 

NF-kB, PI3K, and protein kinase C pathways. These pathways lead the signal to 

modify the gene transcription, differentiation, cell survival, and gene expression. 

Growth hormones that are secreted to enhance collagen expression include 
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transforming growth factor beta (TGF-B), fibroblast growth factors (FGF), and growth 

differentiation factors (GDF). Transcription factors encode for collagen alpha-1[1] and 

collagen alpha-2[1] that are involved in collagen fibrillogenesis. Therefore, strain 

transmitted from a surface to a tenocyte via these pathways, provide for enhanced 

tendon generation.  

Cell conditioning usually entails mechanical stimulation regimes such as 

oscillatory stretch cycles, vibrations, and multidimensional forces that are 

intermittently applied or one continuous motion. Force and duration are parameters 

that researchers often vary to try and optimize tendon regeneration. Tenocytes can 

dedifferentiate into immature fibroblasts in absence of stretching [16]. Type and 

magnitude of mechanical forces on tenocytes can have varying effects on gene 

expression [17]. Over-stimulation or under-stimulation regimes may lead tenocytes to 

induce collagen damage, increased metalloproteinase levels, and apoptosis [18]. 

Tenocytes, when properly stimulated, will exhibit markers involved in tenogenesis 

such as scleraxis (SCX) and tenascin-C (TNC), a glycoprotein that is a later term 

differentiation marker [19]. Unlike the differentiation of MScs towards bone 

osteoblastic or chrondroblastic lineage, tenocytic differentiation lacks a universally 

accepted set of markers that can be used to monitor their differentiation. SCX and TNC 

are the most commonly used markers by researchers when testing for tenocytic 

differentiation.  Tenomodulin has been used as a marker for tenocytic differentiation 

and helps to increase tenocyte proliferation.  

Aside from cell source, cell seeding also plays an influential role in achieving 

uniform cell seeding [20]. Tendon derived stem cells (TDSC) under cyclic tensile stain 
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of 0.5 Hz frequency and 4% amplitude showed a greater upregulation of TNC and 

SCX [21]. Other cell types such as ADSCs cultured on an electrospun fiber scaffold 

and undergoing cyclic tension showed an increased concentration of GDF-5 and have 

effective differential capabilities towards tenocytes for tendon repair [22]–[24]. A 

recent study was conducted that extracted dental pulp stem cells from a tooth to 

determine if they could act as a sufficient cell source for tendon tissue engineering 

[25]. Chen et al. statically cultured dental pulp stem cells (DPSC) onto PGA fiber 

scaffolds. The fibers were fixed to a custom-made spring that mechanically stretched 

it under tension. After three days the cell’s gene expression was analyzed using real-

time polymerase chain reaction (RT-PCR) and were found to express differentiation 

markers for collagen 1 and IV, SCX, and TNC, all common markers for tendon cells. 

This shows a novel use of DPSC-PGA constructs. Then the constructs were in vivo 

implanted into mouse models, also demonstrating that with mechanical loading 

DPSCs are a new potential stem cell source for tendon tissue engineering. It has yet to 

be identified which cell line is the best source of stem cells for tendon tissue 

engineering. It is an ongoing development using different stem cell types and 

stimulation parameters to determine which cell has the best accessibility while easily 

differentiated and proliferated into tenocytes.  

 

Scaffolds for Tendon Tissue Engineering 

A wide array of scaffolds have been investigated in tendon tissue engineering 

strategies aiming to improve the currently utilized clinical approaches. Clinical 

therapies include the use of grafts in severe tendon injuries utilizing autografts. 
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Although autografts have very low risk of graft rejection, they also suffer from donor 

site morbidity [26]. Allografts have been also employed using mostly tendons acquired 

from cadavers. However, they suffer from limited availability and excessive cost and 

potential disease transmission. Xenografts are becoming a popular alternative to 

regenerative medicine and in the case of tendons, they are mostly of bovine or porcine 

origin. Unfortunately, their low cost and relative abundance is countered by the need 

to perform decellularization prior to their use sense they would otherwise elicit a 

strong immune reaction. Obviously decellularized tendons lack many of the 

characteristics of healthy tendons and as such they have very limited reparative 

capacity.  

Ideal biomaterials for tendon tissue engineering will assist in cell organization, 

provide a tendon like scaffold, and be amenable to mechanical stimulation required 

for neo-tendon tissue creation. Tendon biomaterials, which can be either natural or 

synthetic, have to be bio-absorbable, biocompatible, and biodegradable. They should 

not induce a cytotoxic response or an immune reaction in the body. The rate that the 

material degrades has to be proportional to the rate of neo-tendon formation, 

encouraging cell attachment in vitro and in vivo, tenocyte proliferation, and 

differentiation. Many tendon scaffolds, however, are limited by their ability for 

nutrient and growth factor mass transport to sustain a high cell number. Nutrient 

diffusion such as oxygen and glucose are important factors to consider for a tendon 

tissue scaffold and were investigated by Issa et al.   

As previously mentioned, tendon scaffolds can either be derived from natural or 

synthetic biomaterials. Since the dry weight of a native tendon is more than 60% type 
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I collagen, a natural scaffold is most likely composed of a type I collagen. Other 

possible natural materials that can be used as tendon scaffolds include silk, fibronin, 

hyaluronic acid, and chitosan. Decellularized tissue can also be used as a scaffold and 

commercially produced decellularized scaffolds include porcine small intestine 

mucosa (SIS), and equine pericardium [26]. One major disadvantage to using natural 

scaffolds is their significantly lower mechanical tensile strength when compared to 

native tendon. However, xenografts and allografts are known for being able to retain 

most of their strength after decellularization [27]. A novel tissue engineered tendon 

scaffold created from decellularized human umbilical veins has also been seen to have 

significantly higher mechanical properties than other conventional natural scaffolds 

[28].  Although, the combination of seeding adult stem cells in decellularized HUVs 

and culturing them in a mechanical stimulator has shown great promise, the diffusion 

of oxygen and glucose from the luminal side exposed to circulating media to the 

cultured cells in the interior of the inverted HUV generated mass transport limitations 

that limited cell growth especially when high cellularity was achieved [29]. This 

indicated that 2 weeks was the longest viable culture time for a closed HUV construct 

with cells seeded in the interior [29].  Without the ability to effectively push nutrients 

and oxygen to outlying adult stem cells, it would be difficult to maintain cultures for 

longer time periods necessary to achieve higher cellularity and tensile properties 

matching the ones of tendons.  

One advantage synthetic scaffolds have over their natural counterparts is their 

higher mechanical properties. Most are specifically tailored to have the precise 

mechanical properties necessary to promote tendon regeneration. However, synthetic 
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scaffolds suffer from poor cell attachment and require cytotoxicity and 

biocompatibility studies to confirm safety. Examples of polymer biomaterials found 

in the literature include polyglycolic acid (PGA), polylactic acid (PLA), PCL, and 

poly(lactic-co-glycolic) acid (PLGA). PLGA is more commonly used as a tendon 

scaffold due to its controllable mechanical strength and degradation rate during the 

fabrication process. In one study, electrospun nano fibers of PLGA were knitted into 

a biomimetic surface utilizing fibrin gel to allow for cell attachment [30]. The fibrin 

modified scaffold was able to demonstrate an increase in cell attachment and 

proliferation rates. 

 

Bioreactor Types for Tendon Tissue Engineering 

Bioreactors are becoming an essential component of tendon tissue engineering 

by providing the controllable environment necessary to influence stem cell 

differentiation through the implementation of mechanical stimulation and the mass 

transport of nutrients [31]. Most bioreactors will have a static base on one end of the 

tendon construct with an actuator on the other end that will stimulate the tissue with 

cyclic strain. Representative bioreactors are illustrated in Figure 2 below.   
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Figure 2: A) A schematic of a biaxial tensile bioreactor. B) A schematic of a uniaxial 

bioreactor stimulating multiple tendon scaffolds with a step motor utilizing a pulley 

system. C) A schematic of a uniaxial bioreactor using a linear step motor. 
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Studies show that dynamic stretching is beneficial for tendon tissue 

engineering when compared to static samples. Static studies typically have poor cell 

yield resulting from the lack of media flow and mechanical stimuli. Although 

commercial bioreactors are available, they can also be custom built to mimic the native 

tendon environment, conform to the scaffold size, and apply uniaxial tension force 

using pneumatic actuators, step or linear motors. One end of the scaffold can remain 

static while the other has loads applied via an actuator or motor as previously 

mentioned. The parameters applied to a construct in a bioreactor can vary widely based 

off of the scaffold thickness and strength as well as the attributes of the cell line. 

Stronger forces might snap a weaker tissue scaffold or cause cell apoptosis. 

 

Commercially Available Bioreactors 

Commercially available bioreactors include the ElectroForce reactor and the Instron 

LigaGen reactor that are popular bioreactors of choice for many studies, however, they 

are also very expensive. The ElectroForce system, originally developed by Bose, uses 

electromagnetic motors and is able to provide tension, compression, and pulsatile 

forces. The Instron LigaGen system utilizes a linear motor to apply tension to samples. 

The Instron LigaGen bioreactor is used in several tendon tissue engineering studies. 

Saber et al. seeded rabbit tenocytes onto rabbit flexor tendons in order to create 

additional tendon material. The constructs underwent a uniaxial strain of 1.25 N over 

5 days at 1 cycle/min in 1 hour periods. It was found that the constructs that underwent 

cyclic loading with the tenocytes greatly improved the elastic modulus of the tendons 

when compared to constructs without the cyclic loading with elastic moduli of 1091 
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± 169 MPa and 632 ± 86 MPa respectively [32]. Woon et al. also utilized the LigaGen 

bioreactor to load human flexor tendons seeded with adult dermal fibroblasts to 

improve the mechanical properties of the allograft before implantation. Constructs 

with cells that were dynamically loaded at 1.25 N for 5 days had much higher ultimate 

tensile strengths and elastic moduli when compared to unloaded constructs and 

constructs loaded without cells with all samples expressing tenogenic markers [33], 

[34]. The LigaGen system was also the choice for Thorfinn et al. This study seeded 

tenocytes onto rabbit flexor tendons and cultured them dynamically for 5 days before 

being implanted in rabbits for 4 weeks. It was demonstrated that the loaded constructs 

had improved ultimate tensile strength and elastic modules than the unloaded construct 

[35].  

 

Pneumatic Motors for Uniaxial Strain 

Pneumatic motors are very easy to keep sterile and clean and can apply high 

force loads. However the air component can increase friction around the motor and 

decrease force output. The even distribution of force is crucial when applying dynamic 

loading to a tendon construct to influence the tenogenic differentiation of cells. 

