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Abstract 

Multidrug resistance is the simultaneous resistance to two or more chemically unrelated 

therapeutics, including some therapeutics the cell has never been exposed to. It is one of 

the biggest obstacles to effective cancer chemotherapy treatments. Multidrug resistance 

can be caused by drug efflux, an otherwise useful body mechanism that prevents a too-

high drug concentration in cells, by using proteins called transporters. Some chemical 

compounds have the ability to sensitize the cells to the drugs by disabling these 

transporters. The focus of this work is to find key characteristics of compounds that 

may disable a specific transporter, the P-glycoprotein. Three datasets listing 

compounds, their values for different features, and their ability to disable the 

transporters are provided by experts. Using the programming language R, various data 

analytics methods are applied to these datasets with the objective of predicting whether 

compounds are P-glycoprotein inhibitors or not. The main issue encountered is the fact 

that the most important dataset did not contain enough samples for the number of 

predictor variables. Ultimately, the decision tree and random forest models prove to be 

the most effective in predicting the compounds' ability to disable the transporter. 
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Chapter 1: Introduction 

According to the World Cancer Report of 2014, 39% of people will be diagnosed with 

cancer at some point in their life and 15% of all deaths are cancer-related (McGuire, 

2014). Furthermore, approximately 40% of human cancers develop resistance to 

chemotherapeutic drugs (Follit, Brewer, Wise, & Vogel, 2015). One of the issues with 

chemotherapy is that the human body has the ability to reject drugs through a process 

called drug efflux, using transporter proteins. The most obvious solution to this 

problem, which is to use more chemotherapeutic drugs, causes serious undesirable side 

effects for the patient. Studies carried out by the Center for Drug Discovery, Design and 

Delivery (CD4) of the Southern Methodist University of Dallas, Texas have shown that 

after turning off the transporter proteins, using chemotherapeutic drugs in small 

concentrations is enough to destroy the cancerous cells. 

This work is built around the multidrug resistance protein, P-glycoprotein (P-

gp), a transporter protein which is responsible for drug efflux. In previous studies, some 

compounds proved to be efficient in reversing the multidrug resistance caused by P-gp 

and restoring the cancerous cells’ sensitivity to the chemotherapeutic drugs. Used at the 

concentration where they reverse multidrug resistance, these compounds are not toxic to 

non-cancerous cells (Follit et al., 2015; Robey et al., 2008). The focus of this work is to 

find more compounds with these properties: efficient in neutralizing P-gp without 

causing harm to non-cancerous cells. 

The datasets studied are provided by experts at CD4. They contain the 

characteristics of many different chemical compounds. The objective is to use these 

datasets to design models capable of reading similar data and predicting the efficiency 
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of compounds. Various data analytics methods are applied, on the one hand with the 

objective of predicting the compounds' exact level of P-gp inhibition (a continuous 

value) and on the other hand with the objective of predicting whether the compounds 

are effective in blocking P-gp or not (a binary value). In both cases, the models do not 

provide confidence in their ability to predict the target variable accurately. The models 

are nevertheless applied in order to obtain a list of the most promising compounds, 

which can be transmitted to the experts and studied further. 

The primary objectives of this work are to obtain a list of potentially promising 

compounds and to answer the following research question: in the context of multidrug 

resistance caused by drug efflux, what are key characteristics of promising compounds? 

In Chapter 2, the background knowledge that is necessary to understand this 

work is explained. In Chapter 3, the data provided by the experts at CD4 is presented 

and in Chapter 4, the methodology is detailed. Finally, the results are described in 

Chapter 5 and the conclusions and future work are developed in Chapter 6. 
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Chapter 2: Background and literature review 

Cancerous cells have the ability to develop resistance (a lack of response) to traditional 

therapies. Although they are often initially sensitive to chemotherapy, they can develop 

this resistance over time through several mechanisms. One of these mechanisms is drug 

efflux. The adenosine triphosphate (ATP) is an organic compound that contains a large 

amount of chemical energy. Drug efflux uses ATP-binding cassette (ABC) transporters, 

proteins that transport a variety of substances across cellular membranes. In normal 

cells, this mechanism is beneficial: it keeps intracellular drug concentration below a 

cell-killing threshold. However, three transporters in particular protect cancerous cells 

from chemotherapy drugs by carrying them out of the cells: the Multidrug Resistance 

Protein 1 (MDR1), which produces P-gp, the Multidrug Resistance-Associated Protein 

1 (MRP1) and the Breast Cancer Resistance Protein (BCRP). 

2.1.  Combination drug therapy 

Using inhibitory drugs to block these proteins' activity can help sensitize cancerous cells 

to anticancer drugs. This concept is called combination drug therapy (Housman et al., 

2014; Luqmani, 2005). Experiments have shown that inhibiting P-gp can reverse the 

effects of multidrug resistance by re-sensitizing cancerous cells to chemotherapeutics 

(Brewer, 2014; Follit et al., 2015). With this work, the aim is to help the discovery of 

such inhibitors by focusing on blocking P-gp’s activity in order to allow the drugs to 

remain in the target cells longer. 

The objective of drug treatment is to destroy all the cancerous cells while 

inflicting minimum possible damage to the normal cells (Luqmani, 2005). This involves 

finding molecules that have the right characteristics to make acceptable drugs. 
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Combination drug therapy involves looking for candidate molecules that can block or 

activate a target protein, such as P-gp. The promising compounds are those that show 

binding activity towards this target protein. 

2.2.  The mechanisms of drug efflux 

The mechanisms of drug efflux are illustrated in Figure 1. Transporters are efflux 

pumps situated on a cell’s membrane. A binding domain is an area where compounds 

can bind to a protein. Two kinds of binding domains can be found on P-gp: the 

Nucleotide Binding Domains (NBDs) and the Drug Binding Domains (DBDs), 

sometimes also referred to as the Transmembrane Domains (TMDs). The two NBDs 

consume energy by absorbing the energy storage molecule ATP. This energy is used to 

power the two DBDs, which pump drugs out of the cell. A chemical compound that 

binds to an NBD hinders its activity by blocking the access for the energy molecules, 

thus preventing P-gp from consuming energy. However, a compound that binds to a 

DBD may be transported out of the cell by P-gp before it can have any effect. 

In order to prevent drug efflux, an ideal compound would be one that strongly 

binds to the Nucleotide Binding Domains but not well to the Drug Binding Domains, 

because it would inhibit P-gp transport without being transported out of the cell. 
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Figure 1 – Simplified schemas of the mechanisms of drug efflux  
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2.3.  The P-glycoprotein 

The transporter P-gp is particular because it is remarkably non-specific: it can transport 

a broad range of substrates across the plasma membrane, which is why an 

overexpression of P-gp causes multidrug resistance. The reason for this polyspecificity 

is unknown (Dolghih, Bryant, Renslo, & Jacobson, 2011). In humans, P-gp is expressed 

from the multidrug resistance gene, MDR1. The structural model of human P-gp that is 

used for this work was obtained by the researchers at CD4 by performing molecular 

dynamics experiments (Brewer, 2014). 

P-gp is composed of two relatively symmetrical halves. Each half is composed 

of one DBD and one NBD. Each NBD is composed of six transmembrane helices. P-gp 

is illustrated in Figure 2 (original picture from drugdiscoveryopinion.com). The small 

area between the NBDs and the DBDs is referred to as the “Cyt” domain. 

 

Figure 2 – The P-glycoprotein  

Nucleotide Binding Domains 

Drug Binding Domains 

Intracellular 

Extracellular 
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The mechanism of drug efflux detailed previously can be observed in the 

specific case of P-gp in Figure 3 (Li et al., 2016). In the initial position of the protein, 

the two NBDs (located in the bottom part of the protein in Figure 3) are open to the 

energy molecules ATP and the DBDs (located in the top part of the protein and called 

TMDs in Figure 3) are open to the inside of the cell and ready for a substrate to interact 

with P-gp. When this happens, both the NBDs and the DBDs close in order to hold the 

ATP and the substrate inside the protein. This change of position causes P-gp to twist 

and rotate, until the DBDs open to the extracellular space. This new position allows the 

substrate to be pushed out of the cell and released by P-gp. Finally, the ATP molecules 

are hydrolyzed, the energy is consumed and P-gp goes back to its initial position. This 

process is called P-gp’s catalytic transition cycle, and each position taken by the protein 

is called a pose (McCormick, Vogel, & Wise, 2015). 

 

 

Figure 3 – The P-glycoprotein’s catalytic cycle 
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2.4.  The screening of compounds 

The most effective way to find promising compounds is to test chemical 

compounds by high-throughput screening, or HTS (Chapron & Larin, 2004-2016; High 

Throughput Screening: Methods and Protocols, 2016). As stated in (Hughes, Rees, 

Kalindjian, & Philpott, 2011), the HTS method consists in the screening of an entire 

compound library (a database of commercially available compounds) against a target. 

This method uses complex laboratory automation to realize in vitro tests of potential 

inhibitor molecules. There is no need to have prior knowledge of the nature of the 

molecules likely to have activity at the target. According to (Chapron & Larin, 2004-

2016), the HTS method allows scientists to test hundreds of thousands of compounds a 

day. This method was used by CD4 to produce the datasets studied in this work. 

