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Abstract 
Studies have shown advantages of the hybrid ensemble-variational data 

assimilation (DA) algorithms over pure ensemble or variational algorithms, although 

such advantages at the convective scale, in the presence of complex ice microphysics 

and for radar data assimilation, have not yet been clearly demonstrated, if the 

advantages do exist. A hybrid ensemble-3DVar (En3DVar) system is developed 

recently based on the ARPS 3DVar and EnKF systems at the Center for Analysis and 

Prediction of Storms (CAPS). In this dissertation, hybrid En3DVar is compared with 

3DVar, EnKF, and pure En3DVar for radar DA through observing system simulation 

experiments (OSSEs) under both perfect and imperfect model assumptions. It is also 

applied to a real case including multiple tornadic supercells. For the real case, radar 

radial velocity and reflectivity data are assimilated every 5 minutes for 1 hour that is 

followed by short-term forecasts. DfEnKF that updates a single deterministic 

background forecast using the EnKF updating algorithm is introduced to have an 

algorithm-wise parallel comparison between EnKF and pure En3DVar.  

In the perfect-model OSSEs, DfEnKF and pure En3DVar are compared and are 

found to perform differently when using the same localization radii. The serial (EnKF) 

versus global (pure En3DVar) nature of the algorithms, and direct filter update (EnKF) 

versus variational minimization (En3DVar) are the major reasons for the differences. 

Hybrid En3DVar for radar DA is also compared with 3DVar, EnKF, DfEnKF, and pure 

En3DVar. Experiments are conducted first to obtain the optimal configurations for 

different algorithms before they are compared; the optimal configurations include the 

optimal background decorrelation scales for 3DVar, optimal localization radii for EnKF, 

DfEnKF, and pure En3DVar, as well as the optimal hybrid weights for hybrid En3DVar. 
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When the algorithms are tuned optimally, hybrid En3DVar does not outperform EnKF 

or pure En3DVar, although their analyses are all much better than 3DVar. When 

ensemble background error covariance is a good estimation of the true error distribution, 

pure ensemble-based DA methods can do a good job, and the advantage of including 

static background error covariance B in hybrid DA is not obvious. 

In the imperfect-model OSSEs, model errors are introduced by using different 

microphysical schemes in the truth run (Lin scheme) and in the ensemble forecasts 

(WSM6 scheme). Experiments are conducted to obtain the optimal configurations for 

different algorithms, similar to those in perfect-model OSSEs. Hybrid En3DVar is then 

found to outperform EnKF and pure En3DVar (3DVar) for better capturing the hail 

analyses below the freezing level (intensity of the storm). The advantage of hybrid 

En3DVar over pure ensemble-based methods is most obvious when ensemble 

background errors are systematically underestimated. In addition, the impact of adding 

a mass continuity constraint in 3DVar, pure and hybrid En3DVar is also examined. 

Overall, adding the mass continuity constraint improving the analyses by producing a 

little stronger vertical velocity analyses that are much closer to the truth and by 

smoothing noise present in the velocity and hydrometer fields. 

Finally, the ARPS hybrid En3DVar system is applied to the assimilation of radar 

data for a real tornadic supercell storm. Hybrid En3DVar is compared with 3DVar, 

EnKF, DfEnKF, and pure En3DVar based on both objective verification and the 

analyses and forecasts of storm intensity and structures. Hybrid En3DVar with 75% 

weight of static B clearly outperforms 3DVar in better capturing the hook echo structure 

and rotating updraft in the forecasts, and outperforms EnKF and DfEnKF in better 
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capturing forecast reflectivity between 35 and 45 dBZ. The low-level mesocyclone is 

better forecast by hybrid En3DVar than by other methods, suggesting stronger rotations 

and a larger tornado threat in the forecast.  

In perfect-model OSSEs, only precipitation reflectivity (≥ 5 dBZ) is assimilated. 

In the imperfect-model OSSEs and the real data case, the clear-air reflectivity (< 5 dBZ) 

is also assimilated to help suppress spurious storms. The assimilation of clear-air 

reflectivity by the variational DA algorithms is found to seriously degrade the analyses 

in storm region, with the intensity of the reflectivity analysis being much weaker than 

that assimilating reflectivity larger than 5 dBZ only. When using hydrometeor mixing 

ratios as the control variables, the gradient of the cost function becomes extremely large 

when background reflectivity is small. In the imperfect-model OSSEs, a double-pass 

procedure is proposed and found to help alleviate this problem.  In the real data case, an 

alternative way of using the logarithmic hydrometeor mixing ratios as the control 

variables is found to be a better solution to the problem. In such a case, the excessively 

large gradient of the cost function is avoided. 
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Chapter 1 Introduction and Overview 
 

1.1 Background and Motivation 

1.1.1 Background 

Numerical weather prediction (NWP) is a method of weather forecasting that 

uses a set of equations to describe flows of the atmosphere. In a NWP model, an initial 

state is integrated forward to get the model state at a later time, making use of the 

boundary conditions. As pointed out by Kalnay (2002), NWP is an initial-boundary 

value problem. The more accurate the estimate of the initial condition, the better the 

quality of the forecasts. Data assimilation, by which the observations and short-range 

forecast are combined to obtain an initial condition for NWP, is found to be able to 

greatly improve the forecast skill in the past four decades (Bauer et al. 2015). The 

operational implementation of the four-dimensional variational (4D-Var) satellite data 

assimilation at the European Centre for Medium-Range Weather Forecasts (ECWMF) 

in 1997 marks a major milestone in operational global NWP.  

 A major task of NWP is to issue severe weather alerts and advisories to protect 

life and property. Severe weather phenomena include tornadoes, damaging winds or 

gust greater or equal to 25.8 ms-1 (mph), and hail with its size greater than or equal to 

2.5 cm (1 inch). According to NOAA's National Centers For Environmental 

Information (NCEI), 15 billion-dollar weather disasters occurred in the U.S. during the 

first 9 months (Jan - Sep) of 2017. Damage from severe thunderstorms, including 

tornadoes, large hail and straight-line winds, accounts for 7 of the 15 weather disasters 

that have cost $1 billion or more in 2017.  
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Numerical predictions of convective storms date back to Lilly (1990). Steady 

progress has been made during the past two decades, aided by advances of the 

observation network (particularly in radars) and high-performance computing. The 

convection-resolving simulation is usually conducted at a horizontal resolution in the 

order of a few kilometers. Most research communities and operational forecast centers 

now use or plan to use models at kilometer scale (Davies et al. 2005; Lean et al. 2008; 

Weisman et al. 2008; Baldauf et al. 2011; Hirahara et al. 2011; Seity et al. 2011; 

Verrelle et al. 2015; Stratman and Brewster 2017). Storm simulations from even higher 

resolution (sub-kilometer) are reported from Warren et al. (2014), Xue et al. (2014), and 

Hanley et al. (2016) etc. 

To improve the accuracy of numerical weather prediction (NWP) at the 

convective scale, active research has been carried out in the past two decades to 

assimilate radar observations into numerical models. The assimilation of radar data 

using traditional three-dimensional variational approach (3DVar) or ensemble Kalman 

filtering (EnKF) has been shown to improve the prediction of convective systems (Hu et 

al. 2006a; Hu et al. 2006b; Kain et al. 2010; Snook et al. 2011; Sun et al. 2014). More 

recently, the hybrid data assimilation (DA) approach that combines 3DVar and EnKF 

methods has been found to have some advantages over pure EnKF or pure 3DVar for 

large scale and mesoscale DA. 

3DVar is attractive for radar DA because of its relatively low computational cost 

and the ability to include weak equation constraints (Gao et al. 1999) to the cost 

function. Because the radial velocity (Vr) observation operator is relatively simple when 

the hydrometeor terminal velocity effect is pre-corrected, it is straightforward to analyze 
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radial velocity data variationally. In Gao et al. (2004), a 3DVar system was developed 

within the ARPS model (Xue et al. 2000;(Xue et al. 2003)) framework for analyzing Vr 

data that utilizes recursive filters to model the background error covariance. Xiao et al. 

(2005) assimilated Vr data into the WRF 3DVar for a heavy rainfall case and obtained 

improvement in rainfall forecasts. In comparison, the observation operator of radar 

reflectivity (Z) data is complicated; it involves multiple hydrometeor species and is 

highly nonlinear. Without additional physical constraints, the problem of assimilating 

reflectivity data within a 3DVar framework is under-determined and/or non-unique.  

For the 3DVar systems of MM5 and WRF models, Xiao et al. (2007) developed 

a procedure to directly assimilate Z data but with a warm-rain assumption in which Z is 

a function of rain water mixing ratio only. In Wang et al. (2013), it was proposed that 

rainwater is first retrieved from Z data before assimilation into the WRF 3DVar due to 

large linearization errors of the Z operator when the background rainwater mixing ratio 

is small. The needed assumption of warm rain microphysical processes is clearly a 

major limitation with above procedures. For real storms, neglecting ice microphysics 

processes is a major source of error. 

When ice processes are included in the model, the Z operator is at least a 

function of the mixing ratios of several precipitating hydrometeors, typically the 

rainwater, snow and hail/graupel mixing ratios (Tong and Xue 2005). In a typical 

3DVar framework, the analysis algorithm itself is incapable of properly partitioning the 

precipitation information contained in Z among the liquid and ice hydrometeors, unless 

additional physical or statistic constraints are introduced; the flow-dependent 

background error statistics for the hydrometeors provided by ensemble forecasts are one 
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of such examples.  In Gao and Stensrud (2012), the standard reflectivity formula is 

modified so that Z is only dependent on the snow and hail mixing ratios above the 

freezing level while below the level Z is only dependent on rainwater mixing ratio. 

With such a modification; they call this a hydrometeor classification-based algorithm. 

While this approach avoids the creation of spurious liquid phases at the upper levels by 

the 3DVar, it also excludes the presence of hail below the freezing level, sometimes all 

the way to the ground.  

For this reason, indirect assimilation of Z is most commonly employed so far 

when using the 3DVar method, such as the use of a complex cloud analysis scheme. For 

example, the ARPS 3DVar system is often used in combination with a complex cloud 

analysis package to assimilate Vr and Z data together. Xue et al. (2003), Hu et al. 

(2006a); Hu et al. (2006b) and many subsequent studies (e.g., Dawson and Xue 2006; 

Zhao and Xue 2009; Kain et al. 2010; Schenkman et al. 2011; Xue et al. 2014) have 

demonstrated the effectiveness of this system for analyzing and predicting supercell 

storms, mesoscale convective systems as well as tropical cyclones. Additional physical 

constraints are used in the ARPS cloud analysis system to partition among 

hydrometeors associated with ice microphysics when assimilating Z data, as well as to 

adjust in-cloud temperature and moisture. Current cloud analysis is very valuable to 

improve NWP systems. For example, thunderstorms that have increments in 

hydrometeors may imply that saturation has occurred. By examining the ambient profile, 

the amount of latent heating occurring can be obtained, and the positive temperature 

perturbations can be deduced.  This buoyancy helps to get a stronger updraft in the 

subsequent forecast through buoyancy accelerations. More recent applications of the 
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ARPS 3DVar/cloud analysis system to assimilating radar radial velocity and/or 

reflectivity data include Du et al. (2012); Ge et al. (2012); Gasperoni et al. (2013); Ge et 

al. (2013), Xue et al. (2014), Brewster et al. (2016); Stratman and Brewster (2017). 

Such cloud analysis schemes are computationally fast, over a large range of scales, and 

efficient to handle a broad selection of data. However, cloud analysis does not consider 

the observation error so that its solution is not optimal. In addition, there is no model 

constraint used (such as the microphysical constraint), so that background error 

covariance cannot consistently adjust wind, temperature, and moistures fields. For 

reflectivity assimilation, the analysis increments assign to different hydrometeor fields 

are purely based on the distribution of background hydrometeor mixing ratios. When 

there exist severe errors in background hydrometeor fields, the hydrometeor analyses 

will have large errors. 

Compared to 3DVar, 4DVar incorporates the NWP model as a strong constraint 

into the DA system, enabling physical linkages among the model state variables and the 

retrieval of unobserved state variables (Le Dimet and Talagrand 1986; Courtier 1997; 

Kalnay 2002). Sun et al. (1991) demonstrated 4DVar of wind and thermodynamic fields 

for Doppler radar data, and Sun and Crook (1994) further tested this technique for a 

gust front case. Sun and Crook (1997, 1998) found that assimilating rainwater-mixing 

ratio derived from reflectivity observations produced better retrievals than directly 

assimilating reflectivity. However, only rainwater mixing ratio is considered and ice 

hydrometeors are neglected in their studies. Wu et al. (2000) represents one of few 

studies that include ice processes within a 4DVar DA. In that study, a simple ice 

microphysics scheme was used that included only one precipitating ice hydrometeor 
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category called graupel/hail.  Rainwater and ice mixing ratios were initially diagnosed 

first from Z and available differential reflectivity observations before being assimilated 

into the 4DVar. Here, the differential reflectivity observations helped partitioning the 

liquid and ice hydrometeors. Because of many issues associated with the high 

nonlinearity of complex yet important physical processes (such as ice microphysics) in 

mesoscale and convective scale models, 4DVar has not enjoyed as much success for 

convective-scale DA as with large scale NWP (Sun et al. 2014). 

EnKF is an alternative method that has enjoyed increasing popularity in 

convective scale DA, since its first application to radar DA by Snyder and Zhang (2003). 

In EnKF, flow-dependent background error covariances are derived from an ensemble 

of forecasts and used to update the state variables. EnKF allows for direct use of 

nonlinear observation operators and is more suitable for a NWP model with complex 

parameterizations. The benefits of EnKF for convective-scale NWP and radar DA had 

been demonstrated in many studies (Tong and Xue 2005; Xue and Martin 2006; Xue et 

al. 2006; Jung et al. 2008; Tong and Xue 2008; Aksoy et al. 2009, 2010; Dowell et al. 

2011; Snook et al. 2011; Jung et al. 2012; Snook et al. 2012; Stensrud et al. 2013; 

Snook et al. 2015). In Tong and Xue (2005), EnKF was shown for the first time to be 

able to successfully retrieve from radar reflectivity data multiple microphysical species 

associated with a complex ice microphysics scheme for a simulated storm. Significant 

positive impact is found when both precipitation and clear-air reflectivity are 

assimilated together. Jung et al. (2012) assimilated both reflectivity and radial velocity 

data into the ARPS EnKF system coupled with a two-moment microphysics scheme and 
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obtained analyses of polarimetric radar signatures in a supercell storm that reasonably 

matched real observations.    

Snook et al. (2011, 2012) successfully demonstrated the ability of EnKF on 

producing skillful analyses and corresponding forecasts for a tornadic mesoscale 

convective system by assimilating real radar observations. Dowell et al. (2011) found 

that assimilating reflectivity data could improve the analysis of hydrometeor fields for a 

supercell storm case. However, bias errors in the background hydrometeor fields could 

be projected onto other model variables via the ensemble background error covariances, 

and led to unreliable temperature and cold pool analyses. More recent studies applying 

EnKF to radar DA for real cases include, e.g., Snook et al. (2015) and Supinie et al. 

(2016). Zhang et al. (2011) and Stensrud et al. (2013) review some of the progresses in 

recent years. 

Although flow-dependent background error covariances can be approximated 

from ensemble forecasts in EnKF, the estimated covariance matrix is usually rank 

deficient because of the much smaller ensemble size compared to the degrees of 

freedom of NWP models (Houtekamer and Mitchell 1998; Hamill et al. 2000). Using 

much larger ensembles can help alleviate the problem but the computational cost can 

become prohibitively high. Covariance localization is commonly used to alleviate the 

rank-deficient problem (Hamill et al. 2001), but it has its own issues, such as preventing 

the use of distant correlations that are physically meaningful, or introducing imbalance 

into the background error cross-correlations (Lorenc 2003; Houtekamer and Mitchell 

2005; Kepert 2009; Greybush et al. 2011).  
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An alternative approach that can help alleviate the rank deficiency problem is 

the so-called hybrid method; in which a weighted average of ensemble-derived flow-

dependent background error covariance and the typical static flow-independent 

variational background error covariance is used.  This strategy was first proposed by 

Hamill and Snyder (2000) while Lorenc (2003) proposed a computationally efficient 

implementation through introducing a set of extended control variables preconditioned 

on the ensemble covariance.  

The advantages of the hybrid algorithms over traditional EnKF and 3DVar were 

first demonstrated using simulated observations and for simple model (Hamill and 

Snyder 2000; Etherton and Bishop 2004; Wang et al. 2007b), and the hybrid algorithm 

generally has more benefit when the ensemble size is small. The applications of hybrid 

algorithms to real cases are mostly at the large scales (Buehner et al. 2010a, 2010b; 

Buehner et al. 2013; Clayton et al. 2013) and mesoscales (Li et al. 2012; Zhang et al. 

2013; Pan et al. 2014). For conventional observations and month-long experiments at a 

mesoscale resolution, Zhang et al. (2013) showed that 12–72 h forecasts initialized with 

a hybrid ensemble-3DVar (En3DVar) system had noticeably smaller root-mean-square 

errors (RMSEs) as opposed to EnKF. For a 40-km regional forecast system, Pan et al. 

(2014) compared the performance of the hybrid En3DVar with 3DVar and EnKF based 

on the NCEP operational GSI (Grid-point Statistical Interpolation) framework, and 

found better performance of the hybrid method than EnKF in most aspects of the 

ensuing forecasts and in all aspects than 3DVar. Li et al. (2012) compared hybrid DA to 

3DVar for assimilating radial velocity data from coastal radars for a landfalling 

hurricane. Clear advantages were found of the hybrid method over 3DVar, although no 
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benefit was found to include any of the static covariance in the hybrid algorithm. 

Therefore in this particular study the hybrid algorithm performed the best when it was a 

pure En3DVar algorithm (when using 100% ensemble-derived covariance). 

Compared to the global scale and mesoscale, the development and testing of 

hybrid ensemble-variational (EnVar) algorithm for the convective scales and for radar 

data assimilation have been more limited. Gao et al. (2013) first reported preliminary 

results comparing hybrid En3DVar, 3DVar, and EnKF for assimilating simulated radar 

data for a supercell storm.  EnKF was found to outperform hybrid En3DVar with equal 

weights assigned to the static and ensemble covariances for the analyzed dynamic 

variables but underperform hybrid En3DVar for hydrometeor variables when 

assimilating data from single radar. When assimilating data from two radars, the hybrid 

method produced the best analyses for most model variables. Gao et al. (2004) further 

examined the dependency of the relative performance of hybrid En3DVar for different 

ensemble sizes and covariance weights, and they found that smaller ensemble sizes 

would benefit from a higher weight for the static covariance, consistent with earlier 

findings with larger scale applications. In Gao et al. (2016), similar to Li et al. (2012), 

an ensemble of the 3D variational DA approach was taken in which the En3DVar 

system is run multiple times to provide the ensemble perturbations rather than running a 

parallel EnKF system. The sensitivities of supercell analyses to the inclusion of a mass 

continuity constraint, microphysics errors, and reflectivity assimilation were examined, 

again in an observing system simulation experiments (OSSE) framework.  The 

assimilation of reflectivity data was found to accelerate storm spin-up and have a small 

positive impact on wind analyses.  
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1.1.2 Motivation 

While interesting results have been obtained with the previous studies through 

developing and testing hybrid algorithms for radar DA, further improvements and 

investigations are still needed. For example, the EnKF system used in Gao et al. (2013, 

2014) was an experimental version of EnKF DA, and the 3DVar used constant 

background error variances for all state variables and empirical spatial correlation scales. 

If the background error covariances are further optimized for 3DVar and EnKF is 

optimally tuned in terms of covariance localization and inflation, would the relative 

performance of the 3DVar, EnKF and En3DVar change? Also, in principle, when 

En3DVar uses 100% ensemble-derived covariance, its analysis should be identical to 

that of EnKF under linearity and Gaussian error assumptions; will their analyses 

actually be very close? If not, what are the sources of differences? In what situations 

that the static covariance in the hybrid algorithm does help, if at all, for convective 

storms? Do the conclusions change when model errors are included in the OSSEs? Does 

hybrid En3DVar have advantages over the other methods for a real storm case? 

In this study, the above questions will be investigated via perfect-model OSSE, 

imperfect-model OSSEs, and a real case experiments. In the OSSEs, the truth is known, 

enabling a quantitative assessment of different algorithms. Based on the OSSEs, any 

difference between EnKF and En3DVar algorithms can be easily investigated, and the 

potential benefits of hybrid En3DVar over traditional 3DVar and EnKF can be better 

understood. OSSEs are therefore necessary before applying the algorithms to real data 

cases where many possible, unknown sources of error can make understanding of the 

algorithms difficult.  
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1.1.3 Hypothesis and summary of study 

Considering hybrid En3DVar has some advantages over 3DVar and EnKF for 

large scale and mesoscale DA applications in the literature. This dissertation evaluates 

the hybrid Ensemble-3DVar (En3DVar) DA scheme and compares it with 3DVar and 

EnKF for convective-scale radar DA. The study is conducted based on the following 

hypothesis: hybrid En3DVar radar data assimilation can produce better analyses and 

short-range (e.g., 1-hr) forecasts than stand alone 3DVar and EnKF for convective 

scale DA.  

The hybrid En3DVar algorithm is implemented within the ARPS 3DVar 

framework (Gao et al. 2004) based on the Lorenc (2003) extended control variable 

approach. Full ensemble covariance localization is implemented in all three directions 

via the correlation matrix in the extended control variable term of the cost function. The 

En3DVar system is coupled with a mature EnKF DA system that has been developed 

and tested for radar DA over the past decade at the Center for Analysis and Prediction 

of Storms (CAPS) to form a coupled EnKF-hybrid En3DVar system. The static 

background error covariances for the hydrometeors adopt temperature-dependent 

vertical profiles recently proposed to improve variational analyses of hydrometeors 

from reflectivity observations. To facilitate the most fair and direct comparison between 

EnKF and pure En3DVar, we formulate an alternative EnKF algorithm in which an 

additional deterministic forecast is produced each cycle that is updated in the same 

manner as the ensemble mean background in the EnKF, and we call this algorithm 

DfEnKF (because of the use of deterministic forecast), and DfEnKF will be directly 

compared with pure En3DVar. In OSSEs, sensitivity experiments are conducted to 
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obtain the optimal localization radii, optimal background error decorrelation scales, and 

optimal hybrid weights for EnKF/pure En3DVar, 3DVar, and hybrid En3DVar 

algorithms, respectively, so that different algorithms are fairly compared. We aim to 

answer some of the questions posed in the earlier section. 

1.1.4 Uniqueness 

This study has several unique aspects:  

• For the first time, optimal configurations are obtained for 3DVar, EnKF, 

pure and hybrid En3DVar before they are compared, so that the 

comparisons among different algorithms can be more meaningful. The 

optimal configurations include optimal background error decorrelation 

scales for 3DVar, optimal localization radii for EnKF and pure En3DVar, 

and the optimal hybrid weights for hybrid En3DVar. 

• A new DfEnKF algorithm that updates a single deterministic background 

field using the mean updating equation of EnKF is introduced so that 

EnKF is directly parallel to pure En3DVar (that uses 100% ensemble 

covariance).  

• For the first time, hybrid En3DVar is compared with both 3DVar and 

EnKF using the imperfect-model OSSEs for convective-scale radar DA, 

which can provide more robust conclusions on the relative performance 

of various algorithms.  