Pneumatic bioreactors use air to stretch the dish the sample is on as seen in the study 

by Juncosa-Melvin et al. MSCs were taken and seeded onto collagen sponges and a 

strain protocol of 2.4% was applied to learn how the tensile stress stimulus affects the 

tenocytic gene expression of the construct [36]. A second study using  a pneumatic 

bioreactor tested whether mechanical stimulation (5 min for 8 hours a day) applied at 

a peak strain of 2.4% for two weeks would increase the stiffness of mesenchymal stem 



13 

cell-collagen sponge tissue constructs [37].  The constructs that were stimulated 

showed about 3x greater collagen I and collagen III expression. They also had a greater 

linear stiffness and modulus. 

 

Stepper Motors for Uniaxial Strain 

Stepper motors are very precise and can utilize pulley systems and cranks to 

apply tensile forces to multiple samples [38]. Paxton et al. designed a custom uniaxial 

bioreactor to perform mechanical stretch using a stepper motor fixed to 11 tissue 

engineered constructs. Different stimulation conditions can be applied to the scaffolds 

based on stretch frequency, amplitude, and duration [39]. They found that intermittent 

stretch programs increased the collagen content of the grafts when compared to a 

continuous stretch program. One study tested xenografts seeded with bone marrow 

mesenchymal stem cells and subjected them to 0%, 3%, and 5% strain in a custom 

bioreactor that utilized four stepper motors in parallel to apply strain [40].  The cyclic 

strain increased the tenocytic gene expression of SCX when compared to its static 

counterpart and at 3% strain the tendon scaffold exhibited almost the same mechanical 

functions as the native tendon. Youngstrom et al. conducted another study with this 

type of bioreactor to determine which cell line underwent the greatest amount of 

tenogenesis. BMSCs, ADSCs, and TDSCs were seeded onto equine tendon and it was 

shown that TDSCs had the highest degree of tendon cell phenotypes when subjected 

to cyclic loading [41]. The MSCs and ADSCs, however, still exhibited tendon gene 

markers after cyclic stimulation just not to the degree of TDSCs. Unfortunately in a 

clinical setting, retrieving enough tendon stem cells for an adequate graft could prove 
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challenging. Wang et al. designed a programmable mechanical stimulation uniaxial 

bioreactor to apply different cyclic tensile strain on rabbit tendons. Tendons that were 

stimulated with 6% strain were shown to look more like the native tendon when 

compared to the tendons stimulated at 3% strain [42]. Although in the conclusion of 

this study an optimal range of test controls was identified, such optimal conditions can 

only be attributed to the specific scaffolds utilized in the study and cannot be 

generalized further.   

 

Linear Motors for Uniaxial Strain 

Linear motors are more common when testing individual samples. A modular 

bioreactor that consists of a linear motor, media circulation system, and culture 

chamber was used to apply cyclic tensile strain to P(LLA-CL)/Col scaffolds seeded 

with TDSCs in order to test the effect different frequencies and amplitudes [21]. 

Frequencies of 0.3 Hz, 0.5 Hz, and 1.0 Hz and amplitudes of 2%, 4%, 8% were used 

and it was found that at 0.5 Hz and 4% amplitude the TDSCs remained viable, 

expressing SCX, TNC, and collagen type I markers. These results further strengthen 

the conjecture that mechanical stimulation is a necessary component of tenogenic 

differentiation. One study compared a decellularized tendon scaffold seeded with 

allogeneic tenocytes loaded with cyclic strain against a tendon scaffold that was left 

static for 7 days. This study showed that in the absence of cyclic stimulation, the 

tendon scaffold degraded significantly with decreased tensile properties and elevated 

levels of matrix metalloproteinase-2 expression [43]. Wang et al. applied strain rates 

of 5-6% on rabbit Achilles tendons that were not decellularized to examine the 
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degeneration effects in the absence of mechanical stimulus.  Tendons that underwent 

cyclic loading in the bioreactor were able to maintain tendon homeostasis for up to 12 

days while the tendons that did not undergo cyclic loading had severely disrupted 

collagen fibers and lower tensile strength and stiffness.[44]  

Mechanical stimulation is critical to the functionality of tendons. Deng et al. 

seeded ADSCs onto a tendon scaffold made of PGA/PLA fibers. A bioreactor 

stimulated the cell seeded scaffolds at a frequency of 3 times per minute and a stretch 

amplitude of 
1

10
 the length of the constructs for 5 weeks. The constructs were implanted 

in vivo in rabbits with time points taken after 12, 21, and 45 weeks. Results showed 

that at the 45 week time point there was an increase in neo-tendon formation within 

the rabbit [45]. Constructs implanted without cells and without mechanical stimulation 

via the bioreactor had significantly decreased collagen fibril formation. It is interesting 

to note the range of frequencies and magnitude of forces used due to the variance of 

tendon scaffold architecture. A novel cyclic mechanical stimulation bioreactor was 

designed to control frequencies, intensities, and waveforms acting on MSC seeded 

Human Umbilical Vein (HUV) scaffolds. Abousleiman et al. had the bioreactor 

specifically designed for promoting tendon tissue engineering. The bioreactor can 

culture three samples at a time and stimulate them through tension from a linear 

actuator that is controlled by a signal converter [28]. Investigating the use of a HUV 

as a tendon scaffold resulted in significantly stiffer and tougher constructs when 

seeded with MSCs and stimulated with tension when compared to constructs without 

the mechanical stimuli by over 100%. Although the results of the ultimate tensile 
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strength were one magnitude lower than a native tendon, documenting further 

stimulation parameters could prove promising.   

 

Bioreactors for Biaxial Strain 

Since not all tendons undergo purely uniaxial strain, some are biaxial, 

bioreactors have been custom built that apply both tension and torsion forces on a 

tendon construct. Altman et al. seeded bone marrow stromal cells onto silk fiber 

matrices before culturing in a bioreactor for 21 days with 90 degrees rotational and 2 

mm translational deformations at 0.0167 Hz [46]. Results of this study showed 

elongated BMSCs and an increased cross-sectional cell density. This bioreactor tries 

to closely mimic the physiological environment of tendons and ligaments as much as 

possible. Another bioreactor built by Lee et al. also applies tension and torsion. Porcine 

tibialis tendons were decellularized and stimulated in the bioreactor with 110% tension 

and 90 degrees of torsion for 7 days. The ultimate tensile strength of the decellularized 

tendon was found to be greater than the normal tendon [47].  

In conclusion, mechanical stimulation via cyclic stretching has been shown to 

play a critical role in cell activity and tendon tissue health. 

 

Chemical Stimulation 

Aside from stimulating tissue engineered tendon constructs using 

mechanostimulation, it is also possible to implement chemical stimulation. The 

chemical stimuli must still drive stem cell differentiation into the appropriate lineage. 

Cytokines are biochemical cues that influence progenitor cells, however their exact 
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mechanisms are still unknown. Cytokines that have been identified as influencing 

tendon progenitor cells can include transforming growth factor-beta, insulin-like 

growth factor, and vascular endothelial growth factors.  

When tendons are inflamed, the most active cytokine is transforming growth 

factor-beta [48]. TGF-beta helps tendon cells regulate cell differentiation and cell 

phenotype. TGF-beta also induces ECM protein expression [49]–[51]. Other growth 

differentiation factors, such as GDFs-5, -6, and -7 are part of the TGF-beta family and 

form a sub group, the bone morphogenetic protein family [52]. These growth factors 

are critical to the cellular proliferation and differentiation functions, but most 

importantly regulating tendon tissue repair and development [53]–[58].  

Exploring the role of GDF-5, also known as BMP-14 [59], within biomaterials 

was investigated in its role for engineering tendon and ligaments [60]. GDF-5 is 

typically limited to affecting cellular proliferation and maintaining a significantly 

higher stiffness, whereas TGF-beta was able to improve the production of collagen 

type 1 [61]. A study by Hayashi et al. showed that combining bone marrow stem cells 

with GDF-5 accelerated tendon healing activity when compared to treating a collagen 

gel without the growth factor [52]. When human adipose stem cells were treated with 

GDF-5 and ascorbic acid within a copolymer filament scaffold, collagen production 

increased and tenogenic gene expression were upregulated [62]. Stem cells that were 

maintained on poly(DL-lactide-co-glycolide) fiber scaffolds with GDF-5 showed an 

increase in cell proliferation and scleraxis upregulation then when the cells were not 

treated with GDF-5 [22, p. 5]. Investigating the role of GDF-6 showed no 
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improvements and no differences in collagen formation in tendon models utilizing 

mesenchymal stem cells [63]. 

GDF-7, also known as BMP-12, has been investigated for its use in tendon 

tissue engineering. One study by Lee et al. treated collagen scaffolds with GDF-7 that 

were seeded with bone marrow stem cells. There were positive effects on the scaffolds 

such as an increase in cellular proliferation and upregulation of tenascin-C [64]. 

Kishore et al synthesized collagen threads that were electrochemically aligned that 

mimics the extracellular microenvironment of tendon tissues. Using these as scaffolds, 

GDF-7 was used to treat the seeded stem cells and indicated it potential of a tendon 

tissue source due to the upregulation of tendon gene expression markers [65].  

Studies have shown that stem cells treated with basic fibroblast growth factor 

(bFGF) have indicated increase in cellular proliferation and collagen type III 

production [66]–[68]. Similar results were reported by Sahoo et al. when mesenchymal 

stem cells were treated with bFGF on silk/PLGA fiber constructs and there was an 

upregulation of collagen type I [30], [69], [70]. In the presence of bFGF, a study by 

Hankemeier et al. demonstrated an enhanced presence of collagen I and smooth 

muscle actin on BMSC’s for tendon tissue development [71]. BMSC seeded silk fiber 

matrices that are RGD-modified were treated with bFGF. After 5 days of stimulation 

the study showed an increase in cell activity and tissue development [72]–[74].  

Collagen membranes seeded with canine MSCs were treated with bFGF to see the 

benefits for tendon tissue regeneration. In all cases there was in increase in cell 

proliferation [75]. Another study looked at the effect of bFGF on the response of rat 

patellar tendon fibroblasts, and again confirmed enhanced cellular proliferation [76]. 
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A critical growth factor involved in angiogenesis is vascular endothelial 

growth factor (VEGF), however it is usually only upregulated at the end of 

inflammation during tendon healing [77]. A study that supplemented BMSCs with 

VEGF on prepared constructs found that the cells had significant increase in cell 

growth when compared to non-VEGF supplemented cells constructs [78]. Insulin-like 

growth factor (IGF-I) is associated with an increase in collagen productions in various 

tendon tissue engineering models.  IGF-I was shown to stimulate fibroblast 

proliferation and ECM synthesis [79]. Cell attachment and activity was affected when 

human MSCs were supplemented with IGF-I and there was an increase in collagen 

types I and III synthesis [80]–[82].  

