
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

REAL-TIME NARROWBAND AND WIDEBAND

BEAMFORMING TECHNIQUES

FOR FULLY-DIGITAL RF ARRAYS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

DANIEL GARRY THOMPSON
Norman, Oklahoma

2017

REAL-TIME NARROWBAND AND WIDEBAND
BEAMFORMING TECHNIQUES

FOR FULLY-DIGITAL RF ARRAYS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Mark Yeary, Chair

Dr. Caleb Fulton

Dr. Nathan Goodman

Dr. Jon Bredeson

Dr. John Antonio

c© Copyright by DANIEL GARRY THOMPSON 2017
All Rights Reserved.

Table of Contents

Abstract xvi

1 Introduction 1

1.1 Digital Beamforming Architectures 2

1.1.1 Beamforming in an Array 3

1.1.2 Frequency Dependent Beamsquint 4

1.2 DBF Processing Hardware . 6

1.3 Outline of the Dissertation . 11

2 Narrowband Digital Beamforming Techniques and

Experiments 13

2.1 Narrowband Beamforming Digital Hardware 13

2.2 Narrowband Channel Decimation 19

2.3 Phase Shift Beamforming . 25

2.4 Phase Quantization Effects on Beamforming Performance . . . 28

2.4.1 Efficient Quantized Phase Shift Beamforming 31

2.4.2 Using Simulated Annealing to Search for Psuedo-Optimal

Phase Offsets . 31

2.4.3 Narrowband Experiments with the Army Digital Array

Radar . 40

iv

2.5 Chapter Summary . 40

3 Wideband Digital Beamforming Techniques and Experiments 43

3.1 True Time Delay . 46

3.1.1 Digital Filter Design 48

3.1.2 Wideband Array Calibration 55

3.2 Experiments with the Rockwell Collins Common Module . . . 62

3.3 Chapter Summary . 67

4 Adaptive Techniques for High Data Rate Digital

Beamforming 69

4.1 Adaptive Digital Beamforming and Methods 69

4.1.1 Forming the Covariance Matrix 74

4.1.2 Inverting the Covariance Matrix 76

4.1.3 Feed-forward Methods to Invert the Covariance Matrix 77

4.1.4 Improving Adaptive Latency 78

4.2 ADBF in the Beamspace . 80

4.2.1 Digital Generalized Sidelobe Canceller 81

4.3 Chapter Summary . 89

5 Benchmarking Digital Beamforming Processors 91

5.1 Digital Processor Precision . 92

5.2 Beamforming Implementations in Hardware 94

5.3 The FFT Kernel . 97

5.4 Benchmarking Heterogeneous Processors 99

5.5 Chapter Summary . 104

6 Conclusion 106

v

References 108

Appendix A Calibrating and Beamforming a Wideband Array

in MATLAB 123

Appendix B Matrix Inversion with the Matrix Inversion Lemma

in MATLAB/HDL Coder 135

vi

List of Tables

2.1 Phase shifter resolution in degrees for different quantized bit

lengths. 29

3.1 True time delay filter bank properties for RF beamforming. . . 50

3.2 High-level flow of the equalization routine 62

3.3 Demonstrated system parameters of the IMPACT common

module prototype . 64

5.1 Dynamic range difference between fixed point and floating point

in the Xilinx Zynq Ultrascale+. 93

5.2 FPGA resource utilization of a two wideband beamforming

design with null canceller on the Altera Stratix V and Arria 10

FPGAs. 96

5.3 Specification summary of processors under test for

benchmarking. The Nvidia DGX1 and Xilinx MPSoC

platforms support FPGA, GPU, and CPU hardware from

comparable CMOS process nodes. 102

vii

List of Figures

1.1 Typical block diagram of a fully digital at every element radar

system. Three main hardware components make up the array.

First the analog RF front end comprises of the antenna array,

filters, amplifiers, mixers, etc. and conditions the RF signal

to be digitized by the digital front end. The digital front end

consists of ADCs and DACs and some high throughput digital

operations such as beamforming and calibration. The digital

back end follows the digitization process where application

specific processing is done in a downstream digital processor.

Reprinted from Thompson et al. (2017) c© 2017 IEEE. 2

1.2 Beam patterns of individual frequencies across a bandwidth

with phase shift beamforming to -25 degrees off boresight. The

main beam pointing direction and the main beam width increase

as the beam steers off boresight. 5

1.3 Beam patterns of individual frequencies across a bandwidth

with TTD beamforming to -25 degrees off boresight. The main

beam pointing direction is aligned at all frequencies. 6

viii

1.4 Functional block diagram of a digital FIR filter in hardware

using delays, multiply-accumulate, and sum functions. The

beamforming weights, wm are real or complex , depending on

the transceiver architecture (i.e. complex baseband vs. real

IF, or direct RF conversion). The length N of each filter

across M elements determines the supported bandwdith (i.e.

either narrowband or wideband). In adaptive beamforming

applications, ωm is updated in time. 8

1.5 Routed standard cell ASIC layout of a multiply-accumulate

function in 45 nm CMOS. Modern ASICs and FPGAs have

thousands of MAC resources configured in a pipelined array. . 9

1.6 RTL of the multiply-accumulate function. This dataflow

diagram shows a simplistic model of a digital MAC. Only

3 main circuits are required: multiply, add, and a register.

Abstraction of the digital architecture becomes important for

routing and timing analysis of digital processors. 10

2.1 Digital 2 channel transceiver PCB designed at the University

of Oklahoma. Supporting 50 MHz IBW on receive and DDS

waveform generation on transmit. Reprinted from Thompson

et al. (2011) c© 2011 IEEE. 14

2.2 Digital transmitter block diagram showing and array of 2

channel TX modules capable of supporting horizontal or

vertical polarization channels. Reprinted from Thompson et

al. (2011) c© 2011 IEEE. 15

ix

2.3 DDS generated waveform 0.5 µs pulse with 1 MHz to 50

MHz frequency sweep. Reprinted from Thompson et al.

(2011) c© 2011 IEEE. 16

2.4 Narrowband receiver high level architecture. Reprinted from

Thompson et al. (2011) c© 2011 IEEE. 20

2.5 Digital down converter architecture showing 2 stages of

decimation. After demodulating to complex baseband, the

I/Q streams are filtered with a multiplierless CIC filter where

the datastream is concurrently decimated. A low order FIR

filter follows that corrects the amplitude droop of the CIC

operation. A second stage of decimation follows to further

improve the stop and passband characteristics of the overall

frequency response of the system. Reprinted from Thompson

et al. (2011) c© 2011 IEEE. 21

2.6 Digital receiver downconversion filter cascaded magnitude

response (per channel): Full bandwidth. The combined

response exhibits a tight rolloff with low sidelobes and

stopband performance that once decimated produces an

efficient digital filter. Reprinted from Thompson et al.

(2011) c© 2011 IEEE. 24

2.7 Digital receiver downconversion filter cascaded magnitude

response (per channel): Detailed Bandwidth. The cutoff

frequencies of the compensation filters are chosen so that the

first sidelobe response is suppressed below 120 dB. Reprinted

from Thompson et al. (2011) c© 2011 IEEE. 25

x

2.8 Quantization effects on a phase gradient steered to 10 degrees

off broadside of an 8-element phased array with 3-bit phase

shifters. The quantization error is shown in red. Reprinted

from Thompson et al. (2015) c© 2015 IEEE. 30

2.9 Flow chart of the optimization algorithm using simulated

annealing. Reprinted from Thompson et al. (2015) c© 2015

IEEE. 32

2.10 Simulated annealing with 3 quantization bits converging over

10000 iterations. The convergence parameter was chosen

agressively to test the optimization locality. The SA algorithm

is shown to find adequate sidelobes levels after nearly 200

iterations. A forgetability factor is programmed into the

algorithm which is seen at iteration 1800 when the SA

algorithm finds a -7 dB sidelobes level. As the iterations

progress, the forgetability factor decreases and enables the

SA algorithm to converge at slightly better sidelobes levels

after 5500 iterations. Reprinted from Thompson et al.

(2015) c© 2015 IEEE. 34

2.11 In a.) Traditional and optimum quantized phase gradients

across a 12-element phased array and in b.) array pattern of

corresponding phase gradients. Reprinted from Thompson et

al. (2015) c© 2015 IEEE. 35

2.12 Array pattern when steering off broadside for a.) traditional

3-bit quantized phase shifters and b.) optimal phase gradients.

Reprinted from Thompson et al. (2015) c© 2015 IEEE. 36

xi

2.13 Array pattern first sidelobe a.) maximum levels and b.)

improvement from trandional quantized phase gradients to

optimal phase gradients. Reprinted from Thompson et al.

(2015) c© 2015 IEEE. 37

2.14 Main beam pointing errors due to modified phase gradients for

a 12-element phased array. Reprinted from Thompson et al.

(2015) c© 2015 IEEE. 38

2.15 First sidelobe level improvement for different phased array sizes.

Reprinted from Thompson et al. (2015) c© 2015 IEEE. 39

2.16 Narrowband experimental setup in the chamber with the Army

DAR. The DAR chassis and 9x9 element aperture (detailed in

Fig. 2.17 sit on a positioner that pivots -90 to 90 degrees in

azimuth with a resolution down to 0.1 degrees steps. The I/Q

data is streamed to the PC over a 1 GbE interface where the

beam patterns are synthesized in Matlab offline. Reprinted from

Thompson et al. (2015) c© 2015 IEEE. 41

2.17 In a.) a photograph of the DAR antenna panel and in b.)

the spatial configuration of the active and terminated elements.

Reprinted from Thompson et al. (2015) c© 2015 IEEE. 42

3.1 Model of beamforming in a digital array. The IMPACT module

utilizes elemental digital beamforming on receive and analog

beamforming on transmit. Mutual coupling effects and analog

errors contribute to the array error which is modeled by a

transfer function, gm. Errors are corrected for in the FPGA by

the calibration routine. 45

xii

3.2 Correcting beamsquint with digital true time delay. In a.)

the response using a phase shifter only, and in b.) shows the

response with TTD included. The main beam “pivots” based

on the IF center frequency and the main beam is aligned. . . . 47

3.3 True time delay requirements for coarse and fine delays over

a range of center frequencies and array sizes for systems

configured from scalable IMPACT modules. Horizontal dashed

lines represent integer numbers of coarse delays in the FPGA

at 1.4 GHz, δcoarse, and vertical dashed lines shown the integer

number of IMPACT modules required to support the number

of channels in a single dimension. 48

3.4 Measured RX time series data for two channels showing the

fractional delay between channels. 49

3.5 Two filters with minimum and maximum fractional delay with

26.7 ps of resolution and P filters. 50

3.6 TTD sinc coefficients for high precision delay values. 52

3.7 A TTD filterbank set composed of 20 filters with 35.7 ps of

resolution. In a.), the real-valued time domain coefficients are

shown, in b.) the amplitude response of the filter set is shown

with less than 0.2 dB of amplitude differences between any two

filters, and in c.) a flat group delay across the passband for each

filter in the set. 53

3.8 Uncalibrated, a.) and calibrated, b.) beam patterns at

boresight. A beam is unable to form due to the phase

mis-alignments between channels but is formed once the phase

is aligned with respect to frequency. 56

xiii

3.9 Block diagram of the wideband calibration routine. A horn

positioned in the far field generates a chirped reference signal

that the receiver channels of the IMPACT module are able to

align to. Hardware in the loop interfaces the FPGA to the

controller PC running Matlab. 60

3.10 The block diagram of the IMPACT common module digital

front-end featuring a 16 channel SiGe analog transceiver array,

CMOS ADC/DAC array, and Arria 10 FPGA. Reprinted from

Hoffman et al. (2016) c© 2016 IEEE. 63

3.11 IMPACT common module test fixture and BAVA aperture in

the chamber. 64

3.12 Beam patterns across the instantaneous bandwidth of 4.3 GHz

to 4.5 GHz for pedestal positions -60 degrees to 60 degrees in

increments of 15 degrees. The array was initially calibrated

at boresight and the patterns are synthesized from the same

coefficients and different pedestal positions. 66

3.13 Beam patterns across the instantaneous bandwidth of 4.3 GHz

to 4.5 GHz for electrically steered azimuth angles of 0 and 30

degrees over pedestal angles of -60 degrees to 60 degrees in

increments of 15 degrees. 67

4.1 Block diagram of a an example feed-forward adaptive

beamforming architecture. 71

4.2 Covariance matrix built with channels and pulses in slow time. 76

4.3 Covariance matrix built with channels and range samples in fast

time. 77

xiv

4.4 The covariance matrix can be constructed from multiple

configurations of the array, however, is ensured to be a square

matrix. 78

4.5 Latency for ADBF algorithms for different covariance matrix

sizes. 80

4.6 Two wideband receive beams pointed to -30 and 30 degrees,

respectively. 82

4.7 Input signal spectrum of 3 tone test signal and GSC beam

output for JSR = 20 dB. 83

4.8 GSC architecture in high level Simulink. 85

4.9 Two wideband beamformer and canceller design in high level

Simulink. 86

4.10 In a.) and b.) TTD beam output for JSR = 15 and 20 dB and

in c.) and d.) GSC beam output for JSR = 15 and 20 dB. . . 87

4.11 Frequency responses of the 2-channel null canceller. A strong

interferer in the middle of the band has been removed the by

adaptive processor. 88

4.12 Angle-frequency AF pattern of a 16 element array with a.)

perfect calibration, and b.) 2% RMS phase errors. 90

5.1 High level data flow graph of the FPGA receiver design. . . . 94

5.2 Floorplan routing layout for Altera Stratix 5 FPGA of a 2

channel wideband beamformer with GSC. 97

5.3 Floorplan routing layout for a two channel wideband

beamformer compiled to an Altera Arria 10 FPGA. 98

5.4 Frequency domain representation of a single tone in noise. . . 99

xv

5.5 Time domain representation of a single tone in noise with low

SNR ratio. 100

5.6 Array factor of overlaid multiple simultaneous beams for an 8

point FFT used for DBF in an 8-element array. Reprinted from

Thompson et al. (2017) c© 2017 IEEE. 101

5.7 Measured vs. theoretical single precision (SP) FLOP

throughput. Reprinted from Thompson et al. (2017) c© 2017

IEEE. 103

5.8 Total peak theoretical compute energy efficiency for the FFT

kernel. Reprinted from Thompson et al. (2017) c© 2017 IEEE. 104

5.9 Efficiency of GPUDirect vs non-GPUDirect. 104

B.1 Top level dataflow diagram of the MIL. 135

B.2 Computing the inverse covariance matrix with the MIL. 136

B.3 Updating adaptive weights with the MIL. 137

xvi

Abstract

Elemental digital beamforming offers increased flexibility for multi-function

radio frequency (RF) systems supporting radar and communications

applications. As fully digital arrays, components, and subsystems are

becoming more affordable in the military and commercial industries, analog

components such as phase shifters, filters, and mixers have begun to be

replaced by digital circuits which presents efficiency challenges in power

constrained scenarios.

Furthermore, multi-function radar and communications systems are

exploiting the multiple simultaneous beam capability provided by digital at

every element beamforming. Along with further increasing data samples rates

and increasing instantaneous bandwidths (IBW), real time processing in the

digital domain has become a challenge due to the amount of data produced

and processed in current systems. These arrays generate hundreds of gigabits

per second of data throughput or more which is costly to send off-chip to an

adjunct processor fundamentally limiting the overall performance of an RF

array system.

In this dissertation, digital filtering techniques and architectures are

described which calibrate and beamform both narrowband and wideband

RF arrays on receive. The techniques are shown to optimize one or many

parameters of the digital transceiver system to improve the overall system

xvii

efficiency. Digitally beamforming in the beamspace is shown to further

increase the processing efficiency of an adaptive system compared to state

of the art frequency domain approaches by minimizing major processing

bottlenecks of generating adaptive filter coefficients. The techniques discussed

are compared and contrasted across different hardware processor modules

including field-programmable gate arrays (FPGAs), graphical processing

units (GPUs), and central processing units (CPUs).

xviii

Chapter 1

Introduction

Radar systems with high-speed analog-to-digital and digital-to-analog

converters (ADCs/DACs) behind each element are enabling a new class of

broadband software defined radar and communications systems spanning

from S-band to X-band. Such systems are preferred over traditionally

analog dominated radar systems in that digital components allow multiple

simultaneous beams, software reconfigurability, and tighter systems

integration. To support a multi-function RF capability, scalable RF

transceiver systems have begun to support a diverse set of applications

including automotive [1], [2], 5G [3]–[8] industries, synthetic aperture radar

(SAR) [9]–[13], space [14]–[17], sonar [18], [19], and ultrasound [20].

As sampling rates, instantaneous bandwidths, and number of channels

increase, so does the amount of data to process in a digital beamformer (DBF).

This limits the performance of DBF due to two bottlenecks that arise. The first

bottleneck is the physical aspect of the hardware, i.e. how fast and how many

cores? These properties vary across processing nodes depending on transistor

density and power profile. The second bottleneck is the input/output (IO)

speed and efficiency. All the data to be processed at any instance in time may

not reside in the memory space of a single device which requires costly data

1

transfers between processors. These bottlenecks limit the processing efficiency

of a digital beamformer and the exact boundaries vary according to processing

architecture.

1.1 Digital Beamforming Architectures

There are many possible instantiations of state-of-the art digital beamforming

processing architectures that share several common characteristics. An

Figure 1.1: Typical block diagram of a fully digital at every element radar
system. Three main hardware components make up the array. First the
analog RF front end comprises of the antenna array, filters, amplifiers, mixers,
etc. and conditions the RF signal to be digitized by the digital front end.
The digital front end consists of ADCs and DACs and some high throughput
digital operations such as beamforming and calibration. The digital back
end follows the digitization process where application specific processing is
done in a downstream digital processor. Reprinted from Thompson et al.
(2017) c© 2017 IEEE.

example of a representative multi-function radar and communications system

architecture is shown in Fig. 1.1 whereby data is received and transmitted

through an array of antenna elements. Analog power and signal conditioning

are applied through transmit/receive (TR) modules, and the signals are

digitized through an array of ADCs and DACs. High speed IO on the order

2

of 100s of gigabits per second (Gbps) is used to transmit this data to the

“front-end” FPGA array. In some cases the FPGA array is on the same

module as the ADCs [21], [22], and in other architectures, an optical IO may

be used for transfers longer than many feet of distance. The FPGA array

is typically used for data processing/compression algorithms such as digital

down conversion (DDC), decimation and resampling to smaller bandwidths,

pulse compression, demodulation, matched filtering, and beamforming. These

algorithms are further discussed in Chapters 2-4. Finally, the data is sent to

the digital “back-end” where algorithms typically requiring less latency or

more memory are implemented. Note in this diagram, a direct connection

from the front-end to the back-end is shown only through the CPU, which is

typical of today’s architectures and will be a key discussion point in Chapter

5.

1.1.1 Beamforming in an Array

The traditional approach of beamforming has been studied extensively [23]–[26]

and such systems have been previously demonstrated [27]–[29]. The beam

shape in terms of angle θ is dependent on frequency, ω, as seen by the

following beampattern equation.

E(ω, θ) =
M∑
m=1

exp(−j(φm + ωmd

c
sin θ)) (1.1)

Where m is an integer between 1 and M array elements, d is the half

wavelength element separation based on the smallest wavelength (i.e. highest

frequency component), c is the speed of light, and φm is a phase shift applied

at element m. A rule of thumb to prevent beamsquint in wideband arrays

3

is to keep the instantaneous or operation bandwidth to 1% of the carrier

frequency and has been shown in [25].

B <<
c

L sin θ0
(1.2)

Where B is the instantaneous system bandwidth, L is the length of the array,

related to the operating frequency such that L = M λ
2 , and θ0 is the steering

angle of the main beam. Commonly, phase shifting has been utilized for

beamforming in narrowband arrays. In a wideband system, however, the

phase shift approximation is not adequate due to beamsquint. Given certain

number of elements M , general element spacing d, waveform bandwidth B,

and the waveform duration T , beamwidth of a timed array and a phased array

can be derived. In the narrowband analysis, beamwidth is solely determined

by the number of elements in the array, M , assuming an element spacing

matched to the particular frequency. The beamwidth can then be estimated

by θ3dB = 102/M [23] at broadside.

1.1.2 Frequency Dependent Beamsquint

Bandlimited signals associated with digitized radar waveforms can be classified

either as narrowband or wideband. The ratio of bandwidth to carrier frequency

defines which category a signal falls into. The distinction between each type

is evident while beamforming as beamsquint becomes problematic. Beam

patterns of the corresponding narrowband and wideband beamformers, are

shown in Fig. 1.2 and Fig. 1.3. Array factor patterns are steered to -25

degrees for a 10 element array using a.) phase shifting and b.) true time delay

(TTD) beamforming. Patterns are shown for frequencies centered at 10 GHz

4

Figure 1.2: Beam patterns of individual frequencies across a bandwidth with
phase shift beamforming to -25 degrees off boresight. The main beam pointing
direction and the main beam width increase as the beam steers off boresight.

with a bandwidth of 5 GHz..

