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Abstract

Magnetic Resonance Imaging (MRI) has become a generally accepted medical

procedure and it is estimated that all the U.S. population will have at least

one MRI scan in their lifetime. Unlike common radiography and computed

tomography, MRI has many advantages including its nonionizing nature and

the capability to distinguish soft tissues. However, the substantial benefits of

MRI are often not available to patients with implanted medical devices, such

as a pacemaker, an implantable cardiovascular device, a deep brain stimulator,

or a neurostimulator.

MRIs utilize three powerful fields in the process of producing images, static

field, gradient field and Radio Frequency (RF) field that coexist during the

scanning. The interaction between the implantable device and the RF elec-

tromagnetic field is the main hazard during MRI scanning for most active

implantable medical devices. The conductive parts, mainly, the lead wire, act

like antennas that pick up the available incident energy. This may result in ex-

cessive heating with the capacity for tissue damage [1], [2]. Moreover, the RF

power delivered to the Implantable Pulse Generator (IPG) is another concern

as it can damage the internal circuitry [3], [4].

In this research, a comprehensive model of the implant in the presence of

MRI RF waves is presented. This circuit model represents the induced current

and is used to design a lead that minimizes the coupled power to the IPG. This

xix



model significantly simplifies designing a new lead by removing Electromag-

netic (EM) simulation of implantable devices inside the human body. Also, a

circuit model is introduced that extracts the transfer function from the mea-

sured parameters of the lead. A miniaturized RF power measurement setup

that conforms to the IPG case is designed and used to measure the coupled

RF power to the IPG without using external components. This method of

measurement, improves the accuracy of the measurement and can be used to

measure RF coupled power to the antenna. For communication to the implant

using Bluetooth technology, an antenna is designed and the effectiveness of the

new measurement setup for the coupled MRI RF waves to the antenna port

is demonstrated.
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Chapter 1

Introduction

1.1 Overview

Magnetic Resonance Imaging (MRI) has become one of the most important

non-invasive clinical diagnostic tools to produce high-resolution image of hu-

man tissue [5], [6]. While MRI is considered a very safe method that has no

long term effects, there are in fact some limitation regarding its usage in a

group of patients. Those with a conductive or a magnetic implantable medical

device, which is the subject of interest, belongs to this category. The number of

patients with medical implantable devices like, cardiac pace maker and neuro-

stimulation systems like deep brain stimulator and Vagus nerve stimulator is

growing rapidly every year [7], [8].

Static field, gradient field and Radio Frequency (RF) field are generated in

any MRI device during the process of producing images. and they are coexist

at the same time. Depending on the strength of the magnetic field, which could

be 1.5 T or 3 T, the RF frequency is 64 MHz or 128 MHz, respectively, which

is equal to the Larmor frequency at the aforementioned strength of magnetic

field. The interaction between the implantable device and RF electromagnetic

field is the main hazard during the MRI scanning for most active implantable
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medical devices. The lead wire with the IPG case, acts like an antenna that

picks up the RF energy. This may result in excessive heating with the capac-

ity for tissue damage especially at the wire’s tip, where the RF energy will

concentrated. Moreover, the RF voltage delivered to the IPG is another con-

cern that can damage the internal circuitry. This is a complicated challenge

that depends on multiple parameters including the surrounding tissue, MRI

scanner frequency and MRI RF power, position of the implantable device, lead

path, lead design, and lead length [9], [10].

A complete model that predicts the RF behavior is a fundamental key for

understanding the interaction between the implantable device and the MRI RF

signal. This model could be a circuit model or a simplified Electromagnetic

(EM) model that predicts the transmission and radiation performance.

Figure 1.1 shows an AspireSR, the first and only Vagus nerve therapy that

provides responsive stimulation to heart rate increase inside the human body.

The IPG case, which also called can is installed under the skin over the chest

and the lead connects the pulse generator to the nerve. The lead needs to be

long enough to connect the IPG to the nerve in different human body types.

The path and the depth of the lead could vary, which will change the RF

heating. Moreover, there could be a loop in the path as well that changes the

interaction with MRI RF. To find the maximum potential heating, a compre-

hensive study of the likely paths is needed. The lead has two electrodes that

deliver the voltage to the nerve and an anchor that holds the lead in place.

1.1.1 Implantable device in MRI

The interaction between the MRI RF field and the conductive implantable

device inside the human body transfers energy as heat to the surrounding tissue

2



Figure 1.1: Vagus nerve stimulator inside a human body that shows the three
main parts: pulse generator, lead and electrodes (from [8]).

and delivers RF voltage to the IPG. The amount of heating mainly depends

on the lead’s parameters. Although, we study the lead at high frequencies,

the main task of the lead is to deliver the low frequency signals from the pulse

generator to the nerve. The majority of the frequency content of the signal for

therapy is below 200 Hz.

In addition to the RF characteristics, there are multiple criteria that need

to be considered while designing the lead. Depending on the model and the

purpose of the IPG, the device should be able to work inside the human body

for approximately 5 years, or more, with the same battery and without any ad-

ditional surgery. Therefore, the dissipated power in the lead at low frequencies

is a crucial factor and an important parameter on the longevity of the device.

The lower the dissipated power is, the longer the device will work due to the

3



Figure 1.2: Structure of an implantable device that contains the parts affected
by the RF interaction.

lower battery drain. Moreover, the lead needs to be mechanically durable to

the stresses for the years of operation. The lead connects the IPG, which is

placed in the sub-clavicle region of the chest, to the vagues nerve. The con-

ductors inside the lead must sustain the stress and pressure from the neck and

chest movements. Moreover, all the used materials need to be bio-compatible.

These are the main restrictions in designing a lead.

An implantable device that contains the parts affected by the RF interac-

tion is shown in Figure 1.2. The low frequency circuit inside the IPG produces

the signal for the therapy. The output of this circuit is connected to the lead

using a technothane header and filtered feed-through. The lead delivers the

signal to the nerve using the electrodes. The feed-through capacitor inside the

header, shunts the high frequency signal to the IPG case and prevents dam-

aging the internal circuit from induced currents on the lead due to external

fields.

The maximum temperature rise occurs where the scattered electric field is

maximum. Usually, the tip of an open ended electrode is where the maximum
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coupled power is dissipated. However, all parts of the implantable device need

to be modeled for a comprehensive understanding of the interaction due to the

RF field. Each component of the implant that interacts with the electric field

may change the electrical length and therefore the Self Resonant Frequency

(SRF). This variation results in an alteration of the magnitude of the induced

current.

1.2 Background of MRI safe implantable devices

There are multiple factors related to MRI RF heating. The exterior parame-

ters are the bore diameter, bore length, field strength, type of the sequence,

position, and geometry of the implanted device inside human body, as well as

the position and posture of the body inside the scanner [1]. Calculating or

measuring of magnitude and phase of the electrical field in the medium is the

first step in this study. It is possible to find the electric field components using

simulation software or using a probe in an MRI. A specific hazard for excessive

tissue heating during MRI arises if the conductive implants align with the elec-

tric field in the body. No significant implant heating occurs in positions with

low overall electric field strength or if the implant is positioned orthogonal to

the local electric field. Distribution of the amplitude of electric fields inside

the human body-like phantom in an MRI scanner is shown in Figure 1.3.

In addition to the exterior parameters, the wire shape, length, and material

that is used in the designing the lead has a significant impact on the RF heating

[2]–[4]. A wire length study and the impact of the heating of a nitinol guide-

wire was investigated in [11]. The SRF of conductors is a mechanisms by

which heating can be extracted. However, it is difficult to predict because

it strongly depends on the surrounding tissue of the lead or guid-wire. For
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Figure 1.3: Spatial distribution of induced electric fields within the human-
body-like phantom liquid in an MRI scanner (from [1]).

example, the heating that may be produced on a resonating guide-wire is not

an intrinsic item of the wire, but depends on a large and rather poorly defined

set of environmental factors. The permittivity of the lead’s surrounding tissue

may vary from 4 to 86 inside the human body. Therefore, the amplitude

and phase of the incident electrical field will change as well. Moreover, the

resonant frequency of the structure is also a function of the tissue. The problem

becomes more challenging when the lead crosses multiple tissues with different

parameters.

The center conductor of the guide-wire acts like an antenna and is excited

by the radiated electric field. At same time, it acts like the core of a transverse

electromagnetic (TEM) waveguide. The wave reflects at the ends and in some

specific situations, the superimposed TEM waves form a standing wave and

the electrical field near the guide-wire causes the displacement current in the

layer directly surrounding the wire. The resonating length equals:
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L ≈ n ∗ λT EM

2 , n = 1, 2, 3, ... (1.1)

and as mentioned, depends on multiple parameters.

The magnitude of the heating is proportional to the amount of dissipated

energy, which corresponds to the Specific Absorption Rate (SAR) from the

induced current. This value is extracted using the Electromagnetic (EM) sim-

ulator and a safety index (◦C/(W/kg)) is introduced, which is the temperature

measurement normalized to SAR of the pulse sequence. This method is appli-

cable to both insulated and non-insulated wires that are completely inserted

in the human body, such as wire leads for pacemakers, neurostimulators, and

spinal fusion stimulators [12]. Figure 1.4 shows the theoretically predicted

safety index for different variations of bare wire diameter, insulation thick-

ness, relative permittivity of the insulation, and electrical conductivity of the

tissue. SAR depends on the coil geometry and the properties of the tissue and

can be calculated using the following equation:

SAR = σE2

2ρt

(1.2)

where E is the amplitude of electric field, σ is the electrical conductivity and

ρt is the mass density of the tissue.