• For the first time, hybrid En3DVar is compared with both 3DVar and 

EnKF for a real convective storm case.  
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1.2 Dissertation Outline 

The rest of this dissertation is organized as follows. In Chapter 2, we briefly 

introduce the theoretical background of current hybrid En3DVar algorithms. In Chapter 

3, hybrid En3DVar for radar DA is compared with 3DVar, EnKF, and pure En3DVar 

using perfect-model OSSEs for a simulated supercell storm. In Chapter 4, model error is 

introduced into the OSSEs by using a different microphysical scheme in the truth run 

(Lin scheme) (Lin et al. 1983) from that in the forecasts (Hong and Lim 2006) within 

the DA cycles. Hybrid En3DVar is compared with 3DVar, EnKF, and pure En3DVar to 

check whether the conclusions obtained in Chapter 3 still hold. In Chapter 5, the hybrid 

En3DVar and other algorithms are applied to the May 10, 2010 Oklahoma tornado 

outbreak case and performances of the algorithms are compared. Chapter 6 summarizes 

the results of this dissertation research and discusses additional issues that can be 

examined in the future.  
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Chapter 2 The Hybrid Ensemble-Variational (EnVar) DA Scheme 
 

2.1 Theoretical background of hybrid EnVar 

The Hybrid EnVar Data assimilation (DA) scheme is developed based on both 

the variational and the Ensemble Kalman Filter (EnKF) DA schemes by utilizing a 

combination of the static and ensemble covariance in calculation of the optimal solution. 

2.1.1 Variational data assimilation scheme 

The formulation of variational methods was derived based on Bayesian theory 

and under the assumption of the Gaussian error distributions (Lorenc 1986). Its optimal 

solution is obtained by minimizing a cost function 

 
. (2.1) 

Here is the cost function, which is the sum of two quadratic terms  and .  

and  measure the departure of the analysis  from the background  and from the 

observation ܡ௢ respectively.  is the observation operator that may be nonlinear. B 

and R are the static background error covariance and the observation error covariance 

respectively. After minimization the cost function, the optimal analysis x satisfies 

 
. (2.2) 

Here H is the linearized observation operator, and ۶୘ is its adjont. 

When dealing with the four-dimensional variational DA, the observation 

operator  refers to both the observation operator and the forward model so that 

the departures of the analyses and the observations can be calculated at different times. 
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Correspondingly, is the adjoint of both the nonlinear observation operator and the 

forward model. 

2.1.2 Ensemble Kalman filter 

The original Kalman filter was developed for linear prediction model based on 

the Bayesian theory. When using the nonlinear model to advance the state variables, the 

traditional Kalman filter is adapted to Extended Kalman Filter (EKF) (Evensen 1992). 

However, it is too expensive to advance the error covariance evolution equation for 

EKF. As a variant to EKF, the ensemble Kalman filter (EnKF) was first introduced by 

Evensen (1994) to deal with the high computational cost of integrating the background 

error covariance. EnKF is a Monte Carlo approximation of the traditional extended 

Kalman filter (EKF) by estimating the background error covariance based on an 

ensemble of forecasts (Evensen 1992; Miller et al. 1994). EnKF DA cycle starts with an 

ensemble of initial first guess fields and mainly includes two repeated steps: the forecast 

step and the analysis step. At the forecast step, the ensemble models are integrated 

forward from the analyses until new observations are available, and at the analysis step, 

each model state is updated based on the following equations: 

 
, (2.3) 

 
. (2.4) 

Here K is the traditional Kalman gain. ௞௕ݔ	  and ݔ௞௔	 are the ensemble analysis and 

background for each ensemble member k respectively.  y represents the observation, H 

and H are the nonlinear and tangent linear observation operator. P෡ୠ is the ensemble 

covariance estimated based on the N size of ensemble background field (Evensen 1994): 

TH

xa = xb + K y- H xb( )





K = P̂bHT HP̂bHT + R( )−1
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, (2.5) 

 
. (2.6) 

There are mainly two types of EnKF: the stochastic EnKF and the deterministic 

EnKF. Houtekamer and Mitchell (1998) found that in order for the EnKF to maintain 

sufficient spread in the ensemble and prevent filter divergence, the observations should 

be treated as random variables. They introduced the concept of using perturbed sets of 

observations to update each ensemble member. The perturbed observations consisted of 

the actual, or “control” observations plus random noise, with the noise randomly 

sampled from the observational-error distribution used in the data assimilation. 

Different ensemble members were updated using different sets of perturbed 

observations. Whitaker and Hamill (2002) put forward another ensemble filter 

formulation (EnSRF), which uses the traditional Kalman gain for updating the ensemble 

mean but uses a ‘reduced’ Kalman gain to update deviations from the ensemble mean. 

EnSRF is shown to have similar performance as the traditional EnKF that uses the 

‘perturbed observations’ (Whitaker and Hamill 2002) . Other variants of deterministic 

EnKF that avoids perturbing the observations include Ensemble Adjustment Kalman 

Filter (EAKF) (Anderson 2001), Ensemble Transform Kalman Filter (ETKF) (Bishop et 

al. 2001), and Local Ensemble Transform Adjustment Kalman Filter (LETKF) (Hunt et 

al. 2007; Miyoshi and Yamane 2007). These methods are shown to belong to a broad 

class of square root filters (Tippett et al. 2003). In this dissertation, only EnSRF is used, 

whose formulation will be addressed in detail in Chapter 3. 
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1
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∑
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k( ) − H xb( )( ) H xb
k( ) − H xb( )( )T

k=1

N

∑
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2.1.3 Hybrid EnVar and its variants 

There are mainly two types of approaches to realize the hybrid En3DVar 

Scheme, which are a) the hybrid scheme that directly combine the static and ensemble 

covariance (Hamill and Synder, 2000) and b) the hybrid scheme developed based on the 

extended control variables that are preconditioned upon the square root of the ensemble 

covariance (Lorenc 2003). They are proven to be equivalent in (Wang et al. 2007a) 

a.  Hybrid EnKF-3DVar scheme using the direct combination of the static and ensemble 

covariance 

In Hamil and Synder (2000), a hybrid EnKF-3DVar analysis scheme was 

constructed based on a simple model, in which a weighted average of the static 

background errors from 3DVar ( ۰ ) and the ensemble based background error 

covariance from ensemble forecasts (۾ୠ) are used, which is 

۶۾  = (1 − ୠ۾(ߙ +  (2.7)  .۰்ߙ

The sample covariance matrix ۾௕	 derived from the background ensemble 

forecasts is flow-dependent. The calculation of ۾௕ for each ensemble member are given 

as below: 

௕۾  = ଵேିଵ∑ ൫ݔ௕௞ − ௕௞ݔ൯൫ݔ̅ − ே௞ୀଵ܂൯ݔ̅ ,  (2.8) 

where ݔ௕௞	is the ensemble forecasts for N ensemble members (k=1, ....,N), and ̅ݔ is the 

mean of the ensemble forecasts averaged over all the ensemble members. The analysis 

increments for the hybrid scheme are calculated iteratively by minimization a cost 

function similar to 3DVar, 

(x)ܬ  = ଵଶ (x − x௕)୘Pୌି ଵ(x − x௕) + (x)ܪ) − y)୘Rିଵ(ܪ(x) − y) . (2.9) 
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With hybrid weights α changing from 0.0 to 1.0, the analysis hybrid changes from using 

stand-alone ensemble-based error covariances to using the stand-alone static 

background error covariances. 

b. Hybrid EnVar scheme based on extended control variables 

Lorenc (2003) described how to realize the hybrid scheme within the variational 

framework by introducing a set of extended control variable that are preconditioned 

upon the normalized ensemble background perturbations ܆௕ᇱ . 

ࢇܠ  = ௕ܠ + ௕ᇱ܆ હ,  (2.10) 

where હ࢘ is the extended control variable that has the size of N*1. N is the ensemble 

size.  

௕ᇱ܆  = ଵ√ேିଵ ௕ଵݔ) − ,௕തതതܠ ௕ଶݔ − ,௕തതതܠ … , ௕ேݔ −  ௕തതത),  (2.11)ܠ

where 

௕തതതܠ  = ଵே ௕ଵݔ) + ௕ଶݔ + ⋯+  ௕ே)  (2.12)ݔ

is the ensemble mean. 

The optimal analysis is obtained by minimizing a cost function that measures the 

misfit between observational prior	(ܠ)ܪ and observations ܡ: 

(હ)ܬ  = ଵଶહ୘હ + ଵଶ (ܠ)ܪ) − (ܠ)ܪ)ଵି܀୘(ܡ −  (2.13)  ,(ܡ

(ܠ)ܪ  = ௕܆)ܪ + ௕ᇱ܆ હ).  (2.14) 

Here R is the observational error covariance and ܪ( ) is the nonlinear observational 

operator. The above હ has a size of ܰ × 1, which is usually rank-deficient (i.e., the 

limited size of ensemble members for covariance estimation is much smaller than the 

number of degrees of freedom of the model (Kalnay 2002)). In their realization, Shur 

product was used to reduce the rank-deficient problem. 
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In order to match the covariance modified by the Shur product, they use as 

control variable a matrix હ  whose columns are N fields 	હ࢏ , each with the desired 

modifying covariance C. The variational problem is then to minimize 

(હ)ܬ  = ଵଶહ୘ ൭۱ 0⋱0 ۱൱
ି૚ હ + ଵଶ (ܠ)ܪ) − (ܠ)ܪ)ଵି܀୘(ܡ −  (2.15)  ,(ܡ

ܡ  = ܪ ൝ܠ௕ + ௕ᇱܠ ∘ હ൭૚⋮૚൱ൡ.  (2.16) 

The main advantage of this hybrid approach is that it is easily built on the 

existing variational framework with the incremental variational method being used. The 

corresponding cost function is: 

,ܞ)ܬ હ) = ଵଶ ܞ୘ܞ + ଵଶ હ୘ ൭۱ 0⋱0 ۱൱
ି૚ હ + ଵଶ (ܠ)ܪ) − (ܠ)ܪ)ଵି܀୘(ܡ − (ܡ . 

 (2.17) 

ܡ  = ܪ ൝ܠ௕ + ඥ(1 − ܞ܃(ଶߚ + ௕ᇱܠߚ ∘ હ൭૚⋮૚൱ൡ.  (2.18) 

where, as noted above, a further horizontal transform of હ removed the need to 

invert C. The terms 1 −  ଶ are included because the two control variables areߚ ଶ andߚ

really alternatives; when adding the હ control variable one should reduce the use made 

of the traditional control variable. The ensemble perturbations can come from another 

source such as an error breeding cycle (Toth and Kalnay 1997). 

As is shown above, the hybrid scheme can be realized either by 1) directly using 

the weighted average of the original background error covariance and the ensemble 

covariance or 2) or through modifying the cost function by introducing a set of extended 

control variables that are preconditioned upon the square root of the ensemble 
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covariance. In our study, the latter approach is adopted for its easier implementation 

based on the existing variational framework. 

The hybrid method can be easily extended from three dimensions to four 

dimensions by introducing a forecast step to the variational cost function of the hybrid 

En3Dvar algorithm, similar to the implementation of 4D-Var. In this dissertation, we 

will only focus on the hybrid En3DVar scheme. 

 

2.2 The ARPS Hybrid En3DVar implementation 

The hybrid En3DVar DA algorithm is implemented within the existing ARPS 

3DVar (Gao et al. 2004) framework. The hybrid En3DVar algorithm is based on the 

extended control variable method of Lorenc (2003) although the actual formulations 

follow Liu and Xue (2016) more closely. The combined use of the full-rank static 

background error covariance and the rank-deficient ensemble covariance in En3DVar is 

achieved through the extended state vector method. The analysis increment is given by 

 , (2.19) 

 .  (2.20) 

Where  and  are the analysis increments related to the static and ensemble 

background error covariances, respectively.  and  are the weights given to the 

static and ensemble covariances, respectively.  

 ,  (2.21) 

 ,  (2.22) 

 ,  (2.23) 
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 .  (2.24) 

 is the traditional variational control variable (vector) preconditioned on the square 

root of the 3DVar static background error covariance .  is the square root of .  

is a matrix of ensemble perturbations normalized by , which has  state vectors, 

 whose dimension is .  and  are the ensemble size and the dimension 

of state vector respectively.  denotes the Schur product.  

 . (2.25) 

Here  is a new control vector related to the extended control vector , a  

correlation matrix  is used to localize the ensemble covariance, and  is the 

corresponding decomposed matrix that satisfies . A hybrid solution is derived 

by setting  or  to values between but not equal to 0 and 1.  

The analysis increment in Eq. (10) is obtained via minimizing the following cost 

function 

 , (2.26) 

where  is the observation innovation vector,  is the linearized observational 

operator, and  is the observational error covariance.  Additional details can be found 

in Liu and Xue (2016). 
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In this study, as is typically done, the En3DVar is coupled with EnKF to form a 

coupled EnKF-En3DVar system, where the EnKF system provides ensemble 

perturbations to En3DVar for flow-dependent covariance, while En3DVar itself updates 

a single background forecast to obtain a single new analysis. With two-way coupling, 

the analysis of En3DVar is used to replace the ensemble mean analysis of EnKF, i.e., 

 from Eq. (10) is used to replace  in Eq. (1). As mentioned earlier, in this paper, 

we choose to stick with one-way coupling to keep the algorithms more separate (so that 

they are not too mingled) for comparison purposes (for the relatively short period of DA 

cycles presented in this paper, the two coupling systems generally will not diverge 

much; for long periods of DA cycles, two-way coupling is recommended). When the 

ensemble-derived covariance is used at 100% without static covariance, the En3DVar is 

referred to as pure En3DVar. When static and ensemble covariances are used in 

combination, the algorithm is referred to as hybrid En3DVar. The readers are referred to 

e.g., Liu and Xue (2016) for discussions on related terminology. 

 

2.3 Advantages and disadvantages of hybrid EnVar 

2.3.1 Advantages of hybrid DA schemes 

Hybrid DA schemes has a number of potential advantages than the stand-alone 

3DVar, EnKF, and pure En3DVar: 

1) Relative to pure 3DVar scheme, hybrid En3DVar could take into account the 

flow-dependent background error covariance, better than the static background 

error covariance when the ensemble background error covariance is a good 

estimation of the true error covariance. 

ax ax
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2) Pure ensemble-based methods (EnKF and pure En3DVar) are subject to model 

errors so that the ensemble spread tends to be systematically underestimated and 

results in filter divergence. For example, the EnKF may fail to capture the storm 

systems in the analysis when storms in the background are missed and at the 

same time the ensemble spread is too small because of systematic model errors. 

Blending the ensemble covariance with the 3DVar statistics may ameliorate the 

sampling error problems relative to using stand-alone ensemble covariance. 

3) The hybrid weight of the static and ensemble covariance can be adjusted based 

on reliabilities of ensemble and static background error covariance. 

4) It is easily to add weak constraint (such as the mass-continuity constraint) in to 

hybrid DA cost function relative to EnKF. 

2.3.2 Disadvantages of hybrid DA schemes 

Considering hybrid DA using both the ensemble and the static covariance, it is 

subject to the disadvantages of both EnKF and 3DVar, relying on the hybrid weight 

specified. Overall, the disadvantages can be summarized as follows: 

1) When hybrid weight of the static error covariance is too small or not big enough, 

the hybrid analysis may be subject to the filter divergence problem when severe 

model error exists. 

2) When hybrid weight of ensemble part is too small, the analysis increment is not 

flow-dependent, similar to the problem of 3DVar. 

3) An optimal weight needs to be determined to combine the static and the 

ensemble background error covariance. 
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4) The computational cost of hybrid En3DVar is more expensive than EnKF and 

orders of magnitude more expensive than 3DVar. Unlike EnKF, for which the 

localization is conducted in the observation space, the En3DVar needs the 

recursive filter to conduct the localization, which is more expensive. 

2.4 Special treatments of ensemble covariance in implementation of hybrid DA 

As mentioned above, hybrid En3DVar is prone to all the problems of EnKF, 

especially when ensemble weight of static background is small. The methods used in 

the implementation of EnKF: covariance inflation and covariance localization are also 

used in implementation of hybrid En3DVar to achieve better performance. 

2.4.1 Covariance inflation 

Similar to the implementation of EnKF, inflation algorithms that modify the 

prior or posterior estimates of the ensemble variance to reduce filter error and avoid 

filter divergence are also used on ensemble covariance of hybrid En3DVar. 

There are mainly four types of methods to inflate the covariance: 

1) The multiplicative inflation 

In multiplicative inflation, the ensemble deviation from the ensemble mean is 

multiplied by a constant. As a result, a constant increase of the ensemble variance is 

made. The inflation can be made before or after filtering (calling prior or posterior 

inflation). A 20% multiplicative inflation (with an inflation coefficient of 1.2) is used in 

OSSEs in this dissertation for its simplicity. 

2) Additive inflation 

In order to simulate model errors, random noises are added to the background 

(prior) or analysis (posterior) ensembles so that the diagonal entries of the ensemble 
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covariance can be increased. Usually random noise is smoothed first to make it less 

noisy. By applying additive inflation, new directions are introduced into the error space 

so that the ensemble spread can be increased. However, it is difficult to obtain 

reasonable additive noise. 

3) Covariance relaxation inflation 

Zhang et al. (2004) proposed another covariance inflation method that relaxes 

posterior (analysis) perturbations back toward the prior (first guess) perturbations 

independently at each point through 

௜ᇱ௔ݔ  ← (1 − ௜ᇱ௔ݔ(ߙ +  ௜ᇱ௕, (2.27)ݔߙ

where ݔ௜ᇱ௔  is the deviation from the posterior ensemble mean for the ith ensemble 

member, and ݔ௜ᇱ௕ is the deviation from the prior ensemble mean for the ith ensemble 

member. Whitaker and Hamill (2012) referred this method as relaxation-to-prior 

perturbations (RTPP). Unlike the multiplicative inflation, relaxation inflation tries to 

increase the posterior ensemble variance in proportion to the amount of the prior 

variance that is reduced by assimilation of observations. A tunable parameter ߙ is used 

to control the amount of weight given to the prior ensemble. When a is 0, only posterior 

ensemble is used; when a is 1.0, the posterior ensemble is completely replaced by the 

prior ensemble; for values in between, part of the posterior ensemble is replaced by the 

prior ensemble.  

4) Adaptive covariance inflation 

Whitaker and Hamill (2012) proposed an alternative approach to RTPP (they 

call it relaxation-to-prior (RTPS)) by relaxing the ensemble standard deviation back to 
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the prior instead of relaxing the posterior perturbations back to their prior values at each 

grid point as in RTPP. The perturbations are relaxed via, 

 σ
ୟ ← (1 −α)σୟ +ασୠ, (2.28) 

where σୠ = ටሾ1 (n − 1)⁄ ሿ∑ xୠ୧′ଶ୬୧ୀଵ  and σୟ = ටሾ1 (n − 1)⁄ ሿ∑ xୟ୧′ଶ୬୧ୀଵ  are the prior 

and posterior ensemble standard deviation (spread) at each analysis grid point, and n is 

the ensemble size. This formula can be rewritten as: 

 x୧′ୟ ← x୧′ߙ ቀασ
ౘିσ౗
σ౗ + 1ቁ. (2.29) 

For a given value of ߙ , the multiplicative inflation in RTPS is proportional to the 

amount the ensemble spread reduced by assimilation of the observations. 

2.4.2 Covariance localization 

Houtekamer and Mitchell (1998) show that the background error correlations 

between observation and distant analysis points usually exhibit a large amount of 

structure that does not have physical meaning with limited ensemble size. Without 

correction, an observation would produce anomalous analysis increments on distant 

state. Covariance localization is a modification of the covariance matrices that removes 

spurious long distance correlations due to sampling error of the model covariance from 

finite ensemble size (Houtekamer and Mitchell, 2001; Anderson, 2007). 

Unlike EnKF, which uses a fifth-order polynomial (Gaspri and Cohn, 1999) to 

conduct the localization in most applications, En3DVar uses the recursive filter to 

localize the background error ensemble covariance. It re-uses the one or more of its 

output as an input to mimic a Gaussian convolution operator. 
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The localization of EnKF is an element-wise multiplication of the ensemble 

estimates (a) with a smooth correlation function via 

෡ܭ  = ൫ߩ௦ ∘ ܲ௕෢൯ൣ்ܪ൫ߩ௦ ∘ ܲ௕෢൯்ܪ + ܴ൧ିଵ.  (2.30) 

It can be approximately expressed as, 

෡ܭ  = ൫ߩ௦ ∘ ܲ௕෢൯ൣߩ௦ ∘ ൫்ܲܪ௕்ܪ෣ ൯+ ܴ൧ିଵ.  (2.31)  ܲ௕෢  is the ensemble covariance estimated from the limited ensemble perturbations. ߩ௦ is 

the localization function. 

௦ߩ  = ۔ۖەۖ
ۓ − ଵସ ቀௗ௖ቁହ + ଵଶ ቀௗ௖ቁସ + ହ଼ ቀௗ௖ቁଷ − ହଷ ቀௗ௖ቁଶ + 1								(0 ≤ ۀ݀ڿ ≤ ܿ)ଵଵଶ ቀௗ௖ቁହ − ଵଶ ቀௗ௖ቁସ + ହ଼ ቀௗ௖ቁଷ + ହଷ ቀௗ௖ቁଶ − 5 ቀௗ௖ቁ + 4 − ଶଷቀ೏೎ቁ								(0 ≤ ۀ݀ڿ ≤ ۀ݀ڿ						0(ܿ ≥ 2ܿ , 

 (2.32) 

where d is the distance from observation to grid points, and c is the horizontal cutoff 

radius.  

The recursive filter length scale (ܵோி ) of En3DVar and the cutoff radius of 

EnKF localization (c) can be roughly converted from each other based on Eq. (4) in Pan 

et al. (2013), which is 

  ܵோி = √0.15ܿ/√2. (2.33) 
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Chapter 3 Evaluation of a Hybrid En3DVar Radar Data Assimilation 

System and Comparisons with 3DVar and EnKF for Radar Data 

Assimilation with Observing System Simulation Experiments under 

Perfect Model Assumptions1 
 

3.1 Introduction 

Convective scale NWP is vital to provide timely and accurate forecasts and 

watches for severe thunderstorms and tornadoes. Convective scale weather systems 

develop on very short timescales (typically from minutes to hours), making the analysis 

and forecasts more challenging than larger scale weather systems. Radar data that 

provides the wind and precipitation information with very high spatial (~1km) and 

temporal (5~10 min) resolution is very useful to extract the wind and precipitation 

information from the observations and merge into the analysis to improve the initial 

condition for NWP forecasts. 

3DVar have been used for storm scale radar DA and was found to be able to 

improve the analysis and forecast of storm evolution and short-range QPF (Gao et al. 

2004; Lindskog et al. 2004; Hu et al. 2006a; Hu et al. 2006b; Xiao et al. (2007)). 

However, it is commonly believed that 3DVAR is not suitable for convective scale DA 

because the static background error covariance fails to reflect the convective-scale 

balance. 

Since last decade, the application of the EnKF to storm scale radar DA has 

become popular (e.g., Snyder and Zhang 2003; Dowell et al. 2004; Zhang et al. 2004; 

                                                 
1 This chapter is accepted as: Kong, R., Xue, M., and Liu, C., 2017:  Development of a Hybrid En3DVar 
Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with 
Observing System Simulation Experiments. Mon. Wea. Rev..  
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Tong and Xue 2005, 2008; Xue et al. 2006; Aksoy et al. 2009, 2010; Dowell et al. 2011; 

Jung et al. 2008, 2012; Snook et al. 2011, 2012, 2015; Dowell et al. 2011; Wang et al. 

