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Abstract 

 The tympanic membrane (TM) or eardrum of the ear transfers sound waves into 

mechanical vibrations in the ossicular chain and into the cochlea. The mechanical 

properties of the TM play an important role in the sound transmission through the ear. 

Currently, the mechanical properties for the adult human and animal TM’s are well 

published. However, it is unclear how age effects the mechanical properties of the TM 

from young to adult, and there are no published studies on pediatric models of the TM. 

The goal of this study is to provide the mechanical data of the baboon TM in four 

different age groups: less than 1 year, 1 – 3 years, 3 – 5 years, and older than 5 years of 

age or adult. The baboon age can be correlated to human age with a scaling factor of 

1:3. With this factor the baboons that are in the first 3 groups correspond to the human 

pediatric age range of birth to 18 years of age, and the last group corresponds to the 

adult human population. 

 The TM specimens were prepared from baboon temporal bones, and cut into 

rectangle strips before mounting into the dynamic mechanical analyzer (DMA) for 

quasi-static and dynamic testing. The mechanical properties were obtained by 

measuring the stress-strain relationship, relaxation function, complex modulus at low 

frequencies from 1 to 80 Hz, and the failure stress and stretch ratio from young to adult 

baboon TMs. The adult baboon group, was additionally tested from 1 to 40 Hz at three 

different temperature levels: 5°C, 25°C, and 37°C. The frequency-temperature 

superposition (FTS) principle was used to determine complex modulus in the auditory 

frequency range for the adult baboon TM. 
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 The experimental quasi-static results were further analyzed using the 1st-order 

hyperelastic Ogden model to derive the constitutive equations and parameters. These 

parameters were then used to estimate the tangent modulus for each age group of the 

baboon. The experimental dynamic results were used to obtain the storage and loss 

moduli for each age group for a frequency range from 1 to 80 Hz, and the adult baboon 

was obtained for a frequency range from 1 to 8000 Hz. Each baboon age group was 

compared to each other, and found that as the baboon ages, the stress-strain and the 

stiffness decreased with age. There was no change in the stress relaxation time for any 

age group, and there was a slight decrease in the storage and loss moduli for the low 

frequency range. ANOVA with Tukey-Kraemer statistical analysis was used to detect 

differences between the age groups, and determined that the mechanical properties of 

the adults were significantly lower than the younger baboons.  

 The quasi-static and dynamic experimental data obtained for the adult baboon 

TM was compared to the published human TM. The baboon average stress-strain 

relationship was higher than human. The stress relaxation test showed that the baboon 

relaxed to a higher normalized stress than the human TM. However, the complex 

modulus over the auditory frequency range determined by the FTS principle showed 

that the adult baboon’s storage and loss moduli were much lower than the published 

human data. 

 The results reported in this study provide a first step towards understanding the 

age effect on the baboon TM’s mechanical properties from young to adult.  
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Chapter 1: Introduction 

Biomedical research is a diverse subject that pertains to various medical 

challenges in fields, such as biomechanics, molecular, cellular, and tissue engineering, 

designing biomaterials, biomedical micro- and nano-technology, bioimaging, 

biotransport and neural engineering. Biomechanics is mechanics applied to biology, 

which seeks to understand the mechanics of living systems [1]. The study of 

biomechanics can be on living human subjects, but these in vivo studies have limitations 

because of the non-invasive nature of the study. Current studies in auditory 

biomechanics require excising the tissue from the subject, stimulating, and observing 

the effect on the tissue in a controlled environment. This is where cadaver and animal 

models can be implemented to remove the ethical concern of damaging the hearing of 

the subject. Cadaver samples are typically sourced from the older generation of the 

population, but these subjects are unlikely to have the normal, healthy hearing of an 

adult [2]. This is where animal models with similar ear anatomy and hearing ranges can 

be utilized to study normal hearing at different stages of growth in the animal. These 

different ages can then be correlated to humans at similar stages in growth, which can 

enable studies to better understand the effects of age on the auditory system. These 

studies can include investigations into childhood impairment and middle ear infection 

(otitis media) a worldwide pediatric illness, which costs the healthcare system billions 

of dollars per year in the United States alone [2].  
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1.1 Ear Anatomy and Function 

 The human ear is a simple yet complex structure for gathering sound, 

amplifying or modulating, and sending the impulses to the brain for interpretation and 

response. Figure 1 shows the human ear anatomy and its three distinct sections: the 

outer, the middle, and the inner ears. The outer ear is composed of cartilaginous 

structures covered by squamous epithelium to form the pinna, or the visible portion of 

the ear. At the end of the external ear canal is the tympanic membrane (TM), which 

forms the boundary between the outer and middle ears. The TM plays an important role 

in transmitting sound from the environment to the middle ear and the inner ear. The TM 

is composed of three distinct layers. On the lateral side is an epidermal layer, and on the 

medial side is a mucosal layer. The middle layer is the fibrous stratum, which is 

comprised of collagen fibers, and provides stability for the TM. Within the fibrous 

stratum are collagen fibers that are aligned radially and concentrically around the umbo. 

The TM is maintained within the tympanic sulcus by the tympanic annulus, which 

surrounds the pars tensa. The TM is divided into two parts with the smaller portion, pars 

flaccida, located in the superior section of the TM, and the larger portion, pars tensa, 

located inferior to the neck of the malleus. Sound is converted from vibrations in the ear 

canal into mechanical vibrations at the TM, which travel through the ossicular chain 

comprised the smallest bones in the human body, the malleus, incus, and stapes, and 

finally into the cochlea where it is interpreted by the brain as sound [3,4]. 
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Figure 1. Ear anatomy with a complete ossicular chain and cochlea [5] 

 

1.2 Mechanical Properties of Human Tympanic Membrane 

Mechanical properties of the human TM have been characterized by numerous 

researchers. The static properties of the human TM were first reported by von Békésy as 

20 MPa from a bending test on a rectangular cadaver TM strip [6]. Recently, a study 

was conducted on the human TM that focused on studying the TM under uniaxial 

tensile, stress relaxation, and failure tests. The experimental results were analyzed using 

the Ogden model and the nonlinear elastic properties were reported as a stress and 

stretch ratio in a stress range from 0 MPa to 1 MPa. Further investigations into the 

mechanical properties of human TM have been performed at the quasi-static or low 

frequency range [6-10]. However, the TM works under the auditory frequency range of 
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20-20,000 Hz, and the dynamic properties of the TM need to be measured over the 

auditory frequency range. Kirikae determined the Young’s modulus in the 

circumferential direction to be 40 MPa at 890 Hz [11]. Zhang and Gan reported an 

investigation on the dynamic properties of the human TM using acoustic stimulation 

and laser Doppler vibrometry (LDV) measurements [12]. An additional publication 

from the same group investigated the dynamic properties of the human TM using 

frequency temperature superposition which directly measures the complex modulus of 

the TM in the frequency domain in the auditory frequency range [13]. Utilizing various 

techniques, the dynamic properties of the human TM in the auditory frequency range 

have been further characterized through the use of techniques such as the split-

Hopkinson tension bar [14]. 

 

1.3 Baboon Model 

 The baboon is one of the largest non-hominoid members of the primate order. It 

is considered an African and Arabian Old World monkey belonging to the genus Papio 

[15]. Baboons are closely related to humans and have provided significant research 

benefits to humans in the past. The baboon shares many characteristics with humans. It 

is primarily bipedal which is important in regards to its anatomical relationship to the 

human, and thus many structures are analogous. The age of the baboon has been well 

studied with a correlation to human ages on a 1:3 scale [16]. For example, a 5 year old 

baboon is considered to be at the same stage in its life cycles as a 15 year old human. A 

baboon raised in captivity can live approximately 30 years, which aligns nicely with a 

healthy human living approximately 90 years [15]. For, this research the hearing range 



5 

of the baboon is 0.4 – 30 kHz, making it comparable to that of the human, which is 0.3 

– 20 kHz. 

 The baboon model has been used for investigations in physiology and 

pathophysiology, as well as for radiopharmaceutical techniques [15].  In addition, 

Fourier phase analysis in radionuclide ventriculography, hemodynamic reactions in a 

septic shock model, and investigations in conjunction with local anesthetics (e.g., 

effects on cerebral blood flow) are typical examples of research that have been or are 

currently being performed on the baboon [15].  Recently, baboons have even been 

considered for stem cell based therapies in the search for a cure for Parkinson’s disease 

[17].  Institutes using the baboon model must be adequately and ethically equipped as 

would be needed for investigations in human beings.  Ethical considerations must be 

regarded strictly and supervised by an ethics committee.  Protocols must determine 

exactly why in vivo experimentation is preferred to in vitro tests. Anesthesia techniques 

in a baboon model allow study on the animal itself, eliminate pain and stress to the 

animal, and are designed to not interfere with the aims of the investigation being 

performed.  Finally, the baboon model is a preferred animal model in biomedical 

research in fertility, uterine receptivity, and embryo implantation [18,19]. 

 Despite extensive research utilizing the baboon skull, little literature exists on 

baboon middle ear biomechanics. Nonhuman primate ear research has been primarily 

limited to ototoxicity studies, otoacoustic emissions, ionomeric prosthesis implants, and 

a select few publications on immunocytochemical colocalization in the cochlear nuclei 

[20-24]. A recent study has been done that created the first adult and infant nonhuman 

primate model for auditory research. However, due to the limited publications on 
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baboon middle ear mechanics, the model used the mechanical properties from already 

well established human middle ear soft tissues [25]. 

 

1.4 Applications 

The mechanical properties of the TM can be implemented in a variety of 

applications. For example, TM grafts are used to close perforations of the membrane 

thereby hastening recovery, and reducing temporary hearing loss. Furthermore, the 

mechanical property data can be applied to finite element (FE) models of the ear to 

simulate sound transmission through the ear and to predict how the sound transmission 

would be affected by different pathologies in the ear. 

Perforations of the TM result in hearing loss or deafness and possible infection 

due to the open communication between the air chambers of the external auditory canal 

and the middle ear.  Perforations can result from trauma, otitis media which is an 

infection of the middle ear, or diseases such as cholesteatoma. For persistent 

perforations that do not heal spontaneously, surgical closure is usually recommended. 

Tympanic membrane prosthesis can be created and are most commonly of fascia or 

collagen sheets creating an autograft. Allografts were previously used but fell out of 

favor due to viral prions and the risk of human immunodeficiency virus (HIV) 

transmission. Surgical transplantation is therefore accomplished by placement of the 

graft on the medial side of the tympanic membrane to close the defect. Autograft 

materials include muscle fascia, perichondrium, thin cartilage slices and fat 

[3]. Therefore, the TM graft must close the defect, but it is critical that the materials 

used mimic the mechanical properties of the TM to prevent impedance of sound. 
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FE modeling uses elements to simplify complex problems. In general, FE 

reduces higher order equations into their weak form by applying nodal conditions. 