Enarrowband(ω, θ) = 1
M

M∑
m=1
|exp(iωmd

c
(sin θ − ω0

ω
sin θ0)))| (1.3)

Ewideband(ω, θ) = 1
M

M∑
m=1
|exp(iωmd

c
(sin θ − sin θ0)))| (1.4)

Where ω0 is the angular frequency at the center of the band and θ0 is the beam

steering direction. Classification is determined by the ratio of bandwidth to

carrier frequency In the narrowband case, steering off boresight with wide

operation bandwidths results in the beam steering off the intended direction

(i.e.“beamsquint”) [30]. Time delay beamforming can overcome the beam

squint limitation by adding some complexity to the narrowband beamformer.

5

Figure 1.3: Beam patterns of individual frequencies across a bandwidth with
TTD beamforming to -25 degrees off boresight. The main beam pointing
direction is aligned at all frequencies.

Typically, the added complexity is in the form of a filter in the digital domain.

Alternatively, the narrowband implementation can also be generalized as a

simplified wideband filter with a single tap.

1.2 DBF Processing Hardware

The next generation of communications (i.e. 5G) and the automotive industry

are driving the need for wideband digital processing techniques. These

applications are pushing the center frequencies of digital transceivers into

the milimieter wave regime [3], [4], [7], [8] but are limited to high frequency

applications. At these high frequencies, beamforming is crucial to overcome

the free space propagation loss. To limit power consumption and increase

efficiency, tightly integrated packages in SiGe have been developed [1],

[2]. The SiGe process is beneficial for high transistor switching speeds;

6

however, the analog circuits depend on wavelength and are not optimized

in terms of die area, limiting the total number of channels and beams

that can be processed on a single transceiver module. Today, monolithic

microwave integrated circuits (MMICs) built in III-V semiconductors and

other heterogeneous technologies [31], [32] are becoming more common.

However, recent advances in silicon have pushed modern CMOS processes to

a point of similar performance compared to SiGe [5], [6], [33]–[35], enabling

RF transceivers to be built in the digital domain with mature fabrication

processes. These advances include tightly integrated transceiver modules such

as in [36], [37] are enabling better power efficiency in the digital processing

than ever before.

In a digital processor, the basic element of a beamformer is the digital

filter; an example finite impulse response (FIR) filter is shown in Fig. 1.4.

This dissertation studies four main types of real time digital beamforming

processors that support such filter structures:

• ASICs

• FPGAs

• GPUs

• CPUs

Each processor is an application specific integrated circuit (ASIC) in itself

and wafer run fabrication costs can be high for custom designs usually

attributing to long turn around times and challenging first pass attempts

in yielding a successful design. An ASIC layout of a single multiply and

accumulate operation is shown in Fig. 1.5. The corresponding register

7

Figure 1.4: Functional block diagram of a digital FIR filter in hardware
using delays, multiply-accumulate, and sum functions. The beamforming
weights, wm are real or complex , depending on the transceiver architecture
(i.e. complex baseband vs. real IF, or direct RF conversion). The length
N of each filter across M elements determines the supported bandwdith (i.e.
either narrowband or wideband). In adaptive beamforming applications, ωm
is updated in time.

transfer level (RTL) diagram is shown in Fig. 1.6. Many instantiations of the

multiply and accumulate (MAC) operation have been demonstrated [38]–[44]

demonstrating that the fundamental purpose of the MAC is consistent across

all implementations, i.e. the building block of the digital filter. ASICs are

typically more efficient that reconfigurable devices while supporting faster

clock speeds [45], however, modern digital processors offer access to hard

multipliers on chip. The processors listed utilize this common processing

8

Figure 1.5: Routed standard cell ASIC layout of a multiply-accumulate
function in 45 nm CMOS. Modern ASICs and FPGAs have thousands of MAC
resources configured in a pipelined array.

function and offer arrays of MACs in different configurations, architectures,

and speeds. A majority of the digital beamforming functionality discussed in

this dissertation focuses on the FPGA hardware due to the reconfigurability

and high throughput capability.

Advances in commercial-of-the-shelf (COTS) FPGA technology are

enabling reconfigurable digital beamforming techniques in an embedded

device operating in real time for the first time. The two leading FPGA

manufacturers, Xilinx and Intel (formerly Altera), have begun to provide

commercial access to 3-dimensional complementary metal oxide semiconductor

9

Figure 1.6: RTL of the multiply-accumulate function. This dataflow diagram
shows a simplistic model of a digital MAC. Only 3 main circuits are required:
multiply, add, and a register. Abstraction of the digital architecture becomes
important for routing and timing analysis of digital processors.

(CMOS) transistors beginning with the 20 nm process node from Taiwan

Semiconductor Manufacturing Company (TSMC). Hundreds of millions such

transistors make up the fundamental building blocks required to perform

thousands of simultaneous digital multiply and accumulate operations

on a single device. The power efficient to cost ratio of COTS FPGAs

has eliminated the need for digital ASICs, which have traditionally been

designated to process real time data. In this dissertation, practical digital

beamforming techniques for modern radar and communications applications

operating on a digital processor in real time is discussed.

Modern FPGAs have improved the high speed transceiver data transfers by

implementing hard cores in the silicon of the chip opposed to software defined

interfaces which require longer latencies. The 3 main high-speed protocols

10

employed today in FPGAs are PCI Express (PCIe), multi-Gigabit Ethernet,

and high-speed memory interfaces, such as DDR3. These silicon defined

interfaces are well suited for device communication over long distances or

backplanes, however, these interfaces are plagued with high overhead costs and

relatively slow speeds compared to more optimized chip-to-chip protocols such

as Interlaken implemented in Altera and Xilinx UltraScale FPGAs. Although

multi-gigabit speeds can be achieve with the Interlaken protocol, interface

latency in the serial transmitter and receiver ultimately inhibits the data

communication speed.

The increasing processing power and interface speed in FPGAs is enabling

the front-end radar functions, such as equalization and beamforming, to

be performed in the digital domain [46]. Modern FPGA devices have

greatly improved the practical IO limitations and are capable of processing

throughputs up to hundreds of Gbps which are required to process wideband

beams for reusable array applications [35], [47]–[50]. The Altera Arria 10

device is one of the first FPGA technology nodes providing the size, weight,

power, and processing efficiencies suitable to interface to an analog RF

front-end, pushing the digital domain closer to the aperture.

1.3 Outline of the Dissertation

As digital components continue to replace analog circuits in RF systems,

the processing efficiency of the digital circuits is a major contributor to

the performance and number of beams a single device can synthesize

simultaneously. Chapter 2 discusses an optimization technique that reduces

the number of bits required in phase shift beamforming, effectively increasing

11

the number of simultaneous beams that can be computed on a single

embedded device. Processing wide band waveforms introduces an additional

challenge in that the data rate is much higher that in the narrowband

case. Not only are the number of simultaneous wide band beams limited

per device, the data rate of a single beam requires a much higher data rate

since the beam processing is frequency dependent and can not be solved

with typical phase shift beamforming techniques such as in Chapter 2. In

Chapter 3, a multiple simultaneous wideband beamforming and equalization

technique shown to support real time data rates is discussed. In addition to

the fixed coefficient beamforming techniques discussed in Chapters 2 and 3,

radar and communications applications typically require the beamforming

coefficients to also be updated in real time. Processing timelines considered

“real-time” can be associated at the sample, pulse, coherent processing

interval (CPI), or video frame rate. It is of particular interest to study

coefficient adaptation at the sample level since this provides the highest

data rate requirement. In Chapter 4, assumptions of the adaptive problem

and a beamspace approach building on the concepts in Chapters 2 and 3

when traditionally a scalable approach for larger and larger arrays becomes

a challenge. Chapter 5 benchmarks common DBF algorithms such as

filtering and the fast Fourier transform (FFT) across FPGA, GPU, and CPU

processing hardware platforms. Finally, source code to perform wideband

beamforming and matrix inversion are included in the appendices. Appendix

A includes the MATLAB code listing that is used to generate wideband

calibrate and beamforming coefficients. This code was useful in creating the

beamforming figures shown in Chapter 3. Appendix B includes the Simulink

block diagram that has been designed to invert matrices with low latency.

12

Chapter 2

Narrowband Digital Beamforming Techniques and

Experiments

Narrowband beamforming is a critical component in many S, C, and X-band

radar systems. In narrowband systems, IO efficiencies are improved if

decimation sub-systems appear closer to the digital front end [51]. This

chapter presents an efficient real time architecture of a 2 channel digital

transceiver. Limiting the IO of the narrowband beamformer was also studied.

Array hardware was configured with bit-limited phase shifters and shown

to perform equivocally to a higher precision configuration, saving 5 bits of

information per datastream.

2.1 Narrowband Beamforming Digital Hardware

The Atmospheric Radar Research Laboratory (ARRC) of the University

of Oklahoma (OU) is building a teamwork-oriented, cylindrical, dual-pol,

phased array radar, and this section addresses the hardware development

of the waveform generation and digital receiver portions of the digital

transceiver. Direct digital synthesizers (DDS) are being utilized to generate

digital waveforms for the radar. DDSs will allow for smooth communication

13

between array nodes and efficient beamsteering in this application so long as a

synchronization technique ensures the operation of an accurate master clock.

A synchronous technique for generating waveforms over multiple channels of

the radar and the architecture of each channel’s transmitter is described. The

functions, utilization, and synchronization scheme of DDSs in this application

are also discussed. Finally, a digital receiver solution is explored. Combining

these two ideas introduces a low-cost, custom digital transceiver with a small

form factor. This transceiver has been designed and built at the ARRC and

utilizes waveform generators and digital receivers to be used in multi-channel

radar platforms. The printed circuit board (PCB) is shown in Fig. 2.1.

Figure 2.1: Digital 2 channel transceiver PCB designed at the University of
Oklahoma. Supporting 50 MHz IBW on receive and DDS waveform generation
on transmit. Reprinted from Thompson et al. (2011) c© 2011 IEEE.

14

Fig. 2.2 shows a simplified transmit side of each transceiver unit. The

clock routing of the system is carefully organized such that the clocks entering

all FPGAs synchronized and in phase with each other. Similarly, reference

clocks from the FPGA to each DDS are devised to be in phase with each

other. Careful planning matches the clocks entering and leaving the DDSs,

but transmit triggers for each DDS throughout the array need to be generated

synchronously as well. Additional timing mismatches are alleviated in the

calibration procedure.

Figure 2.2: Digital transmitter block diagram showing and array of 2 channel
TX modules capable of supporting horizontal or vertical polarization channels.
Reprinted from Thompson et al. (2011) c© 2011 IEEE.

15

The AD9954 DDS presents an effortless interface to create frequency

sweeps. A start, stop, and step frequency are programmed into the device.

After a trigger is initiated, the DDS generates the chirp waveform. This

technique allows for lower pulse power while improving range resolution. The

time series data of the chirped waveform is shown in Fig. 2.3 The transmitter

Figure 2.3: DDS generated waveform 0.5 µs pulse with 1 MHz to 50 MHz
frequency sweep. Reprinted from Thompson et al. (2011) c© 2011 IEEE.

includes two DDS subsystems and an FPGA controller. A host computer

provides a master clock to all nodes and each node serially interfaces with

the host. Additionally, the host can communicate with each node over an

Ethernet connection using a standard Trivial File Transfer Protocol (TFTP)

interface. The FPGA is configured with a Microblaze subsystem which

interfaces the host and DDS’s to the FPGA. Beamforming functions are also

implemented on the FPGA, discussed later in this chapter. The FPGA is

configured with a Microblaze soft microcontroller subsystem which interfaces

16

the host and DDSs. The physical design of system is carefully organized such

that the clocks entering all FPGA’s are in phase with each other. Similarly,

reference clocks from the FPGA to each DDS are devised to be in phase with

each other. Careful planning matches the clocks entering and leaving the

DDS’s, but transmit triggers for each DDS throughout the array need to be

generated synchronously as well. Thus, a simple synchronization technique

was devised.

An array of digitizers, referenced from a common distributed clock

source, imposes careful timing considerations on a fully digital array. In each

digitizer, the source clock latches the analog voltage of the detection circuit

onto a capacitor which is then registered by the digital circuitry. The copper

traces routing the clock to each digitizer in the array cannot be expected to

have equally matched lengths throughout the array and hence, the latches

will open and close asynchronously. Ideally, all of the sample-and-hold (S-H)

circuits in the entire array would open and close at the exact same time. In

reality, a distributed reference clock for a sizable array will have delays in

the clock distributing lines, on the order of hundreds of nanoseconds. This

makes it necessary to implement delay estimation techniques in order to

achieve sub-nanosecond clock accuracy. To address this problem, modern

digitizers have the ability to correct these offsets by calibrating internal

timing parameters. This is typically achieved with fine phase control of a

second sampling clock internally derived from the common data clock routed

to each digitizer. This synchronization functionality can be implemented

using internally generated reference clocks and a master/slave configuration

between each ADC in the array. The technique identifies a single master and

many slaves where each slave device requires an additional input reference

17

clock generated from the master. The slave devices use the master reference

to tune the phase of their internally generated sampling clock using an

adjustable analog delay creating a feedback loop that can be used to identify

the phase offset between the master and slave. The drawback of this and

similar techniques is that the additional clocks be routed throughout the

system. An all-digital array can circumvent this requirement by precisely

measuring the phase of the individual array channels available from the raw

in-phase/quadrature (I/Q) generated in the digital receiver. After the relative

phase has been measured in each channel, the analog phase controller of the

digitizer can then be tuned to align the digitizers using the control offered by

the FPGA without requiring additional system hardware modifications.

Furthermore, synchronization among transmit nodes is essential for correct

operation of the phased array. Each FPGA has a counter driven by the master

clock and generates waveforms at specific counter values. In order for every

DDS to output waveforms synchronously at these values, an initialization of

the system is required. Firstly, the serial interface relays a synchronization

pattern from the FPGAs to the host. The host then computes how far each

node’s data is off from one another and sends an Ethernet packet to each

node containing the number of clock cycles to delay required to align the

data. This process aligns the FPGAs’ serial communications with the host.

Next, each FPGA serially relays their counter value to the host. Finally,

through the Ethernet connections, the host relays individual offsets to nodes

in order to synchronize the values of the FPGA counters. FPGA output

reference clocks are aligned and DDS triggers will happen synchronously at

this point. Commands issued by the host will inform the transmitters which

counter value to issue the waveform generation trigger to the DDS. All DDS

18

output waveforms will be generated synchronously once that count is reached.

Following DDC, the I/Q data for each channel is serialized and sent to

a host computer. The host computer includes a digital acquisition (DAQ)

PCIe-6537 from National Instruments card that is capable of serially acquiring

32 total channels all synchronized to one clock running less than 50 MHz. In

order to simplify hardware implementation, this sample clock was divided by

a factor of two in the FPGA from the ADC’s sample clock of 80 MHz, yielding

40 MHz. 16 bit I/Q pairs, forming 32 bit signals, are generated for each

receive channel. The FPGA serializes the data and outputs differential signals

for each channel along with a 40 MHz clock. These signals come out of the

FPGA to a custom backplane through a PCIe interface. The backplane is

able to combine both channels from 16 different transceiver boards and route

them through a very-high density cable interconnect (VHDCI) cable to the

DAQ. The serial signals are synchronous to the first transceiver board’s clock.

Finally, LabVIEW acquires the signals and deserializes each channel. The

data is now available to be displayed and processed further.

2.2 Narrowband Channel Decimation

Fig. 2.4 shows the basic architecture of a single channel digital receiver.

Upon entering the receiver, an amplifier is employed to further amplify the

analog signal coming from the previous stage of the radar (typically a RF

downconverter). Next, a low pass filter conditions the analog signal for a

high speed ADC. The specific ADC being used is Analog Device’s AD9265.

The ADC samples at a rate of 80 mega samples per second (MSPS). A serial

port programs the ADC to enable flexible conversion options. Following the

19

Figure 2.4: Narrowband receiver high level architecture. Reprinted from
Thompson et al. (2011) c© 2011 IEEE.

ADC, the digital signal enters the FPGA to be digitally processed. The

FPGA implements a DDC to extract the frequency band of interest. All

processing blocks are implemented on the FPGA’s hardware and are fully

modular. Fig. 2.5 shows a block diagram of this process for both channels of

the transceiver board. First, I/Q demodulation is achieved through dedicated

hardware multipliers. Samples of a 10 MHz sinusoidal signal at specific

intervals allows this signal to be digitally stored in the FPGA in a small

table of values. This is a simple alternative to having dedicated hardware to

20

Figure 2.5: Digital down converter architecture showing 2 stages of decimation.
After demodulating to complex baseband, the I/Q streams are filtered with
a multiplierless CIC filter where the datastream is concurrently decimated.
A low order FIR filter follows that corrects the amplitude droop of the CIC
operation. A second stage of decimation follows to further improve the stop
and passband characteristics of the overall frequency response of the system.
Reprinted from Thompson et al. (2011) c© 2011 IEEE.

implement an oscillator for the purpose of demodulation. A 10 MHz reference

frequency was chosen because the center frequency of interest is 70 MHz.

Incidentally, sampling a 70 MHz signal at a rate of 80 MHz results in a 10

MHz signal due to aliasing.

Furthermore, demodulating by 10 MHz yields baseband signals and higher

frequency content which can be easily filtered out in later stages. This can be

explained further using the simple trigonometric equation, Equation 2.4.

cos θ cosφ = cos(θ − φ) + cos(θ + φ)
2 (2.1)

Taking θ as 10 MHz (70 MHz aliased) and φ as 10 MHz, it can be seen from

the equation that 0 MHz and 20 MHz signals are produced. This technique

yields a baseband signal of interest while the 20 MHz signal can be removed

21

by a low pass filter (LPF).

The next stage of the DDC downsamples the baseband signals I and Q to

be fed to the host computer for display and further signal processing. This

stage’s specifications are motivated by the serialization of the final output.

Down conversion is needed to take a 16-bit input rate of 80 MSPS down to a

serial output of 1.25 MSPS. This is achieved by a series of linear, digital filters.

Next, a cascaded integrator-comb (CIC) filter running at 80 MHz decimates

the input signal by 8. CIC filters are of importance due to the absence of

multipliers implemented in the FPGA. The CIC filter has a general transfer

function of Equation 2.2, a sinc function.

H(z) = (1− z−RM

1− z−1)N (2.2)

The implemented hardware uses R = 8 as the decimation ratio, M = 1 as

the number of samples per stage, and N as the number of stages in the filter.

As N increases, the roll-off of the filter’s frequency response increases as well.

This value of N was chosen as 6. The main purpose of this filter is to decrease

the sample rate to 10 MSPS, while removing out-of-band signals which would

alias. Unfortunately, the CIC’s filter response rolls off immediately and

has a narrow usable passband. This is the reason the CIC is followed by

a compensation finite impulse response (CFIR) filter. This filter inversely

matches the amplitude response of the CIC in the passband to normalize the

gain in this region. Equation 2.3 shows the amplitude response of this filter

for the passband under study (which is an inverse sinc function).

G(ω) =
∣∣∣sinc−1 (Mω)

∣∣∣N (2.3)

22

At this stage, another decimation stage of the CIC and CFIR combination.

Again, the next CIC decimates the input signal by a factor of 8. This takes the

total decimation factor to 64. Similarly to the previous CFIR, the next stage

compensates for the CIC’s “drooped” amplitude response. A decimation rate

of 64 is needed due to the 32 bits of I and Q (16 each) with an input frequency

of 80 MHz matched to a serial output of a 40 MHz frequency (details will be

described later). Fig. 2.6 and Fig. 2.7 shows the MATLAB simulation of the

overall frequency response of these 4 filters cascaded together. Both figures

show identical magnitude responses for the filter chain, however, Fig. 2.7

presents a detailed view of the passband and transition frequencies. The legend

shows the colors representing each of the four individual filter responses, the

cascaded response, and the acceptable noise floor. It is interesting to note in

Fig. 2.6, that the filter removes all frequency content outside our region of

interest, the stopband. This leads to an acceptable signal bandwidth (denoted

Sig BW in the figures) of nearly the Nyquist sampling rate of 40 MHz. Fig. 2.7

shows the cutoff frequency, Fc, as 0.63 MHz, a passband ripple (ripple) of

0.19 dB, and a transition frequency bandwidth, Ftrans of 0.632 MHz. These

are all acceptable values for testing the prototype transceiver board. In

order to realize these filters in hardware, filter coefficients are taken from

MATLAB and implemented into Xilinx IP cores on the FPGA. The initial

variables used were chosen for rapid prototyping purposes. More specific

specifications will be investigated in the future. Nevertheless, these coefficients

are fully reloadable and can be updated by the transceiver’s Ethernet interface.

