
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AUTOMATED DETECTION OF BIRD ROOSTS USING NEXRAD

RADAR DATA AND CONVOLUTIONAL NEURAL NETWORKS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

CARMEN CHILSON
Norman, Oklahoma

2017

AUTOMATED DETECTION OF BIRD ROOSTS USING NEXRAD
RADAR DATA AND CONVOLUTIONAL NEURAL NETWORKS

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern, Chair

Dr. Eli Bridge

Dr. Andrew Fagg

© Copyright by CARMEN CHILSON 2017
All Rights Reserved.

Acknowledgements

I would like to thank Dr. Amy McGovern for guiding me throughout my

research, helping me find an interesting dataset to work on, and being my

advisor and committee chair. I would also like to thank Dr. Jeff Kelly and the

Oklahoma Biological Survey for sharing their data with me. The data took a

long time to collect and organize and I appreciate them sharing their research

with me. I also wanted to thank the other professors at OU who helped with

with my research project. Dr. Eli Bridge was very helpful in answering all my

biological questions and Dr. Phillip Chilson answered all of my radar related

questions. I also want to say thank you to my whole committee for your time

and help.

Kate Avery, an undergraduate at the University of Oklahoma, decided to

take an interest in my research. She started working with me early on in my

research and helped organize my data. She also build her own machine learning

model that I use as a comparison against my results. She showed a lot of

initiative and was very helpful even as a Freshman. Thank you for your for

time and help.

iv

Table of Contents

Acknowledgements iv

List Of Tables vii

List Of Figures viii

Abstract xi

1 Introduction 1

2 Background 3
2.1 Bird Roosts . 3
2.2 NEXRAD Radar . 5
2.3 Artificial Neural Networks . 6

2.3.1 Activation Functions . 8
2.3.2 Backpropagation Through Multiple Layers 10

2.4 Convolutional Neural Networks 13
2.4.1 Convolution Filters . 15
2.4.2 Pooling . 16

2.5 Inception Network . 18
2.6 Batch Normalization . 22
2.7 Transfer Learning . 25

3 Dataset 26
3.1 Bird Roost Dataset . 26

3.1.1 Radar Products . 27
3.2 Data Formatted for Machine Learning Input 28

4 Design: Neural Network Architectures 35
4.1 High Level Design . 35
4.2 Neural Network Architectures 40

4.2.1 Artificial Neural Network 40
4.2.2 Inception-V3 Network with Transfer Learning 40
4.2.3 Shallow Convolutional Neural Network 41

v

5 Results 43
5.1 Scoring Metrics . 43
5.2 Classification Results . 45

5.2.1 Aggregate Classification Results 49

6 Conclusions and Future Work 63

Reference List 67

vi

List Of Tables

3.1 The distribution of labels. This table lists how many dual-pol
radar labels exist within the data. 32

4.1 The design of the aggregate classifier. This table gives a full
description of the design of each layer of the network. BN stands
for batch normalization. 39

4.2 The design of the artificial neural network. This table gives a full
description of the architecture and number of nodes in each layer
of the network. 41

4.3 The design of the shallow convolutional neural network. This
table gives a full description of the design of each layer of the
network. 42

5.1 A binary contingency table for whether or not a Roost is found
in radar data. 43

5.2 Results for each model and each metric: ACC - Accuracy, TPR
- True Positive Rate, AUC - Area Under Curve. These results
show the bootstrapped confidence intervals. 47

vii

List Of Figures

2.1 An example of a typical feed-forward neural network with 1 hid-
den layer. x1, x2, ..., xn represent the network input and y1, ..., ym
represent the network outputs. 7

2.2 The structure of an artificial neural network neuron. The inputs
x1, x2, ..., xn are multiplied with weights w1, w2, ..., wn and then
summed with the bias node. This value is then passed through
an activation function to produce the neuron output. 8

2.3 Chain rule backpropagation on a single neuron. Image from Li
et al. (2016). 12

2.4 Adaptive Moment Estimation algorithm from Kingma and Ba
(2014). 14

2.5 Visualization of a filter (or kernel) of size 3× 3 being applied to
each local receptive field in a 7× 7 matrix to create a 5× 5 output. 17

2.6 Image from (Dieleman et al. 2015). 18
2.7 Example of max pooling using a pool size of 2 × 2 and a stride

of 2. Image from (Karpathy 2016) 19
2.8 A mini-network replacing a 5 × 5 convolution with a 3 × 3 con-

volution. Image from Szegedy et al. (2016) 20
2.9 Image from Szegedy et al. (2016) 21
2.10 The three different inception modules used in the inception-v3

network. Image modified from Szegedy et al. (2016) 22
2.11 This is a visualization of the Inception-v3 network described in

Szegedy et al. (2016). Each shape in the diagram represents a
layer in the network (such as convolution or pooling layer). Image
from Shlens (2016). 23

3.1 Example of birds leaving their roost. This particular image shows
a roost in radar KHTX from 5:50 AM to 6:26 AM CDT on August
4 2015. Image from (Kelly and Pletschet 2017) 27

3.2 Machine Learning input. This is an example of a radar image
that contains a roost. This is from the KMOB radar from July
4th 2015, 11:19 UTC. Image created using the Py-ART library
(Helmus and Collis 2016). 29

3.3 Machine Learning input. This is an example of a radar image
that does not contain a roost. This is from the KMOB radar
from July 2nd 2015, 11:27 UTC. Image created using the Py-
ART library (Helmus and Collis 2016). 30

viii

3.4 Visual distribution of roost labels from the Oklahoma Biological
Survey and UMass Amhert citizen science labels. This figure
shows where each roost was found. 33

3.5 Visual distribution of roost labels for legacy radar and dual-pol
radar data. 34

4.1 Overview design of a convolutional neural network for classifying
rotational-invariant galaxy images. Image from (Dieleman et al.
2015). 36

4.2 Design of the machine learning classification system for legacy
radar data. 37

4.3 Design of the machine learning classification system for dual po-
larization data. 38

5.1 The confidence intervals for each metric evaluated on the Inception-
v3 network. 51

5.2 The confidence intervals for each metric evaluated on the shallow
CNN. 52

5.3 Learning Curve for retraining the inception network. Average
learning curve from five runs. 53

5.4 Loss for retraining the inception network. Average learning curve
from five runs. 54

5.5 Learning Curve for training the shallow CNN network. Average
learning curve from five runs. 55

5.6 Loss for training the shallow CNN network. Average learning
curve from five runs. 56

5.7 Learning curve for the ANN trained on four individual radar
products: Reflectivity, Velocity, ρHV, and ZDR. These learning
curves are each from a single run. Results from Avery (2018) . . 57

5.8 ROC curve for the inception net. Four different shallow CNN
networks were trained on Reflectivity, Velocity, ρHV, and ZDR

separately. 58
5.9 ROC curve for the shallow CNN. Four different shallow CNN

networks were trained on Reflectivity, Velocity, ρHV, and ZDR

separately. 59
5.10 Learning curve when training on the inception network and shal-

low CNN probability that an image contains a roost given four
individual radar products: Reflectivity, Velocity, ρHV, and ZDR . 60

5.11 Loss when training on the inception network and shallow CNN
probability that an image contains a roost given four individual
radar products: Reflectivity, Velocity, ρHV, and ZDR 61

ix

5.12 Final ROC curve results for the dual-pol and legacy data. Our
machine learning model was trained on probability outputs from
Reflectivity, Velocity, ρHV, and ZDR 62

6.1 Our results show that convolutional neural nets can identify bird
roosts in radar imagery, however there is still work to be done.
After all, we haven’t had five years and a research team to auto-
mate bird roost detections. Image from https://xkcd.com/1425/. 65

x

Abstract

NEXRAD radars have proven to be an effective tool for detecting bird roosts

for several species or birds, however manually locating these roosts in radar

images is a time consuming process. We introduce a Convolutional Neural Net-

work trained to automatically determine whether each individual radar image

contains at least one Purple Martin or Tree Swallow roost. Radars give us

a continental-scale snapshot of an entire vertebrate population. Many fields

within ecology conservation could benefit from automated detection of bird

roosts, and we are able to find bird roosts for species that are visible in radar

imagery with 90 percent accuracy. We use a dataset of radar images that con-

tain Purple Martin roosts and Tree Swallow roosts in the Eastern half of the

United States. We show that Convolutional Neural Networks (CNNs) are an

effective method for automating the bird roost detection. CNNs have recently

revolutionized image classification largely because CNNs capture spatial com-

ponents of images. We hypothesized that these same principles can be applied

to radar data. To further improve the accuracy of bird roost detection, machine

learning techniques such as batch normalization and transfer learning are ap-

plied to the CNN. Our results show that CNNs are a promising approach for

bird roost detection for legacy radar data and dual polarization radar data.

xi

Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are the most state-of-the-art methods

for computer vision (Szegedy et al. 2016). In 2012, Deep CNNs achieved record

breaking results for classifying ImageNet data (Krizhevsky et al. 2012). Since

then, many strides have been made in image processing using varying architec-

tures for CNNs (Srivastava et al. 2014; Szegedy et al. 2015; Ioffe and Szegedy

2015). We use Convolutional Neural Networks to automate bird roost detection

in level 2 NEXRAD radar data formatted as 2D images.