One of the main goals of tendon tissue engineering is to prime cells to create a 

functional tendon tissue construct. Oscillatory mechanical stimulation is still the gold 

standard for influencing tenocyte differentiation, although growth factors are clearly 

found to help complement many of these regimes to further the healing process. There 

is still a need for further research into tendon biology and how to effectively utilize 

the specific tendon cellular pathways to promote differentiation into the desired cell 

lineages.  

 

Project Aim 

Over 4 million patients suffer from tendon injuries each year in the United States 

alone. Approximately 250,000 patients will require some form of surgery due to 

rotator cuff tendon injuries [83]. In severe cases, a tendon replacement graft is often 

needed for recovery [84], [85]. These can be in the form of an autograft, allograft, 
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xenografts, or synthetic grafts. However, these grafts can lead to donor site morbidity, 

cause immune reactions, or result in insufficient healing [53], [86]. Tendon tissue 

engineering has emerged as a new approach generating grafts for  the treatment of 

tendon injuries [87]. Common tendon tissue engineering approaches involve the 

combination of adult stem cells in bio-scaffolds together with a period of in vitro 

culture in the presence of mechanical stimulation aiming in the development of 

appropriate tendon graft substitutes [88], [89].  

One of the key objectives for a tendon scaffold is to provide a strong 3 dimensional 

foundation for which cells can adhere and thrive [90]. Biological scaffolds that are 

naturally acellular are most desirable for tendon tissue engineering due to the fact that 

when properly decellularized, they tend to elude the immune response. Biological 

scaffolds typically include collagen, fibronin, hyaluronic acid, chitosan, and small 

intestinal submucosa [91], [92]. However, these constructs are often inferior to the 

strength required to match human tendons necessitating the use of alternative sources 

[93]–[96]. Human perinatal tissues, such as the human umbilical cord, have been 

known to have clinical success as allogeneic biomaterials [97], [98]. Human umbilical 

veins (HUV) are a valuable resource for vascular tissue engineering due to their low 

antigenicity and ability to support cell seeding and growth [99]. Although the HUV 

has been explored for use in various vascular applications, previous studies explored 

its use as a tendon construct due to its mechanical properties and extracellular matrix 

composition [100]. The use of the HUV in vascular tissue engineering involves 

endothelial cells seeded on the luminal side and smooth muscle cells on the abluminal 

side. In contrast, in tendon tissue engineering, the decellularized HUVs is often 
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inverted prior to seeding with cells usually seeded in the interior of the construct 

(abluminal side) that is known as wharton’s jelly, while the luminal side now forms 

the exterior of the construct [101], [102].  

Along with an appropriate tendon scaffold and cell source, mechanical stimulation 

is necessary to achieve efficient cell proliferation and proper differentiation. Typically, 

this is achieved by applying cyclic stretching to a cell-seeded tendon scaffold and 

culturing the constructs in a bioreactor. It is widely known that tenocytes positively 

respond to mechanical stimulation such as cyclic stretching [21], [103]. Various 

studies have shown that mechanical stimulation via cyclic loading is beneficial when 

compared to static controls and results in a significantly higher ultimate tensile 

strength and elastic modulus [28], [32]–[35], [39], [102], [104]. One positive outcome 

of seeding the cells at the interior of an inverted HUV was the observed migration 

towards the exterior of the construct that became significant beyond the first week of 

culture reaching a penetration of 75% [29], [101]. Mechanical stimulation must have 

played a significant role in this migration since in its absence the migratory capacity 

of the seeded cells was diminished.  

The main goal of this study was to develop tendon grafts using decellularized 

HUVs seeded with adult stem cells and cultured under mechanical stimulation. It is 

hypothesized that by varying frequency and duration of the mechanical stimulation on 

the HUV/MSC construct will affect the construct’s properties. At early culture time 

points, mechanical stimulation is hypothesized to be more beneficial as the cells 

migrate throughout the scaffold and adapt to the HUV environment. Previously, this 

was explored for 7 day culture time points. This study investigates the effects of slower 
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and faster frequency as compared to previous studies along with a shorter and longer 

duration of stimulation for up to 14 days of culture.  

 

Materials and Methods 

Cell Source 

MSCs were harvested from femurs and tibias of 6-8 year old male Wistar rats (Harlan, 

Indianapolis, IN) weighing between 150 g and 200 g using prior established protocols 

[105].  The bones were extracted aseptically and the marrow was flushed from the 

bone with α-MEM. The α-MEM (Life Technologies, Grand Island, NY) was 

supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA) and 1% 

Antibiotic:Antimycotic (Gemini Bio-Products, West Sacramento, CA) as seen in the 

procedures listed in Appendix A.  Bone aspirates were suspended in alpha minimum 

essential medium. The marrow was then broken up and cultured in T-75 culture plates 

(Fisher Scientific, Hampton, NH).  After 3-4 days, the media was changed to remove 

any non-adherent cells. MSCs were then cultured until about 75% confluency and then 

passaged. Passage 2 cells were used for all experiments. 

 

Human Umbilical Cord Preparation 

Human umbilical cords (HUC) were obtained from the Women’s Delivery 

Center at the Norman Regional Hospital (Norman, OK) from full term placentas 

(figure 3B).  The HUCs were stored at 4oC for no more than 7 days after delivery 

before being collected then cleaned (figure 3A) and prepared according to previous 

methods to extract the HUV and as seen in Appendix B and Appendix C [101].  
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Briefly, the HUC is cut into 7 cm long sections and then mounted onto a stainless steel 

mandrel and frozen at -80°C overnight (figure 3C).   

 

 

Figure 3: (A) Human Umbilical Cords are being thoroughly washed with distilled 

water. (B) A close up of the HUC before being cut to size and (C) inserted onto 

steel mandrels to be frozen overnight at -80oC 

 

The HUC was then removed from the vein using a computerized lathe (figure 

4).  The resulting HUV was dissected from the HUC and resulted in a 7cm long tubular 

construct that had a wall thickness of 0.75 mm and an outer diameter of 6.75 ± 0.25 

mm.  After extraction the HUV was inverted so that the abluminal side (Wharton’s 

Jelly) would be on the interior of the scaffold as seen in figure 5.  
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Figure 4: A HUC frozen onto a steel mandrel is prepped for HUV extraction and 

locked into place via a computerized lathe 

 

 

Figure 5: the HUC (middle cord) before being lathed, the resulting HUV (top 

cord) after extraction and the final inverted HUV (bottom) 
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The cords were then decellularized and washed in a 1% sodium dodecyl sulfate 

(JT Baker, Center Valley, PA), ethanol, and 0.2% peracetic acid washes (Sigma 

Aldrich, St. Louis, MO).  The resulting scaffold was then pH adjusted in phosphate 

buffered saline to 7.2-7.4 with the resulting scaffold shown in figure 6.  Scaffolds were 

kept for a maximum of 5 days at 4°C prior to use. 

 

Figure 6: Inverted and decellularized HUV 

 

Bioreactor Setup 

 Decellularized HUV sections were immersed in standard media at 37oC prior 

to seeding with MSCs. The cells were washed with 5 ml of PBS then detached using 

2 ml of 0.25% trypsin (Invitrogen, Carlsbad, CA) for 5 minutes. A cell pellet was 

formed using centrifugation and then mixed with 2 mg/ml of collagen type I ( BD 

Biosciences, San Jose, CA) at a density of 1 million cells/mL following Appendix D. 

Special end adapters were attached to the HUV that are designed to hold the HUV in 

place during the seeding procedure (figure 7A-C). Using these adapters it is possible 

to use a 1 ml pipette to load 0.6 mL of the cell-collagen mixture into the interior of the 

HUV and sealed (figure 7D). The seeded constructs were then incubated at 370C to 
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allow the collagen hydrogel to polymerize for 2 hours. The constructs were then placed 

into the bioreactor for varying duration and frequency of 14 days as seen in figure 8.  

 

 
Figure 7: (A) set up to attaching the special adapters to each end of the HUV (B) 

Close up of an unseeded decellularized HUV with the adapters set in place (C) 

Incubating the HUV in media in preparation for seeding (D) An MSC seeded 

HUV sealed with the adapters in place via zip ties 

 

 At this point, mechanical stimulation was applied daily to the constructs 

according to the specific experimental groups described in Table 2. A control group 

was included in which constructs were prepared as described above but without the 

use of mechanical stimulation. Regular stimulation was performed at 2% strain for 1 

hour/day at 1 cycle/minute meaning the construct was strained and then relaxed 1 time 

per minute. Using this as a starting point, the stimulation frequency was varied under 
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two different conditions: 1 cycle/2 minutes (slow) or 2 cycles/minute (fast). In 

addition, the duration of the stimulation was also changed; constructs were subjected 

to either 0.5 hour/day (brief) or 2 hours/day (extended) durations at 1 cycle/minute. 

The regular stimulation was based on previous studies which were shown to be 

beneficial to the HUV/MSC construct. The variations were chosen to create a 

difference in mechanical stimulation without exposing the construct to too much 

stimulation, which has been shown to be detrimental to the tendon tissue engineer 

constructs [29], [100], [101]. The whole bioreactor system is kept in a humidified 

incubator at 37oC, 5% CO2, and 95% air. The load is transferred from the actuator to 

the samples via a piston that connects to the triangular plate which in turn is hooked 

to the three constructs. The media in the bioreactor system is replaced every three days 

with alpha-MEM supplemented with FBS following the procedure depicted in 

Appendix E. The two reservoir system allows the changing of media without having 

to move the bioreactor out of the incubator, minimizing contamination events. After 

culturing, constructs were removed from the bioreactors and prepared according to the 

specific analysis being performed.  

 
Table 2: Description of stimulation parameters for the various experimental 

groups 
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Figure 8: Depiction of the bioreactor. (A) Design of the bioreactor including 

reservoirs for continuous media circulation and linear motor (B) Close up of a 

B&K Precision 4054 Signal Generator (C) Signal Generator and Amplifier (D) A 

close up of the HUV constructs in the reactor vessels 
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Cellularity Analysis 

To determine the amount of cells on the construct, DNA quantification was performed 

on at least three constructs per culture duration, with triplicate sections tested from 

each construct.  After culture, ringlets of about 5 mm long were taken from the top, 

middle, and bottom of the construct for representative sampling.  The tissue are then 

digested in 1 mL of water with 200 U/mL of collagenase type I overnight at 37°C as 

per Appendix F.  Following collagen digestion, samples were sonicated for 5 seconds 

and then subjected to three cycles of freeze/thaw to ensure complete lysis of the cells 

and release of the contained DNA. The solution was then measured for DNA content 

using a Quant-iT PicoGreen dsDNA Assay kit (Life Technologies, Grand Island, NY).  