Reloadable, in other words, allows the filter characteristics to be easily changed

“on-the-fly” instead of applying hardware changes to the FPGA in order to

accommodate different transmit pulses. The implementation of this chain of

23

Figure 2.6: Digital receiver downconversion filter cascaded magnitude response
(per channel): Full bandwidth. The combined response exhibits a tight rolloff
with low sidelobes and stopband performance that once decimated produces
an efficient digital filter. Reprinted from Thompson et al. (2011) c© 2011
IEEE.

filters is demonstrated by the block diagram of the previous figure, Fig 2.5.

The figure shows the architecture for both channels of the transceiver board.

The first stage requires four separate CIC filters for the I and Q samples of

two channels. The following stages can be combined into a single dataflow.

This is because the filter rate after the initial decimation is divided by a factor

of eight. This means that the following filters can accommodate up to eight

channels. Multiplexing the four channels on the board to the eight empty filter

channels allows the FPGA to reuse valuable logic (mainly multipliers used in

24

Figure 2.7: Digital receiver downconversion filter cascaded magnitude
response (per channel): Detailed Bandwidth. The cutoff frequencies of the
compensation filters are chosen so that the first sidelobe response is suppressed
below 120 dB. Reprinted from Thompson et al. (2011) c© 2011 IEEE.

the FIR filters).

2.3 Phase Shift Beamforming

In addition to minimizing data rates with frequency decimation, narrowband

digital systems use beamforming to further decreases data rates by decimating

in the spatial domain. In this section, a new paradigm of assigning bits to a

set of digital phase shifters is proposed. Modern day digital phase shifters

associated with each TR module typically relies on four to six bits. Each

25

of these phase shifters provide a desired resolution of 22.5 degrees to 5.625

degrees, respectively. When an array is steered in one of the canonical angles

of the phase shifters, the error between the desired angle and the actual angle is

essentially zero. For example, steering 11.25 degrees with the family of six bit

phase shifters would be ideal. However, when an array is requested to steer in

a non-canonical direction, say 15 degrees, then errors will occur. These errors

occur because each of the phase shifters receive the same bit assignments.

In other words, the shifters operate independently and improvements will

occur if the set of shifters operate collectively. In particular this section seeks

the solution for this problem: for a set of M phase shifters, each defined

by B bits, an optimal approach could be derived to distribute the M × B

bits so that the array performance is maximized. In order to achieve this,

the simulated annealing algorithm is used to search for a nonlinear phase

gradient solution that optimizes the maximum sidelobe level performance given

a certain beamsteering angle.

Approaches for optimum bit assignments have been applied for digital

filter design with success, yet optimal approaches for assignments to digital

phase shifters has largely been overlooked. These include computationally

efficient decimation filter design [42], [52]–[54]. For example, based on the

team’s previous research, it has been shown that searches may be described

as “adaptively pruned tree searches” [53] or “greedy” [54]. In addition, the

so-named Multiple Constant Multiplication (MCM) problem, first introduced

by Potkonjak et al. [43], [44], has been rigorously studied over the last two

decades. [38]–[41]. These MCM approaches are tangential to the direct

phase-shifter problem at hand, but lessons can be learned from them. This

proposed approach may have direct uses for radars that require a high degree

26

of beam pointing accuracy, given a limited number of bits in each phase

shifter in each radar’s array, such as [9], [11], [12], [14], [16].

Motivation for a computationally efficient search algorithm is a

consequence of the phase assignment controller complexity. The controller,

typically a FPGA or microcontroller, can have high computational and power

cost, especially for non-integer calculations. As a result, an extended search

algorithm is unfeasible in embedded systems. Optimization techniques exist

that take advantage of Monte Carlo methods when deterministic algorithms

are unfeasible. One such method is the Metropolis–Hastings algorithm,

known as simulated annealing (SA) [55], [56]. The computational cost of this

algorithm can be controlled by limiting the number of search iterations and

thus is a good algorithm candidate for the scenario of finding globally optimal

phase assignments on board an embedded processor.

Digital phase shifter values are assigned in software. Some work

has been done in an attempt to manipulate the array pattern through

software [57]–[60]. These references digitally manipulate phase shifter values

and amplitude weights in order to control main lobes, sidelobes, null angles,

etc. Additionally, phased array patterns have been studied in order to improve

other array properties such as resolution [61]. However, instead of adaptive

nulling and other techniques, this approach emphasizes correspondence

between phase elements to achieve better array performance.

Optimization of a phased array’s performance while beam steering can

be defined in multiple ways. For one such metric, this section focuses on

improving maximum sidelobe levels and discusses the effects on other metrics

such as root mean squared (RMS) sidelobe level, beamsteering angle error,

and main beam width. These properties of a phased array antenna can be

27

derived from the array factor (AF), which is a model of an array’s electric field

pattern in the far field. Given an array of identical antenna elements, the AF,

E, becomes a summation of each individual element’s AF and is defined as

E(θ) =
M∑
m=1

wme
jkdmaθ . (2.4)

Where m is the element number with respect to a reference element, with the

first entry, m = 0, wm is an amplitude weighting function, k is the wave vector,

(2m
λ

), dm is the position of the mth array element, and aθ is the beam steering

angle vector. In this study, wm is taken as the rectangular window, i.e. all

elements have equal weights. Analysis has also been performed with different

windows (Hamming, Hanning, etc) with similar results. The phase angles φm

needed to steer a beam in the direction of θ is defined in Equation 2.2.

2.4 Phase Quantization Effects on Beamforming

Performance

Since digital phase shifters possess a finite number of control bits, valid phase

values are bound by B. This constrains valid phase shifter values, φm to finite

steps within 360 degrees.

φn = 360
2B M (2.5)

Where M is the integer value that approximates φm the closest. Table 2.1

shows valid phase increments available for B bits. Quantization of phase

control has been shown to affect antenna beam performance (beamsteering

angle error, increased sidelobe levels, and quantization lobes, in particular)

and much work has been done in an attempt to solve these problems [13],

28

Table 2.1: Phase shifter resolution in degrees for different quantized bit
lengths.

Number of Phase Shifter Bits (B) Angle Offsets
3 45◦

4 22.5◦

5 11.25◦

6 5.625◦

7 2.8125◦

8 1.4063◦

[62]–[66]. By modifying the error function of the quantized phase gradient, a

new phase front can be developed to create nonlineararities that can be shown

to remove the periodic property of the quantized phase front and therefore

mitigate quantization lobes. The theoretical phase front is a reflection about

the center of the array. It will be shown that the maximum sidelobe levels

can be reduced by modifying this phase gradient, thereby removing the

symmetric property. Disrupting this attribute will also increase sidelobe

levels for angles far away from the steering angle. Nonetheless, this allows a

possible phase gradient solution that sacrifices higher average sidelobe levels

for lower maximum sidelobe levels.

A method to search a subspace of all valid phase offset combinations has

been developed.

φm = kdm sin θ (2.6)

For a linearly oriented, one dimensional array with λ/2 element spacing, the

phase offsets simplify to become

φm = π(m− 1) sin θ (2.7)

It can be seen that the phase offsets create a linear function with slope of

29

m sin θ. This relation is referred to as the “phase gradient” or “phase front”.

The phase front results in a set of phase offsets across the array in which the

values would be assigned to a real phased array system’s set of digital phase

shifters. Given a phase shifter’s finite degrees of freedom (i.e. bits), the phase

front will be quantized and errors will ensue when phase offsets are rounded

to the nearest acceptable value. The comparison of ideal phase gradients and

quantized phase gradients are shown in Fig. 2.8.

Figure 2.8: Quantization effects on a phase gradient steered to 10 degrees
off broadside of an 8-element phased array with 3-bit phase shifters. The
quantization error is shown in red. Reprinted from Thompson et al.
(2015) c© 2015 IEEE.

30

2.4.1 Efficient Quantized Phase Shift Beamforming

By modifying the error function of the quantized phase gradient, a new phase

front can be developed to create nonlinearities that can be shown to remove

the periodic property of the quantized phase front and therefore mitigate

quantization lobes. The theoretical phase front is a reflection about the center

of the array. It will be shown that maximum sidelobe levels can be reduced

by modifying this phase gradient, thereby removing the symmetric property.

Disrupting this attribute will also increase sidelobe levels for angles far away

from the steering angle. Nonetheless, this allows a possible phase gradient

solution that sacrifices higher average sidelobe levels for lower maximum

sidelobe levels. In order to test this approach, a method has been developed

that searches the space of all valid phase offset combinations.

2.4.2 Using Simulated Annealing to Search for

Psuedo-Optimal Phase Offsets

A method to search for a set of quantized phase shifter values that improves

the overall AF is presented in the section. The SA optimization algorithm has

been studied extensively [55], [56]. The algorithm is used here to search for a

nonlinear phase gradient solution that optimizes the maximum sidelobe level

performance given a certain beamsteering angle. Fig. 2.9 depicts a flowchart

of how the algorithm incorporates SA into the optimization problem. Initially,

the array is steered to an ideal configuration. As the temperature is decreased,

the beamsteering coefficients are randomized and the AF is analyzed to see if

a valid beam is produced. If so, the temperature is decreased and the next

iteration begins, If not, the next phase state is accepted as the best state

31

Figure 2.9: Flow chart of the optimization algorithm using simulated
annealing. Reprinted from Thompson et al. (2015) c© 2015 IEEE.

based on the Boltzmann variable. Once the next best state is determined, the

temperature is decreased and the algorithm iterates. It is assumed that the

best phase state converges at the end of the temperature schedule which is

chosen to be long enough to find at least a local minima.

SA defines a “temperature schedule” i.e. the number of iterations used in

the algorithm and a starting temperature. In each iteration, the temperature

is “cooled” as it decreases with time. A best state is initialized with the

32

quantized theoretical phase front. During each iteration, a random element of

the current best state is chosen to accept a random phase offset, resulting in the

current state. The AF of the current state is then used to find the maximum

sidelobe levels of the corresponding phase front. If the sidelobe level found is

less than the current state’s sidelobe levels, then the current phase gradient is

saved as the best state and the algorithm continues searching for more optimal

possibilities. If this new state has worse performance, however, the algorithm

uses the Botzmann distribution (Equation 2.8) to determine a final criteria on

whether or not to save the state as the best state, even though it may perform

worse.

P (E) = e
−∆E
T (2.8)

In Equation 2.8, P (E) is a test statistic, ∆E is the change in error of the

current state compared to the best state, and T is the current temperature.

Once P (E) is computed, the value is compared to a uniformly distributed

random variable. The state is saved if P (E) < r holds true, where r is

the random variable. In this case, a suboptimal phase gradient is allowed

to become a psuedo-optimal state. Otherwise, the test is rejected and the

algorithm continues without saving the state.

It can be seen from Equation 2.8 that as the temperature is decreased,

there is a lower chance of suboptimal states being considered as optimal. In

other words, at the beginning of the algorithm (i.e. iterations with higher

temperatures), worse performing states have a higher probability of becoming

the current best state. This way, the algorithm is able to search through the

search space with a better chance of achieving the optimal phase assignment

possible without getting caught in a local minimum. Once the temperature

33

schedule is finished (i.e. a temperature value of zero), the algorithm is complete

and the result will converge to the optimal phase front for the tested steering

angle. The state space of the convergence over 10K iterations is shown in

Fig. 2.10.

Figure 2.10: Simulated annealing with 3 quantization bits converging over
10000 iterations. The convergence parameter was chosen agressively to test the
optimization locality. The SA algorithm is shown to find adequate sidelobes
levels after nearly 200 iterations. A forgetability factor is programmed into the
algorithm which is seen at iteration 1800 when the SA algorithm finds a -7 dB
sidelobes level. As the iterations progress, the forgetability factor decreases
and enables the SA algorithm to converge at slightly better sidelobes levels
after 5500 iterations. Reprinted from Thompson et al. (2015) c© 2015 IEEE.

An array with 12 elements and 3-bit phase shifters has been simulated

in Fig. 2.11. The approximated global optimum phase gradient of the array

needed to steer the beam to 3.75 degrees off broadside and its resulting AF

pattern is shown. The theoretical and modified phase fronts have different

phase offsets in the first and sixth elements only. Since the number of elements

34

Figure 2.11: In a.) Traditional and optimum quantized phase gradients across
a 12-element phased array and in b.) array pattern of corresponding phase
gradients. Reprinted from Thompson et al. (2015) c© 2015 IEEE.

is identical and the phase fronts are nearly similar, the main beams for both

cases have similar beamwidths. Note, the steering angle has shifted slightly

due to a change in the phase front’s symmetric reference point. Additionally,

the sidelobe right of the main beam has been reduced while the sidelobe left of

the main beam has been raised. Angles furthest away from broadside increase

in power significantly.

Fig. 2.12 demonstrates the sidelobe effects of quantizing phase shifter

assignments shown by the AF across azimuth angles from 0 degrees to 45

degrees. Notice the symmetry of the quantization lobes at angles away from

35

Figure 2.12: Array pattern when steering off broadside for a.) traditional
3-bit quantized phase shifters and b.) optimal phase gradients. Reprinted
from Thompson et al. (2015) c© 2015 IEEE.

the steering angle before modification. After introducing the optimal phase

front, the shape of these quantization lobes is disrupted and sidelobe levels

away from the main beam are raised. Also able to be seen is a decrease in

power of the sidelobes adjacent to the main beam.

Fig. 2.13 demonstrates the peak sidelobe levels (including improvement)

with respect to steering angle. The traditional, quantized phase gradient is

shown in the top plot of Fig. 2.13. At many steering angles, the maximum

sidelobe level can raise above -10 dB. This is a result of the 3-bit quantization

36

Figure 2.13: Array pattern first sidelobe a.) maximum levels and b.)
improvement from trandional quantized phase gradients to optimal phase
gradients. Reprinted from Thompson et al. (2015) c© 2015 IEEE.

of the phase values. Altering the phase front removes the periodicity of the

quantized phase errors, the first sidelobes are lowered by the optimal phase

gradient found. The bottom chart of Fig. 2.13 shows the improvement across

steering angles from 0 degrees to 45 degrees. Improvements of over 3 dB can be

achieved when the traditional method performs poorly at a given angle. The

optimal phase gradient searching algorithm is shown to perform well when

quantized phase fronts for a given steering angle do not produce maximum

sidelobe levels near the theoretical maximum of 13.2 dB down (a result of the

rectangular amplitude window function).

Tradeoffs are necessary with better sidelobe levels, however. For each

37

optimal phase gradient found for a given steering angle, the main beam

position was allowed to drift from the intended steering angle. When

introducing a nonlinear phase gradient, the average angle tangent to the

slope of the gradient (i.e. the steering angle) will not be preserved. The

results of this error are shown in Fig. 2.14. It has been shown in [62] that the

Figure 2.14: Main beam pointing errors due to modified phase gradients for
a 12-element phased array. Reprinted from Thompson et al. (2015) c© 2015
IEEE.

linear, quantized phase front will incur errors that are dependent on beam

steering angle. The pointing errors created with the optimal, non-linear,

quantized phase fronts are not dependent on steering angle and are controlled

by the randomly introduced phase offsets. Additionally, these errors can

be dependent on the number of elements in the array, M . The freedom of

38

altering bit assignments in a 12 element array is minimal and therefore can

produce significant beam steering angle errors. More degrees of freedom

are introduced with larger values of M and as a result will produce smaller

errors. This undesired effect can be controlled by the SA algorithm, however,

and can be done by only considering states with errors below than a defined

threshold.

Another property of the AF that is dependent on M is the sidelobe level

improvement. This property is shown in Fig. 2.15 as a function of M . Both

Figure 2.15: First sidelobe level improvement for different phased array sizes.
Reprinted from Thompson et al. (2015) c© 2015 IEEE.

the average and maximum improvement values are shown for all beam steering

angles between 0 degrees and 45 degrees. The algorithm can never introduce a

phase front that has higher sidelobes than the traditional quantized example

39

due to the SA algorithm. Therefore, the approach guarantees at least the same

or better performance than previous methods. In the average and maximum

cases, it can be seen that the sidelobe improvements converge with high values

of M .

2.4.3 Narrowband Experiments with the Army Digital

Array Radar

The Army DAR hardware platform [22] was used to verify the narrowband

beamforming experiments discussed in this chapter. The narrowband

experiments performed with the DAR are shown in Fig. 2.16. Beam patterns

were cut using scripts written in Labview to control the positioner angle and

update beamsteering coefficients on the DAR. The antenna array consists

of a 9x9 patch array, shown in Fig. 2.17. The outermost elements were

terminated.

2.5 Chapter Summary

A digital transceiver solution for a new cylindrical, dual-pol, phased array

radar has been introduced. The DDS is an integral part in generating

waveforms for the transmitter portion of the transceiver. Waveform

generation for multiple channels of the array is easily implemented with

a low-cost, flexible DDS integrated circuit. A simple synchronization

technique throughout the array allows consistent and robust waveforms to

be transmitted to multiple channels within the system. Simplicity of the

DDS design and implementation allow for easy generation of two signals

per transceiver allowing for dual-pol waveform transmissions. Additionally,

40

Figure 2.16: Narrowband experimental setup in the chamber with the Army
DAR. The DAR chassis and 9x9 element aperture (detailed in Fig. 2.17 sit on
a positioner that pivots -90 to 90 degrees in azimuth with a resolution down to
0.1 degrees steps. The I/Q data is streamed to the PC over a 1 GbE interface
where the beam patterns are synthesized in Matlab offline. Reprinted from
Thompson et al. (2015) c© 2015 IEEE.

a compact digital receiver circuit is integrated alongside the transmitter on

the same circuit board. The surface mounted integrated circuits used for

the transmitter, receiver, and other circuitry allow many channels to be

physically implemented with a small area profile. The techniques described

for the dual-pol, phased array radar is a novel and unique realization of new

weather radar systems.

The beam steering capability of phase array radars has been analyzed and

improved. A new method of assigning phase shifter values in phased array

41

Figure 2.17: In a.) a photograph of the DAR antenna panel and in b.) the
spatial configuration of the active and terminated elements. Reprinted from
Thompson et al. (2015) c© 2015 IEEE.

radars was developed by analyzing the AF for multiple steering angles. It has

been shown that array sidelobe levels can be reduced when using a minimal

number of phase shifter degrees of freedom (i.e. bits) while the average

sidelobe levels are increased. The real beam steering angle error can increase

as well with small array sizes. The main beam width was shown to not be

affected by the technique. This chapter’s proposed approach can always

achieve an improvement greater than or equal to traditional beamsteering

methods. The proposed method is appealing due to the software controlled

architecture that assigns values to digital phase shifter hardware. With

these important implementation concepts in mind, the next chapter explores

wideband beamforming.

42

Chapter 3

Wideband Digital Beamforming Techniques and

Experiments

The general concept of wideband beamforming in the digital domain has been

well studied for some time [24], [25], [28], [67], [68]. Additionally, many RF

systems have been developed in the past [34], [35], [47]–[50], [68], [69], though

these systems are still not general and/or high performance enough to be used

for multiple RF functions.This section introduces new wideband processing

techniques to improve the performance of RF systems that digital processing

technology has recently introduced. Beam squint over a wide frequency band

is experienced with phase shifting since phase is frequency dependent and

only an approximation of a time delay (e.g. IBW greater than 10% of the

carrier frequency). The beam will “walk” off the intended pointing direction

at angles off boresight, degrading the total power on target. Thus, limiting

the overall system performance, since beam squint is a function of beam width

angle, center frequency, IBW, etc. [30]. In the past, optical approaches to

the wideband beamforming problem were pursued [70]–[75], however, circuit

area presented a challenge for practical systems with many channels. Today,

digital hardware enables the wideband processing to be performed in the digital

43

domain in either the frequency [76]–[79] or time domain [80]–[82]. Careful

consideration of the technique should be made in order to minimize or reduce

the hardware resources so that lower power utilization, more beams, wider

frequency coverage, etc. is achieved. For example, conversion to and from the

frequency domain is done with the FFT and inverse FFT, respectively. These

operations are performed in addition to a matrix of vectorized MAC operations

used to apply the weights. It is realized that such an architecture utilizes the

same DSP resources as a time domain DBF technique using interpolating FIR

filterbanks [83], [84] without adding operations to convert between domains.

The wideband model is shown for the λ/2 uniformly spaced linear array

(ULA) in Fig. 3.1 assuming a wavefront impinging an array at an angle θ

and element-level beamforming is available. A beam, y, is formed from the

combination of M time-delayed elements in the FPGA. In the receive chain of

the TR module, the RF front-end filters, mixes, and amplifies multiple analog

RF channels in 180 nm SiGe. The signals are then conditioned for digitization

by an array of interleaved successive approximation register (SAR) ADCs built

in 65 nm CMOS. The final stage of the digital array model is front-end digital

processing in an FPGA before offloading beam data to the digital backend

for further processing. Here, the 20 nm Arria 10 FPGA from Altera has

been used to implement digital calibration and beamforming algorithms in

real-time. Manufacturing and packaging errors in the receiver chain can change

an element’s amplitude and phase response from channel to channel. These

errors are inverted with an equalization routine running on the FPGA and

are attributed to linear and non-linear effects in the antenna aperture, TR

modules, and digitizers. In the remainder of this section, we introduce the

integrated multi-use phased array common tile (IMPACT) common module

44

Figure 3.1: Model of beamforming in a digital array. The IMPACT module
utilizes elemental digital beamforming on receive and analog beamforming on
transmit. Mutual coupling effects and analog errors contribute to the array
error which is modeled by a transfer function, gm. Errors are corrected for in
the FPGA by the calibration routine.

hardware architecture and its functionality. The DBF engine of the IMPACT

module resides on the FPGA and is discussed at the end of this section.

