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Abstract 

 Bacteria that produce sulfide have been investigated for their role in corrosion of 

steel surfaces. Attention has mainly focused on bacteria able to reduce sulfate to sulfide 

(SRB). However, bacteria that produce sulfide by reducing thiosulfate (TRB) but can’t 

reduce sulfate, have recently become of interest for their role in causing corrosion. 

Current molecular detection methods fail to detect these TRB, which may use a 

different pathway than SRB for thiosulfate and sulfite reduction. This study investigates 

the genetic potential and physiology of a TRB genus, Halanaerobium, to produce 

sulfide from thiosulfate reduction and sulfite reduction. Six Halanaerobium genomes 

were interrogated for genes involved in thiosulfate and sulfite reduction, using the 

BLAST algorithm. The genomic investigation revealed that five of the six contain 

sequences of a gene coding for a rhodanese-like protein, rdlA, which can reduce 

thiosulfate to sulfite and subunits for anaerobic sulfite reductase, asrABC, which 

reduces sulfite to sulfide. Three of the strains, two which contained rdlA and asr 

sequences, and one which did not contain these sequences were then used in an 

experiment to confirm reduction of thiosulfate and reduction of sulfite. The strains were 

grown for 12 days under three treatments; medium amended with thiosulfate alone, with 

sulfite alone, and amended with both thiosulfate and sulfite. The concentration of 

thiosulfate, sulfite, sulfide and rhodanese activity was measured over the course of the 

experiment. The two strains which did contain rdlA and asr sequences, lost thiosulfate 

and gained sulfite and sulfide in the treatments amended with thiosulfate alone or with 

both thiosulfate and sulfite. Rhodanese activity was also detected in these treatments 

with the same two strains. The same two strains lost sulfite and gained sulfide in the 



 x 

treatment amended only with sulfite, and rhodanese activity was not observed. The 

strain without rdlA and asr sequences did not lose thiosulfate or sulfite nor did it 

produce sulfide in any of the treatments. Therefore, detection of rdlA and asr sequences 

in a strain corresponded with whether a strain reduced thiosulfate and sulfite and 

produced sulfide. The genomic and physiological evidence presented here suggests that 

Halanaerobium use a rhodanese-like protein to reduce thiosulfate to sulfite and sulfide 

and then anaerobic sulfite reductase to reduce sulfite to sulfide.
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Chapter 1: Literature Review 

Biocorrosion in the Oil and Gas Industry 

 Corrosion in the oil and gas industry has many causes. The focus of this brief 

overview is biocorrosion from bacteria. Microbially induced corrosion (MIC), or 

biocorrosion is the influence of microorganisms on corrosion. Microbial activity, such 

as creating corrosive compounds, can lead to damage of steel surfaces. These corrosive 

products can include acetate and sulfides (Little and Lee, 2009). The National 

Association of Corrosion Engineers reports that the annual cost of corrosion in the oil 

and gas industry is $1.372 billion (https://www.nace.org/Corrosion-

Central/Industries/Oil---Gas-Production). It is estimated that about 20% of this cost is 

related to MIC (Almahamedh et al., 2011). Due to the need to mitigate this MIC many 

studies have sought to characterize bacterial communities and their mechanisms for 

corrosion (Beech and Sunner, 2004; Dowing et al., 1991). Bacterial communities of oil 

and gas facilities, including drill sites, have been investigated for their inhabitants and 

genetic potential to produce corrosive compounds (Marks et al., 2016; Booker et al., 

2017; Liang et al., 2014). These studies have also provided methods of detection for 

best practices which include both culture dependent (Bhagobaty, 2014) and molecular 

detection (Muyzer and Marty, 2014; Nagarajan and Loh, 2014). Sulfate reducing 

bacteria (SRB) have been a main focus of research for their ability to produce sulfide 

(Enning and Garrelfs, 2014). SRB such as Desulfovibrio are capable of sulfide 

production from reducing sulfate, but also can reduce thiosulfate to sulfite and sulfide 

(Haschke et al., 1971). However, thiosulfate reducing bacteria that cannot reduce sulfate 

have been gaining attention for their ability to produce sulfide (Booker et al., 2017; 
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Lipus et al., 2017; Liang et al., 2014; Liang et al., 2016). Recent studies have shown 

that a non-sulfate reducing genus Halanaerobium is capable of thiosulfate reduction 

which produces sulfide (Ravot et al., 2005; Booker et al., 2017). This study uses 

Halanaerobium as a model for thiosulfate reducing bacteria (TRB) that do not reduce 

sulfate. 

Hydraulic Fracturing Fluids as a Microbial Habitat 

The drilling environment consists of a drilling platform, where a bore hole extends 

down into the ground. The average depth of a well drilled in 2008 was 1.81 km for 

exploratory and development wells (U.S Energy Information Administration, EIA.gov). 

A study by Itavaara et al. (2011) investigated the bacterial communities at different 

depths of a well in the Outokumpo formation in eastern Finland. The results of these 

studies showed that Firmicutes dominated the community at 1.4-1.5km with a Na+ 

concentration of 1070-1330mg/L and temperature of 35o- 40oC. Investigations of the 

bacterial community of some oil and gas production facilities have found sulfide 

producing bacteria as dominant organisms (Booker et al., 2017; Lipus et al., 2017; 

Marks et al., 2016). Sulfide producing bacterial genera isolated from oil and gas 

facilities include Desulfovibrio (Haschke et al., 1971; Nakatsukasa and Akagi, 1969; 

Hatchikian, 1975), Thermotoga (Ravot et al., 1995), Thermoanaerobacter (Fardeau et 

al., 1993), Desulfotomaculum (Nilsen et al., 1996), Halanaerobium (Booker et al. 2017; 

Ravot et al., 1997; Bhupathiraju et al., 1994; Bhupathiraju et al., 1999) and many 

others. The growth temperature range of Halanaerobium species range from 15o-51o C. 

Along with enjoying a high temperature members of the genera Halanaerobium also 

prefer high salt conditions (about 10%) (Bhupathiraju et al., 1994; Bhupathiraju et al., 



 3 

1999; Ravot et al., 1997; Zeikus et al., 1983). This makes high temperature and high salt 

produced fluids from oil and gas drilling ideal growth environments for 

Halanaerobium. Also, various chemicals added during drilling can be used by 

microbes. A Halanaerobium strain degraded guar gum, which is a polysaccharide 

commonly used in drilling (Liang et al., 2016). 

Halanaerobium 

 The genus Halanaerobium is part of the family Halanaerobiaceae, Order 

Halanaerobiales, Class Clostridia, Phylum Firmicutes. They are non-spore forming, 

non-motile, Gram-negative rods, obligate anaerobes, which ferment sugars like 

fructose, glucose and cellulose (Zeikus et al., 1983). Halanaerobium strains have been 

isolated from a variety of environments around the world which include oil fields, high 

saline lakes, and oil and gas produced fluids. Their optimal salt concentration is about 

10% (Bhupathiraju et al., 1994; Bhupathiraju et al., 1999; Ravot et al., 1997), but, H. 

praevalens can tolerate up to 30% salt (Zeikus et al., 1983). Optimal temperatures are 

about 37o-40oC, but H. salsuginis and H. praevalens can tolerate up to 50oC 

(Bhupathiraju et al., 1994; Bhupathiraju et al., 1999; Ravot et al., 1997; Zeikus et al., 

1983). Recent studies have investigated the microbial community of highly saline 

produced fluids and found Halanaerobium to be predominant member of the 

community (Booker et al., 2017). An interesting feature of the genus is that some 

species are reported thiosulfate reducers (Bhupathiraju et al., 1999; Ravot et al., 1997; 

Zeikus et al., 1983) while others are not (Brown, 2012, Bhupathiraju 1994). This ability 

to reduce thiosulfate to sulfide is of concern, due to the corrosive properties of sulfides.  
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Thiosulfate Disproportionation 

 Thiosulfate disproportionation can be classified into four pathways which 

reduce thiosulfate to sulfite and hydrogen sulfide, presented below (Caspi et al., 2014). 