Although CNNs have achieved amazing results, they require large amounts

of training data to be effective since the network has to learn millions of weights

(Oquab et al. 2014). Since our dataset contains approximately 30,000 labeled

images, we turn to transfer learning. Transfer learning allows us to transfer

knowledge learned on one dataset to a new dataset by tweaking the weights

of the model (Oquab et al. 2014). A CNN trained on ImageNet can learn to

categorize the 1000+ classes of images, but it will also learn general image

features that can be applied to other image data (Shin et al. 2016).

Although deep CNNs have been shown to be quite effective for many com-

puter vision problems, we decided to test how well convolution performs in shal-

lower neural networks since this reduces the number of weights that the network

has to learn, and therefore, the required number of labeled data samples. Part of

what makes images difficult to classify is the number of background objects, the

1

size of the object, and the large number of types of objects that the user wishes

to classify (Tudor Ionescu et al. 2016). Radar images contain simpler patterns

than photographs, and our dataset only has two classification categories. We

believe this may make it possible to build a network with fewer convolution

layers. Smaller networks can be effective for image processing, for example an

automated facial recognition system was built using only 5 convolutional layers

(Lawrence et al. 1997).

This thesis evaluates how well machine learning methods such as Artificial

Neural Networks and Convolutional Neural Networks can learn to identify bird

roosts in NEXRAD radar images using techniques such as transfer learning and

batch normalization. We use radar data formatted as 2D images as inputs to the

networks and output whether the radar contains a roost. We compare several

different network architectures and explain which network architecture works

best for this problem. Our approach is the first attempt that we are aware of

to automate the roost detection using legacy and dual polarization NEXRAD

radar data.

2

Chapter 2

Background

2.1 Bird Roosts

Studying bird movements is an important aspect of ecological conservation

(Shipley et al. 2017). We outline a few examples in this section. Migrating

birds transport nutrients, transport organisms, forage, and become prey, all

of which impact the local ecosystems. Local crop yields can benefit from mi-

grating birds eating insects (Bauer and Hoye 2014). Approximately 3.5 million

birds migrate over wind farms and it’s estimated that over 100 million birds

collide with man-made obstacles each year in the USA alone (Johnson et al.

2002). There is a long list of reasons a variety of different stakeholders could

benefit from studying bird roosts and bird migration: wind turbine collision,

habitat deterioration, nature conservation, pest control, crop damage, pollina-

tion, dispersal of pathogens, citizen science, and research (Bauer et al. 2017).

Many researchers have shown that NEXRAD radars are a useful tool for lo-

cating several species of bird roosts and studying bird migration (Bauer et al.

2017; Chilson et al. 2012a; Gauthreaux Jr and Belser 2003; Kelly et al. 2012;

RoyChowdhury et al. 2016; Stepanian and Horton 2015).

Aeroecology is a scientific discipline that integrates aspects of atmospheric

science, ecology, earth science, computer science, computational biology, and

3

engineering to further study biology in the atmosphere (Kunz et al. 2008; Chil-

son et al. 2012b). Currently, most approaches to using radars to study bird

roosts are local and small scale (Bauer et al. 2017). One significant factor that

currently hinders radar based Aeroecology research is that “accessing and pro-

cessing the data require significant computational skills and time investment”

(Chilson et al. 2012a). A few species of bird roosts can be spotted in radar data

since they often form distinct patterns within the radar know as “roost rings”

(Kelly and Pletschet 2017). Although these pattens are easy for the human

eye to detect, only a few people within the biology community utilize this data

(Chilson et al. 2012a). Even those who process the radar data into images are

still faced with the time consuming task of sifting through the data to find the

bird roosts. Machine learning can assist in detecting bird roosts in radar data

by providing automated models trained on data that biology researchers have

previously hand labeled.

Several research teams have developed techniques for automatically detect-

ing birds at a close range using specialized radar. One such approach uses a

radar adapted specifically for bird detection to identify single small and medium

sized birds flying across a fixed position radar beam (Zaugg et al. 2008). The

radar continuously monitors a bird over several seconds and the patterns pro-

duced by wing flapping allow the bird to be detected within 8 km of the radar

(Zaugg et al. 2008). Another approach uses Airport Surveillance Radar (ASR-

9) to automatically detect small groups of birds within 10 km of the airport by

completing a volume scan every 5 seconds (Troxel et al. 2001). The high scan

rate of the ASR-9 allowed them to detect moving flocks of birds and prevent

bird strikes on airplanes (Troxel et al. 2001). Another proposed solution is the

Avian Radar Sensor Design (Weber et al. 2005). The WSR-88D radar could be

4

configured to meet short-range avian radar requirements, however this modifi-

cation would modify the radar design specifically for bird-strike advisory rather

than for weather (Weber et al. 2005). These papers clearly show that birds

can automatically be detected within 10 km with specialized radars. NEXRAD

radars, however, can detect clusters of “biological targets” up to 240 km away

(DeVault et al. 2013, p. 142). Using NEXRAD radars to detect several species

of birds roosts allows us to use the existing radar infrastructure without the

cost of installing and maintaining more radars. This approach allows us to

find bird roosts in archived NEXRAD data as far back as 1991 and from 2013

for upgraded dual-polarization radar data. We hypothesize that our method

for locating bird roosts in dual polarization will be more effective, however it

is worth developing a method for legacy radar data because it enables us to

examine years of past data.

2.2 NEXRAD Radar

The radar data used for this research came from the level 2 data from the na-

tionwide network of NEXRAD radars. This data set consists of a mix of single-

polarization Doppler radar (which we refer to as legacy radar in this thesis) and

dual-polarization Doppler radar. The radars were incrementally upgraded from

2012 to 2013, and with this process, came benefits for biological applications

as well (Stepanian et al. 2016). Different radar products are created from the

horizontal and vertical radar polarizations. Reflectivity, Doppler Radial Ve-

locity, and Spectrum Width radar fields are available to us in the legacy and

dual-polarimetric radar data, however differential Reflectivity (ZDR), Differen-

tial Phase (φDP), and Correlation Coefficient (ρHV) are only available in the

5

dual-pol radars. We go into more detail about each radar product and which

are useful for detecting bird roosts in Chapter 3.

The NEXRAD radars scan the lower 10 km of the atmosphere and have been

collecting data approximately every 5 minutes since the early 1990s (Chilson

et al. 2012a). Using radar, the peak roost visibility starts 20 min before sunrise

and ends 40 minutes after sunrise. The majority of bird roosts can be found

using this 60 minute window (approximately 12 radar scans). Furthermore,

the roosts have primarily been detected over the summer months and and the

roost locations have been confirmed in 64 different Eastern US (east of 100°

W) radars (Kelly and Pletschet 2017). Although limiting the time of day, year,

and the number of radars that need to be searched helps reduce the size of

the dataset, that still leaves approximately 70,000 radar images a year to look

through. Kelly and Pletschet start searching for roosts one hour before local

sunrise until 30 minutes after local sunrise from June 1 to September 30 (2017).

This is a broader and more thorough search of the roost data and requires

researchers to search through 140,000 images a year. Both search windows still

require researchers to manually look through large amounts of data. Our work

will reduce the number of radar images researchers need to search through by

automatically searching through the 140,000 images and finding images that

likely contain roosts.

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) consist of multiple layers of connected artifi-

cial “neurons”. They are inspired by biological neural networks (Mitchell 1997).

6

Figure 2.1: An example of a typical feed-forward neural network with 1 hid-

den layer. x1, x2, ..., xn represent the network input and y1, ..., ym represent the

network outputs.

ANNs are mathematical models that can represent complex nonlinear relation-

ships between inputs and outputs (Dayhoff and DeLeo 2001). The architecture

of a typical fully connected ANN containing one input, hidden, and output layer

is depicted in Figure 2.1. In this section we will start by explaining how the

inputs are passed forward through the network and modified to produce the

outputs values.

7

Figure 2.2: The structure of an artificial neural network neuron. The inputs

x1, x2, ..., xn are multiplied with weights w1, w2, ..., wn and then summed with

the bias node. This value is then passed through an activation function to

produce the neuron output.

ANNs are built by connecting nodes called neurons. See Figure 2.2 for a

visual representation of a neuron. A neuron takes in inputs, x, and processes

them into an output value, z:

z = b+
n∑
i=1

wixi. (2.1)

In a neuron the inputs x1, x2, ..., xn are multiplied with weights w1, w2, ..., wn and

then summed with the bias node b (Raudys 1998) to produce z. The neuron

then passes z through an activation function, which is then output from the

neuron.

2.3.1 Activation Functions

There are several different commonly used activation functions that neural net-

work neurons use. The sigmoid function (Equation 2.2) is probably the most

8

common activation function used in classical feed-forward artificial neural net-

works and produces an output between 0 and 1 (Jain et al. 1996). Here is the

sigmoid function:

σ(z) =
1

1 + e−z
. (2.2)

Training time using sigmoid nodes is much slower than training time using

Rectified Linear Units (ReLUs) (Krizhevsky et al. 2012). ReLUs still provide

a nonlinear activation function (Equation 2.3), however it is much faster for

gradient descent to optimize because the gradient is constant (Krizhevsky et al.