2014). EnKF was found to help producing more skillful analyses and forecasts and 

bring positive impact to the analysis of hydrometeor fields. However, EnKF is usually 

rank-deficient when ensemble size is small, and is subject to filter divergence problem 

when there exists severe sampling or model error. 

Recently, hybrid schemes (e.g., En3DVar, En4DVar, and 4DEnVar) that blend 

the static background error covariance with the flow-dependent ensemble covariance 

have been applied to radar DA and were found to be able to generate better analysis 

than both 3DVar and EnKF for smaller sized ensembles (Hamill and Snyder 2000; 

Lorenc 2003; Etherton and Bishop 2004; Wang et al. 2007b; Wang et al. 2007a). 

However, most of the studies are conducted using simple models and simulated 

observations. Applications of hybrid DA to real cases are mostly at the large scales 

(Buehner et al. 2010a, 2010b; Buehner et al. 2013; Clayton et al. 2013) and mesoscales 

(Li et al. 2012; Zhang et al. 2013; Pan et al. 2014).  

For convective scale radar DA, the development and testing of hybrid ensemble-

variational (EnVar) algorithm have been more limited. In Gao et al. (2013), hybrid 

En3DVar data assimilation scheme is found to help reducing the storm spin-up time. 

Comparisons made among 3DVar, 40-member EnKF, and corresponding hybrid 

En3DVar indicate, EnKF method outperform hybrid method for the model dynamic 

variables, and underperform hybrid method for hydrometeor related variables when 

assimilating data from single radar. When assimilating data from two radars, the RMSE 

for the hybrid method are the smallest for most of the model variables. Gao et al. (2014) 
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indicates, hybrid analysis is benefit from a weaker weight for a relative smaller 

ensemble size, and is benefit from a stronger weight for larger ensemble size when 

assimilating two radars at the same time. In Gao et al. (2016), a mass continuity 

equation is included into the cost function of the hybrid scheme as a weak constraint, 

the analyses is improved when radial velocity observations contain large errors. 

Sensitivity experiments indicate that the En3DVar analyses are sensitive to different 

microphysics schemes, suggesting that multiple-microphysical ensembles could be used 

to reduce the uncertainty of the model physical processes. 

While interesting results have been obtained with the above studies through 

developing and testing hybrid algorithms for radar DA, further improvements and 

investigations are still needed. For example, the EnKF system used in Gao et al. (2013, 

2014) was an experimental version of EnKF DA, and the 3DVar used constant 

background error variances for all state variables and empirical spatial correlation scales. 

If the background error covariances are further optimized for 3DVar and EnKF is 

optimally tuned in terms of covariance localization and inflation, would the relative 

performance of the 3DVar, EnKF and En3DVar change? Also, in principle, when 

En3DVar uses 100% ensemble-derived covariance, its analysis should be identical to 

that of EnKF under linearity and Gaussian error assumptions; will their analyses 

actually be very close? If not, what are the sources of differences? In what situations 

that the static covariance in the hybrid algorithm does help, if at all, for convective 

storms?  

In this study, the above questions will also be addressed in an OSSE framework, 

under the assumption of a perfect prediction model. In the OSSEs, the truth is known, 
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enabling a quantitative assessment of different algorithms. Based on the OSSEs, any 

difference between EnKF and En3DVar algorithms can be more easily investigated. 

This is necessary before applying hybrid DA to the real cases where many possible, 

unknown sources of error make understanding of the results difficult. The hybrid 

En3DVar algorithm based on the Lorenc (2003) extended control variable approach is 

implemented within the ARPS 3DVar framework (Gao et al. 2004). Full ensemble 

covariance localization is implemented in all three directions via the correlation matrix 

in the extended control variable term in the cost function. The En3DVar system is 

coupled with a mature EnKF DA system that has been developed and tested for radar 

data DA over the past decade to form a coupled EnKF-hybrid En3DVar system. The 

static background error covariances for the hydrometeors adopt temperature-dependent 

vertical profiles we recently proposed to improve variational analyses of hydrometeors 

from reflectivity observations. To facilitate the most fair and direct comparison between 

EnKF and pure En3DVar, we formulate an alternative EnKF algorithm in which an 

additional deterministic forecast is produced each cycle which is updated in the same 

manner as the ensemble mean background in the EnKF, and we call this algorithm 

DfEnKF (because of the use of deterministic forecast), and DfEnKF will be directly 

compared with pure En3DVar. We aim to answer some of the questions posed in the 

earlier paragraph.  
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3.2 Assimilating System and Experimental Design 

3.2.1. The EnKF system 

The EnKF system used in the following study is the one initially developed for 

the ARPS model, as originally described in Tong and Xue (2005) and Xue et al. (2006). 

The ensemble squall root (EnSRF) algorithm, a flavor of EnKF without perturbing 

observations as developed by Whitaker and Hamill (2002), as available in the ARPS 

EnKF system is used. Following Whitaker and Hamill (2002) and Xue et al. (2006), the 

EnSRF analysis equations are briefly described in the following, which consist of 

update equations for the ensemble mean, and for ensemble perturbations.  

The ensemble mean forecast is first updated by Eq. (3.1) below: 

 , (3.1) 
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 is the observation operator (which can be nonlinear) and  is tangent linear 

observation operator. K is the Kalman gain.  is the background error covariance. 

 and  are the background error covariances defined between the grid 

points and observation points, and between the observation points, respectively, and are 

evaluated directly from the ensemble background states  (k is the index of ensemble 

member) and their observation counterparts, H( ), called observation priors. R is the 

observation error covariance matrix. A distance-dependent localization function 

(Gaspari and Cohn 1999) is used for the localization of the ensemble covariance;  

denotes a Schur product of the correlation matrix .  

The ensemble perturbations, denoted by superscript prime, are updated by 

 , (3.7)
 

and 

 
.  (3.8) 

 is the “reduced” Kalman gain that is equal to K amplified by a factor following 

Whitaker and Hamill (2002) and the actual formula can be found in Xue et al. (2006) 

also. The final analyses for the ensemble members are 

 .  (3.9) 

For more detailed descriptions about EnKF algorithm, please refer to Xue et al. (2006). 
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3.2.2. The DfEnKF algorithm 

For the convective scale, the ensemble forecast mean tends to smooth out 

detailed convective scale structures that are important. Therefore the mean of ensemble 

forecasts may not necessarily be the best representation of convective storms(Yussouf 

et al. 2013). In En3DVar cycles, the background forecast is a deterministic forecast 

starting from the En3DVar analysis of the previous cycle. To facilitate more direct 

comparison of the EnKF results with those of En3DVar, and to potentially improve the 

results of EnKF, we developed an alternative implementation of EnKF, in which a 

separate set of analysis and forecast is run that uses a deterministic forecast, , in 

place of the ensemble mean background forecast, , in the ensemble mean update Eq. 

(3.1), to obtained analysis : 

 . (3.10) 

The deterministic forecast is started from this version of EnKF analysis, and we 

call this EnKF formulation DfEnKF, where Df denotes deterministic forecast.  

Figure 3.1 shows the flow charts of the DfEnKF and En3DVar DA one-way 

coupled with EnKF. Similar to En3DVar, DfEnKF can be treated as an independent 

algorithm that borrows the ensemble covariance from the EnKF, and updates its single 

background field based on the EnKF update equation (the EnSRF algorithm is used 

here).  

b
dx

bx

a
dx

( )a b b
d d dH = + − x x K y x
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Fig. 3.1 Flow chart of the cycles in one-way coupling between EnKF and DfEnKF, 
EnKF and En3DVar analysis schemes, where BEC represents the background error 
covariance. The ensemble perturbations are updated by the EnKF. 

 

It is worth noting that our DfEnKF algorithm is different from the so-called 

deterministic EnKF (DEnKF) proposed by Sakov and Oke (2008), which modifies the 

original EnKF perturbation updating equations by using only half of the Kalman gain 

matrix and avoids perturbing the observations. Given that we use the EnSRF algorithm 

that does not perturb observations, our DfEnKF algorithm is also a deterministic EnKF 

algorithm. 

 We point out here that one may choose to replace the ensemble mean analysis of 

the regular EnKF with the analysis of DfEnKF so that the ensemble perturbations are 

effectively defined around the DfEnKF analysis; doing so results in a “two-way-
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coupled” DfEnKF and EnKF systems. Similar is done in “two-way-coupled” En3DVar 

and EnKF, as will be discussed later, but in this paper, we choose one-way coupling in 

both cases to keep the algorithms more independent so that performance of different 

algorithms can be more clearly compared. 

 

3.2.3. The prediction model and truth simulation for OSSEs 

In this study, the nonhydrostatic ARPS (Xue et al. 2000; Xue et al. 2001; Xue et 

al. 2003) is used as the prediction model for EnKF and En3DVar DA cycles. The 

En3DVar algorithm developed is compared with 3DVar and EnKF via perfect-model 

OSSEs. Simulated radial velocity and reflectivity data from a single Doppler radar are 

assimilated for a tornadic supercell storm. A sounding derived from that of the 20 May 

1977 in Del City, Oklahoma (Ray et al. 1981) supercell storm case is used to define the 

storm environment. The Lin et al. (1983) ice microphysics parameterized is used.  

The model configurations follow closely those of Tong and Xue (2005). 

Specifically, the model grid size is 35×35×35, and the grid resolutions are 2 km and 0.5 

km in the horizontal and vertical directions respectively. The storm in the truth 

simulation is triggered by an elliptical thermal bubble with a 4 K maximum temperature 

perturbation, and the bubble is located at 24 km, 16 km, and 1.5 km in x, y, and z 

directions. The horizontal and vertical radii of the bubble are 10 km and 1.5 km 

respectively. A constant wind of (3, 14) m s-1 is subtracted from the original sounding 

so that the supercell could remain within the simulation domain. The storm is simulated 

up to 2 hours with an evolution similar to those documented in Tong and Xue (2005). 

For EnKF, a distance-dependent localization function following Gaspari and Cohn 
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(1999) is used to localize the ensemble covariance, while the covariance localization in 

En3DVar is realized through recursive filters applied to the extended control variable 

term of the cost function (corresponding to the second term on the right hand side of Eq. 

(2.26)), to realize similar localization effects in the En3DVar algorithm. When the 

vertical model grid is stretched, the vertical localization realized through the recursive 

filter in the En3DVar algorithm is usually asymmetric; to avoid this complication when 

comparing the EnKF and En3DVar algorithms, we choose to utilize a vertically uniform 

grid, which is also used in the OSSEs of Tong and Xue (2005).   

3.2.4. Simulation of the radar observations 

The radial velocity ( ) and reflectivity ( ) data are simulated based on the 

model velocity and mixing ratios of hydrometeor fields, respectively, with the following 

formula: 

 ,  (3.11) 

  ,  (3.12) 

 . (3.13) 

Here,  and  are the azimuth and elevation angles of radar beams. , , and  are 

the model velocity components in the observational space that are interpolated from the 

truth simulation grid.  is the equivalent radar reflectivity factor, which contains 

contributions from the mixing ratios of rain ( ), snow ( ), and hail ( ), respectively. 

Z (in dBZ) is the reflectivity factor and is the quantity assimilated. The actual 

reflectivity formula for the individual components follow those given in Tong and Xue 

(2005). The default values of the intercept parameters of the size distributions of the 

rv Z
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hydrometeors in the Lin et al. (1983) are used, as in Tong and Xue (2005). Equations 

(15) to (17) are also the observation operators for radial velocity and reflectivity data in 

the DA systems.  

One WSR-88D radar is assumed to be located at the origin (i.e., the southwest 

corner) of the simulation domain, and its data are simulated based on the truth 

simulation. Unbiased and normal distributed random errors with standard deviations of 

3 dBZ and 1 m s-1 are added to the simulated reflectivity and radial velocity data, 

respectively. The same error standard deviations are also specified in the DA. The 

simulated reflectivity and radial velocity observations are collected on 14 elevation 

levels ranging from 0.5 to 19.5 degrees based on volume coverage pattern 11 (VCP11) 

in precipitation mode. The maximum radar coverage is 230 km. Radial velocity data are 

assimilated only in regions where truth reflectivity is greater than 15 dBZ in the analysis 

domain, while reflectivity data are assimilated in both precipitation and clear air regions. 

The assimilation of clear air reflectivity data helps to suppress possible spurious 

precipitation in clear air regions as found by Tong and Xue (2005). These practices 

follow Tong and Xue (2005) closely. 

 

3.2.5. Design of assimilation experiments 

The simulated storm cell is well developed after 25 min of model integration. As 

in Tong and Xue (2005), the unbiased and Gaussian-distributed random perturbations 

are added to the sounding defined first guess field to generate the initial ensemble 

perturbations. The standard deviations are 2 K for potential temperature, 2 m s-1 for u, v, 

and w, and 0.6 g kg-1 for mixing ratios of water vapor and hydrometeor fields, 
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respectively. Previous studies have shown that adding random perturbations to the 

whole domain would introduce a lot of noise into the model fields (Snyder and Zhang 

2003; Dowell et al. 2004). Different from Tong and Xue (2005), the perturbations of u, 

v, w, and potential temperature θ are confined to the regions with observed reflectivity 

higher than 0 dBZ, and hydrometeor perturbations are confined to regions with 

reflectivity higher than 15 dBZ. The radial velocity and reflectivity observations are 

assimilated every 5 min for one hour, with the first assimilation performed at 30 min of 

the truth simulation time. Experiments with different combinations of localization radii 

and recursive filter length scales in horizontal and vertical directions are first tested to 

obtain the optimal localization radii and recursive filter length scales for EnKF and 

En3DVar, respectively. 

To obtain more physical hydrometeor analyses, height-dependent (or in a more 

general form temperature-dependent) static background error profiles for different 

hydrometeors are used in 3DVar, and in hybrid En3DVar (for the static background 

error). Specifically, the background error of snow at the low levels  (< 4 km) is set to 

values two orders of magnitude smaller than the error at other levels (set to 0.6 g kg-1), 

which ensures small analysis increments of snow at the lower levels (below freezing 

levels). The background error of rain-water at higher levels (>8 km) are set to values 

one order of magnitude smaller than default value of 0.6 g kg-1 to help prevent 

unphysical rainwater analysis increments at the upper levels. For levels between 4 km 

and 8 km, 1/5 of the default value (i.e, 0.1 g kg-1) is used in this study to suppress 

analysis increment of rainwater but still allow for the existence of supercool water close 
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to and above the freezing level. The background error of hail is 0.6 g kg-1 at all levels; 

considering that hail can fall below the freezing level.  

We perform five types of experiments that are named  according to the methods 

they use (Table 1). The first three types are 3DVar, (using the stand-alone static 

background error covariance ), EnKF, and DfEnKF, (using ensemble covariance ). 

The remaining two types are the pure En3Dvar that uses 100% ensemble covariance 

and the hybrid En3DVar that uses a combination of the static and ensemble covariance. 

Performance of DfEnKF and pure En3DVar are compared, and the reasons for 

differences are investigated though sensitivity experiments. Hybrid En3DVar with 

different combinations of ensemble members and ensemble covariance weights are 

tested to see the sensitivity of the hybrid analysis to these factors. Finally, Hybrid 

En3DVar is compared with 3DVar, EnKF, and pure En3DVar to see if hybrid En3DVar 

has any advantage over other methods.  

  

B P̂b
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Table 3.1 Descriptions of the assimilating methods 
Method Use of background error 

covariance 

Background updating Ensemble size 

3DVar Static background error 

covariance 

Update background field 

deterministically 

 

N/A 

EnKF Background error covariance 

derived from ensemble 

background forecasts 

Updates ensemble mean 

background and ensemble 

perturbations using EnKF 

algorithm 

40 

DfEnKF Using ensemble covariance from 

an EnKF system 

Update a single deterministic 

background forecast using EnKF 

mean updating algorithm 

40 

Pure 

En3DVar 

Using 100% ensemble covariance 

from an EnKF system 

Update a single deterministic 

background forecast using 

variational algorithm 

40 

Hybrid 

En3DVar 

Using weighted average of 

ensemble covariance and static 

3DVar covariance 

Update a single deterministic 

background forecast using 

variational algorithm 

10, 20... 100 

 

 

3.3 Results of assimilation experiments 

To evaluate the performance of algorithms in different experiments, we define a 

mean error that is the average of the RMSEs of both the analysis and 5-min background 

forecast at all analysis times scaled by the background RMSE at the beginning of the 

assimilation window (at 25 min). The actual error formulation is  

 , (3.14) 

where  is the mean error.  and  are the grid-point average of the RMSEs at time 

t for a certain variable from the background and the analysis fields, respectively.  is 
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the grid-point average of the RMSEs at the beginning of the assimilation window, 

which are the same for all experiments.  is the total number of assimilation cycles. 

The RMSEs are calculated only over grid points where the truth reflectivity is higher 

than 15 dBZ. We refer to the mean error defined in (18) as the mean scaled RMSE for a 

specific variable. Further average can be performed over all variables to give an overall 

mean RMSE. 

3.3.1. Comparisons between DfEnKF and pure En3DVar 

a. Optimal localization radii for DfEnKF and EnKF 

       In EnKF, a Gaussian-like fifth-order piecewise polynomial of Gaspari and Cohn 

equation (1999) is used for covariance localization. Sensitivity experiments with 

different combinations of the horizontal and vertical cut-off radii of localization that 

range from 1 km to 15 km with a 1 km interval are conducted for DfEnKF. As indicated 

in Fig. 3.2, the optimal localization radii for different variables are similar except for 

hail mixing ratio, and on average the combination of 15 km and 6 km for horizontal and 

vertical cut-off radii yields the best result in terms of the minimal analysis and forecast 

errors. Similarly, Sobash and Stensrud (2013) found that 12~18 km horizontal and 

~3km vertical  localization cutoff  radii were beneficial for their EnKF experiments with 

50 ensemble members and a 3 km grid resolution. On the “optimal” localization radii, 

some discrepancies between this and previous studies are worth mentioning. For 

example, Tong and Xue (2005) noted that a localization radius of 6 km produced the 

best result with 40 ensemble members, but their “optimal” radii were obtained based on 

the assumption that the horizontal and vertical localization radii were the same.  

N
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Fig. 3.2 The mean scaled RMSEs for different state variables as defined in Eq. (3.14) 
and averaged over all variables (ave), for DfEnKF experiments with different 
combinations of horizontal and vertical cutoff radius (km), with magenta asteroid 
indicating the minimum values over all values.  The blue dot is the minimum for each 
individual variable. 

 

Sensitivity experiments show that the optimal localization radii for EnKF are 

almost the same as those for DfEnKF, so the “optimal” localization radii of DfEnKF are 

adopted as the common optimal localization radii for both EnKF and DfEnKF in later 

experiments. 
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Unlike DfEnKF that uses a fifth-order Gaussian-like polynomial function and a 

Schur product (see Eq. (2.32)) to localize the ensemble covariance, En3DVar uses a 

recursive filter in each coordinate direction to mimic a second-order autoregressive 

function (that is close to Gaussian) for the localization. To investigate the source of 

difference between pure En3DVar and DfEnKF, the optimal localization radii of 

DfEnKF are also used by pure En3DVar in this section. The recursive filter length scale 

(ܵோி) and the cutoff radius of DfEnKF localization (ܵீ஼) can be roughly converted from 

each other based on the following equation, 

  ,  (3.15) 

which is given as Eq. (4) in Pan et al. (2014). The equivalent recursive-filter length 

scales for localization in En3DVar are therefore 4.11 km in the horizontal and 1.64 km 

in the vertical, corresponding to the 15 and 6 km cut off localization radii, respectively. 

In next section, the optimal localization radii of En3DVar will be determined by similar 

sensitivity experiments and En3DVar will be compared with other algorithms with their 

own optimal localization radii. 

 

b. Single reflectivity or radial velocity observation assimilation 

Single-observation experiments are often used to examine the correctness of 

newly developed DA systems, and the effects of spatial spreading of observation 

innovation by the background error covariance (Hu et al. 2006a; Zhu et al. 2013). The 

flow-dependent nature of the ensemble covariance in pure En3DVar and DfEnKF can 

be revealed by single-observation experiments. In our experiments, a single radial 

velocity observation is taken at a model grid point near the updraft region (as indicated 

SRF = 0.15SGC / 2
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by the upward vector in Fig. 3.3). The ensemble forecasts from the 4th cycle of 

experiment EnKF to be discussed later are used in the single observation EnKF test. 

En3DVar uses the localization radii that are equivalent to the optimal localization 

configurations of DfEnKF. 

For the single radial velocity DA experiment, the analysis increment of u wind is 

positive (negative) to the left (right) of the updraft for both pure En3DVar and DfEnKF 

(Fig. 3.3c and d), which is more consistent with the true increment (which is the truth 

minus background) in Fig. 3.3a, while for 3DVar, the analysis increment is a flow-

independent ellipse that is not realistic (Fig. 3.3b). Similarly, for single reflectivity 

observation assimilation, the analysis increments of hail mixing ratio for En3DVar and 

DfEnkF are similar and show flow dependent structures while that of 3DVar is again 

elliptical (Fig. 3.4). An important point to note is that 3DVar creates hail mixing ratio 

increment symmetrically above and below the observation point, with the increment 

extending way below the freezing level, which in this case is unrealistic. In En3DVar 

and DfEnKF, the flow-dependent covariance is aware of the temperature dependency of 

hail distributions.  

More differences between DfEnKF and pure En3DVar are found within the 

analysis increments of snow mixing ratio.  Reasons for these differences will be 

addressed later in section 3b. Another point that worth mentioning is that radial velocity 

assimilation only updates the wind fields (u, v, w) and reflectivity assimilation only 

updates hydrometeors (qr, qs, qh) in 3DVar. In EnKF and En3DVar, however, all model 

prognostic variables can be updated via background error cross-correlations; this is an 
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important advantage for algorithms utilizing the ensemble-derived background error 

covariances.  

 

Fig. 3.3 Vertical cross-sections of (a) the truth minus background, and the analysis 
increment (analysis minus background) of u wind (m s-1) when assimilating radial 
velocity at a single point, using (b) 3DVar, (c) pure En3DVar (c), and (d) DfEnKF (d), 
respectively. Horizontal convergence and upward motion are indicated by the horizontal 
and vertical black arrows, respectively. 
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Fig. 3.4 Vertical cross-sections of the background error (truth minus background, a) and 
analysis increment (analysis minus background) for hail mixing ratio (g kg-1) when 
assimilating a single reflectivity observation at the red dot location, using (b) 3DVar, (c) 
En3DVar, and (d) DfEnKF, respectively 

 

c. OSSE comparisons between DfEnKF and pure En3DVar 

In this section, the performance of EnKF, DfEnKF, and pure En3DVar are 

compared by assimilating both radial velocity and reflectivity data every 5 min for one 

hour. When using the optimal localization radii, DfEnKF clearly outperforms pure 

En3DVar in terms of RMSEs, especially for snow and some of the other hydrometeor 
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variables (Fig. 3.5). Only pressure has larger errors in some of the earlier cycles when 

using DfEnKF, but pressure is more sensitive to acoustic noise as pointed out by Tong 

and Xue (2005).  