Thiosulfate Sulfurtransferase (Rhodanese, EC 2.8.1.1) 

Sulfurtransferases (EC 2.8.1.X) are classified as catalyzing the transfer of sulfur atoms 

from a sulfur donor to a sulfur acceptor. The sulfurtransferase known as “rhodanese” 

(EC 2.8.1.1) has been described in many prokaryotes and eukaryotes (Westley et al., 

1983). The reaction is described as thiosulfate + hydrogen cyanide  sulfite + 

thiocyanate + 2H (KEGG enzyme 2.8.1.1). Rhodanese proteins are widespread enzymes 

which are thought to be used for cyanide detoxification (Cipollone et al., 2005; 

Raybuck et al., 1992). Rhodanese can be classified into 4 groups (Cipollone et al., 

2007). Group I are single domain proteins that contain only one catalytic site. This class 

of rhodanese has been observed in E. coli as a thiosulfate sulfurtransferase (GlpE), 

which is able to produce thiocyanate from thiosulfate in the presence of thiosulfate and 

cyanide (Ray et al., 2000). Group II are tandem-domain proteins, where each domain 

has a rhodanese module and an active cysteine or inactive aspartate residue (Bordo and 

Bork, 2002). A tandem-domain rhodanese-like protein has been investigated in 

Pseudomonas, coded by rhdA, and shown to be used for cyanide detoxification 

(Cipallone et al., 2008). An interesting Group II tandem-domain rhodanese-like protein 

is found in Halanaerobium congolense DSM11287, rdlA. The protein coded by rdlA 

was predicted as a thiosulfate sulfurtransferase and has two domains with active 

cysteine residues. While the role of RdlA is not certain, it is thought to be involved in 

reducing thiosulfate (Ravot et al., 2005).  Group III rhodanese are multi-domain 
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enzymes where the rhodanese domain is found with other active domains (Cipollone et 

al., 2007). An example of this group can be found in Arabidopsis thaliana, which has a 

protein with an inactive rhodanese homology domain, is described as an extracellular 

calcium sensing receptor, suggesting it has a signaling-like function (Han et al., 2003). 

Group IV rhodaneses are elongated active-site loop proteins. In Cdc25A (Homo 

sapiens), the rhodanese domain is an elongated stretch of the active-site loop (McCain 

et al., 2002).  

Thiosulfate-thiol Sulfurtransferase (EC 2.8.1.3) 

 Thiosulfate-thiol sulfurtransferase (EC 2.8.1.3) uses a thiol like L-cysteine, 

glutathione, or L-homocysteine to reduce thiosulfate to sulfite and sulfide (Chauncey et 

al., 1983). The reaction is: thiosulfate + 2 glutathione = sulfite + glutathione disulfide + 

sulfide (KEGG Enzyme 2.8.1.3).  The reaction is characterized as transferring the 

sulfane sulfur (the sulfur atom without oxygen attached) to the thiol, which forms sulfite 

and a persulfide. Chauncey et al. (1987) showed this reaction with glutathione and 

concluded S-sulfanylglutathione was an intermediate which reacted with excess 

glutathione to produce hydrogen sulfide. Species that have been reported using this 

enzyme include Thiobacillus thiooxidans (Suzuki and Werkman, 1958) and 

Thiobacillus thioparus (Peck and Fisher, 1961). 

Thiosulfate Reductase (Cytochrome) (EC 1.8.2.5) 

A thiosulfate reductase which uses reduced cytochrome as a sulfur group 

acceptor can be found in species like Desulfovibrio vulgaris (Haschke et al., 1971) D. 

gigas (Hatchikian, 1975), and D. nigrificans (Nakatsukasa and Akagi, 1969). The 

reaction is thiosulfate + 2 ferrocytochrome c3    sulfite + hydrogen sulfide + 2 
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ferrocytochrome c3 (KEGG Enzyme 1.8.2.5, http://www.genome.jp). In D. 

desulfuricans the enzyme has been partially purified and described as using cytochrome 

c to move electrons between the thiosulfate reductase and the hydrogenase (Ishimoto 

and Koyama, 1955; Ishimoto and Koyama, 1957). The thiosulfate reductase of D. 

vulgaris Hildenborough was purified and described as reducing thiosulfate in the 

presence of hydrogen to sulfite and sulfide (Haschke et al., 1971). Using this thiosulfate 

disproportionation path, D. sulfodismutans was shown to grow when acetate was also 

present as a carbon source (Bak and Cypionka, 1987). 

Thiosulfate Reductase (Quinone) (EC 1.8.5.5) 

Thiosulfate reductases are characterized as reducing thiosulfate to sulfite and sulfide 

and are encoded by the locus phs (Clark and Barrett, 1987). Thiosulfate reductases have 

been reported in enteric bacteria such as Salmonella typhimurium to reduce thiosulfate 

to sulfite and sulfide (Stoffels et al., 2012). This Phs enzyme is characterized as a 

molybdopterin oxidoreductase consisting of three subunits (ABC), with subunit A 

functioning as the catalytic subunit (Heinzinger et al., 1995).  The reaction is: 

thiosulfate + a quinol = sulfite + hydrogen sulfide (KEGG 1.8.5.5).  

Dissimilatory Sulfite Reductases 

There are two known enzymes for sulfite reduction; the anaerobic sulfite reductase 

(Huang & Barrett, 1990) and the “dissimilatory” sulfite reductase (Lee et al., 1973; E.C. 

1.8.99.5). Dissimilatory sulfite reductases catalyze the reduction of sulfite to sulfide.  

Dissimilatory Sulfite Reductase (EC 1.8.99.5) 

Sulfate-reducing bacteria (SRB) include diverse groups such as Proteobacteria (Beeder 

et al., 1995) and Fimicutes (Daumas et al., 1988). These SRB have been found to 
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contain a dissimilatory sulfite reductase coded for by dsrAB (Muller et al., 2014). The 

first described dissimilatory sulfite reductase was purified from Desulfovibrio vulgaris 

and described as a tetramer with two types of subunits: DsrA, DsrB ( Lee, 1973). A 

recent study has shown a third subunit, coded by dsrC, interacts with the DsrAB to 

produce hydrogen sulfide. The authors suggest that DsrC interacts with DsrAB by 

extending its C-terminus and inserting it into a cleft between the DsrA and DsrB 

proteins (Oliveira et al., 2008). A more recent study supported this work and showed in 

D. vulgaris cell extracts DsrC was mostly not associated with DsrAB, and can be 

available to interact with other proteins (Venceslau et al., 2013).  

Anaerobic Sulfite Reductase  

Anaerobic sulfite reductase (Asr, no EC number assigned) has been investigated in 

Salmonella enterica typhimurium for its function and found to reduce sulfite to sulfide 

via a three-subunit complex. The gene sequences coding for the three subunit proteins 

(asrABC) are located in an operon, which are induced by sulfite in anaerobic conditions 

(Huang and Barrett, 1990; Huang and Barrett, 1991). Like other dissimilatory sulfite 

reductases, the enzyme is composed of a flavoprotein (AsrB) and a hemoprotein 

containing a siroheme in the active site (AsrC) (Huang & Barrett, 1990). Currently the 

enzyme has not been purified. Information for Asr is limited to mostly Salmonella 

enterica typhimurium, although two operons coding for anaerobic sulfite reductase, 

asrABC1 and asrABC2, were identified in Clostridium perfringens (Andre et al. 2010). 