2012). The ReLU function is define as:

σ(z) = max(z, 0). (2.3)

ReLUs were used in the deep convolutional neural network that achieved record

breaking results on classifying the ImageNet dataset (Krizhevsky et al. 2012).

ImageNet is a giant image dataset containing 3.2 million annotated images

spreading over 5247 different categories (Deng et al. 2009). It is useful to have

activation functions that allow for faster training when training computationally

expensive networks such as deep convolutional neural networks.

For classification problems, the last layer of neural network outputs labels

for the input data. The labels are commonly encoded using one-hot vectors of

size n, where n is the number of classification categories. The one-hot vector

contains all zero values except for the index of the corresponding label that is

marked with a one. The neural network generally has an output node for each

classification category. A binary classification model would have two output

nodes and a dataset with 50 different categories would need 50 outputs nodes.

The advantage of having an output node for each category is that each output

node can be interpreted as a probability that the input belongs to any given

9

category. In order to ensure that all of the probabilities in the output layer add

up to one we use the softmax activation function. Softmax is different than

sigmoid because it takes all of the outputs of the layer into consideration and

normalizes them to sum to one:

σ(z)j =
ezj∑m
k=1 e

zk
. (2.4)

Equation 2.4 is the softmax equation for node j of a network that has m output

nodes.

2.3.2 Backpropagation Through Multiple Layers

In the previous section we explained how the network input gets passed forward

through the network and output in the final layer. In this section we explain how

the neural network learns to update the weight to minimize the loss of the out-

put using stochastic gradient decent and back-propagation. Back-propagation

for neural network neurons was first introduced in 1986 (Rumelhart et al. 1986;

LeCun et al. 1989; Werbos 1990). Backpropagation, short for backward propa-

gation of errors, is an algorithm for training artificial and convolutional neural

networks using gradient descent to minimize the loss function or the error of

the network.

Before discussing backpropagation, we need to discuss the difference be-

tween training on an epoch, a single example, or a mini-batch of data. In

batch gradient descent training, the weight changes are calculated for every

sample in the dataset (an epoch) before being applied to the network (Wilson

and Martinez 2003). Traditional stochastic gradient descent processes only one

example per iteration before updating the weights (Li et al. 2014). Another

approach calculates the gradient on a mini-batch or subset of the training data

10

before applying a weight update to the neural network (Li et al. 2014). Both

traditional stochastic gradient descent and mini-batch gradient decent are con-

sidered on-line learning techniques (Wilson and Martinez 2003). While it is true

that batch training calculates the true gradient for the weight updates rather

than the approximation generated by the instance or mini-batch training, it al-

most always learns slower in practice, especially for large datasets (Wilson and

Martinez 2003). Even though on-line training can have noisy gradients that

contradict each other, on average they will move in the direction of the true

gradient (Wilson and Martinez 2003). Stochastic gradient descent trains faster,

batch gradient descent is more stable, and mini-batch gradient descent allows

us to find a batch size that maintains a balance between them.

We will give some background for the stochastic gradient decent method.

Note that the x and y used here are not related to the neural network but refer

only to a generic function with an input x and an output y. Gradient based

optimization tries to minimize the function f(x) by altering x (Goodfellow et al.

2016). A derivative is useful for minimizing y because it tell us how to modify

x in order to make a small adjustment in y (Goodfellow et al. 2016). Gradi-

ent descent is the process of reducing f(x) by moving in small steps with the

opposite sign of the derivative. A neural network has multiple inputs, therefor

a partial derivative is computed for each individual weight with respect to loss

(Goodfellow et al. 2016).

Supervised neural networks are trained on n samples (called a mini-batch) to

minimize the loss or cost of the network. Classification networks with softmax

use a cross-entropy cost function:

L = − 1

n

n∑
i=1

[
yilog(ai) + (1− yi)log(1− ai)

]
, (2.5)

11

Figure 2.3: Chain rule backpropagation on a single neuron. Image from Li et al.

(2016).

where a is the output value of a neuron σ(z), and z is the weighted sum of the

input values. Loss is computed given a set of inputs x1, x2, ..., xn propagated

forward through the neural network with an output of a1, ..., am and a target of

y1, ..., ym.

The purpose of backpropagation is to figure out the partial derivatives of

the neural network’s loss function with respect to each individual weight of

the network. We can use the chain rule to compute the gradient of the error

with respect to each weight. Figure 2.3 shows a good visualization of the

backpropagation step for a single neuron (Li et al. 2016). This figure is from

Stanford lecture slides1.

1http://cs231n.stanford.edu/slides/2016/winter1516 lecture4.pdf

12

We give an example how to update the weight of a node wjk connecting a

node from layer j to layer k with an input vector x and an output y. Lk is the

loss of the output node and α is the learning rate.

∆k = Lk × σ′(xk)

wjk ← wjk + α× yj ×∆k

∆j = σ′(xk)
∑
k

wjk ×∆k

There is a variant on stochastic gradient descent called Adaptive Moment Esti-

mation (Adam) (Kingma and Ba 2014). We apply this to one of the networks

we describe below. Adam computes adaptive learning rates for the different pa-

rameters by estimating the first and second moment of the gradients (Kingma

and Ba 2014). Adam uses moments to converge on a solution faster and slowly

decays the learning rate (Kingma and Ba 2014). Adam has been shown to pro-

duce a faster learning curve for large scale problems in terms of the number of

learning iterations required (Kingma and Ba 2014). The full Adam algorithm

introduced by Kingma and Ba is shown in Figure 2.4 (2014).

2.4 Convolutional Neural Networks

Convolutional Neural Networks (often referred to as CNNs or ConvNet) are

a type of feed-forward artificial neural network that is commonly applied to

computer vision problems. Convolutional Neural Networks share many of the

properties of Artificial Neural Networks. In this section, we describe CNN

properties such as local receptive fields, shared weights, and pooling (Goodfellow

et al. 2016).

13

Figure 2.4: Adaptive Moment Estimation algorithm from Kingma and Ba

(2014).

14

ANNs expect a 1 dimensional vector as the input to the network, but con-

volutional neural networks can read in 1D, 2D, or 3D data. Since we use CNNs

for 2D image classification we will only discuss the 2D case. A 2D convolution

layer takes an image with width, height, and channel. Technically, this is 3

dimensional input, but the channel is handled differently so this is still referred

to as 2D convolution. Typically, these images will have 3 RBG channels or 1

gray-scale channel.

2.4.1 Convolution Filters

One key component of convolutional neural networks is the use of shared weights.

In traditional ANNs, each node in layer n is connected to each node in layer

n+1 with a corresponding weight. Convolutional neural networks, on the other

hand, share weights using filters/kernels. Throughout this paper we will use the

words filters and convolution kernel interchangeably. First, we will talk about

how a filter is used in the convolutional neural network and then we will describe

how the weights of the filter are initialized and then updated during learning.

A convolutional filter has a size of k × k × depth, where k is a small integer

and depth is set by the number of feature maps in the previous layer. The

filter slides over the image, spatially convolving the image as seen in Figure 2.5.

This figure shows an example of a 3 × 3 filter being applied to a 7 × 7 input

image with a depth of one. The amount the convolution kernel moves at each

step is called the stride length. For the example in Figure 2.5, the convolution

filter moves across the matrix with a stride of 1. The region of the input that

the kernel is affecting at a single step is called the local receptive field. The

local receptive field will always have the same dimension as the convolution

filter. The convolution step consists of multiplying the weights of the filter by

15

the local receptive field. A feature map is computed by repeating this step at

every local receptive field. This uses the same idea as the operation visualized

in Figure 2.2, only we compute the dot product of the shared filter weights and

the local receptive field instead of a vector of inputs and their weights. A feature

map is created for each convolution filter applied to a layer as seen in figure 2.6.

We apply this process to each convolutional layer of the neural network. In the

input layer, we apply a filter size of k × k × channel, and in the hidden layers

we apply a k × k × depth, where depth is the number of feature maps.

Each filter applied to layer n of the convolutional neural network produces

a feature map in layer n + 1. In order to produce different feature maps when

performing convolution on the same layer, we need filters with different weights.

We use the Glorot Uniform Initializer (Glorot and Bengio 2010), as implemented

by Keras:

W ∼ U =

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
. (2.6)

We use equation 2.6 to initialize each W with a uniform distribution within the

given range (Glorot and Bengio 2010). nj is the number of neurons feeding into

a node and nj+1 is the number of neurons is the number of neurons the output

feeds to (Glorot and Bengio 2010).

2.4.2 Pooling

Pooling layers are commonly placed between convolution layers in order to

down-sample the number of weights in a convolutional neural network. One

commonly used type of pooling is called max pooling (Zhou and Chellappa

1988). In Figure 2.7 we can see an example of a 2× 2 max pool using a stride

length of 2. The figure shows 64 different 224× 224 features maps pooled into

16

Figure 2.5: Visualization of a filter (or kernel) of size 3 × 3 being applied to

each local receptive field in a 7× 7 matrix to create a 5× 5 output.