However, performing HTS is expensive. As stated in (Chapron & Larin, 2004-

2016), the solution to this problem is to perform “virtual screening” before performing 

HTS, which is a “real screening” method. Virtual screening is cheaper than real 

screening, and allows compounds that have not been purchased or synthesized yet to be 

tested in silico. It cannot replace real screening, but it can reduce the number of 

compounds to be tested by real screening. This is the method that has been chosen by 

the experts at the origin of this work: a list of potentially promising compounds is 

obtained by virtual screening, and these compounds are purchased in order to perform 

actual in vitro screening by HTS and find actual promising compounds. The compounds 

that are selected in vitro are then tested in vivo by the biologists during later processes 

of drug development, in order to evaluate their real-world ability to inhibit P-gp. 
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2.5.  Data analytics in anticancer drug discovery 

The field of big data analytics has started to play an important role in healthcare 

because it provides tools to manage and analyze the large amounts of data generated by 

the healthcare industry. The digital datasets are typically too large to be stored with 

traditional hardware and too complex to be easily managed with traditional software 

(Belle et al., 2015; Raghupathi & Raghupathi, 2014). 

More specifically, data analytics methods are being used to support the fight 

against cancer. Machine learning methods such as neural networks, decision trees or 

support vector machines were applied to imaging data from radiation oncology (the use 

of high-energy irradiation to kill cancerous cells), such as mammogram images, with 

the objective of detecting anomalies (El Naqa, 2016). Machine learning methods were 

also used on patient data from different institutions with the objective of predicting the 

risk of cancer (Ow & Kuznetsov, 2016) or the outcome of radiotherapy in the treatment 

of prostate cancer (Coates, Souhami, & El Naqa, 2016). 

There have not been attempts to use data analytics methods to predict whether a 

compound has the ability to block P-gp or not. However, there have been attempts to 

predict whether a compound is transported by P-gp (a substrate) or not (a non-substrate) 

by studying the structure of the compound and applying data analytics methods. It is a 

difficult task: even if the binding affinity is high, the compound may not be well 

transported by P-gp because the ratio 
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑃−𝑔𝑝

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑢𝑝𝑡𝑎𝑘𝑒 𝑖𝑛𝑡𝑜 𝑐𝑒𝑙𝑙𝑠
 is unfavorable. In 

some cases, this makes it complex to confidently classify compounds as substrates or 

non-substrates (Bikadi et al., 2011). 
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Two of the classical issues in data analytics for healthcare are the “curse of high 

dimensionality” (a high number of variables) and the “number of variables >> number 

of samples” problem (El Naqa, 2016). These issues are encountered in this work as 

well, principally because one of the provided datasets has many more variables than 

samples. 
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Table 2 – Excerpt: real screening dataset  
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Chapter 3: Data 

3.1.  “Combination drug therapy” data 

Two datasets are provided by the experts at CD4. 

3.1.1. Results of the virtual screening 

The first dataset contains a list of 159,000 chemical compounds and the values they take 

for 15 features. The values were obtained by virtual screening. By analyzing the results, 

the experts at CD4 selected 31 compounds that they believed to be promising. These 31 

compounds were purchased in order to perform real screening (by HTS) and obtain 

accurate values. As has been explained previously (see Chapter 2: Section 2.4), 

performing virtual screening first allowed the experts to reduce the number of 

compounds to purchase and analyze by HTS. 

Table 1 is an excerpt of this first dataset. The complete list of variables in this 

dataset is available in Appendix A. All 15 variables are numerical. They contain 

information on the strength of the binding activity between the compounds and various 

receptors: a low value indicates a strong binding between the compound and the 

receptor, whereas a high value indicates a weak binding. 

3.1.2. Results of the real screening 

The second dataset contains the values obtained by HTS for 77 compounds: the 31 

compounds from the virtual screening dataset as well as 46 compounds selected by 

CD4. 

Table 2 is an excerpt of this second dataset. The complete list of variables in this 

dataset is available in Appendix B. HTS provided information on 89 features of the 77 

compounds. Among these features, 5 are integer, 65 are numerical (they contain 
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decimal numbers), 11 are factors (they contain characters), 1 is logical (it contains a 

binary value) and 7 are empty. These variables are more diversified than the variables 

from the virtual screening dataset: some of them contain information on the strength of 

the binding activity between the compounds and various receptors, like in the virtual 

screening dataset, and others describe the structure of the compound. In the case of the 

variables containing information on binding activity, a low value indicates a strong 

binding between the compound and the receptor, whereas a high value indicates a weak 

binding. 

Four of the variables in this dataset are target features (the 4 variables on the right in 

Table 2): an ideal compound takes a high value for some and a low value for others. 

The target features are: 

 P-gp 15 micromolar efficacy: represents the ability of the chemotherapeutic 

used with the compound to kill cells that are resistant because of P-gp, 

normalized to the ability of the chemotherapeutic used without the compound. 

This numerical variable takes values from 0 to 1 (although a few values fall 

slightly below 0, which may be due to the equipment used to test the 

compounds). A value of 0 means no difference with or without the compound. A 

high value indicates a promising compound; 

 10 micromolar BCRP fold inhibition: represents the ability of the 

chemotherapeutic used with the compound to kill cells that are resistant because 

of BCRP. This numerical variable takes values from 1 to 5. A high value 

indicates a promising compound; 
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 10 micromolar P450 inhibiton: represents the inhibition of the compound 

against the target P450. P450_3A4 is an important enzyme that should not be 

disrupted to avoid side effects. This numerical variable takes values from 0 to 1. 

It is better for the patient if this value is close to 0; 

 Actual toxicity: represents the ability of the compound by itself to kill cells. 

This numerical variable takes values from 0 to 1. This value must be low: if it is 

higher than 0.5, the compound cannot be accepted because the compound's 

action is through killing the cell itself, not sensitizing it so that the 

chemotherapeutic can kill it. Ideally, the compound should have no effect 

without the chemotherapeutic. 

 Multifactor usability: an indicator variable provided by the experts on the 

compound’s overall effectiveness. It is based on the other 4 targets. This 

variable takes the value “True” if the compound turned out to be promising 

during the in vitro tests and the value “False” otherwise. 

 

According to CD4, either “P-gp 15 micromolar efficacy”, “Multifactor 

usability” or “10 micromolar BCRP fold inhibition” having a satisfactory value is 

enough for a compound to be promising. While they are important characteristics of a 

compound too, “Actual toxicity” and “10 micromolar P450 inhibition” can be improved 

during later processes of drug development and optimization. 

The subject of this work is the transporter P-gp, which is why the target 

variables “P-gp 15 micromolar efficacy” and “Multifactor usability” are the focus. As 

can be observed in Figure 4, which illustrates the distribution of “P-gp 15 micromolar 
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efficacy”, most compounds are not extremely efficient in blocking P-gp, even though 

they were selected after the virtual screening step because they were believed to be 

promising. This deduction is confirmed in Figure 5, which illustrates the values taken 

by the target variable “Multifactor usability”: most of the potentially promising 

compounds are not actually efficient in blocking P-gp. 

 

Figure 4 – Distribution of the target variable “P-gp 15 micromolar efficacy” 

 

 
Figure 5 – Distribution of the target variable “Multifactor usability”  
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3.2.  “AutoDock Vina” data 

The third source of available data contains the results of experiments on P-gp docking. 

This data was obtained by CD4 using the open-source software AutoDock Vina, 

developed by Dr. Oleg Trott at the Script Research Institute of San Diego, California. 

3.2.1. Molecular docking 

Molecular docking is a computational method of prediction of the preferred orientation 

of a molecule when it binds to another molecule, as well as the binding affinity. 

Knowing the preferred orientation of a molecule can be useful to predict the strength of 

the binding between two molecules. 

The objective of AutoDock Vina is to perform molecular docking. This software 

is especially effective for protein-ligand docking: the prediction of the position and 

orientation of a small molecule when it binds to a protein or enzyme. This method is 

particularly useful in the context of drug discovery: it is used to screen virtual libraries 

of molecules in order to obtain clues about which molecules are promising for further 

drug development. It allows researchers to determine a compound’s orientation when it 

binds to a target protein, and to calculate its affinity and level of activity with this target 

protein (Kitchen, Decornez, Furr, & Bajorath, 2004; Trott & Olson, 2010). 

The researchers at CD4 used AutoDock Vina to virtually dock a library of 

compounds against P-gp. 123 compounds were tested against 8 structures that represent 

the stages of P-gp’s catalytic transition cycle, which was detailed previously in Chapter 

2 and illustrated in Figure 3. These structures are called poses of the protein. Figure 6 

(provided by CD4) depicts five of P-gp’s poses, as well as their names. 
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Figure 6 – Stages of P-gp’s catalytic cycle 

 

The compounds were actually tested against 28 receptors: 

- 3 receptors for each of the 8 poses of P-gp: one receptor on the Drug Binding 

Domain, one on the Nucleotide Binding Domain and one in the “Cyt” domain, 

which covers the region between the DBD and the NBD; 

- 3 receptors (DBD, NBD and Cyt) on MDR1_6, the Multi-Drug Resistance 

Protein 1, which is similar to the 2_hyd structures of P-gp; 

- 1 receptor on BCRP, the Breast Cancer Resistance Protein. 

3.2.2. Types of data 

For each of the 3,444 compound-receptor couples, the result of the AutoDock Vina 

analysis is the top 20 docking positions, numbered 1 to 20 with the position number 1 

being the best docking position on the protein. For each docking position, three types of 

data are available: 
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- The estimated Kd: the binding affinity. 

This value represents how much of a molecule is needed to have a potential inhibitory 

effect. For example, if the compound X has an estimated Kd of 2.025 x 10E-8 when 

tested against the receptor Y_NBD, then a concentration of 2.025 x 10E-8 Mol is 

needed for the compound to have an inhibitory effect. In drug design, it is optimal for 

the Kd to be as low as possible, so that it will not be necessary to use a large quantity of 

the drug for it to take effect. 