To see how well the precipitation fields are analyzed, the reflectivity 

components from individual hydrometeor mixing ratios are calculated according to 

 , (3.16)  

where  is the equivalent reflectivity, with x represent r, s, or h for rain, snow, and 

hail, respectively.  is the corresponding reflectivity in dBZ and is introduced here for 

convenience only, and the total reflectivity  is not equal to 

the sum of , , and . Horizontal cross-sections of the analyzed reflectivity and 

contributions to reflectivity from snow and hail at 8 km AGL (the level where the 

differences between pure En3DVar and DfEnKF are most apparent at the 10th cycle, i.e., 

2210 UTC) are depicted in Fig. 3.6. The spatial extent of the analyzed snow (hail) from 

pure En3DVar is somewhat underestimated (overestimated), while those from DfEnKF 

agree better with the truth. The intensities of updraft and downdraft from En3DVar at 8 

km AGL are also underestimated while those from DfEnKF are much closer to the truth. 

Considering that DfEnKF and pure En3DVar use the same background error covariance 

derived from the EnKF ensemble (at 100% in pure En3DVar), both are based on 

deterministic background forecast configured the same way, and the background error 

covariance localization radii are configured equivalently, the two algorithms should 

theoretically yield very similar results.  Why are the results of En3DVar worst, 

especially for snow, then? The reasons for the differences will be investigated in detail 

in the following section. 

1010= ( Z )x exZ log
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Fig. 3.5 RMSEs of the background forecasts and analyses of state variables verified in 
regions with true reflectivity higher than 15 dBZ (solid lines), assimilating both radial 
velocity and reflectivity data using EnKF (cyan lines), DfEnKF (blue lines), and pure 
En3DVar (magenta lines) algorithms. 
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Fig. 3.6 Truth (left column) and analyzed fields at 8 km AGL of total reflectivity (Z, 
upper row) and reflectivity calculated from mixing ratio of snow (Zs, middle row) and 
of hail (Zh, low row) from DfEnKF (central column) and pure En3DVar (right column) 
at the 10th cycle (2210 UTC). Vertical velocity contours are overlaid in the upper panels 
together with the minimum and maximum values. 

 
 

3.3.2 An analysis of the differences between DfEnKF and pure En3DVar 

Possible reasons for the differences between DfEnKF and pure En3DVar 

include: covariance localization difference, serial versus global nature of the algorithms, 

and high nonlinearity of the observational operator of reflectivity that can cause 
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differences between filter update and variational minimization. Sensitivity experiments 

are conducted to investigate the impact of the above sources. 

a. Covariance localization difference 

The ARPS model state variables are defined on C grid. For ARPS En3DVar, the 

minimization procedure and the localization are implemented on A-grid, while for 

ARPS-EnKF, the localization is distance dependent so that it can be conducted between 

A and C grid directly for vector variables.  This will cause some difference between 

ARPS-En3DVar and ARPS-EnKF for the localizations of vector variables. In order to 

check the localization difference between DfEnKF and En3DVar for both scalar and 

vector variables, temperature and horizontal wind observations on a model grid (x=8, 

y=15, z=7) are assimilated separately using the optimal cutoff of EnKF and the 

corresponding recursive filter length scale for En3DVar. Up to 10% difference is 

noticed between the localization curves for both scalar and vector variables (Fig. 3.7a, 

b). The difference is larger for vector variables (Fig. 3.7b) than for scalar variables (Fig. 

3.7a) for horizontal localization due to the 5% difference of the peak values. Unlike 

EnKF, for which localization is directly conducted between A and C grid; for pure 

En3DVar, the localization is conducted on A grid, so that one more interpolation is 

needed to transform the control variables back to the C grids to get the analysis 

increments, this back-and-forth interpolations will introduce additional errors compared 

to that of EnKF. The difference of the localization schemes on z direction is small with 

higher resolution (500m). Overall, the impact of the localization difference between 

DfEnKF and pure En3DVar is fairly small and not likely to be significant. 
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Fig. 3.7 Gaspri-Cohn functions (magenta line), the recursive-filter based localization 
curves (blue line), and their difference (dark line) for scalar variable (Fig. a, c) and 
vector variable under C grids (Fig. b, d) based on the corresponding optimal localization 
radii of DfEnKF (15km in the horizontal and 6km in vertical) and their counterparts 
based on Eq. (3.15)) in X coordinate (a), (b), and Z coordinate (c), (d) respectively. 

b. Serial versus global nature of algorithms  

To compare DfEnKF and pure En3DVar under a linear observation operator 

condition, only radial velocity data are assimilated. In such a case, DfEnKF clearly 

outperforms pure En3DVar for most of the state variables except for water vapor 

mixing ratio (qv) when using the optimal localization radii of DfEnKF, i.e., 15 km in 

horizontal and 6 km in vertical (Fig. 3.8). The analyses and forecasts of snow mixing 

ratio in DfEnKF are again better than those of pure En3DVar.  
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In DfEnKF, the observations are assimilated serially, while observations in 

En3Dvar are assimilated globally (or simultaneously). In order to reduce the effect of 

the order in which data are assimilated, the horizontal (vertical) localization radius is 

decreased from 15 km (6 km) to 3 km (3 km). This significantly reduces the overlap of 

the influence regions from neighboring observations (given the 2 km interval of radar 

data in the horizontal and data on the radar elevations of about 1 degree apart). When no 

influence regions from different observations overlap, simultaneous assimilation of all 

observations should yield the same result as assimilating one observation at a time, 

because the assimilation of a prior observation does not affect the assimilation of the 

follow on observations.  

After significantly decreasing the localization radii, the results of DfEnKF and 

pure En3DVar become very close (Fig. 3.8), suggesting the serial versus global nature 

of the two algorithms is a major cause of the differences in the results of DfEnKF and 

pure En3DVar when assimilating radial velocity data (for which the observation 

operator is linear). We point out here that with the reduced non-optimal localization 

radii, the error levels are clearly higher for all variables than when optimal radii are 

used (Fig. 3.8); despite that, data assimilation using either method is still able to 

decrease error in individual state variables, and the analyzed storm is reasonable (not 

shown). 
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Fig. 3.8 RMSEs of the forecasts and analyses of state variables verified in regions with 
true reflectivity higher than 15 dBZ from DfEnKF (blue and black contours) and pure 
En3DVar (magenta and red contours) when assimilating only radial velocity data with 
the (horizontal, vertical) localization radii being (15 km, 6 km) (blue and magenta 
contours) and (3 km, 3 km) (black and red contours), respectively. 

 

c. Influence of the nonlinear observational operator and its resultant difference between 

variational minimization and filter update 

To isolate the effect of nonlinearity in the reflectivity observation operator, only 

reflectivity data are assimilated in the next set of experiments (Fig. 3.9). The differences 

between DfEnKF and pure En3DVar are more obvious compared to the analyses that 
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assimilate radial velocity data only. To reduce the impact of data assimilation sequence, 

localization radii are again decreased in the same way as earlier for radial velocity data. 

Unlike the radial velocity case, the differences between DfEnKF and pure En3DVar are 

still quite obvious even with the reduced localization radii (Fig. 3.9). This suggests that 

the nonlinear nature of the reflectivity observation operator is another significant 

contributor to the differences seen between DfEnKF and pure En3DVar.  

 

Fig. 3.9 Same as Fig. 3.8, when assimilating reflectivity data only. 
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To further examine this issue, another single observation test is performed at the 

time of the second analysis cycle when the analysis differences from the two 

experiments become large. The background of DfEnKF at the second cycle is used as 

the background of pure En3DVar also. A single reflectivity observation is placed at a 

grid point where the analysis difference between DfEnKF and pure En3DVar is most 

apparent for snow mixing ratio. To better capture the difference, relative error are 

calculated based on the background, analyzed, and true reflectivity (or equivalent 

reflectivity) at the given point. The relative error is defined as below, 

 , (3.17)
 

where  is the relative error (%), and  is the total reflectivity or equivalent 

reflectivity for analysis ( ) and forecast ( ), respectively. As is shown in Table 

3.2, the relative error of the background reflectivity at the observation point ( ) is 

35.2%, which is greatly reduced to 1.8% and 1.9%, respectively, after the assimilation 

of the single reflectivity data by pure En3DVar and DfEnKF.  The relative errors of 

analyzed equivalent reflectivity ( ) from pure En3DVar and DfEnKF are 13.6 % and 

14.3 %, respectively, with a small difference of 0.7 % only. However, when examining 

the analyzed equivalent reflectivity components from different hydrometeor species, the 

relative error differences for snow and hail from DfEnKF and pure En3DVar are much 

larger (37.0% for  of snow and 9.0% for  of hail), indicating that the differences 

in the algorithms are creating significant differences in the analyses of individual 

hydrometeor fields. Unlike EnKF, for which the analysis is obtained via direct filter 

update, analysis of En3Dvar is obtained through variational minimization, which tends 
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to adjust hail more than snow because the reflectivity is more sensitive to hail than to 

snow in the reflectivity observation operator. In variational algorithms, the sensitivity of 

the cost function to the control variables has a large effect on the amount of adjustment 

to the individual variables in the minimization process. Variables with small sensitivity 

may receive little adjustment before the minimization iteration is terminated.  

Table 3.2 Comparison of single reflectivity observation assimilation between pure 
En3DVar and DfEnKF, where ܼ௧, ܼ௕, ܼ௔, indicate the true, background and analyzed 

reflectivity in dBZ, and ܼ௘௕, ܼ௘௔ represent the background and analyzed equivalent 
reflectivity in ݉݉଺݉ିଷ, ܼ௘௥௔ , ܼ௘௦௔ , ܼ௘௛௔ , are the equivalent reflectivity components for rain, 

snow, and hail respectively. 

 

Background or analyzed 

reflectivity and 

equivalent reflectivity 

Relative Error (%) 

 x=a or b ,࢚ࢆ/(࢚ࢆ-࢞ࢆ)
Difference of relative 

error between pure 

En3DVar and DfEnKF 
Pure 

En3DVar 
DfEnKF 

 

Background 
ܼ௕ =  (dBZ) 35.17% 0%	ଵ଴ܼ௘௕݃݋10݈

 

 

 

Analysis 

ܼ௔ = (dBZ) 1.78% 1.88% 0.1% ܼ௘௔	ଵ଴ܼ௘௔݃݋10݈ = ܼ௘௥௔ + ܼ௘௦௔ + ܼ௘௛௔  (݉݉଺/݉ଷ) 13.59% 14.26% 0.67% ܼ௘௥௔ 	(݉݉଺/݉ଷ) 0% 0% 0% ܼ௘௦௔ 	(݉݉଺/݉ଷ) 54.73% 17.71% 37.02% ܼ௘௛௔ 	(݉݉଺/݉ଷ) 4.53% 13.50% 8.97% 

 

3.3.3 Comparisons of hybrid En3DVar with EnKF, DfEnKF, and 3DVar based on own 

optimal states 

a. Optimal localization radii for En3DVar and optimal background error decorrelation 

scales for 3DVar 

Because of the differences found in the results obtained with DfEnKF and pure 

En3DVar in the previous sections, the optimal localization radii of DfEnKF are not 

necessarily the optimal radii of pure En3DVar. To obtain optimal analysis with pure 
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En3DVar, 30  20 combinations of horizontal and vertical recursive filter length scales 

that range from 0.27 km to 8.10 km in the horizontal (corresponding to 1 km to 30 km 

cutoff radius of DfEnKF), and from 0.27 km to 5.40 km in the vertical  (corresponding 

to 1 km to 20 km cutoff radius) are tested to determine the optimal radii in both 

horizontal and vertical directions. According to the error statistics shown in Fig. 3.10, 

the recursive filter length scale of 6.75 km (25 km cutoff) in horizontal and 3.24 km (12 

km cutoff) in vertical yield the lowest mean error averaged across all variables. The 

optimal horizontal cut off radii in terms of the errors of individual fields are close to the 

overall optimal cut off radius, but in the vertical direction, the optimal radii for 

individual fields are either the same or larger than the overall cut off radii (Fig. 3.10), 

although further error decrease for vertical cut off radii beyond the overall optimal 

radius is generally small. In this study, the optimal radii are chosen based on the error 

averaged across all variables.  

×
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Fig. 3.10 The mean scaled RMSEs as defined in Eq. (3.14) for different state variables 
and averaged over all variables (ave), which are obtained based on pure En3DVar 
experiments with 30×20 combinations of horizontal and vertical length scales after 
being transformed to cutoff-radii of EnKF based on Eq. (3.15), with the magenta 
asteroid indicating the location of the minimum value over all variables.  The blue dot is 
the minimum for each individual variable. 

 
The optimal background error decorrelation scales for 3DVar are determined the 

same way. Background error decorrelation scales are first transformed to cutoff radii of 

EnKF based on Eq. (3.15) to keep the experiments of finding optimal cutoff radii (for 

EnKF) and length scales (for pure En3DVar and 3DVar) more consistent. According to 

Fig. 3.11, there are more scatters in the optimal scales based on errors of difference 
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variables, especially for the horizontal scale. Based on errors averaged across all 

variables, background error decorrelation scales of 4.05 km (equivalent to 15 km cutoff 

based on Eq. (3.15)) in the horizontal and 1.35 km (5 km cutoff) in the vertical yield the 

best results. These scales are therefore chosen as the optimal scales for 3DVar 

experiments.  

 

Fig. 3.11 The mean scaled RMSEs as defined in Eq. (3.14) for different state variables 
and averaged over all variables (ave), which are obtained based on 3DVar experiments 
with 20×20 combinations of horizontal and vertical decorrelation length scales after 
being transformed to EnKF’s cutoff radii based on Eq. (3.15) (to be consistent with Fig. 
3.9), with magenta asteroid indicating the location of minimum value over all values.  
The blue dot is the minimum for each individual variable 
 



 61

In the remaining hybrid En3DVar experiments, the optimal localization radii 

obtained for pure En3DVar and the optimal background error decorrelation scales 

obtained for 3DVar will be applied to the flow-dependent ensemble covariance and 

static covariance, respectively. 

b. Optimal hybrid weights as function of ensemble size 

To determine the optimal hybrid weights in hybrid En3DVar as a function of 

ensemble size, 10×10 experiments with different combinations of ensemble size (from 

10 to 100 with increment of 10) and the weight given to the static background error 

covariance (from 0 to 1 with increment of 0.1) are performed. Pure En3DVar and 

3DVar correspond to experiments with the static error weight set to 0 and 1, 

respectively.   

As indicated in Fig. 3.12,. when ensemble size is 30 or larger, hybrid En3DVar 

with a 5% to 10% static B performs the best in analyses and forecasts of u, v, θ, p, and 

qv (with a couple of exceptions for u and qv). When ensemble size is 50 or larger, pure 

En3DVar (with 0% static B) performs the best in w and all hydrometeor variables. 

When the ensemble size is only 10 or 20, some variables, including v, θ, cloud water 

mixing ratio qc, and qv, require 50% or larger static weight to achieve the smallest error. 

For cloud ice mixing ratio (qi), pure En3DVar always has the smallest error.  

In terms of the average error across all variables, hybrid En3Dvar with a 5 ~ 10% 

(60%) static background error gives the best results when ensemble size is larger 

(smaller) than 20. Errors of pure and hybrid En3DVar increase quickly when the 

ensemble sizes falls below 40. These results indicate that an ensemble size of 30 or 

larger is needed for the hybrid system to benefit significantly from the ensemble error 



 62

covariances, and in that case only around 5% of static covariances is needed. For 

variables possessing convective and precipitation nature (w and hydrometeors), no static 

B is needed, especially when ensemble size is 50 or larger. 

 

Fig. 3.12 The Grid-point average of the scaled RMSEs as defined in Eq. (3.14) for 
different variables and averaged over all variables (ave), which are obtained based on 
hybrid En3DVar experiments with different combinations of ensemble sizes and hybrid 
weights. The black dots indicate locations of the optimal weights for different ensemble 
sizes 
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c. Comparisons of hybrid En3DVar with EnKF, DfEnKF, and 3DVar 

Comparisons are made among the analyses and forecasts from 3DVar, EnKF, 

DfEnKF, pure and hybrid En3DVar with their own optimal configurations (including 

localization/decorrelation scales and covariance weights). In all cases, the ensemble size 

used is 40, and this choice is guided by the results of the previous subsection, and is 

also consistent with many previous studies with EnKF for radar assimilation (e.g., Xue 

et al. 2006; Snook et al. 2011). Basically, we want to choose an ensemble size that can 

produce decent EnKF analyses without excessive costs, and ask the question if their 

analyses can be further improved by including some static background error via hybrid 

En3DVar. 

The RMSEs are calculated only over grid points where the true reflectivity 

exceeds 15 dBZ, as have been done earlier. Fig. 3.13 shows that 3DVar performs the 

worst with its RMSEs being much larger than those of others. EnKF and DfEnKF have 

similar or the same error levels and both outperform pure and hybrid En3DVar for 

almost all variables in almost all cycles, with the exception being with p in the earlier 

cycles. As discussed earlier, the pressure analysis is more sensitive to acoustic noise 

that may affect the liability of the cross covariance between pressure and radar 

observations; we therefore give its error less weight in our performance assessment. 

Among the variables, qv seems to benefit from the hybrid covariance the most as the 

error levels of hybrid En3DVar are lower than pure En3DVar and close to EnKF (and 

DfEnKF). The difference between EnKF (or DfEnKF) and pure (or hybrid) En3DVar is 

the largest for qs. As discussed in section 3b, their differences are mainly caused by the 

serial versus global nature of the algorithms and the variational minimization versus 
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direct filter updating (which is sensitive to nonlinearity). In a variational framework, it 

is much more difficult to adjust mixing ratio of dry snow by reflectivity assimilation 

because the gradient of the reflectivity operator to dry snow is much smaller than those 

to hail and rain. In another word, when hail and dry snow coexist, the adjustment to hail 

tends to dominate in variational schemes, making correction to errors in dry snow more 

difficult.   

 

Fig. 3.13 The grid-point average of the RMSEs over the region where true reflectivity is 
higher than 15 dBZ for 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar (5% weight 
given to static B). 
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Vertical cross sections of analyzed reflectivity and winds from 3DVar, 40-

member EnKF, DfEnKF, pure and hybrid En3DVar at the end of the one-hour DA 

cycles are shown in Fig. 3.14 together with the truth.  The maximum reflectivity 

analyses from 3DVar and hybrid En3DVar are 67.7 dBZ and 70.3 dBZ, which are 

slightly less than those form the truth and EnKF (about 71 dBZ), indicating that both 

hybrid En3DVar and 3DVar underestimate the intensity of the reflectivity core (e.g., 

reflectivity exceeding 70 dBZ).  The maximum vertical velocity from EnKF, DfEnKF, 

pure and hyrbrid En3DVar are over 25 m s-1, which are much larger than that from 

3DVar (18.8 m s-1) and closer to that of the truth (27.1 m s-1). Some spurious reflectivity 

is found outside the truth storm region in the analyses of 3DVar and hybrid En3DVar, 

which can be caused by the assimilation of error-containing reflectivity observations 

(whose errors can exceed 3 dBZ).  In EnKF, DfEnKF, and pure En3DVar, spurious 

perturbations in the background forecasts can be effectively suppressed through flow-

dependent background error correlations if zero reflectivity is assimilated, as was 

pointed out by Tong and Xue (2005).  
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Fig. 3.14 Vertical cross-sections of the reflectivity field overlaid with the wind vector at 
the end of the one-hour DA window from (a) truth, and the analyses of (b) 3DVar, (c) 
pure En3DVar, (d) DfEnKF, (e) pure En3DVar, and (f) hybrid En3DVar with 5% static 
covariance. 
 

To examine the quality of analyzed hydrometeor fields, we compare the 

reflectivity components from individual hydrometeor mixing ratios according to Eq. 

(3.17). According to Fig. 3.15, the contribution to equivalent reflectivity from analyzed 

rainwater mixing ratio qr from different algorithms are very similar and close to that of 

truth. For hail, 3DVar and hybrid En3DVar underestimate the hail reflectivity at the 

reflectivity core region, contributing to the under-estimation of maximum analyzed total 

reflectivity noted earlier. For snow, EnKF and DfEnKF obtain better analyses than pure 

En3DVar, hybrid En3DVar, and 3DVar. The contribution of snow to total reflectivity is, 
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however, much smaller than that of hail, making correction to its error more difficult in 

a variational framework. 

Overall, EnKF, DfEnKF and pure En3DVar give similar reflectivity or 

precipitating hydrometeor analyses that are very close to truth. There is some benefit to 

bring in 5% or so static error covariance into En3DVar to form a hybrid algorithm when 

verified within the truth precipitation regions, but some spurious reflectivity can appear 

in the clear air regions (Fig. 3.15) that can degrade the overall analyses, similar to the 

3DVar case.  
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Fig. 3.15 Vertical cross-sections of the reflectivity (in dBZ) calculated based on the 
mixing ratio analyses of rain, snow, and hail from truth, analyses of 3DVar, EnKF, 
DfEnKF, pure and hybrid En3DVar respectively. 
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3.4 Summary and discussion 

In this chapter, a hybrid En3DVar system that was developed based on the 

ARPS variational framework is applied to the assimilation of simulated radar data for a 

supercell storm. Radar radial velocity and reflectivity data were assimilated every five 

minutes for one hour. Differences between EnKF and pure En3DVar are first 

investigated to better understand the difference among different algorithms. DfEnKF, 

which updates a single deterministic background forecast using the EnKF mean 

updating algorithm, is introduced to have an algorithm-wise parallel comparison 

between EnKF and pure En3DVar. 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar 

are tuned to obtain their optimal configurations before they are compared. The 

experiments performed and related conclusions are summarized as follows:  

• Single-point radial velocity or reflectivity data assimilation experiments show 

that pure En3DVar and DfEnKF produce similar flow-dependent analysis 

increments that depict flow-dependent structures while 3DVar produces 

isotropic analysis increments that are not necessarily physical. 

• Differences are found in the analyses of DfEnKF and pure En3DVar when both 

use the same effective localization scales even though they are supposed to be 

the same for linear and Gaussian problems. The serial versus global nature of the 

algorithm is shown to be responsible for the analysis differences in radar radial 

velocity DA, for which the observation operator is linear; variational 

minimization versus direct filter update is responsible for analysis difference in 

reflectivity DA, for which the observation operator is highly nonlinear. As a 

variational algorithm, pure En3DVar tends to adjust hail more than snow, 
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because the analysis results are controlled to a large extent by the sensitivity of 

reflectivity with respect to individual hydrometeor, i.e., the gradient of the 

reflectivity operator with respect to the hydrometeor state variables. The 

EnKF/DfEnKF algorithm relies on the background error covariances for 

analysis updating. 

• For 3DVar, optimal de-correlation scales for static background error covariances 

are obtained via sensitivity experiments, and the optimal localization radii for 

ensemble background error covariances are similarly obtained for 

EnKF/DfEnKF and En3DVar. These optimal configurations are then used to 

construct hybrid En3DVar. 

• The sensitivity of hybrid En3DVar to covariance weights and ensemble size is 

then examined. It is found that when the ensemble size is 30 or larger, a 5% to 

10% weight for static covariance produces the smallest mean errors for u, v, θ, p, 

and qv, fields. For w and hydrometeor fields, 0% static covariance performs the 

best when the ensemble size is 50 or larger.  On average, when the ensemble 

size is 20 or larger, a 5 or 10% static covariance gives the best results while for 

smaller ensembles a larger static covariance with a ~50% weight produces 

somewhat better results. Using an ensemble size of 40, EnKF and DfEnKF 

perform similarly, and both are better than pure and hybrid En3DVar overall. 

Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar 

for most variables except the hydrometeor variables; the improvement is the 

largest for qv and the degradation is most notable for qs. In a sense, the extra 

static error covariance does not help for hydrometeor variables. Overall, in the 
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current perfect OSSE framework, EnKF and DfEnKF perform similarly and the 

best, 3DVar the worst. En3DVar with or without static background error 

covariance does not perform as well as EnKF/DfEnKF, and static covariance 

only helps slightly via hybrid En3DVar. 

