
 
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

ROBUST RESOURCE ALLOCATION TO INTERDEPENDENT NETWORKS 

UNDER MULTIPLE DISRUPTION SCENARIOS 

 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

In partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE 

 

 

 

 

By 

HANNAH LOBBAN 

Norman, Oklahoma 

2017  



 
 

 

 

 

 

 

 

ROBUST RESOURCE ALLOCATION TO INTERDEPENDENT NETWORKS 

UNDER MULTIPLE DISRUPTION SCENARIOS 

 

 

A THESIS APPROVED FOR THE 

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING 

 

 

 

 

 

 

 

 

 

 

BY 

 

 

 

 

 

______________________________ 

Dr. Kash Barker, Chair 

 

 

______________________________ 

Dr. Charles Nicholson 

 

 

______________________________ 

Dr. Theodore Trafalis 
 

 



 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

© Copyright by HANNAH LOBBAN 2017 

All Rights Reserved. 



 
 

 

 

 

 

 

 

 

 

 

 

 

To my friends and family,  

without whom I would not be where I am. 



iv 
 

Acknowledgements 

First, I owe so much gratitude to Yasser Almoghathawi, for his invaluable insights on 

interdependent networks and Python and Gurobi coding. It is only with his knowledge 

and guidance that the work in this thesis was accomplished. 

 

Second, I have to thank Nazanin Morshedlou for being the most encouraging, kindest 

office-mate ever. She always has a smile and words of advice, and kept me from 

stressing too much over the last semester.  

 

I also, of course, must thank the professors and staff in the ISE department, especially 

my advisor Dr. Kash Barker. I have learned and grown so much not only in graduate 

school but over the past five years and I look forward to applying those lessons in the 

future.  

 

Last, but never least, thank you to my family and friends for their constant support and 

general wonderfulness. They have each impacted who I am as a person and I endeavor 

to live up to their expectations.  

  



v 
 

Table of Contents 

Acknowledgements                                                                                                          iv 

List of Tables                                                                                                                   vii 

List of Figures                                                                                                                viii 

Abstract                                                                                                                            ix 

Chapter 1.0 Introduction and Motivation                                                                          1 

Chapter 2.0 Background                                                                                                    4 

     2.1 Interdependent Networks                                                                                        4 

     2.2 Network Allocation                                                                                                5 

     2.3 Contest Functions                                                                                                   6 

     2.4 Terrorist Target Selection                                                                                       7 

     2.5 Social Vulnerability                                                                                                8 

Chapter 3.0 Methodology                                                                                                10 

     3.1 Resilience and Vulnerability                                                                                10 

     3.2 Disruption Scenarios                                                                                            11 

     3.3 Definitions and Notations                                                                                     12 

     3.4 Contest Function Simplification                                                                           13 

     3.5 Mathematical Model                                                                                             14 

     3.6 Solution Robustness                                                                                             17 

Chapter 4.0 Illustrative Example: Shelby County, Tennessee                                        19 

     4.1 Critical Infrastructure System                                                                               19 

     4.2 Social Vulnerability by Block Group                                                                   20 

     4.3 Numerical and Graphical Results                                                                         21 



vi 
 

     4.4 Robustness Ranking                                                                                             24 

Chapter 5.0 Concluding Remarks                                                                                    26 

     5.1 Discussion                                                                                                             26 

     5.2 Limitations and Future Work                                                                               26 

References                                                                                                                       28 

Appendix A Network Allocation Model                                                                         30 

Appendix B Network Allocation Model for Robustness                                                36 

  



vii 
 

List of Tables  

Table 1: Network properties of the Shelby County System                                            20 

Table 2: Cost and slack in disrupted networks with no allocation                                  21 

Table 3: Top eight solutions based on TOPSIS                                                               25 

  



viii 
 

List of Figures 

Figure 1: Network performance over time                                                                      11 

Figure 2: Water network in Shelby County                                                                     19 

Figure 3: Gas network in Shelby County                                                                        20 

Figure 4: Power network in Shelby County                                                                    20 

Figure 5: Pareto-optimal front for cost and vulnerability objectives                              22 

Figure 6: Robustness of desirability-based solutions on cost and  

vulnerability objectives                                                                                       23 

 

Figure 7: Robustness of capacity-based solutions on cost and  

vulnerability objectives                                                                                       24 

 

Figure 8: Robustness of degree-based solutions on cost and vulnerability objectives    24 

 



ix 
 

Abstract 

In recent years, the threat of international attacks on critical infrastructure networks has 

grown; as defined by a 1998 Presidential Decision Directive, these are networks 

necessary to society’s functionality and include water, power, communication, 

transportation, and more. Due to existing interdependencies, damage to a small area of 

one of the networks could have far-reaching effects on the ability to meet demand 

across the entire system. In similar work, common scenarios for malevolent attacks 

include degree- and capacity-based disruptions. However, attackers targeting a network 

may consider some components more desirable than others for qualitative reasons such 

as religious or governmental significance. Additionally, the concept of social 

vulnerability, which describes an area’s ability to prepare for and respond to a 

disruption, must be included. This should promote not only the protection of the most 

at-risk components but also ensure that socially vulnerable communities are given 

adequate resources. This work attempts to determine the allocation of defensive 

resources that accounts for all these factors while minimizing both costs and the unmet 

demand in the disrupted network. 
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Chapter 1: Introduction and Motivation 

Over the past 50 years, more than 2,500 foreign and domestic terrorist attacks have 

occurred in the United States. Understandably, high-fatality attacks on visible public 

targets such as the Alfred P. Murrah Federal Building bombing in Oklahoma City, the 

attacks on 9/11, and the mass shooting at Pulse nightclub in Orlando garner more 

attention and make a larger memorable impact on society. However, these types of 

attacks only account for 10-20% of the total; the majority are non-lethal but 

nevertheless can cause significant economic and psychological damage to the nation. In 

a recent report for the Department of Homeland Security (DHS), the National 

Consortium for the Study of Terrorism and Responses to Terrorism classifies attack by 

target type and shows that 75% of attacks focus on the critical infrastructure sector 

(Miller, 2016). 

From this report, it is clear that there is significant risk of disruptive events 

affecting U.S. infrastructure. As defined by the Presidential Decision Directives 

regarding Critical Infrastructure Protection, critical infrastructures are networks are 

service and utility systems that are considered necessary for society to function. Critical 

infrastructure includes energy, water, transportation, and communication systems, 

among many others on which all aspects of our society—from the public, to the 

government and businesses—depend. With the growth of technology in recent years, 

the definition of critical infrastructure networks has expanded to include cyber-based 

systems. While these advances, and the desire to make such networks more efficient, 

have improved the overall system functionality, they come at a cost and “have created 

new vulnerabilities to equipment failure, human error, weather and other natural causes, 



2 
 

and physical and cyber attacks. Addressing these vulnerabilities will necessarily require 

flexible, evolutionary approaches” to ensure that both the infrastructure itself and the 

population in potentially at-risk areas are protected (PDD 63, 1998). This problem 

stated in the Directive nearly 20 years ago is even more pressing today, as higher 

degrees of connectivity and communication have made networks interdependent. 

Interdependency is defined in Rinaldi et al. (2001) as a “bidirectional relationship 

between two infrastructures through which the state of each infrastructure influences or 

is correlated to the state of the other;” the relationship between components of different 

networks increases the complexity of the network system as a whole. 

Due to the existing interdependencies, damage to a section of one infrastructure 

network could have far-reaching effects on other networks in the system; high 

vulnerability in even a small number of components has significant negative potential. 

To combat this vulnerability, a defensive strategy that concentrates on susceptible 

components can be implemented, increasing the overall resilience of the system of 

networks.  

This research aims to provide a framework that decision makers can use to 

determine the allocation of defensive resources that is robust to a variety of disruption 

scenarios. It considers a system of multiple interdependent networks subjected to the 

disruptions and optimizes a multi-objective mathematical model to determine allocation 

options that reduce both vulnerability (represented by unmet demand) and cost. 

The composition of this is paper is as follows. Chapter 2 discusses the 

background of the problem, citing previous works that contributed to the work 

presented here. Chapter 3 details the methodology and model formulation, while 
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Chapter 4 demonstrated how the model can be applied to an example network system 

under disruptions. Lastly, Chapter 5 provides concluding remarks on the results from 

the example and offers recommendations for future work.  
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Chapter 2: Background 

This section discusses some of the prior work on topics related to those presented in this 

paper. 