Since we want the compounds to bind strongly to the NBDs and weakly to the 

DBDs (see Chapter 2: Section 2.2), we want to observe a low Kd for the NBD receptors 

and a high Kd for the DBD receptors. For example, if the compound X mentioned 

previously has an estimated Kd of 4.708 x 10E-8 when tested against the receptor 

Y_DBD, then the ratio 
𝐾𝑑 𝑓𝑜𝑟 𝐷𝐵𝐷

𝐾𝑑 𝑓𝑜𝑟 𝑁𝐵𝐷
 is 2.32. We want that ratio to be as high as possible so 

that the molecules interacts preferentially with the NBD over the DBD. 

 

 The estimated deltaG (dG): the change in Gibbs free energy. 

The dG is a quantitative measure of a reaction’s favorability at constant temperature and 

pressure. It is measured as a change in Gibbs free energy. A low dG means that the 

reaction is favorable. We are looking for molecules whose interaction with the NBD is 

more favorable than their interaction with the DBD: just like in the case of the Kd, we 

want the ratio 
𝑑𝐺 𝑓𝑜𝑟 𝐷𝐵𝐷

𝑑𝐺 𝑓𝑜𝑟 𝑁𝐵𝐷
 to be as high as possible. 

 The dG is the value that is used to evaluate the binding strength of each docking 

position, in order to select the top 20 docking positions (those with the lowest dG) for 

each compound-receptor couple. 
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 The coordinates of each atom that make up the molecule: 

From these coordinates, the center of mass (COM) coordinates can be calculated. This 

information is useful to determine if the molecule docks to the same spot of P-gp 

repeatedly or if the docking spot is highly variable. This can in turn be used to find out 

which spots on P-gp are creating favorable biochemical interactions. 

 My hypothesis is that a compound that docks repeatedly to the same spot on the 

Drug Binding Domain of P-gp may be more easily transported out of the cell, whereas a 

compound that docks repeatedly to the same spot on the Nucleotide Binding Domain of 

P-gp may be more efficient in reversing the multidrug resistance.  
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MODEL 1 
REMARK VINA RESULT:     -10.1      0.000      0.000 
REMARK  6 active torsions: 
REMARK  status: ('A' for Active; 'I' for Inactive) 
REMARK    1  A    between atoms: C7_7  and  O3_11  
REMARK    2  A    between atoms: O3_11  and  C9_12  
REMARK    3  A    between atoms: C9_12  and  C10_14  
REMARK    4  A    between atoms: C14_19  and  N2_20  
REMARK    5  A    between atoms: N2_20  and  C15_21  
REMARK    6  A    between atoms: C19_25  and  C21_27  
ROOT 
ATOM      1  C10 <0> A   1       1.399  -3.320  31.093  1.00  0.00     0.085 A  
ATOM      2  C11 <0> A   1       0.858  -4.252  30.198  1.00  0.00     0.023 A  
ATOM      3  C12 <0> A   1      -0.089  -5.144  30.672  1.00  0.00     0.020 A  
ATOM      4  C13 <0> A   1      -0.472  -5.090  32.001  1.00  0.00     0.119 A  
ATOM      5  N1  <0> A   1       0.050  -4.204  32.827  1.00  0.00    -0.242 NA 
ATOM      6  C14 <0> A   1       0.963  -3.332  32.429  1.00  0.00     0.144 A  
ENDROOT 
BRANCH   1   7 
ATOM      7  C9  <0> A   1       2.409  -2.349  30.641  1.00  0.00     0.299 C  
ATOM      8  O4  <0> A   1       2.234  -1.160  30.826  1.00  0.00    -0.259 OA 
BRANCH   7   9 
ATOM      9  O3  <0> A   1       3.528  -2.776  30.023  1.00  0.00    -0.281 OA 
BRANCH   9  10 
ATOM     10  C7  <0> A   1       4.224  -1.828  29.212  1.00  0.00     0.315 A  
ATOM     11  C5  <0> A   1       4.858  -2.525  28.034  1.00  0.00     0.013 A  
ATOM     12  C4  <0> A   1       6.234  -2.305  28.148  1.00  0.00     0.050 A  
ATOM     13  C6  <0> A   1       4.357  -3.259  26.985  1.00  0.00     0.013 A  
ATOM     14  C3  <0> A   1       7.095  -2.837  27.186  1.00  0.00     0.018 A  
ATOM     15  C8  <0> A   1       6.458  -1.496  29.358  1.00  0.00     0.296 A  
ATOM     16  C2  <0> A   1       6.581  -3.572  26.138  1.00  0.00     0.001 A  
ATOM     17  C1  <0> A   1       5.218  -3.783  26.036  1.00  0.00     0.001 A  
ATOM     18  O1  <0> A   1       5.287  -1.231  29.959  1.00  0.00    -0.281 OA 
ATOM     19  O2  <0> A   1       7.545  -1.123  29.755  1.00  0.00    -0.259 OA 
ENDBRANCH   9  10 
ENDBRANCH   7   9 
ENDBRANCH   1   7 
BRANCH   6  20 
ATOM     20  N2  <0> A   1       1.487  -2.425  33.332  1.00  0.00    -0.340 N  
ATOM     21  H9  <0> A   1       2.408  -2.133  33.247  1.00  0.00     0.167 HD 
BRANCH  20  22 
ATOM     22  C15 <0> A   1       0.689  -1.928  34.366  1.00  0.00     0.034 A  
ATOM     23  C20 <0> A   1      -0.533  -1.333  34.077  1.00  0.00     0.045 A  
ATOM     24  C19 <0> A   1      -1.322  -0.847  35.102  1.00  0.00     0.050 A  
ATOM     25  C18 <0> A   1      -0.891  -0.942  36.412  1.00  0.00     0.016 A  
ATOM     26  C17 <0> A   1       0.327  -1.528  36.703  1.00  0.00     0.003 A  
ATOM     27  C16 <0> A   1       1.119  -2.021  35.683  1.00  0.00     0.029 A  
BRANCH  24  28 
ATOM     28  C21 <0> A   1      -2.651  -0.207  34.791  1.00  0.00     0.417 C  
ATOM     29  F1  <0> A   1      -2.765   0.996  35.494  1.00  0.00    -0.166 F  
ATOM     30  F2  <0> A   1      -2.737   0.045  33.419  1.00  0.00    -0.166 F  
ATOM     31  F3  <0> A   1      -3.684  -1.071  35.173  1.00  0.00    -0.166 F  
ENDBRANCH  24  28 
ENDBRANCH  20  22 
ENDBRANCH   6  20 
TORSDOF 6 
ENDMDL 

 

Figure 7 – Excerpt: file describing the structure of the compound 

ZINC00601275_SMU113 when docked to the receptor 2hyd_1_cyt  



 

22 

3.3.  Data cleaning 

The data is not usable as it is: 

- The Combination drug therapy data contains several non-numeric variables that 

are not useful to build models, such as the variable “Smiles”: a representation in 

ASCII characters of the chemical structure of the compounds (see Table 2). It 

also contains many missing values. Additionally, the dataset containing the 

results of the real screening is unbalanced: it does not contain enough samples 

for the number of variables (only 77 samples for 89 variables). 

- The AutoDock Vina data is scattered in many different files: one folder for each 

receptor, containing: 

 One file for each docked compound describing the structure and the 

coordinates of each atom. An excerpt of such a file is presented in Figure 

7; 

 One file for each docked compound describing each of the top 20 

docking positions. This file is structurally similar to the previous one; 

 One file containing the Kd and dG for each compound-receptor couple. 

An excerpt of such a file is presented in Figure 8. The names of the 

compound and receptor can be read in the first column, the dG in the 

second column and the Kd in the third column. 

This is why a preliminary step of preprocessing data is necessary. The first 

treatment of the data consists in removing empty and non-numerical variables from the 

Combination drug therapy data. 
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./ZINC08685602_SMU30_2hyd_dbd_1_ori_out.pdbqt -8.6 .00000049966444350388 

./ZINC10363190_SMU35_2hyd_dbd_1_ori_out.pdbqt -7.9 .00000162770880154540 

./ZINC07069240_SMU115_2hyd_dbd_1_ori_out.pdbqt -8.0 .00000137500896892478 

./ZINC09835648_SMU21_2hyd_dbd_1_ori_out.pdbqt -9.2 .00000018157303824518 

./ZINC48237631_SMU88_2hyd_dbd_1_ori_out.pdbqt -8.2 .00000098121271932813 

./ZINC24781309_SMU54_2hyd_dbd_1_ori_out.pdbqt -8.9 .00000030120689087418 

./ZINC04741719_SMU16_2hyd_dbd_1_ori_out.pdbqt -8.1 .00000116154048121417 

./ZINC25054259_SMU84_2hyd_dbd_1_ori_out.pdbqt -8.1 .00000116154048121417 

./ZINC12446716_SMU23_2hyd_dbd_1_ori_out.pdbqt -8.2 .00000098121271932813 

./ZINC06868070_SMU67_2hyd_dbd_1_ori_out.pdbqt -9.0 .00000025444488354472 

 

Figure 8 – Excerpt: file describing the results (Kd and dG) of the docking of each 

compound to the receptor 2hyd_1_cyt 

 

As can be observed in Table 3, this treatment significantly reduces the number 

of missing values as well as the number of variables, particularly in the case of the 

dataset containing the results of the real screening. Additionally, the proportion of 

missing values for each variable in the virtual screening dataset and in the real screening 

dataset after this first treatment can be visualized in Figure 9 and in Figure 10 

respectively. A lot of missing values are still in the real screening dataset (more than 

60% for more variables), 

 The second treatment of the data consists in removing constant and almost-

empty variables, as well as the observations for which most values are missing. The 

variables that are present in the real screening dataset but absent from the virtual 

screening dataset are removed as well because they are useless for the prediction (this 

will be detailed in Chapter 4: Section 4.1 and Figure 12). The final real screening 

dataset contains 71 observations for 14 variables, including the 4 target variables, and 

less than 1% of missing values. Figure 11 shows the proportion of missing values for 

each variable of the real screening dataset after the second treatment. 
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Virtual screening dataset No treatment Treatment 1 

Number of lines (observations) 158,867 158,867 

Number of columns (variables) 17 13 

Number of missing values 664,832 471,663 

Percentage of missing values 24.62 22.84 

 
 
 
Real screening dataset No treatment Treatment 1 Treatment 2 

Number of lines (observations) 77 77 71 

Number of columns (variables) 85 11 10 

Number of missing values 3,739 354 7 

Percentage of missing values 57.13 41.79 0.90 

 

The number of columns and the percentage of missing values in the real screening 

dataset are calculated without taking into account the target variables, which contain 

no missing values. 