Finally, we note that the conclusions obtained here are based on the assumption 

of a perfect prediction model. In next chapter, we will compare hybrid En3DVar against 

EnKF and 3DVar under imperfect model conditions and will apply the algorithms to a 

real supercell storm case afterwards.  
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Chapter 4 Evaluation of the ARPS Hybrid En3DVar System for Radar 

Data Assimilation with Observing System Simulation Experiments 

(OSSEs) Under Imperfect Model Assumptions 
 

4.1 Introduction 

In the previous chapter, the newly developed ARPS En3DVar data assimilation 

system was tested using an OSSE under perfect model assumptions (i.e., the model is an 

exact representation of the true state). Radar data was assimilated for a simulated 

supercell storm case using EnKF, DfEnKF, 3DVar, pure and hybrid En3DVar algorithm. 

Optimal localization radii (background error de-correlation scales) for ensemble (static) 

background error covariance are first obtained through sensitivity experiments. A 

separate ‘deterministic forecast’ EnKF analysis, called DfEnKF, is performed to obtain 

an algorithm-wise parallel comparison between EnKF and pure En3DVar. Performance 

of hybrid En3DVar in assimilating radar data is compared with those of 3DVar, EnKF, 

DfEnKF, and pure En3DVar. On average, when ensemble size is 20 or larger, a 5 to 10% 

static covariance gives the best results, while for smaller ensembles, more static 

covariance is beneficial. Using an ensemble size of 40, EnKF/DfEnKF performs the 

best, 3DVar the worst, and static covariance only helps slightly via hybrid En3DVar. 

Under perfect model assumption, when the ensemble background error covariance is a 

good estimation of the truth, the impact of the static background error covariance in 

hybrid DA is not obvious. 

Perfect-model OSSEs tend to underestimate the analysis and forecast errors. 

When severe model errors exist, the ensemble covariance may be systematically 

underestimated so that EnKF can suffer from filter divergence in the following-up 
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cycles (Maybeck 1982, Mitchell and Houtekamer 2000; Hamill et al. 2002). In this case, 

the static background error covariance that could take into account the experience and 

statistical factors, might be a good supplement and constraint to the pure ensemble-

based data assimilation methods (Hamill and Snyder 2000; Lorenc 2003; Etherton and 

Bishop 2004; Wang et al. 2007b; Gao et al. 2013). Based on the above hypothesis, we 

raised the following two questions: 1) Do the conclusions obtained based on the perfect-

model OSSEs change if the ensemble background error covariance is not a good 

estimation of the true error distribution? 2) In what situation that the static background 

error covariance could help, if any, for convective scale radar DA?  

To answer the above questions, model errors need to be introduced. This is done 

first via OSSE. This is necessary before applying the algorithm to the real case, where 

many sources of errors make the understanding of the algorithm behaviors difficult. 

Microphysical error is one of the major sources of the model error (Houtekamer et al. 

1996; Houtekamer and Lefaivre 1997; Stensrud et al. 2000). There are several ways to 

account for the microphysics errors, such as using multiple microphysics (Stensrud et al. 

2000), or perturb the parameters within a single microphysics scheme (Stainforth et al. 

2005; Lee et al. 2012; Baker et al. 2014). In this section, model errors were introduced 

by using different microphysical schemes in the truth run (Lin scheme, Lin 1983) and in 

the forecasts within the DA cycles (WSM6 scheme, Hong and Lim 2006). With this 

model error, hybrid En3DVar is compared with 3DVar, EnKF, DfEnKF, and pure 

En3DVar to examine the relative advantage of static background error covariance B in 

hybrid DA.  
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Similar to what was done in the perfect-model OSSEs, optimal localization radii 

(background error de-correlation scales) for ensemble (static) background error 

covariance are first obtained through sensitivity experiments before they are compared. 

DfEnKF was also introduced to make an algorithm-wise parallel comparison with pure 

En3DVar. Optimal hybrid weights are obtained as functions of the ensemble sizes. At 

the ensemble size of 40, hybrid En3DVar with the optimal weight of the static B will be 

compared with 3DVar, EnKF, DfEnKF, and pure En3DVar. So that the relative 

advantage of the static B in hybrid DA can be further examined, as a follow-up studies 

made to Chapter 3. 

The rest of this chapter is organized as follows. In section 4.2, we briefly review 

DA schemes (EnKF, DfEnKF, and En3DVar) used as well as the experimental design. 

In section 4.3, sensitivity experiments are conducted to obtain optimal cutoff radii 

(recursive filter length scale) for EnKF, optimal background error decorrelation scale 

for 3DVar, and optimal weight for hybrid En3DVar. In the experiments, the reflectivity 

DA suffers from excessively large gradient due to small background reflectivity. A 

double-pass procedure, which assimilates precipitation and clear-air reflectivity 

separately in different passes, is proposed and found to be able to greatly alleviate the 

problem. It will also be discussed in section 4.4. Finally, hybrid En3DVar, 3DVar, and 

EnKF are compared based on both objective verifications and physical field analyses. A 

summary and outlook are then concluded in section 45? 
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4.2 Experiment design 

4.2.1 The prediction model and truth simulation 

As in the previous chapter, the ARPS En3DVar DA system tested in this chapter 

is developed based on the full version of the ARPS. In this chapter, the true fields are 

simulated in the same way as that did for the perfect-model OSSEs in Chapter 3, in 

which the classic supercell storm of 20 May 1977 in Del City, Oklahoma (Ray et al. 

1981) is simulated based on the single-moment, three-category ice scheme of Lin et al. 

(1983). The domain size is 35×35×35, with a 2 km grid interval in the horizontal 

directions and 0.5 km in the vertical. Similar to the perfect-model OSSEs, non-

stretching vertical grid is used. Unlike EnKF, for which the Shur-product based 

localization is distance dependent, the recursive filter based localization for pure 

En3DVar is grid-size dependent. If using stretched grid in vertical direction, the 

localization for hybrid En3DVar will be asymmetric in vertical. To reduce the potential 

difference caused by two different localization realizations when comparing the EnKF 

and En3DVar algorithms, non-stretched grid will be adopted in the OSSEs. However, in 

the following real case applications, a stretched grid will be used in the vertical 

direction to enable higher vertical resolution near the surface. 

The truth simulation or nature run is initialized from a modified real sounding 

valid at 21:00 UTC, with a thermal bubble being used to initialize the storm. Details of 

the truth simulation are the same as that described in the previous chapter. Here model 

errors are introduced by using different microphysical schemes in nature run (Lin 

scheme, Lin et al. 1983) and forecasts (WSM6 scheme, Hong and Lim 2006) within the 

DA window. 
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4.2.2 Simulation of the radar observations 

The radial velocity and reflectivity are simulated based on model velocity and 

mixing ratios of hydrometeor fields, respectively. For details of the operators, please 

refer to Chapter 3. The radar data is simulated in the same way as the perfect-OSSEs. 

Specifically, single WSR-88D radar, which is assumed to be located at the southwest 

corner of the simulation domain, is produced based on the truth simulation. Unbiased 

and normal distributed random errors with standard deviations of 3 dBZ and 1 m s-1 are 

added to the simulated reflectivity and radial velocity data, respectively. The same error 

levels are also specified in the following DA experiments. Radial velocity data are 

assimilated only in regions where truth reflectivity is greater than 15 dBZ in the analysis 

domain, while reflectivity data are assimilated in both precipitation and clear air regions. 

4.2.3 Design of assimilation experiments 

The initial ensemble members are generated at 22:20 UTC by adding random 

noise to the horizontally homogeneous first guess defined based on the environmental 

sounding. The noise is sampled from Gaussian distribution with zero mean and standard 

deviations of 2 ms-1 for u, v, and w, 2 K for potential temperature, and 0.6 g kg-1 for 

mixing ratios of water vapor and hydrometeor fields respectively. 

The hydrometeor perturbations are confined to the region with reflectivity 

higher than 10 dBZ to suppress spurious storms in the analyses and forecasts. The radial 

velocity and reflectivity observations are assimilated every 5 min with the first one 

conducted after 5-minute integration of the initial perturbations (22:25 UTC). 

Experiments with different combinations of localization radii and recursive filter length 
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scales are tested to obtain the optimal localization radii and recursive filter length scales 

for EnKF and En3DVar respectively. 

Seven sets of experiment that are named based on the DA algorithms being used 

are conducted in this study. In experiment 3DVar_SP (3DVar_DP), radar data are 

assimilated using 3DVar with the clear-air reflectivity being assimilated together 

(separately) with the precipitation reflectivity in a single (double pass). Here ‘SP’ and 

‘DP’ denote single and double pass, respectively. The next two experiments are EnKF 

and DfEnKF. DfEnKF updates a single deterministic background forecast based on 

EnKF mean updating equation, it is algorithm-wise parallel to pure En3DVar. 

Experiments PEn3DVar and HEn3DVar both use the En3DVar algorithm with the 

stand-alone ensemble covariance and a combination of static and ensemble-covariance 

respectively. Different combinations of ensemble sizes and weights are tested in hybrid 

En3DVar to obtain the optimal weights as functions of the ensemble sizes. Finally, 

Hybrid En3DVar is compared with 3DVar, EnKF, and pure En3DVar with their own 

optimal configurations to examine the advantage of hybrid En3DVar over other 

methods. Detailed descriptions about each experiment can be found in Table 4.1. 
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Table 4.1 Descriptions of the assimilating methods 
Experiment Use of background 

error covariance 
Background updating Use of double-pass Ensemble 

size 

3DVar_SP 

Static background 
error covariance 

Update background 
field deterministically 

Assimilate clear-air (<5 
dBZ) and precipitation 
reflectivity (≥5 dBZ) 
together in a single 
pass 

 

N/A 

3DVar_DP Assimilate clear-air and 
precipitation 
reflectivity separately 
in a double pass 

 

EnKF Background error 
covariance derived 
from ensemble 
background forecasts 

Updates ensemble 
mean background and 
ensemble 
perturbations using 
EnKF algorithm 

 40 

DfEnKF Using ensemble 
covariance from an 
EnKF system 

Update a single 
deterministic 
background forecast 
using EnKF mean 
updating algorithm 

 40 

PEn3DVar Using 100% 
ensemble covariance 
from an EnKF system 

Update a single 
deterministic 
background forecast 
using variational 
algorithm 

 40 

HEn3DVar_SP 

Using weighted 
average of ensemble 
covariance and static 
3DVar covariance 

Update a single 
deterministic 
background forecast 
using variational 
algorithm 

Assimilate clear-air and 
precipitation 
reflectivity together in 
a single pass 

10, 20... 

100 

HEn3DVar_DP Assimilate clear-air and 
precipitation 
reflectivity separately 
in a double pass 

 

 

4.3 Results of assimilation experiments 

4.3.1 Optimal localization radii for EnKF and En3DVar and optimal background error 

de-correlation scales for 3DVar 

To obtain the optimal localization radii and background error correlation scales 

for imperfect-model OSSEs, the scaled root mean square error defined in Chapter 3 is 

adopted here. Please refer to section 3.3.1 for the definition. Similarly to what has been 

done in the perfect-model OSSEs, sensitivity experiments with different combinations 
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of the horizontal and vertical localization radii that range from 1 km to 15 km with 1 km 

interval are first conducted to obtain the optimal localization radii for EnKF and 

DfEnKF. According to Fig. 4.1, the optimal localization radii for DfEnKF are 6 km and 

3 km in horizontal and vertical directions respectively, which are much smaller than that 

obtained under perfect model assumption (16 km and 5 km for horizontal and vertical 

directions respectively, see section 3.3.1), indicating smaller localization radii are 

needed to obtain better performance in the imperfect-model scenario. The optimal 

cutoff radii of EnKF are similar to those of DfEnKF based on our results. The optimal 

cutoff radii of DfEnKF will be used as the cutoff radii for EnKF. 



 80

 

Fig. 4.1 The mean scaled RMSEs for different state variables as defined in Eq. (3.14) 
and averaged over all variables (ave), for DfEnKF experiments with different 
combinations of horizontal and vertical cutoff radius (km), with magenta asteroid 
indicating the minimum values  
 

As indicated in the last chapter, the optimal localization radii of DfEnKF are not 

necessarily the optimal radii of pure En3DVar because of the differences between 

DfEnKF and pure En3DVar. Similarly, sensitivity experiments are conducted to obtain 

the optimal localization radii for pure En3DVar. According to the error statistics, the 

recursive filter length scale of 5.2 km (19 km cutoff) in horizontal and 2.2 km (8 km 

cutoff) in vertical yield the lowest error. In similar way, the optimal background error 
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de-correlation scales for 3DVar are also determined, which are 3.6 km and 1.1 km in 

horizontal and vertical respectively. 

In hybrid En3DVar experiments, the optimal localization radii obtained for pure 

En3DVar and the optimal background error decorrelation scales obtained for 3DVar 

will be applied to the flow-dependent ensemble covariance and static covariance, 

respectively. 

4.3.2 Optimal hybrid weights as function of ensemble size 

Similar to the perfect-model OSSEs conducted in Chapter 3, the optimal hybrid 

weight in hybrid En3DVar is determined as functions of the ensemble sizes and the 

hybrid weights. 10×20 experiments with different combinations of the ensemble size 

(from 10 to 100 with increment of 10) and the hybrid weights (from 0 to 100% with 

increment of 5%) given to the static background error covariance are conducted. Pure 

En3DVar and 3DVar correspond to experiments with the weight of static background 

error being set to 0 and 1, respectively. 

Similar to what have been done in the perfect-model OSSEs, the optimal weight 

of static background error covariance in hybrid En3DVar is also determined as 

functions of the ensemble sizes. 10 × 20 experiments with different combinations of the 

ensemble size (from 10 to 100 with increment of 10) and the hybrid weights (from 0% 

to 100% with increment of 5%) given to the static background error covariance are 

conducted. Pure En3DVar and 3DVar correspond to experiments with the weight of 

static background error being set to 0 and 1, respectively. Scaled RMSEs that are 

defined earlier are calculated for each experiment and the results are depicted in Fig. 4.2. 

Hybrid En3DVar performs much better than pure En3DVar and 3DVar with the optimal 
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weight of the static background error covariance ranged from 10% to 90% for most of 

the variables and for all the tested ensemble sizes, except for the analyses of cloud ice, 

and analyses of potential temperature and snow mixing ratio for small ensemble sizes 

(less than or equal to 30). On average, Hybrid En3DVar with weights ranged from 30% 

to 40% yield the best results for different ensemble sizes. When ensemble size is 40, the 

optimal weight is 30%. 

 

Fig. 4.2 The Grid-point average of the scaled RMSEs as defined in Eq. (3.14) for 
different variables and averaged over all variables (ave), which are obtained based on 
hybrid En3DVar experiments with different combinations of ensemble sizes and hybrid 
weights. The black dots indicate locations of the optimal weights for different ensemble 
sizes. 
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4.3.3 Assimilation of clear-air and precipitation reflectivity via double passes in 

variational DA  

According to Tong and Xue (2005), clear-air reflectivity could help to suppress 

the spurious storms in EnKF analyses. Thomas et al. (2015) also demonstrated that 

clear-air reflectivity has the desired impact of reducing spurious convection early in the 

assimilation cycle of EnKF. Previous studies also indicate that when using 

hydrometeor-mixing ratios as the control variables, reflectivity DA by 3DVar may 

suffer from extremely large gradient of the cost function, and causes the assimilation of 

reflectivity and radial velocity data inefficient due to small background reflectivity (Sun 

and Crook, 1997; Wang and Wang, 2016). This problem is more obvious when 

including the clear-air reflectivity (< 5 dBZ) into reflectivity DA relative to those do not. 

Because the background reflectivity tends to be small in the area where the observed 

reflectivity is also small (e.g., <5dBZ), especially after one or two cycles when the 

location errors of convective storms are greatly decreased by reflectivity DA. Thus the 

assimilation of the clear-air reflectivity involves more observations, on which the 

background reflectivity is very small, being included in to the calculation of the gradient, 

making it excessively large and the assimilation of radial velocity and precipitation 

reflectivity ineffective. To solve the issue, a double-pass procedure was then proposed 

and found to be able to greatly alleviate the problem. In the double-pass procedure, the 

radial velocity and precipitation reflectivity are assimilated together in the first pass, 

and the clear-air reflectivity is assimilated separately in the second pass. The analyses 

and forecasts based on the double-pass DA experiments are compared with their single-
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pass counterparts in both 3DVar and hybrid En3DVar DA. EnKF, and DfEnKF were 

then compared with the double-pass 3DVar and hybrid En3DVar.  

a. Double-pass 3DVar 

Performance of the single-pass and double-pass 3DVar analyses in radar data 

assimilation are compared based on the RMSEs of the analyses and forecasts at 

different analysis times (错误!未找到引用源。). The 3DVar analysis has been greatly 

improved in terms of smaller root mean squared error by applying the double-pass 

procedure to assimilation of clear-air and precipitation reflectivity. The improvements 

are most obvious for velocity component v, snow and hail mixing ratios (qs and qh). 

According to the reflectivity observation operator used in chapter 3, the reflectivity 

observation operator is expressed as follows,  

 .  (4.1) 

The derivative of Z respect to individual hydrometeor mixing ratios  (x = r, s, h 

indicative of rain, snow, and hail), taking rain-water mixing ratio  as example, can be 

expressed as 

  .  (4.2) 

Where 

 .  (4.3) 

Eq. (4.2) is not valid when Zeb is zero. In the NWP models, the magnitude of 

hydrometeor mixing ratios is usually from 0 to 10-2 kg kg-1. If all of the hydrometeors 

mixing ratios are equal to 0 kg kg-1, Zeb in the denominator is also zero. To avoid this 
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problem, the hydrometeor mixing ratios are usually given a lower limit in the 

applications (such as 10-8 kg kg-1 used in this study). As a result, the orders of 

magnitude for Zeb is 10-3 mm6m-3, for ߲ܼ ⁄௥ݍ߲ 	and ߲ܼ ⁄௦ݍ߲ 	are 106 dBZ kg kg-1, and for ߲ܼ ⁄௛ݍ߲  is 107 dBZ kg kg-1 when hydrometeors mixing ratios are all as small as 10-8 kg 

kg-1 (to facilitate the demonstration, ߩ  is assumed to be 1.0 kg kg-1), leading to 

excessively large gradient of the cost function. On the other hand, when hydrometeor-

mixing ratios are as large as 10-2 kg kg-1, the order of magnitude for Zeb is 107 mm6m-3, 

for ߲ܼ ⁄௥ݍ߲ , ߲ܼ ⁄௦ݍ߲ , and ߲ܼ ⁄௛ݍ߲ 	are all 101 dBZ kg kg-1, which are much smaller than 

those of the small value hydrometeor mixing ratios (10-8 kg kg-1). Thus the assimilation 

of reflectivity observation is ineffective in the area where background reflectivity is 

large. By applying a double-pass procedure in assimilation of radial velocity, 

precipitation reflectivity, and clear-air reflectivity, the assimilation of much more 

gradient-consuming clear-air reflectivity won’t influence the assimilation of radial 

velocity and precipitation reflectivity. In this way, the spurious storms are suppressed 

by the clear-air reflectivity, and at the same time, the reflectivity analyses in the storm 

region won’t be influenced by assimilation of the clear-air reflectivity. 
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Fig. 4.3 Grid-point averages of the root mean squared error for single (blue contour) and 
double pass (red line) 3DVar analyses. 
 

Vertical cross-sections of reflectivity analyses and forecasts at the end of 1-hour 

DA cycle for 3DVar are compared and the results are depicted in Fig. 4.4. By applying 

the double-pass procedure in assimilation of ‘clear-air’ and precipitation reflectivity, the 

maximum reflectivity analysis at the end of the DA cycle from 3DVar has been 

increased from 59.0 dBZ to 62.7 dBZ, which is much closer to the truth (72.2 dBZ). 

The maximum vertical velocity is also increased from 2.8 ms-1 to 7.0 m s-1, though it is 

still much weaker than that of the truth (40.2 ms-1). When examine the analyzed 
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reflectivity calculated based on different hydrometeors according to Eq. (3.16) in 

Chapter 3, the analyses of the rain, snow, and hail mixing ratio analyses and forecasts 

have been significantly improved. The analysis of rainwater, dry snow, and hail from 

the single-pass experiments are all much stronger than those of the single-pass, and are 

much closer to the truth. 
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Fig. 4.4 Vertical cross-sections of the reflectivity through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window (a, 
b, c), and reflectivity calculated based on hail (d, e, f), snow (g, h, i), and rain water 
mixing ratio (i, k, l) fields from truth (a, d, g, i), single-pass 3DVar analyses (b, e, h, k) 
and double-pass 3DVar analyses (c, f, i, l). 
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b. Double-pass hybrid En3DVar 

Similar double-pass procedure is applied to hybrid En3DVar as that to 3DVar, 

with the radial velocity and precipitation reflectivity being assimilated in the first pass, 

and the clear-air reflectivity in the second. In this way, the influence of clear-air 

reflectivity assimilation to precipitation reflectivity due to its excessively large value of 

the gradient can be avoided.  

Performances of the single-pass and double-pass hybrid En3DVar analyses in 

radar data assimilation are compared based on the RMSEs of the analyses and forecasts 

at different analysis times (Fig. 4.5). The 3DVar analysis has been greatly improved in 

terms of smaller root mean squared error by applying the double-pass procedure to 

assimilation of clear-air and precipitation reflectivity. The improvements are most 

obvious for analyses of snow and hail mixing ratios (qs and qh).  
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Fig. 4.5 The Grid-point averages of the root mean squared error for single (blue contour) 
and double pass (red line) hybrid En3DVar analyses. 

 

Based on the comparison of the surface reflectivity between single and double 

pass experiments (Fig. 4.6), the spurious storms (5 ~ 20 dBZ) outside the storm region 

are suppressed, and at the same time the intensity of the storm center is much stronger 

and closer to the true condition after applying the double-pass procedure. 
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Fig. 4.6 Surface reflectivity (shaded contour, dBZ) overlaid with wind vector field (ms-1) 
from (a) truth, (b) single-pass hybrid En3DVar analysis, and (c) double-pass hybrid 
En3DVar analysis. 
 

The vertical cross-section of the analyzed reflectivity and the reflectivity 

calculated based on analyses of different hydrometeor mixing ratios are compared 

between single- and double- pass hybrid En3DVar (Fig. 4.7). The maximum analyzed 

reflectivity calculated based on snow mixing ratio is 31.6 dBZ for the single-pass hybrid 

En3DVar, which is increased to 33.8 dBZ after applying the double-pass procedure, and 

is much closer to the truth (34.8 dBZ). The distribution of snow mixing ratio from 

double-pass hybrid En3DVar is much closer to the truth as well. The hail analyses from 

single and double pass hybrid En3DVar are similar, except that the vertical extending of 

the hail from double-pass hybrid En3DVar is a little bit lower than that from the single-

pass. The updraft intensity from double-pass hybrid En3DVar is 27.0 ms-1, which is 

larger than that of the single-pass hybrid En3DVar (24.8 ms-1), and they are both 

smaller than the true updraft (40.2 ms-1). In the following comparisons, results from 

double-pass 3DVar, pure and hybrid En3DVar will be used to compare with EnKF and 

DfEnKF. 
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Fig. 4.7 Vertical cross-sections of the reflectivity through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window (a, 
b, c), and the reflectivity calculated based on rainwater (d, e, f), snow (g, h, i), and hail 
mixing ratio (j, k, l) fields from truth (a, d, g, j), single-pass hybrid En3DVar analyses 
(b, e, h, k) and double-pass 3DVar analyses (c, f, i, l). 
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c. Problems of using the double-pass procedure  

Although encouraging results have been obtained by using the double-pass 

procedure in reflectivity DA. There still exist some problems in the double-pass 

procedure. First, small background reflectivity can still be included into calculation of 

the gradient in the first pass, and thus influence the assimilation of radial velocity and 

precipitation reflectivity, especially when significant location errors exist. In this case, 

observed clear-air reflectivity can no longer represent the region of small background 

reflectivity. Second, the background error covariance needs to be updated after 

assimilating radial velocity and precipitation in the first pass, using the same 

background error covariance in the second pass as the first one will introduce errors into 

the DA process. Third, the double-pass procedure involves minimizing two different 

cost functions with different orders of magnitude separately, which is a lot more 

expensive. For real case study in Chapter 5, an alternative way of using logarithmic 

mixing ratios as the control variables was used to dealing with the excessive large 

gradient caused by small background reflectivity and at the same time avoided using of 

the double-pass procedure. 