Fluorescence of the solution was measured at 480 nm/528 nm excitation/emission 

wavelengths.  DNA content was correlated to cell number using a known DNA 

concentration of cells (7 pg/cell) that was previously determined via in-house studies 

[20], [28], [100]. The picogreen DNA assay gives an indirect indication of cell 

viability by showing an increase in DNA concentration, and thus an increase in cell 

number per construct, with time.    

 

Histology 

0.5 cm Sections of the tissue were fixed in 10% formalin (Azer Scientific, 

Morgantown, PA) and then dehydrated in order to be embedded in paraffin (VWR, 

Radnor, PA) following Appendix G.  The embedded samples were then sectioned 

according to Appendix H and placed on Fisherbrand frosted slides (Fisher Scientific, 

Hampton, NH) and stained with hematoxylin and eosin by the protocol depicted in 
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Appendix H. Haematoxylin is a dark violet stain that is basic/positive. It binds to 

DNA/RNA in the nucleus of cells. Eosin is a pink/red stain that is acidic/negative and 

binds to substances such as collagen. The shade of the Eosin is also affected by the 

corresponding acid wash to remove the stain but the collagen is still noticeably 

different than the much darker stained cells making them easier to distinguish. Images 

were obtained using a Nikon Eclipse E800 microscope. Differences in color in 

histological slides may also be due to differences in light balances when using the 

microscope. Lateral sections of the construct were analyzed with ImageJ software and 

the FibrilTool plug-in to determine the fiber alignment [106]. This was reported in 

terms of anisotropy of the fibrils where 0 indicates no directional dependence of fibrils 

while 1 indicates a complete alignment in one direction. Cross sections were examined 

to analyze cellular penetration using ImageJ software.  

 

Mechanical Analysis 

Entire constructs were tested for their mechanical properties using a uniaxial tensile 

testing frame (Untied Testing Systems, model SSTM-2K, Flint, MI) following the 

protocol in Appendix J.  The force vs displacement data was measured and recorded.    

Samples were then tested until failure at 1%/second.  Samples were preconditioned for 

5 cycles to minimize hysteresis before testing to failure.  

 

RT-PCR Gene Expression 

Gene expression was measured utilizing quantitative RT-PCR.  Tissue samples were 

placed into RNAlater (Life Technologies, Grand Island, NY) at -80°C until analysis.  
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The tissue was then homogenized utilizing Trizol (Life Technologies, Grand Island, 

NY) and a tissue grinder as referred to in Appendix K for RNA isolation.  The Trizol 

was then recovered and treated to isolate the RNA according to manufacturer 

procedures.  The resultant mRNA was confirmed to be phenol-free using the nano-

drop one (thermos scientific, Waltham, MA) then reverse transcribed using a RNA-

to-cDNA kit (Sigma Aldrich, St. Louis, MO) and qTower3G thermal cycler (analytic-

jena, Strasse, Germany).  The primers (TaqMan Gene Expression Assays, Foster City, 

CA) utilized for RT-PCR are given in table 3 [107]–[109], [110, p. 2].  The PCR 

analysis was done utilizing the TaqMan Universal PCR Master Mix (ThermoFisher, 

Waltham, MA) and the qTower3G.  Analysis was performed utilizing the 2-ΔΔCt method 

with a static control at day 14. Genes in the experimental groups were normalized 

utilizing the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and comparison between controls and the experimental group were done 

utilizing the 2- ΔΔCt method of comparing experimental gene targets to the GAPDH 

housekeeping gene and then comparing that change to a control.  

 

Table 3: Primers utilized in RT-PCR reactions 
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Statistical Analysis 

All analysis was performed utilizing ANOVA and Bonferroni Post tests for 

significance between individual groups.  A p < 0.05 was used for significance with a 

confidence level >95% and was determined using SigmaPlot software.  Sample sizes 

of 3 or more was used for each analysis. 6 samples or more were utilized for 

mechanical testing. All results were expressed as mean values ± standard deviation.  
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.Results 

Cellularity 

 Sections from three different locations on each of three seeded HUVs were 

tested for cellularity. The cellularity of the non-decellularized HUV was also 

compared to each wash step of the decellularization process to confirm low cellularity 

before the HUVs are seeded from 0.5 cm samples that were analyzed in triplicate as 

seen in figure 9. A statistically significant decrease in cell number was measured in 

the samples stored in PBS for two days as compared to the non-decellularized HUV 

samples. Confirming the prior research in the lab that decellularizing removes a 

significant amount of the existing cells, therefore no additional contribution in 

cellularity is from the HUV itself [100], [101]. Seven day data in this section was 

acquired from a previous study [102]. 
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`  

 

 
 

Figure 9: Average cellularity of the non-decellularized HUV and after each wash 

in the decellularization process. After the final wash with water, samples were 

stored for two days in sterile PB and a final sample was taken from this “After 

Storage” step. * indicates p < 0.05 compared between samples. Data represented 

as mean ± SEM. A sample size of n = 6 was used. 

 

Figures 10 and 11 show the cellularity of the MSC/HUV constructs after 7 and 

14 days of culturing from the different stimulation and duration changes. The dashed 

line indicates the initial cell seeding density of 600,000 cells per construct.  
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Figure 10: Cellularity of the HUV/MSC construct as a function of the frequency 

of the stimulation at 7 days and 14 days. * indicates p < 0.05 compared between 

the 7 day and 14 day samples. # indicates p < 0.05 comparing the 14 day to the 

static control. Data represented as mean ± SEM. A sample size of n = 6 was used. 

Dashed line indicates initial seeding density of 600,000 cells/construct 
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Figure 11: Cellularity of the HUV/MSC construct as a function of the duration of 

the stimulation at 7 days and 14 days. * indicates p < 0.05 compared between the 

7 day and 14 day samples. # indicates p < 0.05 comparing the 14 day to the static 

control. Data represented as mean ± SEM. A sample size of n = 6 was used. 

Dashed line indicates initial seeding density of 600,000 cells/construct. 

 

 In most cases for the MSC/HUV construct, there was a significant increase in 

cell number between the 7 day and 14 day samples with the exception of the brief 

duration (8.39 ± 1.66 million cells/construct). There was also statistical significance 

between the 14 day extended duration, and the 14 day regular and slow frequencies 

(figure 10) when compared to the 14 day static control. The extended duration (figure 

11) of stimulation was shown to have the greatest increase in the number of cells with 

11.3 ± 3.3 million cells/construct, compared to the static culture, which only had 5.31 

± 1.01 million cells/construct, a 112% increase compared to static. The extended 

duration (figure 11) also was the best group investigated in terms of increase in 

cellularity when compared to its 7 day counterpart, with a 180% increase.  
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Mechanical Analysis 

  

Testing the MSC/HUV constructs longitudinally until failure resulted in a 

typical viscoelastic behavior due to the rearrangement of fibers upon stretching. Thus 

the constructs were preconditioned for 5 cycles prior to loading till failure as seen in 

Figure 12.  

 

 

Figure 12: Toe region of stress-strain curves of HUVs preconditioned for 5 cycles. 

After 5 preconditioning cycles the load and unload paths are less likely to undergo 

hysteresis 

 

 Figure 13 shows a typical stress stain plot for HUVs. Figure 14 is a comparison 

of the ultimate tensile strength of the non-decellularized HUV compared to its 
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decellularized counterpart after two days of storage in PBS. Decellularization has 

slightly increased the ultimate tensile strength but there is not statistically significant 

difference.  

 

 

Figure 13: Typical stress strain curve of HUV. The curve has a bell shape with a 

“toe region” consisting of the preconditioning cycles, a linear region located at 

the young’s modulus, a maxima at ultimate stress seen at the tip of the curve, and 

then a final decrease in strength at the failure point. 
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Figure 14: Ultimate Tensile Strength for a non-decellularized HUV and a 

decellularized HUV construct. Data represented as mean ± SEM. A sample size 

of n = 3 was used.  

 

 Prior studies showed that mechanical testing at 7 days revealed that the various 

stimulation groups or the type of stimulation did not result in significant changes 

compared to the static group. Values for the 7 day ranged from 1.06 ± 0.34 MPa for 

the fast group to 1.58 ± 0.35 MPa for the slow group [102]. Figure 15 shows how the 

14 day results differed from the 7 day data. Only the extended stimulation duration 

resulted in a significant increase between the 7 day and 14 day data, as well as a 

statistically significant increase when compared to the 14 day static control. The 
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extended group had an ultimate tensile strength of 3.28 ± 0.63 MPa whereas the 14 

day static control was only 1.74 ± 0.64 MPa. 

 

Figure 15: Ultimate tensile strengths for the various experimental groups at 7 and 

14 days of culture. * indicates p < 0.05 compared between the 7 day and 14 day 

samples. # indicates p < 0.05 comparing the 14 day to the static control. Data is 

represented as mean ± SEM. A sample size of n = 6 was used. Dashed line 

indicates the beginning Ultimate Tensile Strength value of a natural human 

tendon. 

 

 Although the extended group seems to almost double compared to the other 

groups, it is actually very similar to preliminary in house studies [28], [100], [102], 

[111]. At one point, one in house study showed a value significantly greater than the 

extended group for much longer culture durations [111].  
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Histology 

 Decellularization was effective in removing cellular components. This is 

clearly demonstrated in the H&E stained cross sections of the HUV scaffold (figure 

16) before and after decellularization. Cell bodies are hardly visible in figure 16B and 

the fibrils are easier to distinguish compared to figure 16A.  

 

 

Figure 16: (A) Non-Decellularized HUV (B) decellularized HUV (C) Native Tendon 

(porcine) where you can see a noticeable crimp pattern in the collagen fibers 

characteristic of a tendon. There is a noticeable thickness and lack of disruption to the 

native tendon. Scale bar = 500 µm 

 

 Cross sections of the luminal (vein) side of the HUV were compared to the 

abluminal (Wharton’s Jelly) side to confirm the need to invert the HUV prior to cell 

seeding (figure 17) due to dense nature of the luminal side. In figure 17, the luminal 

side appears to be a deeper red than the Wharton’s Jelly side, but this is just due to the 

C 



42 

light balance on the microscope being affected by the different densities. The luminal 

side is dense because its purpose was to prevent the back flow of blood and contains 

collagen and elastic fibers (also stains pink/red). The abluminal side (figure 17B) 

consists of a network of collagen fibers that used to host stem cells, ground substance, 

hyaluronic acid, and macrophages. After decellularization what is left is the network 

of collagen fibers.  