17

Figure 2.6: Image from (Dieleman et al. 2015).

64 different 122 × 122 feature maps. We will always have the same number

of feature maps before and after a pooling layer, pooling will only reduce the

width and height of the image. It is common to apply 3× 3 pool with a stride

of 2 (Szegedy et al. 2015), or a 2× 2 pooling layer with a stride of 2 (Simonyan

and Zisserman 2014). Since pooling does decrease the spatial dimensions of the

feature maps, it can only be applied a limited number of times. For shallower

neural networks, a pooling layer is sometimes applied between every convolution

layer, but for deeper convolution layers, a pooling layer is typically only applied

once every two to three layers.

2.5 Inception Network

As computation power grows, convolutional neural networks have become deeper

and deeper. However, Szegedy et al. has a slightly different approach to deep

CNNs other than just stacking additional convolution and pooling layers to

the network (2015). The inception network was inspired by Lin et al., who

18

Figure 2.7: Example of max pooling using a pool size of 2× 2 and a stride of 2.

Image from (Karpathy 2016)

introduced the concept of a network within a network (2013). Pooling, 1 × 1

convolution, 3× 3 convolution, and 5× 5 convolution layers all come with their

own advantages. A core concept of the inception network is not choosing a

single filter size or pooling for each layer linearly, but rather applying them in

parallel and then concatenating the results in an inception module (Szegedy

et al. 2015). The inception network is created by stacking several inception

modules together.

In practice, repeatedly applying 3 × 3 and 5 × 5 convolutions can be quite

computationally expensive. The inception module often uses a 1×1 convolution

with a low filter count in order to reduce the dimensionality before applying

19

Figure 2.8: A mini-network replacing a 5×5 convolution with a 3×3 convolution.

Image from Szegedy et al. (2016)

large expensive convolutions (Szegedy et al. 2015). For example, applying a

1 × 1 convolution with 20 filters on an image of size 28 × 28 with 50 filters

results in an output size of 28× 28× 20.

One core idea behind the inception-v3 network design is to replace larger

convolutions filters with smaller ones (Szegedy et al. 2016). Larger filter sizes

such as 5 × 5 and 7 × 7 can be “disproportionally expensive” when it comes

to computation time compared to improved accuracy (Szegedy et al. 2016).

Figure 2.8 shows a 5 x 5 filter being replaced by two layers of 3× 3 convolution

(Szegedy et al. 2016). Furthermore, a 3 × 3 convolution can be replaced by a

3× 1 convolution followed by a 1× 3 convolution.

Szegedy et al. combines the idea of applying a pooling, 1 × 1 convolution,

2 × 2 convolution, and 3 × 3 convolution simultaneously with splitting larger

convolutions into smaller ones for the building block of the inception-v3 network.

20

(a) Original inception module design. (b) Updated inception module design for

inception-v3 network

Figure 2.9: Image from Szegedy et al. (2016)

In Figure 2.9, we can see the original design of the inception module and the

updated design for faster computation. Decreasing the computation time and

bottlenecks of each layer allows for deeper convolutional neural networks. The

inception-v3 network shown in Figure 2.11 is one of the models we train to

classify bird roosts.

The inception-v3 network includes three different types of inception modules,

as show in Figure 2.10. The inception-v3 network also contains an auxiliary

classifier, a concept introduced in Szegedy et al. (2015). The auxiliary classifier

computes the loss at earlier stages of the network to encourage learning in

the lower layers and to increase the gradient signal by propagating error back

earlier in the network (Szegedy et al. 2015). This is an important step in the

very deep networks such as the 27 layer deep GoogLeNet (Szegedy et al. 2015).

The inception-v3 network only includes one auxiliary classifier towards the top

21

Figure 2.10: The three different inception modules used in the inception-v3

network. Image modified from Szegedy et al. (2016)

part of the network because adding the auxiliary network lower down did not

improve the network convergence (Szegedy et al. 2016).

2.6 Batch Normalization

Batch normalization is a new and important technique that accelerates learn-

ing in deep neural networks and makes the network more robust to varying

learning rates and parameter initializations. Batch normalization was first in-

troduced in 2015 and it improved the accuracy of ImageNet classification while

simultaneously speeding up learning 14 times (Ioffe and Szegedy 2015). During

training, the weight of each layer in a deep learning network are updated at

every learning step. This can be a problem since each network layer is affected

by the parameters of all the previous layers so the later layers have to learn

new weights as the output from earlier layers changes (Ioffe and Szegedy 2015).

This phenomenon slows down learning and is referred to as internal covariate

shift (Ioffe and Szegedy 2015).

Batch normalization comes from a concept called whitening, which linearly

transforms the inputs x to have zero means and unit variances (Ioffe and Szegedy

22

Figure 2.11: This is a visualization of the Inception-v3 network described in

Szegedy et al. (2016). Each shape in the diagram represents a layer in the

network (such as convolution or pooling layer). Image from Shlens (2016).

23

2015). It has been shown that this process helps training converge faster (Ioffe

and Szegedy 2015). Whitening the inputs x of each layer is expensive and

not always differentiable (Ioffe and Szegedy 2015). Instead, Ioffe and Szegedy

normalize each scalar feature independently over the training data set (2015).

The math for this step can be seen in Equation 2.7:

x̂(k) =
x(k) − E

[
x(k)
]√

V ar
[
x(k)
] . (2.7)

Always normalizing the layer input changes the layer. The variables γ and β

are used to scale and shift the normalized values which “restores the represen-

tational power of the network” (Ioffe and Szegedy 2015). Both γ and β from

Algorithm 2.1 are updated during network training.

Algorithm 2.1: Batch Normalization applied to activation x over a mini-

batch. Algorithm from (Ioffe and Szegedy 2015)

Input : Values of x over a mini-batch B = {x1...m}; Parameters to be

learned: γ, β

Output: {yi = BNγ,β(xi)}

µ← 1

m

m∑
i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 // mini-batch variance

x̂i ←
(xi − µB)2√

σ2
B + ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

When adding batch normalization to a network, first perform a dot product

on the weights in layer inputs to compute a scalar value, then perform batch

24

normalization on a mini-batch, and finally apply the activation function. γ and

β are used to learn whether to apply normalization to the input or not.

2.7 Transfer Learning

As we mentioned earlier, transfer learning allows us to train convolutional neu-

ral networks using a smaller number of labels. We transfer knowledge gained

from training on one dataset to another similar dataset. For example, the

weights of the CNN filters are learned when training on ImageNet and then

fine tuned when training the new dataset (Shin et al. 2016). Transfer learn-

ing has affectively been applied to the inception network on image datasets.

Transfer learning allows us to train deeper Convolutional Neural Network with

fewer training labels since there are fewer weights and parameters that our net-

work has to optimize. Convolutional Neural Networks can automatically learn

complex features needed for object recognition given enough training data (Yue-

Hei Ng et al. 2015). The inception network learned to classify ImageNet data

with a 6.67% error without using handcrafted features or an external dataset

(Szegedy et al. 2015). We hypothesize that we can reuse these same general

image features to classify radar data.

25

Chapter 3

Dataset

3.1 Bird Roost Dataset

All of the input data for our machine learning models comes from publicly

available level 2 NEXRAD radar data hosted on Amazon Web Services1. We

obtained a list of radar datum that are known to contain a snapshot of birds

leaving their roosts. We identify the datum by the radar name and time stamp.

Our dataset consists of the ground truth roost locations collected by research

groups at two different universities. The coordinates of 365 roost sites that were

identified as purple martins were collected by the Purple Martin Conservation

Association (Kelly et al. 2012), however only a subset of these were individually

documented with a time stamp of when the bids are visible. The UNQC CREF

radar mosaic products were manually searched at known roost locations in or-

der to identify roost in radars (Bridge et al. 2016). For more details, see the

‘Compilation of roost data’ section in Bridge et al. (2016). The remaining la-

bels were collected using a crowd sourced approach by asking citizen scientists

to label radar data online2 (Laughlin et al. 2014).

Roosts form a distinct visual pattern in the radar data images. Roosts can

be detected as they leave their roost every day around sunrise. Figure 3.1 shows

1https://aws.amazon.com/public-datasets/nexrad/
2http://radar.cs.umass.edu/roost-label

26

Figure 3.1: Example of birds leaving their roost. This particular image shows a

roost in radar KHTX from 5:50 AM to 6:26 AM CDT on August 4 2015. Image

from (Kelly and Pletschet 2017)

an example of what a birds leaving their roost looks like at different snapshots

in time. This visual pattern was used to identify the bird roosts in our dataset.

Reflectivity can be accurately represented with gray-scale as seen in 3.1, however

the inputs to the convolutional neural networks use RGB values so that transfer

learning can be applied.

3.1.1 Radar Products

Reflectivity, Doppler Radial Velocity, and Spectrum Width radar products are

available to us in the non-polarimetric radar data. The dual-polarization radar

27

data contains all products of the legacy radars, in addition to Differential Re-

flectivity (ZDR), Differential Phase (φDP), and Correlation Coefficient (ρHV).