4.3.4 Comparisons of hybrid En3DVar with 3DVar, EnKF, DfEnKF, and pure 

En3DVar with optimal configurations 

Comparisons are made among the RMSEs of the analyses and forecasts from 

3DVar, 40-member EnKF, DfEnKF, pure and hybrid En3DVar with their own optimal 

configurations. RMSEs are calculated in the region where the true reflectivity exceeds 

15 dBZ. As is indicated in Fig. 4.8, 3DVar performs the worst with its RMSE being the 

largest, except for mixing ratios of water vapor and hail. Hybrid En3DVar obviously 
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outperforms the other algorithms. The outperformance is most obvious for analyses of 

velocity, mixing ratios of water vapor, cloud ice, and hail. 3DVar and hybrid En3DVar 

outperform the pure ensemble based DA algorithms (EnKF, DfEnKF, and pure 

En3DVar) for analyses of water vapor mixing ratio, indicating the cross-correlation 

between mixing ratios of water vapor and hydrometeor variables is not reliable when 

severe microphysical error exists. In this case, updating water vapor mixing ratio field 

by reflectivity assimilation does not benefit the analyses and related forecasts. EnKF 

outperforms DfEnKF for velocity components of u, v, and cloud ice mixing ratio at later 

cycles. DfEnKF outperforms pure En3DVar for velocity analyses at later cycles, and 

under performs for analysis of hail mixing ratio.  
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Fig. 4.8 The Grid-point averages of the root mean squared error for 3DVar, EnKF, 
DfEnKF, pure En3DVar, and hybrid En3DVar (30% weight given to static B). 
 

Cross-sections of the reflectivity analyses at the end of one-hour DA window are 

compared among different experiments (Fig. 4.9). The total reflectivity analyses from 

EnKF, DfEnKF, and hybrid En3DVar are similar, which all outperform 3DVar for 

better capture the intensity of the storm center. The maximum reflectivity from EnKF, 

DfEnKF, pure and hybrid En3DVar are 67.2 dBZ, 68.1 dBZ, 67.9 dBZ, and 68.6 dBZ 

respectively, which are similar and much larger than that of 3DVar (58.6 dBZ), and is 

much closer to that of the truth (72.2 dBZ). The relative weaker storm center in the 
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downshear direction is better captured by 3DVar and hybrid En3DVar relative to EnKF, 

DfEnKF, and pure En3DVar for having more smoothed storm structure. The updraft 

intensity from EnKF, DfEnKF, pure and hybrid En3DVar are 31.6 ms-1, 31.6 m/s, 30.8 

m/s, and 32.26 m/s respectively, which are all much larger than that of 3DVar (5.38 

m/s), and closer to the truth (40.2 m/s). 

 

Fig. 4.9 Vertical cross-sections of the reflectivity field through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window 
from (a) truth, (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure En3DVar, and (f) hybrid 
En3DVar with 30% static covariance. 
 

Considering the difference in order of magnitude in mixing ratio analyses for 

different hydrometeors, the hydrometer mixing ratio analyses are compared by 

calculating the reflectivity based on single type mixing ratio.  According to Fig. 4.10, 

both EnKF and DfEnKF overestimated the rainwater mixing ratio analyses, while 
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3DVar and pure En3DVar underestimated the rainwater mixing ratio analyses. Pure 

En3DVar has reflectivity intensity more close to the truth for the left center, but with 

the right center still overestimated. 

 

Fig. 4.10 Vertical cross-sections of the reflectivity calculated based on mixing ratio of 
rain water mixing ratio through the maximum vertical velocity of truth and at the end of 
the one-hour DA window from (a) truth, (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure 
En3DVar, and (f) hybrid En3DVar with 30% static covariance. 

 

When checking the analyses of mixing ratio of hail from each analysis, hybrid 

En3DVar algorithm outperforms the other methods (3DVar, EnKF, DfEnKF, and pure 

En3DVar) in producing better analysis in storm intensity and structure (Fig. 4.11). Low-

level hail that is missed in the analysis of EnKF, DfEnKF, and pure En3DVar is 

captured by hybrid En3DVar at the end of one-hour data assimilation window. For 

WSM6 scheme, the hail/graupel melted too fast as it fell near the ground, so that there is 

no hail in the background field. When calculating the ensemble covariance based on 
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such ensemble background fields, the error variance and the ensemble spread (Fig. 4.12) 

for hail in the low level is severely under-estimated. That’s why pure ensemble-based 

DA methods (EnKF, DfEnKF, and pure En3DVar) cannot generate hail analysis in the 

low levels. By including the static B into hybrid En3DVar, the low-level hail that is 

absent in the pure ensemble-based DA experiments are captured. In addition, hybrid 

En3DVar also outperforms pure 3DVar in better capturing the intensity of the hail core. 

 

Fig. 4.11 Vertical cross-sections of the reflectivity calculated based on mixing ratio of 
hail through the maximum vertical velocity of truth at the end of the one-hour DA 
window from (a) truth, (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure En3DVar, and (f) 
hybrid En3DVar with 30% static covariance. 
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Fig. 4.12 Comparisons of the root mean squared value of mixing ratio of hail between 
all levels and low levels (<=2km), and ensemble spread at all levels and low levels 
(<=2km) respectively, unit: g/kg. 
 

The analyzed reflectivity calculated based on mixing ratio of snow (denote the 

reflectivity as ܼ௦) from 3DVar and hybrid En3DVar are 34.8 and 33.8 dBZ, which are 

larger than those from EnKF (31.7 dBZ), DfEnKF (33.3 dBZ), and are closer to the 

truth (34.8 dBZ) (Fig. 4.13). Although the maximum ܼ௦ from pure En3DVar (36.1 dBZ) 

is larger than those of the others, the ܼ௦ from pure En3DVar is still underestimated, with 

the coverage of the reflectivity larger than 30 dBZ being much smaller than those of 

3DVar, hybrid En3DVar, as well as the truth. 
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Fig. 4.13 Vertical cross-sections of the reflectivity calculated based on mixing ratio of 
snow through the maximum vertical velocity of truth at the end of the one-hour DA 
window from (a) truth, (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure En3DVar, and (f) 
hybrid En3DVar with 30% static covariance. 
 

4.3.5 Impacts of using the mass-continuity constraint 

An advantage of the hybrid En3DVar over EnKF is that the hybrid DA 

algorithm allows the weak constraint (such as the mass continuity constraint) being 

included into the cost function. Gao et al. (1999) and Hu et al. (2006a) reported some 

benefits of using the mass continuity constraint in radar radial velocity DA based on 

3DVar. For hybrid radar DA, Gao et al. (2016) shows that incorporating a mass 

continuity equation as a weak constraint into the En3DVar algorithm can improve the 

quality of the analyses when radial velocity observations contain large errors. To further 

investigate its impact, experiments with and without the mass-continuity constraint are 

compared among radar DA from 3DVar, pure and hybrid En3DVar. The corresponding 
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experiments are denoted as “3DVar_W/C”, “3DVar_WC”, “PEn3DVar_W/C”, 

“PEn3DVar_WC”, “HEn3DVar_W/C”, and “HEn3DVar_WC” respectively, with the 

suffix “_W/C” and “_WC” representing “without” and “with” the mass continuity 

constraint. The mass continuity constraint can be achieved by adding a term ܬௗ௜௩ to the 

cost function, which is 

ௗ௜௩ܬ  = ଵଶ ቆݓ௛ ቀడఘ௨డ௫ + డఘ௩డ௬ ቁ + ௩ݓ ቀడఘ௪డ௭ ቁቇଶ. (4.1) 

Here ߩ is the air density; ݓ௛ (ݓ௩) is the coefficient of the horizontal (vertical) divergent 

term. Experiments with different levels (101, 102, 103, 104, 105) of the coefficients are 

tested. Based on the experiments, ݓ௛ = ௩ݓ = 10ଷ  yields the smallest RMSEs for 

3DVar (pure and hybrid En3DVar).  

The RMSEs of the analyses and forecasts within the DA window are compared 

between 3DVar DA with and without adding the weak constraint. As is indicated in Fig. 

4.14. The impacts of the weak constraint to 3DVar analyses and forecasts are not 

obvious. There is only small improvement made to w after including the weak 

constraint. The reflectivity analyses at the end of one-hour DA window also resemble 

form the experiments with and without adding the weak constraint (Fig. 4.15). The 

intensity of the updraft from 3DVar_W/C and 3DVar_WC are 7.42 ms-1 and 6.69 ms-1, 

which are all much smaller than the truth (40.23 ms-1). The benefit of the mass 

continuity to analysis and forecasts of vertical velocity is not obvious for convective 

scale radar DA using 3DVar. 
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Fig. 4.14 The Grid-point averages of the root mean squared error for 3DVar without 
(blue contour) and with (red contour) adding the weak constraint. 

 
 



 103

 
Fig. 4.15 Vertical cross-sections of the reflectivity field through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window 
from (a) truth, 3DVar without (b), and with (c) the mass continuity constraint.  

 

The RMSEs of the analyses and forecasts are compared between pure En3DVar 

DA with and without adding the weak constraint. As is indicated in Fig. 4.16. The 

impacts of the weak constraint to analyses (forecasts) of pure En3DVar are more 

obvious than those for 3DVar. By adding the mass continuity constraint to the cost 

function, the analyses and forecasts of pure En3DVar has been greatly improved, 
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especially for velocity fields at later cycles and water vapor mixing ratio field. The 

reflectivity analyses at the end of one-hour DA window indicate that both the velocity 

and the reflectivity analyses for the second storm center have been greatly improved 

(Fig. 4.17).  By adding the mass continuity constraint, both the velocity and the 

reflectivity become more smoothed, and are much closer to the truth.  

 
Fig. 4.16 The Grid-point averages of the root mean squared error for 3DVar without 
(blue contour) and with (red contour) adding the weak constraint. 
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Fig. 4.17 Vertical cross-sections of the reflectivity field through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window 
from (a) truth, PEn3DVar without (b), and with (c) the mass continuity constraint.  
 

Similarly, the RMSEs of the analyses and forecasts are also compared between 

hybrid En3DVar DA with and without adding the weak constraint. As is indicated in 

Fig. 4.18. The impacts of the weak constraint to analyses (forecasts) of hybrid En3DVar 

are not obvious in terms of similar RMSEs. The reflectivity analyses at the end of one-

hour DA window also resemble form the experiments with and without adding the weak 
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constraint (Fig. 4.15). The intensity of the updraft from HEn3DVar_W/C is 28.1 ms-1, 

which is increased to 29.5 ms-1 by HEn3DVar_WC, and is a little bit closer to that of 

the truth (40.23 ms-1). The maximum echo top of the storm from HEn3DVar_WC is a 

little bit higher than that from HEn3DVar_W/C, and is much closer to the truth.  

 
Fig. 4.18 The Grid-point averages of the root mean squared error for 3DVar without 
(blue contour) and with (red contour) adding the weak constraint. 
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Fig. 4.19 Vertical cross-sections of the reflectivity field through the maximum vertical 
velocity of truth overlaid with the wind vector at the end of the one-hour DA window 
from (a) truth, HEn3DVar without (b), and with (c) the mass continuity constraint.  

 

Overall, adding the mass continuity constraint still benefits the analyses in 

providing a little bit stronger vertical velocity analyses as well as smoothing the noises 

existed in the velocity and hydrometer fields. 
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4.4 Summary and discussion 

In this chapter, the ARPS hybrid En3DVar DA system is applied to the 

assimilation of simulated radar data for a supercell storm using imperfect-model OSSEs. 

Model errors are introduced by using different microphysical schemes in the truth run 

(Lin scheme) and forecasts within the DA cycles (WSM6 scheme). Radar radial 

velocity and reflectivity data were assimilated every five minutes for one hour. A 

deterministic forecast EnKF algorithm (DfEnKF) introduced in Chapter 3 was also used 

here.  It updates a single deterministic background forecast using the EnKF mean 

updating equation, so that EnKF can be compared with pure En3DVar more directly. 

3DVar, EnKF, DfEnKF, pure and hybrid were tuned to obtain their optimal 

configurations before being compared. For reflectivity DA based on the variational 

framework, clear-air reflectivity (< 5 dBZ) was found to seriously degrade the analysis 

in the storm region, with the intensity of the analyzed storm being much weaker than 

that assimilates precipitation reflectivity only as well as the truth. A double-pass 

procedure, in which the radial velocity and precipitation reflectivity (≥5dBZ) are 

assimilated in the first pass, and the clear-air reflectivity assimilated in the second, is 

found to greatly improve the reflectivity analyses. The influence of mass-continuity 

constraint to convective storm DA is also examined among 3DVar, pure and hybrid 

En3DVar. The experiments conducted and related conclusions are summarized as 

follows: 

• Optimal localization radii (background error de-correlation scales) in terms of 

the smallest scaled root mean squared errors are obtained for EnKF, DfEnKF, 
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and pure En3DVar (3DVar) through sensitivity experiments, these 

configurations are then applied to hybrid En3DVar.  

• The sensitivity of hybrid En3DVar to covariance weights and ensemble size is 

examined. Hybrid En3DVar performs much better than pure En3DVar and 

3DVar with the weight of the static background error covariance ranged from 10% 

to 90% for most of the variables and for all the tested ensemble sizes. There are 

some exceptions for analyses of cloud ice, and potential temperature as well as 

snow mixing ratio for small ensemble sizes (less than or equal to 30), for which 

pure En3DVar performs better. On average, Hybrid En3DVar with weights 

ranged from 30% to 40% yield the best results for all the ensemble sizes. When 

ensemble size is 40, the optimal weight of static B is 30%. 

•  Using an ensemble size of 40, Hybrid En3DVar with 30% static B obviously 

outperforms the other algorithms (3DVar, EnKF, DfEnKF, and pure En3DVar). 

The outperformance is most obvious for analyses of velocity, mixing ratios of 

water vapor, cloud water, and hail. Hybrid En3DVar successfully capture the 

hail analyses below the freezing level, which are missed in the analyses of EnKF, 

DfEnKF, and pure En3DVar due to underestimation of the ensemble spread. 

Hybrid En3DVar also outperforms 3DVar for better capturing the intensity of 

the reflectivity core as well as the updraft.  EnKF, DfEnKF, and pure En3DVar 

obviously underperforms 3DVar and hybrid En3DVar for analyses of water 

vapor mixing ratio fields, indicating the cross-correlations between mixing ratios 

of water vapor and hydrometeor variables are not very reliable when severe 

microphysical error exists. However, when applying 30% weight to static B, the 
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ensemble correlation between mixing ratio of the water vapor and hydrometeors 

can still benefit the analysis by generating small decrease of the errors from the 

analysis relative to the background in hybrid En3DVar DA. DfEnKF performs 

similarly as pure En3DVar, and both underperform EnKF for velocity 

components of u, v, and cloud ice mixing ratio at later cycles. Overall, in the 

current imperfect OSSE framework, hybrid En3DVar performs the best, 3DVar, 

EnKF, DfEnKF, and pure En3DVar the worst. With 30% weight given to the 

static background error covariance B, the rank deficiency problem happened in 

pure ensemble-based DA is greatly alleviated. The advantage of hybrid DA over 

pure ensemble-based DA is most obvious when ensemble background errors are 

systematically underestimated. 

• In the imperfect-model OSSEs, clear-air reflectivity (reflectivity < 5 dBZ) was 

assimilated to help suppress the spurious storms. In the reflectivity DA based on 

the variational framework, the assimilation of clear-air reflectivity was found to 

severely degrade the analyses in storm region when it was assimilated together 

with the precipitation reflectivity (≥5dBZ). The degradation is mainly caused by 

the excessively large gradient related to small background reflectivity. The 

background equivalent reflectivity tends to be small in the area where the 

observed reflectivity is also small (<5dBZ), especially after one or two cycles 

when the location errors of convective storms are greatly decreased by 

reflectivity DA. The small (near zero) background equivalent reflectivity causes 

the gradient of the cost function excessively large and makes the assimilation of 

the radial velocity and the precipitation reflectivity ineffective. To solve this 
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problem, a double pass procedure is proposed, with the first pass assimilating 

radial velocity and precipitation reflectivity and the second pass assimilating 

clear-air reflectivity only. In this way, the spurious storms are suppressed by the 

clear-air reflectivity, and at the same time the influence of the clear-air 

reflectivity to assimilation of radial velocity and precipitation reflectivity is 

greatly suppressed. 

• Experiments with and without the mass-continuity constraint are compared 

among 3DVar, pure and hybrid En3DVar. Overall, adding the mass continuity 

constraint benefits the analyses (forecasts) in providing a little bit stronger 

vertical velocity analyses as well as smoothing the noises existed in the velocity 

and hydrometer fields. 

 

Finally, we note that the conclusions obtained here are still based on the OSSEs. 

In next chapter, we will compare hybrid En3DVar against EnKF and 3DVar using a real 

supercell storm case.  
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Chapter 5 Evaluation of ARPS Hybrid En3DVar DA System for 

Radar Data Assimilation with a Real Tornadic Storm Case 
 

5.1 Introduction 

In the previous two chapters, the newly developed ARPS hybrid ensemble-

3DVar (three-dimensional variational) data assimilation system (En3DVar) was tested 

based on the Observing System Simulation Experiments (OSSEs) under both perfect 

and imperfect model assumptions. Radar data was assimilated for a simulated supercell 

storm case using EnKF, 3DVar, pure and hybrid En3DVar algorithm. Performance of 

hybrid En3DVar in assimilating radar data is compared with those of 3DVar, EnKF, 

and pure En3DVar. To better understand the differences found between pure En3DVar 

and EnKF, a separate ‘deterministic forecast’ EnKF analysis, called DfEnKF, is 

conducted so that EnKF is more comparable to En3DVar.  

In perfect-model OSSEs, DfEnKF and pure En3DVar perform differently when 

using the same localization radii. The serial (EnKF) versus global (pure En3DVar) 

nature of algorithms, and direct filter update (EnKF) versus variational minimization 

(En3DVar) are the major reasons for the differences. When the algorithms are tuned 

optimally, hybrid En3DVar does not outperform EnKF and pure En3DVar in perfect-

model OSSEs, though their analyses are all much better than 3DVar. When ensemble 

background error covariance is a good estimation of the true error distribution, pure 

ensemble-based DA methods can do a good job, and the advantage of static B is not 

obvious in hybrid DA. Imperfect-model OSSEs were conducted to further examine 

whether the conclusions obtained based on the perfect-model OSSEs change after 

considering the model errors. In the imperfect-model OSSEs, model errors are 
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introduced by using different microphysical schemes in the truth run (Lin scheme) and 

in the forecasts (WSM6 scheme). Hybrid En3DVar then outperforms EnKF and pure 

En3DVar (3DVar) for better capturing the hail analyses below the freezing level 

(intensity) of the storm in the analysis. The advantage of hybrid En3DVar over pure 

ensemble-based methods is most obvious when ensemble background errors are 

systematically underestimated.  

However, the above conclusions are made based on the OSSEs, which tend to 

underestimate the errors of analyses and forecasts. In reality, the sources of the model 

errors are more complicated, which include the incomplete formulation of equations of 

motion, numerical approximation errors, time interpolation errors, boundary condition 

errors, convective parameterization errors, heat, moisture, and momentum flux 

approximation errors, etc. The imperfect-model OSSEs only considers a possibility of 

the microphysical error. In this chapter, the hybrid En3DVar algorithm was applied to a 

real storm case, so that any advantage of hybrid En3DVar over pure 3DVar and EnKF 

in storm-scale radar DA can be further examined.  

The rest of this chapter is organized as follows. In section 5.2, we briefly 

introduce the real storm case, DA schemes (EnKF, DfEnKF, and En3DVar) used, and 

the experimental design. In section 5.3, logarithmic hydrometeor mixing ratios are used 

as the control variables and the experimental results are compared with those directly 

using hydrometeor mixing ratios as the control variables. Sensitivity experiments are 

conducted to obtain a relative optimal weight for hybrid En3DVar. Finally, hybrid 

En3DVar, 3DVar, and EnKF are compared based on both objective verifications and 

physical field analyses. A summary and outlook are then concluded in section 5.4. 
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5.2 Assimilating system and experimental design 

5.2.1 The ARPS En3DVar DA scheme 

In the ARPS En3DVar DA system, flow-dependent ensemble covariance and 

static background error covariance are combined within the existing ARPS 3DVar 

variational framework. The hybrid scheme follows (Lorenc 2003; Buehner 2005), in 

which the static and ensemble background error covariances are combined through 

introduction of a set of extended control variables. Detailed descriptions about the 

hybrid algorithm can be found in chapter 3. 

5.2.2 The reflectivity observation operator 

The reflectivity observation operator follows that used in chapter 3, in which the 

radar radial velocity and reflectivity data are calculated based on model velocity and 

hydrometeor mixing ratio fields. One thing to be noted is that the logarithmic 

hydrometeor mixing ratios for rain, snow, and hail were used as the control variables in 

this chapter to help alleviate the problem caused by small background equivalent 

reflectivity (Section 4.3.3). Results of using logarithmic hydrometeor mixing ratio as 

control variables will be compared with those directly using hydrometeor-mixing ratio 

as control variables.  

5.2.2 Case overview 

On 10 May 2010, a total of 56 tornadoes produced by storms triggered by an 

intense dry line occurred in the state of Oklahoma, including two EF4 (the Moore-Lake 

Draper-Harrah and Norman-Little Axe-Pink tornadoes) and four EF3 tornados that 

induced significant damage over other areas. Information from the Oklahoma 
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Department of Emergency Management indicates, 3 people were killed and over 450 

people were injured in the state during the whole tornado outbreak. This was the second 

largest tornado outbreak documented in Oklahoma (with the largest outbreak occurring 

on May 3, 1999). From 5:00 PM to 7:41 pm CDT, there was at least one tornado 

occurring in Oklahoma every minute.  A total of 42 different tornadoes occurred within 

this time. The tornadic storms move 50 to 60 mph, with the damage paths of tornadoes 

spreading over a north-south area of over 200 miles; softball size hail was also reported 

in several locations. 

According to information from National Weather Services, there were 13 

different storms that produced tornadoes. They are denoted as storms A to N (more 

information about this case may be found at: http://www.srh.noaa.gov/oun/?n=events-

20100510). Among these storms, storm J was the most productive, spawning 20 out of 

55 tornadoes, including one EF4 (J1) and one EF3 (J4) tornado (Fig. 5.1), causing 1 

fatality and several injuries. Considering tornado J4 has the largest damage width, the 

whole convective system with its development covers the lifetime of tornado J4 was 

selected for this study.  
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Fig. 5.1 The damage path of tornadoes occurred in Oklahoma on May 10, 2010 (Image 
courtesy of National Weather Service). 
 