Table 3 – Contents of the datasets 
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Figure 9 – Missing values in the virtual screening dataset (after treatment) 

 

 
Figure 10 – Missing values in the real screening dataset (after first treatment) 
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Figure 11 – Missing values in the real screening dataset (after second treatment) 

 

 

 

The treatment of the AudoDock Vina data consists in creating a large dataset 

gathering the information previously scattered in many different files. The files 

containing information about the BCRP transporter or about the receptors in the “Cyt” 

domain of P-gp are discarded: only the information about “DBD” and “NBD” receptors 

on the glycoprotein and on MDR1_6 are processed. The final dataset contains 

1,118,935 lines and 12 columns. Table 4 is an excerpt of this dataset. 
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Table 4 – Excerpt: dataset containing the AutoDock Vina results 
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Chapter 4: Methodology 

4.1.  Objective 

The focus of this work is to find relationships between two of the main target features, 

“P-gp 15 micromolar efficacy” and “Multifactor usability”, and the predictor features 

(the 85 features from the real screening dataset that are not target features). The 

objective, schematically represented in Figure 12, is: 

- To use the real screening dataset (which is the training set) to design models 

capable of predicting the values taken by the target variables (“P-gp 15 

micromolar efficacy” in the example of Figure 12). Only the variables common 

to both datasets can be used; 

- To apply these models to the virtual screening dataset in order to predict the 

compounds’ efficacy; 

- To use the predicted values to identify new promising compounds, which can 

later be bought by the experts at CD4 and analyzed by real screening. 

 

If the hypothesis stated in Chapter 3: Section 3.2.2 can be confirmed (a 

compound that docks repeatedly to the same spot on the DBD is more easily transported 

out of the cell, whereas a compound that docks repeatedly to the same spot on the NBD 

is more efficient in reversing the multidrug resistance), the information obtained from 

the AutoDock Vina dataset can be combined to the information obtained from the 

Combination drug therapy dataset to select the promising compounds more accurately. 
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Figure 12 – Schematized objective 
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4.2.  Tools 

Various programming languages are well-adapted to data analysis. Among them are 

Python and R, two of the most used languages in this field. In this work, Python is used 

occasionally (for the creation of the AutoDock Vina dataset mentioned in Chapter 3: 

Section 3.3) but the main language is R, which is a well-documented language with 

many available libraries. 

Most of the R libraries that are used in this work are model building libraries 

that implement data analytics methods. I use the method “lm” from the library “stats”, 

the method “stepAIC” from the library “MASS”, the method “rpart” from the library of 

the same name, the method “randomForest” from the library of the same name, the 

method “nnet” from the library “caret” and the method “svm” from the library “e1071”. 

The libraries “hydroGOF”, “rfUtilities” and “caTools” provide the quality assessment 

functions that are used to evaluate the models. 

4.3.  Machine learning 

In order to identify some key characteristics of promising compounds, I apply 

regressions to the real screening dataset, as well as various machine learning methods: 

algorithms that learn from data without being explicitly programmed. 

There are two main types of machine learning algorithms: 

- The supervised learning algorithms, which produce models from a training 

dataset in which each observation is labeled: the values taken by the target 

variable are known and they guide the learning process. For example, a problem 

of image classification fall under the category of supervised learning problems; 
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- The unsupervised learning algorithms, whose objective is to describe unlabeled 

data. For example, cluster analysis algorithms such as k-means fall under the 

category of unsupervised learning problems. 

 

The difference between these two types of problems is illustrated in Figure 13: 

- In the case of supervised learning, the observations in the dataset are labeled 

“A” or “B” and the model learns to recognize these two categories depending on 

the values taken by the variables x1 and x2. When the model is applied to a new, 

unlabeled observation (labeled “X” in Figure 13), it is able to identify the most 

appropriate category by analyzing the values taken by x1 and x2; 

- In the case of unsupervised learning, the observations are not labeled. By 

analyzing the values taken by x1 and x2, the model estimates the number of 

represented categories to two. It associates each category to a set of values for 

x1 and a set of values for x2. When the model is applied to a new, unlabeled 

observation, it is able to identify the most appropriate category by analyzing the 

values taken by x1 and x2. 

 

 

Figure 13 – Concept of supervised versus unsupervised learning  
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 The problem dealt with in this work falls under the category of supervised 

learning. The observations are labeled: in the real screening dataset, the values taken by 

the target variables are known. The new, unlabeled observations that the model has to 

classify after is has been trained are the observations from the virtual screening dataset. 

 A common approach in the field of supervised learning is the partition of the 

training dataset into two sub-datasets: a learning dataset (which represents most of the 

time 70% of the original dataset) and a testing dataset (the remaining 30%). This allows 

the training of the model on a sufficient number of observations, before estimating its 

quality by applying it to the testing data and comparing the predicted values with the 

actual values taken by the target variable. 

 It is also possible to divide the dataset into three sub-datasets: learning 

(production of a model using various approaches), validation (selection of the best 

approach) and testing (measure of the quality of the selected approach) datasets. 

 In both cases, it is essential for all datasets to be balanced: each must be an 

accurate representation of the original dataset. 

 In the case of this work, the training dataset (the real screening dataset) only 

contains 71 observations after the data cleaning step. This number of observations, 

which is already too low to obtain good-quality models, becomes way too low if the 

dataset is partitioned. The tests made with a “learning dataset / testing dataset” partition 

are not conclusive because the models did not have access to enough data to learn 

properly. 
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For this reason, the Leave-One-Out Cross-Validation (LOOCV) method is used 

to evaluate the models. In this method, the partition of the training dataset into a 

learning dataset and a testing dataset is slightly different: only one observation is 

selected in the testing dataset. The LOOCV algorithm proceeds as follows: 

 

1. For each observation o from the real screening dataset: 

 Remove o from the training dataset; 

 Train the model; 

 Predict the value taken by the target variable for o; 

 Assess the quality of the model by comparing the prediction to the actual 

value. 

2. Assess the quality of the final model by computing the average quality of all the 

intermediate models; 

3. Train the final model on the whole training dataset. 
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4.4.  Methods 

I used the programming language R and various data analytics methods to produce 

models capable of predicting the target variables. These data analytics methods are 

detailed below. 

 

 The linear regression: 

This approach models the link between a dependent variable 𝑌 and one or more 

explanatory variables 𝑋, using an equation of the form 𝑌 = 𝑎 ∗ 𝑋 + 𝑏. 

 

 The stepwise regression: 

The stepwise regression is an improved linear regression: the algorithm includes an 

automatic process of explanatory variable selection. At a given step, the algorithm 

searches for the independent variable that optimizes a criteria given the variables 

already selected. In this work, the criteria used to select variables is the Akaike 

information criterion (AIC), an estimator of the quality of statistical models. Only the 

set of variables that were selected are used to build the model (Zhang, 2016). 

 

 The decision tree: 

This method uses a tree-like model to represent decisions and their consequences. Each 

internal node of the tree represents a test on an attribute of the observation (for example, 

“Is the value taken by the variable X lower than 1?”). Each branch represents one 

outcome of the test (for example, “Yes” or “No”). Each leaf represents the decision of 

associating a specific label to the observation.  
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 The random forest: 

The random forest is a group of decision trees, whose output is the mode (for 

classification models) or the mean (for regression models) of the individual predictions 

made by each tree. In the case of the example random forest in Figure 14 (picture from 

unknown source), four sub-datasets were randomly selected in order to build four 

decision trees. In each tree, the nodes are built by randomly selecting a set of 

explanatory variables and by choosing the most relevant one. New observations are 

classified by vote: the category chosen by the majority of the individual trees is the 

category chosen by the forest (Liaw & Wiener, 2002). 

 

Figure 14 – Example of random forest 
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 The neural network: 

This approach is inspired by the connections made in the animal brain and in the 

nervous system. It is a “black box” system (see Figure 15) whose inputs and outputs are 

known, but whose inner working are hidden. 

 

Figure 15 – Concept of “black box” systems 

 

As can be observed in the example in Figure 16 (picture from supinfo.com), a 

neural network takes one or more values as its input data, manipulates these values 

using the inner nodes contained in one or more hidden layers (which make up the black 

box whose inner workings are unknown) and returns one or more values as the output 

data. 

 

 

Figure 16 – Example of neural network 
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 The support vector machine: 

This algorithm, which falls under the category of “black box” systems as well, classifies 

observations using a hyperplane. The concept is illustrated in Figure 17 and Figure 18 

(pictures from irisa.fr) for a two-dimensional problem. The first step, illustrated in 

Figure 17, is to find a space in which the data points are linearly separable and to map 

the data points in that new space. The next step, illustrated in Figure 18, is to look for 

the “best hyperplane”, which separates the categories of data properly while 

maximizing the margin (the distance from the closest data point to the hyperplane). The 

hyperplane can be determined using points called “support vectors”. 
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Figure 17 – SVM: projection of data 

 

 

 

Figure 18 – SVM: best hyperplane 
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Chapter 5: Results 

5.1.  “Combination drug therapy” data 

The 7 missing values that remain in the real screening dataset after the data treatment 

presented in Chapter 3: Section 3.3 are imputed. The function “rfImpute” from the 

package “randomForest” replaces the missing values by a weighted average of the non-

missing values. 