Another method to investigate temperature rising on the implantable de-

vices is based on the impedance of the EM wave. An impedance match between

the radiated RF signal and the lead common mode can cause heating at the

near tip. Adding a filtering circuit that forms a high impedance structure, re-

duces the common mode current and limits the amount of heating. However,

in this case, the SRF of the lead can be excited which maximizes the induced
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Figure 1.4: Theoretically predicted safety index (from [12]).

current. Dividing the long conductor into multiple short sections, increases

the SRF and suppresses the common mode effects [7]. Figure 1.5 shows the

measured SRF in a standard line and a line with a filter. The minimum reso-

nant frequency increased from 41.4 MHz to 103 MHz and the weakly coupled

method of measuring the SRF, eliminates the importance of the amplitude

of S11. It is known from antenna theory that by adding a capacitor along

the length of an antenna, that the first resonant frequency can be increased.

However, this method is not applicable when the lead needs to deliver the low

frequency signal from IPG to the targeted nerve.

Calculation of the heating along the lead has been investigated using dif-

ferent methods [3], [6], [9], [10], [13]–[18].

Temperature increase on the lead is a function of both the transfer function
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Figure 1.5: Self-resonant frequency shift in. S11 for a) standard line and b)
with the transformer line, both fully immersed in water (from [7]).

and the incident electric field along the lead [14]. Figure 1.6 shows the concept

of the lead’s transfer function. The tangential electric field Etan is coupled

along the length (L) of the lead. τ is the distance from the electrode and P is

the position vector of the evaluation point. The scattered field related to the

incident field by the transfer function S (τ, P )

Es (P ) =
∫ L

0
S (τ, P )Etan (τ) dτ. (1.3)
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Figure 1.6: Transfer function method and scattered electric field near the
electrode. With knowledge of the transfer function, the local SAR can be
calculated (from [14]).

The scattered electric field is independent from the Etan and with knowl-

edge of the transfer function, the local SAR can be calculated and therefore

the temperature rise at a point P near the electrode.

EM simulation can be used to extract the transfer function. In the presence

of the MRI RF field that induces current along the lead, a scattered electric

field from this current at the test point P is calculated. The radial component

of the scattered electric field is equivalent to Etan [12]. The transfer function

of the lead depends on the surrounding environment and frequency [19], [20].

Due to the complexity of the lead, usually a simple wire is used to extract the

transfer function. Figure 1.7 shows the measured and calculated temperature

increase over time. This method is used to validate the transfer function

method.

For communication to implantable devices, antennas have been designed

for different purposes and at multiple frequencies [21]–[27]. One of the main

frequencies that these antennas are designed at is 400 MHz for telemetry,

communication and power transfer applications. Moreover, implantable an-

tennas for communication at 2.4 GHz ISM band have been designed [28], [29].
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Figure 1.7: Measured and calculated temperature increase vs. time for vali-
dation of the transfer function method (from [14]).

However, antenna radiation performance at MRI RF frequencies has not been

considered and the coupled RF energy during the MRI scanning has not been

measured.

1.3 MRI conditional safe implantable devices

To reduce the risk of hazardous heating from RF excitation, multiple methods

has been investigated. RF chokes that filter the MRI RF signal with a length

of quarter wave length were used to reduce the currents induced on the cable

shield [30]. This method is used to reduce the heating due to the SRF of

Intravascular Catheters.

An MRI conditional safe brain stimulator lead based on resistive tapered

strip-line technology is introduced in [31]. This design breaks up the induced

RF current along the lead as well as dissipating power. Consequently, the
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Figure 1.8: Electric field reduction at the tip by implementing nails along the
lead (from [32]).

temperature increase at the electrode is limited.

During the MRI scanning, strong electric field can exist at the lead tip.

Due to the low conductivity of the surrounding tissue, the stored energy in

the scattered electric field is transfered to heat. A medical lead implant with

nails to reduce the scattered field near the lead tip is introduced in [32]. The

electric field strength reduction using the nails is shown in Figure 1.8. The

distance of the RF excitation from the tip is shown on the horizontal axis as D.

The graph presents the scattered electric field for both capped and uncapped

situations while the length of the lead is constant.

Bio-compatible Nickel-Titanium alloy T-shaped pins has been placed along

the lead to reduce the RF heating. The distance between the pin’s head and

the existing lead forms parallel capacitors that can be controlled using the

dimensions of the pin. Usually a coil is placed near the lead tip which forms
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Figure 1.9: T-shaped bio-compatible lead and circuit model (from [9]).

a low-pass frequency response filter with the pins [9]. The structure and the

equivalent circuit are shown in Figure 1.9. Due to the complexity of the lead, a

wire is used in this simulation. The wire diameter is 1.6 mm and the insulator

diameter is 2.5 mm.

A modified transmission line model has been introduced in [16], [33] that

models the induced current along the lead during MRI. Series voltage sources

are placed between transmission line unit cells to model distributed excitation

of an external field. Moreover, IPG case and electrode are modeled with a

voltage source and an impedance. In this method, traditional ways of deter-

mining transmission line parameters are neither valid nor simple to derive for

complex lead geometries.

A deep brain stimulator that has helical coils along the lead with non-

uniform diameters was presented in [5]. The transmission line properties of

the lead vary by changing the helical coil diameter. Therefore, the lead’s

characteristic impedance at the MRI frequency can be increased. Controlling

these parameters results in reduced amplitude of the induced currents.

1.4 Research objective

The work presented here addresses modeling of implantable devices in the

presence of MRI RF waves. For extracting the transfer function of the lead, a
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new method to measure transmission line parameters of the lead in saline is

presented. Using this model, the impedance, resistivity, and electrical length

of the lead are extracted. Moreover, a circuit model to extract the transfer

function based on the transmission line is introduced.

To prevent implant malfunction during MRI, coupled energy to the IPG

needs to be measured and its value should be less than the maximum power

handling of the modules inside the IPG. A new method is designed and imple-

mented based on a miniaturized measurement setup to measure coupled MRI

RF power to the IPG. All analog and digital circuitry is placed in the implant.

This method provides an accurate tool for malfunction tests performed on all

of the IPG ports.

For communication to the implant, an antenna is designed and fabricated

based on the position of the IPG inside the human body. Sensitivity of the

implant antenna to the variation of the human body is provided using EM

simulations. The MRI RF coupled energy is measured using the new method

that is introduced in this work.

Finally, a circuit model of the implant inside human body during MRI

scanning is introduced. The conventional transmission line model is expanded

to model the induced current and the external radiated RF field in MRI. Using

this model, the current and voltage along multiple leads are provided. This

method removes the time consuming EM simulations during the development

of new leads. Moreover, a parsed transmission line unit cell is introduced

which provides two degrees of freedoms in lead design.

Overall, this research provides a new methodology and concepts for model-

ing implantable devices. These methods enable systematic design of the next

generation of implantable devices and can be used to solve significant health
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risks for patients undergoing MRI scanning. The new state-of-the-art meth-

ods for modeling implantable devices and the expansion of the fundamental

concepts of transmission line theory, for addressing challenges associated with

current and future MRI technologies, are the main contributions of this work.
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Chapter 2

Measurement methods of coupled MRI RF signal to

implantable devices

During MRI scanning, high power signals couples to the lead. The signal that

delivered to the IPG can cause malfunction in the device. The purpose of this

portion of the project is to demonstrate different methods of measuring the

coupled voltage on the lead. In this chapter two methods are introduced to

measure the amount of power or voltage that couples to the lead and therefore

to the IPG. This value then will be injected into the device for the malfunction

test.

2.1 Implantable devices inside the MRI

To measure the coupled signal into an implantable devices, based on the state-

of-the-art method, a voltage sensor is used [34] where the lead is connected

to the IPG. The measurement setup is placed outside the IPG and the mea-

sured data is transfered to outside of the shielded room. However, there are

multiple drawbacks using this method to measure the coupled voltage. The

measurement setup is exposed to the MRI RF field. The interaction of the

RF field and measurement setup could change the coupled signal value that

depends on the position of the measurement setup. Moreover, the interaction
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of the digital circuit of the measurement setup and the high power RF signal

could result in malfunction of the measurement circuit. Finally, the exposing

wires of the measurement setup to the RF signal adds more uncertainty to the

measurement results.

In this chapter a novel method for measuring the signal coupled an into

implantable device during the MRI scanning is introduced. This method can

be used for measuring the RF power induced on the lead or the antenna

of implantable devices. This approach uses an Internal RF Power Detector

(IRPD) that covers all the MRI RF frequencies. All the data is recorded in

the internal memory inside the implantable device during the measurement

and then extracted after the MRI scanning.

2.2 Methodology

A block diagram of the proposed measurement setup is shown in Figure 2.1. All

the measurement setup components are placed inside the implantable device

to minimize the interaction between the MRI RF fields and the IRPD. The

measurement setup is designed and fabricated on a Printed Circuit Board

(PCB) that is the same size as the original IPG PCB. The two halves of the

IPG case are sealed and covered using copper tape. Recorded data is extracted

after the test by taking the IRPD out of the IPG. The measurement setup has

main four sections including, an attenuator network, an RF power detector, a

micro-controller and memory as described below.

The received signal level inside the IPG depends on multiple parameters that

include the input impedance of the IPG load that can be transceiver module

or Application-Specific Integrated Circuit (ASIC) and the impedance of the

coupled source to the IPG, that can be the lead or the antenna. The attenuator
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Figure 2.1: Block diagram of the proposed IRPD. Coupled RF signal to the
implantable device from the lead or antenna is delivered to the RF power
detector. The microcontroller records the output DC of the RF detector using
the internal ADC.

network is placed before the IRPD to reduce the received power level to fit

within the operating range of the RF detector.