These conditions can then be solved iteratively to a specified convergence if an exact 

solution cannot be achieved [26]. This method is commonly used in many mechanical 

engineering applications, and has been used in a variety of biomedical engineering 

situations in both human and animal models [27,28]. For example, the Biomedical 

Engineering Laboratory at the University of Oklahoma used cross-sections obtained 

from histology to reconstruct the middle ear three-dimensionally (3D) as shown in 

Figure 2, and FE analysis was then performed to better understand sound transmission 

through the middle ear. In Figure 2, the research group used abbreviations C1-C7 to 

represent the superior (C1), lateral (C2), posterior (C3), anterior (C4) ligaments, 

posterior (C5), and tympani (C7) tendons [29]. This was validated by comparing the 

model-predicted displacement of the stapes footplate and TM with experimental 

measurements on human temporal bones [30]. Later the same research group applied a 

hyperelastic material model to the TM and other middle ear soft tissues, and a 

simplified two-chamber straight cochlea with basilar membrane was added to the 

model, which further enabled the ability to predict sound transmission from the ear 

canal into the cochlea [31,32]. The human FE model has been useful in predicting ear 

function from canal to cochlea in normal conditions, in a variety of ear pathologies, and 

even the behavior of implantable devices [33-35]. Recently, the first comprehensive 3D 

model of the adult and newborn baboon ear was developed in the Biomedical 

Engineering Laboratory at the University of Oklahoma. However, the FE analysis that 

was used on this model used mechanical property values from human experiments 
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because the mechanical properties for baboon middle ear structure were not yet known. 

While beyond the scope of this study, a future study can use the newborn and adult 

baboon models to better understand how sound transmission is affected by age when 

TM mechanical property data is applied to the FE model of the TM. 

 

Figure 2. Human FE model of the middle ear with canal [29].  

 

1.5 Objectives 

The goal of this study is to determine the mechanical properties of the baboon 

TM for four different age groups: less than 1, 1 to 3, 3 to 5, and older than 5 years of 

age. The mechanical properties were obtained using quasi-static and dynamic testing. 

From this analysis, the age groups were compared to determine the effect of age on the 

mechanical properties of the TM. Furthermore, the mechanical data for the adult baboon 

group were compared to published adult human data to determine how similar the two 

species are with regards to the TM. Using this analysis, further research could lead to 
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predictions on how the human TM changes with age for assisting pediatric auditory 

health research. 

 

1.5.1 Thesis Outline 

Chapter 2 presents the methods used: 

 2.1 - 2.3 TM sample preparation and experimental setup 

 2.4 - 2.6 Quasi-static, dynamic, and failure testing 

 2.7 Scanning electron microscopy for adult sample 

 2.8 Statistical analysis  

Chapter 3 presents results obtained from: 

 3.1 Quasi-static experimental data 

 3.2 Dynamic experimental data 

 3.3 Failure experimental data 

Chapter 4 presents discussion on results: 

 4.2 Quasi-static age comparisons 

 4.3 Dynamic age comparisons 

 4.4 Adult SEM image   
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Chapter 2: Methods 

2.1 Sample Acquisition 

Fresh baboon skulls with a range of 0 days to 15 years of age from the National 

Baboon Research Resources at the University of Oklahoma Health Sciences Center 

(OUHSC) were used in this study. Using the accepted baboon to human ratio of 1:3, the 

youngest baboon is considered to be equivalent to a human child with an age range of 0 

- 3 years of age, and the oldest baboon is considered to be equivalent to an adult human 

with an age approximately 45 years of age. At the National Baboon Research Resources 

center, the animals were evaluated post-mortem. The temporal bones were excised from 

the baboon skulls, and with the epithelial tissue intact. They were packed in dry ice for 

transit to Stephenson Technology and Research Center in Norman, Ok. The 

experiments were conducted within one week after arrival of the temporal bones. 

The samples were processed with a solution of 0.9% saline and 15% povidone at 

5°C to maintain the physiological condition before the experiment. 53 fresh temporal 

bones (37 females and 15 males) were involved in this study. The baboons were 

organized into four groups based on the age of the subject: less than 1 (G1), 1 to 3 (G2), 

3 to 5 (G3), and older than 5 (G4) years of age. These groups correspond to a human 

age range of 0 to 3, 3 to 9, 9 to 15, and older than 45 years of age, respectively. The 

average age for each group was 67 ± 26 days, 2.2 ± 0.8 years, 4.2 ± 0.5 years, and 9.9 ± 

3.5 years for G1, G2, G3, and G4, respectively. Summary of each samples age and the 

approximate human age is listed in Table 1 through Table 4. Each sample was 

examined under an operating microscope (OPMI-1, Zeiss, Thornwood, NY) to confirm 

a normal ear canal and an intact TM. 
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Table 1. Specimen ages in G1. 

TM 
Specimen 

Age 
(day) 

Approx. 
Human 

Age (day) 

16-9L 30 90 

16-9R 30 90 

17-1LP 77 231 

17-1LA 77 231 

17-1R 77 231 

17-18L 90 270 

17-18R 90 270 

Mean ± SD 67 ± 26 201 ± 78 

 

Table 2. Specimen ages in G2. 

TM 
Specimen 

Age 
(year) 

Approx. 
Human 

Age (year) 

16-8RA 1.0 3.0 

16-3RP 1.5 4.5 

16-4LP 1.5 4.5 

16-7L 1.5 4.5 

16-2LP 2.0 6.0 

15-14L 2.7 8.1 

17-9L 3.0 9.0 

17-9R 3.0 9.0 

17-11L 3.0 9.0 

17-11R 3.0 9.0 

Mean ± SD 2.2 ± 0.8 6.7 ± 2.4 

 

Table 3. Specimen ages in G3. 

TM 
Specimen 

Age 
(year) 

Approx. 
Human 

Age (year) 

17-6R 3.5 10.5 

17-10R 3.5 10.5 

17-7R 4.0 12.0 

17-2L 4.5 13.5 

17-2R 4.5 13.5 

17-3L 4.5 13.5 

17-3R 4.5 13.5 

17-4L 4.5 13.5 

Mean ± SD 4.2 ± 0.5 12.6 ± 1.4 
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Table 4. Specimen ages in G4. 

TM 
Specimen 

Age 
(year) 

Approx. 
Human 

Age (year) 

16-6L 6.0 18.0 

17-14L 9.0 27.0 

17-12L 9.5 28.5 

17-15L 6.0 18.0 

17-16L 15.0 45.0 

17-16R 15.0 45.0 

17-12R 9.5 28.5 

17-14R 9.0 27.0 

Mean ± SD 9.9 ± 3.5 29.6 ± 10.4 

 

2.2 Thickness Measurement with Optical Coherence Tomography 

 The surrounding bony wall was surgically removed, exposing the lateral surface 

of the TM, and the temporal bone was placed in view of the Optical Coherence 

Tomography (OCT). The lateral TM surface that the measurement will be read from 

was aligned to be normal to the laser. To reduce noise of the beam intensity, and the 

contrast was adjusted to create a clear image of the TM. The OCT creates an image by 

scanning a single point (A-scans) along a line, which are combined into the final 2D 

image (B-scans) seen in Figure 3.  
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Figure 3. Example of the B-scan image obtained through OCT imaging on an 

intact TM within an adult baboon temporal bone. 

 

The single point A-scans were averaged 5 times and the line scans were average 

20 times. The refraction index for the TM is 1.40 and for air is 1.00 [36]. In this study, 

the final thickness measurement was obtained by measuring the thickness on 6 points 

on the entire TM surface and averaged, which neglects the non-uniformity of the 

thickness of the samples. The thickness for each group is reported in Table 5 through 

Table 8. G1 had a mean and SD of 0.025 ± 0.004 mm, G2 had a mean of 0.027 ± 0.009, 

G3 had a mean of 0.023 ± 0.003, and G4 had a mean of 0.024 ± 0.003. 

Table 5. Thickness obtained through OCT measurement for G1. 

TM 
Specimen 

Thickness 
(mm) 

16-9L 0.026 

16-9R 0.030 

17-1LP 0.020 

17-1LA 0.020 

17-1R 0.025 

17-18L 0.024 

17-18R 0.029 

Mean ± SD 0.025 ± 0.004 
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Table 6. Thickness obtained through OCT measurement for G2. 

TM 
Specimen 

Thickness 
(mm) 

16-8RA 0.025 

16-3RP 0.020 

16-4LP 0.020 

16-7L 0.024 

16-2LP 0.025 

15-14L 0.050 

17-9L 0.030 

17-9R 0.030 

17-11L 0.022 

17-11R 0.022 

Mean ± SD 0.027 ± 0.009 

 

Table 7. Thickness obtained through OCT measurement for G3. 

TM 
Specimen 

Thickness 
(mm) 

17-6R 0.024 

17-10R 0.025 

17-7R 0.022 

17-2L 0.023 

17-2R 0.021 

17-3L 0.020 

17-3R 0.022 

17-4L 0.030 

Mean ± SD 0.023 ± 0.003 

 

Table 8. Thickness obtained through OCT measurement for G4. 

TM 
Specimen 

Thickness 
(mm) 

16-6L 0.02 

17-14L 0.022 

17-12L 0.027 

17-15L 0.029 

17-16L 0.024 

17-16R 0.021 

17-12R 0.023 

17-14R 0.025 

Mean ± SD 0.024 ± 0.003 
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2.3 TM Strip Specimen Preparation and Experimental Setup 

Figure 4 shows the TM after the ear canal and surrounding bony wall was 

surgically removed. The pars tensa (t), pars flaccida (f), and manubrium (*) are shown 

in Fig. 4, and a portion of the annulus (a) is represented as a dashed line. To remove the 

TM with an intact malleus first the annulus was separated from the annular sulcus, next 

the superior (C1), lateral (C2), anterior (C4) ligaments, the tensor tympani (C7) tendon, 

and the incudomalleolar joint (IMJ) were cut, and finally the TM was placed in a saline 

solution as shown in Fig. 5. A rectangular strip was cut from either the posterior or 

anterior section of the TM. The annulus was attached at the inferior and superior sides 

of the TM to maintain the integrity of the membrane. The TM was assumed to be a flat 

rectangular strip, and the curvature of the TM was neglected in this study. 
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Figure 4. Intact TM within the baboon temporal bone. 