The models are built using the real screening dataset, with the objective of 

predicting the target variables “P-gp 15 micromolar efficacy” and “Multifactor 

usability”. Only the features that are common to the real screening dataset and the 

virtual screening dataset are used to build the models.  The data analysis methods are 

applied in three stages: 

 As a regression problem, with the objective of predicting precisely the 

compounds’ efficiency against P-gp. The models’ goal is thus to predict the 

exact continuous value taken by the target variable “P-gp 15 micromolar 

efficacy”; 

 As a classification problem, with the objective of predicting if the compounds 

are effective or not against P-gp. The models’ goal is thus to predict a binary 

value corresponding to “Yes: promising compound” (if the exact value taken by 

“P-gp 15 micromolar efficacy” is above an arbitrarily chosen threshold) or “No: 

unpromising compound” (if the exact value is below the threshold); 

 As a classification problem, with the objective of predicting the binary target 

variable “Multifactor usability”: a value corresponding to “Yes: promising 

compound” or “No: unpromising compound”. 
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5.1.1. Regression problem 

The advantage of this approach is the precision of the numerical values: having a model 

that can predict the exact value taken by the target variable “P-gp 15 micromolar 

efficacy” would mean obtaining results of a good quality. 

 The regression tree is tuned by varying the complexity parameter from 0 to 0.5. 

The final tree’s complexity parameter is 0.15. The random forest is tuned by varying the 

number of variables randomly sampled as candidates at each split from 2 to 9. The final 

random forest tests 2 variables at each split and contains 500 trees. The neural network 

has one hidden layer. It is tuned by varying the number of nodes in this layer from 1 to 

10 and the weight decay from 0 to 0.1. The final neural network’s hidden layer contains 

7 nodes and uses a weight decay of 0.08. The support vector machine (SVM) is tuned 

by looking for the best sigma (using the function “sigest” from the package “kernlab”) 

and by varying C (influence of the misclassification). The final SVM uses a Radial 

Basis Function Kernel and its sigma and C (influence of the misclassifications) are 

0.01418318359 and 32 respectively. 

 The quality of the models is measured by applying them to the dataset they were 

trained with (the real screening dataset) and computing the RMSE (Root-Mean-Square 

Error) and the MAPE (Mean Absolute Percentage Error) using the LOOCV method. 

Table 5 summarizes the results obtained using each of the data analytics methods 

described in Chapter 4: Section 4.4. 

 For this regression problem, the model which obtains the best results according 

to the RMSE and the MAPE is the random forest. This lowest RMSE, 0.14, corresponds 

to an error of 14%, the target variable “P-gp 15 micromolar efficacy” roughly falling 

between 0 and 1. The most important predictor variables are available for the each 
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models: as noted in Table 5, the values taken by the two predictor variables 

“transition_dbd” and “3b5x_dbd” seem to be the most important to predict the target 

variable. 

 

Model RMSE MAPE Most important predictors 

Linear regression 0.27 6.34 % 
transition_nbd, 3b5z_nbd_2, 2hyd_nbd_1, 
transition_dbd 

Stepwise regression 0.27 6.78 % 
p450_3a4_eq, 3b5x_dbd, 4ksb_dbd, 
p450_3a4_uneq, transition_dbd 

Regression tree 0.28 3.39 % 
3b5x_dbd, 4ksb_dbd, p450_3a4_eq, 
transition_dbd, p450_3a4_uneq 

Random forest 0.14 3.42 % 
4ksb_dbd, transition_nbd, transition_dbd, 
2hyd_nbd_1, p450_3a4_eq, 3b5x_dbd 

Neural network 0.27 6.72 % 
transition_nbd, p450_3a4_uneq, 3b5x_dbd, 
transition_dbd 

Support vector machine 0.26 5.34 % 
p450_3a4_eq, 3b5x_dbd, 4ksb_dbd, 
p450_3a4_uneq, transition_dbd 

 

Table 5 – Regression problem: quality of the results obtained by each model 

 

5.1.2. Classification problem 

Instead of looking at this problem as a regression problem, this approach consists in 

predicting the binary target variable “Multifactor usability” and in transforming the 

continuous target variable “P-gp 15 micromolar efficacy” into a binary variable. 

 The first step to transform a continuous variable into a binary variable is to 

choose a threshold value: the value becomes “True” (corresponding to “Yes: this is a 

promising compound”) if the continuous value taken by “P-gp 15 micromolar efficacy” 

is above this threshold, or “False” (corresponding to “No: this is not a promising 

compound”) if the continuous value is below this threshold. The objective of these new 
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models is not to determine how efficient a compound is in blocking P-gp, but to 

determine if it is efficient or inefficient. 

 The threshold value is either set to 0.7, 0.6 or 0.5. Plotting the continuous target 

variable “P-gp 15 micromolar efficacy” against the binary target variable “Multifactor 

usability” (see boxplots in Figure 19) suggests that 0.5 and 0.6 may be better threshold 

values than 0.7. The No Information Rate for each model is available in Table 6. 

 Once again, the quality of the models is measured by applying them to the 

dataset they were trained with (the real screening dataset) and computing the kappa, the 

accuracy and the area under the curve using the LOOCV method. Table 7 summarizes 

the results obtained using the data analytics methods described in Chapter 4: Section 

4.4. The random forest method was not used in the classification problem because it is 

overfitting. 

 As can be observed in Table 7, when the threshold value is set to 0.7, the 

support vector machine model outperforms all the other models. However, when the 

threshold value is set to 0.6 or 0.5, the classification tree model outperforms the other 

models. This is also the case for the models predicting the target variable “Multifactor 

usability”. 

Classification model 
Threshold: 

0.7 
Threshold: 

0.6 
Threshold: 

0.5 
Multifactor 

usability 

Number of compounds classified as 
efficient in the training dataset (out of 71) 

12 21 23 21 

No Information Rate 83.10 % 70.42 % 67.61 % 70.42 % 

 

Table 6 – No information rate for each classification problem 
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Metric 

Logistic 
regression 

Stepwise 
regression 

Classification 
tree 

Neural 
network 

Support 
vector 

machine 

Threshold: 
0.7 

Kappa 0.45 0.25 0.39 0.13 0.89 

Accuracy 88.73 85.92 78.87 84.51 97.18 

Area under the curve 0.67 0.58 0.74 0.54 0.92 

Threshold: 
0.6 

Kappa 0.30 0.19 0.63 0.25 0.30 

Accuracy 76.06 74.65 85.92 85.92 77.46 

Area under the curve 0.62 0.57 0.79 0.58 0.62 

Threshold: 
0.5 

Kappa 0.18 0.22 0.61 0.19 0.51 

Accuracy 69.01 73.24 81.69 71.83 81.69 

Area under the curve 0.58 0.59 0.83 0.58 0.72 

“Multifactor 
usability” 

Kappa 0.24 0.29 0.59 0.30 0.38 

Accuracy 85.92 72.73 83.12 75.32 79.22 

Area under the curve 0.58 0.63 0.79 0.62 0.65 

 

Table 7 – Classification problem: quality of the results obtained by each model 

 

 

Figure 19 – Relationship between the two target variables  
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5.2.  Selection of potentially promising compounds 

The predictive models are applied to the whole real screening dataset (no LOOCV) in 

order to obtain the final model. The regression models and the classification models are 

then applied to the virtual screening dataset separately in order to find new potentially 

promising compounds to purchase. The first step is to impute the missing values in the 

virtual screening dataset. This is done by mean imputation: each missing value is 

replaced by the mean of the non-missing values taken by the variable. 

5.2.1. Application of the regression models 

The complexity parameter of the final tree (depicted in Figure 20) is 0.15. The final 

random forest tests 2 variables at each split and contains 500 trees. The final neural 

network (depicted in Figure 21) has 1 hidden layer composed of 5 nodes and uses a 

weight decay of 0.09. The final SVM uses a Radial Basis Function Kernel and its 

epsilon, sigma and C (influence of the misclassifications) are 0.1, 0.01642210808 and 

16 respectively. It is composed of 66 support vectors. An excerpt of the results obtained 

by each regression model is presented in Table 8. 

When an incorrect value is predicted either by the linear regression model or by 

the stepwise regression model, the compound is automatically rejected. Incorrect values 

are defined as values which are lower than -0.5 or higher than 1.5, since the continuous 

target variable “P-gp 15 micromolar efficacy” is between 0 and 1. 
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Figure 20 – Final model: regression tree 

 

 
Figure 21 – Final model: regression neural network 

 

Compound Linear reg. Stepwise reg. Regres. tree Random forest Neural network SVM 

ZINC00000017 0.211 -0.686 0.103 0.187 0.115 0.367 

ZINC00000190 1.797 0.814 0.103 0.177 0.129 0.370 

ZINC00000357 1.742 -1.013 0.103 0.124 0.115 0.370 

ZINC00000534 -2.506 -0.979 0.103 0.114 0.115 0.370 

ZINC00000757 0.681 -7.811 0.103 0.179 0.115 0.370 

ZINC00000842 -1.209 -0.577 0.103 0.181 0.116 0.370 

ZINC00000868 6.936 2.816 0.103 0.179 0.115 0.370 

ZINC00000982 8.098 -1.006 0.103 0.179 0.115 0.370 

ZINC00001098 1.137 -1.516 0.103 0.134 0.115 0.370 

ZINC00001239 4.455 1.339 0.103 0.179 0.115 0.370 

ZINC00001282 1.741 -0.486 0.103 0.177 0.117 0.365 

ZINC00001380 1.329 -1.786 0.103 0.179 0.115 0.370 

ZINC00001402 -0.771 -1.182 0.386 0.285 0.118 0.329 

ZINC00001524 4.275 -1.421 0.103 0.179 0.115 0.370 

ZINC00001734 -2.212 -0.775 0.103 0.180 0.115 0.370 
 

Table 8 – Excerpt: efficiencies predicted by the regression models (rounded values) 
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Compound Logistic reg. Stepwise reg. Classif. tree Neural network SVM 