 

Figure 17: (A) luminal side of the human umbilical vein (B) Wharton's Jelly 

(abluminal) side of the HUV. Scale bar = 100 µm. Light balances from the 

microscope at these magnifications create “dark spots” or “shadows” due to 

different depths between fibers. If these were violet or dark violet it would 

indicated a stained cell, however these dark spots are only increasingly darker 

shades of red.  

  

Figure 18, seen below, indicates a representative image of a histological image 

of a tendon cross section. You can see the darker stain of the cell in the magnified box 

because it is also elongated along the fibrils, a known characteristic of fibroblasts 

previously mentioned. Figure 19 shows the difference in the histology between a non-

decellularized HUV and a decellularized HUV. Figure 20 shows the cellular 

penetration via cross sections of the constructs. Cells in all cases are primarily located 
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in the interior of wall of the MSC/HUV construct, with quite a bit of migration into 

the walls, reaching a maximum distance of about 89% ± 3% of the wall thickness 

(Table 4).  

 
Table 4: Maximum cell penetration depth as determined by histological cross 

sections of the frequency and duration group between 7 and 14 days. * indicates 

p < 0.05 for the experimental group compared to the static control. Data 

represented as a mean ± standard deviation. 

 

 

Figure 18: A representative image of a histological cross section with Scale bar = 

500 µm with a zoomed in image of a representative cell with scale bar = 100 µm. 

Other representative cell locations are enclosed in boxes. 
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 Lateral Sections of the HUV after 14 days seen in Figure 21, demonstrates the 

alignment or lack thereof, of the ECM fibers with the direction of stretching. Arrows 

that were input via ImageJ software indicate the direction of stretching. The 

stimulation groups demonstrated fiber alignment, or anisotropy, in the direction of 

stretching as indicated in table 5. Only the extended duration group at 14 days showed 

a statistically significant increase in fiber alignment as compared to the 14 day static 

control. 

 
Table 5: Anisotropy values as determined by histological lateral sections of the 

frequency and duration group between 7 and 14 days. * indicates p < 0.05 for the 

experimental group compared to the static control for 14 day data set. Data 

represented as a mean ± standard deviation. 

 

 

Figure 19: (Left) Non-decellularized HUV with boxes indicating where there are 

cells located (Right) Decellularized HUV. Scale bar = 500 µm. 
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Figure 20: Histological Cross sections for the 14 day cross sections of the (A) Brief 

Stimulation (B) Extended Duration (C) Fast Duration (D) Regular Stimulation 

and Duration (E) Slow Stimulation (F) Static Control. Scale bar = 500 µm. Cell 

locations are indicated by the boxes as referenced in Figure 18. 
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Figure 21: Histological longitudinal sections of the construct after 14 days for (A) 

Static control (B) Brief duration (C) Extended Duration (D) Fast Frequency (E) 

Slow Frequency and (F) Regular Stimulation. Arrows indicate direction of 

mechanical stretching and were averaged using the FibrilTool in ImageJ. Scale 

bar = 500 µm. 
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Gene Expression 

 Figure 22 is an example of the chart for the linear ct (threshold cycle) output 

given by the program qPCRsoft (Analytik Jena, Strasse, Germany). When converted 

into the logarithmic form, you can see the cycle number at which the fluorescence 

signal crosses the threshold (figure 23). 

 

 

Figure 22: Linear Ct output from the qPCRsoft software used to analyze the RT-

PCR data 
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Figure 23: The exponential phase of the Ct (cycle threshold) from the qPCRsoft 

software used to analyze the RT-PCR data. The log Ct values are used in the 2-

ΔΔCt method. Noise is due to empty wells on the plate reader. 

 

Figure 24 shows the gene expression relative to a 14 day static control utilizing 

the 2-ΔΔCt method. The star indicates that there is a statistical significance between the 

experimental groups and the static control. Collagen type I (COL I) was examined as 

a tendon-related ECM gene marker to marker sure the mechanical properties were 

aligning in the preferred direction.  All groups except the slow group showed an 

upregulation of COL I. Collagen type II is a non-tendon ECM related gene marker and 

was significantly downregulated for the Slow and Fast groups only. Only the Brief 

group showed a significantly downregulated instance for RUNX-2, a bone related gene 

marker.  
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Figure 24: RT-PCR results for tendon-related ECM component (COL I), non-

tendon related ECM marker (COL II) and non-tendon (bone) related 

differentiation marker (RUNX-2) for 14 day culture time points compared to a 

static MSC/HUV construct control. Data represented as a mean ± SEM. A sample 

size of n = 3 was used. 
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Discussion 

The main goal of this study was to develop tendon grafts using decellularized 

HUVs seeded with adult stem cells and cultured under mechanical stimulation that 

permit the creation of tendon-like grafts with mechanical properties approaching the 

ones of natural tendons. Previous studies have used the inverted decellularized HUV 

and seeded MSCs in the hollow space in the cylindrical specimen. Such constructs 

cultured under mechanical stimulation demonstrated significant cell growth up to two 

weeks and major rearrangements on the ECM (evident by fiber alignment and 

improved mechanical properties). It is hypothesized that by varying frequency and 

duration of the mechanical stimulation on the HUV/MSC construct will affect the 

construct’s properties. At early culture time points, mechanical stimulation is 

hypothesized to be more beneficial as the cells migrate throughout the scaffold and 

adapt to the HUV environment. Previously, this was explored for 7 day culture time 

points. This study investigates the effects of slower and faster frequency as compared 

to previous studies along with a shorter and longer duration of stimulation for up to 14 

days of culture. Analyzing the cellular proliferation, extracellular matrix organization, 

mechanical properties, and gene expression of the cells present will help elicit the best 

stimulation parameter from the study.  

 The average cellularity was shown to significantly decrease between 

the non-decellularized HUV and after the final step of the decellularization protocol 

and storage in sterile PBS for two days. This confirms the documented results via 

figure 16 that the decellularization of the HUV had only minor disruptions to the ECM. 

Examining the differences between the luminal and the abluminal side of the HUV 
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(figure 17) confirms that the dense nature of the luminal side deters cells from 

penetrating. The Wharton’s Jelly side however, has a lot more adequate spacing of 

collagen fibers to allow cellular movements showing the necessity of inverting the 

HUV contrast before seeding with MSCs.  

Uniformity and distribution of cellularity throughout the MSC/HUV construct 

was accounted for by evaluating DNA quantification tests in three different sections 

taken from the top, middle, and bottom of the constructs and averaging the results. 

Previous results for 7 day culture stimulation groups showed significant increases in 

cellular proliferation against static controls for the slow and regular frequency 

stimulations. 7 day culture of the brief duration also showed significant increase in 

cellularity. For the 14 day culture groups, all but the brief showed a significant increase 

in cellular proliferation as compared to the 7 day culture groups. The slow group 

resulted in a 76% cellular increase as compared to the 7 days and the extended group 

increased by about 80%. Unlike the 7 day group, the 14 day brief stimulation did not 

have statistical significance when compared to the static control. This can be explained 

with other studies showing that too little stimulation can limit the beneficial effects of 

oscillatory motion on MSCs [112]. The fast group also did not increase much 

compared to the static control, this may be because the frequency of stimulation was 

beyond what the cells needed as they tried to migrate through the HUV construct, 

causing cell apoptosis. The slow frequency was significantly increased compared to 

the static control for the 14 day culture period.  

 A significant increase in cellular proliferation for 14 days of culture is also 

reflected in the histological analysis. Although similar to previous studies where full 
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penetration was eluded, mainly due to the luminal side of the HUV, the 14 day groups 

all were able to penetrate a majority of the scaffold (Table 4). Seven days of 

stimulation seem to not be enough time for significant improvements in mechanical 

properties to occur, whereas at the 14 day culture groups, variations among the 

stimulation changes is becoming more apparent. Mechanical stimulation clearly 

enhances the migratory capacity of HUVs through the Wharton’s Jelly. This also begs 

the question whether it is the fibril thickness or the overall fiber alignment that is 

attributing to the strength of the tendon construct. Although would it really matter of 

the goal of the construct is to reach an appropriate strength to match a given tendon 

and augment the injury. 

 Fiber alignment and ECM deposition (Figure 21) is also affected by 

mechanical stimulation on the MSC/HUV construct. The only statistically significant 

increase in anisotropy for the 14 day culture period was the extended group with a 

186% increase compared to the 14 day static control. The static control (figure 21-A) 

fibers had a random orientation and a less dense alignment as compared to the 

extended duration (figure 21-C) which produced much thicker and aligned fibers. This 

can be attributed to the significant increase in cellularity and upregulation of collagen 

type I (figure 24).  The extended duration is also giving the cells more access to 

migrating through the collagen fibers of the Wharton’s Jelly assuming that the pull on 

the construct is causing cells to pull from one fiber to the other and increase collagen 

secretion. The other 14 day stimulation groups had fibers that were not as dense as the 

extended and were not statistically different than the static control in terms of 

anisotropy. All stimulation groups showed a significant upregulation in COL I 
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expression excluding the slow group. This can be due to some noise in the slow sample 

as previous 7 day results showed a significant upregulation of COL I and the slow 

group significantly downregulated the non-tendon ECM gene marker (COL II). A 

bone gene (RUNX-2) was analyzed as a non-tendon type gene marker showing that 

all the stimulation groups were downregulated compared to the static control. The fast 

group barely downregulated the RUNX-2 gene indicating that the increased 

stimulation frequency has the potential to cause unwarranted effects of shear on the 

cells. In contrast, the brief group significantly downregulated the RUNX-2 gene 

showing that the short duration did not cause the cells much shear stress.  