2.1 Interdependent Networks 

As the prevalence and importance of interdependent infrastructure networks grows, 

more and more researchers are concentrating on increasing system resilience in the face 

of significant disruptive events. Almoghathawi et al. (2016) describes a system of 

interdependent critical infrastructure subjected to a range of disruption scenarios: 

random failure, spatial failure, and malevolent attacks, which are either degree- or 

capacity-based. The goal of this work is to determine a strategy to restore the networks 

in a post-disruption period dependent on the availability of resources such as work 

crews and time. The multi-objective model minimizes flow, disruption, and restoration 

costs while maximizing resilience. For simplification, the 𝜖-constraint method is used 

for the latter objective; the model is then solved for the cost objective for multiple 

values of 𝜖 ∈ [0,1]. In addition to the resource constraints, the system of networks is 

also subject to flow, capacity, and interdependency constraints (Almoghathawi et al., 

2016).  

González et al. (2015) uses a similar formulation for the interdependent network 

system but a different approach to finding the optimal restoration strategy. The model 

still incorporates constraints regulating costs, operations, flow, and interdependence, but 

also takes advantage of the interdependencies to allow for simultaneous restoration 

processes. The Interdependent Network Design Problem (INDP) developed is then used 

as input for an iterative algorithm to generate reconstruction solutions at the minimum 
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cost (González et al., 2015). This research also considers various types of 

interdependencies that could be present in the critical infrastructure: physical, cyber, 

geographical, and logical. Understanding the nature in which the individual networks 

are connected is valuable for deeper contextual analysis of the problem and how the 

different interdependence types may affect the recovery process.  

2.2 Network Allocation  

In both works discussed above, the focus is on the period after the given disruption and 

restoring system functionality. However, the period prior to a disruption is also a key 

point in disaster planning; implementing accurate preventative measures can reduce the 

performance loss experienced in the network(s). One instance of this problem is 

addressed in Qiao et al (2005); the work examines the scenario of a water supply 

network under a physical, cyber, or biological attack. In this case, the desired output is 

the optimal allocation of a security budget across the single network. Assuming the 

attacker has knowledge of the network and will target components whose disruption 

will cause the most damage, the defender allocates resources so that the attack will be 

more costly to carry out. That is, the defenders aim to maximize the resilience of the 

system where a component is defined as resilient if the “consequences that result from 

the attack are small in comparison to the attack cost” (Qiao et al 2005). They achieve 

this by employing a linear programming model whose objective function maximizes the 

minimum network resilience. This research is tailored to the water network, as it 

incorporates hydraulic modeling and constraints specifically for water flow and pressure 

and across pipes (links) in the system. However, the general ideas behind the 

methodology can be applied to a broader range of network allocation problems.  
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McCarter et al. (2017) expands the allocation problem presented in Qiao et al by 

looking at multi-commodity networks (as opposed to the single-commodity water 

network). Five disruption scenarios were randomly generated and applied to the 

network; for each scenario 𝑘 ∈ [1,5], link (𝑖, 𝑗) is subjected to 𝑒𝑖𝑗
𝑘  units of attack 

resource. and the decision variables are the components of defense strategy 𝒉𝑙. The set 

of strategies that minimize allocation cost and vulnerability (or maximize network 

performance) is found with the Non-dominated Sorting Genetic Algorithm II. The 

solutions in the Pareto set are then evaluated with the Technique for Order of Preference 

by Similarity to Ideal Solution (TOPSIS) using as criteria the cost and the network 

performance in each scenario.  

2.3 Contest Functions 

As McCarter et al. (2017) demonstrates, the vulnerability of a component in a network 

subjected to some disruption scenario can be found using a contest function. In general, 

contest functions are used when multiple players exert effort to win a prize. This can 

include events such as elections, sports games, and military combat (Baik, 1998). The 

outcome of the function 𝑝 ∈ (0,1) can either represent the probability that a player wins 

the prize or the percentage of the prize a player wins, depending on the nature of the 

prize and event for which the function is employed (Hirshleifer, 1989). Multiple forms 

of contest functions have been developed over the years and research has shown some 

to be more applicable to some circumstances over others. Considering malevolent 

attacks, the two most common contest functions are the ratio form and difference form 

(Levitin and Hausken, 2010). Both forms take as input the amount of attack and defense 

resources assigned to a given component. The value of the output is dependent on how 
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the relation between the attack and defense amounts is defined in the function; it is 

either based on the ratio of the two inputs or the magnitude of difference between them.  

2.4 Terrorist Target Selection 

The works above have shown multiple different ways to consider disruption scenarios. 

However, studies in terrorist target selection suggest that attackers do not always choose 

what defenders typically think of as the logical choice; that is, the components of a 

system that are most important to network throughput. In allocating resources planners 

must be aware not only of which components are most critical to the functionality of the 

infrastructure as a whole but also which components might be more attractive to an 

attacker. The likelihood that a given component will be included in an intentional attack 

is based on several factors, some more qualitative than others. Toft et al. (2010) 

conducted a study into the risk of terrorist attacks on energy networks and created a 

framework to analyze and categorize motivations from attack data collected in the 

Global Terrorism Database and the Worldwide Incidents Tracking System. The study 

suggests that there is a wide range of objectives and strategic value may be less 

important that other factors such as symbolism, political or religious ideology, 

feasibility, and intimidation.   

On the other hand, an examination into the motivations behind the 2005 attacks 

on the London underground transportation system revealed that the stations targeted 

were those associated with the highest flow capacity in terms of passengers (Jordán 

2008). Jordán does acknowledge that causing panic and casualties or targeting locations 

of symbolic value are also motivations, and the goals vary across attacks and terrorist 



8 
 

groups. In any case, the defenders need to weigh the functional value against the 

attackers’ values to gain a fuller understanding of which components are at-risk.  

2.5 Social Vulnerability 

Another aspect less frequently discussed in disaster planning and resilience is that of 

social vulnerability. Social vulnerability describes how social factors and inequalities, 

such as economic disparities, access to emergency services, and political representation, 

affect a community’s ability to respond to and recover from some disruptive event 

(Cutter et al., 2003). Within the contest of critical infrastructure systems, socially 

vulnerable areas are those that will be most negatively impacted by a lack of critical 

services and resources over the disruption time. However, until recently it has been 

largely excluded from resilience and recovery research partially because of the greater 

focus on physical and cyber vulnerabilities. Additionally, the numerous factors that 

contribute to social vulnerability make quantification complicated.  

To address this, the Cutter et al. (2003) and University of South Carolina’s 

Hazards and Vulnerability Research Institute developed a method to assign a Social 

Vulnerability Index (SoVI) score across the United States by county using 

demographic, housing, and economic data publicly available through the U.S. Census 

(Cutter et al., 2003). While the most recent version of the SoVI model implements 

Principal Component Analysis to determine the influence of 29 variables, the research 

presented in this paper uses a simplified method called SoVI-Lite developed for the 

United States Army Corps of Engineers (USACE) as a quicker, less technical method 

for hazard planners (Cutter el al., 2011). SoVI-Lite also allows for the index to be more 

easily scaled down to determine scores within smaller geographical units for an 
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individual county and uses a smaller set of variables determined to be the most relevant 

to the specific USACE region of study. Resulting SoVI scores can then be used as 

objectives or weights in resilience models to ensure that more vulnerable areas are 

allocated the necessary prevention or restoration resources.  
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Chapter 3: Methodology 

The research presented in this paper, incorporating and combining concepts from the 

works in the previous section, fills a gap in the current literature by applying the 

vulnerability-reducing resource allocation formulation from McCarter et al. (2017) to an 

interdependent network system as presented in Almoghathawi et al. (2016). 

Furthermore, this work also considers the intentional attack scenario based on 

qualitative motivators and includes community resilience metrics to lower the impact of 

a disruption on society. The following section explains the types disruption scenarios, 

how concepts of resilience and social vulnerability are incorporated, the variables and 

parameters for the interdependent networks, and the mathematical model that aims to 

minimize the effects of the disruption while simultaneously minimizing costs. 