By creating a single module and reusing the same hardware design as

COTS technology scales, non-recurring engineering costs of building a custom

array are significantly lowered [85]. The Defense Advanced Research Projects

Agency (DARPA) Arrays at Commercial Timescales (ACT) program has

supported the construction of a reusable RF-to-digital transceiver module

(shown in the 3D concept module of Fig. 3.1) that can be reconfigured using

45

software to support to a number of different center frequencies, bandwidths,

and personalities (e.g. radar and communications). The RF-to-digital module

is a low-cost, compact device supporting 16 full-duplex transceivers. Quad

channel analog SiGe front-end RF transceivers are represented by the blue

squares on the top PCB layer of the module. RF signals traverse from the

top layer through a differential, high frequency connector and interface to

the 16 individual ADCs residing on the bottom PCB which are designed by

Stanford, fabricated in the 65 nm CMOS TSMC process, and packaged at

Rockwell Collins. A single FPGA resides underneath the lower PCB layer

and is electrically connected to the each ADC with 8 low voltage differential

signaling (LVDS) pairs for data and a single LVDS pair for a 350 MHz clock.

3.1 True Time Delay

The effects of beamsquint on the array factor is demonstrated in Fig. 3.2.

The resulting beamforming patterns were processed using phase shift only

beamforming and TTD DBF techniques. In a.) the TTD was not applied

and shows the beam drifting in azimuth for higher frequencies. In b.) the

beamsquint is corrected for with TTD.

A time domain technique to implement TTD is the Farrow structure which

precisely generates the delay. However, an exact delay value is not required to

form high-fidelity beams and can be estimated. The authors have previously

shown in [52] that quantization effects of phase shifters can be mitigated when

using a limited number of degrees of freedom (i.e. bits). In this case, the

degrees of freedom are the number of filter taps in an individual channel.

Extending this realization to TTD, exact time delay is not required for large

46

Figure 3.2: Correcting beamsquint with digital true time delay. In a.) the
response using a phase shifter only, and in b.) shows the response with TTD
included. The main beam “pivots” based on the IF center frequency and the
main beam is aligned.

arrays (e.g. > 8 elements in a single dimension). Therefore, in the time

domain, an array of vectorized MACs is an efficient architecture to perform

TTD DBF. Although the delay value may not need to be exactly precise,

quantization resolution must be sufficient so as to not further degrade the

estimation. Altera has demonstrated a time delay based beamforming solution

in hardware [86] using polynomial interpolation FIR filterbanks to estimate

element-level TTD. The polynomial coefficient calculation approach to TTD

limits the linearity for the wideband case once quantization errors further

degrade the polynomial estimate for high frequencies. For RF signals, Fig. 3.3

shows typical TTD values across practical center frequencies and numbers of

elements.

In hardware, Fig. 3.4 shows time delayed signals that were asynchronously

captured in random access memory (RAM) and overlaid 2 digital RF memory

47

Figure 3.3: True time delay requirements for coarse and fine delays over a
range of center frequencies and array sizes for systems configured from scalable
IMPACT modules. Horizontal dashed lines represent integer numbers of coarse
delays in the FPGA at 1.4 GHz, δcoarse, and vertical dashed lines shown
the integer number of IMPACT modules required to support the number of
channels in a single dimension.

channels support 40 µs of IF data. At the low frequencies (e.g. the beginning of

a pulse) the TTD effect is apparent. The minimum fractional delay resolution

is 1
Nfs

. Max fractional delay is N−1
Nfs

. For a sampling frequencyof fs = 1.5 Gsps

and N = 25, tmin = 26.7 ps and fmax = 640 ps. Fig. 3.5 shows the minimum

and maximum delay using 22 nonzero taps.

3.1.1 Digital Filter Design

True time delay in the digital domain is achieved using clock sample delays

and fractional delays. Fractional delay FIR filters, achieving a linear phase

48

Figure 3.4: Measured RX time series data for two channels showing the
fractional delay between channels.

response in the band of interest, can be used to create temporally fine

delays in a processing channel [87]. The construction of these FIR filters

entails computing impulse response coefficients using techniques such as

oversampling or interpolation. A wideband fractional filter is constrained

such that all frequencies are passed with constant amplitude response while

incurring a constant group delay throughout the entire processing band.

Alternatively, infinite impulse response filters (IIR) have been used to perform

efficient TTD [88], [89]. However, these techniques typically require a high

oversampling factor to ensure flat group delay across the digital bandwidth.

For an interpolation filter that may be used in a timed delayed array, there

49

Figure 3.5: Two filters with minimum and maximum fractional delay with 26.7
ps of resolution and P filters.

are five main design criteria to consider when designing a time delay FIR

filter. These include group delay error, phase error, amplitude error, filter

length and coefficient resolution. In deriving a set of filters for a time delayed

array, mismatches between filter sets can degrade the overall beamformer

performance. For example, a set of coefficients was found to satisfy the

specifications shown in Table 3.1. In the frequency response, it is desired

Table 3.1: True time delay filter bank properties for RF beamforming.

Number of elements (M) 10
Number of filter taps 128
Fractional sample resolution .01fs
Amplitude window Blackman

to have a flat amplitude response across the entire band (i.e. all-pass filters)

but is not achievable with finite length filters. To lengthen the filters and

effectively double the length, the filters are modulated to a center frequency

50

that is a quarter of the sampling rate (e.g. half the Nyquist rate) [90], [91].

Modulating the results to center of the band to this frequency in particular

allows twice as long filtering lengths with the same number of DSP resources

as a result of alternating coefficients being zero.

To align the signals between elements, a filter hm is designed with

arbitrary time delay control. The frequency response of hm requires a flat

amplitude response to support wide instantaneous bandwidths and a linear

phase response (i.e. |Hm(ejω)| = 1 and linear group delay). In the digital

domain, an estimate of this filter is constructed from a finite length sinc

function such that

hm = sinc(ωmt− δ) (3.1)

for any TTD value, δ. Fig. 3.6 shows a set of sinc functions with subtly offset

group delays corresponding to sub-nanosecond TTD resolution. The filterbank

consists of all-pass interpolation filters that provide a constant group delay

that is slightly offset in delay from adjacent rows in the filterbank. A low pass

prototype filter was designed to estimate these parameters with high resolution

(i.e. oversampled) and is constructed in the form of a digital FIR filter to

ensure linearity in the digital domain, shown in Fig. 3.7 a.). The magnitude

responses and group delays are shown in Fig. 3.7 b.) and c.), respectively. The

figure shows a coefficient set of 22 non-zero tap FIR filters. The pass band

of the filters was designed to occupy 650 MHz of instantaneous bandwidth

(86.7% of a 750 MHz Nyquist rate) with 0.05 dB of passband amplitude ripple

and 66.7 ps of group delay resolution, as shown in Fig. 3.7. Fig. 3.7 a.) shows

the normalized filter coefficients after a Blackman window is applied. The

plot in Fig. 3.7 b.) shows the flat magnitude response of each filter, closely

51

Figure 3.6: TTD sinc coefficients for high precision delay values.

overlaid with one another. Fig. 3.7 c.) shows the group delay of a set of 20

filters demonstrating the flat fractional delay over the wide bandwidth, each

at a slightly offset value.

Length of the filter defines the degrees of freedom in manipulating the

amplitude and phase characteristics of an array channel. In the case of

complex baseband signals, complex filters can be used that require three

times more DSP operations compared to a real, intermediate frequency (IF)

filter. Additionally, DSP routing fabric cannot be utilized which limits the

clock speed of the filtering circuits contributing to the complex baseband

processing drawbacks. In an FIR filter, typically about 128 taps offers a

52

Figure 3.7: A TTD filterbank set composed of 20 filters with 35.7 ps of
resolution. In a.), the real-valued time domain coefficients are shown, in b.)
the amplitude response of the filter set is shown with less than 0.2 dB of
amplitude differences between any two filters, and in c.) a flat group delay
across the passband for each filter in the set.

stopband isolation of better than 60 dB. However, due to the wideband

characteristic of a channel, an all pass nature of the equalization filter needs

to be taken into account. As a result, the additional degrees of freedom can

be applied to the phase of the response, further increasing the equalization

ability with longer filters. Ultimately, the DSP count of an FPGA limits the

number of taps in either a real or complex filter. Current state of the art

devices typically have on the order of a few thousand DSP resources and it is

expected that this number will steadily increase with Moore’s law in future

devices. Multiple FPGAs can be systolically combined to further increase the

DSP capacity but does not offer increased power efficiency so this technique

will not be discussed further. Currently, all DSP resources operate in a fixed

point mode where the filter coefficients are quantized, typically taken as 18

bits in both Altera and Xilinx devices. With the introduction of the Arria

10 devices from Altera, fixed point DSPs have been replaced with floating

point implementations. This means that the floating point arithmetic logic

unit (ALU) is configured in silicon as opposed to the traditional cumbersome

53

implementation in logic fabric which previously increased the utilization area

and lowered the power efficiency of floating point operations. A benefit of the

new DSPs includes reduced quantization errors in the processing. However,

since the digitizer resolution is bit limited, system performance will not be

significantly improved by using floating point devices.

Amplitude tapering (i.e. windowing) is used to shape the frequency

response and flattening the group delay; a 46 tap Blackman window is used

in Fig. 3.7 since the first and last coefficients are zero. The coefficients in

Fig. 3.7 have a signed, 18 bit fixed point representation. For the filter sets

generated here, the memory utilization to store h on chip is small compared

to the overall capacity of an Arria 10 device. For example, to achieve a

resolution of fs/20 (e.g. 35.7 ps), 20 filters with 22 taps require 7.9 Kb of

memory. A set of 1000 filters is sufficient for the radar and communications

applications studied here. This requires 400 Kb of RAM in order to achieve

714 fs of TTD resolution.

The amplitude response and group delay show the errors of the set relative

to each individual filter. In the frequency response, it is desired to have a

flat amplitude response across the entire band (i.e. all-pass filters). However

phase errors in the all-pass case (seen as ripples in the group delay) urge

the implementation of a bandpass filter set centered at 1/4th the sampling

frequency, effectively maximizing the passband of the Nyquist bandwidth and

pushing errors close to the Nyquist frequency. Shifting the center of the band

to this frequency in particular, enables twice as long filtering lengths in the

FPGA implementation since alternating coefficients are zero. Careful routing

and multiplexing of the data through the filter can be employed effectively

halving the DSP resource requirement with the same filter performance

54

characteristics. Longer filters are paramount to minimizing the ripples seen in

both the amplitude and phase relative to other filters in the set. Additionally,

amplitude tapering is effective in reducing the errors seen. Windowing

techniques can sharpen or flatten the transition band roll-off for better or

worse performance with respect to amplitude and phase ripples. Lastly,

coefficient resolution can affect the performance of the beamforming channel.

Typically, the resolution of the RF system is determined by the ADC and

DAC. This is especially true for wideband digitizers since higher frequency

sampling rates are typically associated with smaller bit widths.

3.1.2 Wideband Array Calibration

Before beams can be formed, the array must be well calibrated due to

amplitude and phase errors across elements. Beam patterns at boresight

were formed with and without calibration in Fig. 3.8. In the case that

phased arrays have multiple independent transmit and receive channels, it

is expected there be misalignments between channels. Calibration, then,

is required to equalize these mismatches and enable the collective array to

operate as expected. Additionally, absolute calibration properly determines

absolute accuracy of the array performance required for calculation of the

estimated radar moments. Failure to properly calibrate at all or periodically

during system operation can degrade sidelobe performance, directivity,

steer beams in the wrong direction, and decrease/increase main beam/null

locations, respectively. Authors in [92] highlight the need for calibration

where these issues can have a significant impact on the beam fidelity due to

the combination of many errors. Calibration is then required to correct the

55

Figure 3.8: Uncalibrated, a.) and calibrated, b.) beam patterns at boresight.
A beam is unable to form due to the phase mis-alignments between channels
but is formed once the phase is aligned with respect to frequency.

relative mismatches. This is typically achieved with complex valued filters in

the time domain, or subbanding and applying phase offsets in the frequency

domain. After calibration, remaining errors in phase and amplitude are the

main metrics used to assess array performance. Typical state of the art values

in past arrays yield less than 1 dB of remaining amplitude ripple and less

than 2 degrees of remaining phase mismatches [93]. In the digital domain, the

calibration fidelity is directly related to the length of the equalization filters

where longer tap length more closely aligns channels. The reconfigurability

of digital techniques enables reloading of filter coefficients offering tight

56

control of the residual amplitude and phase mismatches where the calibration

effectiveness can be sacrificed for shorter filter lengths.

Digital at every element arrays have the ability to intimately analyze

the phase and amplitude characteristics at each channel. Individual channel

control allows channels to operate in either transmit or receive mode

at any given time, regardless of the overall array operation. Combining

these two features of all digital arrays enables a flexible and convenient

calibration routine that can be easily implemented in software that requires

no additional hardware. Many existing calibration techniques have been

reviewed and summarized in [93], where it has been determined that on-line,

in-situ calibration relying on mutual coupling can be effectively used to

equalize the array. One advantage of digital FPGA processors is their rapid

reconfigurability property. With this in mind, separate calibration firmware

builds can be constructed with plenty of processing resources without

inhibiting regular processing modes. Alternatively, if enough processing

resources are available, the calibration mode can be done on-chip or offline

when utilizing the high-speed serial transceivers on the FPGA. On-chip

calibration warrants real-time equalization and near real-time equalization if

offloaded to a supporting processor. In either case, the calibration mode can

run during regular system operation.

There are many factors including temperature, environmental factors, and

non-ideal electronics in manufactured components that are non-static and

change with time as the array operates. For example, transmitting high power

from the array’s analog front end can significantly increase front end analog

electronic components’ temperature altering their operational properties.

In particular, analog amplifiers are susceptible temperature increases while

57

in operation which in turn can affect the gain characteristics. Similarly,

environmental issues such as weather or water/ice present on a radome can

alter the nominal array performance. Finally, non-ideal electronics such as

oscillators used in digitization components (namely ADCs and DACs) and

local oscillators in mixers can have small errors in terms of drift. It should

be noted that these electronics are prone to instability due to temperature

variations in addition to the amplifiers in the system. Over time, these

seemingly small errors can accumulate to present significant errors on the

array. These factors can be time independent and drive the notion of constant

system calibration even while in operation. Luckily, full digital control

of the array enables this to be performed regularly during or in between

CPIs. Calibration of the modern CM with true time delay differs from

conventional approaches. Additional calibration procedures requiring more

processing resources and processing time to account for the spectral leakage

between channels emanate from the subbanding operation of the FFT in

these frequency domain approaches. Larger FFT samples can mitigate these

leakage effects but in turn require longer integration times. Additionally,

channelization structures based around polyphase filters can be used to

further enhance channel isolation compared to the FFT only operation but

require significantly more processing resources.

A well know reference waveform is then transmitted and received

simultaneously where the relative phase and amplitude at each active receiver

is measured. The physical location of the elements is precisely known relative

to the transmitter (to a degree of accuracy of the array panel fabrication

process, typically much less than a single wavelength of the highest radiated

frequency). In-situ calibration techniques are useful for relative calibration

58

between elements and that a more robust technique is required for absolute

calibration. Absolute calibration can be performed at system operation

time where well know targets in the far field, such as building, clutter,

and reflective targets are illuminated in either the far or near field of the

array. Using the well-defined reflection properties of the targets and possibly

the relative distance of the said targets from the array enables the array

to calculate the absolute transmit and receive power levels needed for

radar moment generation. The combination of these relative and absolute

calibration techniques is able to properly correct the errors apparent in a

phased array radar system permitting the system to operate as expected.

During system operation, a digital array can operate under a

“self-calibration” operating mode which relies on mutual coupling

measurements is used to equalize the array in both the time and frequency

domains. While frequency domain processing requires additional processing,

time domain techniques map well to the FPGA stream processor and can be

translated readily to an all-digital array where filters are used in beamforming.

The self-calibration technique assumes that multiple channels are capable of

operating in either transmit or receiver mode simultaneously between other

channels which is one benefit of all-digital arrays. Additionally, all-digital

arrays can achieve the self-calibration in a fully integrated approach during

the normal system operation provided there are enough processing resources

for a simultaneous receive channel or beam on the digital processor. In this

way, auxiliary channels switched across the array can be utilized to assess

the calibration state. In-situ techniques like this relieve the requirement of

having additional transmit and/or receive beacons and sensors in the near or

far field of the array, simplifying and streamlining the calibration process.

59

Using a similar calibration technique as in [94], linearly modulated

frequency waveforms are used to probe the amplitude and phase response

of the IMPACT module during chamber calibration tests. Fig. 3.9 shows a

block diagram of the calibration routine. A 4.4 GHz centered upchirp with

Figure 3.9: Block diagram of the wideband calibration routine. A horn
positioned in the far field generates a chirped reference signal that the receiver
channels of the IMPACT module are able to align to. Hardware in the loop
interfaces the FPGA to the controller PC running Matlab.

60

200 MHz of bandwidth and pulse width of ∼3 µs is generated by an RF

signal generator and amplified before driving a standard gain horn antenna

positioned in the far field of the chamber with respect to the Vivaldi array

aperture. Received chirps are manually triggered to be closely synchronized

centered in the capture RAM of the FPGA. Once the phase is extracted,

the analog channel errors can be estimated and corrected for with digital

calibration. The calibration procedure is divided into 2 parts: correcting

for ADC interleaving offsets between sub-channels and phase and amplitude

equalization across the array.

Interleaving an array of sub-ADCs is a well known technique used to

increase the effective sampling rate of a receiver [36]. The ADC input is

split into P sub-ADCs and undersamples each channel by a factor of P ,

effectively parallelizing the digitization procedure. Phase offsets are applied

to the sampling clock at the pth channel as φp, such that φp = 2π(p − 1)/P .

Consequently, voltage biasing errors between sub-ADCs result in mismatched

polyphased channels in the FPGA. The average voltage values are calculated

for each polyphased channel in the array of ADCs which are subtracted

from the corresponding polyphase data streams, effectively removing the

interleaving offsets between sub-ADCs. The array is then equalized in

amplitude and phase once the interleaving offsets between sub-ADCs have

been removed. The procedure is summarized in Table 3.2 as follows:

61

Table 3.2: High-level flow of the equalization routine

For each array element:
1. Measure channels
2. Construct reference signal
3. Estimate phase and amplitude errors
4. Invert effects of errors
5. Compute TTD and phase values for beamforming
6. Filter channels and beamform
end

3.2 Experiments with the Rockwell Collins Common

Module

A reusable RF array transceiver module useful for radar and communication

applications has been developed by Rockwell Collins [36], [95]. A single array

module supports 16 single-pol channels operating from S to X-band with a

200 MHz wide instantaneous bandwidth and a projected cost of roughly $45

per channel. Wideband calibration measurements and element-level true time

delay based beam patterns at C-band on receive are presented in this chapter.

The functional block diagram of the IMPACT common module is shown in

Fig. 3.10.

The chamber experimental setup is shown in Fig. 3.11 In the experiments

discussed here, the Rockwell Collins balanced antipodal Vivaldi antenna

(BAVA) aperture [96] interfaces directly to 16 channels of the IMPACT

module over coaxial cabling to create a singularly polarized ULA (not shown).

The BAVA array is spaced for λ/2 spacing at 18 GHz; however, the IMPACT

module channels were populated such that every other element in the center

row was used, achieving λ/4 spacing at 4.4 GHz. The unused elements of the

62

Figure 3.10: The block diagram of the IMPACT common module digital
front-end featuring a 16 channel SiGe analog transceiver array, CMOS
ADC/DAC array, and Arria 10 FPGA. Reprinted from Hoffman et al.
(2016) c© 2016 IEEE.

BAVA array are terminated. The clocks and power sources are supplied to

the test fixture externally. A 4.4 GHz center is mixed to 1.2 GHz using the

local oscillator (LO) of the SiGe transceiver tuned to 5.6 GHz and filters the

image resulting from the high-side mixing operation. The ADC operates at

1.4 Gsps (i.e. 700 MHz Nyquist rate) and samples in the 2nd Nyquist zone

with 8 bits of precision. The digitized data is sent from the ADC to the

FPGA over a parallel LVDS bus where signals are buffered and fanned out

into individual processing streams of the DBF polyphased filterbank engine.