ZINC00000017 FALSE FALSE FALSE FALSE FALSE 

ZINC00000190 TRUE FALSE FALSE FALSE FALSE 

ZINC00000357 FALSE FALSE FALSE FALSE FALSE 

ZINC00000534 FALSE FALSE FALSE FALSE FALSE 

ZINC00000757 FALSE FALSE FALSE FALSE FALSE 

ZINC00000842 TRUE FALSE FALSE FALSE FALSE 

ZINC00000868 FALSE FALSE FALSE FALSE FALSE 

ZINC00000982 FALSE FALSE FALSE FALSE FALSE 

ZINC00001098 FALSE FALSE FALSE FALSE FALSE 

ZINC00001239 FALSE FALSE FALSE FALSE FALSE 

ZINC00001282 FALSE FALSE FALSE FALSE FALSE 

ZINC00001380 FALSE FALSE FALSE FALSE FALSE 

ZINC00001402 FALSE FALSE TRUE FALSE FALSE 

ZINC00001524 FALSE FALSE FALSE FALSE FALSE 

ZINC00001734 FALSE FALSE FALSE FALSE FALSE 

 

Table 9 – Excerpt: efficiencies predicted by the Multifactor usability models 

 

 

Figure 22 – Correlations between the values taken by the binary targets 
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5.2.2. Application of the classification models 

An excerpt of the results obtained by each classification model whose target is the 

variable “Multifactor usability” is presented in Table 9. 

As can be observed in Figure 22, the real values taken by the target variables 

when the threshold value is 0.5 and when the threshold value is 0.6 are highly correlated 

(94%). In 75% of cases, the variable “Multifactor usability” agrees with them. 

However, when the threshold value is 0.7, the variable “Multifactor usability” only 

agrees in 50% of cases. For this reason, the models whose objective is to predict the 

binary variable with a threshold of 0.7 are not used in the final model. 

The three classification tree models obtained by using a threshold value of 0.5 

on the continuous target variable “P-gp 15 micromolar efficacy”, by using a threshold 

value of 0.6 and by predicting the binary target variable “Multifactor usability” perform 

the best on the training dataset (see Table 7). These trees are depicted in Figure 23, 

Figure 24 and Figure 25 an excerpt of their predictions is presented in Table 10. When 

less than two of these three models classify a compound as “Promising”, the compound 

is automatically rejected. 
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Figure 23 – Final model: classification tree (threshold = 0.5) 

 

 

 

Figure 24 – Final model: classification tree (threshold = 0.6) 
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Figure 25 – Final model: classification tree (Multifactor usability) 

 

 

Compound Threshold 0.5 Threshold 0.6 “Multifactor usability” 

ZINC00001282 FALSE FALSE FALSE 

ZINC00001380 FALSE FALSE FALSE 

ZINC00001402 TRUE FALSE TRUE 

ZINC00001524 FALSE FALSE FALSE 

ZINC00002646 FALSE FALSE FALSE 

ZINC00003704 FALSE FALSE FALSE 

ZINC00003837 FALSE FALSE FALSE 

ZINC00006296 FALSE FALSE FALSE 

ZINC00006662 TRUE TRUE TRUE 

ZINC00027763 FALSE FALSE FALSE 

ZINC00027913 TRUE TRUE TRUE 

ZINC00034310 FALSE FALSE FALSE 

ZINC00034317 FALSE FALSE FALSE 

ZINC00034348 FALSE FALSE FALSE 

ZINC00034379 TRUE FALSE TRUE 

 

Table 10 – Excerpt: efficiencies predicted by the classification trees  
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5.2.3. Final model and selection of promising compounds 

Six values are predicted by the six regression models (see Chapter 5: Section 5.1.1): the 

linear regression, the stepwise regression, the regression tree, the random forest, the 

neural network and the support vector machine. The predicted efficiency of the 

compound against P-gp is defined as the mean of these six values. Figure 26 illustrates 

this process: 

 The predicted efficiency is the mean of the continuous predictions made by the 

regression models; 

 The selected classification models validate or invalidate this predicted 

efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 – Use of the models to identify promising compounds 
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 This process is applied to the real screening dataset to measure the quality of the 

predictions. An excerpt of the predicted values can be seen in Table 11. This final 

model obtains an RMSE of 0.24 and a MAPE of 5.68% for the regression problem and 

a kappa of 0.58, an accuracy of 81.69 and an AUC of 0.80 for the classification 

problem. The predicted values can be compared to the real values for the regression 

problem and the classification problem in Figure 27 and Table 12 respectively. 

Compound 
P-gp 15 micro. 

efficacy 
P-gp 15 micro. 

efficacy prediction 
Multifactor 

usability 
Multifactor 

usability prediction 

ZINC23175200 0.189 0.340 FALSE FALSE 

ZINC9446321 0.009 0.262 FALSE FALSE 

ZINC84559953 0.839 0.687 TRUE TRUE 

ZINC23337273 0.506 0.355 TRUE TRUE 

ZINC4741719 0.041 0.264 FALSE FALSE 

 

Table 11 – Excerpt: values predicted by the final model (rounded values) 

 

 

Figure 27 – Regression problem: predicted values versus real values 
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  Multifactor usability: real value 
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FALSE 42 8 

TRUE 5 16 

 

Table 12 – Classification problem: confusion matrix 

 

 For each model, the most important predictors are identified using the function 

“varImp” from the package “caret”. This data is available in Table 13 for the regression 

models and in Table 14 for the classification models. The predictors “4ksb_dbd”, 

“3b5x_dbd”, “transition_dbd” and “transition_nbd” are often important in the models’ 

design. 

Predictor 
Linear 

regression 
AIC stepwise 

regression 
Regression 

tree 
Random 

forest 
Neural 

network 
Support vector 

machine 

4ksb_dbd 12.32 83.31 72.29 80.79 17.14 83.31 

transition_dbd 25.77 64.31 71.87 100.00 51.85 64.31 

3b5x_dbd 0.00 89.83 71.94 63.78 60.24 89.83 

3b5z_nbd_1 3.07 0.00 100.00 0.00 14.02 0.00 

3b5z_nbd_2 73.01 38.38 78.30 54.10 33.27 38.38 

2hyd_nbd_1 33.19 34.96 0.00 68.41 3.54 34.96 

2hyd_nbd_2 24.77 40.50 0.00 27.77 0.00 40.50 

transition_nbd 100.00 24.06 0.00 90.49 100.00 24.06 

p450_3a4_uneq 18.33 75.77 0.00 58.79 79.96 75.77 

p450_3a4_eq 1.84 100.00 0.00 61.53 29.61 100.00 

 

Table 13 – Importance of each predictor for each regression model 

 

Predictor Threshold 0.5 Threshold 0.6 Multifactor usability 

p450_3a4_eq 10.26 8.18 4.70 
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p450_3a4_uneq 4.33 5.36 4.93 

transition_dbd 4.66 7.52 7.37 

transition_nbd 5.93 6.33 5.85 

2hyd_nbd_1 4.77 6.05 1.13 

2hyd_nbd_2 1.80 3.38 4.35 

3b5x_dbd 7.28 5.22 5.60 

3b5z_nbd_1 0.77 0.00 1.28 

3b5z_nbd_2 6.01 7.95 5.24 

4ksb_dbd 6.98 6.04 3.99 

 

Table 14 – Importance of each predictor for each classification model 

 

The final model is applied to the virtual screening dataset. The potentially 

promising compounds are selected by sorting the list of compounds by predicted 

efficiency. The output of this process is a list of the 50 most promising compounds: 

those whose predicted efficiency is the highest. The 5 first compounds and their 

predicted efficiency in blocking P-gp are listed in Table 15. 

Compound Predicted efficiency 

ZINC58162043 0.845 

ZINC65099984 0.704 

ZINC12190220 0.692 

ZINC12321091 0.685 

ZINC13724176 0.680 

 

Table 15 – Top 5 potentially promising compounds (rounded values) 
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5.3.  “AutoDock Vina” data 

As developed in Chapter 2: Section 2.2, the objective is to select for molecules that 

interact preferentially with the Nucleotide Binding Domains and to select against 

molecules that interact preferentially with the Drug Binding Domain. As developed in 

Chapter 3: Section 3.2.2, Both the Kd and the dG are indicators of the strength of the 

interaction between a compound and a receptor on P-gp. 

 By comparing the Kd and the dG, the fact that these two variables are closely 

related is brought to light. In Figure 28, each Kd and dG of the AutoDock Vina results 

dataset is plotted by dots. The exponential trend line proves that the variables are 

dependent. The Kd is discarded to avoid keeping duplicates of the same information. 

 

Figure 28 – Relationship between Kd and dG 
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5.3.1. Variance of the center of mass 

I study the variance in the center of mass of the compounds when they dock to P-gp. 

The idea is that this information can help determine if the molecule docks to the same 

spot of P-gp repeatedly or if the docking spot is highly variable. 