5.2.3 Radar data preprocessing and quality control 

Radar data is interpolated onto the ARPS terrain-following Cartesian model grid 

using the ARPS-88d2ARPS module. The interpolation is only performed in horizontal 

based on a quadratic local least-square fit of the observations. In vertical direction, no 

interpolation is performed; the data is saved on the elevation angles as the raw data 

instead of the model grid. Prior to remapping the radar data are checked for velocity 

folding, transient echoes in clear air are removed (image is despeckled) by eliminating 
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any datum that has non-missing neighbors fewer than 3 in a 3	×	3 square template, and 

the data are checked for anomalous propagation (AP).  

5.2.4 Experimental design 

a. Model configuration 

The Advanced Regional Prediction System (ARPS) model was used to simulate 

the tornadic storm case happened on 10 May 2010. Considering the long trajectory of 

the storms, the domain is set to cover the influencing area of the interested convective 

storms with its center located at 35.7oN and 97.5oW (Fig. 5.2). The domain size is 

363	×	363 ×	53, with a 1 km grid interval in the horizontal directions and 0.4 km on 

average in vertical stretching grid. The minimum vertical resolution in low levels is 20 

m. 

 

Fig. 5.2 The simulation domain and truncated radar coverage circle, radar locations are 
marked by the black dot. 
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Full model physics (Xue et al. 2001) were applied, which includes 1 1.5-order 

turbulent kinetic energy (TKE) based subgrid-scale turbulence parameterization scheme 

(Deardorff, 1980; Klemp and Wilhelmson, 1978; Moeng, 1984), a two-layer soil model, 

simplified surface radiation physics and an ice microphysics package (Lin et al. 1983). 

4th order monotonic computational mixing is used in model integration. The default 

values of the intercept parameter for rain (8 × 10଺mିସ) and hail (4 × 10ସmିସ) were 

used. 

b. Experiment configuration 

40 member ensemble analyses (that assimilate surface, upper-air, profiler, and 

radar observations) with a 40-km horizontal resolution and valid at 21:00 UTC May 10, 

2010 and its corresponding hourly forecasts are interpolated to the testing domain to 

serve as the initial ensemble perturbations and boundary conditions. For more 

information about the initial ensemble fields, the reader is referred to Jung et al. (2012).  

On the experimental domain, the Oklahoma Mesonet, radar radial velocity and 

reflectivity data are assimilated every 5 minutes using 3DVar, EnKF, pure and hybrid 

En3DVar DA systems (Fig. 5.3). To suppress the spin-up problem of the forecast model, 

the first analysis is conducted after 30-minute integration of the initial perturbations at 

21:00 UTC to increase the spread of the initial background ensembles. The 

observational errors are taken as 2 m s-1 for u and v, 1.5 K for potential temperature, and 

2 hpa for pressure. 20% multiplicative inflation was added to the background fields 

where the observed reflectivity is higher than 5 dBZ to maintain the ensemble spread. 

The localization for EnKF is conducted based on a fifth-order correlation function 

(Gaspri and Cohn 1999), with a cutoff radius of 6 km in the horizontal and 3 km in the 
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vertical for radar data and 30 km in the horizontal and 6 km in vertical for mesonet DA.  

For pure and hybrid En3DVar, the recursive filter length scales for localization are 1.64 

km in horizontal and 0.82 km in vertical for radar DA, which are equivalent to 6 km and 

3 km cutoff based on Eq. (4) in Pan et al. (2013), and 8.22 km in horizontal and 1.64 km 

in vertical for mesonet DA. For 3DVar, the background error decorrelation scales for 

3DVar are 3.56 km in horizontal and 0.10 km in vertical for radar DA, and 8.22 km in 

horizontal and 1.64 km in vertical for mesonet DA. 

 

Fig. 5.3 The flow diagram of the experiments. 
 

The radar radial velocity and reflectivity data (including ‘clear-air’ reflectivity, 

e.g., reflectivity <5 dBZ) form four S band WSR-88D radars (KTLX, KINX, KVNX, 

KFDR) available from 22:30 Z to 23:30 Z are assimilated and the performances are 

compared among hybrid En3DVar, 3DVar, EnKF, and pure En3DVar algorithms. Same 

as those did for the OSSEs, a deterministic forecast EnKF (DfEnKF), for which the 

initial ensemble mean is evolved deterministically within the data assimilation cycles, 

was also introduced to have an algorithm-wise parallel comparison between pure 

En3DVar and EnKF. 
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In EnKF and En3DVar DA, the updating of the velocity fields (u, v, w) by 

reflectivity DA is turned off because of the rapid growth of the errors in velocity 

analyses and forecasts. Hybrid En3DVar analyses with 5%, 25%, 50%, and 75% 

weights given to the static background error covariance (experiments names are 

suffixed with “%B”) are compared to get a relative optimal weight among them. 

Detailed descriptions about each experiment can be found in table 5.1. 

Table 5.1 Descriptions of the assimilating experiments 
Experiment name. 
With suffix “_qx” indicating 
using ࢞ࢗ	(x=r, s, h, indicative 
of rain, snow, and hail) as the 
control variables, otherwise 
using ࢍ࢕࢒૚૙࢞ࢗ  as the control 
variables.  

Use of background error 
covariance 

Background 
updating 

CNTL None Update background 
field deterministically 

3DVar_qx/3DVar Static background error covariance Update background 
field deterministically 

EnKF Background error covariance derived 
from ensemble background forecasts 

Updates ensemble 
mean background and 
ensemble perturbations 
using EnKF algorithm 

DfEnKF Ensemble covariance from an EnKF 
system 

Update a single 
deterministic 
background forecast 
using EnKF mean 
updating algorithm 

PEn3DVar(_qx) Pure En3DVar using 100% ensemble 
covariance from an EnKF system 

 
 
Update a single 
deterministic 
background forecast 
using variational 
algorithm 

HEn3DVar5%B(_qx) Hybrid En3DVar using 5% static and 
95% ensemble covariance 

HEn3DVar25%B(_qx) Hybrid En3DVar using 25% static 
and 75% ensemble covariance 

HEn3DVar50%B(_qx) Hybrid En3DVar using 50% static 
and 50% ensemble covariance 

HEn3DVar75%B(_qx) Hybrid En3DVar using 75% static 
and 25% ensemble covariance 
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c. Application of Incremental Analysis Updates (IAU) 

In order to make the analysis increment better accepted by the model and reduce 

the shock of data insertion. IAU is applied in the DA cycles. In IAU, analysis 

increments are incorporated into model integration gradually (Bloom et al. 1996). 

Traditionally, the IAU assimilation is applied with a triangular distribution of the 

fractional increments in time (Brewster et al. 2016; Brewster and Derek 2015). In order 

to decrease the time error, a step-down time function is used in our experiments, with 

the largest increment set at the beginning and the smallest at ends. In our experiments, 

the IAU is applied to all the model prognostic variables with the interval of 100 s, 

indicating the analysis increment is added to the background forecast in 3 steps within a 

single data assimilation window. For example, for a time window from 0 s to 300 s, the 

analysis increment is added to the background forecasts at 100, 200, and 300 s with the 

time scales of 0.6633, 0.33, and 0.0033 respectively, Fig. 5.4). 
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Fig. 5.4 Three types of time scales as a function of the integration interval for IAU. 
 

5.3 Results of assimilation experiments 

In this section, logarithmic hydrometeor mixing ratios are used as the control 

variables and the experimental results are compared with those directly using 

hydrometeor mixing ratios as the control variables. Sensitivity experiments are 

conducted to obtain a relative optimal weight for hybrid En3DVar. Performances of 

3DVar, EnKF, pure and hybrid En3DVar are compared based on both the objective 

error statistics (such as the root mean square error: RMSE, the scatter and QQ plot, and 

the fractional skill score: FSS) and the analyses/forecasts of convective storms features, 

such as the analyses and forecasts of the reflectivity, radial velocity, updrafts and 

downdrafts, mesocyclone, and the cold pool, etc.).  

  



 123

5.3.1 Using hydrometeor-mixing ratios versus using logarithmic hydrometeor mixing 

ratios as the control variables 

As mentioned in Chapter 4, when directly using hydrometeor-mixing ratios as 

the control variables, the reflectivity DA by 3DVar and En3DVar suffers from 

extremely large gradient of the cost function, and leads to ineffective assimilation of 

reflectivity and radial velocity data. The intensity of the storm core and the updraft in 

the storm region were apparently underestimated due to inclusion of small background 

reflectivity into calculation of the gradient, especially when clear-air reflectivity (< 5 

dBZ) were assimilated. Because the background reflectivity tends to be small in the 

region where the observed reflectivity is also small (i.e., the clear-air region), especially 

after several DA cycles when the location errors of the storms have been greatly 

suppressed by reflectivity DA. To address this issue, a double-pass procedure is 

proposed in the imperfect-model OSSEs (Chapter 4), with the radial velocity and 

precipitation reflectivity (≥ -assimilated together in the first pass, and the clear (ܼܤ݀	5

air reflectivity in the second. Through the double-pass procedure, two cost functions 

with apparent different orders of magnitude are minimized separately, so that the 

minimization of the cost function based on the largest gradient won’t influence that 

based on the smaller one. However, there still exist some problems in the double-pass 

procedure. First, small background reflectivity can still be included into calculation of 

the gradient in the first pass, and producing large gradient that hurts the radial velocity 

and precipitation reflectivity DA, especially when significant location errors exist. 

Second, the background error covariance needs to be updated after assimilating radial 

velocity and precipitation in the first pass, using the same background error covariance 
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in the second pass as the first one will introduce errors into the DA process. In addition, 

the double-pass procedure involves minimizing two different cost functions with 

different orders of magnitude separately, which is a lot more expensive. 

An alternative way to avoid the extremely large gradient in reflectivity DA is to 

use the logarithmic hydrometeor mixing ratios, instead of the hydrometeor mixing ratios, 

as the control variables. The experiments that using (logarithmic) hydrometeor-mixing 

ratios as the control variables are denoted as CV_q (CV_logq)) to facilitate the 

discussion. CV_logq was implemented into the NCEP Grid-point Statistical 

Interpolation by Carley (2012). The hydrometeors mixing ratios are transformed into 

logarithmic mixing ratio, taking rain water-mixing ratio as example, based on  

 logr rq q= .                           (5.1) 

The corresponding equivalent reflectivity is, 

 
9 1.753.63 10 ( 10 )rq

erZ ρ= × × .     (5.2) 

Here ߩ is the air density. By taking into account three types of hydrometeor fields, the 

total equivalent reflectivity is  

 ( ) ( ) ( )e er r es s eh hZ Z q Z q Z q= + + .     (5.3) 

To understand how CV_q and CV_logq affect the order of magnitude of the gradient in 

reflectivity DA, the tangent linear operators corresponding to CV_q and CV_logq are 

compared. For CV_q, the tangent linear of Z observation operator with respect to 

hydrometeor mixing ratio, taking rainwater mixing ratio as example, is  

 

1.75 0.7510
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×
=

 .  (5.4) 
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Eq. (5.6) is not valid when Ze is zero. In the NWP models, the magnitude of 

hydrometeor mixing ratios is usually from 0 to 10-2 kg kg-1. If all of the hydrometeors 

mixing ratios are equal to 0 kg kg-1, Ze in the denominator is also zero. To avoid this 

problem, the hydrometeor mixing ratios are usually given a lower limit in the 

applications (such as 10-8 kg kg-1 used in this study). As a result, the orders of 

magnitude for Z is 10-3 mm6m-3, for ߲ܼ ⁄௥ݍ߲ 	and ߲ܼ ⁄௦ݍ߲ 	are 106 dBZ kg kg-1, and for ߲ܼ ⁄௛ݍ߲  is 107 dBZ kg kg-1 when hydrometeors mixing ratios are all as small as 10-8 kg 

kg-1 (to facilitate the demonstration, ߩ  is assumed to be 1.0 kg kg-1), leading to 

excessively large gradient of the cost function. On the other hand, when hydrometeor-

mixing ratios are as large as 10-2 kg kg-1, the order of magnitude for Ze is 107 mm6m-3, 

for ߲ܼ ⁄௥ݍ߲ , ߲ܼ ⁄௦ݍ߲ , and ߲ܼ ⁄௛ݍ߲ 	are all 101 dBZ kg kg-1, which are much smaller than 

those of the small value hydrometeor mixing ratios (10-8 kg kg-1). Thus the assimilation 

of reflectivity observation is ineffective in the area where background reflectivity is 

large. In addition, the amount of adjustment made to individual hydrometeors for CV_q 

is controlled by the sensitivity of reflectivity to individual hydrometeor mixing ratios as 

discussed in Chapter 3. Variables with small sensitivity may receive little adjustment 

before the minimization iteration is terminated.  

For CV_logq, the gradient of Z respect to logarithmic mixing ratios, taking 

rainwater-mixing ratio as example, can be written as, 

 

( )93.63 1
1.7

0 1.75 0
5

110

q

Z

Zr e

qrρ× × × ××∂
=

∂ .        (5.5) 

Similarly, the orders of magnitude for Ze is still 10-3 mm6m-3, for ߲ܼ ⁄௥ݍ߲ 	 and ߲ܼ ⁄௦ݍ߲ 	and ߲ܼ ⁄௛ݍ߲  are 10-1 dBZ kg kg-1 when hydrometeors mixing ratios are all as 
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small as 10-8 kg kg-1, which are much smaller than that for CV_q (106 kg-mm-6 for ݍ௥, ݍ௦ and 106 kg-mm-6 for ݍ௛). On the other hand, when hydrometeor-mixing ratios are as 

large as 10-2 kg kg-1, the orders of magnitude for ߲ܼ ⁄௥ݍ߲ , ߲ܼ ⁄௦ݍ߲ , and ߲ܼ ⁄௛ݍ߲ 	are still 

10-1 dBZ kg kg-1. In this way, the excessively large value of the gradient due to small 

background reflectivity can be avoided in reflectivity DA.  

Comparisons are made between “CV_q” and “CV_logq” based on the RMSEs. 

As indicated in Fig. 5.5, the RMSEs of CV_q is much large than that of CV_logqx. 

However, the RMSEs of the one-hour reflectivity forecasts between experiments CV_q 

and CV_logq resemble. The radial velocity analyses and forecasts between the two 

experimental sets also resemble, indicating the errors in the hydrometeor fields for 

experiment set CV_q have not been projected into the velocity fields, because the 

updating of the velocity fields by reflectivity DA has been turned off.  
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Fig. 5.5 Comparisons of the RMSEs for reflectivity and radial velocity analyses and 
forecasts between experiments CV_q (with dashed lines) and CV_logq (with solid lines) 
for 3DVar (blue contours) and hybrid En3DVar (red contours) methods with 50% 
weight given to the static background error covariance B. 

 
When examining the composite reflectivity fields from CV_q (corresponding to 

experiment 3DVar_qx, HEn3DVar50%B_qx) and CV_logq (experiment 3DVar, 

HEn3DVar50%B) at the 2nd analysis time, the spurious reflectivity echoes outside of 

the storm region has been greatly suppressed for CV_logq relative to CV_q (Fig. 5.6). 

On the other hand, the area of the storm center with the analyzed reflectivity higher than 

50 dBZ (depicted in red color) from experiments 3DVar, HEn3DVar50%B are larger 

than those from experiment 3DVar_qx and HEn3DVar50%B_qx, and are closer to the 

observation. The maximum reflectivity analyses form 3DVar and HEn3DVar are 68.1 
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dBZ and 69.0 dBZ respectively, which are much smaller than those from 3DVar_qx 

(73.4 dBZ) and HEn3DVar_qx (73.5 dBZ), and closer to that of the observation (64.5 

dBZ). Considering experiment sets CV_logq has better performance than CV_q in 

reflectivity analysis. In the following sections, logarithmic hydrometeor mixing ratios 

will be used as the control variables. 
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Fig. 5.6 Comparisons of (a) the composite reflectivity observation and composite 
reflectivity analyses at the 2nd cycle time (21:45 UTC) between experiments that 
directly using hydrometeor mixing ratios (Fig. b, d) and the logarithmic hydrometeor 
mixing ratios (Fig. c, e) as the control variables for analyses of 3DVar (Fig., a, b) and 
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hybrid En3DVar with 50% weight given to the static background error covariance B 
(Fig. c, e). 
 
5.3.2 Tests on hybrid weights 

To obtain a relative ‘optimal’ weight for hybrid En3DVar, four sets of 

experiments are conducted with 5%, 25%, 50%, and 75% weight given to the static 

background error covariance B respectively. The corresponding experiments are named 

as HEn3DVar5%B, HEn3DVar25%B, HEn3DVar50%B, and HEn3DVar75%B 

respectively. Their results are also compared with pure En3DVar and 3DVar that 

actually have 0% and 100% static B.  

The RMSE is commonly used to quantify model analysis and forecast error and 

compare the performance among different DA algorithms. In this chapter, the RMSEs 

are calculated over regions where the observed or analyzed reflectivity exceeds 15 dBZ 

to take into account the possibility of overestimation. As indicated in Fig. 5.7, the radial 

velocity and reflectivity analyses and forecasts within the DA window from all 

experiments are quite similar based on the RMSEs. Hybrid En3DVar with 5% B 

performs the worst in terms of the largest RMSEs in the forecasts of radial velocity and 

reflectivity, though it is still better than the CNTL. For the following-on reflectivity 

forecasts, 3DVar, hybrid En3DVar with 50% and 75% weight given to the static B 

perform similar and are much better than those of the other two (5% and 25%).  
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Fig. 5.7 Comparisons of the RMSEs for radial velocity and reflectivity from control and 
the experiments that using hybrid En3DVar algorithm with 0% (actually is pure 
En3DVar), 5%, 25%, 50%, and 75% and 100% (actually is 3Dvar) weight given to 
static background error covariance B respectively. 

 
When comparing the reflectivity analyses at 1 km height above ground level 

(AGL) among different experiments, the reflectivity analyses at the end of the 1-hour 

DA window are similar in capturing the intensity and shape of the main supercell storm, 

and are close to that of the observation (Fig. 5.8).  
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Fig. 5.8 Reflectivity observation at 1 km AGL (a) and reflectivity analyses at the end of 
one-hour DA wndow from (b) pure En3DVar, hybrid En3DVar with (c) 5%, (d) 25%, 
(e) 50%, (f) 75% weight given to static background error covariance B, and (g) 3DVar, 
overlaid with observed reflectivity that is higher than 35 dBZ. 
 

The 45-min forecasts of the reflectivity at 1 km AGL are compared among 

different experiments as well as the observation. The forecasts of the storm intensity 

from different experiments are similar and close to that of the observation. The storm 

structure forecast from PEn3DVar and HEn3DVar5% are less organized than those of 

the others as well as the observation. For 3DVar, the storm structure is too linear. 

Hybrid En3DVar with 50% and 75% weight of B outperforms the other experiments in 

better capture the hook echo structure of the major tornadic supercell storm (Fig. 5.9).  
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Fig. 5.9 Reflectivity observation at 1 km AGL (a) and 45-minute reflectivity forecasts 
from (b) pure En3DVar, hybrid En3DVar with (c) 5%, (d) 25%, (e) 50%, (f) 75% 
weight given to static background error covariance B, and (g) 3DVar, overlaid with 
observed reflectivity that is higher than 35 dBZ. 

 
To obtain a hybrid En3DVar analysis that also better captures the low-level 

rotation of the tornadic supercell storm, radial velocity analyses and forecasts at the 

lowest elevation angle of the KTLX radar are compared among different experiments. 

The radial velocity analyses from different experiments are similar and close to the 

observations (Fig. 5.10). For the 45-minute radial velocity forecasts, experiments 

HEn3DVar25%B, HEn3DVar75%B, and 3DVar better capture the mesocylone that are 

indicated by the black circles (Fig. 5.11). For 1-hour radial velocity forecasts, 
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experiment HEn3DVar50%B and HEn3DVar75%B better capture the intensity and the 

location of the mesocyclone that are close to the observations (Fig. 5.12). The location 

error of the mesocyclone forecast from HEn3DVar with 5%weight given to static B is 

more obvious than those with the 50%B and 75%B. Based on the above results, 75% 

was chosen to be the optimal weight of static B for hybrid En3DVar, thus 

HEn3DVar75%B was used to compare with the other algorithms. 
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Fig. 5.10 Observed and analyzed radial velocity at the first elevation angle of radar 
KTLX from hybrid En3DVar with 5%, 25%, 50%, and 75% weight given to static 
background error covariance B with 15 min interval. 



 136

 

Fig. 5.11 (a) Observed and 45-minutes forecast radial velocity at the first elevation 
angle of radar KTLX from (b) pure En3DVar, hybrid En3DVar with (c) 5%, (d) 25%, (e) 
50%, (f) 75% weight given to static background error covariance B, as well as (g) 
3DVar. 
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Fig. 5.12 (a) Observed and 60-minutes forecast radial velocity at the first elevation 
angle of radar KTLX from (b) pure En3DVar, hybrid En3DVar with (c) 5%, (d) 25%, (e) 
50%, (f) 75% weight given to static background error covariance B, as well as (g) 
3DVar. 
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5.3.3 Comparisons among 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar 

a. Objective verification 

1) The RMSE: 

The analyses and forecasts of the radar radial velocity and reflectivity from 

3DVar, EnKF, DfEnKF, pure and hybrid En3DVar are compared based on the RMSEs. 

For radial velocity analyses and forecasts within the one-hour DA window, EnKF 

outperforms the other algorithm in terms of the smallest RMSEs, suggesting averaging 

the velocity forecasts (for EnKF) can greatly decrease the errors relative to that uses a 

single deterministic background (for DfEnKF, 3DVar, pure and hybrid En3DVar). For 

the follow-on one-hour radial velocity forecasts, different algorithms perform similarly, 

and are all much better than the CNTL (Fig. 5.13). For reflectivity analyses and 

forecasts, hybrid En3DVar performs similarly as 3DVar and both are better than EnKF, 

DfEnKF, and pure En3DVar in terms of smaller RMSEs.  
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Fig. 5.13 RMSEs of the analyzed and forecasts radial velocity and reflectivity from 
CNTL, 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar. 
 

2) The quantile-quantile verification (QQ-plot) 

To have a better idea of the over and under performance presented in the 

RMSEs, QQ plot is used to further examine intensity distributions of the reflectivity 

analyses or forecasts against the observations. A QQ plot is a probability plot, which is 

the quantiles of the first data set (such as the analysis or forecast) against the quantiles 

of the second data set (such as the observations). If the two distributions being 

compared are similar, the points in the QQ plot will approximately lie on the 45-degree 
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diagonal line. A QQ plot can be used to compare the shapes of distributions, providing a 

graphic view of how properties such as intensity, locations, scales are similar or 

different in the two distributions. In this study, the QQ plot was used to examine the 

intensity distribution between the reflectivity analyses (forecasts) and the observations.  

To make the QQ plot, the reflectivity analyses (forecasts) and observations are sorted in 

increasing orders. The sorted analyses (forecasts) and the observations are then paired 

off and plotted using the corresponding values. The two data sets need to have the same 

size. Otherwise, interpolation is needed so that quantiles corresponding to the same 

underlying probability can be constructed. 