3.1 Resilience and Vulnerability 

In the field of disaster planning and recovery, the term resilience can take on a variety 

of meanings. This research employs the framework adapted from Barker et al. (2013) 

and Henry and Ramirez-Marquez (2012), shown below in Figure 1. The figure shows 

the state of the network in the time before, during, and after some disruptive event 𝑒𝑘. 

Here resilience is a function of vulnerability, the amount the network performance 𝜑(𝑡) 

decreases in the disruption period, and of recoverability, how long it takes for the 

system to return to acceptable performance 𝜑(𝑡𝑓) after experiencing the disrupted state. 

The model developed in this paper focuses on decreasing vulnerability by enacting 

preemptive defensive measures prior to the disruptive event (between 𝑡0 and 𝑡𝑒) and is 

therefore independent of time. 
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Figure 1: Network performance over time 

3.2 Proposed Disruption Scenarios 

Wang et al. (2013) categorized disruptive events into three types: natural disasters, 

malevolent attacks, and random failure. This work proposes three disruption scenarios 

that fall under the second category and represent different possible target selection 

motivations from the perspective of the attacker: degree-based, capacity-based, and 

desirability-based. In degree-based attacks, the defender assumes the attacker will focus 

on components with a high degree of connections to other nodes or links in the network. 

The degree of an individual node 𝑖 is simply the number of connections (number of 

links in and out of 𝑖) and the degree of a link (𝑖, 𝑗) is the average of the degrees of nodes 

𝑖 and 𝑗. In capacity-based attacks, the attacker targets components with greater 

capacities. For links, this quantity is the flow capacity across the link. The capacity of a 

node its supply/demand value; for transshipment nodes whose given capacity is zero we 

use the minimum between the sum of the node’s outgoing links’ capacities and its 

incoming links’ capacities (𝑐𝑖
𝑘 = min {∑ 𝑐𝑗𝑖

𝑘, ∑ 𝑐𝑖𝑙
𝑘

(𝑖,𝑙)∈𝐿𝑘(𝑗,𝑖)∈𝐿𝑘 }). For the last scenario, 

desirability-based attacks, components are assigned a rank of external importance to 

represent how desirable they are to the attacker, supposing that the attacker may value 
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some targets over others for more qualitative, symbolic significance. Due to limited 

knowledge about the network regarding which components are associated with greater 

symbolic and ideological values, the components are assigned a rank to approximate the 

likelihood of attack (high, moderate or low). The majority of nodes selected for the third 

scenario were in the “high likelihood” category, though some were also chosen from the 

“moderate” and “low” categories to represent the high degree of unpredictability in 

attacker motivation. In each of the three scenarios, 25% of the nodes and 20% of the 

links were disrupted.  

3.3 Definitions and Notations 

The mathematical model below defines components for K interdependent networks. 𝑁𝑘 

and 𝐿𝑘 are the total sets of all the nodes and links, respectively, in each individual 

network. Within the sets of nodes and links, 𝑁𝑘𝑠 and 𝑁𝑘𝑑 are the subsets of supply and 

demand nodes and 𝑁𝑘′ and 𝐿𝑘′ are the subsets of disrupted nodes and links. The flow on 

each link from any node 𝑖 to any node 𝑗 in network 𝑘 is defined as 𝑥𝑖𝑗
𝑘  and has a capacity 

of 𝑐𝑖𝑗
𝑘 . For all nodes 𝑖 ∈ 𝑁𝑘𝑠, the available supply, and subsequently the maximum 

possible flow from node 𝑖 ∈ 𝑁𝑘𝑠 to node 𝑖 ∈ 𝑁𝑘𝑑 is 𝑏𝑖
𝑘. Using this definition, 𝑏𝑖

𝑘 is a 

maximum performance amount representing the desired amount of demand to be met at 

node 𝑖 ∈ 𝑁𝑘𝑑. For all nodes 𝑖 ∈ 𝑁𝑘𝑑 , the reduction from this maximum flow, or slack, 

is 𝑠𝑖
𝑘 and has an associated unit cost of 𝑝𝑖

𝑘; 𝑠𝑖
𝑘 = 0 when the flows into the demand node 

sum to 𝑏𝑖
𝑘. The unit cost of allocation resources for a node is 𝑞𝑖

𝑘 and the same quantity 

for a link is 𝑟𝑖𝑗
𝑘. 

Considering that some of the networks may be more critical to a community’s 

functionality, 𝜇𝑘 is used as a network importance factor; all 𝑖 ∈ 𝑁𝑘 have the same 𝜇𝑘. In 
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the example network system used for this research, the values of 𝜇𝑘 have been assigned 

to each of the networks randomly, but a more in-depth technique drawing from detailed 

knowledge of the networks and (such as Analytical Hierarchy Process) could determine 

weights that accurately reflect the situation and community needs. There are also node 

attributes that describe the importance of each 𝑖 ∈ 𝑁𝑘  to attackers and defenders. The 

SoVI rank (high, moderate, or low social vulnerability) 𝑣𝑖
𝑘 for each node is determined 

for the node’s geographical location in the area of study. Lastly, the attribute that 

describes the attacker’s attitude toward and desirability of each potential target is 

unknown by the defenders but is estimated with 𝛾𝑖
𝑘.  

3.4 Contest Function Simplification  

As previously stated, the difference form of contest functions, show in Eq. (1)-(2), is 

commonly applied to scenarios in which a defender is determining resource amounts to 

combat an intentional attack. The vulnerability of a node or link (𝑢𝑖
𝑘 and 𝑤𝑖𝑗

𝑘 , 

respectively) is calculated for some assumed attack resources 𝑔𝑖
𝑘 and ℎ𝑖𝑗

𝑘  and allocation 

of defense resources 𝑑𝑖
𝑘 and 𝑓𝑖𝑗

𝑘 if the component is included in that attack scenario (if 

the value for the attack resources is greater than zero); if the component is not disrupted, 

its vulnerability is zero. The expected value for a component’s functionality in the 

disruption scenario can be estimated by multiplying its pre-disrupted value by 1-𝑢𝑖
𝑘 (for 

nodes) or by 1-𝑤𝑖𝑗
𝑘  (for links). 

 

𝑢𝑖
𝑘(𝑔𝑖

𝑘, 𝑑𝑖
𝑘) = {

𝑒𝑔𝑖
𝑘

𝑒𝑔𝑖
𝑘

+ 𝑒𝑑𝑖
𝑘

𝑖𝑓 𝑔𝑖
𝑘 > 0 

0 𝑖𝑓 𝑔𝑖
𝑘 = 0

 (1) 
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𝑤𝑖𝑗
𝑘 (ℎ𝑖𝑗

𝑘 , 𝑓𝑖𝑗
𝑘) = {

𝑒ℎ𝑖𝑗
𝑘

𝑒ℎ𝑖𝑗
𝑘

+ 𝑒𝑓𝑖𝑗
𝑘

𝑖𝑓 ℎ𝑖𝑗
𝑘 > 0 

0 𝑖𝑓 ℎ𝑖𝑗
𝑘 = 0

  

 

(2) 

This format, though, cannot be used in linear models; to keep the computation 

simple, this research uses a modified contest function that still calculates vulnerability 

as a function of the difference between attacker and defender resources. As seen in Eq. 

(3)-(4), if a defender does not allocate any resources to a component it is completely 

disrupted and its capacity is reduced to zero. If equal amounts of attack and defense 

resources are assigned to a component, the vulnerability is zero and the component’s 

capacity is unaffected. The condition still holds that if the amount of attack resources on 

a given component is zero, that component’s vulnerability is zero.  