System characteristics and performance metrics used during DBF tests and

measurements are shown in Table 3.3. It should be noted that the IBW is

lower than the sampling frequency, fs. The DBF algorithms are intended

to operate over the entire sampling bandwidth, however, this work does not

63

Figure 3.11: IMPACT common module test fixture and BAVA aperture in the
chamber.

Table 3.3: Demonstrated system parameters of the IMPACT common module
prototype

Center Frequency 4.4 GHz
Sampling Frequency 1.4 GHz
Polyphase Channels 4
Instantaneous Bandwidth 200 MHz
Number of Beams 2
Throughput 696 GMACs
Input Data rate 180 Gbps
Output Data rate 44.8 Gbps
Module Power < 40 W

demonstrate the full processing capability of the wideband beam case due to

the front end RF filter bandwidth limitations.

The total TTD, τm, at the mth channel required to steer to angle θ is

determined by the array geometry in Fig. 3.1 where d is the spacing between

adjacent elements.

τm = π(sin(md)− sin(θ)) . (3.2)

64

We then denote

∆m = round{τmfs} (3.3)

as the integer portion of the desired delay on mth channel; this is trivially

implemented in digital hardware by a register delay block. The fractional

delay is then

δm = τm −∆m/fs . (3.4)

At boresight (e.g. θ = 0) the beam is formed by combining all the elements

with τm = c for any constant value spanning the pass band. In practice, the

lowest latency group delay filter is chosen as the constant reference. The sum

of delayed inputs, xm forms a coherent beam, y, in (3.5).

y(t) =
M∑
m=1

xm(t− τm) (3.5)

The delay in (3.5) can be commutated from x and applied in a filter, h, as

y(t) =
M∑
m=1

xm(t) ∗ hm(t− tm) . (3.6)

This is a beamforming approach suitable for direct RF conversion

architectures. However, in a heterodyne architecture such as the IMPACT

module, a downconversion mixer introduces additional complexity to the

beamformer in (3.6) and adds an additional phase offset term that depends

on the beamforming angle and frequency.

φm = 2πτm(−fRF + fs/4) . (3.7)

The TTD coefficients and phase offsets are combined into a single structure

65

in hardware. The filter is updated to include the combined EQ filter, time

delays, and phase shifts. as

In the chamber, the IMPACT common module test fixture is positioned

on a pedestal and swept from -60 to 60 degrees in azimuth with increments

of 15 degrees using the calibration coefficients computed at boresight. The

patterns in azimuth are shown in Fig. 3.12. Once calibrated, the beam shape

is maintained as the pedestal pivots, represented by the different rows in

Fig. 3.12, demonstrating robust calibration. In Fig. 3.13, TTD is applied

Figure 3.12: Beam patterns across the instantaneous bandwidth of 4.3 GHz
to 4.5 GHz for pedestal positions -60 degrees to 60 degrees in increments of 15
degrees. The array was initially calibrated at boresight and the patterns are
synthesized from the same coefficients and different pedestal positions.

electronically to steer the beam to 0 and 30 degrees. The patterns can be

66

generalized to show beam coverage for all azimuth and pedestal angles.

Figure 3.13: Beam patterns across the instantaneous bandwidth of 4.3 GHz
to 4.5 GHz for electrically steered azimuth angles of 0 and 30 degrees over
pedestal angles of -60 degrees to 60 degrees in increments of 15 degrees.

3.3 Chapter Summary

An element level wideband digital beamformer at C-band was demonstrated

in the Rockwell Collins IMPACT module. Multiple simultaneous beams

on receive are formed in real time in the digital FPGA processor. The

16-element RF-to-digital array common module on receiver offers low-power

and high-throughput digital front-end processing engine is implemented in

the 20 nm COTS Arria 10 FPGA. The FPGA was loaded to 96% capacity

running at 350 MHz with an IBW of 200 MHz for two simultaneous beams.

The module is shown to support a 180 Gbps sampled input data rate and

processes up to 2 simultaneous output beams at 22.4 Gbps each.

67

DBF on the IMPACT module required precise calibration in the amplitude

and phase response between the digital channels. Once calibrated with a

precision on the order of hundreds of femtoseconds group delay resolution

gradients across the array were shown to steer beams with high accuracy. The

main digital signal processing (DSP) structures of the DBF and EQ routines

are executed in an FIR filterbank that combines the frequency response of

both functions into an array of 16 channel-level convolutions. The streaming

outputs of the convolutions are summed to form a wideband beam.

The previous two chapters have discussed the importance of fixed

beamforming in which coefficients do not necessarily change with time. The

following chapter describes applications and efficient solutions for applications

requiring the coefficients to adapt in time.

68

Chapter 4

Adaptive Techniques for High Data Rate Digital

Beamforming

4.1 Adaptive Digital Beamforming and Methods

Beamforming with many array sensors enables flexible processing in both the

spatial and temporal domains due to increased number of degrees of freedom.

In the temporal domain, signals are processed with respect to time in that

samples propagating through an operator (time domain filter or fast Fourier

transform (FFT)) are related to adjacent samples in which they are separated

by the sampling clock frequency. Rather than in time, spatial processors

operate on adjacent samples at the array level. The spatial filter can be likened

to a temporal filter in that subsequent samples are in adjacent elements where

filter taps do not show any time dependence as seen by the narrowband case

in [67].

Extending the spatial filter into a wideband operational mode requires

the temporal filter addition demonstrated by the Frost beamformer [97]. In a

completely configurable spatial and temporal filter bank where filter weights

are updated in time, i.e. space-time adaptive processing (STAP), beamshape

and the frequency response of the beamformer can be arbitrarily tuned to

69

direct a main lobe in the beam pattern in azimuth or null out interference

from spatially correlated targets in a wideband manner. To null the response

from an arbitrary angle using the true time delay approach, beam nulls can

be applied to a beampattern using a spatial filter. Namely, spatial elements

can be thought of as a “sideways” FIR filter with respect to the time domain.

Techniques exist that adaptively tune the filtering coefficients in order to

steer beams and place nulls, most a form of the classic Frost beamformer [97].

The Frost beamformer is widely utilized and its variations improve on the

performance in one way or another, however, all suffer from the requirement

to oversample the bandwidth. These approaches assume the wideband

capacity is located inside a subband of the overall sampling bandwidth for

a digital system or are performed solely in the analog domain. In the work

described here, wideband beamforming attempts to utilize the entire Nyquist

sampling bandwidth. A linear constraint on the phase response of the filtering

coefficients is essential to fulfill the wideband requirement.

An efficient multi-beam DBF [23] capability enables new approaches

to classical problems such as the adaptive beamspace processing [98], [99]

where traditional narrowband nulling techniques do not converge to a

real time solution over a wide band (e.g. inversion of large covariance

matrices). Previously, narrowband techniques [57]–[60] fall short in terms of

supporting the IBW requirements of multi-function RF systems. Though, the

adaptive beam nulling technique has been shown to form wideband adaptive

beams [100]–[103] where complexity depends on the array size (e.g. number of

channels) rather than the number of temporal degrees of freedom. Beamspace

processing relies on beam inputs to feed the covariance matrix with the

number of beams, B, attributing to complexity and degrees of freedom of the

70

system [99], [102], [104], [105].

In some cases, the DBF techniques described in Chapters 1, 2, and 3 do

not work well under certain operation environments. This chapter discusses

adaptive DBF techniques for both narrowband and wideband applications

that are able to suppress interference by forming nulls in the spatial pattern

in addition to beams. It is assumed that by beamforming and nullforming

together, a real time beamforming engine can operate in practical scenarios.

The remainder of this chapter introduces these scenarios and describes digital

architectures that can operate in such conditions.

The DBF block diagram is updated for the adaptive scenario and shown in

Fig. 4.1. Similar to previous chapters, the outputs of a digital filter bank form

Figure 4.1: Block diagram of a an example feed-forward adaptive beamforming
architecture.

a beam y by applying weights to sampled signals and combining the results.

y = wHx (4.1)

By solving an equivalent filter design problem, beam pointing and null

71

directions can be designed in the spatial pattern of the array [106]. It should

be noted that in a directly computed pattern, an additional direction of

arrival processor is required to track interferers. An adaptive algorithm

can be employed that will fine tune the array pattern in-situ based on the

characteristics of the mismatched channels. This technique attempts to

correlate the SOI between channels with itself while automatically steering

nulls in the beampattern in the direction of the interferers. In this way,

the adaptive algorithm continuously updates the filter coefficients while

placing restrictions on the adaptive weights such as DOAs, linear phase

filters, and others including the minimization of statistics of either the SOI

or interference. Since the algorithm employs a cross correlation between

channels, the algorithm can also correct channel mismatches that may exist

from a lack of or poor calibration. In this case, lower system calibration

requirements can be applied to the system since the calibration fidelity can

be relaxed.

The number of nulls in the array’s spatial pattern is determined by the

rank of the spatial filter (i.e. the number of elements in the array). The

nulls are created by zeros in the filter transfer function. The number of zeros

determines the number of coefficients available in the filter. For a filter of

order M , there are M−1 complex zeros available and as such, there are M−1

degrees of freedom with respect to nulls in the spatial pattern as defined by

the Paley-Wiener theorem [26], [29]. As a result, it is true that larger arrays

boast more degrees of freedom in which more precise and accurate beam and

null control is available.

There exist two prevalent interference mitigation techniques used including

non-coherent and coherent signals [107]. Non-coherent techniques do not rely

72

on knowledge of the target radar and typically implement noise jamming

waveforms where the jammer radiates self-generated RF waveforms. The

noise bandwidth can be configured to radiate at a single frequency or

over a broad band. Additionally, noise modulation can be implemented in

amplitude, frequency, or phase to further degrade the SNR performance of the

target radar. Counter measure techniques that combat these non-coherent

jammers employ a constant false alarm rate (CFAR) processor which can

effectively minimize the jamming signal using STAP since the non-coherent

signals are spread throughout all range bins in the detected CPI. This has

motivated coherent jamming signals which attempt to combat the CFAR

processor by selectively jamming based on properties of the target radar (e.g.

pulse repetition interval (PRI), scan strategy, and frequency) as opposed

to the “barrage” like nature of the non-coherent techniques. The coherent

jammers typically detect the waveforms radiated by the target radar and store

a copy in a digital RF memory (DRFM) onboard the jamming processor.

Captured waveforms are then recalled and radiated back by the jammer

toward the target where “spoofed” pulses are detected as false returns usually

interpreted as either false plots or false targets, depending on the exact

jamming technique. The jammer to signal ratio (JSR) is useful to assess the

effectively of the jammer suppression in either an adaptive or conventional

beamformer. A good assumption about the interference is that a jammer is

spatially correlated (i.e. the jammer is either stationary or moving slowly).

During system operation, where the environment may not be well known,

the power quantities of the SOI and jammer contributions will be estimated.

One method to estimate the power of both quantities can be likened to the

generalized sidelobe canceller problem, previously discussed. For example, two

73

beams can be generated, one looking in the direction of the SOI and the other

in the direction of the jammer. Again, sidelobes will contain contributions from

the other beams, so spatial filtering with nulls directed towards the opposing

beam is required for a completely accurate measurement of individual beam

powers. Integrating the power across valid frequencies and taking the ratio of

the jammer power with the SOI power gives the JSR.

4.1.1 Forming the Covariance Matrix

A significant drawback of the pulse-to-pulse processing techniques is evident

when the “slow moving” jammer assumption is violated. Such a case is

demonstrated by either a.) target/jammer location is changing quickly relative

to a fixed or moving platform or b.) a platform is moving while detecting

ground targets. In any case, if the statistics of detections in the spatial domain

vary significantly between PRIs in a CPI, the rejection capability of the radar

processor will degrade. In such a case, fast time adaptive processing can

be used to negate the effects of a fast moving target. This way, weights

are updated on a sample by sample basis. Since the adaptive algorithm

requires training data, analyzing many PRIs for the slow-time approach is

required. In that a target is moving faster than or as fast as the convergence

rate, the covariance matrices will not be able to keep up with the target.

Typically, the convergence rate can be tuned to minimize the time it takes

for the weights to settle, but multiple PRIs are still required to populate the

covariance matrix. Utilizing the fast-time adaptive approach, on the other

hand, can significantly reduce the adaption time of the slow-time adaptation

by associating the convergence rate to the sampling rate rather than the PRI.

74

Slowly moving jammers or interferers and ground clutter can be mitigated

through space and time adaptive processing. This technique correlates returns

from multiple pulses in slow time across all channels and range bins throughout

the array. In large systems, this processing can become a large burden to

the memory IO resources of the FPGA. In particular, data from multiple

sources is required to aggregate through a common node at some point in the

processing. Computing the adaptive weights requires a matrix inversion of the

covariance matrix which can be significantly large for many element arrays. It

is a requirement that all covariance data must be present in the memory before

performing the matrix inversion operation. At the FPGA level, this requires

external memory, typically double data rate (DDR), to hold and wait for the

complete data set. For high rate digitizers, the internal memory of state of

the art FPGAs is not large enough to hold the large sample set. Once the

data has been stored to memory, the STAP computation can be performed in

bursts to compute the adaptive coefficients. Typically, for arrays with multiple

FPGA processing nodes, data communication between the nodes is required

to complete the inversion operation. The downfall of this data communication

reduces the iteration time and increases the power consumption of the system

effectively limiting the efficiency of performing the STAP operations on the

FPGA. The covariance matrix is constructed from two main configurations

shown in Fig. 4.2 and Fig. 4.3. As more elements or time samples are added,

the covariance matrix grows linearly which incurs a O(n3) latency to invert.

In general the performance and number of degrees of freedom (e.g. beams and

nulls) are determined by the size of the covariance matrix.

Rx = 1
N

XXH (4.2)

75

Figure 4.2: Covariance matrix built with channels and pulses in slow time.

For example, Fig. 4.4 shows how a 1×N and M×1 dataset combines to create

the same computational latency if N = M .

4.1.2 Inverting the Covariance Matrix

In Chapter 3, a weighted least squares approach was used to find calibration

coefficients. This section discusses a similar analysis in that filter coefficients

are found to minimize the least squares error of the phase and amplitude

responses [108]–[113]. Of particular interest is the amount of processing and

latency required for each approach. Weights are found to minimize the variance

76

Figure 4.3: Covariance matrix built with channels and range samples in fast
time.

of the uncorrelated noise source [103], [114] and computed as

w = R−1
x C(CHR−1

x C)−1 . (4.3)

In addition to the steering matrix, or constraint matrix, C, the autocorrelation

and it’s inverse are used to compute the complex weights, w. In hardware,

many approaches have been described that decompose the covariance matrix

into a combination of triangular matrices [115]–[125].

4.1.3 Feed-forward Methods to Invert the Covariance

Matrix

To relieve some of the computational load, “look-ahead” processing techniques

may be required to pipeline the matrix operation so the processor can complete

the adaptive processing in a streaming manner [126]. For larger arrays with

multiple parallel FPGAs, data will inherently be required to transfer to other

nodes in a systolic manner, significantly limiting the real time adaptive update

rate. The latency associated with multiple device transfers will dominate the

77

Figure 4.4: The covariance matrix can be constructed from multiple
configurations of the array, however, is ensured to be a square matrix.

processing latency required to compute matrix inverses and accompanying

multiply and add operations. In order to overcome the processing burden of

inverting large matrices on the FPGA, the matrix inversion lemma (MIL) can

be utilized so that these inversion operations need not be performed at all

adaptive refresh times. Rather, for each new adaptation of the weights, the

MIL states that a new set of weights can be found that is closely related to

the previous value with the assumption that the matrices will not fluctuate

significantly throughout the processing interval.

w(k) = w(k − 1)− [r−1
vv (k − 1)v(k)

λ+ vT (k)r−1
vv (k − 1)v(k)]vT (k)w(k − 1)

+s(k)[r−1
vv (k − 1)v(k)

λ+ vT (k)r−1
vv (k − 1)v(k)]

(4.4)

4.1.4 Improving Adaptive Latency

Multiple ADBF techniques were studied and compared to identify the highest

data rate throughput. The size of the covariance matrix for various scenarios

78

was modified and run against the following four cases.

• Matlab x86 inverse function

• Xilinx Virtex 7 QRD in HLS

• Xilinx Zynq Ultrascale+ QRD in HLS

• Xilinx Zynq Ultrascasle+ MIL in HDL Coder

The latency of the Matlab case was found using the tic/toc function to

time only the ADBF portion of the DBF algorithm over 200 trails. Xilinx

provides an ADBF capability with the high-level synthesis (HLS) software

which implements inverting the covariance matrix with the QRD method.

Assuming a 200 ns clock is used with 392 of 3600 DSP48s utilized, 412.4K

clock cycles are required and takes 3.3 ms to process a single coefficient

adaptation frame. The MIL technique in HDL Coder was compiled which

includs no pipelining latency and only latency from the multipliers since it is

assumed that the DSPs can be pipelined to include the addition operations

required. The results are summarized in Fig. 4.5. In the manner in which the

MIL is a recursive algorithm, it requires fewer DSPs and incurs less latency

though is not met without criticism [127]. One advantage of performing the

adaptive beamforming on the FPGA enables ultra-fast response times in the

calculation of adaptive weights. Since the data need not be transferred to

another digital processor, the required calculations can be made on the order

of FPGA clock cycles. This is true for small matrix sizes (i.e. small arrays)

where embedded FPGA RAM can be used to store data and recalled quickly.

For large matrix sizes (i.e. large arrays), external RAM may be required to

retain all the range samples needed.

79

Figure 4.5: Latency for ADBF algorithms for different covariance matrix sizes.

4.2 ADBF in the Beamspace

Digital beamforming coherently combines array channels to maximize the main

lobe of a steered beam to a certain azimuthal angle. However, it is typical

such beam patterns will contain sidelobes pointed in a direction away from

the main steering location. Interference can then contribute to main beam

pattern through the sidelobes. As such, it is desired to steer nulls in the

beampattern at the interference angles to minimize the energy radiated from

these directions. In the analogy of a spatial filter, where element channels

are time delayed taps, main beam azimuth angles correspond to poles, where

80

nulls correspond to zeros as seen in the transfer function of the spatial filter.

The number of zeros, corresponding to the number of nulls, is reflected in the

number of array elements, M . As M increases, more degrees of freedom are

introduced in the beam pattern. Like beams, nulls drift in angle at different

frequencies. Similarly, in the narrowband approximation, the null depth will

widen and skew over frequency, essentially removing the null altogether in a

wideband system. The wideband approach using filters, rather than phase

shifters, prevents these drifts over frequency while keeping the depth and

position constant. The null width, however, will depend on frequency, similar

to how the beam width is affected by frequency. The beam patterns steered

in two different directions are shown in blue and green in Fig. 4.6. Multiple

frequency cuts are shown in the same overlaid colors.

4.2.1 Digital Generalized Sidelobe Canceller

Adaptive filters relying on cross correlation computations between multiple

signal and interference channels discriminate the signal of interest (SOI) using

additional auxiliary channels. It is possible to impose restrictions on at least

one channel in order to improve the cross correlation properties between the

SOI and interference. Typical restrictions include directional, statistical, and

other restrictions associated with the phase and amplitude characteristics of

the channel (e.g. linear phase requirements). While these techniques can be

used in an adaptive system, hardware resource requirements typically prevent

these operations from occurring in the time domain in a real-time manner. A

single auxiliary channel canceller, for example, requires twice the processing

resources of a typical non-adaptive implementation. The reason is that the

81

Figure 4.6: Two wideband receive beams pointed to -30 and 30 degrees,
respectively.

technique effectively requires multiple beam patterns to be synthesized, one

towards the angle of interest and one towards the angle of the interference

where the synthesized beams are subtracted to negate the contribution

from the interferer. Additionally, adaptive filters require a matrix inversion

operation which prevents the implementation on an FPGA. For large arrays

or large training data sets, the invertible matrix can be large and thus, require

off-chip memory or significant on-chip memory resources. The streaming

nature of the FPGA does not map these memory accesses in an efficient way.

82

The GSC is defined in the subspace of the beamspace problem where

the power of an interference channel is minimized while including linear

constraints and a quadratic constraint to preserve the power from the main

lobe of the high-gain antenna [128]–[131]. In this scenario, a wideband

jammer with variable JSR is denying the main beam spectrum, as shown in

Fig. 4.7. The generalized sideband canceller (GSC) minimizes interference

Figure 4.7: Input signal spectrum of 3 tone test signal and GSC beam output
for JSR = 20 dB.

contributions from the antenna sidelobes by subtracting an interference

beam from the main beam. Beamforming typically relies on spatial filtering

83

techniques to produce the desired beam pattern though energy from

interferers can be picked up by the anteanna sidelobes. The notion of a

GSC has been investigated to remove these undesired contributions of the

interferers. In the GSC, a separate beam is steered at an angle towards the

interferer and subtracted from the main beam. A requirement of the GSC

that fails with the approach of true time delay beamforming is that the

SOI be completely absent from the sidelobe cancellation channel. This is

difficult to achieve in practice since the SOI can be located in a sidelobe of

the cancellation beam. Thus, the cancellation procedure becomes a circular

operation in which the sidelobe beam channel requires a spatial null towards

the angle of the SOI. If this is achievable, then the main beam channel could,

in fact, null the interferer in beam space in the first place, eliminating the

need of a GSC channel. Additional cancellation, however, can be achieved by

the GSC when used in conjunction with other techniques. To demonstrate

the GSC operation, a Simulink simulation has been developed to analyze

the contributions of interference while beamforming. The dataflow graph of

the GSC is shown in Fig. 4.8. A more detailed view is shown in Fig. 4.9.