However, metagenomic studies have shown oil and gas drilling fluids, from the Utica 

Shale and Marcellus Shale, contain genes for the Asr sulfite reductase and not the 

dissimilatory sulfite reductase (Booker et al., 2017; Lipus et al., 2017). These fluids are 
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dominated by Halanaerobium, and the authors have suggested that Asr is the sulfite 

reductase used by Halanaerobium.  
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Chapter 2: Thiosulfate Reduction in Halanaerobium 

Introduction 

Developing techniques to detect bacteria involved in corrosion of steel in the oil 

and gas drilling industry has long been a target of research. Early studies focused on the 

detection of sulfate reducing bacteria (SRB), which reduce sulfate to sulfite then to 

sulfide, as a major group responsible for sulfide production in oil production (Cord-

Ruwisch et al., 1988). The main molecular detection targets for these SRB are the genes 

coding for dissimilatory sulfite reductase (DsrAB, EC 1.8.99.5), which have been 

shown to be effective at quantification of SRB populations (Ben-Dov et al., 2007; 

Agrawal & Lal, 2009). However, the Dsr is not the only enzyme know to reduce sulfite 

to sulfide; Huang et al. (1990) demonstrated the anaerobic sulfite reductase in 

Salmonella enterica typhimurium LT2 (Asr, EC not assigned) can also produce sulfide 

from the reduction of sulfite. The Asr has been detected in other genera associated with 

oil production such as Clostridium (Harrison et al., 1984; Andre et al., 2012), but is not 

currently a target for monitoring sulfide producing bacteria. In addition, sulfide can be 

produced not only by the reduction of sulfate to sulfite and then sulfide, but also by the 

reduction of thiosulfate. Thiosulfate is added to drilling fluids and is available to 

microorganisms for reduction to sulfide (Liang et al., 2014). Thiosulfate reducing 

bacteria should therefore be of interest in biocorrosion mitigation, especially as the 

reduction of thiosulfate is suggested to hasten growth of Halanaerobium (Ravot et al., 

1997).  

 Thiosulfate reducing bacteria that reduce sulfite to sulfide are not as well studied 

as SRB, especially thiosulfate reducing bacteria associated with oil and gas production. 
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However, Ravot et al. (1995) isolated a thiosulfate reducing strain of Halanaerobium 

(H. congolense DSM11287) from a corroding oil pipeline and other strains of 

Halanaerobium have been shown to produce sulfide from reducing thiosulfate (H. 

kushneri: Bhupathiraju et al., 1994; Halanaerobium strain DL-01: Liang et al.,2016). 

 Halanaerobium is a genus (Phylum: Firmicutes, Class: Clostridia, Order: 

Halanaerobiales, Family: Halanaerobiaceae) of obligatory anaerobic bacteria whose 

strains grow at a NaCl concentration of 3%-25%, pH 5-11, temperature range 15o-51oC 

and ferment sugars like glucose, fructose, and sucrose (Ravot et al., 1997; Bhupathiraju 

et al., 1994; Bhupathiraju et al. 1999; Brown et al., 2012; Zeikus et al., 1983). They 

have been found in locations around the world, including drilling sites (Lipus et al., 

2017), drilling fluids (Ravot et al., 1997; Bhupathiraju et al., 1994; Bhupathiraju et al. 

1999; Liang et al., 2016) and even highly saline lakes (Brown et al., 2012; Zeikus et al., 

1983). Finding Halanaerobium in various locations should be of concern for their 

sulfide production that could lead to corrosion. H. congolense DSM11287 is a well 

know thiosulfate reducing strain of Halanaerobium described as producing sulfide from 

thiosulfate reduction. The first report of this species was also the second report of a 

species in the order Halanaerobiales able to reduce thiosulfate to sulfide (Ravot et al., 

1997). 

Metagenomic studies of produced water from hydraulic fracturing have shown 

that while sulfate reducing bacteria are present, thiosulfate reducing bacteria also 

inhabit the water and in samples with high salt and high temperature can be dominant 

organisms (Lipus et al., 2017). A study of a Mid-East oil field production facility 

experiencing accelerated biocorrosion found Halanaerobium was a dominant genus at 
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multiple sampling points in the facility (Marks et al., 2016). In high salt produced water 

from a hydraulically fractured well the bacterial community was found to be dominated 

by halophilic, sufidogenic bacteria from the Halanaerobiales order (Liang et al., 2016). 

and a thiosulfate-reducing Halanaerobium (strain DL-01) was isolated and shown to 

corrode mild steel (Liang et al., 2016). Therefore, determining the abundance and 

activity of Halanaerobium in oil and gas producing facilities should be of concern. 

Investigation of the genetic basis of production of sulfide by Halanaerobium could 

result in molecular targets for monitoring 

Genetic and Enzymatic Basis of Thiosulfate Reduction 

 There are several different pathways that produce sulfide from reducing 

thiosulfate, and are classified under thiosulfate disproportionation (Capsi et al., 2013). 

Thiosulfate disproportionation I which uses a thiosulfate-thiol sulfurtransferase (E. C. 

2.8.1.3; Chauncey et al., 1983), is a thiol dependent reaction which reduces thiosulfate 

to sulfite and hydrogen sulfide, and was first observed in Saccharomyces cerevisiae 

(Kaji et al., 1959). Thiosulfate disproportionation II uses a cytochrome to complete the 

reduction of thiosulfate. A cytochrome dependent thiosulfate reductase (EC 1.8.2.5) was 

purified from Desulfovibrio vulgaris Hildenborough (Haschke et al., 1971). The third 

option, thiosulfate disproportionation III, is a quinone dependent membrane bound 

complex with the thiosulfate reductase subunit coded for by phsABC. This complex has 

mostly been studied in Salmonella enterica typhimurium where the Phs is well 

described as an molybdoterin oxidoreductase (EC 1.8.5.5; Clark & Barrett, 1987; 

Heinzinger et al., 1995). The final reduction path which can produce sulfide is 

thiosulfate disproportionation IV. In this reaction, a rhodanese-like protein reduces 
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thiosulfate to sulfite and thiocyanate in the presence of cyanide (Cippollone et al., 

2005). This type of rhodanese protein is described as a thiosulfate sulfurtransferase (EC 

2.8.1.1). A tandem domain rhodanese-like protein, coded for by rdlA, was identified in 

H. congolense DSM11287, and suggested as the enzyme responsible for thiosulfate 

reduction in this organism (Ravot et al., 2005). 

Sulfite reduction can be accomplished using a sulfite reductase. The 

dissimilatory sulfite reductase (Dsr, EC 1.8.99.5), encoded by the dsrA and dsrB genes, 

is used by many sulfate reducing bacteria to reduce sulfite generated from sulfate 

reduction. DsrAB is well studied in sulfate reducing bacteria, due to their role in the 

geochemical cycling of sulfur and their global presence (Pester et al. 2012; Muyzer and 

Stams, 2008). In D. vulgaris Hildenborough the enzyme has been purified, which 

revealed the DsrA binds two sirohydrochlorin and two 4Fe4S centers while the DsrB 

binds two siroheme 4Fe-4S cofactors (Oliveira et al., 2008). 

Another sulfite reductase, anaerobic sulfite reductase (Asr) enzyme is able to 

reduce sulfite to sulfide. It is well described in S. enterica typhimurium LT2 as a 3-

subunit enzyme, AsrA, AsrB, and AsrC (Huang and Barrett, 1990; Huang & Barrett, 

1991). The AsrA and AsrC subunits have 4Fe-4S ferredoxins and the AsrB has an 

oxidoreductase domain (Huang et al., 1991). Recent studies have shown the Asr 

subunits: asrA, asrB, and asrC, are expressed at higher levels when thiosulfate is present 

(Booker et al., 2017). 

Genetic Basis of Thiosulfate reduction in Halanaerobium 

A thiosulfate sulfur-transferase rhodanese-like protein with potential active sites, 

encoded by rdlA, has been described in H. congolense DSM11287, a thiosulfate 



 13 

reducing species (Ravot 1997; Ravot 2005). As mentioned previously, the rhodanese 

catalyzes the reduction of thiosulfate to sulfite and thiocyanate when cyanide is present. 