 

 

𝑢𝑖
𝑘(𝑔𝑖

𝑘, 𝑑𝑖
𝑘) = {

𝑔𝑖
𝑘 − 𝑑𝑖

𝑘

𝑔𝑖
𝑘 𝑖𝑓 𝑔𝑖

𝑘 > 0 

0 𝑖𝑓 𝑔𝑖
𝑘 = 0

 (3) 

 

 

𝑤𝑖𝑗
𝑘 (ℎ𝑖𝑗

𝑘 , 𝑓𝑖𝑗
𝑘) = {

ℎ𝑖𝑗
𝑘 − 𝑓𝑖𝑗

𝑘

ℎ𝑖𝑗
𝑘 𝑖𝑓 ℎ𝑖𝑗

𝑘 > 0 

0 𝑖𝑓 ℎ𝑖𝑗
𝑘 = 0

  

 

(4) 

 

3.5 Mathematical Model 

 
min

∑ ∑ 𝜇𝑘𝑣𝑖
𝑘𝑠𝑖

𝑘
𝑖∈𝑁𝑘𝑑𝑘∈𝐾

𝑆
  

 

(5) 

 min ∑ ∑ 𝑞𝑖
𝑘𝑑𝑖

𝑘 +

𝑖∈𝑁𝑘𝑘∈𝐾

∑ ∑ 𝑟𝑖𝑗
𝑘𝑓𝑖𝑗

𝑘

𝑖,𝑗∈𝐿𝑘𝑘∈𝐾

 (6) 

 

 

Subject to: 

 ∑ 𝑥𝑖𝑗
𝑘 ≤ 𝑏𝑖

𝑘 , ∀𝑖 ∈ 𝑁𝑘𝑠 , 𝑘 ∈ 𝐾

𝑖,𝑗∈𝐿𝑘

 (7) 
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 ∑ 𝑥𝑖𝑗
𝑘 − ∑ 𝑥𝑗𝑖

𝑘

𝑗,𝑖∈𝐿𝑘𝑖,𝑗∈𝐿𝑘

= 0, ∀𝑖 ∈ 𝑁𝑘\{𝑁𝑘𝑠, 𝑁𝑘𝑑}, 𝑘 ∈ 𝐾 (8) 

 ∑ 𝑥𝑗𝑖
𝑘 + 𝑠𝑖

𝑘 = 𝑏𝑖
𝑘 , ∀𝑖 ∈ 𝑁𝑘𝑑 , 𝑘 ∈ 𝐾

𝑖,𝑗 ∈𝐿𝑘

 (9) 

 𝑥𝑖𝑗
𝑘 − 𝑐𝑖𝑗

𝑘 ≤ 0 , ∀(𝑖, 𝑗) ∈ 𝐿𝑘 , 𝑘 ∈ 𝐾 (10) 

  

𝑥𝑖𝑗
𝑘 − (1 − 𝑢𝑖

𝑘)𝑐𝑖𝑗
𝑘 ≤ 0 , ∀(𝑖, 𝑗) ∈ 𝐿𝑘 , 𝑖 ∈ 𝑁𝑘′, 𝑘 ∈ 𝐾 

 

(11) 

 𝑥𝑖𝑗
𝑘 − (1 − 𝑢𝑗

𝑘)𝑐𝑖𝑗
𝑘 ≤ 0 , ∀(𝑖, 𝑗) ∈ 𝐿𝑘, 𝑗 ∈ 𝑁𝑘′, 𝑘 ∈ 𝐾 (12) 

  

𝑥𝑖𝑗
𝑘 − (1 − 𝑤𝑖𝑗

𝑘 )𝑐𝑖𝑗
𝑘 ≤ 0 , ∀(𝑖, 𝑗) ∈ 𝐿𝑘′, 𝑘 ∈ 𝐾 

 

(13) 

 (1 − 𝑢𝑖̅
�̅�) − (1 − 𝑢𝑖

𝑘) ≤ 0 , ∀((𝑖, 𝑘), (𝑖,̅ �̅�))  ∈ Ψ 

Alternatively (14) can be written as 𝑢𝑖
𝑘 − 𝑢𝑖̅

�̅� ≤ 0 , ∀((𝑖, 𝑘), (𝑖,̅ �̅�))  ∈ Ψ 

 

(14) 

 

 

 𝑑𝑖
𝑘 ≥ 0  

 
(15) 

 𝑓𝑖𝑗
𝑘 ≥ 0  

 
(16) 

Objective (5) minimizes the total amount of weighted proportional slack across all 

networks, accounting for demand nodes in networks are more important to the decision 

makers and those that have less ability to recover from disruption. These weights 

encourage defensive resources to be first allocated to susceptible components whose 

removal would cause the most harm, functionally and socially. The quantity 

𝑆 represents the total amount of weighted slack that exists in the network system when 

no defensive resources have been allocated and the network performance had 

deteriorated its lowest point. The conflicting objective shown in Eq. (6) minimizes the 

total cost of the resource allocation strategy (𝒅, 𝒇), which is comprised of the amount of 

defensive resources selected to each of the nodes and links in the disruption scenario 

and the unit cost of the resource at each component. The unit cost is included in the 

objective, as opposed to looking at just the amount of resource used, to account for the 

fact that it may be more expensive to assign resources to one area over another. 
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Constraints (7)-(9) are the flow conservation constraints at each node: the flows 

𝑥𝑖𝑗
𝑘  out of node 𝑖 cannot exceed the maximum possible flow 𝑏𝑖

𝑘; the sum of the flows 

out of node 𝑖 (𝑥𝑖𝑗
𝑘 ) must be equal to the sum of the flows into node 𝑖 (𝑥𝑗𝑖

𝑘); and the total 

flow into a demand node 𝑖 (𝑥𝑗𝑖
𝑘) combined with the amount of slack (𝑠𝑖

𝑘) at that node 

must be equal to the demand (maximum performance). Constraint (10) ensures that the 

flow across any link is no more than the link capacity. Constraints (11) -(13) consider 

link capacity for disrupted components whose capacity has been reduced by a factor 

related to its vulnerability. The flow between nodes 𝑖 and 𝑗 cannot be greater than the 

disrupted performance level of either node, or the disrupted capacity of the link itself. 

The interdependency of the network system is described with constraint (14): if node 𝑖 ̅

in network �̅� is dependent on node 𝑖 in network 𝑘, node 𝑖 ̅must be at least as vulnerable 

as node 𝑖. Finally, constraints (15) and (16) are nonnegativity constraints for the 

decision variables 𝑑𝑖
𝑘 and 𝑓𝑖𝑗

𝑘; the amount of resources assigned to each component must 

be positive, though non-integer values are allowed.  

To simplify the computational aspects of the model, the 𝜖-constraint method 

developed by Haimes et al. (1971) is used; the first objective is constrained by a given 

value of 𝜖 representing the maximum allowable vulnerability, as seen in Eq. (17). 

∑ ∑ 𝜇𝑘𝑣𝑖
𝑘𝑠𝑖

𝑘
𝑖∈𝑁𝑘𝑑𝑘∈𝐾

𝑆
≤ 𝜖 (17) 

The second objective is still minimized and becomes the single-objective in the 

mathematical model so that the lowest cost strategy for a determined amount of 

weighted slack is found. Running the model with several values of 𝜖 across each of the 

disruption scenarios gives the set of Pareto-optimal solutions. In this research, nine 
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values of 𝜖 ∈ [0,1] were run for each disruption scenario for a total of 27 potential 

solutions.  

3.6 Solution Robustness 

Once the set of Pareto-optimal solutions has been found, each solution is evaluated to 

determine which is the most robust with respect to all three scenarios. Robustness in 

this instance is defined by how well a solution meets the objectives (specifically the first 

objective, as cost will remain the same for a given solution) when applied to the 

disruption scenarios for which it was not initially solved. To do this, each of the 

solutions 𝑦𝑚𝑛 in the Pareto-optimal set is run on each of the scenarios and the resulting 

values for vulnerability (weighted proportional slack) and cost are recorded. The data 

was then evaluated and ranked with TOPSIS, using the vulnerability associated with 

each scenario and the strategy cost as its four criteria.  

Because the criteria have different units, the data are first standardized using the 

formula shown in Eq. (18).  

𝑟𝑛𝑚(𝑦) =  
𝑦𝑛𝑚 − min

𝑛
𝑦𝑛𝑚

max
𝑛

𝑦𝑛𝑚 − min
𝑛

𝑦𝑛𝑚
 

 

(18) 

Next, weights are applied to the standardized values, seen in Eq. (19), so that more 

important criteria have greater influence on the solution ranking. Criteria can have equal 

weights, or the weights can be determined by stakeholders’ beliefs and preferences.  

𝑣𝑛𝑚(𝑦) = 𝑤𝑚𝑟𝑛𝑚(𝑦)  
 

(19) 

 

From the weighted scores the Positive Ideal Solution (PIS) and Negative Ideal Solution 

(NIS) are found; these represent the best-case (minimum value) scenario and the worst-
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case (maximum value) scenario, respectively, in each of the criteria. The formulas for 

calculating these two values are shown in Eq. (20) and Eq. (21).  