 

A rectangular strip cut from the pars tensa of the TM was used to identify 

material properties. The human middle ear includes the TM or eardrum, three ossicular 

bones connected by two joints, and suspensory ligaments. If an intact middle ear is used 

to measure the material properties of the TM, a large number of unknown variables 

including the shape of the TM, the material properties of the malleus–incus joint, incus-

stapes joint, and suspensory ligaments will be involved. To reduce the number of 

variables and the difficulty of parameter identification, a rectangular strip TM specimen 

was utilized. 
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Figure 5. Typical TM sample after removing from the temporal bone. Strip 

samples are cut from either the posterior or anterior side indicated by the black 

square. 

 

The TM strip specimen was laid on the base of a microscope (Olympus SZX12) 

and fixed to two aluminum fixture adapters with cyanoacrylate liquid glue (Super Glue) 

at both the superior and inferior annulus sides. Additionally, two plastic support braces 

were connected in parallel to the strip specimen between the two aluminum fixtures. 
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These two plastic panels were used to support the fixture adapters during the mounting 

process, and to avoid any unexpected damage to the TM sample throughout the 

mounting process. Once the specimen was aligned in the grips of the dynamic 

mechanical analyzer (DMA) (Bose ElectroForce 3200, Eden Prairie, MN), the support 

panels were cut, and a preload of 0.002 N was applied to the TM sample. Six 

parameters were recorded by the DMA software (WinTest 4.1, Bose, MN): elapsed 

time, displacement, and load, and each had a resolution of 10-3 sec, 10-3 mm, 10-3 N, 

respectively. The initial state of a mounted specimen was setup as shown in Figure 6.   

 

Figure 6. TM strip specimen mounted into DMA. 
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The length (distance between the two fixture adapters before preload) and width 

were measured through the microscope. The dimensions for each age group are listed in 

Table 9 through Table 12. The length of G1 samples ranged from 5.10 to 6.10 mm with 

a mean and SD of 5.64 ± 0.39 mm, and the width ranged from 1.30 to 2.10 mm with a 

mean of 1.80 ± 0.28 mm. The length of G2 samples ranged from 5.30 to 7.00 with a 

mean of 5.75 ± 0.76, and the width ranged from 1.40 to 2.10 with a mean of 1.84 ± 

0.23. The length of G3 samples ranged from 4.40 to 6.30 with a mean of 5.83 ± 0.69, 

and the width ranged from 1.50 to 2.10 with a mean of 1.84 ± 0.23. The length of G4 

samples ranged from 5.30 to 6.80 with a mean and SD of 5.68 ± 0.70, and the width 

ranged from 1.20 to 2.10 with a mean and SD of 1.74 ± 0.28. 

Table 9. Dimensions for baboon samples for G1. 

TM 
Specimen 

Length 
(mm) 

Width (mm) 

16-9L 6.10 1.60 

16-9R 5.20 1.30 

17-1LP 5.10 2.10 

17-1LA 5.80 2.00 

17-1R 6.00 1.90 

17-18L 5.80 2.00 

17-18R 5.50 1.70 

Mean ± SD 5.64 ± 0.39 1.80 ± 0.28 
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Table 10. Dimensions for baboon samples for G2. 

TM 
Specimen 

Length 
(mm) 

Width 
(mm) 

16-8RA 6.00 1.90 

16-3RP* 5.90 2.00 

16-4LP 5.30 1.50 

16-7L 5.70 1.80 

16-2LP* 5.50 2.00 

15-14LƗ 4.00 2.00 

17-9L 6.20 1.80 

17-9R 6.00 1.90 

17-11L 5.90 1.40 

17-11R 7.00 2.10 

Mean ± SD 5.75 ± 0.76 1.84 ± 0.23 

 

Table 11. Dimensions for baboon samples for G3. 

TM 
Specimen 

Length 
(mm) 

Width (mm) 

17-6R 5.20 1.50 

17-10R 6.30 2.10 

17-7R Ɨ 4.40 2.00 

17-2L 6.50 1.60 

17-2R 6.20 2.00 

17-3L 6.00 2.00 

17-3R 6.00 1.60 

17-4L 6.00 1.90 

Mean ± SD 5.83 ± 0.69 1.84 ± 0.23 

 

Table 12. Dimensions for baboon samples for G4. 

TM 
Specimen 

Length 
(mm) 

Width (mm) 

16-6L* 6.80 1.70 

17-14L 6.40 2.00 

17-12L 5.50 1.20 

17-15L 5.30 1.80 

17-16L 5.60 1.90 

17-16R 4.50 1.60 

17-12R ǂ 5.80 2.10 

17-14R ǂ 5.50 1.60 

Mean ± SD 5.68 ± 0.70 1.74 ± 0.28 

Note: * samples were only used in low-frequency dynamic testing, Ɨ samples only 

used in quasi-static testing, and ǂ samples only used in FTS testing.   
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 In this study, the mechanical properties of the baboon TM for four different age 

groups were studied under quasi-static and dynamic loading conditions. Figure 7 is a 

schematic diagram of the experimental setup with the DMA to measure the mechanical 

properties of the TM.  

 

Figure 7. Schematic drawing of the DMA experimental setup. 

 

The TM strip specimen was placed inside the DMA temperature-controlled 

chamber in the DMA. The bottom adapter was attached to a fixture, which was 

connected to the WMC-5-455, 5lbf  load cell (Bose, MN) on an x, y, and z-axis 
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translational stage with z-axis rotation. The top adapter was attached to a fixture, which 

was connected the linear electric motor inside the DMA. A thermometer with a 

precision of ±1°C was placed at 2 cm behind the sample to monitor the temperature in 

the chamber. In the temperature change from 5°C to 37°C, there is no phase change 

(freezing) of fluid in tissue cells, and there is no denature of proteins. Thus, the structure 

of the soft tissue in this temperature range should not change [37,38]. During quasi-

static, and low-frequency dynamic testing, the temperature was set to 25°C, but during 

frequency-temperature superposition testing, the temperature changed in this range. To 

maintain approximate physiological condition of the sample throughout the testing 

process, a damp saline cloth was applied to the medial surface of the TM between the 

individual tests and rest periods. 

 

2.4 Quasi-Static Testing 

2.4.1 Preconditioning 

It is well known that the stabilized mechanical state of biological soft tissue can 

be reached through preconditioning [1]. In this study, preconditioning was achieved by 

conducting three loading and unloading cycles in the DMA. The specimens were 

elongated at a frequency of 0.05 Hz with a longitudinal stretch ratio of 10%. Three 

cycles of load-displacement curves for one TM was recorded in DMA. The hysteresis 

and peak load decreased with each successive cycle, and a steady state was observed at 

the second cycle.   
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2.4.2 Uniaxial Tension 

 After preconditioning, the sample was tested at 0.01 Hz with the elongation 

length was set to 15% of the samples original length. To compare results to the previous 

study by Cheng et. al, the stretch ratio for this test was kept the same, but the strain rate 

was approximately 80% slower [7].  

 

2.4.3 Stress Relaxation 

 The stress relaxation test was performed to further develop current 

understanding of the mechanical properties of the baboon TM. Following previously 

established methodologies, a step function of elongation was applied to the sample at 

the beginning (t = 0) with a strain rate of 1.8 mm/s to an elongation length of 15% of the 

original length [7]. The stresses corresponding to the initial stress response σ0 at t = 0 

and the relaxed stress σ(t) were recorded for a maximum of 200 s, during which the 

specimens were either relatively stable or fully relaxed at this point. After 200 seconds, 

the data recording software was stopped, and the sample was returned to its original 

unstressed state for dynamic testing. 

 

2.4.4 Data Analysis for Quasi-Static Viscoelasticity 

 The experimental data under quasi-static loading measured from the DMA tests 

were processed to obtain: the stress-strain relationship, the normalized stress relaxation 

function G(t), and the tangent modulus-stretch relationship. The TM’s for all age groups 

were assumed to be isotropic, and determined to be a non-linear viscoelastic material 

based on observations from the load-displacement curves recorded during 
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preconditioning and uniaxial tension tests. For elasticity analysis, a hyperelastic 

material model was implemented for analyzing the data. The mechanical properties of 

biological materials can be analyzed by several non-linear material models, such as the 

Ogden, Mooney-Rivlin and Yeoh models. For studying rubber-like biological soft 

tissues, Sarma et al. showed that from the available models the Ogden model was the 

most valid and useful to explain the stress-strain behavior of smooth muscle tissue [39]. 

In literature, Ogden model was used to predict the behavior of several non-linear and 

viscoelastic biological tissues such as the skin, brain and the normal human TM [7,39-

41]. In this study, the Ogden model was used to analyze the quasi-static experimental 

data of the baboon TM. 

 The Ogden model is generally expressed for elongation along a single axis as 

 𝜎 =
2𝜇1

𝛼1
[(1 + 𝜀)𝛼1−1 − (1 + 𝜀)−(0.5𝛼1+1)] (1) 

where σ is the normal stress, ε is the strain, µ1 is the initial shear modulus and α1 is the 

incompressibility parameter [42]. In this study, the strain was converted to the stretch 

ratio, λ, which is defined as the deformed length to the original length for example, 

  𝜀 =  
𝐿

𝐿0
 𝑎𝑛𝑑 𝜆 =  

𝐿+𝐿0

𝐿0
=  𝜀 + 1 (2) 

with this Eq. (1) becomes, 

  𝜎 =
2𝜇1

𝛼1
[(𝜆)𝛼1−1 − (𝜆)−(0.5𝛼1+1)] (3) 

Differentiating Eq. (3) with respect to λ provides 

  
𝑑𝜎

𝑑𝜆
=

2𝜇1

𝛼1
[(𝛼1 − 1)𝜆𝛼1−2 − (

𝛼1

2
+ 1) 𝜆−(0.5𝛼1+2)] (4) 

which gives the relationship between the tangent modulus  
𝑑𝜎

𝑑𝜆
 and the stretch ratio λ. 
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 The stress-strain loading curves measured during the uniaxial tension test were 

used to obtain the two material constants µ1 and α1, and were solved for by utilizing the 

curve fitting software in ANSYS Workbench (ANSYS, Inc., Canonsburg, PA). By 

substituting µ1 and α1 into Eq. (3) and Eq. (4), the constitutive equation of the TM in the 

Ogden form, and the tangent modulus with respect to stretch ratio were determined, 

respectively. 

 

2.5 Dynamic Testing 

The TM samples were subjected to small amplitudes with sinusoidal loading at 

different frequencies. The displacement d and force F were recorded as a function of 

time t for each frequency f, 

  𝑑 =  𝑑𝑜𝑒𝑖2𝜋𝑓𝑡 (8) 

  𝐹 = 𝐹0𝑒𝑖(2𝜋𝑓𝑡+ 𝛿) (9) 

The complex modulus, E*, at a single frequency was calculated as, 

  |𝐸∗| =  
𝜎0

𝜀0
=

𝐹0 𝑤ℎ⁄

𝑑0 𝑙⁄
 (10) 

  𝐸′ = |𝐸∗| cos 𝛿 (11) 

  𝐸′′ = |𝐸∗| sin 𝛿 (12) 

where w, h, and l were the width, thickness, and length of the specimen, respectively. 