The rhodanese-like protein encoded by rdlA, was suggested to be responsible for 

thiosulfate reduction in H. congolense DSM11287 (Ravot et al., 2005). The detection of 

this enzyme in a thiosulfate reducing Halanaerobium species makes it likely to find it in 

other thiosulfate reducing Halanaerobium, but their genomes have not been searched 

for genes coding for other thiosulfate disproportionation enzymes. Prior studies have 

also reported genomes of Halanaerobium reconstructed from hydraulically fractured 

well metagenome samples contain sequences for asrA, asrB, and asrC (Booker et al., 

2017). Halanaerobium are not detected via the dsrAB in qPCR, so the logical choice, 

supported by other reports (Booker et al., 2017; Lipus et al., 2017), is that anaerobic 

sulfite reductase is the enzyme used by Halanaerobium species to reduce sulfite to 

sulfide. 

 The hypothesis of this research was that the presence of various thiosulfate 

reducing and sulfite reducing genes in the genomes of Halanaerobium strains grant 

those strains the ability to reduce thiosulfate and sulfite and produce sulfide. Previous 

research identified thiosulfate and sulfite reducing genes in metagenomic data 

dominated by Halanaerobium and correlated sulfide production with loss of thiosulfate 

(Booker et al., 2017). However, no study has shown direct evidence of thiosulfate 

reduction and sulfite reduction leading to sulfide production. This study combines 

genomic and physiological investigation of the same strains to present a scenario for the 

genetic basis of thiosulfate and sulfite reduction by Halanaerobium.  In the 

physiological investigation, the concentration of thiosulfate, sulfite, sulfide, and 
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rhodanese activity is measured over time in three different strains of Halanaerobium 

grown in media containing thiosulfate or sulfite. The genomes of the three strains 

chosen had been interrogated for the presence of thiosulfate reductases and sulfite 

reductases, and the strains varied in whether or not they contain sequences for a 

thiosulfate reductase and/or a sulfite reductase. In addition, this research reports the 

novel finding of production of sulfide from sulfite by Halanaerobium. 

Materials & Methods 

Origin of Halanaerobium Strains 

 H. congolense DSM11287 was purchased from the DSZM (German Collection 

of Microorganisms and Cell Cultures). H. salsuginis (ATCC51327) and H. kushnerii 

(ATCC7000103) were purchased from the ATCC (American Type Culture Collection). 

H. hydrogeniformans DSM 2228 (Brown et al., 2012) was acquired from Dr. Melanie 

Mormile. It was originally isolated from a haloalkaline lake, Soap Lake, in Washington 

State. H. vreelandii ZB2A was collected from Annette De Capite, and is a novel species 

isolated from a middle east oil field (De Capite, 2015).  

Cultivation of Halanaerobium  

The defined medium base contained the following per liter: NH4Cl, 1.0g; KCl, 

0.1g; KH2PO4, 0.1g; MgSO4·7H2O; 0.2g; CaCl2·2H2O, 0.04g; PIPES (piperazine-N,N’-

bis[2-ethanesulfonic acid]) dipotassium salt, 1.5g; yeast extract, 1.0g; glucose, 5g; 

resazurin, 0.0005g; L-cysteine, 0.005g; and Na2S·9H2O, 0.005g, as well as 5 mL of 

trace metal solution (Tanner, 2007), 10 mL of vitamin solution (Tanner, 2007), and a 

pure N2 gas phase. The medium was adjusted to culture each strain under optimum 
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conditions of pH, temperature, and salt content as shown in Table 1. All 3 cultures were 

grown anaerobically and transferred to fresh media every 7 days. 

Whole Genome Sequencing and Contiguous Sequence Assembly 

 H. vreelandii ZB2A, H. kushnerii ATCC700103, and H. congolense DSM11287 

were grown in defined medium containing 15 mM/L sodium thiosulfate and then 

collected in early stationary phase by centrifuging 6 mL of culture at 6,000Xg for 15 

minutes. Pellets were washed twice in an appropriate brine solution and then 

resuspended in 1 mL of Tris EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0). 

Resuspended samples were treated with DNAzol Direct (DN131, Molecular Research 

Center) and proteinase-K (Thermoscientific EO0491) prior to DNA extraction with an 

automated nucleic acid extraction instrument (Maxwell® 16 Cell LEV Total RNA 

Purification Kit AS1222 by Promega), as described by Oldham et al. (2012). The 

genomic DNA of H. congolense DSM11287, H. vreelandii ZB2A, and H. kushnerii 

ATCC700103 were sequenced at Oklahoma Medical Research Foundation, Oklahoma 

City, Oklahoma using an Illumina Miseq (250 base pair paired ends) and then 

assembled into contiguous sequences (contigs). This was done by first removing 

Illumina sequence adapters from the reads using Cutadapt 1.14 (Martin et al. 2011). 

Biopieces was then used to trim reads to a quality score of 30 (BIOpieces, 

github.com/maasha/biopieces). Trimm-o-matic (Bolger et al., 2014) was used to remove 

reads less than 50 or greater than 250 base pairs, and then pairs were mated. Quality 

trimmed mated reads were de novo assembled by Velvet (Zerbino et al., 2008) into 

contigs 1500-1750 base pairs long. Genomic contigs for H. praevalens DSM 2228 

(CP002175.1), H. salsuginis ATCC51327 (NZ_FOTI01000001.1), and H. 



 16 

hydrogeniformans DSM 6643 (NC_014654.1) were obtained from the Joint Genome 

Institute database (genome.jgi.doe.gov). 

Gene Detection using Custom Workflow 

 To explore the genomic potential of the Halanaerobium species a workflow was 

designed to locate target genes for thiosulfate (qrcB, bisC, rdlA, and phsABC) and 

sulfite reduction (dsrA, dsrB, asrA, asrB, asrC). Genomic contigs of H. congolense 

DSM11287, H. kushnerii ATCC700103, H. vreelandii ZB2A, H. salsuginis ATCC51327 

(NZ_FOTI01000001.1), H. hydrogeniformans DSM6643 (NC_014654.1), and H. 

praevalens DSM2228 (CP002175.1) were examined with Prodigal (Hyatt, 2010) and 

open reading frames (ORF) were predicted using default parameters. The ORFs were 

translated into amino acids to be used for gene detection. 

 The Pfam database (Finn et al., 2016) was used to determine the protein family 

for each Asr subunit. For this search H. congolense Asr amino acid sequences for AsrA 

(WP_073157054.1), AsrB (WP_073157057.1), and AsrC (WP_073157060) were used. 

Amino acid sequences from S. typhimurium LT2 for AsrA (NP_461483.1), AsrB 

(AAA99276.1), and AsrC (AAL21444.1) were also submitted to determine if the 

subunits contain the same protein families. If the subunits for the two species contain 

the same protein families, then they are assumed to have the same function.  

Specific Gene Detection Using BLAST 

To determine specific genes from Halanaerobium species in the investigated genomes 

BLAST (Altschul et al., 1990) was used. For thiosulfate reduction to sulfite amino acid 

sequences from a thiosulfate-thiol sulfurtransferase (from Thiobacillus denitrificans, 

WP_059759455.1), thiosulfate reductase (from Desulfovibrio vulgaris Hildenborough, 
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YP_009398.1), PhsB (from S. enterica subsp. enterica serovar typhimurium, 

WP_070789800.1), and RdlA (from H. congolense, AAS68581.1) were used as a query 

against the genome contigs of each species using BLASTp. The AsrA, AsrB, and AsrC 

subunit amino acid sequences from H. congolense (WP_073157054.1, 

WP_073157057.1, WP_073157060) and H. salsuginis (WP_089861877.1, 

WP_089861878.1, WP_089861879) and DsrA and DsrB subunit amino sequences from 

Desulfovibrio vulgaris str. Hildenborough (AAA70107.1, AAA70107.1) were queried 

using BLASTp against the predicted open reading frames from prodigal for the genome 

contigs for each species. The default BLASTp parameters were used e.g.: expect 

threshold: 10, word size: 6, maximum matches in a query range: 0, matrix: blossum62, 

gap cost: existence,11, extension, 1, and conditional composition score matrix 

adjustment. For all of these BLASTp queries a percent Grade cutoff of 35% was used to 

confirm a hit; Grade is a weighted score that combines the E-value, % pairwise identity 

and query coverage. This search was done for H. congolense DSM11287, H. vreelandii 

ZB2A, H. kushnerii ATCC700103, H. salsuginis ATCC51327, H. praevalens DSM2228, 

and H. hydrogeniformans DSM6643. 