The coupled RF power is measured using an available RMS power detector,

ADL5906 from Analog Devices. The frequency range of operation is 10 MHz

to 10 GHz and the dynamic range is more than 60 dB. The input impedance is

50 Ohm. The time response is optimized to detect the maximum power level

for a sinc pulse shape. The output of the detector is a DC voltage proportional

to the RF power. Moreover, temperature compensation is enabled to minimize

the effects of potential variation on the board temperature during the MRI

scanning.

The analog output DC value of the RF power detector is digitized using

a 10 bit ADC. The ADC is an internal feature of the selected microcontroller

from Atmel. The ATmega324P is a low-power CMOS 8-bit microcontroller

that has 8 channel 10 bit ADC and 1 KB internal memory or EEPROM.

Sampled data is recorded in the memory and extracted after the experiment.

2.2.1 Algorithm

The IRPD is designed and fabricated on a board that is the same size as

the implanted device circuit board. The IRPD is placed inside the case and
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Figure 2.2: MRI RF birdcage setup and placement of the IPG and lead. (a)
Top view of the birdcage that shows the lead where the distance from edge is
4 cm. (b) Side of the birdcage where the IPG is placed at the center. (c) The
console of MRI RF coil. (d) Medical test implant system 1.5 T

powered using an internal battery. The current consumption of the RF power

detector is 68 mA. There is a one hour delay before the power detector is

turned on. This is the time needed after the board is powered up and placed

inside the case. At this time the microcontroller is in sleep mode and the

RF detector is off. In the sleep mode, the total current consumption at this

period is less than 2 mA. The microcontroller starts sampling the signal at

the ADC pin. Before writing the maximum value in the EEPROM, the value

is compared with the stored value and if it is higher then it will be replaced.

This processes continues until the board is powered off. In this method, the
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Figure 2.3: Pulse width measurement and output of the RF detector

Table 2.1: IRPD characterization

Injected signal Measured signal
Freq (MHz) 64 128
PW(dBm) Volt(mV) Osc. ADC Osc. ADC

-55 0.398 0.57 0.69 0.59 0.7
-50 0.707 0.74 0.76 0.81 0.82
-40 2.236 1.26 1.22 1.33 1.29
-30 7.071 1.82 1.77 1.9 1.85
-20 22.36 2.39 2.32 2.48 2.4

memory behaves like a maximum hold and it will be rewritten if the next value

is higher than the stored value.

To erase the EEPROM between the measurements and sending the recorded

data to the serial port, two switches are implemented on the board. After the

MRI test, the IPG case is opened and recorded data is transfered through the

serial port.
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2.3 Characterization of ADC

The RF power detector response with the internal ADC is calibrated using a

bench desk setup. A SMC100A from Rohde & Schwarz and an Agilent E4418B

are used as the RF signal generator and the power meter, respectively. Two

signals at different power levels for both 64 MHz and 128 MHz are injected

into the RF power detector. A KEYSIGHT 33500B waveform generator is

used as an external source to modulate the RF signal. The DC output of

the RF detector is measured using the oscilloscope and the internal ADC.

The result of the measurement is shown in Table 2.1. The internal reference

voltage of the microcontroller is 2.56 mV which limits the detectable voltage.

The 10 bit ADC provides the accuracy of 2.5 mV/bit which corresponds to

the 0.045 dB/bit. The minimum detectable signal without noise is -55 dBm.

Without any external network, the RF power detector and ADC provide 40 dB

of dynamic range, however, the maximum detectable power can be increased

by using an external attenuator.

Based on the RF power detector datasheet, the RMS averaging capacitor

(CRMS) provides the averaging function for the internal RMS computation.

Using the minimum value for CRMS allows the quickest response time to

a pulsed waveform but leaves significant output noise on the output voltage

signal. However, a large filter capacitor reduces output noise but at the expense

of response time. The recommended value for the CRMS is 0.1 µF which

ensures good RMS accuracy for this signal type. All the other necessary

components for the RF power detector are based on the Figure 51 in [35].

The time domain response of the IRPD is characterized using the MRI

RF birdcage signal. The placement of IPG inside the saline is shown in Fig-

ure 2.2 (a) and Figure 2.2 (b). The MRI RF birdcage and its controller are
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Figure 2.4: Coaxial cable setup for measuring the coupled signal. A half wave
coaxial cable connected to the high impedance port of a oscilloscope.

shown in Figure 2.2 (c) and Figure 2.2 (d), respectively. The antenna is placed

inside the RF birdcage and the received signal is transmitted outside of the

shielding room using a coaxial cable and injected into the RF power detector.

Both the RF signal and the corresponding DC output value of the RF power

detector are shown in Figure 2.3. The test signal is a sinc function, 90 deg

circular polarized with a Pulse Repetition Rate (PRR) of 1 KHz and a duty

cycle of 40%.

2.4 Microcontroller program

The ADC, memory and micro-controller are implemented in the same chip.

When the battery is connected to the IRPD, it takes about half an hour to

place it inside the IPG case and prepare it for the MRI measurement. The

initial step in the program sets the microcontroller in idle mode and turns the

RF power detector off. This step is using the minimum power consumption,

which is less than 2 mA and saves the battery for the measurement. The

microcontroller starts sampling the DC output of the RF power detector. This

process continues in a loop and when it reaches the end of the EEPROM, it
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Figure 2.5: RF measurement setup using the internal power detector. In this
setup no external component is added for the measurement.

returns to the start of the memory.

Two switches are placed at the board for sending the data to the serial

port and to reset the EEPROM data. After each measurement EEPROM is

erased to have value of zero in the memory.

2.5 Measurement of coupled MRI RF signal

The coupled RF power into the implantable device is measured in the medical

test implant system and MRI RF birdcage as shown in the Figure 2.2. All

tests are conducted in both available 64 MHz and 128 MHz birdcages, which

have the maximum output RF power of 46 dBm and 60.2 dBm, respectively.

2.5.1 Lead measurement

A pulse generator prototype lead based on the work in[36] with the implantable

device as shown in Figure 2.4 is used for this measurement. The input im-

pedance of the prototype lead is measured at the IPG connection point and

it is 72.46 ohm and 51.37 ohm at 64 MHz and 128 MHz, receptively. The

measurement is in air at a fixed position while the RF power level is changed.
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The recorded data in the EEPROM is shown in the Figure 2.7 and Figure 2.8

for 64 MHz and 128 MHz, respectively. This data shows the values recorded in

the internal memory at different times for different power levels.The extracted

maximum voltage data versus radiated power levels are shown in the Table 2.2

and Table 2.3 for 128 MHz and 64 MHz, respectively.

Using the internal voltage reference of the microcontroller, for the ADC,

increases the accuracy of the measurement. However, this method limits the

maximum voltage readable from the RF power detector. An attenuator net-

work is implemented to attenuate the received signal and increase the maxi-

mum detectable power. The equivalent circuit model of the EMI filter is shown

in Figure 2.6. The EMI filter, C1 in this prototype is 3,700 pF.

2.5.2 Generalized scattering parameter

The EMI filter is placed between lead and internal circuit as shown in Fig-

ure 2.6 (a). Due to the impedance differences at both sides of the filter, the

insertion loss needs to be calculated using the generalized scattering matrix.

The equivalent circuit model is shown in Figure 2.6 (b). Lead and the internal

circuitry of IPG are the two ports of this model. Impedance of each port are

denoted by Zp.

a = 1
2k (V + ZpI) (2.1)

b = 1
2k
(
V − Z∗pI

)
(2.2)

where, wave number k is

k =
(√
|Re {Zp}|

)−1
(2.3)
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Figure 2.6: IPG circuit and EMI filter. (a) IPG schematic where the voltage
(V) and power (P) are measured. (b) Equivalent circuit model.

and a and b are the complex amplitude of incident and exiting wave from

the port, respectively. The voltage and the current at each transmission line

termination can be written as:

Vi = V +
i + V −i (2.4)

Ii = Y0
(
I+

i − I−i
)

(2.5)

Then the scattering parameters can be computed directly using the following

formula:

Sij = V −i
V +

j

|v+
k

=0∀k 6=j (2.6)

Consider (2.6) at the junction of the two transmission lines the voltage is

continuous and the currents differ:

V1 = V2 (2.7)

I1 + I2 = YLV2 (2.8)

To compute S11 after the terminating port 2 the V +
2 = 0. The above equation
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can be rewritten as:

Y1
(
V +

1 − V −1
)

+ Y2
(
−V −2

)
= YLV

−
2 (2.9)

Y1
(
V +

1 − V −1
)

= (Y2 + YL)V −2 (2.10)

V −2 =
Y1
(
V +

1 − V −1
)

(
Y −2 + YL

) (2.11)

using the V +
1 + V −1 = V −2 :

V −1 = V −2 − V +
1 (2.12)

V −1 =
Y1
(
V +

1 − V −1
)

(
Y −2 + YL

) + V +
1 (2.13)

after simplification:

V −1 (Y1 + (YL + Y2)) = V +
1 (Y1 − (YL + Y2)) (2.14)

and the return loss:

S11 = V −1
V +

1
= Y1 − (YL + Y2)
Y1 + (YL + Y2) (2.15)

since V −2 = V +
1 + V −1 and S21 = V −2 /V

+
1 insertion loss can be written as:

S21 = 1 + S11 = 2Y1

Y1 + (YL + Y2) (2.16)

2.5.3 EMI filter insertion loss

The measured coupled voltage on the lead is shown in Figure 2.6 (a) and

denoted by V and the power is measured inside the IPG and denoted by P.