 

2.5.1 Low-Frequency Testing 

 Low-Frequency dynamic tests were performed on G1, G2, and G3 using a single 

temperature point at 25°C. The TM was tested at eight frequencies: 1, 2, 5, 10, 20, 40, 

and 80 Hz using a 50 Hz filter for 20 Hz and below. The displacement amplitude was 
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set to 15% strain of the sample’s length. The specimen was given a rest period of 2 mins 

after each frequency point. 

 

2.5.2 Frequency-Temperature Superposition (FTS) 

 The frequency-superposition method was performed on the adult baboon group. 

The FTS test used similar methods as low-frequency testing described in 2.5.1 except 

with a few additions. After the adult group was tested at 25°C the temperature was 

shifted to 5°C and finally to 37°C. For each temperature, the sample was tested at the 

same frequency points and displacement amplitude as low-frequency testing.  The 

temperature of 37°C will be used as the reference temperature for the FTS principle. 

 The FTS principle was first reported in the 1950’s, and has developed into a 

critical extrapolation technique when utilized for polymers, plastic, and composites 

[43,44]. The principle further developed to establish a simple relationship between 

temperature and frequency (or time) and their effects on polymers and viscoelastic 

materials at the molecular level [45]. Recently, the FTS principle has been used to 

determine the dynamic properties of the human TM in the auditory frequency range 

[13]. The curves of the complex modulus E* obtained at relatively low temperatures 

with a reference temperature T0 can be shifted along the frequency axis by a shift factor 

αT to a higher frequency T. This concept can be expressed by the equation,  

  𝐸∗(𝑇0, 𝑓) =  𝐸∗(𝑇, 𝑓 𝛼𝑇)⁄  (13) 

where f is the frequency. The temperature’s effect on the material’s complex modulus 

can be quantified by the shift factor αT. It is temperature-dependent and needs to obey 

the Arrhenius equation, 
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  ln 𝛼𝑇  =  
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇0
) (14) 

where T and T0 are the absolute temperature in Kelvin, Ea is the activation energy for 

the material, and R is the universal gas constant equal to 8.314 J/mol K [46]. 

 The Williams-Landel-Ferry (WLF) equation is an additional widely used 

empirical equation for the FTS principle, which was first introduced by Williams et al., 

  log 𝛼𝑇 =  
𝑐1(𝑇 − 𝑇𝑔)

𝑐2 + 𝑇 − 𝑇𝑔
 (15) 

where c1 and c2 are empirical constants and Tg is the glass transition temperature [44]. 

The glass transition temperature is defined as the temperature below which the polymer 

chain backbone configuration rearrangement stops [47]. Combining the Eqs. (14) and 

(15) yields the relationship between the activation energy Ea and the empirical constant 

c1 and c2, 

  𝐸𝑎 = 2.303𝑅
𝑐1𝑐2𝑇2

(𝑐2 + 𝑇− 𝑇𝑔)
2 (16) 

 Following previous methods, the procedure to determine the dynamic properties 

of the adult baboon TM in the auditory frequency range was used [13]. First, the 

complex modulus in terms of the storage 𝐸′ and loss 𝐸′′ modulus was obtained at three 

different temperatures 5, 25, and 37°C, and plotted together as functions of frequency 

on a logarithmic scale.  Second, the complex modulus curves associated with the lower 

temperatures were shifted along the frequency axis towards higher frequencies. The 

commonly called “Master Curve” was formed with a reference temperature at 37°C 

when the complex modulus curves were adjacent to each other, and was then used to 

predict the complex modulus at the higher frequency range. Finally, Eqs. (13) and (14) 

were used to calculate the shift factor αT and the activation energy Ea. There are three 
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requirements for creating the Master Curve that must be met for the FTS principle to 

hold: (1) perfect matching of the curve shapes at adjacent range regions, (2) same shift 

factor value for all viscoelastic parameters, and (3) the shift factor must obey the 

Arrhenius or the WLF equation. The first requirement was met when the percent 

difference between the complex modulus in adjacent regions was less than 10%, and the 

remaining requirements were checked through careful observation and satisfied [13]. 

 

2.6 Failure Testing 

 To determine the age effect on the mechanical strength of the baboon TMs, 

failure testing was performed on all specimens. Following previous methodologies, the 

strain rate was set to 0.1 mm/s [7]. During the failure process the TM strip was 

observed, and the location of failure was observed.  

 

2.7 Scanning Electron Microscopy 

To better understand the microstructural composition of the baboon TM, 

scanning electron microscopy (SEM) imaging was performed for the adult TM group. 

For SEM preparation the temporal bone surrounding, the TM was removed such that the 

entirety of the TM could be easily viewable from either the medial or lateral side and 

still maintain the tension on the TM. Following previous methodologies, the TM 

specimen was fixed in paraformaldehyde for 24 hours. The specimens were dehydrated 

in ethanol in increasing concentrations from 30% to 100% allowing the sample to 

remain in each solution once for 15 min and three times at 100% for 10 min. Sample 

was dried using Hexamethyldisilizane solution, and sputter coated with gold palladium. 
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To reduce charging the surrounding temporal bone was coated using silver paste. The 

prepared samples were examined with electron microscopes (NEON 40 EsB, Zeiss, 

Oberkochen, Germany) (JSM-840, JEOL Ltd., Tokyo, Japan) the operating voltage was 

set as 5 V, and the working distance was set to 5.7 mm [48]. SEM work was performed 

in the Samuel Roberts Noble Microscopy Laboratory at the University of Oklahoma. 

 

2.8 Statistical Analysis 

To determine any significant difference in the mechanical properties from young 

to adult baboon TM statistical analysis was performed on the experimental data 

obtained from the quasi-static uniaxial, relaxation, and low-frequency dynamic testing. 

For each type of test the TMs that were less than 1 (G1), between 1 and 3 (G2), between 

3 and 5 (G3), and older than 5 years of age (G4) were used for the analysis. A one-way 

analysis of variance (ANOVA) with an alpha level of 0.1 was used to determine 

significance. For the analysis, the null hypothesis set was that the sample mean for G1, 

G2, G3, and G4 were equal, and the hypothesis was that there was at least one 

inequality. Additionally, six group pairings were created: G1 vs G2, G1 vs G3, G1 vs 

G4, G2 vs G3, G2 vs G4, and G3 vs G4. If ANOVA detected significance between 

groups the Tukey-Kraemer analysis was used to determine where that significance was 

located, and a “Yes” or “No” was used to denote significant difference between groups. 
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Chapter 3: Results 

3.1 Quasi-Static Experimental Data 

 The experiments were performed on four groups of baboons with age ranges of 

less than 1, 1 to 3, 3 to 5, and older 5 years of age. The baboon groups were designated 

as G1, G2, G3 and G4, where G1 is the youngest and G4 is the oldest. In G1, there were 

a total of 7 samples with a mean age, length, width, and thickness of 67 ± 26 days, 5.64 

± 0.39 mm, 1.80 ± 0.28 mm, and 0.025 ± 0.004 mm, respectively. In G2, there were a 

total of 8 samples with an average age, length, width, and thickness of 2.3 ± 0.9 years, 

5.76 ± 0.86 mm, 1.80 ± 0.24 mm, and 0.028 ± 0.010 mm. In G3, there were a total of 8 

samples with an average age, length, width, and thickness of 4.2 ± 0.5 years, 5.83 ± 

0.69 mm, 1.84 ± 0.23 mm, and 0.023 ± 0.003 mm, respectively. In G4, there were a 

total of 5 samples with an average age, length, width, and thickness of 10.9 ± 4.0 years, 

5.46 ± 0.68 mm, 1.70 ± 0.32 mm, and 0.025 ± 0.003 mm.  
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3.1.1 Preconditioning 

 

Figure 8. Preconditioning figure of a typical sample. Shown are the first, second, 

and third cylces. 

 

Three cycles of loading and unloading were recorded by the DMA and load-

displacement curves were converted into stress-stretch ratio curves shown in Figure 8, 

the first, second, and third cycle are indicated by the labels with arrows. The unloading 

curve was always below the loading curve, and the sample reached a sampled state after 

the second cycle. 
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3.1.2 Uniaxial Tension 

Figure 9 shows the stress-stretch ratio relationship of 7 TM specimens that the 

age range was 30 to 90 days during the uniaxial tensile test. All samples were stretched 

to a stretch ratio of 1.15 or 15% elongation. The maximum and minimum stresses 

occurred for sample 17-1R and 16-9R with a stress of 2.10 and 0.90 MPa. Figure 10 

gives the stress stretch ratio relationship of 8 TM specimens that the age range was 1 to 

3 years during the uniaxial tensile test. All samples were stretched to a stretch ratio of 

1.15, except for 15-14L which was stretched to 1.14. The maximum and minimum 

stresses occurred for sample 16-4LP and 16-7L with a stress of 1.50 and 0.79 MPa. 

Figure 11 shows the stress stretch ratio relationship of 8 TM specimens that the age 

range was 3 to 5 years during the uniaxial tensile test. All samples were stretched to a 

stretch ratio of 1.15. The maximum and minimum stresses occurred for sample 17-10R 

and 17-2L with a stress of 1.50 and 0.76 MPa. Figure 12 shows the stress stretch ratio 

relationship of 5 TM specimens that the age range was older than 5 years during the 

uniaxial tensile test. All samples were stretched to a stretch ratio of 1.15. The maximum 

and minimum stresses occurred for sample 17-12L and 17-16L with a stress of 1.04 and 

0.65 MPa. 
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Figure 9. Individual stress and stretch ratio curves of G1 with 7 samples. 

 

 

Figure 10. Individual stress and stretch ratio of G2 with 8 specimens. 

 



34 

 

Figure 11. Individual stress and stretch ratio curves for G3 with 8 specimens. 

 

 

Figure 12. Individual stress and stretch ratio curves for G4 with 5 specimens. 
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3.1.3 Relaxation 

For the following figures, the y-axis is the normalized stress relaxation G(t), and 

is defined as the ratio between the σ(t) at time t and the initial stress at σ0. 