 To confirm a BLAST hit the sequence is used to search the Pfam database and 

determine protein families found in the sequence. The protein families returned must 

match the protein families for the previously queried sequences from H. congolense 

(WP_073157054.1, WP_073157057.1, WP_073157060) and H. salsuginis 

(WP_089861877.1, WP_089861878.1, WP_089861879). The Pfam protein families for 

each sequence are listed in Appendix A. 
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Thiosulfate and Sulfite Utilization 

To determine if Halanaerobium species are able to reduce thiosulfate to sulfite 

and then reduce sulfite to sulfide an experiment was designed to measure thiosulfate 

loss, sulfite increase/decrease and sulfide increase.  

Three treatments were setup using 160 ml serum bottles containing 90 ml of 

Halanaerobium base broth. The first treatment had broth amended with 10mM/L final 

concentration of sodium thiosulfate (Sigma, S-7143), the second was amended with 

2mM/L final concentration of sodium sulfite (Fisher Scientific, BP355-500), and the 

third was amended with both 10mM/L final concentration of sodium thiosulfate and 

2mM/L sodium sulfite. Each treatment had three replicates inoculated with a live 

culture and one bottle inoculated with a culture killed by autoclaving (“heat-killed 

control”). An inoculum of each species was prepared by incubating a 200 ml culture for 

seven days. H. congolense DSM11287 and H. salsuginis ATCC51327 were incubated at 

45o C and H. hydrogeniformans DSM6643 was incubated at 31o C. From the inoculum 

50 ml was transferred to a separate anoxic bottle and then autoclaved to use as the heat 

killed inoculum. Once bottles were amended with thiosulfate, sulfite, or both thiosulfate 

and sulfite, 10 ml of inoculum was added to the bottle. Day 0 (T0) was defined as the 

day the inoculum was added to bottles. Measurements taken during the experiment 

included optical density (OD) at 600 nM using a spectrophotometer (Biochrom WPA 

Biowave II). Thiosulfate and sulfite were sampled from the liquid phase and their 

concentration determined from colorimetric titration kits from CHEMetrics (thiosulfate 

K-9705, range = 5-50ppm, min detection = 0.05mmol/L; sulfite K-9650, range = 50-

500ppm, min. detection= 0.6 mmol/L). The thiosulfate and sulfite kits use the 



 19 

iodometric method (USEPA Method 377.1, 1983) for detection. Sulfide sampled from 

the liquid phase was measured using the methylene blue assay (EPA Method 376, 

APHA Standard Methods, Method 4500-S D-2000) from CHEMetrics (Sulfite K9501-

D, Range = 0-300ppm, min detection = 0.1mmol/L). For pH strips were used (Range 

7.5-14 (109532) & 2-9 (109450), Millipore Sigma). Measurements taken at T0 included 

optical density, thiosulfate concentration, sulfite concentration, sulfide concentration, 

and pH. Measurements of optical density, sulfide concentration and pH were taken on 

day 4, 6, 8, 10 and 12. For the day 12 sulfide concentration reading 10N NaOH was 

added to the bottles until the pH was 12 to move any gaseous sulfide (e.g. H2S) into the 

aqueous phase as HS- and S2 for measurement. As sulfide is a weak acid with a pKa of 

6.9, it is only slightly soluble in water at that pH. Sulfide is much more soluble in water 

at pH 12 (Suleimenov and Krupp, 1994).  

Rhodanese Assay for Enzyme Activity 

  Rhodanese activity was measured by following the protocol described by 

Singleton and Smith (2005). A 100l sample from each treatment bottle was taken and 

was added to a 1.5ml microfuge tube containing 380 ul of phosphate buffer (pH 8.1, 

27mM), 10 l NaS2O3 (1M), and 10 l KCN (1M). The tube was incubated for 20 

minutes at 370 C, after which 37% formaldehyde was added to stop the reaction. Ferric 

reagent (500 L of 15g ferric nitrate in 100 ml 0.1M HNO3) was then added and the 

tube centrifuged at 15,000Xg for 5 minutes. The supernatant was removed and optical 

density of the iron-thiocyanate complex measured with a spectrophotometer (Biochrom 

WPA Biowave II) at 470nm. The optical density measurement corresponds to the 

thiocyanate concentration in the sample. To determine if there is increased activity in 
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the live cultures the treatments are compared to the value of their respective heat killed 

control as there is a level of spontaneous production of thiocyanate by the reagents 

(Ravot et al., 2005). The assay was used to measure activity on day 4 and day 12 of the 

thiosulfate and sulfite utilization assay. 

Results.    

Gene Detection (Assembly, Prodigal, Pfam) 

 Table 2 details the assembly of the genomes sequenced, which include number 

of contigs assembled and the average length of the contigs. Approximately 2,000 

contigs were assembled for each sequenced Halanaerobium genome, and the 

approximate average length of the contigs was 1,200 nucleotides. Over 2,000 open 

reading frames were predicted for each Halanaerobium genome, and Table 2 shows the 

specific number of open reading frames for each species. Table 2 also provides the 

assembled genome information for genomes collected from National Center for 

Biotechnology Information, which were complete genomes. Note that similar numbers 

of open reading frames were found for genomes retrieved from JGI or sequenced and 

assembled in this study. 

The search results for Asr protein families returned the same protein families for 

both species, H. congolense and S. enterica. The AsrA subunit belonged to the 4Fe-4S 

dicluster domain (PF17179). For AsrB there were two protein families, oxidoreductase 

NAD-binding domain (PF00175) and iron-sulfur cluster binding domain of 

dihydroorotate dehydrogenase B (PF10418).  The AsrC subunit returned three protein 

families: Nitrite/Sulfite reductase ferredoxin-linked half domain (PF03460), Nitrite and 
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Sulfite reductase 4Fe-4S domain (PF01077), and 4Fe-4S dicluster domain (PF12838)  

(Appendix A). 

Specific Gene Detection Using BLAST 

Table 3 describes the percent identity, length of the match, and Grade score for BLAST 

matches in the Halanaerobium genomes. H. congolense DSM11287, H. praevalens 

DSM2228, H. vreelandii ZB2A, H. kushnerii ATCC700103, and H. salsuginis 

ATCC51327 had hits for rdlA, coding for a rhodanese-like protein, thiosulfate 

disproportionation IV. H. hydrogeniformans DSM6643 did not have a hit for rdlA. 

BLAST results for the sulfite reductase revealed hits for asrB in H. congolense 

DSM11287, H. praevalens DSM2228, H. vreelandii ZB2A, H. kushnerii ATCC700103, 

and H. salsuginis ATCC51327. H. hydrogeniformans DSM6643 had a hit for asrB, but 

upon searching the BLAST hit in the Pfam database, AsrB was found to not contain the 

iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B (PF10418) that 

was found in H. congolense (WP_073157057.1) and S. enterica typhimurium 

(AAA99276.1), but did have the oxidoreductase NAD-binding domain (PF00175). Hits 

were not found for asrA or asrC in any of the genomes except H. salsuginis 

ATCC51327, which had hits for all three Asr subunits. In summary, H. congolense 

DSM11287, H. praevalens, H. vreelandii ZB2A, H. kushnerii ATCC700103, and H. 

salsuginis ATCC51327 had hits for rdlA and asrB. No hits were found for thiosulfate-

thiol sulfurtransferase, thiosulfate reductase, phsB or dsrAB in any of the genomes. 