The insertion loss of the EMI filter, based on the measured data, is 53.88 dB
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Table 2.2: Measured voltage versus the RF power input in 3 T MRI birdcage

Power in dBm (V) Pk-Pk Coax (V) Meas voltage (V)
39.2 1.45 1.47
42.2 2.03 1.51
48.2 4.02 1.67
54.2 8 1.96

Table 2.3: Measured voltage versus the RF power input in 1.5 T birdcage

Power in dBm (V) Pk-Pk Coax (V) Meas voltage (V)
37 1.09 1.047
40 1.53 1.064
43 2.25 1.099
46 3.26 1.159

and 50.01 dB for 64 MHz and 128 MHz, respectively.

2.6 Conclusion

In this chapter a novel method to measure the coupled MRI RF signal into

the implantable devices using an internal RF power detector circuit is demon-

strated and the results are verified using the coaxial cable method. A miniatur-

ized measurement setup can be designed which makes it compatible with most

implementable devices. Shielded IRPD and digital circuitry of the measure-

ment setup inside the IPG, eliminates the variation of the RF field. Moreover,

having all the parts inside the case, removes the uncertainty of the direct

coupling to the measurement setup and potential malfunction of the digital

circuit. Moreover, this method is used to measure the RF coupled signal into

the antenna of the implant. This setup is capable of measuring the RF energy

received at the implant ports from exposure to 1.5 T, 3 T and upcoming MRI

technologies. Also, by using multiple RF power detectors, it is possible to

measure the coupled signal on all the ports simultaneously.
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Figure 2.7: Measured data using the RF power detector that recorded in
the micro-controller’s EEOROM for different RF power level in the 3 T MRI
birdcage
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Figure 2.8: Measured data using the RF power detector that recorded in the
micro-controller’s EEOROM for different RF power level in the 1.5 T MRI
birdcage
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Chapter 3

Lead transfer function

The purpose of this portion of the research is to demonstrate the transmission

line method to calculate the transfer function of the lead. A 10 cm section of

the lead is connected to two SMA connectors where mounted on a 10 cm by

10 cm copper plates that serve as the ground planes. The lead is immersed in

saline and the two port s-parameters are measured. The equivalent transmis-

sion line parameters are extracted. This circuit model can be used to find the

transfer function of leads with different lengths and at any frequency.

Moreover, using this method the transfer function can be extracted at any

point that is not physically measurable using conventional methods.

3.1 Introduction

To understand the heating in implantable devices during MRI, both experi-

ments and advanced electromagnetic (EM) simulations were performed [37].

It is extremely challenging to solve both human body and lead models in a

3D EM solver due to the sub-millimeter structures of implantable device sys-

tems. Moreover, due to the number of required mesh inside the human body,

these EM simulations can take days to solve. A transfer function concept was

proposed to decouple the micro-scale lead from the macro-level human body
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simulation [13], [14]. However, one of the main limitation of this approach is

that for finding the transfer function of a lead for different lengths, all of them

need to be fabricated and measured. Moreover, this method only provides the

capability of measuring transfer functions of leads and not designing one for

having a desired transfer function.

3.1.1 Lead heating evaluation using the transfer func-

tion method

In this section a common method of evaluating the RF heating on implantable

devices based on the transfer function method is described. The steps of this

method are described in this section and they are shown in Figure 3.1 [38].

First, an ASTM phantom is simulated with the lead placed in different

configurations. The tangential E-field is extracted for each possible configura-

tion of the lead path inside the human body. Second, the temperature rise in

the RF birdcage coil is measured for the simulated paths. Third, the current

distribution profile on the lead or transfer function is involved and a scaling

factor is calculated. The transfer function is validated and used for the heating

calculations for different paths and configurations.

3.1.2 Conventional transfer function measurement method

The conventional method for measuring transfer functions is shown in Fig-

ure 3.2. In this setup port 1 is the transmitter and port 2 is the receiver.

The signal is coupled to the lead using a small gap between the port 1 center

conductor and lead conductors as shown in Figure 3.3 and Figure 3.4. To

prevent disturbing the current along the lead, weak electromagnetic coupling

method is utilized. A current probe is connected to port 2. The current probe
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Figure 3.1: Flow chart of RF induced heating assessment using transfer func-
tion. (from [39])

is swept from one side of the lead to the other end in 1 cm increments. Simu-

lation results for −S21 are shown in Figure 3.5 and Figure 3.6, which are the

magnitude and phase of the insertion loss, respectively. Moving the current

probe along the lead will impact the impedance and consequently the level of

the coupled signal. However, the observed variation in the output reflection

coefficient was less than 5%. Therefore, it is negligible and S21 does not need

to be normalized.

In this chapter, a novel method for deriving and simulating the transfer

function of the lead in a circuit simulator is introduced. This method does not

require time-consuming EM simulation. Moreover, a transmission line model

is developed based on the actual lead that can be used to simulate any lead

length.
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Figure 3.2: Transfer function extraction simulation setup using 3D EM solver.
Coupling to port 1 is simulated as a function of the position of port 2.

3.2 Lead transmission line model

To create the lead model, a two-port measurement inside saline with a ground

plane is executed as described and showed in Figure 3.7. The SMA inner pin

is connected to the 10 cm lead conductor, and the SMA body is placed on a

10 cm by 10 cm copper sheet as the ground plane. The configuration is shown

in Figure 3.8. The distance between the lead insulator and the ground plane

is sealed using non-conductive glue which guarantees that the saline does not

short the lead to the ground plane. The two port s-parameters are measured

from 50 MHz to 130 MHz. The model based on this frequency range will be

used in both 1.5 T and 3 T MRIs. The saline is at room temperature with

a conductivity of 0.47 S/m, which represents the human body. The data is

recorded using an Agilent E5062a Vector Network Analyzer (VNA). The two

port measurement is calibrated at the end of the cables and before the ground

plane. The connection between the VNA cables and setup is sealed to prevent

water leakage into the SMA connector.
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Figure 3.3: Transfer function measurement setup that includes a vector net-
work analyzer for measuring the scattering parameters. A positioner that
moves the current probe along the lead and a computer that control the move-
ment and records the data (same method in [38]).

Table 3.1: Transmission line model parameters based on the measurement of
the lead inside the saline

R (ohm/m) L (uH/m) G(mS/m) C (pF/m) Z0
400 1.32 12.6 140 97.1

The measured s-parameters file is imported into the circuit simulator. Ten

consecutive TL building blocks are placed between two ports. The frequency

range is set from 50 MHz to 130 MHz and the goals is to simulate S11, S12, S22

and S21 and find the equivalent lumped element parameters of the TL model.

Using the available genetic algorithm optimization in the circuit simulator,

these parameters are extracted. The simulated and measured results of the

TL model are shown in Figure 3.11 and Figure 3.12. The derived transmission

line model parameters based on the method presented in this chapter are

shown in Table 3.1.
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Figure 3.4: Transfer function measurement setup using a network analyzer.
Port 1 is weakly coupled to the lead at the end. Port 2 is connected to a
current probe. The current probe moves along the lead and S21 is recorded
for each point.

3.3 Transfer function

The transfer function can be simulated using the TL model. To find the

transfer function with 1 cm resolution, the TL model is divided into multi-

ple sections, as depicted in Figure 3.10. Port 1 is the injecting port of the

simulation. The other ports are placed along the lead. To reduce the impact

of the ports on the current distribution, the impedance of these ports is set

to 20 kΩ. C1 is set to 900 pF, which is proportional to the coupling value

in the measurement. The measurement and simulation results of the transfer

function at 64 MHz and 128 MHz are shown in Figure 3.13 to Figure 3.16.

These graphs show the amplitude and phase of the transfer function that are

measured based on the current probe and simulated using the method that is

introduced in this chapter.
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Figure 3.5: Amplitude of transfer function of a straight wire using the EM
simulator. The length of the lead is 40 cm where the diameter of the center
wire and the outer insulator are 1.6 mm and 2.5 mm, respectively.

3.4 Conclusion

A novel method was developed to find the lead transfer function based on the

transmission line model. The primary benefits of this method is that does not

require time-consuming EM simulations. The TL model is valid from 50 MHz

to 130 MHz and can predict the performance for both 1.5 T and 3 T MRIs.

Moreover, along with the developed transfer function, this method provides all

the TL parameters that are needed in order to understand the performance of

the lead at frequencies which therapy signal is transmitted to the target tissue

from the IPG.
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Figure 3.6: Phase of the transfer function of a straight wire using the EM
simulator. The length of the lead is 40 cm where the diameter of the center
wire and the outer insulator are 1.6 mm and 2.5 mm, respectively.

Figure 3.7: Measurement setup of the two port scattering parameters of the
lead inside the saline. Two port of the VNA is calibrated at the reference
planes.
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Figure 3.8: Two port scattering parameters measurement setup. The center
pin of the lead is connected to the SMA center pins. Both SMAs are placed
on a 10 cm by 10 cm aluminum plate that is the ground for the lead. This
fixture is placed inside the saline for measurement.

Figure 3.9: Transmission line unit cell that is used to extract the transfer
function of the lead.
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Figure 3.10: Extracting the transfer function of the lead in the circuit sim-
ulator. Each unit cell of the lead is equivalent to the measured value of the
previous TL models. Capacitor C1 represents the weakly coupling signal to
the lead. Port 1 injects the signal to the circuit and other ports measured the
receive signal at different positions. By adding different numbers of unit cells,
the transfer function of leads for various length can be found.
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Figure 3.11: Simulation and measurement results of magnitude of scattering
parameters that is used to extract the transmission line model of the lead at
different frequencies.
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Figure 3.12: Simulation and measurement results of the phase of the scattering
parameters that are used to extract the transmission line model of the lead at
different frequencies.
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Figure 3.13: Simulated and measured amplitude of the lead transfer function
at 64 MHz.
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Figure 3.14: Simulated and measured phase of the lead transfer function at
64 MHz.