𝑃𝐼𝑆 = 𝐴+ = {𝑣1
+(𝑦), … , 𝑣𝑚

+(𝑦), … , 𝑣𝑀
+ (𝑦)}  

 
(20) 

𝑁𝐼𝑆 = 𝐴− = {𝑣1
−(𝑦), … , 𝑣𝑚

−(𝑦), … , 𝑣𝑀
−(𝑦)}  (21) 

 

 

The distance of each candidate solution to the PIS and NIS are found using the 

Euclidian distance function in Eq. (22) and (23). 

𝐷𝑛
+ = √ ∑ [𝑣𝑛𝑚(𝑦) − 𝑣𝑚

+(𝑦)]2

𝑀

𝑚=1

∀ 𝑛 = 1 … 𝑁  

 

(22) 

𝐷𝑛
− = √ ∑ [𝑣𝑛𝑚(𝑦) − 𝑣𝑚

−(𝑦)]2

𝑀

𝑚=1

∀ 𝑛 = 1 … 𝑁  

 

 

 

(23) 

 

The last step in TOPSIS combines the two distance measures into a single closeness 

coefficient using Eq. (24).  

𝑆𝑛
+ =

𝐷𝑛
−

𝐷𝑛
+ + 𝐷𝑛

−
  

 

(24) 

The coefficients are ranked to determine which defensive strategy is most similar to the 

ideal solution and least similar to the worst solution. (Hwang et al., 1993). Larger 

coefficients represent strategies that are closer, based on Euclidean distance, to the PIS 

and furthest from the NIS.  
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Chapter 4: Illustrative Example: Shelby County, Tennessee 

This section details an application of the above methodology on a critical infrastructure 

system in Tennessee and discusses the results of the model. 

4.1 Critical Infrastructure System 

The data used in this research is from a set of three interdependent networks in Shelby 

County, TN, taken from González et al. (2015). The water, gas, and power networks are 

shown below in Figures 2-4, respectively. The system is comprised of three 

interdependent networks with a total of 125 nodes and 328 links. The number of nodes 

and links in each network, and how many of these nodes are dependent on a node in a 

different network, are shown in Table 1. 

 

 

Figure 2: Water network in Shelby County 
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Figure 3: Gas network in Shelby County 

 

 

Figure 4: Power network in Shelby County 

 

Table 1:  Network properties of the Shelby County system 

Network Total 

Nodes 

Supply 

Nodes 

Demand 

Nodes 

Total 

Links 

Interdependent 

Links 

Water 49 34 15 142 46 

Gas 16 2 13 34 0 

Power 60 37 23 152 46 
 

4.2 Social Vulnerability by Block Group 

The SoVI scores are calculated at the block group level for Shelby County using the 

SoVI-Lite methodology developed for the Mississippi Valley Region, in which the 

county resides. Due to the high margin of error in US Census data at the block group 
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level, the exact SoVI scores have a low degree of accuracy the therefore generalized 

categories of Low, Moderate, and High social vulnerability (ranks of 1,2 and 3, 

respectively), are used instead. These are found by standardizing the scores and 

assigning a rank of 1 to block groups for which 𝑧 ≤ −0.5, a rank of 2 to block groups 

for which −0.5 < 𝑧 < 0.5 and a rank of 3 to block groups for which 𝑧 ≥ 0.5. The final 

distribution of social vulnerability in the county is 31% low, 47% moderate, and 22% 

high social vulnerability.  

4.3 Numerical and Graphical Results 

To be able to calculate weighted proportional slack, the model was run for each 

scenario with 𝜖=1 so total vulnerability was allowed and no resources would be 

allocated. Table 2 shows this “no allocation” state for each scenario, where Total Cost is 

the sum of allocation costs (which have been forced to zero in this run) and of the costs 

of unmet demands, as shown in Eq. (25). 

𝑇 = ∑ ∑ 𝑝𝑖
𝑘𝑠𝑖

𝑘

𝑖∈𝑁𝑘𝑘∈𝐾

+ ∑ ∑ 𝑞𝑖
𝑘𝑑𝑖

𝑘 +

𝑖∈𝑁𝑘𝑘∈𝐾

∑ ∑ 𝑟𝑖𝑗
𝑘𝑓𝑖𝑗

𝑘

𝑖,𝑗∈𝐿𝑘𝑘∈𝐾

 

 

(25) 

 Understandably, the desirability-based attacks results in the lowest total cost and slack 

because the components targeted may not have contributed significantly to meeting 

demand but instead are associated with costs of a less quantifiable nature. The total cost 

and slack for the capacity- and degree-based attacks are similar. 

Table 2: Cost and slack in disrupted networks with no allocation. 

Scenario Total Cost Total 

Slack 

Slack: Water 

Network 

Slack: Gas 

Network 

Slack: Power 

Network 

Desirability $1,072,500 2145 357 1000 788 

Capacity $1,384,000 2768 546 1000 1222 

Degree $1,357,694 2715 921 586 1208 
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The Pareto-optimal frontier in Figure 5 shows the competing objective 

functions’ values for each of the nine solutions found for each disruption scenario. As 

expected, the more money that goes toward allocation the lower the slack (lower 

vulnerability). While the capacity-based scenario has higher costs at the lowest values 

of weighted proportional slack, the costs are similar for values over approximately 0.25. 

Furthermore, the overall shape of the curves is very similar for each scenario; going 

from a slack of 1.0 to 0.50 does not require huge expenditure but from 0.10 to 0.0 the 

cost jump, indicating that the additional funds required may not be worth the slight 

decrease in slack. 

 

 

 

 

 

 

 

 

 

 

Once the model was run for each value of 𝜖 on each of the disruption scenarios, it was 

slightly reformatted so the solution values—the allocation amount at each component—

were treated as inputs for the other two scenarios. This yielded the data seen in Figures 

6-8. The desirability-based solutions appear to be largely ineffective in the capacity- 

and degree-based disruptions; except for the initial jump from “no allocation” to “some 
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allocation” between slack values of 1.0 and 0.85, the increase in allocation cost does not 

noticeably decrease the system vulnerability.  

The capacity-based solutions offer a slight improvement over those for the 

desirability-based scenario. The weighted proportional slack for the degree-based 

scenario decreases more than that of the desirability-based scenario as costs increase, 

but the system remains between 40%-60% vulnerable. With the degree-based solutions, 

the desirability-based scenario is practically entirely unaffected, though the capacity-

based scenario responds to the solutions almost as well as the degree-based scenario did 

with the capacity-based solutions. This indicates that there may be more overlap in the 

set of disrupted components between the capacity- and degree-based disruption 

scenarios than with the degree-based disruption scenarios.  
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4.4 Robustness Ranking 

From the graphs above, capacity-based solutions seem to outperform degree-based 

solutions, and both are far better than the desirability-based solutions. This conclusion is 

confirmed in the TOPSIS evaluation in Table 3, as all the highest ranked defensive 
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strategies are from those two solution sets. However, none of the strategies are able to 

adequately decrease vulnerability across more than one disruption scenario. This can 

likely be attributed to high distinction between the sets of components targeted; even 

when the vulnerability is reduced to 0.10 or 0.05 for one scenario, indicating that nearly 

all the disrupted components have sufficient resources, the disrupted components for 

another scenario remain highly vulnerable.  

In the TOPSIS results, the trade-off between reducing slack and reducing cost is 

clearly seen. For example, the Cap-6 strategy is ranked higher than Cap-7 strategy even 

though the slack is lower for both the capacity-based and degree-based scenarios. The 

allocation cost in the latter is too high to justify the relatively small decreases.  