The increase in cellularity, Extracellular matrix reorganization, and cell 

migration through the MSC/HUV construct were accompanied by an increase in the 

mechanical properties of the constructs. As previously reported, there are no 

significant increases in ultimate tensile strength after 7 days of stimulation for any of 

the stimulation groups. Most likely this is due to cells adjusting to the new 

environment. However, at 14 days, the only significant increase in ultimate tensile 

strength as compared to the static control was the extended duration. This can be 

attribute to its increased cellularity and being the only group to have a statistically 

significant increase in fiber alignment. The combination of stretching and having cells 

present in the HUV show a significant increase in mechanical properties. After 14 days 

of stimulation, the extended duration in this study had an ultimate tensile strength 

value (3.28 ± 0.63 MPa) nearing the range of the posterior supraspinatus (rotator cuff) 

tendon (Avg 4.1 ± 1.3 MPa).  
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Although the tendon construct appears stronger, due to the increased cellularity 

and fibril thickness, it is able to withstand a greater fore than the other groups. This is 

important due to the need to reach an ultimate tensile strength as near to native tendons 

as possible, with the goal being to create a graph that can augment an injury. 

Augmenting a tendon injury with a scaffold close in mechanical properties will help 

the healing process and allow the native tendon to retain a greater amount of its original 

strength. With this in mind, in vivo studies will be necessary to examine the long term 

potential of this tendon construct. While significant results were seen up to 14 days by 

varying stimulation parameters, it is still necessary to continue culture successfully for 

up to 28 days before moving into in vivo studies. With continued optimization of 

culture parameters, the results are promising for a tissue engineered tendon 

replacement.  
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Conclusion  

The results clearly show the ability to change the mechanical properties of the 

MSC/HUV construct by varying the frequency and duration of stimulation. After 14 

days of culture for various stimulation groups, an increase in cell number compared to 

the 7 day groups was measured for all groups excluding the 14 day brief duration. 

Mechanically stimulating constructs for an extended duration increased the 

proliferation rate of MSCs and increased the fiber alignment and fiber thickness, 

giving the construct a tendon like appearance. Cell growth tends to directly contribute 

to the extracellular matrix quality reflecting the upregulation of COL I, a tendon-like 

ECM gene marker. Moreover, mechanostimulation resulted in the extended group 

having a significantly stronger and stiffer construct when compared to its 7 day and 

14 day static counterparts. Overall, longer durations such as extended and the regular 

stimulation allowed for increased cellular proliferation while maintaining the 

mechanical properties necessary to promote tenocytic differentiation past 14 day 

culture periods.  
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Future Works  

The goal of this study was to optimize the stimulation parameters for up to 14 

days of culture. While it was found that the 14 day extended duration significantly 

increased the mechanical properties of the construct, the 7 day data showed that the 

regular stimulation had the best increase in cellularity. With the goal of increasing the 

mechanical properties further at the 14 day time point, it would be worth investigating 

combining the parameters for the 7 day and 14 day groups by stimulating the 

MSC/HUV construct at the regular stimulation for the initial 7 days, then switching it 

to the extended for the final week and analyzing the results. The 14 day slower 

frequency also had increased cellular and mechanical properties despite not achieving 

as high results as the extended. This could be investigated by stimulating a construct 

by combining the slow frequency and at the extended duration. It is also necessary to 

include a negative control (constructs stimulated without cells) to further show that it 

is the cells influencing the overall fibril realignment. Further improvements could 

include the use of an Alamar Blue stain that will show a closer approximation  

If either of those stimulation groups pans out, it would also be worth exploring 

the effects of adding growth factors to the culture, such as TGF-beta, on the tenocytic 

differentiation capabilities past the 14 day culture period and how it may impact 

construct development.  
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Appendix A: Extracting Stem Cells from Rats 

Supplies: 

 2x 2 blue towels packs 

 2x gauze (3 stacks) packs 

  2 basins (2 packs) 

 1 plastic container – scissors, skin tweezers, normal tweezers, 2 scissor 

clamps, small scissors, small tweezers 

 5x 5 mL syringes w/ α-MEM 

 MSC Extraction – 250 mL beaker, scissor clamp, small scissor, bone cutter, 

medium tweezers 

 Bone media – α-MEM with antibiotic 

Prepare α-MEM 

1. Filter Medium BEFORE adding antibiotic and FBS 

2. Store the extra 100 ml medium without antibiotic. Will be used to store 

bones. 

3. Add FBS and antibiotic to filtered medium  

Preparing the site for Dissection  

1. Clean table with soap and water 

2. Wipe with alcohol 

3. Cover a small area (for surgery) in the middle of the table with aluminum foil 

4. Place two blue absorbent pads on top of aluminum foil 

5. Use one more blue pad to cover the rat  

a. Cut a circle in the middle of the pad big enough to see dissection part 

(leg) of the rat 

6. Place one blue pad to right of dissection site. This is used to place dissection 

tools on 

7. Fill up glass beaker with alcohol and put dissecting tools in it 

8. Fill on white bowl with alcohol 

9. Fill the other white bowl with iodine  

Rat prep: 

1. Retrieve rat 

a. Let rat rest for at least one day after delivery before performing this 

procedure.  3 or more days is best. 

2. CO2 asphyxiation  
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a. Plug tube in gas chamber 

b. Close the CO2 supply 

c. Place rat in chamber (one at a time and do not let the other rats see) 

d. After about 6 minutes in chamber, feel for heart beat 

3. Shave hind quarters 

4. Soak in ethanol – about 5 minutes while prepping other stuff 

5. On bench – Paper towels, then foil, then blue sheet, then rat, the blue sheet 

6. 1 basin is triodine, 1 basin is EtOH 

a. Container is 70% EtOH 

b. Spray packs as though area is sterile 

7. Iodine entire area around leg, wash with EtOH – 1 pass per gauze with EtOH 

wash 

8. Cut about a thumb width in corner of top of blue towel 

Surgery: 

9. Use hand to stretch skin, start at the top of the hip, use constant pressure, 

keep blade straight and go to ankle/foot 

10. Make sure to handle all instruments aseptically 

11. Peel skin away (filet it) 

12. Cut down on white line from hip to knee (femur) 

13. Cut meat away from bone 

14. Cut ligament at hip to open it up then cut around to free it 

15. White line is tibia, cut around pop it up 

16. Break at joint next to heel 

17. Use back of blade or gauze to peel flesh 

18. Once free, pop knee off 

19. Little meat on top is fine, going to cut below spur 

20. Put in bone media 

21. Repeat steps 8-18 with new blade on other leg 

22. Engulf the rest of the rat with gloves and place in biohazard freezer 

Extracting Bone Marrow from Bones: 

NOTES 

 Usually you flush cells (drill through bone using syringe) from the part of the 

bone that forms the knee. You cut the other end so that bone marrow is 

flushed out of the end that is away from the knee 

 Flush all bone marrow from all rats into one falcon tube then aliquot in 

several T-75 flasks. This way you will get an equal number of cells from all 

rats.  

 Each rat makes 4 to 5 T75 flasks 

Materials 
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1. Blue stand for falcon tubes 

2. Falcon tube with bones (2 tibia and 2 femur per rat) 

3. One empty falcon tube per rat 

4. Needles filled up with media 

5. α-MEM  

6. Pipettes 

7. Four T75 flasks per rat 

8. Sterilize  

a. Two blue absorbent towels, two tweezers to hold bones, two bone 

cutters 

 

PROTOCOL 

 

1. Work above absorbent towels 

2. Use scissor clamp to hold 

3. Get rid of remaining flesh 

4. Open the falcon tubes 

5. Hold the femur with tweezers and cut the large part filled with tissue 

6. Stick the needle on the other side and drill until the bone marrow become 

visible  

7. Flush media in bone until marrow falls into falcon tube 

8. For tibia, cut the small end and flush through the large end 

9. Break up marrow with plastic pipette and remove bone fragments 

10. 4-5 flasks for all marrow 

11. Change media after 4 days – be very gentle, do not use PBS on first feeding 

because the cells are still loosely attached 

12. For second change – use PBS to wash hematopoietic cells away 

13. When ready to be split – about 1 week or so, do 1:5 split 
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Appendix B: Preparing Veins and Lathing 

Supplies 

 Steel Mandrels 

 Glass Rod 

 Paper Towels 

 Styrofoam Container 

 Decontamination supplies (bleach, detergent, water, ethanol) 

 PPE – Lab coat, face mask, goggles, double gloves 

 WD-40 

Procedure 

1. Put on PPE prior to working with veins. 

2. Cut vein about 1 inch away from placenta and also cut off about 1 inch from 

the other end. 

3. Measure and cut to length, use tubing guides in vial as an estimate, about 8.5-

9 cm. 

4. Insert glass rod into vein and feed it through. 

5. Use the vein/rod to slip the vein onto the stainless steel mandrel 

6. Straighten and stretch veins as much as possible. 

7. Roll veins individually in paper towels. 

8. Group 4-5 veins in a paper towel. 

9. Place veins in a Styrofoam container and place into -80oC freezer in D214. 

10. Allow to freeze overnight prior to lathing. 

11. Clean working area that was near blood with bleach, detergent, water, and 

ethanol.  This will include the sink and most likely biohood.  Discard any 

biological waste in specialized waste bags. 

12. When ready to lathe, cover surrounding lathe area with paper towels to 

contain mess. 

13. Open up the software and load appropriate program. 

a. Go one directory above cnc (Turn Master Pro directory) and open 

Brandon folder 

b. Program will be in there (0.75 cm thickness) 

14. Set up lathe and place blade next to an empty mandrel (basically touching) 

manually using knob in front to set z direction initially. Make sure computer 

control is off! 

15. Turn on computer control and use the software to jog the blade to the left, 

near the chuck. 

a. Control menu  Jog Tool 

16. Set origin to the bottom and left in machine parameters. 

a. Options menu  Machine Parameters 
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17. Initialize this as the zero position. 

a. Control menu  Init As Start Position 

18. Manually move the blade out 5 cm in by typing in +5 in the z direction box of 

moving blade. 

a. Control menu   Move to point 

19. Initialize as zero position again. 

a. Control menu  Init As Start Position 

20. Run the program once to ensure proper operation. Use the menu or F5 key 

shortcut 

21. Take a pack of 4-5 veins out from the freezer. 

22. Remove the paper towel from a vein as best as possible, don’t worry if some 

is stuck and place into the lathe, tighten chuck and cone to secure the 

mandrel.   

23. Place the splatter guard and turn on rotation.  

24. Start the program and allow the lathe to complete the program, ensuring that 

the motor, blade, and process operate properly. 

25. Take out vein and repeat for as many as needed. 

26. Once finished, clean lathe.  Place any waste that touched tissue or has blood 

in biological waste bag. 

27. Wash the blade, blade holder, guard, cone, and any tools with soap and water. 

28. Wipe out any tissue residue from the lathe with paper towels.   

29. Once finished, clean lathe with soap and water.  Dry thoroughly.   

30. Spray a towel with ethanol and wipe lathe. 

31. Lubricate with WD-40 or a grease as needed. 

32. Place waste bag in refrigerator in D211. 
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Appendix C: Processing Veins and Decellularizing 

Supplies 

 DI Water – Autoclaved, 4 bottles 

 Sodium Dodecyl Sulfate (SDS) 

 Peracetic Acid – Light sensitive keep out of light as much as possible. 