 Figure 13 gives the stress relaxation of 5 TM samples with an age less than 1 

year old. At 200 s the samples that relaxed the least and most were 17-18R and 17-1LA 

that relaxed to 18% and 26% of the maximum stress. Figure 14 gives the stress 

relaxation of 4 TM samples with an age between 1 and 3 years old. At 200 s the 

samples that relaxed the least and most were 17-11L and 17-9R that relaxed to 18% and 

25% of the maximum stress. Figure 15 gives the stress relaxation of 8 TM samples with 

an age between 3 and 5 years old. At 200 s the samples that relaxed the least and most 

were 17-3L and 17-7R that relaxed to 22% and 36% of the maximum stress. Figure 16 

gives the stress relaxation of 5 TM samples with an age more than 5 years old. At 200 s 

the samples that relaxed the least and most were 17-15L and 17-14L that relaxed to 

21% and 29% of the maximum stress. 
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Figure 13. Stress relaxation for G1. 

 

 

Figure 14. Stress relaxation for G2. 
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Figure 15. Stress relaxation for G3. 

 

 

Figure 16. Stress relaxation for G4. 
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3.2 Dynamic Experimental Data 

 The direct measurement of the complex modulus was performed on four groups 

of baboons with age ranges of less than 1, 1 to 3, 3 to 5, and older 5 years of age, which 

are the same as the age groups mentioned in the static findings. Each group was tested 

in the low frequency range of 1 to 80 Hz at 25°C. However, the adult group was 

additionally tested at the temperatures of 5° and 37°C following the procedure described 

in section 2.5.2 Frequency-Temperature Superposition. 

3.2.1 Low-Frequency 

For G1 a total of 7 samples were tested with an average and standard deviation 

for the length 5.64 ± 0.39 mm, width 1.80 ± 0.28 mm, and thickness 0.025 ± 0.004 mm.  

Figure 17 shows the storage modulus for the 7 samples in G1 the storage 

modulus is flat from 1 to 10 Hz, and monotonic increasing from 20 to 80 Hz. The 

maximum and minimum storage modulus at 1 Hz is 19.26 and 8.82 MPa for samples 

17-1R and 16-9L. At 80 Hz the maximum is 28.01 MPa for 17-1LA and the minimum 

is 15.22 MPa for 17-18L. Figure 18 shows the loss modulus for the 7 samples in G1 the 

loss modulus is flat from 1 to 10 Hz, and monotonic increasing from 20 to 80 Hz. The 

maximum and minimum loss modulus at 1 Hz is 2.48 and 1.14 MPa for samples 17-1R 

and 16-9L. At 80 Hz the maximum is 2.33 MPa for 17-1R and the minimum is 0.99 

MPa for 16-9R. 
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Figure 17. Direct dynamic measurement of the storage modulus in low frequency 

for G1. 

 

 

Figure 18. Direct dynamic measurement of the loss modulus in low frequency for 

G1. 
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For G2 a total of 9 samples were tested with an average and standard deviation 

for the length 5.94 ± 0.48 mm, width 1.82 ± 0.23 mm, and thickness of 0.0242 ± 0.004 

mm. 

Figure 19 shows the storage modulus for the 9 samples in G2 the storage 

modulus is flat from 1 to 10 Hz, and monotonic increasing from 20 to 80 Hz. The 

maximum and minimum storage modulus at 1 Hz is 15.80 and 6.44 MPa for samples 

16-3RP and 16-7L. At 80 Hz the maximum is 29.09 MPa for 16-3RP and the minimum 

is 13.64 MPa for 17-9R. Figure 20 shows the loss modulus for the 9 samples in G2 the 

loss modulus is flat from 1 to 10 Hz, and monotonic increasing from 20 to 80 Hz. The 

maximum and minimum loss modulus at 1 Hz is 2.04 and 0.83 MPa for samples 16-

3RP and 16-7L. At 80 Hz the maximum is 11.09 MPa for 17-11L and the minimum is 

1.99 MPa for 16-8RA. 

 

 

 



41 

 

Figure 19. Direct dynamic measurement of the storage modulus in low frequency 

for G2. 

 

 

Figure 20. Direct dynamic measurement of the loss modulus in low frequency for 

G2. 
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For G3 a total of 7 samples were tested with an average and standard deviation 

length 6.03 ± 0.41 mm, width 1.81 ± 0.24 mm, and thickness of 0.024 ± 0.003 mm. 

Figure 21 shows the storage modulus for the 7 samples in G3 the storage 

modulus is flat from 1 to 20 Hz, and monotonic increasing from 40 to 80 Hz. The 

maximum and minimum storage modulus at 1 Hz is 12.98 and 8.11 MPa for samples 

17-4L and 17-2L. At 80 Hz the maximum is 21.39 MPa 17-2R and the minimum is 

13.41 MPa for 17-2L. Figure 22 shows the loss modulus for the 7 samples in G3 the 

loss modulus is flat from 1 to 10 Hz, and monotonic increasing from 20 to 80 Hz. The 

maximum and minimum loss modulus at 1 Hz is 1.63 and 1.00 MPa for samples 17-

10R and 17-3R. At 80 Hz the maximum is 8.73 MPa for 17-6R and the minimum is 

2.17 MPa for 17-3L. 
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Figure 21. Direct dynamic measurement of the storage modulus in low frequency 

for G3. 

 

 

Figure 22. Direct dynamic measurement of the loss modulus in low frequency for 

G3. 
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For G4 a total of 8 samples were tested with an average and standard deviation 

for the length 5.68 ± 0.70 mm, width 1.74 ± 0.28 mm, and thickness of 0.024 ± 0.003 

mm. 

Figure 23 shows the storage modulus for the 8 samples in G4 the storage 

modulus is flat from 1 to 20 Hz, and monotonic increasing from 40 to 80 Hz. The 

maximum and minimum storage modulus at 1 Hz is 14.33 and 4.81 MPa for samples 

17-12R and 17-16R. At 80 Hz the maximum is 26.01 MPa for 17-14R and the 

minimum is 10.94 MPa123 for 17-16R. Figure 24 shows the loss modulus for the 8 

samples in G4 the loss modulus has a small peak around 2 Hz, and is followed with an 

increase from 20 to 80 Hz. The maximum and minimum loss modulus at 1 Hz is 0.57 

and 0.36 MPa for samples 17-15L and 17-12L. At 80 Hz the maximum is 10.37 MPa 

for 17-12L and the minimum is 1.58 MPa for 17-15L. 
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Figure 23. Direct dynamic measurement of the storage modulus in low frequency 

for G4. 

 

 

Figure 24. Direct dynamic measurement of the loss modulus in low frequency for 

G4. 
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3.2.2 Frequency-Temperature Superposition 

The FTS principle was performed on only the adult baboon group where each 

sample was older than 5 years of age, and the maximum age was 15 years old. Figure 

25 and Figure 26 are two typical samples showing the storage and loss modulus for the 

temperature 5°C, 25°C, and 37°C both before and after applying the shift factor. 

As seen by the two examples (17-3L and 17-12R) the storage and loss modulus 

increased with increasing frequency or with decreasing temperature. Following the FTS 

principle mentioned in the “Frequency-Temperature Superposition” section the lower 

temperatures were shifted to a higher frequency range and the master curve was created. 

The complex modulus curves are well matched in the adjacent regions with a percent 

difference of less than 6%. Therefore, the first requirement of the FTS principle is 

satisfied, and the shift factors for the storage and loss modulus for each specimen is the 

same satisfying the requirement. For 17-3L, the storage modulus has a slight increase 

from 1 Hz to 8000 Hz increasing from 8.86 to 14.13 MPa, and 17-12R has a slight 

increase from 1 Hz to 8000 Hz increasing from 13.44 to 17.66 MPa. The loss modulus 

for 17-3L is 0.56 MPa at 1 Hz and is followed by a quick rise to 20 Hz where it is 

relatively stable until 2000 Hz where it increases from 1.59 MPa to 3.66 MPa at 8000 

Hz. For 17-12R the loss modulus is relatively flat with a slight increase from 0.85 MPa 

at 1 Hz to 1000 Hz where it increases from 1.10 MPa to 4.57 MPa at 8000 Hz. 
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Figure 25. 17-3L represents a typical direct measurement of storage and loss 

modulus at each temperature before shifting lower temperatures to higher 

frequency. 
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Figure 26. 17-12R gives an additional example of the direct measurement of 

storage and loss modulus at each temperature before shifting lower temperatures 

to higher frequency. 
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 Figure 27 gives the storage modulus for 8 samples of adult baboons. For all 

samples the storage modulus has a small increase across the entire frequency range. At 

1 Hz the maximum and minimum storage modulus is 13.44 MPa for 17-12R and 4.09 

MPa for 17-16R. At 8000 Hz the maximum and minimum storage modulus is 17.66 

MPa for 17-12R and 7.56 MPa for 17-16R. Figure 28 gives the loss modulus for 8 

samples of adult baboons. Each sample features relatively the same pattern of the loss 

modulus initially having a sharp increase from 1 to 5 Hz, then a slight increase from 10 

to 1000 Hz where it rapidly increases to its maximum at 8000 Hz. At 1 Hz the 

maximum and minimum storage modulus is 0.85 MPa for 17-12R and 0.27 MPa for 17-

16R. At 8000 Hz the maximum and minimum storage modulus is 4.57 MPa for 17-12R 

and 0.77 MPa for 17-16R. The shift factors for all adult baboon samples are 

summarized in the first two columns of Table 13. The average value for the shift factor 

from 25°C to 37°C was 15.6 ± 5.0 and the average value for the shift factor from 5°C to 

37°C was 193.8 ± 17.7. Using Eq. 14 the average activation energy was 117.83 ± 2.78 

kJ/mol. The maximum frequency achieved was 8000 Hz for all specimens. The average 

length, width, and thickness were 5.68 ± 0.70 mm, 1.74 ± 0.28 mm, and 0.024 ± 0.003 

mm, respectively. 
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Figure 27. Direct dynamic measurement of the storage modulus in high frequency 

using FTS for adult baboons. 

 

 

Figure 28. Direct dynamic measurement of the loss modulus in high frequency 

using FTS for adult baboons. 
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Table 13. The shift factors and activation energies of adult baboon TM samples. 

TM 
Specimen 

α25  

(25-37) 
α5  

(5-37) 
lnα25 lnα5 

Ea  
(kJ/mol) 

17-3L 15.0 200.0 2.71 5.30 118.63 

17-4L 20.0 200.0 3.00 5.30 118.63 

17-14L 20.0 150.0 3.00 5.01 112.19 

17-15L 10.0 200.0 2.30 5.30 118.63 

17-16L 10.0 200.0 2.30 5.30 118.63 

17-16R 10.0 200.0 2.30 5.30 118.63 

17-12R 20.0 200.0 3.00 5.30 118.63 

17-14R 20.0 200.0 3.00 5.30 118.63 

Mean ± SD 15.6 ± 5.0 193.8 ± 17.7 5.70 ± 0.34 5.26 ± 0.10 117.83 ± 2.78 

 

3.3 Failure Experimental Data 

 After all tests were complete the samples were stretched at a constant rate of 0.1 

mm/s until failure. Table 14 through Table 17 lists the ultimate stress or failure stress 

and stretch ratio for each group of baboons. The mean failure stress for G1 was 2.57 ± 

0.66 MPa and the mean failure stretch ratio was 1.21 ± 0.06. The mean failure stress for 

G2 was 2.56 ± 0.46 MPa and the mean failure stretch ratio was 1.26 ± 0.05. The mean 

failure stress for G3 was 2.47 ± 0.82 MPa and the mean failure stretch ratio was 1.21 ± 

0.05. The mean failure stress for G4 was 2.40 ± 1.06 MPa and the mean failure stretch 

ratio was 1.21 ± 0.05.  