As developed in Chapter 3: Section 3.2.2, the coordinates (x, y and z) of each atom 

that make up the compound when it is docked to a receptor on P-gp are available. This 

information is used to calculate the coordinates of the center of mass for each 

compound-receptor couple, for each of the 20 docking positions. I proceed as follows: 

 Step 1: each atom is associated to its atomic mass: 

Element Boron Carbon Chlorine Fluorine Hydrogen Nitrogen Oxygen Sulfur 

Symbol B C Cl F H N O S 

Atomic mass 10.811 12.0107 35.453 18.998403 1.007940 14.0067 15.999 32.065 

 

Table 16 – Molar masses of some chemical elements 

 

 Step 2: the three coordinates are calculated using the following formulas: 

𝐶𝑂𝑀𝑥 =
𝑆𝑈𝑀𝑃𝑅𝑂𝐷𝑈𝐶𝑇(𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)

𝑆𝑈𝑀(𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)
 

𝐶𝑂𝑀𝑦 =
𝑆𝑈𝑀𝑃𝑅𝑂𝐷𝑈𝐶𝑇(𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)

𝑆𝑈𝑀(𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)
 

𝐶𝑂𝑀𝑧 =
𝑆𝑈𝑀𝑃𝑅𝑂𝐷𝑈𝐶𝑇(𝑧 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)

𝑆𝑈𝑀(𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠𝑒𝑠)
 

An example of the result of such a calculation is presented in Table 17. An excerpt of 

the dataset containing the coordinates of the center of mass for each position, for each 

compound-receptor couple is presented in Table 18.  
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Atom Molar mass x y z 

N 14.0067 -7.821 3.596 26.281 

C 12.0107 -7.114 4.716 26.913 

N 14.0067 -6.033 4.201 27.768 

C 12.0107 -5.471 3.089 27.433 

N 14.0067 -5.81 2.312 26.328 

C 12.0107 -5.122 1.194 26.108 

O 15.999 -5.367 0.481 25.155 

C 12.0107 -4.043 0.847 27.068 

C 12.0107 -3.193 -0.243 27.076 

C 12.0107 -3.256 -1.439 26.209 

C 12.0107 -4.118 -1.832 25.188 

C 12.0107 -3.915 -3.039 24.549 

C 12.0107 -2.858 -3.854 24.923 

C 12.0107 -2 -3.473 25.935 

C 12.0107 -2.187 -2.262 26.59 

N 14.0067 -1.484 -1.651 27.623 

C 12.0107 -2.021 -0.463 27.946 

O 15.999 -1.616 0.297 28.806 

Cl 35.453 -4.984 -3.536 23.273 

S 32.065 -4.141 2.217 28.212 

C 12.0107 -6.925 2.773 25.456 

H 12.0107 -0.701 -2.031 28.051 

C 12.0107 -8.914 4.05 25.535 

C 12.0107 -10.073 3.288 25.465 

C 12.0107 -11.155 3.737 24.732 

C 12.0107 -11.082 4.944 24.056 

O 15.999 -11.992 5.597 23.271 

C 12.0107 -9.92 5.709 24.12 

C 12.0107 -11.525 6.956 23.192 

O 15.999 -10.101 6.84 23.376 

C 12.0107 -8.839 5.261 24.858 

Center of mass: -5,8335521 1,3895055 25,8198869 

 

Table 17 – COM coordinates for “ZINC783138” docking to “2hyd_1_cyt”, position 

1  
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Compound Receptor 
Docking 
position 

x y z 

ZINC00601275_SMU113 2hyd_dbd_1 1 -10.5359351 -13.61404154 6.2096014 

ZINC00601275_SMU113 2hyd_dbd_1 2 1.2523774 -7.80591368 2.1742224 

ZINC00601275_SMU113 2hyd_dbd_1 3 -10.9861816 -13.70722547 5.7324860 

ZINC00601275_SMU113 2hyd_dbd_1 4 -10.4461159 -14.29629766 6.5037984 

ZINC00601275_SMU113 2hyd_dbd_1 5 -10.2746077 -14.03233708 6.3522479 

ZINC00601275_SMU113 2hyd_dbd_1 … … … … 

ZINC00601275_SMU113 2hyd_dbd_1 20 -10.5774712 -13.84897089 6.8505924 

ZINC00601275_SMU113 2hyd_dbd_2 1 -8.8125101 -14.10053003 6.2111602 

ZINC00601275_SMU113 2hyd_dbd_2 … … … … 

 

Table 18 – Excerpt: “Coordinates of the center of mass” dataset 

 

 Step 3: the variance of each coordinate over the 20 positions is calculated. 

An excerpt of the dataset containing the results of this calculation is presented in Table 

19. 

Compound Receptor Variance of x Variance of y Variance of z 

ZINC00601275_SMU113 2hyd_dbd_1 25.2957012 6.2500934 3.3964526 

ZINC00601275_SMU113 2hyd_dbd_2 51.9882874 137.2674703 30.4689793 

… … … … … 

 

Table 19 – Excerpt: “Variance of the coordinates of the center of mass” dataset 

 

 Step 4: finally, for each compound-receptor couple, the mean of the variances of 

the three coordinates is calculated so that the dataset can be ordered by 

increasing variance of the center of mass. 

The threshold under which a variance is considered low is arbitrarily set to 5. The 

variance of the center of mass is considered low if all three variances of the coordinates 

are low. Out of the 1921 compound-receptor couples, 66 have a low center of mass 

variance. In these 66 couples, 47 out of the 113 different compounds and 5 out of the 17 
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different receptors are represented. The receptors “3b5x_dbd” and “4ksb_dbd” are 

especially well represented: these two spots are creating favorable biochemical 

interactions. The other three receptors which are represented are “3b5z_dbd_1”, 

“transition_2_dbd” and “mdr1_6_nbd”. The only represented “NBD” receptor is 

therefore located on MDR1_6, the Multi-Drug Resistance Protein 1. 

The 5 compound-receptor couples with the lowest average variance are 

presented in Table 20. 

Compound Receptor Variance x Variance y Variance z Variance average Kd 

ZINC07006681 
SMU95 

3b5x_dbd 0.286 0.215 0.219 0.240 -7.9 

ZINC84559953 
SMU96 

3b5x_dbd 0.388 0.180 0.328 0.299 -8.7 

ZINC41469020 
SMU110 

3b5z_dbd_1 0.167 0.573 0.166 0.302 -8.2 

ZINC33326619 
SMU94 

3b5x_dbd 0.296 0.428 0.267 0.330 -8.4 

ZINC12577459 
SMU97 

3b5x_dbd 0.415 0.404 0.257 0.359 -8.4 

 

Table 20 – Compound-Receptor couples with the lowest center of mass variance 

 

 In the case of P-gp, the variance of the center of mass is only low for compound-

receptors couples with a receptor located on the Drug Binding Domain. If the 

hypothesis stated in Chapter 3: Section 3.2.2 is correct (a compound that docks 

repeatedly to the same spot on the DBD is more easily transported out of the cell, 

whereas a compound that docks repeatedly to the same spot on the NBD is more 

efficient against P-gp), these compounds may therefore be inadequate for P-gp 

inhibition. 
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5.3.2. Relationships between the AutoDock Vina data and the 

Combination drug therapy data 

The compounds have names of the form “ZINC123” in the real screening dataset and 

names of the form “ZINC123 SMU456” in the AutoDock Vina dataset (see Table 2 and 

Table 4). I merge these two datasets by ignoring the “SMU” identification number. 

Out of the 77 compounds from the AutoDock Vina dataset, 63 are present as 

well in the real screening dataset. However, one of these compounds, “ZINC9224466” 

in the real screening dataset, has to be disregarded because it matches with both 

“ZINC09224466_SMU32” and “ZINC09224466_SMU102” in the AutoDock Vina 

dataset and there is no way of knowing which of the two refers to this compound. 

The final merged dataset, which contains the remaining 62 common compounds, 

is used to study the relationships between variables. For the receptors that are common 

to the two datasets, the binding affinity (from the real screening dataset) and the Kd 

(from the AutoDock Vina dataset) are correlated (see the example of the receptor 

3b5x_dbd in Figure 29). However, the binding affinity and the variance of the center of 

mass are not. 

 
Figure 29 – Relationship between the binding affinity and the Kd for the receptor 

3b5x_dbd 
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The merged dataset allows the study the relationships between target variables. 

The target variables are “P-gp 15 micromolar efficacy” and “Multifactor usability” from 

the real screening dataset, and the variance of the center of mass and the Kd from the 

AutoDock Vina dataset. Figure 30 illustrates the relationships between these variables 

with a heat map: 

The continuous variable “P-gp 15 micromolar efficacy” and the binary variable 

“Multifactor usability” are highly correlated, which is expected. However, there is no 

clear correlation between the targets “P-gp 15 micromolar efficacy” or “Multifactor 

usability” and the various targets from the AutoDock Vina dataset. 

All the Kd variables are positively correlated to each other because the original Kd 

variable only takes negative values. There are no clear correlations between the Kd of a 

receptor and the variance of its center of mass. 

The variance of the center of masse of the receptor “3b5z_nbd_2” is the only one 

that is correlated to the variance of the center of mass of other receptors. It is, for 

example, negatively correlated to the variance of the center of mass of “3b5x_dbd” and 

positively correlated to the variance of the center of mass of “transition_1_dbd”, which 

means that if a compound docks repeatedly to “3b5z_nbd_2”, it is likely that it will 

dock to “transition_1_dbd” too and unlikely that it will dock to “3b5x_dbd”. 
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Figure 30 – Correlations between the target variables 
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5.4.  Validation 

Few of the compounds selected as promising are present in the other datasets. This 

comes from the fact that these compounds are selected out of the 159,000 compounds 

from the virtual screening dataset, which is the biggest dataset: the real screening 

dataset only contains 77 compounds and the AutoDock Vina dataset only contains 123 

compounds. 