 Ethanol (95%) 

 10x Phosphate Buffer – Autoclaved, 1 bottle 

Procedure 

 Prior to decellularization process cords as needed. 

o If keeping as a cylinder, use special long, wire grippers to invert vein 

so that the Wharton’s jelly side is inside (rougher) and vein is outside 

(smooth). 

 Cut to about 6.5 cm in length 

o If using flat veins, cut open lengthwise and trim to desired length, 

about 5 cm. 

 If you have more than 5 pieces of tissue, use 1 L bottles (750 mL of liquid), 

otherwise use 500 mL bottles (375 mL of liquid). 

Washing Steps 

1. SDS for 24 hours 

a. 750 mL:  7.5 g of SDS in 750 mL of DI water 

b. 375 mL:  3.75 g of SDS in 750 mL of DI water 

2. DI water 

a. Wash for 10 minutes, 20 minutes, 30 minutes, and then 24 hours 

3. Ethanol for 24 hours 

a. 750 mL:  600 mL of 95% ethanol and 150 mL of DI Water 

b. 375 mL:  300 mL of 95% ethanol and 75 mL of DI Water 

4. DI water 

a. Wash for 10 minutes, 20 minutes, 30 minutes 

5. Peracetic Acid for 2 hours 

a. 750 mL:  720 mL of DI water, 30 mL of 95% ethanol, and 1.5 mL of 

peracetic acid 

b. 375 mL:  360 mL of DI water, 15 mL of 95% ethanol, and 0.75 mL of 

peracetic acid 

c. Once cords are in bottle and shaking, cover to protect from light. 

d. Afterwards, cords are now sterile and following washing steps must 

be done under the bio-hood with sterile instruments (long tweezers).  

Cords will look white. 

6. DI Water 
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a. Wash for 10 minutes, 20 minutes, 30 minutes, and then 24 hours 

b. After 24 hours and transfer to next step, check pH of water. 

7. 10x Phosphate Buffer 

a. See phosphate buffer protocol for recipe 

b. After 24 hours, check pH to make sure between 7.2-7.4.  If not, wash 

for another 24 hours in new 10x phosphate buffer. 

8. Store cords in autoclaved 10x PBS in refrigerator.  Use within one week. 
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Appendix D: Setting Up Tendon Bioreactor 

Notes 

 See pictures for bioreactor, scaffolds with clips, double hook screws joined 

together, the bioreactor top (hook screw joined with glove finger) 

Supplies 

 Bioreactor 

 Inlet and Outlet Tubing 

 Media change tubing with stopper for incubator. 

 Latex gloves (large) 

 Zip Ties 

 Zip Tie gun 

 Stainless steel clips (I’ve had good luck with badge clips from Hobby Lobby, 

they didn’t rust recently, however, prior ones had, so test this out before you 

use them) 

o May want to see if we can buy or make some custom reusable ones to 

avoid this and possibly not even have to use paper clips 

 Non-rusting paper clips (Plastic coated ones work well) 

 Hook screws 

 Cells 

 Media 

 PBS 

 Trypsin 

 Petrie Dish – autoclaved, 1 petri dish per 3 cords, and one extra for working 

 2 x 100 mL Beakers – autoclaved 

 2 x round nose tweezers - autoclaved 

 0.2 µm filter 

 Force meter 

 2 x media bottle with two arms. 

 Peristaltic Pump 

 Ethylene Oxide Ampule 

Sterilizing Equipment 

33. In one large autoclave bag place bioreactor.  Cover the tops and tubing ends 

with aluminum foil.  Be careful as these are fragile. 

34. In one bag place media reservoir and cover with foil.  Also place breathing 

tube (short tube on one arm of reservoir) in bag to sterilize. 
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35. In another bag put the inlet and outlet tubing.  Cover pipette tips and tubing 

ends with foil.  On the syringe end of the stopper, wrap a paper towel around 

it to prevent puncture of the bag. 

36. Put the media feed tube in another large bag.  Include y-fittings and tubing if 

doing two bioreactors.  Cover with foil. 

37. Take two hook screws and a nut and use the nut to join the two screws 

together.  This will attach the top of the scaffold to the bioreactor.   

38. Cut off the fingers of a latex glove cut a slit in the tips.  Slip one of these over 

the combined hook screws.  Place a second glove finger over the first and zip 

tie below the first to ensure a seal.  Need 3 of these per bioreactor. 

39. You need two clips per scaffold.  Place a non-rusting paper clip (to attach to 

hook) on one clip for each scaffold.  Leave the other clip not attached (this 

will attach to the top).   

40. Place the other adapters and screws into a small autoclave bag.  Include 

enough zip ties for both ends. 

41. Place some gloves into autoclave bags to help when putting clips on scaffolds 

in a sterile environment. 

42. Put equipment in the chemical sterilizer and sterilize for 24 hours. 

Calibrating Stimulation 

1. Hook up force meter to bioreactor. 

2. At rest should be at about 0.5 pounds force. 

3. One cycle should be 1 lbf. This equates to 5% strain initially.  With plastic 

deformation due to constant stretch at rest, this is 2% strain. 

a. At highest force stretch, meter should be at 1 lbf. 

b. At lowest force, meter should be at 0 lbf. 

c. Adjust these on Amplitude variable knob on Wavetek. 

i. Should be on -40 dB and use small knob to fine tune.  Can 

adjust to -20 or other If needed. 

4. Calibrate frequency by counting how many cycles/min (0.5, 1, 2, etc.) 

a. Adjust these using large start freq knob on the top left of the Wavetek.  

This should be enough, if not, can adjust using Freq (Hz) Vernier 

knob further.   

Preparing Cords 

1. Slip a vein onto the small glass rod, using the petri dish to stabilize. 

2. Slip on an adapter on one end and zip tie into place.  Do the other size. 

3. Remove from the rod, and on one side, using both tweezers, screw a hook 

into an adapter. 

4. Place the cord in a petri dish and cover with media.  Repeat with the other 

two. 

5. Allow to sit while preparing cells. 
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Preparing Cells 

1. Lift cells normally, with enough cells as needed.  Typical amounts are 1 or 3 

million cells/mL collagen solution. 

2. Once you have a cell pellet, dissolve in 2 mL of collagen solution. 

a. For 2 mL of solution: 

i. 0.8 mL collagen 

ii. 0.2 mL 10x PBS 

iii. 0.02 mL NaOH 

iv. 0.98 mL sterile water 

Seeding Veins 

1. Using a 1 mL pipette, inject 0.6 mL of collagen/cell solution into the vein.  It 

may not all fit, go slowly and coax it in. 

2. Seal the open end with another hook adapter and place back into petri dish. 

3. Repeat this with the other cords. 

4. Place in incubator and allow to incubate for 1-2 hours. 

Assembling Bioreactor 

1. Set up bioreactor on tray in biohood in D214 next to tall incubator without 

motor. 

2. Attach tubing to bioreactor and reservoirs.  Wait for media feeding tube. 

3. Fill reservoirs with 270 mL of media and place breather tube on reservoir 

with filter attached to allow for extra oxygenation. 

4. Using sterile gloves and tweezers, attach a clip to each side of the scaffold.   

5. Place into bioreactor and cover with glove fingers.  Repeat with other two.   

6. Pump media into bioreactor and until the circuit is full of media.  Do not go 

more than 1 mL/minute as cells are exposed to the flow now. 

7. Stop the pump and clamp hoses to prevent draining. 

8. Attach media feeding tube to reservoirs, leave other end covered with foil. 

9. Move bioreactor to incubator, quickly place the other media feeding tube 

ends back into biohood and into media bottles. 

10. Place motor on tray and screw bioreactor into the base. 

11. Hook up circulation tubing to pump and circulate media at speed 1.     

12. Hook cords onto triangular plate and attach to motor.  

13. Close incubator, turn on CO2, and allow to equilibrate, usually an hour or so. 

14. Run desired stimulation. 
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Appendix E: Changing Media for Tendon Bioreactor 

Supplies 

 α-MEM 

 2x 250 mL media bottle with spouts 

o One bottle for emptying and one bottle for filling 

Procedure 

1. (Optional) If running 2+ bioreactors, make sure that the split media change 

tubing is clamped for one of the reactors 

2. Fill one bottle with 180 mL of fresh media. 

3. Turn media change pump on reverse to remove media, set to max flow 

4. Clamp the tubing between the two reactors to isolate feed and return. 

5. Remove all media from outflow bottle or until media is low on the fill bottle 

of the reactor 

6. Increase the flow rate of the bioreactor to speed 3 

a. Do not do this if running bioreactor with “flat” tendons exposed to 

media flow 

7. Pump the 180 mL of fresh media into the reactor  

8. Shut of media filling pump 

9. Remove clip between bioreactor reservoirs 

10. Reduce flow back to speed 1 on reactor pump. 

11. Repeat for other bioreactor if needed. 
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Appendix F: Preparing Tissue for DNA Assay 

Notes: 

 Make sure to filter Collagenase 

Materials: 

 24 well plate 

 Sharp end Scissors 

Protocol: 

1. Cut 0.5mm of tissue and place in 24 well plate 

2. Chop into little pieces using scissors 

3. Add 2ml of collagenase (200 units/ml = 0.21 mg/ml) in each well 

4. Incubate overnight at 37oC 

5. Sonicate for 5 seconds 

6. Add 200 ul of Trypsin 10X (0.5%) to each well 

7. Incubate at 37oC for 1 hour 

8. Sonicate for 10 seconds 

9. Apply 2 freeze thaw cycles 

10. Test for DNA 
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Appendix G: Histology 

NOTES: 

 Make sure new 100% that has not started collecting water/diluting 

 Extra changes of 100% is to make sure sample is completely dehydrated and 

no excess water 

 Extra changes of Paraffin is to remove all of the excess Xylene 

 If a step is done repeatedly, use new solution each time 

 Glass vials work well to hold solutions 

 If orientation is important, place in cassettes and use petri dishes instead of 

vials 

 Use 95% ethanol to make diluted ethanol solutions 

 Make sure 100% ethanol is sealed well to maintain purity 

 All steps at room temperature unless noted 

Supplies 

o Glass vials 

o 95% Ethanol 

o 100% Ethanol 

o Formalin 

o Clear Rite 3 

o Paraffin 

o Molds 

o Cassettes 

Protocol 

1. Place tissue in 10% Formalin for 1 hour 

a. If not processing immediately, leave tissue in formalin over night and 

store in refrigerator in 70% ethanol for long term storage 

2. Place tissue in 85% ethanol for 1 hour 

3. Place tissue in 95% ethanol for 1 hour 

4. Place tissue in 95% ethanol for 1 hour 

5. Place tissue in 100% ethanol for 45 minutes 

6. Place tissue in 100% ethanol for 45 minutes 

7. Place tissue in 100% ethanol for 45 minutes 

8. Place tissue in Clear Rite 3 for 1 hour at 45oC 

9. Place tissue in Clear Rite 3 for 1 hour at 45oC 

10. If not already in a cassette, place tissue in cassette 

11. Place tissue in Paraffin for 2 hours at 60oC in heated vacuum chamber in 

D211 
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a. Stir every half hour to ensure mixing and thorough penetration of 

paraffin 

12. To prepare for embedding, place a small layer of melted paraffin in mold and 

allow to stiffen, but not completely harden 

13. Take tissue out of paraffin bath and cassette.  Place tissue in desired 

orientation in the mold, using the stiff paraffin to hold it. 