Table 14. Stretch ratio and stress at ultimate stress or failure stress for G1. 

TM 
Specimen 

Failure 
Stretch 
Ratio λ 

Failure 
Stress 
(MPa) 

16-9L 1.25 1.75 

16-9R 1.24 2.44 

17-1LP 1.21 3.45 

17-1LA 1.15 2.58 

17-1R 1.15 3.43 

17-18L 1.30 2.41 

17-18R 1.17 1.96 

Mean ± SD 1.21 ± 0.06 2.57 ± 0.66 
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Table 15. Stretch ratio and stress at point of failure for G2. 

TM 
Specimen 

Failure 
Stretch 
Ratio λ 

Failure 
Stress 
(MPa) 

16-8RA 1.26 2.46 

16-3RP 1.37 2.35 

16-7L 1.25 1.90 

16-2LP 1.28 2.50 

15-14L 1.27 2.30 

17-9L 1.23 3.19 

17-9R 1.26 3.27 

17-11L 1.17 2.20 

17-11R 1.22 2.88 

Mean ± SD 1.26 ± 0.05 2.56 ± 0.46 

 

Table 16. Stretch ratio and stress at point of failure for G3. 

TM 
Specimen 

Failure 
Stretch 
Ratio λ 

Failure 
Stress 
(MPa) 

17-6R 1.22 2.72 

17-10R 1.30 3.52 

17-7R 1.20 2.14 

17-2L 1.14 0.98 

17-2R 1.23 3.14 

17-3L 1.19 2.53 

17-4L 1.18 2.26 

Mean ± SD 1.21 ± 0.05 2.47 ± 0.82 

 

Table 17. Stretch ratio and stress at point of failure for G4. 

TM 
Specimen 

Failure 
Stretch 
Ratio λ 

Failure 
Stress 
(MPa) 

16-6L 1.27 2.94 

17-14L 1.18 2.35 

17-14R 1.14 3.52 

17-12R 1.22 3.77 

17-15L 1.23 1.92 

17-16L 1.18 1.07 

17-16R 1.28 1.23 

Mean ± SD 1.21 ± 0.05 2.40 ± 1.06 
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Chapter 4: Discussion 

4.1 Thickness Changes with Age 

 The thickness was measured using the OCT following the procedure described 

in section “Thickness measurement with Optical Coherence Tomography” for four 

baboon age groups: less than 1, 1 to 3, 3 to 5, and older than 5 years of age. The final 

thickness reported for each TM was an average of six measurements in the pars tensa. 

For G1, G2, G3, and G4, the average thickness was 0.025 ± 0.004, 0.027 ± 0.009, 0.023 

± 0.003, and 0.024 ± 0.003 mm. No conclusion can be made at this time about changes 

in the thickness of the TM with age. 

 

4.2 Discussion on Static Results 

4.2.1 Uniaxial Tension 

 

Figure 29. Mean and SE stress for each age group. 
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The stress-stretch ratio relationship for each age group was plotted as the 

average and standard error of the mean (SE) in Figure 29. The average stress is 

relatively equal until 1.05 with the median stress as 0.14 MPa, and at 1.07 they diverge 

to G1 with the highest average stress, G2 and G3 were second highest, and G4 was the 

lowest average stress with 1.38 ± 0.17 MPa, 1.21 ± 0.09 MPa, 1.16 ± 0.09 MPa, and 

0.90 ± 0.68 MPa. 

To test for significance between different groups, a one-way, single-factor 

ANOVA test was performed with an alpha value of 0.1 which yields a P-value of 

0.0837, indicating that within the groups there is significance. The Tukey-Kraemer 

analysis was performed on 6 pairs from the age groups consisting of G1 vs. G2, G1 vs. 

G3, G1 vs. G4, G2 vs. G3, G2 vs. G4, G3 vs. G4. The results showed that there was a 

significant difference between G1 vs. G4, and the results of the ANOVA and Tukey-

Kraemer test were summarized in Table 18 in the second column. 

Table 18. Summary of quasi-static statistical analysis of 4 age groups.  

Type of Test 
Tensile 

Test 
Stress Relaxation 

Tangent 
Modulus 

Data Point σ(1.15) G(25s) G(70s) G(150s) dσ/dλ (1.15) 

ANOVA P value 0.0837 0.4280 0.5041 0.6987 0.0523 

Tukey G1 vs G2  No No No No Yes 

Tukey G1 vs G3  No No No No Yes 

Tukey G1 vs G4  Yes No No No Yes 

Tukey G2 vs G3  No No No No No 

Tukey G2 vs G4  No No No No Yes 

Tukey G3 vs G4 No No No No Yes 

Note: P value was obtained using one-way ANOVA, and Tukey-Kraemer analysis 

was used to assess where the significance existed. Tukey-Kraemer does not yield a 

P value, but a “Yes” will be used to denote significance between groups. 
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Figure 30 gives the individual curves obtained from fitting the 1st-order Ogden 

model to the individual stress-strain curves in G1. The maximum predicted stress at the 

stretch ratio of 1.15 is 2.75 MPa and the lowest predicted stress is 0.82 MPa. The Ogden 

model parameters are summarized in Table 19 the range of μ1 values were from 0.30 to 

0.79 MPa and the range for α1 were from 33.94 to 18.84.  

 The average µ1 and α1 values and Eq. 3 can be used to represent the Ogden 

model for G1 as 

  𝜎 = 0.042[(𝜆)26.08 − (𝜆)−14.54] (17) 

Table 19. Ogden hyperelastic 1st order parameters for G1. 

TM 
Specimen 

µ1 (MPa) α1 

16-9L 0.65 18.84 

16-9R 0.30 28.23 

17-1LA 0.67 27.59 

17-1LP 0.49 30.13 

17-1R 0.47 33.94 

17-18L 0.60 24.88 

17-18R 0.79 25.97 

Mean ± SD 0.57 ± 0.16 27.08 ± 4.79 

 

Figure 31 gives the experimentally measured average and standard deviation 

(SD) from the tension test plotted with the average 1st order hyperelastic Ogden model 

obtained from curve fitting the individual stress-strain curves. The average Ogden 

model is well within the SD of the experimental average, which validates an overall 

good fit. The average SD μ1 and α1 were 0.57 ± 0.16 MPa and 27.08 ± 4.79, 

respectively. At the stress-stretch ratio of 1.03 MPa at 1.13 the Ogden model crosses 

over the experimental average, and continues rising at a high rate. If the displacement 

was stretched beyond 15% of the original length it is possible that a higher-order Ogden 

model may need to be used to predict the stress at higher strain values for G1. 
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Figure 30. 1st order Ogden model curve fit for G1. 

 

 

Figure 31. Experimental average and SD (solid) with the average Ogden curve fit 

(dashed) for G1. 

 

Figure 32 gives the individual curves obtained from fitting the 1st order Ogden 

model to the individual stress-strain curves in G2. The maximum predicted stress at the 
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stretch ratio of 1.15 is 1.79 MPa and the lowest predicted stress is 0.86 MPa. The Ogden 

model parameters are summarized in Table 20 the range of μ1 values were from 1.08 to 

0.35 MPa and the range for α1 were from 27.28 to 19.48. 

The average µ1 and α1 values and Eq. 3 can be used to represent the Ogden 

model for G2 as 

 𝜎 = 0.059[(𝜆)22.97 − (𝜆)−12.99] (18) 

Table 20. Ogden hyperelastic 1st order parameters for G2. 

TM 
Specimen 

µ1 (MPa) α1 

15-14L 0.94 20.48 

16-4LP 0.69 25.79 

16-7L 0.35 25.66 

16-8RA 1.08 19.48 

17-9L 0.48 27.28 

17-9R 0.42 26.25 

17-11L 0.99 21.14 

17-11R 0.74 25.67 

Mean ± SD 0.71 ± 0.28 23.97 ± 3.06 

 

Figure 33 gives the experimentally measured average and SD for G2 obtained 

from the tension test plotted with the average 1st-order hyperelastic Ogden model 

obtained from curve fitting the individual stress-strain curves in G2. As discussed 

earlier about Figure 31, the average Ogden model is well within the SD of the 

experimental average of G2, which validates an overall good fit. The average SD μ1 was 

0.71 ± 0.28 MPa and α1 was 23.97 ± 3.06. At the stress-stretch ratio of 0.92 MPa at 1.13 

the Ogden model crosses over the experimental average, and continues rising faster than 

the experimental average. If the displacement was stretched beyond 15% of the original 

length it is possible that a higher-order Ogden model may need to be used to predict the 

stress at higher strain values for G2. 
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Figure 32. 1st order Ogden model curve fit for G2. 

 

 

Figure 33. Experimental average and SD (solid) with the average Ogden curve fit 

(dash) for G2. 

 

Figure 34 gives the individual curves obtained from fitting the 1st order Ogden 

model to the individual stress-strain curves in G3. The maximum predicted stress at the 



59 

stretch ratio of 1.15 is 1.82 MPa and the lowest predicted stress is 0.83 MPa. The Ogden 

model parameters are summarized in Table 21 the range of μ1 values were from 0.99 to 

0.21 MPa and the range for α1 were from 34.68 to 19.55. 

The average µ1 and α1 values and Eq. 3 can be used to represent the Ogden 

model for G3 as 

 𝜎 = 0.045[(𝜆)24.83 − (𝜆)−13.91] (19) 

Table 21. Ogden hyperelastic 1st order parameters for G3. 

TM 
Specimen 

µ1 (MPa) α1 

17-2L 0.45 22.84 

17-2R 0.49 26.82 

17-3L 0.99 21.79 

17-3R 0.54 26.89 

17-4L 0.21 34.68 

17-6R 0.93 19.55 

17-7R 0.36 27.03 

17-10R 0.65 27.03 

Mean ± SD 0.58 ± 0.27 25.83 ± 4.60 

 

Figure 35 gives the experimentally measured average and SD for G3 obtained 

from the tension test plotted with the average 1st order hyperelastic Ogden model 

obtained from curve fitting the individual stress-strain curves in G3. As seen previously, 

the average Ogden model is well within the SD of the experimental average, which 

validates an overall good fit for G3. The average SD μ1 and α1 was 0.58 ± 0.27 MPa and 

25.83 ± 4.60, respectively. At the stress-stretch ratio of 0.86 MPa at 1.13 the Ogden 

model crosses over the experimental average, and continues rising faster than the 

experimental average. If the displacement was stretched beyond 15% of the original 

length it is possible that a higher order Ogden model may need to be used to predict the 

stress at higher strain values for G3. 
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Figure 34. 1st order Ogden model curve fit for G3. 