Reflectivity, Radial Velocity, Differential Reflectivity (ZDR), and Correlation

Coefficient (ρHV) are considered useful radar products for detecting bird roosts

(Muller et al. 2015), so the other two parameters (Spectrum Width and Differen-

tial Phase (φDP)) were not included in our machine learning input. Reflectivity

refers to the intensity of the echo caused by the radar beam bouncing off its

target and it has been show to be useful for detecting bird roosts, as well as

calculating the density of birds (Diehl and Larkin 2005). Velocity is a useful

radar product when studying birds because it helps determine which direction

the birds are flying in (Gauthreaux Jr and Belser 1998). Weather and wind tend

to move in a single direction, whereas birds leaving their roost fly in multiple di-

rections creating a unique pattern that can be used to help locate birds roosts in

radar data. Differential Reflectivity (ZDR) is most explored polarimetric prod-

uct for biology, which many applications successfully applied to determine the

orientation of birds (Stepanian and Horton 2015). Correlation Coefficient (ρHV)

has also been an important metric for detecting bird roosts since birds typically

register a lower ρHV than meteorological echoes (Van Den Broeke 2013). Fig-

ure 3.2 shows a visualization of the four radar products that we use as the input

data to our machine learning model.

3.2 Data Formatted for Machine Learning Input

The roost labels come from 10 different radars: KAMX, KBRO, KDOX, KGRK,

KJAX, KHGX, KLCH, KLIX, KMLB, and KMOB. A distribution of labels by

dataset can be seen in Figure 3.4, and a distribution of which labels came

28

Figure 3.2: Machine Learning input. This is an example of a radar image that

contains a roost. This is from the KMOB radar from July 4th 2015, 11:19 UTC.

Image created using the Py-ART library (Helmus and Collis 2016).

29

Figure 3.3: Machine Learning input. This is an example of a radar image that

does not contain a roost. This is from the KMOB radar from July 2nd 2015,

11:27 UTC. Image created using the Py-ART library (Helmus and Collis 2016).

30

from legacy and dual-pol radar can be seen in Figure 3.5. Both of the datasets

contained primarily positive labels of roosts found in radar since this is the data

that the researchers were studying. As a result, only a few no roost radar data

were recorded. In order to collect more negative labels, we selected radar data

before and after the roosts were located. We collected negative labels starting

2 hours before until 1 hour before sunrise and 1 hour after until 2 hours after

sunrise, leaving a 2 hour window in between. The majority of our negative

labels were selected from this time period and the remaining negative labels

came from the datasets described above. The noise in our radar images (dust,

weather, sun-streaks, etc.) directly before, during and after the roost is visible

in the radar is similar. This forces our machine learning algorithms to detect

the roost itself in order to correctly classify our data. Sun-streaks appear in

radar images more often close to sunrise, however they appear in both our roost

and no roost data.

We converted each labeled radar datum to a 2D image. We detect bird

roosts using the lowest level radar scan, since that is where the birds leaving

their roost are most commonly detected (Chilson et al. 2012b). We convert

the lowest level radar scan (0.5 degree) to Cartesian coordinates and save it as

an image. We save the reflectivity, velocity, ρHV, and ZDR radar products as

individual images. In Figures 3.2 and 3.3 we see an example of what each of

the lowest level radar scans saved as an image looks like. A color is assigned to

each radar product using standard meteorological values. Figure 3.2 shows an

example of a roost input and Figure 3.3 shows an example of no roost input.

The roost images contain the roost ring pattern as seen in Figure 3.2. The

no roost images contain many different types of noise including weather, dust,

31

Roost No Roost

Legacy 11,112 19,939

Dual-Pol 1,346 10,806

Table 3.1: The distribution of labels. This table lists how many dual-pol radar

labels exist within the data.

insects, etc. These images serve as the input to our machine learning models.

Table 3.1 shows how many training labels we have as inputs to our model.

32

(a) Oklahoma Biological Survey roost data

(b) UMass Amhert citizen science roost data

Figure 3.4: Visual distribution of roost labels from the Oklahoma Biological

Survey and UMass Amhert citizen science labels. This figure shows where each

roost was found.

33

(a) Legacy radar roost data

(b) Dual-Pol radar roost data

Figure 3.5: Visual distribution of roost labels for legacy radar and dual-pol

radar data.

34

Chapter 4

Design: Neural Network Architectures

When creating ANN or CNN network architectures it is important to find the

simplest version that stills works effectively. Canziani et al. (2016) compares

different network architectures, their complexity, their training time, and their

accuracy. Small accuracy increments can often lead to a large computation cost

increase as the accuracy approaches its upper bound (Canziani et al. 2016).

By incrementally making changes and adding complexity or layers to a sim-

ple network, it’s possible to find the point where added complexity results in

diminishing returns. We compare artificial neural network performance to con-

volutional neural network performance. We also compare how well deep CNNs

trained with transfer learning perform compared with shallow CNNs trained

from scratch.

4.1 High Level Design

In order to have a fair comparison for the ANN, shallow CNN, and deep CNN

models, we create an overall design that is similar for each of the three mod-

els. Image classification is generally done on a single image, but we have four

separate radar product images that we use to give a single classification. We

also want to compare how well machine learning models can perform on each

individual radar product.

35

Figure 4.1: Overview design of a convolutional neural network for classifying

rotational-invariant galaxy images. Image from (Dieleman et al. 2015).

We use a layered machine learning design inspired by a rotational-invariant

convolutional neural network galaxy classification architecture as seen in Fig-

ure 4.1 (Dieleman et al. 2015). The design of their network took a single image

and rotated it in three different ways. Each rotated image was cropped and

then input into three separate convolutional neural networks. The output from

each convolutional neural network was then combined in dense neural network

layers to obtain the aggregate prediction (Dieleman et al. 2015). Instead of

using rotated images as inputs to separate CNNs we use individual radar field

images as the inputs to separate CNNs. The overall architecture for the roost

classification model for both dual-pol and legacy radar data can bee seen in

Figures 4.2 and 4.3, respectively. Unlike the Dieleman et al. paper, our model

does not crop or shift the images. Radars are stationary, so it would not make

36

Figure 4.2: Design of the machine learning classification system for legacy radar

data.

sense to learn different orientations of the radar imagery. As one can see from

Figure 3.2, there is a lot more noise in the center of the image. The radar scans

closest to the radar are also much closer to the ground, and thus more clutter,

such as dust and insects is detected in the center of the radar scan. The machine

learning model needs to learn to ignore the noise at the center of the image.

Another key difference between our network design and the galaxy classifi-

cation network is that the output from our convolutional neural networks is not

directly connected to the fully connected (or dense) layers. As previously men-

tioned, we want to be able to compare the accuracy of classification using only

legacy radar fields, using all of the radar fields, and using each radar field indi-

vidually. To avoid retraining the exact same component of the model multiple

times for different networks, we train the convolutional neural networks inde-

pendently. Another reason to train the networks on each radar field separately

37

Figure 4.3: Design of the machine learning classification system for dual polar-

ization data.

38

type BN nodes activation

Input Layer 2 or 4

Hidden Layer Y 16 ReLU

Output Layer N 2 softmax

Table 4.1: The design of the aggregate classifier. This table gives a full descrip-

tion of the design of each layer of the network. BN stands for batch normaliza-

tion.

is to minimize the number of networks weights that need to be learned simul-

taneously. A neural network trained to classify bird roosts using four images

as input would need to learn four times the number of network weights from

4 times as many input values. We train each of our CNNs on the individual

radar parameters: Reflectivity, Radial Velocity, Differential Reflectivity (ZDR),

and Correlation Coefficient (ρHV). The networks learn to optimize classification

results using a single radar field as part one of our layered machine learning

design.

In the second part of our design, we trained a feed-forward artificial neural

network to output a roost or no roost classification given four input values.

The input values are the four (two for the legacy radar data) classification

probabilities output from the individual radar field networks. This ANN only

had a single hidden layer with 16 nodes as described in Table 4.1. For the rest

of the paper we will refer to this network as the aggregate classification ANN.

The aggregate classification ANN relies on accurate input probabilities in order

to perform well since it doesn’t see the radar data directly.

39

4.2 Neural Network Architectures

We compare several different neural network architectures to see how well they

can classify radar field images. In this section we will describe the network

structure of these three different neural networks. The artificial neural network

and the inception-v3 network were trained using back propagation and stochas-

tic gradient decent. The shallow convolutional neural network was trained using

the variant on stochastic gradient decent called Adam.

4.2.1 Artificial Neural Network

We use a feed forward artificial neural network as our simplest model for com-

parison. The results and design from this network come from Katherine Avery’s

Honors Thesis (Avery 2018). The ANN we used took a 240 by 240 pixel grayscale

image as the input. When training on reflectivity the three dense hidden layers

consisted of 64, 32, and 8 nodes. When training the Velocity, ZDR, and ρHV,

the first hidden layer consisted of 128 nodes instead of 64. Each of the hidden

layers was followed by batch normalization and a ReLU activation function, and

the output layer was followed by batch normalization and a softmax activation

function. This model was trained with a learning rate of 0.01.