0 5 10 15 20 25 30 35 40

Distance from IPG (cm)

0.5

1

1.5

2

2.5

3

3.5

4

|S
x
1
|

10
-3

Simulation

Measurement

Figure 3.15: Simulated and measured amplitude of the lead transfer function
at 128 MHz.
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Figure 3.16: Simulated and measured phase of the lead transfer function at
128 MHz.
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Chapter 4

Lead characterization

Radiated electromagnetic waves during MRI scanning induce current on the

conductive parts of the lead inside human body. The amplitude of the induced

currents is a function of the radiated power, the strength of the electrical field

at the position of the lead and the electrical properties of the lead. In this

chapter a circuit model for implantable devices in the presence of MRI RF

waves is proposed. The simulated current distribution on the lead from a

3D EM solver and the proposed circuit model is presented. The unit cell of

this circuit model is an expanded model of the lumped element equivalent

circuit for an incremental length of transmission line. This model includes

the external source that represent the radiated EM wave. Moreover, multiple

leads are fabricated and measurement and simulation results are shown.

4.1 Implantable device inside MRI

The RF wave generated during the MRI scan induces current on the conductive

parts of the implantable devices. To understand the current on the implantable

device, both experiments and advanced EM simulations were performed [4].

It is extremely challenging to solve both the human body and lead models

in a 3D EM solver due to the sub-millimeter structure of implantable device

42



systems.

4.1.1 The lumped element circuit model for a transmis-

sion line

Transmission line theory describe the field analysis and circuit theory and

therefore is of significant importance in the analysis of RF circuits [40]. Wave

propagation on transmission lines can be approached from an extension of

circuit theory or from a specialization of Maxwell’s equations. Electrical size

is the key difference between the circuit theory and transmission line theory

[41].

To model the lead inside the human body in the presence of the MRI

RF waves, a developed circuit model of the common lumped element TL is

presented. As shown in Figure 4.1 (a) the transmission line is schematically

represented as the lead and the medium that construct the two conductors of

the transmission line. A piece of an infinitesimal length, ∆z, of the lead can

be modeled as the lumped element circuit shown in Figure 4.1 (b) where the

R, L, G and are per unit length quantities defined as follows:

• R = series resistance per unit length, for both conductors, in Ω/m.

• L = series inductance per unit length, for both conductors, in H/m.

• G = shunt conductance per unit length, in S/m.

• C = shunt capacitance per unit length, in F/m.

The series inductance L represents the total self-inductance of the lead’s

inner conductor and the medium. The shunt capacitance C is due to the close

proximity of the two. The series resistance R represents the resistance due to
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Figure 4.1: Proposed circuit model of the lead. (a) Incremental length of lead
inside the human body. (b) Expanded Lumped-element TL model of the lead
inside the human body in the presence of the MRI electromagnetic waves. R,
L, G and C are the TL parameters. Vs represents the electrical field near the
unit cell of the lead and Rs, Ls and K are representing the coupling values of
the E-field to the lead.

the finite conductivity of the individual conductors, and the shunt conductance

G is due to dielectric loss in the medium or specifically the tissue and insulator

between the conductors.

Radiated RF waves that penetrate into the human body during the MRI

scan are the source of the current on the lead. As shown in Figure 4.1 (b),

another source circuit section is added to the lumped element circuit that

represent the coupling mechanism of the RF wave to the lead. This section

also provides the flexibility to use the method that is mentioned in chapter 2

to find the TL parameters of the lead.

At any point near the lead, the incident E-field is represented by Ez,t in
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Figure 4.2: General schematic of the lead model and arbitrary position of the
RLC network along the lead. ZR and ZL are the loads at both end of the lead
that represents the electrode, IPG or open circuit.

volts per meter. This field is modeled using a voltage source and represented by

Vz,t. Rs, Ls and K for the resistance, self inductance of the surrounding tissue

and the coupling value of the E-field at any point on the lead, respectively.

The TL parameters depend on the lead property which are the insulator

and a portion of the surrounding medium, and can be measured, calculated

or simulated regardless of the added source section. This is the key point of

this model that provides the flexibility to deal with the transmission and the

radiation parts of the model independently. Due to the finite conductivity of

the medium, the EM wave is attenuated in the direction perpendicular to the

lead’s surface and the portion that needs to be considered in the TL parameters

can be calculated using the skin depth formula as follows [41]

δ =
√

2ρ
ωµ

(4.1)

where ρ is the resistivity of the medium, ω is the angular frequency of current

and µ = µrµ0. µ is the degree of magnetization of a material in response to

a magnetic field. The µr is relative magnetic permeability of the medium and

µ0 is the permeability of free space.

After finding the TL parameters of the lead, the wave propagation param-

eters can be calculated that will be used to calculate the amount of power that

is delivered to the IPG. The characteristic impedance, Z0, of the lead can be
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calculated using

Z0 =
√
R + jωL

G+ jωC
, (4.2)

the complex propagation constant from

γ = α + jβ =
√

(R + jωL) (G+ jωC), (4.3)

and the wavelength is

λ = 2π
β
. (4.4)

4.1.2 Lead in the presence of EM wave

The current distribution on the lead can be predicted using the TL model. A

lead that is made using a bare copper wire in air, in the presence of a linear E-

field is simulated. The diameter of the wire is 0.5 mm and the length is 40 cm.

The EM simulation result and the result of the TL model of the lead are shown

in Figure 4.3 at 64 MHz. The equivalent wavelength at this frequency is 4.68 m

and the lead length is less than 0.1 λ. Using the same TL parameters of the

lead the current distribution is shown in Figure 4.4 at 128 MHz. Decreasing

the wavelength of the radiated wave, increases the electrical length of the lead

and therefore the amplitude of the maximum induced current. The maximum

current is in the middle of the open ended lead, and it is 284 mA and 753 mA

at 64 MHz and 128 MHz respectively.
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Figure 4.3: Current distribution on the lead in the presence of the MRI EM
waves at 64 MHz. The circuit model is shown in Figure 4.2 without the RLC
network and open ended lead at both side. The length of the lead is 40 cm
and is made of bare copper wire with diameter of 0.5 mm.
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Figure 4.4: Current distribution on the lead in the presence of the MRI EM
waves at 128 MHz. The circuit model is shown in Figure 4.2 without the RLC
network and open ended lead at both side.The length of the lead is 40 cm and
is made of bare copper wire with diameter of 0.5 mm.
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Figure 4.5: Current distribution on the lead in the presence of the MRI EM
waves at 64 MHz. Both the EM simulation and the circuit model results are
shown. The length of the lead is 40 cm and it is made of a bare copper wire
with a diameter of 0.5 mm. A resistor is placed at 20 cm and 30 cm from the
left side of the lead.

4.2 Circuit model of the lead with an arbitrary position

of the RLC network

A general circuit model of the lead with an arbitrary placement of an RLC

network along the lead is shown in Figure 4.2. Total length of the lead sees the

same surrounding material therefore the unit cell is similar in all the positions.

Each end of the circuit model is terminated by ZR and ZL, which represent

the loads on the lead.

To validate the circuit model of the lead in the presence of a linear EM

field, a 10 kΩ resistor is placed at two positions on the lead. The current

distribution along the lead using the EM simulation and circuit model is shown

in Figure 4.5 at 64 MHz. One resistor is placed at 20 cm. In the second

48



0 5 10 15 20 25 30 35 40

Location on the lead (cm)

0

100

200

300

400

500

600

C
u

r
r
e
n

t 
(m

A
)

EM (20cm)

Cir (20cm)

EM (30cm)

Cir (30cm)

Figure 4.6: Current distribution on the lead in the presence of the MRI EM
waves at 128 MHz. Both the EM simulation and the circuit model results are
shown. The length of the lead is 40 cm and it is made of a bare copper wire
with a diameter of 0.5 mm. A resistor is placed at 20 cm and 30 cm from the
left side of the lead.

simulation the resistor is placed at 30 cm. The simulation results at 128 MHz

are shown in Figure 4.6. Placing a high impedance resistor at the center of the

lead reduces the electrical length around the lead and the maximum current

reduces to 92 mA and 225 mA at 64 MHz and 128 MHz respectively.

4.2.1 Circuit model of the lead with IPG

In section 4.2 it was shown that the circuit model predicts the current distri-

bution along the lead. In this section, a 5 cm-diameter IPG is added to the

lead. The right side of the lead is an open circuit and therefore the value of ZR

is infinite. On the other side ZL represent the impedance of the IPG, which is

50− 80i Ω. The real part of this impedance is equal to the impedance of the
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Figure 4.7: Current distribution on the lead that is connected to the IPG in
the presence of the MRI EM waves at 64 MHz and 128 MHz. Both the EM
simulation and the circuit model results are shown. The length of the lead is
40 cm and it is made of a bare copper wire with a diameter of 0.5 mm.

port that connects the lead to the IPG and the imaginary part is optimized

for the current at 64 MHz. The current distribution along the lead, that is

connected to the IPG, is shown in Figure 4.7.

The lead is inserted into the IPG and a 50 Ω port is placed between the

lead conductor and the IPG case. The current at the input of the IPG is not

zero, which is due to the fact that the IPG behaves as the ground plane for

the lead.