Thiosulfate and Sulfite Utilization 

 H. congolense DSM11287 was observed to grow best in the thiosulfate amended 

bottles, with an average maximum optical density of 0.481 (std. dev. 0.002) on day 8, 
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nearly as well in medium amended with both thiosulfate and sulfite, and poorly in 

medium amended only with sulfite (Fig. 1). Sulfide production was first observed on 

day 4 for thiosulfate amended bottles, on day 6 thiosulfate plus sulfite amended bottles 

and only at day 12 for sulfite amended bottles. At the final measurement (day 12) both 

thiosulfate and thiosulfate plus sulfite amended bottles had the same concentration of 

sulfide (17.6 mM), while sulfite amended bottles showed a small amount of sulfide 

(0.25 mM) produced (Table 4). Thiosulfate was lost in both treatments containing 

thiosulfate, with thiosulfate plus sulfite losing 8.6 mM and thiosulfate amended losing 8 

mM. Sulfite increased in bottles amended with thiosulfate and thiosulfate plus sulfite, to 

a final concentration of 3.1mM and 2.4 mM respectively. In sulfite amended bottles a 

loss of 0.9 mM sulfite was measured. To summarize, H. congolense DSM11287 grew 

well in both conditions where thiosulfate was present but not when amended only with 

sulfite. Growth was poor in the sulfite only amended bottles, but sulfide was produced 

in all three treatments.  

 H. salsuginis ATCC51327 grew best in thiosulfate amended bottles (average 

maximum optical density of 0.609 (std. dev. 0)), while bottles with sulfite or thiosulfate 

plus sulfite grew almost identically (Fig. 2). Sulfide production was observed on day 6 

for thiosulfate only amended bottles and observed on day 12 for thiosulfate plus sulfite 

and sulfite amended bottles (Fig. 2). Thiosulfate amended bottles had the highest sulfide 

production with 9.1 mM; the final sulfide concentration for thiosulfate plus sulfite was 

0.5mM, and sulfite only amended 0.3 mM (Table 4). Thiosulfate loss occurred in both 

treatments with thiosulfate. Thiosulfate loss was just slightly more in thiosulfate plus 

sulfite amended bottles with 9 mM lost compared to thiosulfate amended bottles 8 mM 
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loss. Sulfite increased in bottles amended with thiosulfate and thiosulfate plus sulfite, 

while a decrease occurred in sulfite only amended bottles (Table 4).  In summary, H. 

salsuginis ATCC51327 grew best in thiosulfate only amended bottles, which produced 

sulfide sooner than bottles amended with both thiosulfate and sulfite. The amount of 

sulfide produced was almost equal at the end of the experiment for sulfite amended and 

thiosulfate/sulfite amended bottles. Growth was poor in the sulfite amended bottles, but 

sulfide was produced. 

 H. hydrogeniformans DSM6643 showed the best growth in thiosulfate amended 

conditions, with average maximum optical density was 0.260 (std. dev. 0.010) on day 4 

(Figure 3). The sulfite amended bottles had a slightly lower average maximum OD than 

thiosulfate plus sulfite. Thiosulfate loss, sulfite gain, sulfite loss, or sulfide production 

were not observed in any treatments (Table 4). 

Rhodanese Assay for Enzyme Activity 

Rhodanese activity was detected in H. congolense DSM11287 grown in medium 

amended with thiosulfate or with both thiosulfate and sulfite, but not when amended 

with sulfite alone (Table 5). On day 4 the activity was higher than on day 12. For H. 

salsuginis ATCC51327, activity was only detected when grown in medium amended 

with thiosulfate, and activity was higher on day 4 than day 12. Rhodanese activity for 

any treatment containing H. hydrogeniformans DSM6643 was not above background 

levels for either day 4 or day 12.  

Mass Balance of Sulfur for Thiosulfate and Sulfite Reduction 

A mass balance of sulfur can be calculated to estimate if the loss of thiosulfate in 

thiosulfate amended incubations matches the gain in sulfite and sulfide. As thiosulfate 
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contains two sulfur atoms, for every thiosulfate molecule reduced it is possible to form 

one sulfite molecule plus one hydrogen sulfide molecule or two hydrogen sulfide 

molecules. Table 6 displays the sulfur in millimoles lost or gained through reducing 

thiosulfate or sulfite. The table calculates the percent of sulfur atoms in 

thiosulfate/sulfite converted to sulfide in terms of millimole of sulfur. In H. congolense 

DSM11287 thiosulfate amended treatments 129.38% of sulfur from thiosulfate was 

converted to sulfite-S and sulfide-S. In H. salsuginis ATCC51327 the sulfite-S and 

sulfide-S produced was 84.38% of the theoretical yield. The yield for H. congolense 

DSM11287 being greater than 100% may be due the measurement error of the detection 

kits used. The yields support that the sulfur from thiosulfate ended up as sulfite-S or 

sulfide-S. For sulfite amended treatments, the sulfur yields as sulfide for H. congolense 

DSM11287 and H. salsuginis ATCC51327 were almost the same at 27.77% and 

27.27%. This is well below what is theoretically expected, but does support that some 

sulfite is being reduced to sulfide. In thiosulfate plus sulfite treatments H. congolense 

DSM11287 also showed a high yield (119.04% theoretical). H. salsuginis ATCC51327 

had a low yield (16.11%). Even though the yield for H. salsuginis ATCC51327 is much 

lower than H. congolense DSM11287, Table 6 supports the interpretation that both 

organisms are reducing thiosulfate to sulfite and sulfide due to a loss of sulfur from 

thiosulfate. While not all sulfur is accounted for, especially in the sulfite amended 

treatments, enough is accounted for to support the suggested pathway for thiosulfate 

reduction. The sulfur not accounted for could be due to error in measurements from the 

test kits or to the sulfur being in some form not detectable by the test kits.  
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Discussion 

Genomic Potential and Physiological Evidence for Thiosulfate Reduction and Sulfite 

Reduction in Halanaerobium spp.  

Previous work had reported that four of the six strains investigated reduce 

thiosulfate to sulfide but did not reduce sulfite to sulfide (Ravot et al., 1997; 

Bhupathiraju et al., 1994; Bhupathiraju et al. 1999; Brown et al., 2012; Zeikus et al., 

1983). However, this research shows that five of the six strains have the genomic 

potential to reduce thiosulfate to sulfite and sulfide and then sulfite to sulfide. The 

genomic potential of Halanaerobium strains containing both rdlA and asr subunits is 

supported by the physiology experiments observing utilization of thiosulfate and sulfite 

by two strains with the genetic potential to reduce thiosulfate and sulfite and no 

reduction by a strain without the genetic potential.  

The rdlA sequence detected for the rhodanese like protein (classified as a 

thiosulfate sulfurtransferase) was the only thiosulfate reductase gene detected, of four 

tested. That rhodanese activity was detected only in treatments where thiosulfate loss 

occurred also supports its identification as the thiosulfate disproportionation enzyme for 

the Halanaerobium strains tested. Previous research also found rhodanese activity 

linked to thiosulfate reduction in Halanaerobium strains (Ravot et al., 2005; De Capite, 

2015). The detection of Asr subunits in Halanaerobium genomes and no detection of 

Dsr subunits leaves Asr as the plausible choice for sulfite reduction to hydrogen sulfide. 