4.2.2 Inception-V3 Network with Transfer Learning

We train a deep convolutional neural network using transfer learning since the

bird roost dataset does not have enough labels to fully train a deep convolutional

network from scratch. The deep CNN that we chose was the Inception-V3

network since it achieved great results on ImageNet data (Szegedy et al. 2016).

We gave a full description of the inception-v3 network in the background section

40

type BN nodes activation

Input Layer 240× 240

Hidden Layer Y 128 or 64 ReLU

Hidden Layer Y 32 ReLU

Hidden Layer Y 8 ReLU

Output Layer N 2 softmax

Table 4.2: The design of the artificial neural network. This table gives a full

description of the architecture and number of nodes in each layer of the network.

in Chapter 2. The weights of the network were fully trained using the ImageNet

dataset. The last layer of the network was then retrained using radar image

data to detect bird roosts. Theoretically the network learned all of the useful

features and information about images from ImageNet, and then the network

was retrained to learn how those features translate to detecting bird roosts in

radar images. The network was trained using a learning rate of 1e-04.

4.2.3 Shallow Convolutional Neural Network

Another network we compare will be referred to as the shallow CNN from this

point on in this thesis. The shallow CNN used only two convolution layers.

Adding more layers in the network did not improve results, but did increase

training time. The network took in an image with 240 × 240 pixels and RGB

channel values. The shallow network contains two convolution layers with 5 x

5 kernels. The first convolution layer contains 32 filters, the second contains

64 filters, and each is followed with a max pooling layer. Both pooling layers

have a pool size of 2 x 2 and stride of 2. The output of the second pooling

layer was the input for the a dense layer with 500 nodes with ReLU activation

41

type BN filters nodes kernel pool stride activation

Convolution Y 32 5 x 5 1 ReLU

Max Pool 2 x 2 2

Convolution Y 64 5 x 5 1 ReLU

Max Pool 2 x 2 2

Fully Connected Y 500 ReLU

Fully Connected N 2 softmax

Table 4.3: The design of the shallow convolutional neural network. This table

gives a full description of the design of each layer of the network.

and batch normalization. The final layer provided a probability classification

using the softmax activation function. We used accuracy as the metric to see

how well our model was training and binary cross-entropy as the loss function.

This network was trained using a learning rate of 1e-4. Learning rates higher

than 1e-04 produced less stable results and learning rates lower than 1e-04 led

to longer training with without any improvement in accuracy.

42

Chapter 5

Results

5.1 Scoring Metrics

When evaluating the classification results of our machine learning models, we

use four different metrics. We evaluate the total accuracy (ACC), the true

positive rate (TPR), the true negative rate (TNR), and the area under the

ROC curve (AUC). ACC, TPR, and TNR can all be calculated by counting the

number of true positives (TP), true negatives (TN), false positive (FP), and

false negatives (FN).

ACC = (TP + TN)/(TP + FN + FP + TN) (5.1)

TPR = TP/(TP + FN) (5.2)

TNR = TN/(FP + TN) (5.3)

Actual Label

Roost No Roost

Predicted Label
Roost TP FP

No Roost FN TN

Table 5.1: A binary contingency table for whether or not a Roost is found in

radar data.

43

Accuracy allows us to look at how many correct classifications the network

produced overall. A high true positive rate should be favored when the goal

is to miss as few bird roosts as possible. A high true negative rate should be

favored when a few missing roosts is acceptable, but we want to spend minimal

time eliminating false positives from the data. AUC is useful because this metric

is not biased by an unbalanced dataset. Each metric has a purpose, and the

correct metric to chose will vary for different research purposes.

A receiver operating characteristic (ROC) curve can provide a richer clas-

sification measure than the scalar metrics used above, as well as creating a

visualization of the classification results. When comparing the results from dif-

ferent ROC curves we can use the AUC metric (Fawcett 2006). The AUC values

range from 0 to 1 where a perfect classifier will achieve a score of 1 and random

guessing will score 0.5 (Fawcett 2006). The AUC value of a classifier is the prob-

ability that the model will rank a positive classification higher than a negative

classification (Fawcett 2006). An AUC value of .9 or above is considered to be

a good result.

We evaluate our results using cross-validation. K-fold cross-validation is the

process of partitioning the data into k subsets of the data (folds), training on

k−2 folds, validating on 1 fold, and testing on the remaining fold (Kohavi et al.

1995). The training is repeated k times, where each fold is used as the testing

and validation fold exactly once. K-fold allows us to evaluate every labeled da-

tum. We use 5-fold cross-validation to train and evaluate our models. We chose

a small number for k because convolutional neural networks are computationally

expensive to train.

44

For each of our metrics we calculate the confidence interval using the boot-

strapping percentile method. The percentile method calculates the chosen met-

ric (for example, loss or accuracy) on randomly selected samples of the data

iteratively (Efron and Tibshirani 1986). Then for a 95% confidence interval

we take the upper and lower 2.5% points of distribution (Efron and Tibshirani

1986). This is a range that 95% of the bootstrapped samples fall within. The

upper and lower bound of the distribution become the confidence interval for

the performance metric (Efron and Tibshirani 1986).

Each testing fold was evaluating using its corresponding network. The re-

sults from each of the testing folds are then combined. To compute the con-

fidence intervals for ACC and AUC we randomly select one thousand samples

with re-sampling from the combined testing results. For TPR we select one

thousand samples from the roost data and for TNR we select one thousand

samples from the no roost data. We repeat this process for one thousand iter-

ations on each of our metrics in order to compute the confidence intervals. We

have more confidence in our legacy radar results since we are able to samples

from a larger dataset.

5.2 Classification Results

Of the three different machine learning networks we trained, the shallow CNN

and Inception network aggregate classifiers produced the best results with an

accuracy of 90 percent. The inception aggregate classifier has the highest true

positive rate, and the shallow CNN Dual-Pol aggregate classifier has the highest

true negative rate. These results are averages from five runs of each of the

45

networks. The full results for each network are included in Table 5.2. The box

plots of the confidence intervals are found in Figures 5.2 and 5.1.

We hypothesized that both the Inception-v3 network and the shallow CNN

would outperform the traditional Artificial Neural Networks since Convolutional

Networks are better at learning spacial relations. The results from the ANN

are preliminary results so we can only compare accuracy as our metric. The

Shallow CNN had a higher accuracy than the traditional ANN in everything

except for reflectivity. The traditional ANN’s accuracy was in the low eighties

for each of the different radar products (see Figure 5.7).

The ANN trained from scratch produced better results than transfer learning

on the Inception-v3 network. We expected the Deeper Convolutional Neural

Network to perform better since it takes many network layers to fully create

custom features. We also expected the Inception-v3 network to outperform the

shallow CNN because deep CNNs have performed very well on many image

datasets. It’s worth noting that the Inception-v3 aggregate networks performed

very well and are comparable with the shallow CNN results even though the

individual radar products did not perform as well on their own.

We believe that transfer learning would have worked better if the inception

network was initially trained on a large set of radar data, for example to predict

different severe weather systems from radar data. Natural images are different

than radar images and may require different convolutional filters that may not

necessary translate to radar data. Natural images contain shadow, light, objects

in the foreground and background, lines, edges, etc. It may also have helped

if we trained the lower layers of the Inception-v3 network instead of relying on

ImageNet to find useful features for radar data. Another reason the Inception-v3

network may not have worked as well as expected is that we did not have enough

46

ACC TPR TNR AUC

ANN

Reflectivity .829 - - -

Velocity .817 - - -

Differential Reflectivity .821 - - -

Correlation Coefficient .824 - - -

Inception

Reflectivity .757− .808 .803− .848 .728− .779 .839− .884

Velocity .770− .819 .789− .837 .757− .807 .851− .894

Differential Reflectivity .746− .796 .819− .865 .732− .787 .847− .905

Correlation Coefficient .712− .766 .774− .824 .705− .760 .805− .874

Legacy Aggregate .848− .889 .857− .896 .841− .885 .929− .956

Dual-Pol Aggregate .906− .938 .923− .952 .904− .937 .971− .990

Shallow CNN

Reflectivity .873− .912 .785− .832 .920− .950 .937− .964

Velocity .636− .692 .000− .002 .999− 1.00 .684− .754

Differential Reflectivity .882− .919 .727− .781 .903− .936 .912− .953

Correlation Coefficient .901− .935 .697− .751 .927− .955 .910− .956

Legacy Aggregate .875− .913 .797− .844 .915− .947 .930− .961

Dual-Pol Aggregate .905− .938 .813− .857 .916− .948 .931− .970

Table 5.2: Results for each model and each metric: ACC - Accuracy, TPR - True

Positive Rate, AUC - Area Under Curve. These results show the bootstrapped

confidence intervals.

47

radar data, especially polar-metric radar data, to effectively train this network.

The inception network learns to utilize a wide range of image properties in the

features and it may take more training data to fully utilize this information.