One of the 50 compounds that are identified by the models as potentially 

promising compounds (see Chapter 5: Section 5.2.3 and Table 15) is present in the real 

screening dataset: this means that this compound was selected by the experts, when they 

chose the original group of 31 compounds to purchase from the original virtual 

screening database containing 159,000 compounds. This compound is referred to as 

“ZINC84559953”. Its predicted efficiency is 0.634 and its real efficiency, which is 

known thanks to the real screening dataset, is 0.839. According to the target variable 

“Multifactor usability”, it is indeed effective against P-gp. 

Out of the 62 compounds common to both the real screening dataset and the 

AutoDock Vina dataset, 31 have a low variance of the center of mass when they dock to 

one or more DBD receptors (44 compound-receptor couples in total). An excerpt of this 

data is available in Table 21. If the hypothesis stated in Chapter 3: Section 3.2.2 is 

correct (a compound that docks repeatedly to the same spot on the DBD is more easily 

transported out of the cell, whereas a compound that docks repeatedly to the same spot 

on the NBD is more efficient against P-gp), these compounds are inadequate for P-gp 

inhibition. 
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 Out of these 31 compounds, 10 compounds are classified as promising by the 

target variable “Multifactor usability”, which contradicts the hypothesis. However, the 

same percentage (30%) of all the compounds in the real screening dataset are classified 

as promising by the target variable “Multifactor usability” (see Table 6): this suggests 

that the variance of the center of mass does not have any impact on the efficiency 

against P-gp. Conducting further analysis on more compounds in the future may 

provide more insights and allow to confidently confirm or refute this hypothesis. 

Compound Receptor Variance of the center of mass Multifactor usability 

ZINC23175200 3b5x_dbd_ori 0.401 FALSE 

ZINC23175200 4ksb_dbd_ori 0.624 FALSE 

ZINC25220272 4ksb_dbd_ori 1.183 FALSE 

ZINC25376436 4ksb_dbd_ori 0.742 TRUE 

ZINC12783661 3b5x_dbd_ori 0.571 FALSE 

 

Table 21 – Excerpt: Compounds binding to the DBD with a low variance of COM 
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Chapter 6: Conclusion and future work 

By temporarily turning off P-gp transporters, the multidrug resistance of cancerous cells 

can be reversed and they can become sensitive again to chemotherapeutic drugs. The 

primary objective of this work is to look for molecules which have the ability of turning 

off P-gp. 

 Analyzing molecules to determine their efficiency against P-gp can be done 

using expensive processes, such as the High-Throughput Screening of an entire library 

of chemical compounds. By using virtual screening software such as AutoDock Vina 

and machine learning methods to predict the efficiency of the molecules, a lot of money 

can be saved by the researchers. 

 The results obtained in this work show that predicting the efficiency of a 

chemical compound is complex. The random forest model proves to be the most 

efficient in the case of the regression problem and the classification tree models prove 

to be the most efficient in the case of the classification problem. The potentially 

promising compounds, which are selected after applying data analytics models, will 

have to be purchased and analyzed by CD4 before I know if they are actually efficient. 

Analyzing the compounds will also allow the accuracy of the final model to be 

measured. 

 Some key characteristics of promising compounds for P-gp inhibition have been 

identified: high values for the predictor variables “3b5x_dbd”, “4ksb_dbd” and 

“transition_dbd”, which indicate a weak binding to these DBD receptors, and low 

values for the predictor variable “transition_nbd”, which indicates a strong binding to 

this NBD receptor. I made the hypothesis that a low variance of the center of mass of a 



 

65 

compound when it docks to specific receptors on P-gp could be a good indicator of the 

efficiency of the compound against P-gp. In this work, this hypothesis does not seem 

true. However, it needs further analysis to be confidently confirmed or refuted. 

 The main issue encountered in this work is the fact that many values are missing 

from the real screening dataset, which is the training dataset, and that this dataset does 

not contain enough samples to build robust prediction models. 

 The objective is to find compounds that sensitize the cell so that the 

chemotherapeutic can kill it, not compounds that kill the cell themselves. Used at the 

concentration where they reverse multidrug resistance, the compounds should be 

harmless to non-cancerous cells. As detailed in Chapter 3: Section 3.1.2, the target 

variable “Actual toxicity” should not be higher than 0.5 for a compound to be selected. 

This is not taken into account in this work because it requires the building of a different 

model, capable of predicting the target variable “Actual toxicity”. 

 The target variable “10 micromolar P450 inhibition” should be taken into 

account in the future as well:  a model capable of predicting this variable would allow 

the selection of compounds that have as few undesirable side effects on the patient as 

possible. 
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Appendix A: Variables available in the virtual screening 

dataset 

 

Variable name Type Percentage of missing values 

COMPOUND factor 0% 

X4ksb_dbd numeric 1% 

transition_dbd numeric 24% 

X3b5x_dbd numeric 35% 

X3b5z_nbd_1 numeric 48% 

X3b5z_nbd_2 numeric 36% 

X2hyd_nbd_1 numeric 7% 

X2hyd_nbd_2 numeric 55% 

transition_nbd numeric 0% 

X2hyd_nbd_dbd numeric 1% 

p450_3a4_uneq numeric 0% 

p450_3a4_eq numeric 21% 

bcrp_nbd_1 numeric 34% 

msba_dbd numeric 15% 

msba_nbd_1 numeric 23% 

msba_nbd_2 numeric 16% 
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Appendix B: Variables available in the real screening dataset 

 

Variable name Type Percentage of missing values 

COMPOUND factor 0% 

X4ksb_dbd numeric 3% 

transition_dbd numeric 3% 

X3b5x_dbd numeric 3% 

X3b5z_nbd_1 numeric 4% 

X3b5z_nbd_2 numeric 3% 

X2hyd_nbd_1 numeric 4% 

X2hyd_nbd_2 numeric 3% 

transition_nbd numeric 3% 

X2HYD_NBD_DBD 
 

100% 

p450_3a4_uneq numeric 3% 

p450_3a4_eq numeric 9% 

bcrp_nbd_1 numeric 62% 

msba_dbd numeric 62% 

msba_nbd_1 numeric 62% 

msba_nbd_2 numeric 62% 

msba_nbd_mean numeric 62% 

pgp_dbd_mean numeric 62% 

pgp_nbd_mean numeric 62% 

pgp_ratio numeric 62% 

msba_ratio numeric 62% 

msbaNBD_to_pgpDBD_ratio numeric 62% 

msbaNBD_pgpNBD_ratio numeric 62% 

bcrpNBD_to_pgp_DBD_ratio numeric 62% 

bcrpNBD_pgpNBD_ratio numeric 62% 

p450_mean numeric 62% 

notes factor 0% 

TARGET factor 0% 

molport.number factor 0% 

Works.on.Pgp logical 0% 

Actual.Toxicity..1.is.lethal...0.is.no.effect. numeric 5% 

Pgp.15.micromolar.efficacy..higher.number.the.better. numeric 5% 
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X10.micromolar.bcrp.fold.inhibition..higher.number.is.b
etter. 

numeric 56% 

X10.micromolar.P450.Inhibiton..closer.to.zero.is.better. numeric 26% 

MW numeric 60% 

xlogP numeric 60% 

Apolar.Desolvation..kcal.mol numeric 60% 

polar.desolvation..kcal.mol. numeric 60% 

H.bond.donors integer 60% 

H.bond.Acceptors integer 60% 

tPSA integer 60% 

Net.Charge integer 60% 

Rotatable.Bonds integer 60% 

SMILES factor 0% 

MOLECULEID factor 0% 

logPow..predicted.by.ochem.eu.model.4.in.Log.unit. numeric 62% 

Aqueous.Solubility..predicted.by.ochem.eu.model.4.in.l
og.mol.L.. 

numeric 62% 

AMES..predicted.by.ochem.eu.model.1. factor 0% 

Numeric.prediction.for.AMES..predicted.by.ochem.eu.
model.1. 

numeric 62% 

CYP450.3A4.modulation..predicted.by.ochem.eu.model
.163. 

factor 0% 

Numeric.prediction.for.CYP450.modulation..predicted.b
y.ochem.eu.model.163. 

numeric 62% 

CYP450.modulation..predicted.by.ochem.eu.model.162. factor 0% 

Numeric.prediction.for.CYP450.modulation..predicted.b
y.ochem.eu.model.162. 

numeric 62% 

CYP450.modulation..predicted.by.ochem.eu.model.161. factor 0% 

Numeric.prediction.for.CYP450.modulation..predicted.b
y.ochem.eu.model.161. 

numeric 62% 

CYP450.modulation..predicted.by.ochem.eu.model.160. factor 0% 

Numeric.prediction.for.CYP450.modulation..predicted.b
y.ochem.eu.model.160. 

numeric 62% 

CYP450.modulation..predicted.by.ochem.eu.model.159. factor 0% 

Numeric.prediction.for.CYP450.modulation..predicted.b
y.ochem.eu.model.159. 

numeric 62% 

Aqueous.Solubility..predicted.by.ochem.eu.model.511.i
n.log.mol.L.. 

numeric 62% 

X 
 

100% 

X.1 
 

100% 

X.2 
 

100% 

X.3 
 

100% 
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X.4 
 

100% 

X.5 
 

100% 

X.6 numeric 86% 

X.7 numeric 86% 

X.8 numeric 86% 

X.9 numeric 86% 

X.10 numeric 86% 

X.11 numeric 86% 

X.12 numeric 86% 

X.13 numeric 86% 

X.14 numeric 86% 

X.15 numeric 86% 

X.16 numeric 86% 

X.17 numeric 86% 

X.18 numeric 86% 

X.19 numeric 86% 

X.20 numeric 86% 

X.21 numeric 86% 

X.22 numeric 86% 

X.23 numeric 86% 

X.24 numeric 86% 

X.25 numeric 86% 

X.26 numeric 86% 

X.27 numeric 86% 

X.28 numeric 86% 

X.29 numeric 86% 

 

 