The beam spectrum using native TTD and GSC is shown in Fig. 4.10 for

differing JSR values. For this particular case, the GSC does not provide

any additional cancellation of the jammer. In fact, energy in the sidelobes

remains pointed at the adjacent source in both beam cases. Since the GSC

beam contains sidelobe contributions from the signal of interest, the GSC is

shown to be detrimental when reconstructing the main beam. The simulation

has been configured for a linear array of 32 elements and where the sampling

frequency is 1 GHz. The signal spectrum is shown for real IF signals centered

at 250 MHz. Two separate beams (SOI and jammer) are generated in the

84

Figure 4.8: GSC architecture in high level Simulink.

continuous time domain then steered to separate angles, then combined and

sampled. The SOI is made of 3 frequency components (150 MHz, 250 MHz,

and 350 MHz) and the jammer has a noise bandwidth of the entire sampling

bandwidth. Fig. 4.7 show the frequency spectrum of the SOI and jammer,

respectively. Using TTD, the SOI and jammer are steered to -30 degrees and

+30 degrees, respectively. The two beams are combined together along with

simulated thermal noise having a power level of -110 dB down from the SOI.

In all, the signal seen at the digitizer is a combination of 3 separate signals: 3

tones at -30 degrees, broadband jammer at +30 degrees, and thermal noise.

To reproduce the original SOI beam, TTD is used. The resulting beam

spectrum is shown in Fig. 4.10 for a JSR of 15 dB and 20 dB, respectively.

Additionally, TTD beamforming is used to steer a beam towards the jammer

implementing a channel in the GSC. The output of the GSC for a JSR of

15 dB and 20 dB, respectively, is also shown. In the GSC, the SOI beam is

85

Figure 4.9: Two wideband beamformer and canceller design in high level
Simulink.

subtracted from the jammer beam. It is obvious that in this particular case, a

lower JSR gives better SNR performance in both the TTD and GSC. It is also

evident that native TTD beamforming has performed well, recovering roughly

65 dB of SNR compared to the original SNR of 110 dB. The contribution of

the jammer coming in from a different azimuth angle can be identified by

the parabolic noise floor shape. This shows that the TTD beamformer can

reconstruct the original SOI but does not suppress the jammer well. The

GSC on the other hand recovers about 15 dB of SNR. Here, adding additional

cancellation channels in the form of a GSC to suppress jammers does not

warrant the use of additional processing resources added by the GSC.

Beamspace nulling and frequency based adaptive beamforming [99], [102],

86

Figure 4.10: In a.) and b.) TTD beam output for JSR = 15 and 20 dB and
in c.) and d.) GSC beam output for JSR = 15 and 20 dB.

[104], [105] may require many more resources than time and frequency domain

implementations in some circumstances. However, the technique described in

this chapter is not affected by array size too much. Using the combined output

of 2 beams, Fig. 4.11 shows the adapted response with a single temporal sample

(e.g. N = 1).

The simulated array factor across a wide operation frequency is shown

in Fig. 4.12 for M > 1. Furthermore, the beamspace covariance matrix is

constructed so that the input vector is created by 2 beams rather than 16

elements. In this way, the algorithm scales with B and not M . The main beam

is steered to +45 degrees and a deep null is shown at -45 degrees. Neither an

87

Figure 4.11: Frequency responses of the 2-channel null canceller. A strong
interferer in the middle of the band has been removed the by adaptive
processor.

interference signal nor it’s statistics were injected into the test case as in [132],

[133]. The null was solely steered using knowledge of the nulling direction

which can limit the practicality of other ADBF technique. A quadratically

constrained (LCMP-QC) algorithm [114] was chosen to combine the data from

the sum and sidelobe canceller channels to mitigate the interference.

88

4.3 Chapter Summary

This chapter has shown a scalable hardware approach to implement digital,

wideband ADBF techniques in real time. A significant bottleneck in ADBF

systems is inverting the covariance matrix, the size of which depends on the size

of the array and instantaneous bandwidth requirements. In the beamspace,

the size of the covariance matrix is minimized so that the DBF performance

and latency across wide bands is improved. Hardware implementations of the

GSC and beamnulling techniques have been shown to form beams and nulls

in real time efficiently. Feed-forward methods of computing an estimate of the

covariance are compared to traditional matrix inversion algorithms.

89

Figure 4.12: Angle-frequency AF pattern of a 16 element array with a.) perfect
calibration, and b.) 2% RMS phase errors.

90

Chapter 5

Benchmarking Digital Beamforming Processors

While the first several chapters focused on the narrowband and wideband

beamforming, which are the primary foci of this dissertation, this chapter

presents highly relevant implementation topics. A number of benchmarking

studies have been done previously which directly compare FPGAs to GPUs vs

CPUs such as in [134]. This study and many like it however, did not consider

the practicalities of a radar application, such as the time to make a data

transfer (i.e. latency) and may be unsuitable to analyze real-time streaming

digital beamforming (DBF) radar processors. The IEEE HPEC conference

hosted by Lincoln Labs has a high performance embedded computing (HPEC)

set of benchmarks, but these kernels fail to address a direct comparison of fixed

vs floating point precision using the same algorithm on the FPGA and GPU.

The PERFECT program set of benchmarks studies the energy efficiency, but

does not directly address the floating point FPGA analysis provided here. We

believe the study provided in this paper is unique in that it is the first to

provide a direct comparison of an algorithm written in the same precision and

run in 14nm/16nm 3D transistors on both GPU and FPGA hardware.

91

5.1 Digital Processor Precision

In the past, high speed FPGA processing was limited to fixed point

calculations. It is possible to build floating point ALUs in the FPGA fabric,

however, this is not an ideal solution due to the extraneous amount of

resources required for many bits (32 or 64 bits). Such structures also fail

to utilize the fast and highly efficient routing fabric offered on the FPGA,

considerably limiting the clock speed of the structures. Recently, with the

introduction of the 20 nm Arria 10 devices from Altera, hard floating point

ALU’s can be constructed that overcome these issues, offering ASIC-like

performance at or near the performance of the traditional fixed point units.

This new architecture enables stream processing of traditional mathematical

operations that require the precision of floating point operations (i.e. matrix

inversion) which was previously unavailable.

One of the key differences between processing on FPGAs versus CPUs

and GPUs is the ability to very finely tune bit width and data type, which

we will show are critical to processing throughput and defining algorithmic

requirements. The two most commonly used formats are IEEE floating

point standards and fixed point (also called integer). Table 1 below shows

the dynamic range difference in I/Q signal level (not power) between the

different standards. Two terms are used: instantaneous dynamic range which

is calculated as the ratio of the largest value to the smallest value during

a computation, e.g. with no exponent change. This measures the dynamic

range limitation experienced during the middle of a multiply operation such

as in an fast Fourier transform (FFT), for example; when this limit is reached,

saturation and non-linear outputs occur. The tunable dynamic range is the

92

ratio of the maximum value capable by the format to the minimum value

capable by the format, e.g. allowing for exponent updates. To compare

silicon resources used for each approach, a parallel multiplier (both inputs

are changing) was implemented in an FPGA using logic only and only DSP

multiplier units (max DSP usage). Because the floating point standard is the

same bit width on the input and output, we also matched the input bit width

and output bit width to compute the resources for fixed point in the table.

Looking at Table 5.1, an interesting result emerges that is often overlooked:

fixed point has more instantaneous dynamic range for a given operation and

number of bits than floating point. Using 16-bits, fixed point gives 90 dB

dynamic range vs float which allows 66.2 dB of dynamic range. However,

over the course of many iterative computations, such as performing a multiply

and accumulation of the results thousands of times where the floating point

exponent can be updated in between operations, the total algorithmic dynamic

range is more for floating point. Note that fixed point can in some cases be

renormalized to achieve the same effect, but this is often a manual step whereas

exponent updating is often automatically done in floating point IP.

Table 5.1: Dynamic range difference between fixed point and floating point in
the Xilinx Zynq Ultrascale+.

Instantaneous Tunable Resource Resource
Precision: Dynamic Dynamic Usage Usage

Range (dB) Range (dB) (LUTs) (DSPs)
16-Bit Integer 90 N/A 280 1
32-Bit Integer 186 N/A 1088 4
64-Bit Integer 379 N/A 4256 16
16-Bit Float 66 90 192 2
32-Bit Float 144 765 682 3
64-Bit Float 319 6,159 2,444 11

93

5.2 Beamforming Implementations in Hardware

The DBF algorithms discussed in this dissertation were designed and tested in

the Matlab/Simulink programming environment using the DSPBuilder library

provided by Altera. This tool provides bit accurate simulations that compile

graphical Simulink code into behavioral hardware description language (HDL).

The generated HDL code is compiled into a bit-file using the Altera Quartus

II tool after synthesis and place and route. A functional block diagram of the

Figure 5.1: High level data flow graph of the FPGA receiver design.

FPGA design is shown in Fig. 5.1. The Arria 10 data clock operates at 350

MHz and supports four polyphased channels forming a 1.4 GHz operational

sampling rate for 16 channels. Input to the DBF engine is multiplexed from

two sources, the ADC LVDS interface and Matlab generated, 8-bit fixed point

data that is stored and recalled to and from the left side RAM in Fig. 5.1

which serves as debugging and emulation port. The output of the MUX is

split into 2 data streams which each drive an independent, simultaneous DBF

94

engine. A single DBF engine is composed of a matrix of chained multiply and

accumulator resources that make up a MxP tap filterbank. The outputs of

the filter rows are then summed to form a beam.

The streaming output of each of the beamformers is captured in the FPGA

BRAMs once triggered by software. A Matlab GUI controls and manages

the IMPACT module during runtime. Panels within the GUI configure the

SiGe, ADC, and FPGA components over the USB/JTAG interface from

a personal computer (PC) in a system-in-the-loop capability. Test and

verification waveforms, filter responses, and captured data are displayed in

the GUI. Once the hardware is configured, the data capture can be triggered

via TCL and the data will be offloaded into Matlab to be processed and

displayed within the GUI. The capture RAM depth supports 2 output beam

channels of 65 µs each or 16 element-level channels of 12 µs each resulting in

a depth of 4096 samples per channel which has been found to be a suitable

training length required for the EQ routine discussed in Section II. Data

captured in the RAMs is transferred from the FPGA into MATLAB over

the Altera proprietary Avalon Bus. Altera provides drivers integrated into

the MATLAB environment known as System Console which includes tool

command language (TCL) scripts that provide read and write transactions

over the USB/JTAG bus and runs at 30 MHz. The hardware utilization of a

two channel adaptive wideband beamformer compiled to the Altera Stratix

V FPGA is shown in Fig. 5.2. The figure depicts an area of 40 mm by 40

mm that uses a 28 nm TSMC process technology. Floorplaning was done to

minimize the total interconnect lengths and the optimize resource utilization.

The Altera Stratix V FPGA used here has heterogeneous resources consisting

of columns of configurable logic blocks, RAM blocks, and multiplier blocks,

95

Table 5.2: FPGA resource utilization of a two wideband beamforming design
with null canceller on the Altera Stratix V and Arria 10 FPGAs.

Family Altera Stratix V Altera Arria 10
Device 5SGXEA7K2F40C2N 10AX115S2F45I2SG
Clock Speed (MHz) 250 350
Logic (in ALMs) 22,153 / 172,600 (13%) 22,798/427,200 (5%)
DSPs 664 / 1,590 (42%) 1,405/1,518 (93%)
Throughput (GMACs) 332 980
DSP Power 20 W 11 W

as seen in Fig. 5.2. The timing requirements were met for a 250 MHz clock.

The Arria 10 implementation of the DBF filterbank design supports

re-loadable coefficients and utilizes 5% of the available LUTs, represented

by the medium shade of blue in Fig. 5.3. The darker shade of blue is more

scarce and shows LUTs that are more densely packed. Overall, the design

was able to access 96% of the DSPs requiring a large but sparse fanout of

the logic. The timing was met for 350 MHz clock and digitally supports 1.4

GHz of bandwidth. However, the Arria 10 design was routed to a max clock

rate of 375 MHz, enabling a 1.5 GHz of bandwidth. The power of the FPGA

portion of DBF engine itself (excluding I/O) is determined by the difference

of measuring the power of an idle on power up design and the power after

loading the DBF engine design bitfile which was found to be 11 W. Details of

the Stratix V and Arria 10 FPGA design implementations are summarized in

Table 5.2.

96

Figure 5.2: Floorplan routing layout for Altera Stratix 5 FPGA of a 2 channel
wideband beamformer with GSC.

5.3 The FFT Kernel

In this section, we use a comparable processing node and similar software

approach to benchmark the throughput and efficiency of the industry’s latest

CPU, GPU, and FPGA devices. Kernels useful for DBF, namely multipliers

and FFTs are discussed and analyzed. The floating-point and fixed-point

approaches to the kernels are compared and contrasted across the unique

processing architectures. Theoretical and experimental results are shown for

multiple size FFTs and the timing and power is measured accordingly.

In the frequency domain, converting the wideband problem into a

narrowband problem can be done by subbanding the wideband channel with

the discrete Fourier transform (DFT) (or FFT which is more commonly used

in practice due to it’s efficient implementation). A sample test variable, taken

97

Figure 5.3: Floorplan routing layout for a two channel wideband beamformer
compiled to an Altera Arria 10 FPGA.

as a noisy sinusoid, is shown in the time domain in Fig. 5.4 and the frequency

domain in Fig. 5.5 after the FFT is applied.

In a beamformer, a vector matrix multiply (VMM) can be used to generate

multiple simultaneous beams using phase shift only method with arbitrary

independent beam positions. A vector of input signals is digitized at each

element, we call this vector of signal inputs, S. We can create multiple

simultaneous beams by having a matrix of complex phase shifts, P , which

is of size N x B where N is our number of elements and B is our number

of desired simultaneous beams. Output beams are then computed using a

VMM computation of S ∗ P . This algorithm has a computational complexity

of O(N ∗ B). However, if equally spaced beams in space are desired the

computational complexity can be greatly reduced by using the FFT. The

computational complexity of the FFT is O(N + BlogB), greatly reducing

98

Figure 5.4: Frequency domain representation of a single tone in noise.

the complexity for large N . The output of an 8-element FFT beamformer is

shown in Fig. 5.6.

5.4 Benchmarking Heterogeneous Processors

Two test systems were available to benchmark the processors and verify the

precision metrics; the Nvidia DGX1 and the Xilinx MPSoC evaluation board.

The associated processors are summarized in Table 5.3. For the FPGA, the

Xilinx floating point core maximum speed of 544 MHz was found to consume 42

W corresponding to the power consumption from the Xilinx power calculation

spreadsheet. We have found that the routable clock speed when using HDL

Coder is lower in ES1 devices compared to ES2 due to -1 and -2 speed grades,

99

Figure 5.5: Time domain representation of a single tone in noise with low SNR
ratio.

respectively. The clock speed of 300 MHz is used in the measured FPGA results

and is assumed to be routable in an ES2 device. The number of CPU cores was

derived from 20 physical cores capable of executing 32 single precision FLOPs

per cycle. The theoretical single and fixed-point throughput shown for the

CPU and GPU is the same due to the availability of a fused MAC operation.

In the FPGA, 2 DSP48s are used to perform a single precision operation which

nearly doubles the fixed point MAC throughput when compared to floating

point.

The Matlab FFTW function is the FFT kernel used on the CPU. The

FPGA uses Simulink/HDL Coder to compile a streaming version of the

Matlab FFT. Generated HDL is inserted into a Xilinx Vivado project where

100

Figure 5.6: Array factor of overlaid multiple simultaneous beams for an 8 point
FFT used for DBF in an 8-element array. Reprinted from Thompson et al.
(2017) c© 2017 IEEE.

a bitstream is generated and tested on hardware through the JTAG/AXI

interface. The GPU is programmed in CUDA and compiled with the Nvidia

CUDA compiler: nvcc. Latency is calculated using the tic and toc Matlab

timers in the CPU and by using the CUDA timers in the GPU. For the GPU,

the latency does not include any I/O latency to send data to and from the

CPU. Clock speed and number of cycles taken to run the FFT kernel is used

to determine the FPGA latency. The number of operations performed by the

FFT kernel is calculated from the FFTW definition of FLOPs. For the size

of FFT, N , the number of FLOPs is

FLOPS = 5/2Nlog2(N)/Execution T ime (5.1)

101

Table 5.3: Specification summary of processors under test for benchmarking.
The Nvidia DGX1 and Xilinx MPSoC platforms support FPGA, GPU, and
CPU hardware from comparable CMOS process nodes.

Intel Xeon Nvidia Tesla Xilinx Zynq US+
Device: E5-2698 v4 GP100 ZU9EG

(DGX1) (DGX1) (MPSoC)
Type CPU GPU FPGA

Clock Speed 2.2 GHz 1.3 GHz 544 MHz
Cores 640 3584 2520

Process 14 nm Intel 16 nm TSMC 16 nm TSMC
(50 MB L2,

Memory 256 GB (4 MB L2, (4 MB BRAM,
DDR4)

Max Power 135 W 300 W 42 W
Theoretical

Double 1500 5300 415
Throughput
(GFLOPS)
Theoretical

Single 3000 10600 830
Throughput
(GFLOPS)
Theoretical
Fixed-Point 3000 10600 1797
Throughput
(GMACS)

for real FFTs and

FLOPS = 5Nlog2(N)/Execution T ime (5.2)

for complex FFTs. The throughput is taken as an average of many trials

(typically more than 10K). Throughput of the FFT kernel is shown in Fig. 5.7.

We assume that the FPGA DSP resources are loaded to 80% and run at 300

MHz. Processing efficiency (peak and measured) is shown in Fig. 5.8. When

102

Figure 5.7: Measured vs. theoretical single precision (SP) FLOP throughput.
Reprinted from Thompson et al. (2017) c© 2017 IEEE.

only counting the active power of the multiply units of the GPU and FPGA,

they were 238 GFLOPS/W and 245 GMACS/W respectively. The FPGA

DSPs were 8x more power efficient than the logic instantiated multipliers at

245 GMACs/W vs. 34 GMACs/W. The GPU was found to be 46% efficient

(compared to peak theoretical) for VMMs and only 8% efficient for FFTs,

whereas the FPGA was found to be nearly equally efficient for both approaches.

Nvidia has developed an architecture to alleviate this issue in which a direct

GPU to FPGA interface is enabled. GPUDirect intends to improve GPU IO

performance by streaming data directly to the GPU over PCIe, bypassing

the CPU IO bottleneck. Unfortunately, a test system supporting GPUDirect

was not available during this analysis but results have been extrapolated to

contrast the architectures. The result of using GPUDirect is shown in Fig. 5.9

whereby the CPU power is not included when GPUDirect is available. A 4x

energy efficiency improvement is estimated when using this feature.

103

Figure 5.8: Total peak theoretical compute energy efficiency for the FFT
kernel. Reprinted from Thompson et al. (2017) c© 2017 IEEE.

Figure 5.9: Efficiency of GPUDirect vs non-GPUDirect.

5.5 Chapter Summary

Performance and throughput of a critical DBF techniques including filtering

and FFT kernels. We have found that GPU performance is the highest in all

floating point cases but not fixed point. Additionally, the percentage of peak

efficiency is much higher (4.6x) in the FPGA than in the GPU. Although

the GPU is nearly capable of achieving Tbps throughput, it falls short of

the claimed peak of 10 TFLOPs and is found to be 8.5% efficient compared

to 36% in the FPGA. It should be noted that the floating point energy

efficiency in the GPU is better than the FPGA but not by much. If “GMACs”

104

instead of “GFLOPS” can be used, an FPGA will end up being much more

energy efficient in the case that lower precision is tolerable. Assuming the

GPU requires some amount of IO when not using GPUDirect, the separation

between FPGAs and GPUs in terms of throughput will be even higher than

reported here. Finally, as the algorithms increase in complexity (e.g. more

data dependencies are required), an FPGA will continue to outperform a GPU

because of the ability to customize the hardware.

105

Chapter 6

Conclusion

Digital beamforming techniques with various applications, parameters, and

requirements and were implemented in real time RF hardware. Narrowband

experiments where shown to minimize multiplier operations in digital

transceiver and to reduce IO by minimizing the phase shifter precision of the

RF front-end. Both techniques reduce IO and dynamic power. In wideband

applications, a digital TTD based algorithm was shown to beamform with

better than 0.1 ps of temporal resolution. Wideband DBF experiments were

shown to operate at 4.4 GHz and 200 MHz of instantaneous bandwidth and

was demonstrated on the fully-calibrated Rockwell Collins IMPACT module.