4.2.2 Implant malfunction

The induced current on the lead during the MRI scan couples to the IPG and

can cause malfunction of the implant. The amount of coupling to the IPG

depends on the impedance of the lead and the input impedance of the IPG.
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Figure 4.8: Input impedance of the lead with an arbitrary position of the
impedance Z. The total length of the lead is L and the distance of the Z from
the IPG is P.

To reduce the delivered power to the IPG, the input impedance of the

lead can be optimized using a single RLC network. This network can be any

configuration of the R, L and C at any position on the lead. The lead can be

divided into main four sections as shown in Figure 4.8. The four sections are,

open-ended lead, the RLC network represented by Z, another section of the

lead, and the IPG. The input impedance of a lossless transmission line with

an arbitrary load impedance is

Zin = Z0
ZL + jZ0 tan(βP )
Z0 + jZL tan(βP ) (4.5)

The input impedance of the open-circuited transmission line also can be found

using (4.5) where the length of the line is L− P :

Zo = −jZ0 cot(β(L− P )) (4.6)

Therefore using (4.6), ZL is given by

ZL = Z + Zo = Z − jZ0 cot(β(L− P )) (4.7)
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Figure 4.9: Circuit model of an implant inside a human body. The circuit
model consists of n+3 sections that include the impedance of IPG, the elec-
trode, and n+1 TL models of the header section and n tissue sections. Each
section has a different unit cell and the number of the unit cells depends on
the length of the tissue.

using (4.5) with the ZL from (4.7), the input impedance seen from the IPG is

Zin = Z0
Z − jZ0 cot(β(L− P )) + jZ0 tan(βP )
Z0 + Z − jZ0 cot(β(L− P )) tan(βP ) (4.8)

The amplitude of the coupled signal to the IPG is frequency dependent and a

patient can have both a 1.5 T and a 3 T MRI, which have the RF frequencies

of 64 MHz and 128 MHz, respectively. Using the TL model of the lead, the TL

parameters can optimized for all MRI RF frequencies to reduce the possibility

of the malfunction.

4.3 General design discussion

The complete circuit model of the entire implantable device inside a human

body is shown in Figure 4.9. The lead traverses through multiple tissue layers

from the IPG to the Vagus nerve as shown in Figure 1.1. The transmission line

parameters of each section of the lead, depends on both the surrounding tissue

and the properties of the lead. This model covers all the possible situations
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Figure 4.10: Decomposed TL model of the lead inside the human body. This
model represents the self resistance and self inductance of the lead as RLead

and LLead, respectively.

of the lead inside a human body. The TL parameters of the lead is unique for

each tissue where they have different length that is represented by L. The first

section of the model is based on the header with length L0. The length and

the number of sections depend on the path of the lead inside a human body.

4.3.1 Decomposing the lumped element unit cell of the

TL model

The lead of the implantable device is modeled using the proposed transmis-

sion line model. This model shows accurate current and voltage distributions

along the lead in the presence of an external electromagnetic wave. The most

common leads are constructed from one or more internal conductors which

are covered with an insulator. Properties of the lead include, but are not lim-

ited to, conductivity, length and dimension, all of which vary based on the

application. The transmission line parameters depend on both the lead and

the surrounding tissue layers that the lead passes through. Figure 4.10 shows
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Figure 4.11: Current distribution on the lead with connected IPG inside the
saline at 64 MHz and 128 MHz as shown in Figure 4.9. Both EM simulation
and circuit model results are shown. The overlap of header and lead are from
0 to 3 cm.

the decomposed lumped element components of the transmission line. Each

parameter of the model is divided into two sections, the lead and the tissue.

This unit cell shows that, the resistance R, of the TL model is the total resis-

tance per meter of the inner conductor consists of RLead, and the RT issue as

shown in Equations (4.9) and (4.10). The lead conductor and the surrounding

tissue represent the inner and outer conductors of a coaxial transmission line,

therefore the resistance per meter of these two are separable. While there is no

control of the surrounding tissue, the properties of the TL model that depend

only on the lead can be designed to reduce the coupled voltage on the IPG.

R(n)∆z = [RT issue(n) +RLead(n)] ∆z (4.9)
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Figure 4.12: Voltage distribution on the lead connected to the IPG inside saline
at 64 MHz and 128 MHz. Both EM simulation and circuit model results are
shown. The overlap of header and lead are from 0 to 3 cm.

L(n)∆z = [LT issue(n) + LLead(n)] ∆z (4.10)

The step by step method to model the implant can be explained as follow:

1. Measure the TL parameters of the lead based on the 2 port scattering

parameters method introduced in chapter 2. This method is limited to

the situation where the total length of the lead is placed in one surround-

ing material. The TL parameters of the lead can be derived also based

on the circuit model introduced in this chapter. This method can be

used when the lead passes through multiple tissues. To find the current

distribution on the lead, this method requires EM simulation of the lead.

2. Simulate of the IPG and lead, using an EM simulator to find the opti-

mized values of ZL and ZR.
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Figure 4.13: Fabricated prototypes of the lead.

3. Simulate the lead, IPG and electrode in the presence of the radiated

E-field using an EM simulator to find the Vz,t, Rs, and Ls in the circuit

model.

4. Use equations (4.9) and (4.10) to optimize the position of the resistor on

the lead.

4.3.2 Measurement results and discussion

To validate the circuit model of the lead in the presence of the MRI RF

waves, multiple prototypes are fabricated, as shown in Figure 4.13, and the

measurement results are shown. The inner conductor is a solid tinned copper

wire with the diameter of 0.5 mm. The length of the lead is 40 cm. Clear

flexible Polyolefin is used as the insulator with a diameter of 1 mm. The

electrical length of the unit cells should be less than 0.1 λ. The first 16 unit

cells model the lead in the header. The index n in (4.9) is proportional to the

distance from IPG.

The coupled voltage on the IPG is measured using a high impedance probe

when it is connected to different leads with various positions of a 260 Ω resistor.

The voltage is measured using the high impedance coaxial method explained
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Figure 4.14: Measurement and simulation result of coupled voltage on the
IPG versus the position of the resistor in along the lead in the 1.5 T MRI RF
birdcage.

in chapter 2. Figure 4.14 shows the measured coupled voltage with 5 different

leads to the IPG in 1.5 T MRI and simulated results from the circuit model.

The measured and simulated results in 3 T MRI are shown in Figure 4.15.

In this chapter a circuit model of the implant inside a human body in

the presence of MRI RF wave is introduced. This model predicts the cur-

rent and voltage along the lead in different scenarios of implant usage. It is

demonstrated that using the decomposed lumped element of the TL model,

the placement of a resistor along the lead can be optimized for reducing the

implant malfunction. Moreover, this model provides the flexibility of designing

the lead independently of the surrounding tissue.

Designing a lead based on the absolute values of the TL parameters, re-

quires a complex mathematical analysis of the lead structure inside the human

body. However, the method introduced in this chapter, provides two degrees
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Figure 4.15: Measurement and simulation result of coupled voltage on the IPG
versus the position of the resistor along the lead in the 3 T MRI RF birdcage.

of freedom in improving an existing lead using a relative basic design.
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Chapter 5

IPG RF front-end in MRI

There are multiple reasons for needing a communication link between im-

plantable devices and an external device and an antenna is the key element

of this link. A tablet is used as the external devise for changing settings and

transferring data which are two of the most important remote operations. A

common method of communication to implantable devices is to use coupled

inductors. This method provides a near-field communication link that requires

an additional device between the implant and the external device.

In this chapter, two antennas are designed for communication to an implant

using Bluetooth technology. This method provides the flexibility of using any

phone or tablet without the need of an additional external device. Moreover,

this method extends the communication range significantly in comparison with

near-field method. Sensitivity analysis based on the position of the implantable

device inside a human body is simulated. Comparison results are provided to

achieve the best solution regarding antenna parameters, ease of fabrication,

cost and sensitivity to the surrounding tissue. The antennas are fabricated

and the measured results are shown. Finally, the coupled MRI RF signal to

an implantable device is simulated and measured results are shown.
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5.1 Bluetooth IPG

One important new feature for the next generation of IPGs is the inclusion

of Bluetooth (BT) technology for communicating with external devices. The

antenna on the IPG is used for transmitting and receiving IPG therapy infor-

mation using BT RF signals. The Antenna operation is critical for a robust

communication link inside the human body.

Due to the proximity of the antenna to the surrounding tissue, it is nec-

essary that the antenna works properly in different human bodies that have

different tissue thicknesses. Usually the IPG is placed in fat and between

muscle and skin. Five human body models that cover the minimum to maxi-

mum range of the tissue thickness around the IPG are used to investigate the

antenna performance.

5.2 Computable human phantoms

Five different human body models from the IT’IS foundation are used to mea-

sure the thickness of the human body layers [42]. The models are shown in

Figure 5.1. Based on the Virtual Population ViP3.0 models of the IT’IS, the

computable phantoms are characterized to predict real-world biological and

physiological phenomena for any defined patient population. In this study the

human bodies that are studied are as listed below:

• Fat

• Duke

• Ella

• Billie
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Figure 5.1: Virtual human body models (from [42]). The models from left to
right are Fat, Duke, Ella, Billie and Thelonious.

• Thelonious

Names of the virtual human body models and their properties are shown

in Table 5.1.

Table 5.1: Demographic of selected virtual human body models (from [42].)