Although the shallow CNN outperformed the Inception-v3 network, the shal-

low CNN over-fit more on the training data. The training accuracy and loss

from the inception network were consistently more similar for the inception net-

work than for the shallow CNN as seen in Figures 5.3, 5.5, 5.4, and 5.6. The

shallow CNN had more over-fitting and even approached 100 percent accuracy

on the training data for every radar product that we trained on. Once the

training network loss is zero, the network will stop learning. This still allowed

the shallow CNN to approach 90 percent accuracy on the test data. It is unfor-

tunate that our learning was capped here. It is possible that the network would

over-fit less if we had more training data.

In addition to the learning curves in Figures 5.3 and 5.5 we also included the

loss of the networks in Figures 5.4 and 5.6. The loss was computed using binary

cross entropy. Note that for the inception network the loss continues to go down

even after the network accuracy stops improving. This could be because the

computed probabilities are getting better, which is not directly reflected in the

accuracy. If a roost is classified as a roost with a probability of .7 or .8 then

the accuracy for both examples will be the same (correct), but the loss will be

lower for the one classified with a .8 probability. We use a threshold of .5 for

the classification.

The ROC curves for both the inception network and the shallow CNN are

displayed in Figures 5.8 and 5.9. The shallow CNN has a higher AUC for

everything except for the velocity network. It is interesting to note that the

shallow CNN trained only using velocity classified all of the images as No Roost

48

while the inception network was able to learn to classify velocity with a ACC

of 78%.

5.2.1 Aggregate Classification Results

Our classification model when using multiple radar products to classify bird

roosts is a layered machine learning problem. Our models will assign a classifi-

cation probability to each radar product in the first part of the problem. These

classification probabilities serve as the inputs to our second model. Ideally we

would have two separate validation sets for the two different machine learning

steps, however we did not have a sufficient number of labels to create two vali-

dation sets. Our dataset was split into three different groups that we will refer

to as A, B and C. Group A contains 60 percent of the data and the remaining

40 percent is split equally between group B and C. When training the models

to detect bird roosts from image data for a single radar product we use A as our

training set, B as our validation set, and C as our testing set. For the second

stage of learning we input the probabilities of the different radar products into

a 1 hidden layer neural network for the aggregate classifier. At this stage of

the problem we use B as our training set, A as the validation set, and C as

the test set. C is consistently used as the test set throughout. The learning

curve in Figure 5.10 and loss curve in Figure 5.11 shows that our new validation

data outperforms the training set. This is not surprising since the training set

data produced a higher accuracy during the first part of the machine learning

so probabilities we input into our machine learning model were more accurate.

The ROC curve for the aggregate classifier can be seen in Figure 5.12. The

final classification step improved the ACC, TPR, TNR, and AUC of the incep-

tion network. The aggregate classifier didn’t improve the shallow CNN results

49

as much, but the shallow CNN individual radar product did fairly well so it

was harder to improve. The Inception-v3 network and shallow CNN Dual-Pol

aggregate classifiers have the highest accuracy of all of the results. Of these two

networks Inception-v3 Dual-Pol classifier had a higher TPR and AUC, however

the shallow CN Dual-Pol aggregate classifier had a higher TNR.

50

(a) ACC (b) TPR

(c) TNR (d) AUC

Figure 5.1: The confidence intervals for each metric evaluated on the Inception-

v3 network.

51

(a) ACC (b) TPR

(c) TNR (d) AUC

Figure 5.2: The confidence intervals for each metric evaluated on the shallow

CNN.

52

Figure 5.3: Learning Curve for retraining the inception network. Average learn-

ing curve from five runs.

53

Figure 5.4: Loss for retraining the inception network. Average learning curve

from five runs.

54

Figure 5.5: Learning Curve for training the shallow CNN network. Average

learning curve from five runs.

55

Figure 5.6: Loss for training the shallow CNN network. Average learning curve

from five runs.

56

(a) Reflectivity (b) Velocity

(c) ρHV (d) ZDR

Figure 5.7: Learning curve for the ANN trained on four individual radar prod-

ucts: Reflectivity, Velocity, ρHV, and ZDR. These learning curves are each from

a single run. Results from Avery (2018)

57

Figure 5.8: ROC curve for the inception net. Four different shallow CNN net-

works were trained on Reflectivity, Velocity, ρHV, and ZDR separately.

58

Figure 5.9: ROC curve for the shallow CNN. Four different shallow CNN net-

works were trained on Reflectivity, Velocity, ρHV, and ZDR separately.

59

Figure 5.10: Learning curve when training on the inception network and shallow

CNN probability that an image contains a roost given four individual radar

products: Reflectivity, Velocity, ρHV, and ZDR .

60

Figure 5.11: Loss when training on the inception network and shallow CNN

probability that an image contains a roost given four individual radar products:

Reflectivity, Velocity, ρHV, and ZDR .

61

Figure 5.12: Final ROC curve results for the dual-pol and legacy data. Our

machine learning model was trained on probability outputs from Reflectivity,

Velocity, ρHV, and ZDR

62

Chapter 6

Conclusions and Future Work

My contributions to this project are: 1) the architecture of the shallow CNN

and 2) evaluating how well both a shallow CNN trained from scratch and a

deep CNN trained using transfer learning perform when classifying bird roost.

I apply existing start of the art image classification techniques to automated

bird roost detection in radar data.

My classification method vastly reduces the number of images that need to

be manually searched in order to find bird roosts, especially since most radar

images don’t contain visible bird roosts. Both the Inception-v3 and the shallow

CNN models performed well and are the two best models. Eliminating the final

false positives from the dataset by hand will be much less time consuming that

sifting through all 70,000 radar images a year, searching for bird roosts. I am

able to reduce the amount of time it takes to process radar image data and I

believe these results can be improved in the future with a temporal analysis

of the data and more dual polarization labels. I am planning on making these

results publicly available to citizen scientists in the Spring of 2018.

In the future, we hope to fully automate the bird roost detection process

by preprocessing the radar images. Just as radar data is quality controlled for

weather, we could filter out weather from our radar data to eliminate some of the

noise from our radar data. Additionally, biology generally falls within a range of

reflectivity values (-10 dBZs to 10 dBZs) (Koistinen 2000), and by filtering out

63

values outside of this range we can eliminate some of the noise. We can not use a

reflectivity filter to fully determine where birds are since light drizzle and insects

are often detected in this range as well (Koistinen 2000). Biological scatter will

likely have a high differential reflectivity and a low correlation coefficient, and

we use this to further filter and clean the data (Van Den Broeke 2013). Some

of these radar quality control filters or a combination of several of them may

help increase our bird detection accuracy.

We are also not currently taking advantage of the temporal component of the

data during learning, which is a key component when it comes to roost detec-

tion. The expanding roost rings over several radar snapshots are the signature

used to detect bird roost in radars. Long Short Term Memory networks have

been used on sequences of images, for example to re-identifying a person over

disjoint cameras (Wu et al. 2016) or to detect the type of activity (run, jump,

etc.) a person is performing in a video (Yeung et al. 2015). The catch with Con-

volutional LSTM networks is that they take longer to train than Convolutional

Neural Networks and can sometimes require more data.

Our results could be improved with additional Dual Polarization Labels. As

stated above, CNNs require lots of data to train properly. Our dual polarization

radar results were better than our legacy radar results even though we had

fewer dual polarization machine learning inputs. Hand classifying roost data

is a time consuming process, however, it would be useful for better automated

roost detection. One of the advantages of polarimeter radar for weather is that

it helps quality control the biology more accurately from the weather data. It

stands to reason that the same method that is used to remove biology from the

radar data can be used to find it as well.

64

Figure 6.1: Our results show that convolutional neural nets can identify bird

roosts in radar imagery, however there is still work to be done. After all, we

haven’t had five years and a research team to automate bird roost detections.

Image from https://xkcd.com/1425/.

65

Reference List

Avery, K., 2018: Automated Detection of Bird Roosts Using NEXRAD Radar
Data and Artificial Neural Networks . (undergraduate honors thesis), in prepa-
ration.

Bauer, S., J. W. Chapman, D. R. Reynolds, J. A. Alves, A. M. Dokter, M. M.
Menz, N. Sapir, M. Ciach, L. B. Pettersson, J. F. Kelly, et al., 2017: From
agricultural benefits to aviation safety: Realizing the potential of continent-
wide radar networks. BioScience, 67, 912–918.

Bauer, S. and B. J. Hoye, 2014: Migratory animals couple biodiversity and
ecosystem functioning worldwide. Science, 344, 1242552.

Bridge, E. S., S. M. Pletschet, T. Fagin, P. B. Chilson, K. G. Horton, K. R.
Broadfoot, and J. F. Kelly, 2016: Persistence and habitat associations of
purple martin roosts quantified via weather surveillance radar. Landscape
ecology , 31, 43–53.

Canziani, A., A. Paszke, and E. Culurciello, 2016: An analysis of deep neural
network models for practical applications. arXiv preprint arXiv:1605.07678 .

Chilson, P. B., E. Bridge, W. F. Frick, J. W. Chapman, and J. F. Kelly, 2012a:
Radar aeroecology: exploring the movements of aerial fauna through radio-
wave remote sensing.