Table 3: Top eight solutions based on TOPSIS rankings; strategies are named by the scenario for and the 

run order in which they were originally solved 

Strategy S+ Rank Desirability-

based 

Scenario 

Capacity-

based 

Scenario 

Degree-

based 

Scenario 

Allocation 

Cost 

Cap – 6 0.458 1 0.66 0.10 0.53 $219,412 

Cap – 5 0.443 2 0.69 0.25 0.59 $120,742 

Cap – 7 0.439 3 0.66 0.05 0.49 $284,316 

Deg – 6 0.437 4 0.75 0.58 0.10 $179,294 

Deg – 7 0.437 5 0.75 0.56 0.05 $214,064 

Cap – 4 0.421 6 0.70 0.33 0.61 $91,527 

Deg – 4 0.418 7 0.76 0.56 0.33 $93,442 

Deg – 5 0.415 8 0.75 0.61 0.25 $116,208 
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Chapter 5: Concluding Remarks 

5.1 Discussion 

In summary, the differences between the disruption scenarios made finding a truly 

robust solution difficult. Nevertheless, the methodology discussed in this work does 

provide a framework for comparing the effectiveness of allocation strategies for attacks 

on an interdependent network system. Additionally, it offers one way to include social 

vulnerability into disaster planning, a crucial component for which many previous 

works do not account. The resilience of both the infrastructure and of the community 

must be incorporated in disaster planning so that if a disruption should occur the system 

will be optimally fortified at its weakest points. While protecting critical infrastructure 

networks is undeniably important, it does little good if they are still susceptible to attack 

in the areas in which people most depend on them.  

5.2 Limitations and Future Work 

In the course of this research, multiple limitations and opportunities for continuing 

improvements and expansions were identified. First, the overall accuracy of the model 

can be increased by gaining a better understanding of the component attributes, such as 

the cost of resource allocation, understanding which factors are more important to 

attacker target selection, and the degree to which the network components have these 

factors. The latter two are obviously more complicated to achieve as they require deeper 

understanding into attacker psychology and motivation.  

Secondly, using a non-linear contest function may have different results. A 

comparison of methods using the simplified contest function from this work and using 

the more common difference or ratio forms could help determine if the added 

complication from the non-linear function contributed to significantly better results.  
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Thirdly, weights based of off the likelihood of each attack scenario or the 

stakeholders’ preferences for one criterion over another could be incorporated into the 

TOPSIS calculations using the Analytical Hierarchy Process or similar technique. For 

example, if defenders have information prior to an intentional attack that a degree-based 

attack is more likely than a desirability- or capacity-based attack, the weights used in 

TOPSIS could reflect this information and influence the higher ranked strategies to 

include those that best protected the network in degree-based disruption scenarios. 

Defenders may also consider vulnerability reduction more important than cost, or vice-

versa. Even if the probability of a disruption is relatively low, there are non-monetary 

costs, like decreased sense of security in the public or loss of trust in the government, 

that would occur in the event of a successful malevolent attack. If defenders are more 

concerned with these qualitative costs than the quantitative costs of resource allocation, 

the vulnerability criteria can be weighted higher than the cost criterion to allow 

strategies with high costs but less damage to the networks to be ranked high. These 

changes would help represent the reality of the situation more accurately and could 

incorporate opinions of the community, governmental bodies, and infrastructure 

workers.  
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Appendix A Network Allocation Model 

This section shows the code used to define the network attributes and solve the network 

allocation mathematical model. The data was read in from Excel and the model was 

written and solved with Python 2.7 and Gurobi 7.5.1. 

# Resilience-Driven Allocation Model for Interdependent Infrastructure Networks   
# Adapted from Almoghathawi et al, 2016     
#Packages   
import pandas as pd   
import numpy as np   
import math   
from math import exp   
from gurobipy import *   
import xlsxwriter   
 
# DATA:   
nodes  = pd.DataFrame(pd.read_csv('Shelby full - nodes - Copy7.csv',header='infer')) 
supply = pd.DataFrame(pd.read_csv('Shelby full - supply - Copy3.csv',header='infer')) 
demand = pd.DataFrame(pd.read_csv('Shelby full - demand - Copy3.csv',header='infer')) 
links  = pd.DataFrame(pd.read_csv('Shelby full - links - Copy7.csv', header='infer'))
   
dis_n=pd.DataFrame(pd.read_csv('Shelby full - nodes - Copy4 - dis.10.csv',header='inf
er') dis_l=pd.DataFrame(pd.read_csv('Shelby full - links - Copy4 - dis.10.csv',header
='infer'))depend 
=pd.DataFrame(pd.read_csv('Shelby full - dependency - Copy1.csv',header='infer'))   
 
#List of nodes   
node = nodes['node'].values.ravel().tolist()   
node = list(map(int,node))   
 
#List of nodes and networks   
IK =  list(zip(nodes['node'], nodes['net.n']))     
nodes['IK']  = IK   
Shelby_n_dic = nodes.set_index('IK').to_dict()   
IK = [t for t in IK if not any(isinstance(n, float) and math.isnan(n) for n in t)] #n
ote to self: what does this line mean    
IK = tuplelist(IK)   
   
#List of links and networks   
IJK =  list(zip(links['from'], links['to'], links['net.l']))     
links['IJK'] = IJK   
Shelby_l_dic = links.set_index('IJK').to_dict()   
IJK = [t for t in IJK if not any(isinstance(n, float) and math.isnan(n) for n in t)] 
  
IJK = tuplelist(IJK)   
   
#List if interdependent nodes   
IKJL =  list(zip(depend['node1'], depend['net1'], depend['node2'], depend['net2']))  
  
depend['IKJL'] = IKJL   
Shelby_d_dic   = depend.set_index('IKJL').to_dict()   
IKJL = [t for t in IKJL if not any(isinstance(n, float) and math.isnan(n) for n in t)
]   
IKJL = tuplelist(IKJL)   
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# SUPPLY AND DEMAND: ------------------------------------------------------------- 
#Supply nodes   
IK_S =  list(zip(supply['node'], supply['net.n']))     
supply['IK_S']  = IK_S   
Shelby_sup_dic = supply.set_index('IK_S').to_dict()   
IK_S = [t for t in IK_S if not any(isinstance(n, float)and math.isnan(n) for n in t)] 
IK_S = tuplelist(IK_S)   
   
#Demand nodes   
IK_D =  list(zip(demand['node'], demand['net.n']))     
demand['IK_D']  = IK_D   
Shelby_dem_dic = demand.set_index('IK_D').to_dict()   
IK_D = [t for t in IK_D if not any(isinstance(n, float)and math.isnan(n) for n in t)] 
IK_D = tuplelist(IK_D)   
   
# DISRUPTED COMPONENTS:---------------------------------------------------------- 
#Disrupted nodes   
DIK =  list(zip(dis_n['node'], dis_n['net.n']))     
dis_n['DIK']  = DIK   
Shelby_dn_dic = dis_n.set_index('DIK').to_dict()   
DIK = [t for t in DIK if not any(isinstance(n, float) and math.isnan(n) for n in t)] 
  
DIK = tuplelist(DIK)   
   
#Disrupted links   
DIJK =  list(zip(dis_l['from'], dis_l['to'], dis_l['net.l']))  #list of links with th
eir network   
dis_l['DIJK'] = DIJK   
Shelby_dl_dic = dis_l.set_index('DIJK').to_dict()   
DIJK = [t for t in DIJK if not any(isinstance(n, float)and math.isnan(n) for n in t)] 
DIJK = tuplelist(DIJK)   
     
#NODE AND LINK ATTRIBUTES:-------------------------------------------------------  
sup   = {} #Supply   
dem   = {} #Demand   
sovi  = {} #Social vulnerability rank   
ext_n = {} #Target desirability of node   
ext_l = {} #Target desirability of link   
imp   = {} #Network weight   
rc_n = {} #Unit restoration cost of node   
rc_l = {} #Unit resoration cost of link   
p     = {} #Unit cost of unmet demand   
enode = {} #Attack resources dedicated to node   
elink = {} #Attack resources dedicated to link   
cap  = {} #Capacity of link   
   
for i,k in IK_S:   
      sup[i,k]  = Shelby_sup_dic['supply'][i,k]   
   
for i,k in IK_D:   
      dem[i,k]  = Shelby_dem_dic['demand'][i,k]   
      imp[i,k]  = Shelby_dem_dic['imp'][i,k]   
      sovi[i,k] = Shelby_dem_dic['sovi'][i,k]   
   
for i,k in IK:   
      p[i,k]     = Shelby_n_dic['p'][i,k]   
      #fn[i,k]   = Shelby_n_dic['fn'][i,k]   
      ext_n[i,k] = Shelby_n_dic['ext_n'][i,k]   
      enode[i,k] = Shelby_n_dic['enode10'][i,k]  
      rc_n[i,k] = Shelby_n_dic['rc_n'][i,k]           
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for i,j,k in IJK:   
      cap[i,j,k]   = Shelby_l_dic['cap'][i,j,k]   
      #cf[i,j,k]   = Shelby_l_dic['cf'][i,j,k]   
      #fl[i,j,k]   = Shelby_l_dic['fl'][i,j,k]   
      ext_l[i,j,k] = Shelby_l_dic['ext_l'][i,j,k]   
      elink[i,j,k] = Shelby_l_dic['elink10'][i,j,k]  
      rc_l[i,j,k] = Shelby_l_dic['rc_l'][i,j,k]     
               