Name Sex Age (year) Height (m) Weight (kg) BMI
Fat male 37 1.82 119.5 36.1
Duke male 34 1.77 70.2 22.4
Ella female 26 1.63 57.3 21.6
Billie female 11 1.49 34.0 15.3
Thelonious male 6 1.16 18.6 13.8

5.2.1 Sim4Life 3D EM modeler and solver

Sim4Life is a comprehensive set of computable human phantoms empowered

by physics solvers and advanced tissue models, providing a realistic biological

61



Figure 5.2: A cross section of Duke human body model at position 5 where
the IPG is implanted.

and anatomical environment for conducting fundamental mechanistic studies,

testing the effectiveness and safety of medical devices and treatments, and

supplementing clinical trials [42]. A cross section of human body model that

is used for measuring the thickness is shown in Figure 5.2. The image is from

the Sim4life software.

5.3 IPG location and thickness measurement

For each human body model, the thickness of the three layers, muscle, fat and

skin, are measured at 9 different positions shown in Figure 5.3.

Variation of each layer at different positions in multiple human bodies are

provided in Figure 5.4. The total number of measurements is 45, which is

equal to the 9 possible positions of IPG in the five human body models. As

shown in the statistics summary, the means values of the skin, fat and muscle

are 2.24 mm, 11.32 mm and 10.03 mm, respectively.
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Figure 5.3: Areas/regions of interest for the IPG (from [43])

5.4 Antenna design

To have a robust communication link to implantable devices inside the human

body, a link budget calculation, that accounts for all the gains and losses is

necessary. This calculation considers all the attenuation due to the antenna

feed-line, the matching network inside the IPG, the propagation of the signal

through the header, the human body layers (fat, muscle and skin) and air,

as well as the antenna gains. The minimum required distance to be able to

communicate from an external device to the implant is 2 m. The external

device is a tablet and the transmitter and receiver information is extracted

from the data sheet. The position and environment of the patient are taken

into account in the link budget, which includes both line of sight and non-line
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Figure 5.4: Measured thickness layers inside human body model for fat, skin
and muscle.

of sight conditions. The link budget equation is:

Rx (dB) = Tx (dB) +Gain (dB)− Losses (dB) (5.1)

The transmitted power from the implant is 5 dBm and the receiver sensitivity

of the external device is -80 dBm. The link budget analysis, for all the possible

situations, concluded that the antenna peak gain, including human body losses,

should be more than -30 dB.

Four antennas are designed and simulated. The first two antennas are

straight horizontal as shown in Figure 5.5 (a), and straight vertical as shown

in Figure 5.5 (b). The IPG antenna in air behaves like a monopole antenna

where the IPG case acts as the ground plane. Figure 5.6 shows the current

distribution on the antenna. There are two conductive connectors placed in the
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header that are used to connect the internal circuitry of the IPG to the lead.

The close proximity of these connectors to the antenna makes the distance

between them a potentially sensitive parameter for the antenna performance.

The antenna length is quarter wave based on the monopole antenna design.

However, in this case due to the lack of the enough ground plane, the length

need be optimized. The optimized length of the antenna is 28.1 mm. The

permittivity of the header is 3.6 and the IPG is implanted in fat. This is

also the maximum possible length of the antenna, due to constraints on the

volume of the IPG and the header. To reduce the antenna sensitivity from

permittivity changes in the material outside the IPG, a 60 mil clearance to

the edge of the header is maintained. The surrounding material depends on

the position of the IPG. The thickness of any of the layers varies as shown

in Figure 5.4. Having less header material above the antenna and therefore

lower overall header volume is the main advantage of the straight horizontal

antenna.

To reduce the antenna resonance to the desired frequency, U-shape hori-

zontal antenna is designed as shown in Figure 5.7 (a). However the capacitance

between the two section of the U reduces the effective length of the antenna

and therefore shifts the resonance to higher frequencies. Another U-shape

vertical antenna is designed to reduce overlap between the antenna and the

connector block as shown in Figure 5.7 (b). By increasing the space between

the components in the header, this design improves the sensitivity in manufac-

turing. Moreover, in this configuration the distance between the two sections

of the antenna is 2.35 mm, which is 4 times larger than the space between the

antenna sections in the U-shape horizontal antenna. This spacing reduces the

capacitance between the two sections of the U and therefore has less impact
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Figure 5.5: Position of the antenna inside the header of the IPG. (a) Straight
horizontal antenna in the default header. (b) Straight vertical antenna with
tall header.

Figure 5.6: Simulated results of the current distribution of the IPG antenna
at 2.45 GHz that shows induced current on the components inside the header.
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Figure 5.7: Position of the U-shape antennas inside the header. (a) U-shape
horizontal and (b) U-shape vertical.

Figure 5.8: 20 cm by 20 cm three layer phantom for antenna simulations that
consists of skin, fat and muscle layers from top to bottom. The IPG is placed
in the center of the fat layer.

on the effective antenna length. The antenna is simulated with the implant

in different configurations. Figure 5.9 shows the 20 cm by 20 cm three layer

phantom that is simulated in HFSS. The layers from top to bottom are skin, fat
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Figure 5.9: Side view of the multilayer phantom with different thickness used
for the antenna simulation. a) Thin: skin and muscle thicknesses are 2.5 mm
and 25 mm respectively. The minimum thickness of the fat is equal to the
thickness of the IPG here which is 8 mm. b) Center: same skin and muscle
thickness and the fat thickness is 25 mm. c) Thick: same thickness as (b)
where the IPG is placed on the muscle.

2 2.2 2.4 2.6 2.8 3

Frequency (GHz)

-20

-15

-10

-5

0

|S
1

1
| 
(d

B
)

Thin

Center

Thick

Figure 5.10: Simulated S11 results of the sensitivity analysis of the straight
vertical antenna in the Thin, Center and Thick configuration.

and muscle. The IPG is placed in the center of the fat layer. Figure 5.9 shows

the side view of Figure 5.8 and the thickness variation of the different layers.

The three most likely positions of the IPG are represented. Figure 5.9 (a)

shows the minimum thickness of the fat layer, which is called the Thin layer.

In this configuration the IPG is sandwiched between the skin and muscle layers
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Figure 5.11: Simulated S11 results of the sensitivity analysis of the straight
horizontal antenna in Thin, Center and Thick configuration.
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Figure 5.12: Simulated S11 results of the sensitivity analysis of the U-shape
vertical antenna in the Thin, Center and Thick configuration.

and there is no fat on top and bottom of the IPG. The thickness of the case

of the IPG is 8 mm and thickness of the skin and muscle layers are 2.5 mm

and 25 mm, respectively. Figure 5.9 (b) shows the configuration with the IPG
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Figure 5.13: Simulated S11 results of the sensitivity analysis of the U-shape
horizontal antenna in the Thin, Center and Thick configuration.

floating in the fat layer. This position is named Center. The thickness of the

skin and muscle layers are the same as for the Thin layer, and the thickness of

the fat layer is 25 mm. Figure 5.9 (c) shows the situation when the implant is

placed on the muscle layer. The thicknesses of the layers are the same as for

the Center configuration. This configuration is called Thick.

5.4.1 Sensitivity analysis

The antenna performance depends on where the IPG is placed inside the hu-

man body. This is due to the proximity of the antenna to the adjacent tissue.

All the antennas are simulated in different situations to cover a wide range

of possible positions. Figure 5.9 shows three different configuration of the

IPG. S11 of the straight vertical antenna is shown in Figure 5.10 for the three

configuration. The permittivity and bulk conductivity of muscle are 52 and

1.73 S/m, respectively, based on [44]. These parameters are 5.2 and 0.1 S/m
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Figure 5.14: Simulated antenna sensitivity results. Simulated results of the
straight and U-shape antennas in Thin, Center and Thick phantoms. Hori-
zontal axis shows the thickness of the fat above the IPG that corresponds to
the Thin, Center and Thick phantom from left to right respectively.

and 40 and 1.46 S/m for fat and skin, respectively. Due to the significant dif-

ference in the permittivity of fat versus muscle the maximum frequency shift

occurs when the IPG is in the Center position. The resonant frequency of this

structure varies by 2.66 % from 2.63 GHz to 2.7 GHz and the -6 dB bandwidth

varies from 230 MHz to 600 MHz. The straight horizontal antenna is also sim-

ulated in the same configuration and the results are shown in Figure 5.11.

The resonant frequency of this structure varies by 2.36 % from 2.54 GHz to

2.6 GHz and the -6 dB bandwidth varies from 280 MHz to 670 MHz.

The U-shape vertical antenna is shown in Figure 5.7 (b). Figure 5.12 shows

the sensitivity simulation results of this antenna. The center frequency of this
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Figure 5.15: Fabricated implantable device with the straight vertical antenna.
A coaxial cable for the antenna measurement is inserted to the can at the
bottom.

antenna changes by 4.4 %. The simulation results of the U-shape horizontal

antenna are shown in Figure 5.13. Due to the strong E-field between the two

sections of the antenna in this configuration, the S11 varies significantly in com-

parison with the other configurations. Moreover, it is challenging to maintain

the distance between two antenna sections constant during manufacturing.

In the link budget analysis, the main antenna parameters of interest are

the peak gain, peak realized gain and radiation efficiency. These parameters

are shown in Figure 5.14. The maximum peak gain, peak realized gain and

efficiency for the straight vertical antenna are -11.04 dB, -11.80 dB and -

16.88 dB, respectively, when the antenna is in the Thin layer. For the same

configuration, these parameters are -15.83 dB, -19.61 dB and -21.56 dB for

the U-shape vertical antenna and -11.59 dB, -12.11 dB and -17.67 dB for the

U-shape horizontal antenna.