Finally, DBF in the beamspace is shown to syntheszie wideband nulls in an

adapive beamformer, eliminating the processing complexity of inverting the

covariance matrix. Each technique presented is well suited for FPGA or ASIC

implementation in which digital circuits will eventually replace previously

analog functionality.

The results shown here argue for the continued pursuit in the processing

improvement of DBF techniques down to the transistor level. Today, most

modern DBF systems contain an FPGA with access to thousands of DSPs

and millions of logic gates suitable for efficient digital processing for low cost.

106

Such devices have become the digital “front-end” of today’s radar systems

and will continue to replace analog circuits until, ultimately, the digital will

interface directly to the antenna.

107

References

[1] A. Natarajan, S. Reynolds, M. Tsai, S. Nicolson, J. Zhan, D. Kam,
D. Liu, Y. Huang, A. Valdes-Garcia, and B. Floyd, “A fully-integrated
16-element phased-array receiver in SiGe BiCMOS for 60-GHz
communications”, IEEE Journal of Solid-State Circuits, vol. 46, no. 5,
pp. 1059–1075, 2011.

[2] A. Valdes-Garcia, S. Reynolds, A. Natarajan, D. Kam, D. Liu, J. Lai,
Y. Huang, P. Chen, M. Tsai, J. Zhan, S. Nicolson, and B. Floyd,
“Single-element and phased-array transceiver chipsets for 60-GHz
Gb/s communications”, IEEE Communications Magazine, vol. 49,
no. 4, pp. 120–131, 2011.

[3] J. Karjalainen, M. Nekovee, H. Benn, W. Kim, J. Park, and H.
Sungsoo, “Challenges and opportunities of mm-wave communication
in 5G networks”, in International Conference on Cognitive Radio
Oriented Wireless Networks and Communications (CROWNCOM),
2014, pp. 372–376.

[4] T. Kim, J. Park, J. Seol, S. Jeong, J. Cho, and W. Roh, “Tens of
Gbps support with mmwave beamforming systems for next generation
communications”, in IEEE Global Communications Conference
(GLOBECOM), 2013, pp. 3685–3690.

[5] M. Fakharzadeh, M. Nezhad-Ahmadi, B. Biglarbegian, J.
Ahmadi-Shokouh, and S. Safavi-Naeini, “CMOS phased array
transceiver technology for 60 GHz wireless applications”, IEEE
Transactions on Antennas and Propagation, vol. 58, no. 4,
pp. 1093–1104, 2010.

[6] E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, and D. Ritter,
“A CMOS bidirectional 32-element phased-array transceiver at 60 GHz
with LTCC antenna”, IEEE Transactions on Microwave Theory and
Techniques, vol. 61, no. 3, pp. 1359–1375, 2013.

108

[7] W. Roh, J. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and
F. Aryanfar, “Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: Theoretical feasibility and prototype
results”, IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113,
2014.

[8] G. Rebeiz, “Millimeter-wave large-scale phased-arrays for 5G systems”,
in IEEE MTT-S International Microwave Symposium, Phoenix, AZ.,
2015, pp. 1–3.

[9] J. Lopez-Sanchez, I. Hajnsek, and J. Ballester-Berman, “First
demonstration of agricultural height retrieval with PolInSAR airborne
data”, IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 2,
pp. 242–246, 2012.

[10] R. Wang, W. Wang, Y. Shao, F. Hong, P. Wang, Y. Deng, Z. Zhang,
and O. Loffeld, “First bistatic demonstration of digital beamforming in
elevation with TerraSAR-X as an illuminator”, IEEE Transactions on
Geoscience and Remote Sensing, vol. 54, no. 2, pp. 842–849, 2016.

[11] R. Rincon, M. Vega, M. Buenfil, A. Geist, L. Hilliard, and P. Racette,
“NASA’s L-band digital beamforming synthetic aperture radar”, IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 10,
pp. 3622–2628, 2011.

[12] N. Gebert, F. Almeida, and G. Krieger, “Airborne demonstration of
multichannel SAR imaging”, IEEE Geoscience Remote Sensing Letters,
vol. 8, no. 5, pp. 963–967, 2011.

[13] W. Yiding, “The maximum phase error of a reflected signal in an active
coded transponder”, IEEE Geoscience Remote Senssing Letters, vol. 3,
no. 1, pp. 150–153, 2006.

[14] M. Suess, M. Ludwig, C. Schaefer, and M. Younis, “Technology
developments for the next generation of spaceborne SAR instruments
based on digital beamforming”, in Proceedings of Geoscience and
Remote Sensing Society (IGARSS), 2012, pp. 1529–1532.

[15] P. Bailleul, “A new era in elemental digital beamforming for spaceborne
communications phased arrays”, Proceedings of the IEEE, vol. 104,
no. 3, pp. 623–632, 2016.

109

[16] D. Yu, C. Zhao, and W. Xiang, “Beam position agility in VPRF for
spaceborne precipitation radar”, IEEE Geoscience Remote Sensing
Letters, vol. 10, no. 2, pp. 256–259, 2013.

[17] B. Johnson and S. Rani, “A high throughput fully parallel-pipelined
FPGA accelerator for dense cloud motion analysis”, in IEEE Region 10
Conference (TENCON), Singapore, Singapore, 2016, pp. 2589–2592.

[18] A. George, J. Garcia, K. Kim, and P. Sinha, “Distributed parallel
processing techniques for adaptive sonar beamforming”, Journal of
Computational Acoustics, vol. 10, no. 01, pp. 1–23, 2002.

[19] B. Kim and I. Lu, “High resolution broadband beamforming based on
the MVDR method”, in IEEE Conference and Exhibition, vol. 3, 2000,
pp. 1673–1676.

[20] J. Chen, A. Yu, and H. So, “Design considerations of real-time adaptive
beamformer for medical ultrasound research using FPGA and GPU”,
in International Conference on Field-Programmable Technology, Seoul,
South Korea, 2012, pp. 198–205.

[21] W. Weedon and R. Nunes, “Low-cost wideband digital receiver/exciter
(DREX) technology enabling next-generation all-digital phased
arrays”, in International Phased Array Radar Conference, Boston,
MA, 2016, pp. 1–3.

[22] W. Chappell and C. Fulton, “Digital array radar panel development”,
in International Symposium on Phased Array Systems and Technology,
Waltham, MA, 2010, pp. 50–60.

[23] M. Skolnik, Radar Handbook, Third Edition. McGraw-Hill Education,
2008.

[24] S. Weiss and I. Proudler, “Comparing efficient broadband beamforming
architectures and their performance trade-offs”, in International
Conference on Digital Signal Processing Proceedings, vol. 1, 2002,
417–423 vol.1.

[25] W. Liu and S. Weiss, Wideband Beamforming: Concepts and
Techniques. West Sussex, UK: Wiley, 2010.

110

[26] R. Singh and S. Sapre, Communication Systems, Second Edition.
McGraw-Hill Education, 2009.

[27] L. Pettersson, M. Danestig, and U. Sjostrom, “An experimental S-band
digital beamforming antenna”, IEEE Aerospace and Electronic Systems
Magazine, vol. 12, no. 11, pp. 19–29, 1997.

[28] H. Steyskal, “Digital beamforming antennas - an introduction”,
Microwave Journal, vol. 30, p. 107, 1987.

[29] S. Salivahanan, A. Vallavaraj, and C. Gnanapriya, Digital signal
processing. New Delhi: Tata McGraw-Hill, 2000.

[30] M. Longbrake, “True time-delay beamsteering for radar”, in IEEE
National Aerospace and Electronics Conference (NAECON), 2012,
pp. 246–249.

[31] M. Rosker, C. Bozada, H. Dietrich, H. Hungand, D. Via, S. Binari,
E. Vivierios, E. Cohen, and J. Hodiak, “The DARPA wide band gap
semiconductors for RF applications (WBGS-RF) program: Phase II
results”, Tampa, FL, 2009.

[32] M. Jahn, R. Feger, C. Wagner, Z. Tong, and A. Stelzer, “A
four-channel 94-GHz SiGe-based digital beamforming FMCW radar”,
IEEE Transactions on Microwave Theory and Techniques, vol. 60,
no. 3, pp. 861–869, 2012.

[33] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan, and A. Komijani,
“Integrated phased array systems in silicon”, Proceedings of the IEEE,
vol. 93, no. 9, pp. 1637–1655, 2005.

[34] I. Sever, S. Lo, S. Ma, P. Jang, A. Zou, C. Arnott, K. Ghatak, A.
Schwartz, L. Huynh, and T. Nguyen, “A dual-antenna phase-array
ultra-wideband CMOS transceiver”, IEEE Communications Magazine,
vol. 44, no. 8, pp. 102–110, 2006.

[35] S. Jeon, Y. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, and
A. Hajimiri, “A scalable 6-to-18 GHz concurrent dual-band quad-beam
phased-array receiver in CMOS”, IEEE Journal of Solid-State Circuits,
vol. 43, no. 12, pp. 2660–2673, 2008.

111

[36] T. Hoffmann, C. Fulton, M. Yeary, A. Saunders, D. Thompson,
B. Murmann, B. Chen, and A. Guo, “Measured performance of the
IMPACT common module - a building block for next generation phase
arrays”, in IEEE International Symposium on Phased Array Systems
and Technology (PAST), 2016, pp. 1–7.

[37] B. Vaz, A. Lynam, B. Verbruggen, A. Laraba, C. Mesadri, A.
Boumaalif, J. Mcgrath, U. Kamath, R. Torre, A. Manlapat, D.
Breathnach, C. Erdmann, and B. Farley, “A 13b 4GS/s digitally
assisted dynamic 3-stage asynchronous pipelined-SAR ADC”, in
IEEE International Solid-State Circuits Conference (ISSCC), 2017,
pp. 276–277.

[38] Y. Voronenko and M. Puschel, “Mechanical derivation of fused
multiply-add algorithms for linear transforms”, IEEE Transactions on
Signal Processing, vol. 55, no. 9, pp. 4458–4473, 2007.

[39] A. Dempster and M. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters”, IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 42, no. 9, pp. 569–577, 1995.

[40] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Multiple tunable
constant multiplications: Algorithms and applications”, in IEEE
Conference on Computer-Aided Design (ICCAD), 2012, pp. 473–479.

[41] ——, “Optimization of area and delay at gate-level in multiple constant
multiplications”, in Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, 2010, pp. 3–10.

[42] ——, “Design of low-complexity digital finite impulse response filters on
FPGAs”, in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, pp. 1197–1202.

[43] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple constant
multiplications: Efficient and versatile framework and algorithms for
exploring common subexpression elimination”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 2, pp. 151–165, 1996.

[44] ——, “Efficient substitution of multiple constant multiplications by
shifts and additions using iterative pairwise matching”, in Conference
on Design Automation, 1994, pp. 189–194.

112

[45] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, 2007.

[46] C. Fulton, M. Yeary, D. Thompson, J. Lake, and A. Mitchell, “Digital
phased arrays: Challenges and opportunities”, Proceedings of the IEEE,
vol. 104, no. 3, pp. 487–503, 2016.

[47] H. Hashemi and H. Krishnaswamy, “Challenges and opportunities
in ultra-wideband antenna-array transceivers for imaging”, in IEEE
International Conference on Ultra-Wideband, 2009, pp. 586–591.

[48] J. Herd, S. Duffy, D. Carlson, M. Weber, G. Brigham, C. Weigand,
and D. Cursio, “Low cost multifunction phased array radar concept”,
in IEEE International Symposium on Phased Array Systems and
Technology, 2010, pp. 457–460.

[49] C. Lai, K. Tan, Y. Chen, and T. Chu, “A UWB impulse-radio
timed-array radar with time-shifted direct-sampling architecture in
0.18-um CMOS”, IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 7, pp. 2074–2087, 2014.

[50] T. Kanar, S. Zihir, and G. Rebeiz, “A 2-15 GHz accurate
built-in-self-test system for wideband phased arrays using
self-correcting eight-state I/Q mixers”, IEEE Transactions on
Microwave Theory and Techniques, vol. 64, no. 12, pp. 4250–4261,
2016.

[51] M. Yeary, W. Zhang, and J. Trelewicz, “A computationally
efficient decimation filter design for embedded systems”, in IEEE
Instrumentation and Measurement Technology Conference (IMTC),
vol. 2, 2004, pp. 913–916.

[52] D. Thompson, M. Yeary, C. Fulton, and B. McGuire, “Optimized beam
steering approach for improved sidelobes in phased array radars using a
minimal number of control bits”, IEEE Transactions on Antennas and
Propagation, vol. 63, no. 1, pp. 106–112, 2015.

[53] M. Yeary, W. Zhang, J. Trelewicz, Y. Zhai, and B. McGuire, “Theory
and implementation of a computationally efficient decimation filter for
power-aware embedded systems”, IEEE Transactions Instrumentation
and Measurement, vol. 55, no. 5, pp. 1839–1849, 2006.

113

[54] M. Gately, M. Yeary, and C. Tang, “Multiple real-constant
multiplication with improved cost model and greedy and optimal
searches”, in IEEE International Symposium on Circuits and Systems
(ISCAS), 2012, pp. 588–591.

[55] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing”, Science, vol. 220, no. 4598, pp. 671–680, 1983.

[56] T. Ciloglu and Z. Unver, “A new approach to discrete coefficient FIR
digital filter design by simulated annealing”, in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 3, 1993, pp. 101–104.

[57] C. Baird and G. Rassweiler, “Adaptive sidelobe nulling using
digitally controlled phase-shifters”, IEEE Transactions Antennas and
Propagation, vol. 24, no. 5, pp. 638–649, 1976.

[58] S. Smith, “Optimum phase-only adaptive nulling”, IEEE Transactions
Signal Processing, vol. 47, no. 7, pp. 1835–1843, 1999.

[59] A. Khzmalyan and A. Kondratiev, “The phase-only shaping and
adaptive nulling of an amplitude pattern”, IEEE Transactions
Antennas and Propagation, vol. 51, no. 2, pp. 264–272, 2003.

[60] C. Hsu, W., and C. Chen, “Adaptive pattern nulling design of linear
array antenna by phase-only perturbations using memetic algorithms”,
in International Conference on Innovative Computing, Information,
and Control (ICICIC), vol. 3, 2006, pp. 308–311.

[61] R. Guinvarc’h, R. Gillard, B. Uguen, and J. El-Khoury, “Improving
the azimuthal resolution of HFSWR with multiplicative beamforming”,
IEEE Geoscience Remote Sensing Letters, vol. 9, no. 5, pp. 925–927,
2012.

[62] C. Miller, “Minimizing the effects of phase quantization errors in an
electronically scanned array”, Proc. Symp. on Electronically Scanned
Array Techniques and Applications, vol. 1, pp. 17–39, 1964.

[63] M. Clenet and G. Morin, “Graphical investigation of quantisation
effects of phase shifters on array patterns”, Defense Research
Establishment Ottawa, Tech. Rep. DREO TR 2000-092, 2000.

114

[64] S. Taheri and F. Farzaneh, “New methods of reducing the phase
quantization error effects on beam pointing and parasitic side lobe
level of the phased array antennas”, in Proceedings of Asia-Pacific
Microwave Conference (APMC), 2006, pp. 2114–2117.

[65] H. Kamoda, J. Tsumochi, and F. Suginoshita, “Reduction in
quantization lobes due to digital phase shifters for phased array
radars”, in Proceedings of Asia-Pacific Microwave Conference
(APMC), 2011, pp. 1618–1621.

[66] H. Kamoda, J. Tsumochi, T. Kuki, and F. Suginoshita, “A study on
antenna gain degradation due to digital phase shifter in phased array
antennas”, Microwave and Optical Technology Letters, vol. 53, no. 8,
pp. 1743–1746, 2011.

[67] B. Veen and K. Buckley, “Beamforming: A versatile approach to spatial
filtering”, IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.

[68] J. Piper, Sonar Systems: Beamforming Narrowband and Broadband
Signals. InTech, 2011.

[69] Y. Gao, D. Jiang, and M. Liu, “Wideband transmit beamforming using
integer-time-delayed and phase-shifted waveforms”, Electronics Letters,
vol. 53, no. 6, pp. 376–378, 2017.

[70] K. Wagner, S. Weaver, S. Kraut, L. Griffiths, and T. Weverka,
“Broadband efficient adaptive method for true-time-delay array
processing”, in Proceeding of the IEEE Aerospace Conference, vol. 5,
1998, pp. 289–298.

[71] M. Burla et al., “Integrated photonic Ku-band beamformer chip with
continuous amplitude and delay control”, IEEE Photonics Technology
Letters, vol. 25, no. 12, pp. 1145–1148, 2015.

[72] X. Ye, Y. Zhang, and S. Pan, “Performance evaluation of RF
beamforming based on a wideband antenna array and photonic true
time delay”, in International Conference on Optical Communications
and Networks (ICOCN), Nanjing, China, 2015, pp. 1–3.

[73] R. Minasian, “Ultra-wideband and adaptive photonic signal processing
of microwave signals”, IEEE Journal of Quantum Electronics, vol. 52,
no. 1, pp. 1–13, 2016.

115

[74] R. Rotman, M. Tur, and L. Yaron, “True time delay in phased arrays”,
Proceedings of the IEEE, vol. 104, no. 3, pp. 504–518, 2016.

[75] R. Rotman and M. Tur, “Calibration of pulsed phased arrays with wide
instantaneous bandwidths”, in IEEE Antennas and Propagation Society
International Symposium, 2007, pp. 121–124.

[76] H. Neoh, “Efficient broadband multibeam beamformer architecture”,
in International Symposium on Phased Array Systems and Technology,
Waltham, MA, 2016.

[77] H. Hashemi, T. Chu, and J. Roderick, “Integrated true-time-delay-based
ultra-wideband array processing”, IEEE Communications Magazine,
vol. 46, no. 9, pp. 162–172, 2008.

[78] Y. Yao, X. Huang, G. Wu, and K. Wei, “Joint equalization and
fractional delay filter design for wideband digital beamforming”, in
IEEE Radar Conference, Arlington, VA, 2015, pp. 0823–0827.

[79] C. Cheung, R. Shah, and M. Parker, “Time delay digital beamforming
for wideband pulsed radar implementation”, in IEEE International
Symposium on Phased Array Systems and Technology, Waltham, MA,
2013, pp. 448–455.

[80] H. Johansson, O. Gustafsson, K. Johansson, and L. Wanhammar,
“Adjustable fractional-delay FIR filters using the Farrow structure and
multirate techniques”, in IEEE Asia Pacific Conference on Circuits
and Systems, Singapore, 2006, pp. 1055–1058.

[81] C. Farrow, “A continuously variable digital delay element”, Espoo,
Finland, 1988, pp. 2641–2645.

[82] Mathworks. (2011). Fractional delay filters using farrow structures,
[Online]. Available: https : / / www . mathworks . com / help /
dsp / examples / fractional - delay - filters - using - farrow -
structures.html.

[83] A. Madanayake, C. Wijenayake, S. Wijayaratna, R. Acosta, and
S. Hariharan, “2-D-IIR time-delay-sum linear aperture arrays”, IEEE
Antennas and Wireless Propagation Letters, vol. 13, pp. 591–594, 2014.

116

[84] A. Madanayake and L. Bruton, “A speed-optimized systolic-array
processor architecture for spatio-temporal 2-D IIR broadband beam
filters”, IEEE Transactions on Circuits and Systems-I: Regular Papers,
vol. 55, no. 7, pp. 1953–1966, 2008.

[85] R. Olsson, “Reconfigurable technologies and architectures for phased
array antennas: An overview of the DARPA ACT program”, in
Proceedings SPIE 9479, 2015.

[86] M. Parker. (2011). Radar basics - part 3: Beamforming and radar digital
processing, [Online]. Available: http://www.eetimes.com/document.
asp?doc_id=1278838.

[87] V. Valimaki and T. Laakso, “Principles of fractional delay filters”, in
Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 6, 2000, pp. 3870–3873.

[88] T. Laakso, V. Valimaki, M. Karjalainen, and U. Laine, “Splitting
the unit delay: Tools for fractional delay filter design”, IEEE Signal
Processing Magazine, vol. 13, no. 1, pp. 30–60, 1996.

[89] A. Madanayake, N. Udayanga, and V. Ariyarathna, “Wideband
delay-sum digital aperture using Thiran all-pass fractional delay
filters”, in IEEE Radar Conference (RadarConf), 2016, pp. 1–5.

[90] D. Horvat, J. Bird, and M. Goulding, “True time-delay bandpass
beamforming”, IEEE Journal of Oceanic Engineering, vol. 17, no. 2,
pp. 185–192, 1992.

[91] T. Chu and H. Hashemi, “A true time-delay-based bandpass
multi-beam array at mm-waves supporting instantaneously wide
bandwidths”, in IEEE International Solid-State Circuits Conference
(ISSCC), 2010, pp. 38–39.