14. Fill mold with paraffin 

15. Place cassette base in mold securely 

16. Let sample cool on counter or freezing table in D211 

17. Remove from mold when completely hardened.  Prior to sectioning, place in 

freezer to cool. 
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Appendix H: Sectioning Embedded Samples with Microtome 

NOTES 

 Cut section to a 7 µm thickness 

 Use one half/side of the blade to cut to conserve blades 

 If rips are occurring, replace blade 

 Water bath should be at 37-40 oC 

 Use pencil to write on frosted slides 

o Sharpie will be removed by solvents used in histology 

 If paraffin is too warm, it will curl and not cut well 

 Use Kimwipes to clean water bath if needed of extra sections 

SUPPLIES 

 Histology Blades (Replace if needed) 

 Kim Wipes 

 Large Paint Brush 

 Small Paint Brush 

 Tweezers 

 Water Bath – Tap water 

 Drying Oven 

 Frosted Slides 

o Regular slides work too if frosted not available 

 

 

 

 

 

Protocol 

18. Put blade/blade holder in microtome and adjust to desired angle. 

19. Flip engagement lever to the right to adjust stage manually 

20. Move stage back completely 

21. Put sample in the holder 

22. Adjust thickness to appropriate levels 

23. Move sample down to blade level 

24. Move blade to position right before sample 

25. Move sample to the top 

26. Lock stage in with engagement lever 

Blade Angle Diagram 

(Recommended) 
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27. Rotate handle using smooth, fast motions 

28. Once cutting, don’t go too fast, and continue to use smooth operation 

a. If too fast or sample catches, it can break the paraffin block off the 

holder 

29. Use small paintbrush to hold sample ribbon as it is cutting 

30. Once into sample, take a section of ribbon and put into water bath 

a. Use small paint brush to end of ribbon 

b. At the sample, use tweezers to grab and move 

31. Once in water bath, allow for smoothing of the ribbon if crimped from 

cutting 

32. Use the edge of a slide to break ribbon into appropriate size sections 

33. To mount on to slide, dip slide underneath the section of ribbon and fish it 

onto the slide 

34. Lay slide on paper towel and allow to air dry for half hour 

35. Remove any excess water with Kimwipes 

a. Excess water may bubble when oven drying 

36. Label slides, place into metal holder, and place into oven set at 45oC 

37. Leave overnight and remove for staining. 
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Appendix I: Hematoxylin and Eosin Staining 

NOTES 

 Histology jars in D211 hold between 200 and 250 mL of solution 

 If only performing 1 or 2 samples, coplin jars are available. 

 When transitioning, dip slides a couple time before letting rest in solution to 

coat slides better, especially important when going to different types of 

solutions 

 If mounting medium is too thick, cut with clear-rite to dilute, but don’t dilute 

too much 

 If hematoxylin has particulate on top, skim with kimwipe to remove 

 If eosin isn’t staining well, add a drop or two of glacial acetic acid to improve 

 Process can be optimized to individual samples if need be 

 Anything after color is tap water 

 Acid alcohol is cleaning agent 

 Ammonia water is a bluing agent for hematoxyline 

 Filter your hematoxylin routinely 

 Rotate solutions periodically and change one at a time 

 Clean out and replace all solutions every 6 weeks 

 Eosin lasts about a week 

 

MATERIALS: 

1. metal slide container 

2. oven at 62-63˚C and another one at 45˚C 

3. Acid Alcohol3960ml of 70% alcohol and 40ml of HCl 

4. Ammonia Water10 ml ammonia hydroxide and 3984ml DI water 

5. DI and tap water 

6. 5 containers with Xylene, 3 with 100%, 2 with 50%Xylene/50%Alcohol, 3 

with 95%, 1 with 70%, 1 with 80%, 1 with Hematoxyline, 1 with Eosin, 4 

with DI water, 1 with tap water 

7. Timer of some sort 

 

PROTOCOL 

1. Mount tissue onto slides from 38˚C water bath 

2. Put slides into metal slide container and place into oven 

3. Bake slides 25 minutes at around 62-63˚C (a few points above melting point 

of paraffin which is 55-57˚C) 

4. Wait a little while after the oven for the slides to cool down 

5. Xylene 3x3min 

6. 50% Xylene/50% Alcohol 1 min 

7. 100% alcohol 1 min 

8. 95% 1 min 
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9. 80% 1 min 

10. 70% 1 min 

11. DI Rinse 

12. Hematoxyline 5 min 

13. Tap water Rinse 

14. Acid Alcohol 1 min 

15. DI Rinse 

16. Ammonia water 1 min 

17. DI Rinse 

18. Eosin 1 min 

19. DI Rinse 

20. 95% 2x1 min 

21. 100% 2x1 min 

22. 50% Xylene/50% Alcohol 1 min 

23. Xylene 2x1min 

24. Bake overnight at 45 ˚C 

 

MOUNTING 

 Put a few drops of Acrymount (mounting medium)on slide and gently place 

cover slip on top so there are no air bubbles 

 Wipe of extra mounting medium with gauze 

 Leave at room temperature overnight 

 You can add some xylene to mounting medium to thin it but not too much 

otherwise may lose staining or it may not mount 
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Appendix J: Tensile Testing Protocol 

NOTES: 

 The Tensile Machine is located in Room C214 

 Only use during evening hours to not disturb the Grady Lab 

MATERIALS: 

1. Gloves 

2. Your samples 

3. Extra clamps if you need them 

4. Calipers or a ruler to take measurements 

PROTOCOL: 

1. Power on Computer and Monitor 

a. Click on admin on computer, no password 

b. Computer is a mess, everyone uses it (bring new mouse) 

2. The clamps are on an airline, the Foot pedal- down closes, button in back you 

kick to open 

3. Power on Machine  

a. Togs moves clamps 

4. Go to DATUM Program 

1. Q exits, foot petal operates clamps 

2. Window pops up, go to specimen prep 

3. Go to specimen prep 

a. Open, find  

4. Brandon Tensile on HUV, double click, should open a new screen 

a. Before specimen testing clicked, load tissue samples into machine 

i. Use calipers to know the distance between clamps/ a ruler 

to know the distance being stretched 

ii. Wear gloves 

iii. As much of tissue out as possible      

iv. Just enough in clamp to hold in place 

v. Hold onto samples when you hit foot pedal, it does not 

always lock 

b. Ok 

5. Before “To Specimen Testing’ load cords into machine 

a. Measure widths and thickness of samples (length) 

6. No go to specimen testing  

7. Hit “E”- to select a channel, “3”-this is the channel that we are using, then 

“Q” resets everything 
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8. “T” clears what was there, then “T” again starts the process. There should 

be a pre-stretch cycle. Won’t work well if not clamped correctly or is 

non-homogenous material 

a. Pre stretch flexes the material 

b. Takes out inelastic deformation to begin with so you have your 

actual starting and go from there 

9. “ enter button“ resets- open clamps, to return, comes back to where it was 

a. Creating a crv file, which saves data then will make an excel sheet 

10. “O” once, puts some markers on it, hit “O” again, now done 

11. “Q” kills it and takes you back to specimen prep 

12. Data just in software still 

13. Click Graph, export curve button will now appear, choose graph, then 

export curve 

a. hit graph, graph will pop up 

14. now can put in new specimen and then re-hit specimen prep 

15. Desktop, shortcut to explot, top file 

16. Close out of everything when done 

17. Click shortcut to explots, default sticks everything 

a. Make a folder to save files, copy paste it in 
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Appendix K: RNA Isolation 

SUPPLIES 

 Tissue Grinder 

 DNase/RNase Free Water 

 Trizol 

 Chloroform 

 100% Ethanol 

 100% Isopropyl Alcohol 

 DNase/RNase Free PCR Micro-centrifuge Tubes and Pipette Tips 

 

PROTOCOL 
1. Autoclave any glassware/equipment needed. This may include beakers, 

tweezers, tissue grinder, scissors, etc.  

2. Add 1ml per 50-100mg tissue of trizol. If using grinder, put this into the 

tissue grinder and homogenize the tissue 

3. Allow to incubate for 5 minutes at room temperature to degrade tissue further 

4. Split solution into 1ml aliquots in centrifuge tubes. Add 200 ul of chloroform 

to each tube, cap, and mix by rigorous inversion for ~15 seconds 

5. Incubate for 2 minutes at room temperature 

6. Centrifuge at 12,000 RPM’s for 15 minutes at 4 degrees Celsius  

7. Pipette the clear, aqueous phase into a new centrifuge tube  

8. Add 500 ul of isopropyl alcohol to the centrifuge tube  

9. Incubate at room temp for 10 min 

10. Centrifuge at 12,000 RPM’s for 10 minutes at 4 degrees Celsius  

11. Remove supernatant leaving pellet at the bottom. This pellet may be small 

and/or clear- sometimes hard to see 

12. Wash the pellet with 1ml 75% ethanol made with DNase/RNase free water 

and 100% ethanol.  

13. Vortex sample and centrifuge at 8,000 RPM’s for 5 minutes at 4 degrees 

Celsius. Pellet may now be a more whitish color after this step 

14. Remove supernatant and allow pellet to air dry for 5-15 minutes. Do not use 

vacuum.  

15. Add DNase/RNase Free Water to desired concentration  

16. Dissolve pellet by incubating at 55-60 degrees Celsius for 10 minutes 

17. Mix solution by vortexing  

18. Pellet is not ready for reverse transcription or stored at -20 degrees Celsius 

 

 