5.5 Fabrication and measurement

An implantable device with the straight vertical antenna is fabricated and

shown in Figure 5.15. The antenna material is stainless steel in a flat ribbon
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shape. The length and thickness of the antenna are 2.81 cm and 0.25 mm,

respectively. The width of the antenna is 0.76 mm. All the connector blocks

are placed in the header and they are shorted to the can after the feed-through

insulator. These connectors provides the connections from the internal IPG

circuitry to the lead, and they are short circuited at high frequencies with an

EMI filter inside the can. Two stainless steel flat ribbons connect these con-

nectors to the feed-through pins. The header material is a medical grade, aro-

matic, polyether-based, thermoplastic polyurethane (TPU) called Tecothane.

This material has a permittivity of 3.8 and a dielectric loss tangent of 0.01.

The remaining holes in the header are backfilled during the final manufactur-

ing assembly process. A feed-through insulator is placed between the can and

the header, which hermetically seals the titanium case. The feed-through has

three pins that connect the internal circuit to the outside of the can. One pin

is the ground pin, one is floating and it reserved for future use, and the last pin

is connected to antenna. The insulator material is alumina 96pct with a per-

mittivity of 9.4 and a dielectric loss tangent of 0.006. The two titanium halves

of the can are connected together using copper adhesive for these prototypes.

This will be laser welded in final production. The header is fabricated using

injection molding.

The simulated and measured antenna radiation pattern at 2.45 GHz in air

are shown in Figure 5.17. The measured antenna peak gain in different sce-

narios are shown in Table 5.2. The IPG antenna is measured in air, Thin and

Thick circular phantom fat. The measurement setup in the antenna chamber

is shown in Figure 5.18.
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Figure 5.16: Multilayer circular phantom measurement setup. a) Side view of
the internal layers of the phantom. b) Real circular phantom that is fabricated
using 3D printing method.

Table 5.2: IPG antenna peak gain measurements summary

IPG Antenna Scenario Peak Gain (dBi)
1 air -0.44
2 Thin fat -15.99
3 Thick fat -27.64

5.6 MRI coupled signal to the implant antenna

Implantable devices with antennas are vulnerable to MRI RF. The RF signal

couples to the antenna and can cause malfunction of the device. The amplitude

of the coupled signal into the antenna depends on multiple factors, such as the

antenna radiation pattern, the efficiency, the gain at the MRI frequencies,

and the position of the implantable device inside the human body. While the

antenna is designed for 2.4 GHz and the gain is greatly reduced in the 20 MHz

to 300 MHz frequency range, there is no EMI filter to short circuit the RF

signal to the can. High power RF energy is used in MRI to produce images.

The radiated power can exceed 46 dBm and 60.2 dBm at 1.5 T and 3 T,

respectively. The frequency of the RF signal depends on the strength of the
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Figure 5.17: Simulated and measured results of the antenna radiation pattern
in air at 2.45 GHz.

magnet and it is equal to the Larmor frequency, which is

f0 = γB0. (5.2)

where f0 is the precession frequency, B0 is the strength of the externally applied

field, and γ is the gyromagnetic ratio, a constant specific to each specific

nucleus or particle [45]. The frequencies of the RF signal are 63.87 MHz

and 127.74 MHz at 1.5 T and 3 T MRI, respectively. Figure 5.19 shows the

summary of the magnitude of the transmission parameters S1x in dB versus

the position of the IPG where the x is measurement port number and IPG

antenna port is labeled as 1. This MRI RF birdcage has four ports and sixteen

radiators.
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Figure 5.18: Antenna measurement setup in multilayer fat. (a) IPG prototype
is SATIMO chamber (b) Multilayer circular fat.

Figure 5.19: Simulated results of the coupling to the antenna in the MRI RF
birdcage as the function of the position of the IPG. The X and Y quantities
are in mm and data are in dB. The color scales show the comparison of the
amplitudes.

5.6.1 Coupled MRI RF wave to the antenna

In addition to the coupling to the implant through the leads, the RF signal

couples to the implant through the Bluetooth antenna. This port does not

have an EMI filter. The prototype antenna, as shown in the Figure 5.15, is

designed for the 2.45 GHz ISM band. The IPG is placed inside the birdcage at

the position shown in Figure 2.2 (a) and (b). The coupled signal is measured

for different RF power levels. Figure 5.20 shows the received power on the

antenna port versus the radiated power from the birdcage. The maximum

power levels coupled to the antenna port are -21.05 dBm for 64 MHz, where

the maximum radiated power is 46 dBm, and -8.38 dBm for 128 MHz, where

the radiated power is 60.2 dBm. The power handling of the transceiver module
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Figure 5.20: Measured RF power inside the IPG versus the radiated RF power
from the MRI RF birdcage at the antenna port at 64 MHz and 128 MHz. The
IPG placed inside the MRI RF birdcage at X = 0 and Y = 150 based on the
Figure 5.19.

should be greater than the coupled MRI RF power to the antenna port. This

measurement provides the limitation for power handling of the transceiver

module.

5.7 Conclusion

In this chapter thickness variation of human body models for implantable

devices is provided. Four antennas are designed and sensitivity analysis re-

garding the thickness variation are shown. It is shown that the straight vertical

antenna provides a robust solution regarding the human body variation and

manufacturability. This antenna is fabricated and simulated and the mea-

sured results are provided. Moreover, the antenna is simulated at the MRI

frequencies and the coupled power into the antenna during the MRI scanning

is measured.
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Chapter 6

Conclusion and future work

The goal of this research was to model the implantable device interaction with

MRI RF waves during the scanning of patients. First, a circuit model that

provides the transfer function of the lead was introduced. This circuit model

was based on the transmission line model of the lead. The transmission line

parameters of the lead were derived by a new 2 port method in saline. Using

this method, the transfer function of the lead was extracted and validated us-

ing the measurement. This method significantly simplifies previous methods

for measuring the transfer function by removing the need for a complex me-

chanical setup. Moreover, this method provides the capability to predict the

transfer function of the lead for different lengths. This substantially reduces

the cost of product development by eliminating the need for new leads. While

the measurement results are only shown for 1.5 T and 3 T MRI, having the

transmission line parameters can provide the transfer function at any strength

of magnetic field.

The second emphasis was on developing a new method for evaluating the

possibility of malfunction in the implantable pulse generator during MRI scan-

ning. A small form factor measurement setup, based on an Internal RF Power

Detector (IRPD), was designed and implemented. The power detector was
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calibrated using the MRI RF signal. A microcontroller was used to convert

the voltage from the detector and record the data in an internal memory. The

RF field near the implant is not affected by using a completely internal circuit

in the implant. This results in an accurate measurement in the MRI, which is

the main advantage of this method. Moreover, measuring the coupled power

provides an accurate evaluational parameter to estimate the IPG malfunction.

The IRPD is shielded from the strong RF fields and can be used in any MRI.

The IRPD was designed and implemented on a printed circuit board of the

same size as the original IPG board.

The placement of the Vagus Nerve Stimulator (VNS) IPG inside a hu-

man body was studied and an antenna for communication to the implant at

2.45 GHz ISM band was designed and implemented. The antenna sensitiv-

ity with respect to the human body variation was simulated and a circular

phantom that represents the human model was designed and used for the

measurements. This design provides a robust, cost effective and a fabrication

friendly procedure for IPG. Also, the antenna port vulnerability to the MRI

RF signal was investigated since there is no EMI filter on the port. The IRPD

was used to measure coupled RF power in different MRIs. This method pro-

vides an accurate minimum power level that, transceiver modules, should be

able to handle during MRI.

Finally, a circuit model that represents the interaction of the implant with

the MRI RF field was introduced. A conventional transmission line model was

expanded to model the external radiated E-field. The EM and circuit model

simulations in different possible situations of the implant were presented. The

model accurately predicts the current and voltage distribution along the lead

in on order of thousands of times faster than using EM simulations. This
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advantage makes the new lead design significantly cost effective. Moreover, this

model was built upon the transmission line model of the lead that eliminates

the direct modeling of usually complex structure of it to find the electrical

properties. A parsed transmission line unit cell was introduced that distinguish

the tissue and lead conductor effects and can be used to design a new lead.

In conclusion, the work presented here introduced new state-of-the-art

methods for modeling implantable devices and the expansion of the fundamen-

tal concepts of transmission line theory, for addressing challenges associated

with current and future MRI technologies.

6.1 Future work

The work presented in this dissertation can be expanded in the following areas.

6.1.1 Simultaneous RF power measurement

It was shown that the IRPD can be used accurately to measure the coupled

RF power to the implant on the antenna and lead ports. However, for any

measurement to extract the data from the internal memory, the IPG case needs

to be opened. Moreover, the RF path from the antenna or the lead to the

IRPD needs to be changed for every measurement. Some of the implants can

have more than 16 ports and that increases the measurement time extensively.

The IRPD can be improved by adding an RF switch on the board. This

improvement provides the capability to measure the coupled power to all ports

of the implant simultaneously, which will significantly reduce the measurement

time. Also, in this case, due to the increasing data, adding an external memory

to the microcontroller will be necessary.
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Figure 6.1: Parsed transmission line model of the lead inside a human body.
This model represents the self resistance and self inductance of the lead as
RLead and LLead, receptively, and shows the C and G as a function of lead and
tissue.

6.1.2 Expanding the parsed transmission line model

The parsed transmission line model of the lead inside a human body is used

to decompose the resistance and self inductance parameters of the lead and

provides two degrees of freedom when designing a new lead. The induced

current and voltage along the lead can be calculated relatively to the lead, that

is being measured, by changing the two aforementioned parameters. However,

the model can be improved by the model shown in Figure 6.1. In this model

the conductance and capacitance per unit length are a function of both the

tissue and the lead as well. This model will provide four degrees of freedoms

for designing a new lead.
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