[92] H. Aumann, A. Fenn, and F. Willwerth, “Phased array antennas
calibration and pattern prediction using mutual coupling
measurements”, IEEE Transactions on Antennas and Propagation,
vol. 37, no. 7, pp. 844–850, 1989.

[93] A. Mitchell, “Coupling-based wideband digital phased array calibration
techniques”, M.S. Thesis, Department of Electrical and Computer
Engineering, University of Oklahoma, Norman, OK, 2014.

117

[94] M. Longbrake, L. Liou, D. Lin, P. Buxa, J. McCann, T. Pemberton, T.
Dalrymple, and S. Hary, “Wideband phased array calibration method
for digital beamforming”, in IEEE National Aerospace and Electronics
Conference (NAECON), 2012, pp. 11–17.

[95] L. Paulsen, T. Hoffmann, C. Fulton, M. Yeary, A. Saunders, D.
Thompson, B. Chen, A. Guo, and B. Murmann, “IMPACT: A low
cost, reconfigurable, digital beamforming common module building
block for next generation phased arrays”, in Proceedings SPIE 9479,
2015.

[96] M. Elsallal and J. Mather, “An ultra-thin, decade (10:1) bandwidth,
modular “BAVA” array with low cross-polarization”, in IEEE
International Symposium on Antennas and Propagation (APSURSI),
2011, pp. 1980–1983.

[97] O. Frost, “An algorithm for linearly constrained adaptive array
processing”, Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935, 1972.

[98] P. Vouras and T. Tran, “Wideband adaptive beamforming using linear
phase filterbanks”, in Asilomar Conference on Signals, Systems and
Computers, 2006, pp. 2295–2299.

[99] S. Kalia, S. Patnaik, B. Sadhu, M. Sturm, M. Elbadry, and R. Harjani,
“Multi-beam spatio-spectral beamforming receiver for wideband phased
arrays”, IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 60, no. 8, pp. 2018–2029, 2013.

[100] H. Steyskal, R. Shore, and R. Haupt, “Methods for null control and their
effects on the radiation pattern”, IEEE Transactions on Antennas and
Propagation, vol. AP-34, no. 3, pp. 404–409, 1986.

[101] J. Simon and W. Cummings, “An adaptive nulling algorithm based on
signal subspace concepts”, in MILCOM, vol. 1, 1991, pp. 107–112.

[102] Y. Bresler, V. Reddy, and T. Kailath, “Optimum beamforming for
coherent signal and interferences”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 36, no. 6, pp. 833–843, 1988.

[103] S. Vorobyov, “Principles of minimum variance robust adaptive
beamforming design”, Signal Processing, vol. 93, no. 12, pp. 3264–3277,
2013.

118

[104] J. Lynch, “Low latency digital beamforming radar using aperture
coding”, IEEE Transactions on Aerospace and Electronic Systems,
vol. 52, no. 2, pp. 918–927, 2016.

[105] S. Kalia, S. Patnaik, B. Sadhu, M. Sturm, M. Elbadry, and R. Harjani,
“Multi-beam spatio-spectal beamforming receiver for wideband phased
arrays”, IEEE Transactions on Circuits and Systems-I: Regular Papers,
vol. 60, no. 8, pp. 2018–2029, 2013.

[106] K. Yu and M. Fernandez, “Methods to combine deterministic nulling
and adaptive nulling”, in IEEE Radar Conference (RadarConf), 2017,
pp. 0123–0128.

[107] J. Baldwinson and I. Antipov, “Prediction of electronic attack
effectiveness against maritime patrol radars”, in International
Conference on Radar, vol. 5, 2008, pp. 259–264.

[108] D. Yang, G. Peterson, H. Li, and J. Sun, “An FPGA implementation
for solving least square problem”, in IEEE Symposium on Field
Programmable Custom Computing Machines, Napa, CA, 2009,
pp. 303–306.

[109] M. Mueller, “Least-squares algorithms for adaptive equalizers”, The
Bell System Technical Journal, vol. 60, no. 8, pp. 1905–1925, 1981.

[110] L. Resende, J. Romano, and M. Bellanger, “A fast least-squares
algorithm for linearly constrained adaptive filtering”, IEEE
Transactions on Signal Processing, vol. 44, no. 5, pp. 1168–1174, 1996.

[111] H. Brandenstein and R. Unbehauen, “Weighted least-squares
approximation of FIR by IIR digital filters”, IEEE Transactions on
Signal Processing, vol. 49, no. 3, pp. 558–568, 2001.

[112] M. Lang, “Least-squares design of IIR filters with prescribed magnitude
and phase responses and a pole radius constraint”, IEEE Transactions
on Signal Processing, vol. 48, no. 11, pp. 3109–3121, 2000.

[113] C. Burrus, “Iterative reweighted least-squares design of FIR filters”,
IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 2926–2936,
1994.

119

[114] P. Sinha, A. George, and K. Kim, “Parallel algorithms for robust
broadband MVDR beamforming”, Journal of Computational Acoustics,
vol. 10, no. 1, pp. 69–96, 2002.

[115] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev,
“Triangular systolic array with reduced latency for QR-decomposition
of complex matrices”, in IEEE International Symposium on Circuits
and Systems, 2006, pp. 385–388.

[116] F. Echman and V. Owall, “A scalable pipelined complex valued matrix
inversion architecture”, in IEEE International Symposium on Circuits
and Systems, vol. 5, 2005, pp. 4489–4492.

[117] D. Boppana, K. Dhanoa, and J. Kempa, “FPGA based embedded
processing architecture for the QRD-RLS algorithm”, in IEEE
Symposium on Field-Programmable Custom Computing Machines,
Napa, CA, 2004, pp. 330–331.

[118] G. Lightbody, R. Walke, R. Woods, and J. McCanny, “Novel mapping
of a linear QR architecture”, in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 1999,
pp. 1933–1936.

[119] S. Aslan, E. Oruklu, and J. Saniie, “Realization of area efficient QR
factorization using unified division, square root, and inverse square root
hardware”, in IEEE Conference on Electro/Information Technology,
Windsor, ON, 2009, pp. 245–250.

[120] Z. Liu, J. McCanny, G. Lightbody, and R. Walke, “Generic SoC QR
array processor for adaptive beamforming”, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 50,
no. 4, pp. 169–175, 2003.

[121] G. Prabhu and S. Rani, “Fixed point pipelined architecture
for QR decomposition”, in IEEE International Conference on
Advanced Communications, Control and Computing Technologies,
Ramanathapuram, India, 2014, pp. 468–472.

[122] A. Irturk, “Implementation of QR decomposition algorithm using
FPGAs”, M.S. Thesis, Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA, 2007.

120

[123] D. Kim and S. Rajopadhye, “An improved systolic architecture
for LU decomposition”, in IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
2006, pp. 231–238.

[124] G. Govindu, V. Prasanna, V. Daga, S. Gangadharpalli, and V. Sridhar,
“Efficient floating-point based block LU decomposition on FPGAs”, in
ERSA, 2004.

[125] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD
systolic array and implementation on FPGA”, in IEEE International
Conference on Field-Programmable Technology (FPT), 2003, pp. 35–42.

[126] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, “An FPGA
design space exploration tool for matrix inversion architectures”, in
Symposium on Application Specific Processors, Anaheim, CA, 2008,
pp. 42–47.

[127] R. Schreiber, “Implementation of adaptive array algorithms”, IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5,
pp. 1038–1045, 1986.

[128] K. Buckley and L. Griffiths, “An adaptive generalized sidelobe
canceller with derivative constraints”, IEEE Transactions on Antennas
and Propagation, vol. 34, no. 3, pp. 311–319, 1986.

[129] K. Gerlach and F. Kretschmer, “Convergence properties of
Gram-Schmidt and SMI adaptive algorithms”, IEEE Trans. Aerospace
and Electronic Systems, vol. 26, no. 13, pp. 44–56, 1990.

[130] I. Cohen, “Analysis of two-channel generalized sidelobe canceller
(GSC) with post-filtering”, IEEE Transactions on Speech and Audio
Processing, vol. 11, no. 6, pp. 684–699, 2003.

[131] L. Griffiths and C. Jim, “An alternative approach to linearly
constrained adaptive beamforming”, IEEE Transactions on Antennas
and Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[132] S. Applebaum and D. Chapman, “Adaptive arrays with main beam
constraints”, IEEE Transactions on Antennas and Propagation, vol. 24,
no. 5, pp. 650–662, 1976.

121

[133] L. Castedo and A. Figueiras-Vidal, “An adaptive beamforming
technique based on cyclostationary signal properties”, IEEE
Transactions on Signal Processing, vol. 43, no. 7, pp. 1637–1650, 1995.

[134] W. Liu and V. Prasanna, “Utilizing the power of high-performance
computing”, IEEE Signal Processing Magazine, vol. 15, no. 5,
pp. 85–100, 1998.

122

Appendix A

Calibrating and Beamforming a Wideband Array in

MATLAB

The following MATLAB code computes and applies a wideband calibration

and beamforming routine. Data was sampled from the Rockwell Collins

common module array described in Chapter 3.

clc

clear all

close all

%%

fs = 1.4e9;

fylim = [-20 50];

%% Data format is "adc_data_freq_siggenpower_steeringangle"

load ’adc_data_all.mat’;

adcdata = adc_data_435_n15_0; offset = 0; BS = 1;

% adcdata = adc_data_435_n15_15; offset = 185; BS = 0;

123

% adcdata = adc_data_435_n15_30; offset = 180; BS = 0;

% adcdata = adc_data_435_n15_45; offset = 180; BS = 0;

% adcdata = adc_data_435_n15_60; offset = 170; BS = 0;

doublespacing = 0;

ttd = 1;

w = ones(16,1);

frf = 4.35e9;

% dx = 0.0172;

dx = .0167; ...

%lambda/4 at 4.5 GHz if array is lambda/2 at 18 GHz

%% Adjust for ADC buffers offsets

DD = [-13 -13 0 0 0 -7 0 0 0 0 0 0 0 0 0 0];

for k = 1:16

adcdata(k,:) = circshift(adcdata(k,:), [0 DD(k)]);

end

adcdataf = fftshift(fft(adcdata,[],2),2);

L = size(adcdata,2);

t = (0:(L-1))/fs;

f = (0:(L-1))/L*fs-fs/2;

%%

twindow = offset + (120:3755);

124

L = length(twindow);

Lp = L/4;

twin = (0:(L-1))/fs;

fwin = (0:(L-1))/L*fs-fs/2;

adcdatatwin = adcdata(:,twindow);

adcdatatwinf = fftshift(fft(...

adcdata(:,twindow),[],2),2);

%% Calibrate polyphased amplitude offsets

oddoffset = 4;

Lz = length(twindow)+oddoffset; %zeropad

Lpz = Lz/4;

% Add zeros to make it a factor of 4

adcdatatwin = [adcdatatwin ...

repmat(zeros(1,oddoffset),16,1)];

adcpoly0 = adcdatatwin(:,1:4:end);

adcpoly1 = adcdatatwin(:,2:4:end);

adcpoly2 = adcdatatwin(:,3:4:end);

adcpoly3 = adcdatatwin(:,4:4:end);

adcpolyrmsavgs = [sum(adcpoly0,2)/Lpz ...

sum(adcpoly1,2)/Lpz sum(adcpoly2,2)/Lpz ...

125

sum(adcpoly3,2)/Lpz];

adcpolyrmsavgsq = repmat(adcpolyrmsavgs,1,Lpz);

adcdatacal = adcdatatwin - adcpolyrmsavgsq;

adcdatacal = adcdatacal(:,1:(end-oddoffset));

adcdatacalf = fftshift(fft(adcdatacal,[],2),2);

%% Generate reference waveform from channel 8

refwave = squeeze(adcdatacal(8,:));

refwavef = fftshift(fft(refwave));

%% Build steering filterbank

nfir = 22; % the number of FIR taps

heq = zeros(1,nfir); heq(1) = 1;

clear R;

for i = 1:nfir

R(:,i) = freqz((circshift(heq, [0 (i-1)])), ...

[1], fwin, fs).’;

end

%% Delay reference channel to center impulse responses

D = nfir/2;

refwavefd = refwavef.*...

freqz([zeros(1,D-1) 1 zeros(1,nfir-D)], ...

[1], fwin,fs);

126

%%

N = numel(refwave);

B1 = 666;

B2 = .125;

boffset = 525;

ns = 1e-8;

%% Create window

W = tukeywin(N/2+1-2*B1,B2)’;

W = [ns*ones(1,B1-boffset) W ns*ones(1,B1+boffset)]; ...

% include loading to stablize matrix inverse)

W = [fliplr(W(1:(end-1))) W(1:(end-1))];

W = diag(W);

%% Match channels to reference waveform

clear yf yfref Hideal HiDD a Hact;

Nchan = 16;

if doublespacing == 1

dx = dx*2;

end

load(’HidealBS.mat’);

th = -80:1:80;

127

S = (R’*W*R)ˆ-1*R’*W;

for k = 1:numel(th)

for i = 1:Nchan

yf(i,:) = adcdatacalf(i,:);

if BS == 1

Hideal(i,:) = refwavefd./yf(i,:);

else

Hideal(i,:) = HidealOld(i,:);

end

dm = (i-1)*dx*sind(-th(k))/3e8;

if ttd == 1

HiDD(i,:) = squeeze(Hideal(i,:)).*...

exp(-1i*2*pi*dm*(fwin-(-frf+fs/4)*...

sign(fwin))); % Phase shift + TTD

else

HiDD(i,:) = squeeze(Hideal(i,:)).*...

exp(-1i*2*pi*dm*frf*sign(fwin)); ...

% Phase shift

end

if doublespacing == 1 % For wider element spacing

adcdatacalm(i,:) = ifft(ifftshift(...

fftshift(fft(squeeze(adcdatacal(i,:)))).*...

(0+1*squeeze(exp(1i*angle(Hideal(i,:).*...

128

yf(i,:)./(Hideal(1,:).*yf(1,:))))))));

else

adcdatacalm(i,:) = adcdatacal(i,:);

end

a(i,k,:) = w(i)*S*(HiDD(i,:).’);

realimagdetect = rms(imag(a(i,k,:)))./...

rms(real(a(i,k,:)));

a(i,k,:) = real(a(i,k,:));

sigact(i,k,:) = filter(squeeze(a(i,k,:)), [1], ...

squeeze(adcdatacalm(i,:)));

Hact(i,k,:) = freqz(squeeze(a(i,k,:)), ...

[1], fwin, fs);

end

end

sigtot = squeeze(sum(sigact, 1));

sigtotf = fftshift(fft(sigtot, [], 2),2);

i1 = find(fwin >= 0,1);

i2 = find(fwin >= 300e6,1);

mf = ifft(ifftshift(conj(refwavef(i1:i2))));

clear sigtotmf

for k = 1:numel(th)

129

sigtotmf(k,:) = conv(mf, hamming(i2-i1+1)’.*...

ifft(ifftshift(squeeze(sigtotf(k,i1:i2)))));

end

%%

ycal = adcdatacalf.*Hact;

yuncal = adcdatacalf;

ybeam_uncal = sum(adcdatacalf,1);

ybeam_cal = sum(ycal,1);

%% Calibration offsets

beemsteer = [.00009 .000052 .000027 -.00000006 ...

-.000027 -.000052 -.000072 -.000090];

beemsteer2 = -.00005*[1 1 1 1 1 1 1 1];

Httd = exp(-1i*2*pi*beemsteer(k+1)*(1:16)’*(0:(N-1)));

Httdn = .0005*exp(1i*2*pi*beemsteer(k+1)*(1:16)’*...

(0:(N-1))).*randn(Nchan,N);

Hfttd = fftshift(fft(Httd,[],2),2);

Httdsteered30 = exp(-1i*2*pi*beemsteer2(k+1)*...

(1:16)’*(0:(N-1)));

ycalttd = ycal.*Httd;

ycalttdphase = ycal.*Httd;

yuncalttd = yuncal.*Httd;

ycalttdn = ycalttd.*Httdn;

130

ycalttdphasesteered30 = ycalttd.*Httdsteered30;

%%

nchan = size(adcdatacalf,1);

nfreqs = size(adcdatacalf,2);

t = (0:1/1400e6:(nfreqs-1)/1400e6);

theta = 0:1:180;

z = zeros(length(theta),nfreqs);

zttd = zeros(length(theta),nfreqs);

zttdn = zeros(length(theta),nfreqs);

zuncal = zeros(length(theta),nfreqs);

zuncalttd = zeros(length(theta),nfreqs);

zttdphase = zeros(length(theta),nfreqs);

zttdphasesteered30 = zeros(length(theta),nfreqs);

%% Do the beamforming in azimuth

phioff = zeros(length(theta),nchan,nfreqs);

p = zeros(length(theta),nchan);

for i = 1:length(theta)

p(i,:) = (exp(1i*pi/2*cosd(theta(i))*(0:(nchan-1))))’;

phioff(i,:,:) = repmat(p(i,:)’,1,nfreqs);

z(i,:) = sum(ycal.*squeeze(phioff(i,:,:)),1);

zttd(i,:) = sum(ycalttd.*squeeze(phioff(i,:,:)),1);

zuncal(i,:) = sum(yuncal.*squeeze(phioff(i,:,:)),1);

zuncalttd(i,:) = sum(yuncalttd.*....

131

squeeze(phioff(i,:,:)),1);

zttdphase(i,:) = sum(ycalttdphase.*...

squeeze(phioff(i,:,:)),1);

zttdphasesteered30(i,:) = sum(...

ycalttdphasesteered30.*squeeze(phioff(i,:,:)),1);

zttdn(i,:) = sum(ycalttdn.*squeeze(phioff(i,:,:)),1);

end

%% Normalize responses

findex = 2200;

chanindex = 3;

flow = 2141;

fmiddle = 2335;

fhigh = 2564;

fhigh = 2525;

fout = 3000;

Nftemp=fhigh-flow;

fsp = linspace(-100e6,100e6,Nftemp+1)+4.4e9;

znormed = max(max(abs(z(:,flow:fhigh))));

zttdnormed = max(max(abs(zttd(:,flow:fhigh))));

zttdphasesteered30normed = ...

max(max(abs(zttdphasesteered30(:,flow:fhigh))));

zttdnnormed = max(max(abs(zttdn(:,flow:fhigh))));

132

zttdnnormed = max(max(abs(zuncal(:,flow:fhigh))));

zttdnnormed = max(max(abs(z(:,flow:fhigh))));

zuncalnormed = max(max(abs(zuncal(:,flow:fhigh))));

Nftemp=fhigh-flow;

fsp = linspace(-100e6,100e6,Nftemp+1)+4.4e9;

%% True Time Delay Filterbank Analysis

nfilts = 20;

ntaps = 46;

downsamplefactor = 500;

Nt = ntaps*downsamplefactor;

t = (0:1/1400e6:(Nt-1)/1400e6);

fbank = sinc(22.9*(repmat((((0:(length(t)-1))/...

length(t)-.5)-1/nfilts/ntaps/2),nfilts,1)-...

.001075*repmat((0:(nfilts-1))’,1,Nt)));

% Shift by fs/4 in frequency

mixfsover4 = (repmat(exp(1i*pi*((0:(size(fbank,2)-1))/...

size(fbank,2)-.5)*Nt/2),nfilts,1));

fbankmixed = real(fbank.*mixfsover4);

fbankf = fftshift(fft(fbankmixed,[],2),2);

% Apply a Blackman window to the filterbank

w_indow = repmat(blackman(size(fbankmixed,2))’,nfilts,1);

133

fbankwindow = fbankmixed.*w_indow;

fbankfwindow = fftshift(fft(fbankwindow,[],2),2);

fbankdown = downsample(fbank’,downsamplefactor)’;

mixfsover4down = (repmat(exp(1i*pi*(...

(1:(size(fbankdown,2)))/size(fbankdown,2)-.5)*...

Nt/downsamplefactor/2),nfilts,1));

fbankdownmixed = real(fbankdown.*mixfsover4down);

fbankfdown = fftshift(fft(fbankdownmixed,[],2),2);

% Compensate for amplitude mismatches

ampoff = sqrt(mean(abs(fbankdownmixed).ˆ2,2));

fbankwindowdownampoff = fbankdownmixed./...

(repmat((ampoff).ˆ2,1,size(fbankdownmixed,2)));

% Apply Window

w_indowdown = repmat(blackman(size(fbankdownmixed,2))’,...

nfilts,1);

fbankwindowdown = fbankwindowdownampoff.*w_indowdown;

fbankfwindowdown = fftshift(fft(fbankwindowdown,[],2),2);

134

Appendix B

Matrix Inversion with the Matrix Inversion Lemma in
MATLAB/HDL Coder

The following Simulink/HDL Coder block diagram code implements the MIL
algorithm described in Chapter 4.

Figure B.1: Top level dataflow diagram of the MIL.

135

Figure B.2: Computing the inverse covariance matrix with the MIL.

136

Figure B.3: Updating adaptive weights with the MIL.

137