#Interdependent networks:   
network = (1,2,3)   
     
#Weighted slack in each disruption scenario with no allocation   
TotWSlack=1444.56 #Desirability-based scenario   
#TotWSlack=1837.44 #Capacity-based scenario   
#TotWSlack=1956.03 #Degree-based scenario   
   
m = Model('Resilience Optimization')   
   
# VARIABLES:---------------------------------------------------------------------- 
hnode={} #Defensive resource allocation for nodes - decision variable   
for i,k in IK:   
      hnode[i,k]=m.addVar(lb=0.0,vtype=GRB.CONTINUOUS,name='hnode_%s_%s'%(i,k))   
         
hlink = {} #Defensive resource allocation for links - decision variable   
for i,j,k in IJK:   
      hlink[i,j,k] = m.addVar(lb=0.0,vtype=GRB.CONTINUOUS, name='hlink_%s_%s_%s'%(i,j
,k))  
   
v_n = {} #Vulnerability of node given the proposed attack/defense scenario   
for i,k in IK:   
      v_n[i,k] = m.addVar(vtype=GRB.CONTINUOUS,name='v_n_%s_%s'%(i,k))   
   
v_l = {} #Vulnerability of link given the proposed attack/defense scenario   
for i,j,k in IJK:   
      v_l[i,j,k] = m.addVar(vtype=GRB.CONTINUOUS,name='v_l_%s_%s_%s'%(i,j,k))   
     
F = {} #Flow   
for i,j,k  in IJK:   
      F[i,j,k] = m.addVar(ub=cap[i,j,k], name='F_%s_%s_%s'%(i,j,k))   
   
SU = {} #Unmet demand   
for i,k in IK_D:   
      SU[i,k] = m.addVar(ub=dem[i,k], name='SU_%s_%s'%(i,k))   
   
SSU = {} #Total slack in each network   
for k in network:   
      SSU[k] = m.addVar(name='SSU_%s'%(k))   
   
WS = {} #Total weighted slack in each network   
for k in network:   
      WS[k] = m.addVar(name='WS_%s'%(k))   
               
m.update()            
              
# CONSTRAINTS:-------------------------------------------------------------------- 
# 1. CONSERVATION CONSTRAINTS OF FLOW AT NODE i:   
for i,k in IK_S:   
      m.addConstr(quicksum(F[i,j,k] for i,j,k in IJK.select(i,'*',k)) -   
                  quicksum(F[j,i,k] for j,i,k in IJK.select('*', i,k)) <= sup[i,k])  
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for i,k in IK_D:   
      m.addConstr(quicksum(F[i,j,k] for i,j,k in IJK.select(i,'*',k)) -   
            quicksum(F[j,i,k] for j,i,k in IJK.select('*', i,k)) - SU[i,k] == -
dem[i,k])   
            
# 2. CAPACITY CONSTRAINTS ON LINK (I,J):    
for i,k in DIK:   
      m.addConstr(v_n[i,k] == ((enode[i,k]-hnode[i,k])/enode[i,k]))   
   
for i,j,k in DIJK:   
      m.addConstr(v_l[i,j,k] == ((elink[i,j,k]-hlink[i,j,k])/elink[i,j,k]))   
         
for i,j,k in IJK:   
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_n[i,k])) 
   
for i,j,k in IJK:    
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_n[j,k])) 
     
for i,j,k in DIJK:   
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_l[i,j,k]))  
   
   
# 3. INTERDEPENDENCE CONSTRAINST:             
for i,k,j,l in IKJL:    
      m.addConstr(v_n[i,k] >= v_n[j,l])   
   
#Total slack in each network    
for k in network:   
      m.addConstr(SSU[k] == quicksum(SU[i,k] for i,k in IK_D.select('*',k)))   
   
#Weighted slack in each network   
for k in network:   
      WS[k] = quicksum(sovi[i,k]*imp[i,k]*SU[i,k] for i,k in IK_D.select('*',k))   
         
# OBJECTIVE FUNCTION:  ---------------------------------------------------------   
#OBJECTIVE I: MINIMIZE SLACK:  
S_total=(quicksum(sovi[i,k]*imp[i,k]*SU[i,k] for i,k in IK_D))/TotWSlack #Proportiona
l weighted slack 
epsilon=1 
m.addConstr(S_total <= epsilon) #Epsilon constraint   
 
m.update()   
   
# OBJECTIVE II: MINIMIZE THE ALLOCATION COST:   
NRC = quicksum( rc_n[i,k]*hnode[i,k] for i,k in DIK)   #Node resource allocation cost 
LRC = quicksum( rc_l[i,j,k]*hlink[i,j,k] for i,j,k in DIJK) #Link resource allocation
 cost 
UDC = quicksum( p[i,k] * SU[i,k] for i,k in IK_D)  #Unmet demand cost at demand nodes 
Alloc=NRC+LRC  #Total allocation costs 
COST=NRC+LRC+UDC #Total allocation and slack costs 
   
m.update()   
   
m.setObjective(Alloc, GRB.MINIMIZE)   
   
m.modelSense = GRB.MINIMIZE   
m.optimize()   
status = m.status   
   
m.write('Resilience Optimization.lp')   
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if m.status == GRB.Status.OPTIMAL:   
    print('Optimal cost objective: %g' % m.objVal)   
elif m.status == GRB.Status.INF_OR_UNBD:   
    print('Model is infeasible or unbounded')   
    exit(0)   
elif m.status == GRB.Status.INFEASIBLE:   
    print('Model is infeasible')   
    exit(0)   
elif m.status == GRB.Status.UNBOUNDED:   
    print('Model is unbounded')   
    exit(0)   
else:   
    print('Optimization ended with status %d' % m.status)   
    exit(0)   
   
solution  = m.getAttr('x',SSU)   
   
for k in network:   
        if solution[k]>0:    
              print('SSU[%s] = %g'%(k,solution[k]))   
   
print 'The runtime is'   
print m.Runtime   
print 'The total cost is'    
print COST.getValue()   
print 'The total allocation cost is'   
print Alloc.getValue()   
print 'The total weighted proportional slack is'   
print S_total.getValue()   
print 'The total unmet demand is'   
print SSU[1]   
print SSU[2]   
print SSU[3]   
print 'The weighted slack in each network is'   
print WS[1].getValue()   
print WS[2].getValue()   
print WS[3].getValue()   
   
#Write out current solution to file   
node_i=[]   
node_k=[]   
node_h=[]   
for i,k in IK:   
      node_i.append(i)   
      node_k.append(k)   
      node_h.append(hnode[i,k].X)   
nodedata={'Node':node_i,'Network':node_k,'hnode':node_h}   
dataframe=pd.DataFrame(nodedata,columns=['Node','Network','hnode'])   
writer=pd.ExcelWriter('hnode.xlsx',engine='xlsxwriter')   
dataframe.to_excel(writer,sheet_name='Sheet1')   
writer.save()   
   
link_i=[]   
link_j=[]   
link_k=[]   
link_h=[]   
for i,j,k in IJK:   
      link_i.append(i)   
      link_j.append(j)   
      link_k.append(k)   
      link_h.append(hlink[i,j,k].X)   
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linkdata={'Node1':link_i,'Node2':link_j,'Network':link_k,'hlink':link_h}   
dataframe=pd.DataFrame(linkdata,columns=['Node1','Node2','Network','hlink'])   
writer=pd.ExcelWriter('hlink.xlsx',engine='xlsxwriter')   
dataframe.to_excel(writer,sheet_name='Sheet1')   
writer.save()   

                 
print('The optimal objective is %g' % m.objVal) 
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Appendix B Network Allocation Model for Robustness 

This section shows the code from Appendix A rewritten to apply the found solutions to 

the other two scenarios for which it was not originally solved. Only the sections of code 

that required changes are shown here. 