 

 

Figure 35. Experimental average and SD (solid) with the average Ogden curve fit 

(dash) for G3. 

Figure 36 gives the individual curves obtained from fitting the 1st-order Ogden 

model to the individual stress-strain curves in G4. The maximum predicted stress at the 

stretch ratio of 1.15 is 1.13 MPa and the lowest predicted stress is 0.74 MPa. The Ogden 
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model parameters are summarized in Table 22 the range of μ1 values were from 1.17 to 

0.29 MPa and the range for α1 were from 27.05 to 15.39. 

The average µ1 and α1 values and Eq. 3 can be used to represent the Ogden 

model for G4 as 

 𝜎 = 0.061[(𝜆)20.70 − (𝜆)−11.85] (20) 

Table 22. Ogden hyperelastic 1st order parameters for G4. 

TM 
Specimen 

µ1 (MPa) α1 

17-14L 0.40 27.05 

17-15L 0.63 22.43 

17-16L 0.29 26.10 

17-16R 0.84 17.54 

17-12L 1.17 15.39 

Mean ± SD 0.67 ± 0.35 21.70 ± 5.14 

 

Figure 37 gives the experimentally measured average and SD for G4 obtained 

from the tension test plotted with the average 1st order hyperelastic Ogden model 

obtained from curve fitting the individual stress-strain curves in G4. As seen previously, 

the average Ogden model is well within the SD of the experimental average, which 

validates an overall good fit for G4. The average SD μ1 was 0.67 ± 0.35 MPa and α1 

was 21.70 ± 5.14. At the stress-stretch ratio of 0.68 MPa at 1.13 the Ogden model 

crosses over the experimental average, and continues rising faster than the experimental 

average. If the displacement was stretched beyond 15% of the original length it is 

possible that a higher-order Ogden model may need to be used to predict the stress at 

higher strain values for G4. 
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Figure 36. 1st order Ogden model curve fit for G4. 

 

 

Figure 37. Experimental average and SD (solid) with the average Ogden curve fit 

(dash) for G4. 
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Using Eq. 4 and the individual 1st-order Ogden model parameters listed in Table 

19 through Table 22, the tangent modulus was obtained for each TM specimen. The 

tangent modulus can be represented by Eq. 21 through 22 

 
𝑑𝜎

𝑑𝜆
= 0.042[26.08𝜆25.08 − 14.54𝜆−15.54] (21) 

 
𝑑𝜎

𝑑𝜆
= 0.059[22.97𝜆21.97 − 12.99𝜆−13.99] (22) 

 
𝑑𝜎

𝑑𝜆
= 0.045[24.83𝜆23.83 − 13.91𝜆−14.91] (23) 

 
𝑑𝜎

𝑑𝜆
= 0.061[20.70𝜆19.70 − 11.85𝜆−12.85] (24) 

The average and SE tangent modulus for each baboon age group was plotted in 

Figure 38. The tangent modulus for all groups were relatively the same at low stretch 

ratio values for example at 1.05 the median for groups was 3.9 MPa, after 1.05 they 

diverge to G1 with the highest, G2 and G3 were equal at 2nd highest, and G4 was the 

lowest average tangent modulus with 40.10 ± 8.15, 28.24 ± 2.46, 29.32 ± 3.18, and 

18.49 ± 2.19 MPa, respectively.  
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Figure 38. Average and SE tangent modulus for each age baboon group.  

 

To test for significance between the different groups a one-way, single factor 

ANOVA test was performed with an alpha value of 0.1 which yielded a P value of 

0.0523 indicating that within the groups there is significance. The Tukey-Kraemer 

analysis was performed on 6 pairs from the age groups consisting of G1 vs. G2, G1 vs. 

G3, G1 vs. G4, G2 vs. G3, G2 vs. G4, G3 vs. G4. The results showed that there was a 

significant difference between all pairs except G2 vs. G3, which was evident from 

Figure 38, and the results of the ANOVA and Tukey-Kraemer test were summarized in 

Table 18 in the 6th column. 

To gain a better insight into how stress-stretch ratio relationship of the baboon TM 

changes with age a separate study done by the Biomedical Engineering Laboratory at 

the University of Oklahoma performed an experiment using micro-fringe projection. 



65 

Images of the fringes were projected onto an intact TM still in the temporal bone, and 

were acquired by a digital camera connected to a surgical microscope and analyzed 

using a phase-shift method to reconstruct the surface topography. The relationship 

between the applied pressure and the resulting volume displacement was determined 

and analyzed using a finite element model implementing a hyperelastic 2nd-order Ogden 

model. Through an inverse method, the best-fit model parameters for the TM were 

determined to allow the simulation results to agree with the experimental data. The 

nonlinear stress-stretch relationship for the TM of the baboon were determined for 5 age 

groups: less than 1, 1 to 2, 2 to 3, 3 to 5 and older than 5 years of age [49]. The results 

can be seen in Figure 39 in comparison to the stress-stretch relationship of the current 

study. The tangent modulus was obtained for the 2nd order Ogden model and is shown 

in Figure 40 with the tangent modulus of this study.  Although there are differences 

between this study and the micro-fringe study the important similarity between the 

studies is that the stress-stretch relation and tangent modulus both show the mechanical 

properties of the TM decreases with age. 
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Figure 39. Static micro-fringe and uniaxial tensile stress-stretch ratio relationship 

of various baboon age groups.   

 

 

Figure 40. Static micro-fringe and uniaxial tensile tangent modulus-stretch ratio 

relationship of various baboon age groups. 
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 To elucidate the relationship between the adult baboon and the adult human the 

stress-stretch ratio relationship for both groups were plotted together within Figure 41. 

The human data was obtained from a previous study, and consisted of 11 human 

cadaver subjects that the age ranged from 51 to 92 years old of which 5 were male and 6 

were female [7]. In this study, there were 5 baboon subjects that consisted of all female, 

and the age range was 6 to 15 years, which is approximately 18 to 45 years old in 

human years. In Figure 41, the average adult baboon is slightly higher than the 

published human data. However, if additional baboons are tested that are sufficiently 

older than the current study it may be possible that the stress-stretch ratio relationship 

will continue to follow the trend observed in Figure 29 and will align with published 

human data [7].   

 

Figure 41. Adult baboon group mean SD in comparison to adult human mean SD. 
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4.2.2 Relaxation 

The average and SE stress relaxation for each group was plotted as in Figure 42. 

As mentioned before the y-axis is the stress relaxation function G(t) and is defined as 

the ratio of the stress σ(t) at time t and the initial stress σ0. The strain rate was set to 1.8 

mm/s, which was approximately 100 times the strain rate used in the uniaxial tension 

test. 

 The stress for all groups decreases with time but reaches relatively stable state 

after 100 seconds. The rate at which the stress relaxes is relatively fast at the beginning. 

Within 1 sec, 8% of the median stress is relaxed; at 5 sec, 14% of the median stress is 

relaxed; at 70 sec, 20% of the median stress is relaxed; after 100 sec the stress is stable 

at 22% of the median stress is relaxed. The mean relaxed stress after total relaxation 

was 0.78, 0.78, 0.76, and 0.76 MPa for G1, G2, G3, and G4, respectively. Based on this 

result of the change of the stress with the time under the constant stretch indicates that 

the baboon TM at any age range is a viscoelastic material. 

 To test for significance between the different groups one-way, single factor 

ANOVA tests were performed at three different time points 25, 50, and 75 sec each 

with an alpha value of 0.1 which yielded a P value of 0.4280, 0.5041, and 0.6987, 

respectively, indicating that within the groups there are no significant differences. To be 

certain, the Tukey-Kraemer analysis was performed on 6 pairs from the age groups 

consisting of G1 vs. G2, G1 vs. G3, G1 vs. G4, G2 vs. G3, G2 vs. G4, G3 vs. G4. The 

results showed that none of the pairs were significantly different from each other, and 
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the results of the ANOVA and Tukey-Kraemer test were summarized in Table 18 in the 

third, fourth, and fifth column. 

Figure 43 shows the relationship between the stress relaxation behavior of the 

TM in the adult baboon and published adult human [7]. As mentioned previously, the 

human data consisted of 9 human cadaver subjects that the age ranged from 51 to 92 

years old of which 5 were male and 6 were female (the study did not mention which 

samples were absent from the uniaxial tension test) [7]. In this study, there were 5 

baboon subjects that consisted of all female, and the age range was 6 to 15 years, which 

is approximately 18 to 45 years old in human years. Cheng et al. reported the stress 

relaxation behavior was, “within 1 sec, 10% of the stress is relaxed; at 5 sec, 20% of the 

stress is relaxed; after 50 sec, the stress relaxation gradually tends stable and finally, on 

average, 35% of the stress is totally relaxed” [7]. The adult baboon relaxed at relatively 

the same rate, but less of the stress was relaxed at each time point.  
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Figure 42. Normalized mean stress relaxation for each group. 

 

 

Figure 43. Normalized mean SD for adult baboon in comparison to adult human. 
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4.3 Discussion on Dynamic Test Results 

4.3.1 Low-Frequency 

The average SE complex modulus in the low-frequency range from 1 to 80 Hz 

was plotted for each baboon age group in Figure 44. For each age group the storage 

modulus is represented as a solid line and the loss modulus is represented as a dashed 

line. At 1 Hz to 20 Hz the storage modulus are relatively stable with the median storage 

modulus of the pediatric group of baboons at 11.62 MPa, which is higher than the 

storage modulus of the adult baboon group at 7.88 ± 0.79 MPa. From 20 to 80 Hz the 

storage modulus of all 4 groups increase to a median storage modulus of 19.76 MPa. 

The median loss modulus of the pediatric group of baboons at 1 Hz as 1.48 MPa, which 

is higher than the loss modulus of the adult baboon group at 1 Hz as 0.60 ± 0.10 MPa. 