The anaerobic sulfite reductase (Asr) enzyme has been observed to reduce sulfite to 

hydrogen sulfide in S. enterica typhimurium LT2 (Huang and Barrett, 1990). All of the 

species with hits except H. salsuginis ATCC51327 and H. hydrogeniformans DSM6643 
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have been previously described as sulfide producers from thiosulfate (Ravot et al., 

1997; Bhupathiraju et al., 1994; Bhupathiraju et al. 1999; Brown et al., 2012; Zeikus et 

al., 1983). The BLAST hits agree with observed physiology that the two 

Halanaerobium species tested (H. congolense DSM11287 and H. salsuginis 

ATCC51327 have the ability to reduce thiosulfate to sulfite and then to sulfide.  

H. hydrogeniformans: Absence of Genomic Potential is Associated with the Inability to 

Reduce Thiosulfate or Sulfite 

 H. hydrogeniformans DSM6643 had no sequences matching rdlA, did not 

produce sulfide, lose thiosulfate or have rhodanese activity, so the genomic evidence 

and physiological evidence support each other. H. hydrogeniformans DSM6643 was not 

observed to produce sulfide from sulfite, and the hit detected for AsrB was found to not 

contain the same two protein families as AsrB S. enterica LT2 and H. congolense 

DSM11287, and may explain why sulfite reduction is not observed. H. 

hydrogeniformans DSM6643 had an iron-sulfur cluster binding domain of 

dihydroorotate dehydrogenase B (PF10418) that was found in H. congolense 

(WP_073157057.1) and S. enterica typhimurium (AAA99276.1), but did not have the 

oxidoreductase NAD-binding domain (PF00175) (Appendix A). Even though H. 

hydrogeniformans DSM6643 did not reach as high of an optical density as H. 

congolense DSM11287 and H. salsuginis ATCC51327, the maximum average OD was 

close to the reported maximum optical density when grown in the presence of glucose: 

3.01 (Brown et al., 2012). The pH range for H.  hydrogeniformans DSM6643 is reported 

to be 8-12, so although the pH dropped to 8 at day 4, the culture was still within the 

growth range (Brown et al., 2012). This suggests that while H. hydrogeniformans 
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DSM6643 indeed grew under the experimental conditions, it did not produce sulfide or 

reduce thiosulfate. 

Other Studies on Genetic Basis of Thiosulfate Reduction in Halanaerobium 

Two recent studies have used metagenomic analysis of functional genes to 

suggest the metabolic pathway used for the reduction of thiosulfate to sulfide in 

Halanaerobium species (Booker et al., 2017; Lipus et al., 2017). Both studies found that 

sequences coding for a rhodanese-like protein (rdlA, EC 2.8.1.1), and anaerobic sulfite 

reductase (asr,ABC (EC 1.8.99.5) were present in Halanaerobium genomes recovered 

from metagenomics sequencing of highly saline production water samples. Sulfide 

production was observed by Booker et al. (2017) in incubations of samples while 

thiosulfate was lost. Lipus et al. (2017) noted that 40 of 42 produced water samples 

taken from hydraulically fractured Marcellus Shale were dominated by the order 

Halanaerobiales, which contained a majority of sequences for Halanaerobium. These 

Halanaerobium sequences were investigated for the functional gene potential and found 

to contain rdlA and asr sequences. 

Importance of Monitoring Halanaerobium 

 Halanaerobium have been found as dominant organisms in high salt and high 

temperature produced water samples at different locations around the world with high 

salt and high temperature environments (Lipus et al., 2017; Booker et al., 2017, Marks 

et al. 2016; Liang et al, 2014; Liang et al., 2016). These studies suggest that thiosulfate-

reducing bacteria such as Halanaerobium may be contributing to sulfide production in 

the produced water, which can cause corrosion, well souring and fouling of gas and oil 

products.  
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 Investigations of produced water show Halanaerobium as a predominant and 

important organism in some gas production pipelines (Liang et al., 2016). A 

Halanaerobium strain isolated from the pipeline fluid was shown to be more resistant to 

a biocide than Desulfovibrio alaskensis, a sulfate reducing bacteria (Liang et al., 2016). 

This point underscores the need for monitoring of thiosulfate reducing sulfide producers 

in oil and gas produced water. If only sulfate reducing bacteria are monitored, many 

Halanaerobium or other thiosulfate reducers will be missed and could potentially still 

be viable after biocide addition.  

  

 Thiosulfate reduction and sulfite reduction are not unique to Halanaerobium. 

The ability to reduce thiosulfate to sulfide has been investigated in species like S. 

enterica typhimyrium LT2 (Stoffels et al., 2012), members of the Thermotogales order 

(Ravot et al. 1995), Anaerobaculum (Maune and Tanner, 2012; Liang et al., 2014) and 

Firmicutes such as Clostridium thiosulfatireducens (Hernandez-Eugenio et al., 2002). 

Members of the Thermotogales, Synergistetes and Clostridales are frequently found in 

oil and gas production samples (Ravot et al, 1995; Duncan et al., 2017; Maune and 

Tanner, 2012) and have been implicated in biocorrosion. As stated previously, 

biocorrosion is expensive, costing the oil and gas industry $1.372 billion of which 20% 

can be due to MIC (https://www.nace.org/Corrosion-Central/Industries/Oil---Gas-

Production; Almahamedh et al., 2011). A detection method that is reliable for non-

sulfate reducing sulfide producers is needed. I propose targeting rdlA and/or asr genes 

for detection of Halanaerobium species capable of sulfide production. Detection based 
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on asr subunits may also help to detect a wider range of the thiosulfate reducing 

bacteria found in oil and gas production facilities.  

Future work based on this research would be to create primers for qPCR to 

determine functional gene populations for rdlA and asr. Primers may be easier to create 

for the rdlA than Asr based on the high grade % hits returned for rdlA versus asr (Table 

3). This lack of hits could be due to lack of coverage for the genome sequencing or that 

the sequence varies greatly from species to species. Even though Ravot et al. (2005) 

showed the rdlA sequence varied widely from species to species of different phyla of 

bacteria, the results of searching the Halanaerobium genomes found high grade % hits 

for the sequence. Primers could be developed solely for Halanaerobium detection, 

which could still potentially identify the rdlA of other species within the Firmicutes.  

These primers could then be used as a way to monitor the Halanaerobium and other 

populations capable of thiosulfate reduction.  

 In summary, the genetic potential of Halanaerobium species to reduce 

thiosulfate and sulfite was detected in 5 of 6 genomes investigated. Sequences matching 

the rdlA gene coding for the thiosulfate disproportionation enzyme rhodanese like 

protein were detected in 5 of the genomes while none of the genomes contained phs 

sequences, thiosulfate reductase (cytochrome), or thiosulfate reductase (thiol) 

corresponding to alternative thiosulfate reductases.  Sequences matching the anaerobic 

sulfite reductase subunit B were found in 5 of the genomes but dsrAB was found in 

none of the 6. Two strains with genetic potential to reduce thiosulfate and sulfite (H. 

congolense DSM11287 and H. salsuginis ATCC51327) and one with no genetic 

potential (H. hydrogeniformans DSM6643) were cultivated in medium amended with 
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thiosulfate/sulfite. H. congolense DSM11287 and H. salsuginis ATCC51327 cultures 

were observed to produce sulfide while reducing thiosulfate and sulfite and had 

rhodanese activity while reducing thiosulfate. H. hydrogeniformans DSM6643 did not 

produce sulfide, reduce thiosulfate, reduce sulfite or have rhodanese activity.  

Conclusion: based on the information I obtained on the genetic potential of the 

Halanaerobium strains together with the findings from the physiological experiments, I 

propose that Halanaerobium use a rhodanese to reduce thiosulfate to sulfite and sulfide, 

then an anaerobic sulfite reductase to reduce the sulfite to sulfide. 
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Table 1. Halanaerobium Species Physiology.  
This study shows selected data on growth conditions and strain origin for three strains used in this study. 