# NODE AND LINK ATTRIBUTES:------------------------------------------------------- 
sup   = {} #supply at node i   
dem   = {} #demand at node i   
sovi  = {} #social vulnerability score at node i   
ext_n = {} #external importance at node i (importance to attacker)   
ext_l = {} #external importance at link i,j (importance to attacker)   
imp   = {} #network importance for node i (importance to defender)   
rc_n = {} #unit restoration cost for nodes   
rc_l = {} #unit resoration cost for links   
p     = {} #unit cost of unmet demand, slack cost   
enode = {} #attack resources dedicated to node i   
elink = {} #attack resources dedicated to link i   
cap  = {} #Capacity of the links   
 
#hnode and hlink are read in as attributes and are not solved as decision variables 
hnode = {} #defense resources dedicated to node i 
hlink = {} #defense resources dedicated to link i   
   
for i,k in IK_S:   
      sup[i,k]  = Shelby_sup_dic['supply'][i,k]   
   
for i,k in IK_D:   
      dem[i,k]  = Shelby_dem_dic['demand'][i,k]   
      imp[i,k]  = Shelby_dem_dic['imp'][i,k]   
      sovi[i,k] = Shelby_dem_dic['sovi'][i,k]   
   
for i,k in IK:   
      p[i,k]     = Shelby_n_dic['p'][i,k]   
      ext_n[i,k] = Shelby_n_dic['ext_n'][i,k]   
      enode[i,k] = Shelby_n_dic['enode11'][i,k] #change based on dis#   
      hnode[i,k] = Shelby_n_dic['hnode128'][i,k] #change based on dis#   
      rc_n[i,k] = Shelby_n_dic['rc_n'][i,k]   
              
for i,j,k in IJK:   
      cap[i,j,k]   = Shelby_l_dic['cap'][i,j,k]   
      ext_l[i,j,k] = Shelby_l_dic['ext_l'][i,j,k]   
      elink[i,j,k] = Shelby_l_dic['elink11'][i,j,k] #change based on dis#   
      hlink[i,j,k] = Shelby_l_dic['hlink128'][i,j,k] #change based on dis#   
      rc_l[i,j,k] = Shelby_l_dic['rc_l'][i,j,k]   
   
#Interdependent networks:   
network = (1,2,3)   
   
#Weighted slack in each disruption scenario with no allocation   
TotWSlack=1444.56 #Desirability-based scenario   
#TotWSlack=1837.44 #Capacity-based scenario   
#TotWSlack=1956.03 #Degree-based scenario   
   
m = Model('Resilience Optimization')   
   
# VARIABLES:---------------------------------------------------------------------  
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v_n = {} #Vulnerability of node given the proposed attack/defense scenario   
for i,k in IK:   
      v_n[i,k] = m.addVar(vtype=GRB.CONTINUOUS,lb=0,ub=1,name='v_n_%s_%s'%(i,k))   
   
v_l = {} #Vulnerability of link given the proposed attack/defense scenario   
for i,j,k in IJK:   
      v_l[i,j,k]=m.addVar(vtype=GRB.CONTINUOUS,lb=0,ub=1,name='v_l_%s_%s_%s'%(i,j,k)) 
     
F = {} #Flow   
for i,j,k  in IJK:   
      F[i,j,k] = m.addVar(ub=cap[i,j,k], name='F_%s_%s_%s'%(i,j,k))   
   
SU = {} #Unmet demand   
for i,k in IK_D:   
      SU[i,k] = m.addVar(ub=dem[i,k], name='SU_%s_%s'%(i,k))   
   
SSU = {} #Total slack in each network   
for k in network:   
      SSU[k] = m.addVar(name='SSU_%s'%(k))   
   
WS = {} #Total weighted slack in each network   
for k in network:   
      WS[k] = m.addVar(name='WS_%s'%(k))   
               
m.update()            
   
#CONSTRAINTS:--------------------------------------------------------------------  
#1. CONSERVATION CONSTRAINTS OF FLOW AT NODE i:   
for i,k in IK_S:   
      m.addConstr(quicksum(F[i,j,k] for i,j,k in IJK.select(i,'*',k)) -   
                  quicksum(F[j,i,k] for j,i,k in IJK.select('*', i,k)) <= sup[i,k])   
   
for i,k in IK_D:   
      m.addConstr(quicksum(F[i,j,k] for i,j,k in IJK.select(i,'*',k)) -   
            quicksum(F[j,i,k] for j,i,k in IJK.select('*', i,k)) - SU[i,k] == -
dem[i,k])   
            
# 2. CAPACITY CONSTRAINTS ON LINK (I,J):    
for i,j,k in IJK:   
      m.addConstr(F[i,j,k]<= cap[i,j,k])   
   
for i,k in DIK:   
      m.addConstr(v_n[i,k] >= ((enode[i,k]-hnode[i,k])/enode[i,k]))   
   
for i,j,k in DIJK:   
      m.addConstr(v_l[i,j,k] >= ((elink[i,j,k]-hlink[i,j,k])/elink[i,j,k]))   
   
for i,j,k in IJK:   
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_n[i,k])) #flow on link ij< (13-2)   
   
   
for i,j,k in IJK:    
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_n[j,k])) #flow on link ij<(14-2)   
   
   
for i,j,k in DIJK:   
    m.addConstr(F[i,j,k] <= cap[i,j,k] * (1-v_l[i,j,k])) #(15-2)   
   
# 3. INTERDEPENDENCE CONSTRAINST:                      
for i,k,j,l in IKJL:    
      m.addConstr(v_n[i,k] >= v_n[j,l])   
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#Total slack in each network    
for k in network:   
      m.addConstr(SSU[k] == quicksum(SU[i,k] for i,k in IK_D.select('*',k)))   
   
#Weighted slack in each network   
for k in network:   
      WS[k] = quicksum(sovi[i,k]*imp[i,k]*SU[i,k] for i,k in IK_D.select('*',k))   
   
#OBJECTIVE FUNCTION: MINIMIZE SLACK:   
#Proportional weighted slack   
S_total=(quicksum(sovi[i,k]*imp[i,k]*SU[i,k] for i,k in IK_D))/TotWSlack  
m.update()   
 
NRC = quicksum( rc_n[i,k]*hnode[i,k] for i,k in IK)  #Node resource allocation cost 
LRC = quicksum( rc_l[i,j,k]*hlink[i,j,k] 
for i,j,k in IJK) #Link resource allocation cost  
UDC = quicksum( p[i,k] * SU[i,k] for i,k in IK_D)  #Unmet demand cost at demand nodes 
Alloc=NRC+LRC #Total allocation costs   
COST=NRC+LRC+UDC #Total allocation and slack costs   
   
m.update()   
   
m.setObjective(S_total, GRB.MINIMIZE)   
   
m.modelSense = GRB.MINIMIZE   
m.optimize()   
status = m.status   
   
m.write('Resilience Optimization.lp')   
   
if m.status == GRB.Status.OPTIMAL:   
    print('Optimal cost objective: %g' % m.objVal)   
elif m.status == GRB.Status.INF_OR_UNBD:   
    print('Model is infeasible or unbounded')   
    exit(0)   
elif m.status == GRB.Status.INFEASIBLE:   
    print('Model is infeasible')   
    exit(0)   
elif m.status == GRB.Status.UNBOUNDED:   
    print('Model is unbounded')   
    exit(0)   
else:   
    print('Optimization ended with status %d' % m.status)   
    exit(0)   
   
solution  = m.getAttr('x',SSU)   
   
for k in network:   
        if solution[k]>0:    
              print('SSU[%s] = %g'%(k,solution[k]))   
   
print 'The runtime is'   
print m.Runtime   
print 'the total cost is'    
print COST.getValue()   
print 'the total allocation cost is'   
print Alloc   
print 'The total weighted proportional slack is'   
print S_total.getValue()   
print 'The total unmet demand is'   
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print SSU[1]   
print SSU[2]   
print SSU[3]   
print 'The weighted slack in each network is'   
print WS[1].getValue()   
print WS[2].getValue()   
print WS[3].getValue()   
print('The optimal objective is %g' % m.objVal)   

 

 

 