Chilson, P. B., W. F. Frick, J. F. Kelly, K. W. Howard, R. P. Larkin, R. H.
Diehl, J. K. Westbrook, T. A. Kelly, and T. H. Kunz, 2012b: Partly cloudy
with a chance of migration: weather, radars, and aeroecology. Bulletin of the
American Meteorological Society , 93, 669–686.

Dayhoff, J. E. and J. M. DeLeo, 2001: Artificial neural networks. Cancer , 91,
1615–1635.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 2009: Imagenet: A
large-scale hierarchical image database. Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, IEEE, 248–255.

DeVault, T. L., B. F. Blackwell, and J. L. Belant, 2013: Wildlife in airport en-
vironments: preventing animal–aircraft collisions through science-based man-
agement . JHU Press.

Diehl, R. H. and R. P. Larkin, 2005: Introduction to the WSR-88D (NEXRAD)
for ornithological research.

66

Dieleman, S., K. W. Willett, and J. Dambre, 2015: Rotation-invariant convolu-
tional neural networks for galaxy morphology prediction. Monthly notices of
the royal astronomical society , 450, 1441–1459.

Efron, B. and R. Tibshirani, 1986: Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. Statistical
Science, 54–75.

Fawcett, T., 2006: An introduction to roc analysis. Pattern recognition letters ,
27, 861–874.

Gauthreaux Jr, S. A. and C. G. Belser, 1998: Displays of bird movements on the
wsr-88d: patterns and quantification. Weather and Forecasting , 13, 453–464.

—, 2003: Radar ornithology and biological conservation. The Auk , 120, 266–
277.

Glorot, X. and Y. Bengio, 2010: Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics , 249–256.

Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning . MIT Press,
http://www.deeplearningbook.org.

Helmus, J. and S. Collis, 2016: The python arm radar toolkit (py-art), a library
for working with weather radar data in the python programming language.
Journal of Open Research Software, 4.

Ioffe, S. and C. Szegedy, 2015: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. International Conference
on Machine Learning , 448–456.

Jain, A. K., J. Mao, and K. M. Mohiuddin, 1996: Artificial neural networks: A
tutorial. Computer , 29, 31–44.

Johnson, G. D., W. P. Erickson, M. D. Strickland, M. F. Shepherd, D. A.
Shepherd, and S. A. Sarappo, 2002: Collision mortality of local and migrant
birds at a large-scale wind-power development on buffalo ridge, minnesota.
Wildlife Society Bulletin, 879–887.

Karpathy, A., 2016: Convolutional neural networks for visual recognition.
URL http://cs231n.github.io/convolutional-networks/

Kelly, J. F. and S. M. Pletschet, 2017: Accuracy of swallow roost locations
assigned using weather surveillance radar. Remote Sensing in Ecology and
Conservation.

67

Kelly, J. F., J. R. Shipley, P. B. Chilson, K. W. Howard, W. F. Frick, and T. H.
Kunz, 2012: Quantifying animal phenology in the aerosphere at a continental
scale using NEXRAD weather radars. Ecosphere, 3, 1–9.

Kingma, D. and J. Ba, 2014: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

Kohavi, R. et al., 1995: A study of cross-validation and bootstrap for accuracy
estimation and model selection. Ijcai , Stanford, CA, volume 14, 1137–1145.

Koistinen, J., 2000: Bird migration patterns on weather radars. Physics and
Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25,
1185–1193.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet classification
with deep convolutional neural networks. Advances in neural information pro-
cessing systems , 1097–1105.

Kunz, T. H., S. A. Gauthreaux Jr, N. I. Hristov, J. W. Horn, G. Jones, E. K.
Kalko, R. P. Larkin, G. F. McCracken, S. M. Swartz, R. B. Srygley, et al.,
2008: Aeroecology: probing and modeling the aerosphere. Integrative and
comparative biology , 48, 1–11.

Laughlin, A. J., D. R. Sheldon, D. W. Winkler, and C. M. Taylor, 2014: Be-
havioral drivers of communal roosting in a songbird: a combined theoretical
and empirical approach. Behavioral Ecology , 25, 734–743.

Lawrence, S., C. L. Giles, A. C. Tsoi, and A. D. Back, 1997: Face recogni-
tion: A convolutional neural-network approach. IEEE transactions on neural
networks , 8, 98–113.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, 1989: Backpropagation applied to handwritten zip code
recognition. Neural computation, 1, 541–551.

Li, F.-F., A. Karpathy, and J. Johnson, 2016: Lecture 4: Backpropagation and
neural networks part 1.

Li, M., T. Zhang, Y. Chen, and A. J. Smola, 2014: Efficient mini-batch training
for stochastic optimization. Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining , ACM, 661–670.

Lin, M., Q. Chen, and S. Yan, 2013: Network in network. arXiv preprint
arXiv:1312.4400 .

Mitchell, T. M., 1997: Machine Learning . McGraw-Hill, Inc., New York, NY,
USA, 1st edition.

68

Muller, B. M., F. R. Mosher, C. G. Herbster, and A. T. Brickhouse, 2015:
Aviation bird hazard in NEXRAD dual polarization weather radar confirmed
by visual observations. International Journal of Aviation, Aeronautics, and
Aerospace, 2, 6.

Oquab, M., L. Bottou, I. Laptev, and J. Sivic, 2014: Learning and transferring
mid-level image representations using convolutional neural networks. Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
1717–1724.

Raudys, Š., 1998: Evolution and generalization of a single neurone: I. single-
layer perceptron as seven statistical classifiers. Neural Networks , 11, 283–296.

RoyChowdhury, A., D. Sheldon, S. Maji, and E. Learned-Miller, 2016: Distin-
guishing weather phenomena from bird migration patterns in radar imagery.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops , 10–17.

Rumelhart, D. E., G. E. Hintont, and R. J. Williams, 1986: Learning represen-
tations by back-propagating errors. NATURE , 323, 9.

Shin, H.-C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,
and R. M. Summers, 2016: Deep convolutional neural networks for computer-
aided detection: Cnn architectures, dataset characteristics and transfer learn-
ing. IEEE transactions on medical imaging , 35, 1285–1298.

Shipley, J. R., J. F. Kelly, and W. F. Frick, 2017: Toward integrating citizen
science and radar data for migrant bird conservation. Remote Sensing in
Ecology and Conservation.

Shlens, J., 2016: Train your own image classifier with inception in tensorflow.
URL https://research.googleblog.com/2016/03/train-your-own-

image-classifier-with.html

Simonyan, K. and A. Zisserman, 2014: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 .

Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
2014: Dropout: a simple way to prevent neural networks from overfitting.
Journal of machine learning research, 15, 1929–1958.

Stepanian, P. M. and K. G. Horton, 2015: Extracting migrant flight orienta-
tion profiles using polarimetric radar. IEEE Transactions on Geoscience and
Remote Sensing , 53, 6518–6528.

69

Stepanian, P. M., K. G. Horton, V. M. Melnikov, D. S. Zrnić, and S. A. Gau-
threaux, 2016: Dual-polarization radar products for biological applications.
Ecosphere, 7.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, 2015: Going deeper with convolutions.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 1–9.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 2016: Rethink-
ing the inception architecture for computer vision. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2818–2826.

Troxel, S., M. Isaminger, B. Karl, M. Weber, and A. Levy, 2001: Designing a
terminal area bird detection and monitoring system based on ASR-9 data.

Tudor Ionescu, R., B. Alexe, M. Leordeanu, M. Popescu, D. P. Papadopoulos,
and V. Ferrari, 2016: How hard can it be? estimating the difficulty of visual
search in an image. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2157–2166.

Van Den Broeke, M. S., 2013: Polarimetric radar observations of biological scat-
terers in hurricanes irene (2011) and sandy (2012). Journal of Atmospheric
and Oceanic Technology , 30, 2754–2767.

Weber, P., T. J. Nohara, and S. Gauthreaux Jr, 2005: Affordable, real-time, 3-d
avian radar networks for centralized north american bird advisory systems.
2005 Bird Strike Committee-USA/Canada 7th Annual Meeting, Vancouver,
BC , 7.

Werbos, P. J., 1990: Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE , 78, 1550–1560.

Wilson, D. R. and T. R. Martinez, 2003: The general inefficiency of batch
training for gradient descent learning. Neural Networks , 16, 1429–1451.

Wu, L., C. Shen, and A. van den Hengel, 2016: Convolutional lstm networks
for video-based person re-identification. arXiv preprint arXiv:1606.01609 .

Yeung, S., O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei, 2015:
Every moment counts: Dense detailed labeling of actions in complex videos.
International Journal of Computer Vision, 1–15.

Yue-Hei Ng, J., F. Yang, and L. S. Davis, 2015: Exploiting local features from
deep networks for image retrieval. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 53–61.

70

Zaugg, S., G. Saporta, E. Van Loon, H. Schmaljohann, and F. Liechti, 2008:
Automatic identification of bird targets with radar via patterns produced by
wing flapping. Journal of the Royal Society interface, 5, 1041–1053.

Zhou, Y. and R. Chellappa, 1988: Computation of optical flow using a neural
network. IEEE International Conference on Neural Networks , volume 1998,
71–78.

71