Species Optimal pH 

(Range) 

Optimal 

NaCl% 

(Range) 

Optimal 

Temperature 

(oC)(Range) 

Strain Origin 

H. congolense 

DSM11287  

7 (6.3-8.5) 10 (4-24) 42 (20-45) Corroded oil 

pipeline 

H. salsuginis 

ATCC51327 

6.1 (5.6-8) 9 (6-24) 40 (22-51) Oil brine (oil 

well) 

H. 

hydrogeniformans 

DSM6643 

11 (7.5-12) 7 (2.5-15) 33 (NA) Hyper saline 

lake 

1Ravot et al. 1997, 
2Bhupathiraju et al. 1994, 3Brown et al. 2012 
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Table 2. Assembly Parameters.  

The reads for each genome were assembled de novo using Velvet. The number of 

contigs assembled are listed with their average contig length in nucleotides. Prodigal 

was used to predict the open reading frames of each Halanaerobium genome using 

default parameters. Evidence for thiosulfate reduction as previously reported for each 

strain and is noted in the table.  
Species, Strain # Contigs 

Assembled 

(Nucleotide) 

Average Contig 

Length 

(Nucleotide) 

# Open 

Reading 

Frames 

Predicted by 

Prodigal 

Thiosulfate 

Reduction 

Reported? 

H. congolense DSM11287 2120 1234 3262 Yes 1 

H. praevalens DSM2228 

GCF_000165465.1 

Complete 

 

NA 2119 Yes2 

H. vreelandii ZB2A 1989 1195 2990 Yes3 

H. kushnerii ATCC700103 2423 1229 3662 Yes3 

H. salsuginis ATCC51327 

GCF_900114545.1 

Complete NA 2818 No4 

H. hydrogeniformans 

DSM6643 

GCF_000166415.1 

Complete NA 2426 No5 

NA Not Applicable 1Ravot et al. 1997, 
2Zikus et al., 3 De Capite et al.,4Bhupathiraju et 

al. 1994, 5Brown 2012 
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Table 3. BLASTp Matches to Halanaerobium Genomes Open Reading Frames. 
The protein sequences for rdlA, PhsB, thiosulfate reductase (cytochrome), thiosulfate 

reductase (quinone), asrA, asrB, asrC, dsrA and dsrB were queried against the open 

reading frame translations (predicted by prodigal) using BLASTp to determine genetic 

potential for thiosulfate and sulfite reduction. Hits returned from the BLASTp search 

had their sequences querried against the Pfam database to confirm they contained the 

same protein familes (Appendix A) as sequences originally queried against the ORF’s. 

Only BLASTp hits which had a match to those protein families and a grade above 35% 

were considered a hit. Grade is a weighted score which uses the E-value, % pairwise 

identity, and % query coverage. The table displays the Sequence query that matched, % 

query coverage, length of match and Grade. Genomic potential of strains agrees with 

previous reports other than for H. salsuginis ATCC51327, which was described as a 

non-thiosulfate reducer (Bhupathiraju et al. 1994).No genome hits were found for H. 

hydrogeniformans DSM6643. No hits for PhsB, thiosulfate reductase (cytochrome), 

thiosulfate reductase (quinone), dsrA, or dsrB were found. 
Genome Hit Best Query Match 

(Accession#) 

Grade (%) Percent query 

coverage 

Length of Match 

(Amino Acid) 

H. congolense DSM11287 

rdlA H. congolense rdlA 

(AAS68581.1) 

100 100 300 

asrB H. congolense asrB 

(WP_073157057.1) 

41.7 83.39 223 

H. salsuginis ATCC51327 

rdlA H. congolense rdlA 

(AAS68581.1) 

86.9 92 276 

asrA H. salsuginis asrA 

(WP_089861877.1) 

100 100 350 

asrB H. salsuginis asrB 

(WP_089861878.1) 

100 100 270 

asrC H. salsuginis asrC 

(WP_089861879.1) 

99.9 100 336 

H. kushnerii ATCC700103 

rdlA H. congolense rdlA 

(AAS68581.1) 

91.8 99.33 298 

asrB H. congolense asrB 

(WP_073157057.1) 

36.5 73.06 198 

H. vreelandii ZB2A 

rdlA H. congolense rdlA 

(AAS68581.1) 

56.8 45.67 137 

asrB H. salsuginis asrB 

(WP_089861878.1) 

41.7 83.33 225 

H. praevalens DSM2228 

rdlA H. congolense rdlA 

(AAS68581.1) 

85 93 279 

asrB H. salsuginis asrB 

(WP_089861878.1) 

44.4 88.9 258 

H. hydrogeniformans DSM6643 

 No Matches    
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Table 4. Results of Thiosulfate and Sulfite Utilization Experiments 
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Table  
Table 5. Rhodanese Activity During Thiosulfate and Sulfite Utilization Experiments 
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Table 6. Mass Balance of Sulfur 
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Figure 1. Growth of Halanaerobium congolense DSM11287 
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Figure 2. Growth of Halanaerobium salsuginis ATCC51327 
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Figure 3. Growth of Halanaerobium hydrogeniformans DSM6643 
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Appendix A: Pfam Domains of Thiosulfate and Sulfite Reductases 

Thiosulfate 

Reductases 

Subunits Pfam domain 1 Pfam domain 2 Pfam domain 3 

Rhodanese 

(tandem-

domain)  

(EC 2.8.1.1) 

rdlA 

AAS68581.1 

Rhodanese 

(PF00581) 

Rhodanese 

(PF00581) 

 

Quinone 

(EC 1.8.5.5) 

PhsA 

NP_461010.1 

Molybdopterin 

oxidoreductase 

Fe4S4 domain 

(PF04879) 

NADH 

dehydrogenase 

(ubiquinone) 

(PF00384) 

Molydopterin 

dinucleotide 

binding domain 

(PF01568) 

PhsB 

NP_461009.1 

4Fe-4S dicluster 

domain (PF13247) 

  

PhsC 

NP_461008.1 

 

Prokaryotic 

cytochrome b561 

(PF01292) 

  

Cytochrome 

(EC 1.8.2.5) 

qrcB 

YP_009398.1 

NADH 

dehydrogenase 

(ubiquinone) 

(PF00384) 

Molydopterin 

dinucleotide 

binding domain 

(PF01568) 

 

Thiol-

dependent (EC 

2.8.1.3) 

BisC 

WP_059759455.1 

NADH 

dehydrogenase 

(ubiquinone) 

(PF00384) 

Molydopterin 

dinucleotide 

binding domain 

(PF01568) 

 

Sulfite 

Reductases 

Subunits Pfam domain 1 Pfam domain 2 Pfam domain 3 

DSR  

(EC 1.8.99.5) 

DsrA 

YP_009626.1 

Nitrite/Sulfite 

reductase 

ferredoxin-like 

half domain 

(PF03460) 

Nitrite and sulfite 

reductase 4Fe-4S 

domain 

(PF01077) 

 

DsrB 

    YP_009627.1 

Nitrite/Sulfite 

reductase 

ferredoxin-like 

half domain 

(PF03460) 

Nitrite and sulfite 

reductase 4Fe-4S 

domain 

(PF01077) 

 

ASR 

AsrA 

WP_073157054.1 

    AAA99275.1 

4Fe-4S dicluster 

(PF17179) 

  

AsrB 

WP_073157057.1 

AAA99276.1 

oxidoreductase 

NAD-binding 

domain (PF00175) 

dihydroorotate 

dehydrogenase B 

(PF10418) 

 

AsrC 

WP_073157060.1 

AAL21444.1 

Nitrite/Sulfite 

reductase 

ferredoxin-like 

half domain 

(PF03460) 

Nitrite and sulfite 

reductase 4Fe-4S 

domain 

(PF01077) 

NADH 

dehydrogenase 

(ubiquinone) 

(PF12838) 

 

 