From 20 to 80 Hz the loss modulus of all 4 groups increase to a median loss modulus of 

5.91 MPa.   
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Figure 44. Complex modulus mean for each age group. 

 

To test for significance between the different groups one-way, single factor 

ANOVA tests were performed on both the storage and loss modulus at three different 

frequencies 1, 20, and 80 Hz each with an alpha value of 0.1. ANOVA tests on the 

storage modulus yielded a P value of 0.0313 for 1 Hz, 0.0610 for 20 Hz, and 0.2937 for 

80 Hz. ANOVA tests on the loss modulus for 1, 20, and 80 Hz yielded a P value of 

0.0002, 0.0104, and 0.4108, respectively. This indicated that the storage and loss 

modulus at 1 and 20 Hz were was at least some significance. The Tukey-Kraemer 

analysis was performed for the frequencies 1, 20, and 80 Hz on 6 pairs from the age 

groups consisting of G1 vs. G2, G1 vs. G3, G1 vs. G4, G2 vs. G3, G2 vs. G4, G3 vs. 

G4. The results for the storage modulus are that the significantly different pairs were G1 

vs. G4 and G2 vs. G4 at 1 and 20 Hz, and there was no significant difference at 80 Hz. 
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However, the loss modulus showed that there was a significant difference between G1 

vs. G4, G2 vs. G4, and G3 vs. G4 at 1 and 20 Hz, but there was no significant 

difference at 80 Hz among any of the pairs. The results of the ANOVA and Tukey-

Kraemer test were summarized in Table 23. 

Table 23. Summary of low-frequency statistical analysis of the 4 age groups.  

Type of Test 
Storage Modulus at Low-

Frequency 
Loss Modulus at Low-

Frequency 

Data Point 1 Hz 20 Hz 80 Hz 1 Hz 20 Hz 80 Hz 

ANOVA P value 0.0313 0.0610 0.2937 0.0002 0.0104 0.4108 

Tukey G1 vs G2 No No No No No No 

Tukey G1 vs G3 No No No No No No 

Tukey G1 vs G4 Yes Yes No Yes Yes No 

Tukey G2 vs G3 No No No No No No 

Tukey G2 vs G4 Yes Yes No Yes Yes No 

Tukey G3 vs G4 No No No Yes Yes No 

Note: P value was obtained using one-way ANOVA, and Tukey-Kraemer analysis 

was used to assess where significance existed. Tukey-Kraemer does not yield a P 

value, but a “Yes” will be used to denote significance between groups. 

 

4.3.2 Frequency-Temperature Superposition 

Two samples from G3 (17-3L and 17-4L both are 4.5 years old) were used in the 

FTS experiment to observe how much crossover might occur between age groups. In 

Figure 27 showed that the storage modulus for the two samples were very similar to the 

group average. In Figure 28 the loss modulus for 17-4L was very close to the group 

average, and in the same figure 17-3L was higher than most samples but still within the 

groups SD. However, the two oldest samples in the group were 17-16L and 17-16R 

both of which were 15 years old. In both figures they can be seen as having the lowest 

storage and loss modulus of the group. It is possible that as the baboon ages past 10 
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years there is a severe decrease in the complex modulus of the TM, and a future study 

will need to limit the FTS method to only samples that are at least 15 years old. 

To elucidate the relationship between the adult baboon and the adult human the 

complex modulus for both groups were plotted together within Figure 45. The human 

data was obtained from a previous study and consisted of 11 human cadaver subjects 

that the age ranged from 64 to 74 years old of which 5 were female and 1 was male 

[13]. In this study there were 8 baboon subjects that consisted of 7 female and 1 male, 

and the age range was 4.5 to 15 years, which is approximately 14 to 45 years old in 

human years. 

 

Figure 45. Complex modulus average SD in high frequency obtained with FTS of 

adult baboon compared to adult human. 
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The average storage modulus at 1 Hz for the baboon was 9.12 ± 3.12 MPa and 

the human was 15.32 ± 2.99 MPa; at 100 Hz, the baboon was 10.02 ± 3.80 MPa and the 

human was 21.94 ± 3.89 MPa; at 1000 Hz, the baboon was 12.23 ± 4.13 MPa and the 

human was 23.16 ± 4.45 MPa; finally at the upper range of the human complex 

modulus of 4000 Hz the baboon storage modulus was 12.15 ± 3.93 MPa and the human 

was 27.49 ± 4.84 MPa. The average loss modulus at 1 Hz for the baboon was 0.50 ± 

0.20 MPa and the human was 1.06 ± 0.30; at 100 Hz, the baboon was 0.89 ± 0.31 MPa 

and the human was 2.88 ± 0.47 MPa; at 1000 Hz, the baboon was 1.10 ± 0.38 MPa and 

the human was 3.22 ± 0.80 MPa; finally at 4000 Hz, the baboon was 1.54 ± 0.59 MPa 

and the human was 4.19 ± 1.17 MPa. 

 

4.4 Scanning Electron Microscopy of Adult Baboon TM 

 

Figure 46. SEM image of baboon TM. Radial direction is indicated by double sided 

arrow. 
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Figure 46 shows the image obtained from SEM. The figure is currently at 500 

times zoom, and the orientation of the radial fibers is indicated by the double-sided 

arrow. The image was focuses on an area of the TM where the radial fibers separated 

slightly, which was due to the process that prepares the TM for SEM imaging. In this 

separation, there can be a different set of fibers that are running in the circumferential 

direction.  

 

4.5 Study Limitations 

 A major concern about the study is with respect to the freshness of the samples. 

As such great care was taken to insure the freshness and validity of the sample until 

testing. There have been studies that focused on the effect of freezing and thawing 

samples had on tissue, and the results showed that the mechanical properties of collagen 

does not change at the micro- or macro-scale [50]. Additionally, a separate pilot study 

was done to observe the effect of freezing and thawing had on samples and found that 

were was no significant change in the mechanical properties of the tissues tested. 

 In this study, the specimens were taken either from the posterior or anterior site 

of the TM and the loading for all experiments was along the superior-inferior or 

longitudinal direction of the specimens. The TM was considered as an isotropic and 

homogenous material for macro-mechanics study. However, it was observed from 

Figure 46 that the TM is at least a two-layer structure of radial and circumferential 

fibers. Furthermore, because the human TM is a multi-layer structure with collage fibers 

along radial and circumferential directions it can be deduced that between this evidence 
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and Figure 46 that the baboon TM is composed of a similar structure [51]. The 

ultrastructure of the baboon TM should be considered in mechanical measurements. 

 Finally, there is no precedent for the study of baboon middle ear mechanics. 

Therefore any result obtained can only be compared to the results obtained from other 

species such as the chinchilla and human. However, this is still a great first step, and the 

change in the mechanical properties of the TM with age can be further studied using a 

large sample size or by using different experimental methods.  
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Chapter 5: Conclusion 

5.1 Summary of Findings 

 In order to determine the effect age on the mechanical properties of the baboon 

TM, four age groups were establish: less than 1, 1 to 3, 3 to 5, and older than 5 years of 

age. Several experiments were conducted for each age group, starting with quasi-static 

testing uniaxial tension, and stress relaxation tests, and followed by direct measurement 

of the complex modulus in the low frequency range of 1 to 80 Hz. The adult baboon 

group was additionally tested in the auditory frequency range by using the FTS 

principle which measures the complex modulus at the frequencies 1, 2, 5, 10, 20, and 40 

Hz at three different temperatures 5°C, 25°C, and 37°C. Then using a shift factor the 

complex modulus associated with the lower temperatures are shifted into the higher 

frequency range with a reference temperature of 37°C. Quasi-static and dynamic testing 

revealed that as the baboon TM ages the mechanical properties decrease. The stress-

stretch ratio relationship obtained from the uniaxial tension test showed that the adult 

baboon was significantly lower than the pediatric age range. For all age groups, the 

individual stress-strain curves obtained from the uniaxial tension test were fitted with a 

1st order hyperelastic Ogden model, and the paramters were used to obtain the tangent 

modulus-strain relationship. The youngest group had the highest, the oldest group had 

the lowest tangent modulus. The baboon groups with an age range of 1 to 3 and 3 to 5 

years of age were statistically the same as each other, but between the youngest and 

oldest baboon samples. Therefore, the conclusion is that the tangent modulus decreases 

with age. The stress relaxation modulus was statistically the same across all age groups. 

The direct measurement of the complex modulus in the low frequency range of 1 to 80 
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Hz showed that as the baboon ages the storage modulus and loss modulus decreased but 

only after 5 years of age. The age groups that were less than 1, 1 to 3, and 3 to 5 years 

of age had the same complex modulus, but were significantly higher than the adult 

baboon group for frequencies 1 through 20 Hz.  

 

5.2 Future Studies 

 This study focused on the mechanical properties obtained for quasi-static and 

low frequency testing from young to adult baboon TMs, and also obtained the complex 

modulus for the adult baboon TM. However, an additional study can be done to 

measure the complex modulus in the auditory frequency range for each baboon group 

instead of just the adult group. This allow for a better understanding of how the 

complex modulus changes with age across the entire frequency range instead of just 1 to 

80 Hz. An additional study can be done to further support evidence of how the complex 

modulus changes with age. For instance, instead of using the DMA coupled with the 

FTS principle to directly measure the complex modulus in the auditory frequency range 

the acoustic driving with inverse problem-solving method can be used. The method is 

conducted by measuring the vibration of the TM strip specimen induced by acoustic 

loading and measured by laser Doppler vibrometry (LDV) over a frequency range of 

200-8000 Hz. Then an inverse-problem solving method with finite element modeling is 

used to determine the complex modulus of the TM specimen. This method has been 

used to measure the TM and other soft tissues of the middle ear [12]. Understanding 

how the mechanical properties of the TM changes with age is a great first step to how 

the ear changes with age. However, to achieve a better understanding additional soft 
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tissues of the ear should be studied in different age groups. Soft tissues that need further 

study are the suspensory ligaments tendons, incudomalleolar joint, incudostapedial 

joint, and stapedial annular ligament. Once the mechanical properties of these soft 

tissues are known they can be used as inputs into the adult and infant baboon model 

developed by Biomedical Engineering Laboratory at the University of Oklahoma [25]. 

With that additional simulations can be performed on how sound transmission will be 

affected by age and pathologies at different ages.  
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Appendix A: List of Abbreviations 

TM: Tympanic membrane. 

G1: Group 1 of baboons age range is less than 1 year old. 

G2: Group 2 of baboons age is between 1 and 3 years old. 

G3: Group 3 of baboons age is between 3 and 5 years old. 

G4: Group 4 of baboons age range is greater than 5 years old. 

DMA: Dynamic Mechanical Analyzer. 

σ: Stress in MPa calculated by the force (N) divided by the cross-sectional area (mm2). 

ε: Strain (mm / mm) calculated by L / L0. 

λ: Stretch ratio calculated by 1 + ε.  

SEM: Scanning Electron Microscopy 

SE: Standard Error of the Mean 

SD: Standard Deviation 

FE: Finite element 

OCT: Optical coherence tomography 

FTS: Frequency-temperature superposition 