To better understand the underperformance of EnKF and DfEnKF relative to the 

other algorithms (3DVar, pure and hybrid En3DVar) at the 15 minute DA window 

shown in Fig. 5.13, the forecast and analyzed reflectivity valid at 21:45 UTC were 

compared with the observations based on both the scatter plot (pair off the reflectivity 

analyses/forecasts and the observations without sorting) and the QQ plot (Fig. 5.14). 

According to the scatter plot (Fig. 5.14 a, b), the number of points located above the 45 

degree diagonal line are a lot more than those below the diagonal line from all the 

experiments, indicative of overestimation of the forecasts (Fig. 5.14 a) and analyses 

(Fig 5.14 b) relative to the observations. The scatter points locate much closer to the 

diagonal line after reflectivity DA, indicating smaller overestimation from the analyses 

than those from the background forecasts.  QQ plots more clearly capture the intensity 

distribution of the reflectivity forecasts and analyses (Fig. 5.14 c, d).  The 

overestimation of the reflectivity intensity forecasts (analyses) is much stronger from 

EnKF and DfEnKF than those of the others (Fig. 5.14 c, d), which are consistent with 
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the larger RMSEs shown in Fig. 5.13. After the reflectivity DA, the overestimation for 

reflectivity above 20 dBZ is reduced, but still exists. For reflectivity less than 20 dBZ, 

different experiments perform similar, with the analyzed reflectivity a little bit smaller 

than the observations.  

 

Fig. 5.14 The scatter-plot (a, b) and QQ-plot (c, d) for reflectivity forecasts (a, c) and 
analyses (b, d) at the 15-minute DA window (valid at 22:45 UTC).  
  

After one-hour DA, the forecast/analyzed reflectivity was still overestimated 

relative to the observation, with the overestimation from the analysis a little bit smaller 



 142

than from the forecasts. The overestimation from EnKF and DfEnKF are still more 

obvious than those of the others (Fig. 5.15).  

 

Fig. 5.15 The scatter-plot (a, b) and QQ-plot (c, d) for reflectivity forecasts (a, c) and 
analyses (b, d) at the end of one-hour DA window (valid at 22:30 UTC). 
 

The reflectivity forecasts from different experiments all underestimate the 30-

minute and 60-minute forecasts when the observed reflectivity is less than 20 dBZ, and 
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overestimates otherwise.  The corresponding underestimation (overestimation) from 

EnKF is a little bit larger (smaller) than those of the others (Fig. 5.16). 

 

Fig. 5.16 The scatter-plot (a, c) and QQ-plot (b, d) for 30-minute (a, b) and 60 minute (c, 
d) reflectivity forecasts from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar. 
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3) Fractions Skill Score Verification 

The purpose of the Fractions Skill Score (FSS) is to attain a measure of how 

analysis/forecast skill varies with spatial scale and intensity threshold. Radar data 

observations from four S-band WSR-88D radars (KTLX, KINX, KFDR, KVNX) are 

used for the comparison with the analyzed and forecast reflectivity. FSS belongs to the 

category of spatial neighborhood verification that enables the forecast being compared 

with the observations within specified neighborhood rather than strictly at the grid scale. 

The fractional coverage of the forecast or analysis within a neighborhood can be 

assessed for similarity to the observations. By varying the sizes of the neighborhood, 

the scales for which the forecast or analysis has sufficient skill can be determined and 

compared (Ebert 2008; Roberts and Lean 2008). The FSS is calculated based on a 

variation of the Brier Skill Score (FBS). According to Roberts and Lean (2008), the FSS 

can be calculated by: 

 , (5.6)
 

where FBS is a variation of the Brier Score (Brier, 1950) that is given by: 

 . (5.7)
 

Here N is the total number of grid points. and  are the forecast (or analyzed) and 

observed reflectivity fractions respectively at different grid point j, which are 

determined based on reflectivity thresholds with its values ranged between 0 and 1. A 

forecast with perfect skill has a score of 1; a score of 0 means zero skill. Skill is lowest 

at the grid scale, that is, when the neighborhood is only one grid point and the fractions 

are binary ones or zeros. Figure 5.17 gives a schematic example of how fractions are 
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computed over different neighborhood scales (1, 3, and 5 in this example). When the 

neighborhood box is 1 grid scale, i.e., only the central box is considered, the 

forecast/analysis fraction is 0/1=0, while the observation fraction is 1/1=1. When the 

neighborhood box is 3 times of the grid scale, the corresponding forecast and 

observation fractions are 4/9 and 3/9 respectively. When neighborhood box is 5 times of 

the grid scale, the observation and forecast (analysis) fractions are the same, which is 

6/25. For more information about FSS, the readers are referred to Roberts and Lean 

(2008).  

 

Fig. 5.17 A schematic comparison between forecast and observed reflectivity (from 
Roberts and Lean (2008)). 
 

FSS from different experiments are calculated as functions of the reflectivity 

thresholds (5, 15, 35, 40, 60 dBZ) and sizes of the neighborhood scales (1, 5, 10, 20, 40, 

80, 160, 320 km).  FSS for reflectivity analysis at the end of one-hour DA window from 

hybrid En3DVar is compared with those of the others to see whether it is able to 

produce more skillful reflectivity analyses at different scales, and how the skill varies 
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with spatial scale and reflectivity threshold. The FSS for the reflectivity analyses and 

forecasts within the DA windows are plotted as functions of neighborhood scales for 

different reflectivity thresholds (Fig. 5.18). Unlike the 60-dBZ reflectivity 

analyses/forecasts, for which the FSS is not very sensitive to the neighborhood scales, 

the FSSs for 5-dBZ, 15-dBZ, 35-dBZ, and 45-dBZ reflectivity all increase with the 

neighborhood scales. This indicates that reflectivity analyses/forecasts on smaller 

neighborhood scales are less skillful than those on the larger scales. This is reasonable 

because the larger the neighborhood scale, the less the penalty given to typical location 

errors. When comparing the FSS among different algorithms, EnKF and DfEnKF are 

less skillful than 3DVar, pure and hybrid En3Dvar for the 35-dBZ and 45-dBZ 

reflectivity thresholds. EnKF is most skillful for the 60-dBZ reflectivity threshold. In 

addition, pure En3DVar (DfEnKF) performs the worst (best) for 5-dBZ (15-dBZ) 

reflectivity threshold in terms of the smallest (largest) FSS. Overall, 3DVar and hybrid 

En3DVar are most skillful for analyses of the 35 and 45 dBZ reflectivity, for higher 

intensity (e.g., 60 dBZ), EnKF performs much better than those of the others.  
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Fig. 5.18 The fractional skill scores for reflectivity analyses/forecasts at the end of one-
hour DA window (22:30 UTC) from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar 
as functions of the neighborhood scales and for different thresholds. 
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Similar to the reflectivity analyses at the end of one-hour DA window, the FSSs 

for one-hour reflectivity forecasts also increase with the neighborhood scales (Fig. 5.19). 

Different from the conclusion obtained for the reflectivity analyses, for which lower-

value reflectivity analyses are more sensitive to the neighborhood scales, the FSS for 

higher-value reflectivity (15, 35, 45, 60 dBZ) forecasts are more sensitive to the 

neighborhood scales relative to the lower-value reflectivity (5 dBZ), indicative of lower 

spatial accuracy in higher reflectivity intensity. Overall, 3DVar is more skillful than 

hybrid En3DVar, and both are more skillful than the others for small reflectivity 

thresholds (5dBZ and 15 dBZ). For higher reflectivity thresholds of 35 dBZ and 45 dBZ, 

pure En3Dvar and EnKF perform worse than the others, and the other algorithms 

perform similarly. For even higher reflectivity threshold (60 dBZ), EnKF is most 

skillful, and 3DVar has the poorest performance. 
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Fig. 5.19 The fractional skill scores for one-hour reflectivity forecasts (23:30 UTC) 
from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar as functions of the 
neighborhood scales and for different reflectivity thresholds.  
 



 150

The FSSs for reflectivity analyses/forecasts at the end of the one-hour DA 

window are also examined as functions of the reflectivity intensity (Fig. 5.20). On 

average, the FSS decreases as the reflectivity intensity increases, the higher the intensity, 

and the lower the FSS except EnKF. For EnKF, the 60-dBZ reflectivity 

analyses/forecasts are more skillful than those of the 35-dBZ and 45-dBZ. For 

reflectivity analyses at 35 and 45 dBZ, 3DVar, pure and hybrid En3DVar are more 

skillful. DfEnKF is most skillful for 15-dBZ reflectivity analyses/forecasts.  
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Fig. 5.20 The fractional skill scores for reflectivity analysis at the end of one-hour DA 
window (22:30 UTC) from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar as 
functions of the reflectivity thresholds for different neighborhood scales. 
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The FSSs for one-hour reflectivity forecasts are examined as functions of the 

reflectivity intensity (Fig. 5.21). On average, the FSS decreases as the reflectivity 

intensity increases, indicating more skillful forecast in smaller reflectivity intensity that 

has a broader spatial coverage. Overall, 3DVar and hybrid En3DVar outperform EnKF, 

DfEnKF, and pure En3DVar for small reflectivity intensity (< 45 dBZ), for higher 

intensity (60 dBZ), EnKF performs the best. 
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Fig. 5.21 The fractional skill scores for one-hour reflectivity forecasts (23:30 UTC) 
from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar as functions of the reflectivity 
thresholds for different neighborhood scales. 
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b. Analyses and forecasts of reflectivity  

Comparisons of the reflectivity analyses and forecasts at 1 km above the ground 

level (AGL) are made among observation, 3DVar, EnKF, DfEnKF, pure and hybrid 

En3DVar (Fig. 5.22). At the end of one-hour DA window, the reflectivity analyses from 

different algorithms have similar patterns that are close to the truth, with the maximum 

reflectivity analyses from EnKF (53.0 dBZ) being a little bit weaker than those of the 

observations (58.8 dBZ). While 3DVar (69.7 dBZ), pure En3DVar (64.3 dBZ), and 

hybrid En3DVar (64.3 dBZ) all overestimate the maximum intensity of the analyzed 

reflectivity, and DfEnKF has the maximum reflectivity analyses that is the same as the 

observation (58.8 dBZ). 

 

Fig. 5.22 The reflectivity observation at 1km AGL (a), and the reflectivity analyses at 
the end of one-hour DA from, (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure and (f) 
hybrid En3DVar (75% weight given to B) overlaid with the observed reflectivity with 
its value higher than 35dBZ (black line). The maximum reflectivity is indicated by the 
value at the southeast corner. 
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30-minute reflectivity forecasts at 1-km AGL are compared among different 

experiments (Fig. 5.23). EnKF performs the worst for underestimating the intensity and 

coverage of the storms. DfEnKF outperform EnKF with the coverage and intensity of 

the storms being much closer to the observation. Pure En3DVar fails to capture the 

storm cell near the southwest corner. 3DVar and HEn3DVar performs similar in 

capturing the intensity and pattern of the storm. Overall, DfEnKF, 3DVar, and hybrid 

En3DVar provide very good 30-minute forecasts that are close to the observation.  

 

Fig. 5.23 The reflectivity observation at 1km AGL (a), and 30-min reflectivity forecasts 
based on analyses of (b) 3DVar, (c) EnKF, (d) DfEnKF, (e) pure and (f) hybrid 
En3DVar (75% weight given to B) overlaid with the observed reflectivity with its value 
higher than 35dBZ (black line). The maximum reflectivity is shown at the southeast 
corner. 

 

45-minute reflectivity forecasts at 1-km AGL are compared among different 

experiments (Fig. 5.24). EnKF and DfEnKF perform the worst for underestimating 

coverage of the storms. 3DVar and HEn3DVar performs similar in capturing the 
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intensity of the storm. However, the storm structure from 3DVar tends to be too linear. 

The hook echo structure is more clearly captured by HEn3DVar compared to 3DVar.  

 

 

Fig. 5.24 Same as Fig. 5.23 except that it is for the 45-minute reflectivity forecasts. 
 

c. Forecasts of updrafts and downdrafts 

Strong updrafts and downdrafts occur in thunderstorms. The intensity of the 

vertical updraft/downdraft determines the degree of storm severity. Updraft is inevitable 

for storm’s early development, during which warm air rises to the lifted condensation 

level. Downdrafts are usually caused by evaporational cooling, which originates at mid-

levels with dry air that becomes cold, then the cold dense air sinks to the ground and 

spreads out laterally. The strong updraft and rear flank downdraft in the storm cause the 

weak echo region (WER) and the hook echo feature observed on radar.  The hook is 
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caused by the interaction of the rear flank downdraft and updraft with the resultant 

precipitation wrapping around the southwest side of the updraft. 

To compare the structure of the forecast updraft valid at 23:30 UTC, vertical 

cross-sections of the one-hour velocity forecasts are made through their own maximum 

values from experiments 3DVar, EnKF, DfEnKF, and HEn3DVar75%B (Fig. 5.25). 

The updrafts forecasts from experiments EnKF, DfEnKF, and HEn3DVar75%B are 

much stronger and more consistent than that of 3DVar. There is some tilting for 

updrafts form DfEnKF and HEn3DVar75%B, while the updraft from EnKF is more 

erect. The increasing of wind speed with altitude causes the updraft to tilt. Because it 

tilts, when precipitation falls, it does not fall into the updraft, thus allowing a more 

continuous source of moist warm air to fuel the storm for experiments DfEnKF and 

HEn3DVar75%B. The updraft strength from DfEnKF and HEn3DVar75%B are 44.2 m 

s-1, and 46.9 m s-1 respectively, which are slightly larger than those from EnKF and 

3DVar (39.9 m s-1). In a mature storm, downdrafts are present alongside with updrafts. 

Compared to the updrafts, the intensity of the downdrafts, especially the rear flank 

downdrafts (RFD), are much weaker, which are -16.1 m s-1 for experiment 3DVar, -12.4 

m s-1 for EnKF, -17.5 m s-1 for DfEnKF, and -10.4 m s-1 for HEn3DVar75%B 

respectively. Such kind of storms often forms in very moist atmosphere where there is 

little mid-level dry air and thus evaporational cooling to drive the downdrafts. The RFD 

from 3DVar is a little bit stronger than those from the other experiments, which is 

related to the much drier mid-level (700 hPa) atmosphere relative to those of the others 

(Fig. 5.26).  
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Fig. 5.25 Vertical cross-sections of the one-hour vertical velocity forecasts valid at 
23:30 Z for experiments 3DVar, EnKF, DfEnKF, HEn3DVar75%B, overlaid with the 
wind vector field and one-hour reflectivity forecasts with their value higher than 35 
dBZ, and with an interval of 10 dBZ.  
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Fig. 5.26 Model soundings taken through the maximum one-hour vertical velocity 
forecasts of different experiments for experiments (a) 3DVar, (b) EnKF, (c) DfEnKF, 
and (d) HEn3DVar75%B. 
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d. Forecasts of the meso-cyclone  

The rotating updraft is known as the mesocyclone, which is a key to the 

development of a supercell, and the potential for a tornado. Once the updraft is rotating 

and being fed by warm, moist air flowing in at ground level, conditions are ripe for 

tornado formation. To compare the intensity of the rotating updraft among different 

experiments, vertical cross-sections of the vertical vorticity forecasts through the 

maximum one-hour vertical velocity forecasts are made and compared among different 

experiments (Fig. 5.27). The vertical cyclonic vorticity indicative of rotations of the 

updrafts from experiments EnKF, DfEnKF, and HEn3DVar75%B are 2.18×10-1 s-1, 

1.98×10-1 s-1, and 1.66×10-1 s-1 respectively, which are much stronger and more 

consistent than that form 3DVar (1.25×10-1 s-1). 
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Fig. 5.27 Vertical cross sections of the vertical vorticity forecasts (units 10-5 s-1) valid at 
23:30 Z for experiments 3DVar_logqx, EnKF, DfEnKF, HEn3DVar75%B, overlaid 
with the wind vector field and one-hour reflectivity forecasts with their value higher 
than 35 dBZ, and with an interval of 10 dBZ. 
 

A way to effectively detect and verify the presence of a mesocyclone is by 

Doppler weather radar. Nearby high values of radial velocity data with opposite sign 

(the velocity couplet) indicate the mesocyclone. The velocity couplet for which bright 
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reds (outbound) and bright greens (inbound) are next to each other indicates rotation in 

the storm. It is extremely important to determine if a supercell is strongly rotating and 

poses a tornado threat. The radial velocity analyses at the lowest elevation angle of 

radar KTLX are compared among experiments 3DVar, EnKF, DfEnKF, and 

HEn3DVar75%B (Fig. 5.28). All the analyses are able to capture the strengthening of 

velocity at the corner of “L-shaped” outbound velocity (red color), indicating stronger 

low-level convergence when diagnosing together with the inbound velocity (green 

color).  The 0 ~ 60 min radial velocity forecasts at the lowest two elevation angles 

(0.59o and 0.92o) of radar KTLX from experiments 3DVar, EnKF, DfEnKF, pure and 

hybrid En3DVar are shown in Fig. 5.29 and Fig. 5.30. The velocity couplet is more 

clearly captured by experiment HEn3DVar75%B than those from 3DVar, EnKF, and 

hybrid En3DVar, indicative of stronger convergence. The rotation of the velocity 

couplet from 0.92o elevation angle (Fig. 5.30) is a little bit larger than that on the 0.59o 

elevation angle (Fig. 5.29), and they are all smaller than that of the observation based on 

orientations of the velocity couplets.. 
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Fig. 5.28 The observed and analyzed radial velocity at the lowest elevation angle of 
KTLX from 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar with 75% weight given 
to B at the end of one-hour DA window (22:30 UTC). 
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Fig. 5.29 The observed and forecast radial velocity at 23:30 UTC at the lowest elevation 
angle of KTLX radar from CNTL, 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar 
with 75% weight given to B. The black circle indicates location of the mesocyclone, 

and the short black line indicates orientation of the velocity couplet that passes through 
the maximum inbound and outbound velocity for the circled velocity couplet. 
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Fig. 5.30 The observed and forecast radial velocity at 23:30 UTC at the elevation angle 

of 0.92o for KTLX radar from CNTL, 3DVar, EnKF, DfEnKF, pure and hybrid 
En3DVar with 75% weight given to B. The black circle indicates location of the 

mesocyclone, and the short black line indicates orientation of the velocity couplet that 
passes through the maximum inbound and outbound velocity for the circled velocity 

couplet. 

e. Forecasts of the cold pool 

Cold pool is storm-scale cold air masses, which are produced by both 

downdrafts from thunderstorms that bring cool air from aloft down to the surface and 

from evaporation of rain near the surface and the subsequent latent cooling. Cold pools 

represent sinking air but can provide lift due to convergence and density differences and 

is important for storm development. The circulation at the leading edge of the cold pool 

can pull the cold air outward at the surface and at the same time lift the warm 

environmental air up over the leading edge of the cold pool.  
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The characteristic of the cold pool has been found to be a significant factor 

impacting storm development. The baroclinic vorticity induced by the cold pool is an 

important source of low-level horizontal vorticity (Straka et al. 2007; Markowski et al. 

2008; Markowski et al. 2012; Marquis et al. 2012; Kosiba et al. 2013). Tornadoes are 

found to be more probable as the environmental low-level horizontal vorticity increases 

(Rasmussen 2003; Thompson et al. 2003). Most low-level mesocyclones are attribute to 

baroclinic vorticity rather than the environmental vorticity (Rotunno and Klemp 1985; 

Markowski et al. 2012). However, tornadogenesis is more likely to be observed in 

supercells that have intermediate cold pools rather than too strong or too weak cold 

pools (Markowski 2002; Grzych et al. 2007; Hirth et al. 2008; Markowski and 

Richardson 2014). When cold pool is too strong, rapid acceleration of low-level air 

parcel is prohibited, making it difficult to be lifted to level of free convection (LFC). 

Weak cold pool may lead to suppression of significant near-ground rotation due to 

weaker surface convergence (Dawson et al. 2013). Cold pool also impacts updraft 

tilting. Cold pool causes the updraft to lean upshear, and the positive vorticity related to 

the vertical wind shear causes the updraft to lean downshear. With both cold-pool and 

shear, the two effects may negate each other and produces an erect updraft (Rotunno et 

al. 1988). When cold pool is too strong, the mid-level mesocyclone deviate from the 

low-level circulation centers near the gust front. Intermediate cold pool strength helps to 

maintain vertical updrafts near and above the low-level circulation centers, providing 

strong dynamic lifting and vertical stretching to the low-level parcels and favoring 

tornadogenesis (Snook and Xue 2008). 
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To check the strength of the heat sink (cold pool) in our study, one hour 

potential temperature perturbation forecasts overlaid with the reflectivity forecasts with 

their values higher than 35 dBZ on the surface are shown in Fig. 5.31. The potential 

temperature perturbations near the surface are positive and are too weak relative to the 

mesonet observations from all the experiments. As is shown in the figure, there are 

relative colder air masses around the storm area with respect to the surrounding warm 

air. The minimum potential temperature perturbation forecasts based on analyses from 

3DVar, EnKF, DfEnKF, pure and hybrid En3DVar are 1.59 K, 5.21 K, 4.70 K, 4.32 K, 

and 3.52 K, respectively. The intensity of the relative cold air mass from 3DVar is the 

strongest. The cold air mass intensity from pure and hybrid En3DVar are similar and 

are a little bit weaker than that from 3DVar, and they are all stronger than those from 

EnKF and DfEnKF. The area of the 35 dBZ contour of the reflectivity forecasts based 

on analyses from EnKF and DfEnKF are similar, and smaller than those from 3DVar, 

pure En3DVar, indicating that the stronger the cold pool strength, the stronger the 

intensity of the storm for this period. 
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Fig. 5.31 The one-hour surface potential temperature forecasts (o C, shaded area) based 

on analyses at the end of DA window (22:30 Z) from 3DVar, EnKF, DfEnKF, pure 
En3DVar, and hybrid En3DVar, overlaid the reflectivity forecasts with their values 

higher than 35dBZ (contour).   
  

To check the relation between the vertical distribution of the updraft and storm 

with the cold pool, vertical cross-sections of the one-hour potential temperature 

perturbation forecasts from different experiments are shown in Fig. 5.32. It shows that 

there is no strong cold pool generated in the low levels from all the experiments. 

Without a strong cold pool, the axis of the updraft and the storm from all the 

experiments all lean in the downshear direction due to the weak cold pool.  
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Fig. 5.32 Vertical cross-sections of one-hour potential temperature perturbation 

forecasts (oC, shaded area) based on analyses at the end of DA window (22:30 Z) from 
3DVar, EnKF, DfEnKF, PEn3DVar, and hybrid En3DVar, overlaid the reflectivity 
forecasts with their values higher than 35dBZ (contour) with intervals of 20 dBZ.   
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5.4 Summary and discussion 

In this chapter, ARPS hybrid En3DVar system is applied to assimilation of radar 

data for a real (including tornadic supercell) storm case. Radar radial velocity and 

reflectivity data were assimilated every 5 minutes for one hour, and an hour following-

on forecast was made as well. A deterministic forecast EnKF (called DfEnKF) used in 

the former two chapters are also applied here to get an algorithm wise parallel 

comparison between EnKF and pure En3DVar. Logarithm hydrometeor mixing ratios, 

instead of the hydrometeor mixing ratios, are used as the control variables so that 

excessive large gradient caused by small background mixing ratios can be avoided in 

reflectivity DA. Localization of EnKF, DfEnKF, pure and hybrid En3DVar are 

configured equivalently. 3DVar, EnKF, DfEnKF, pure and hybrid En3DVar are 

compared based on both the objective verifications and analyses (forecasts) of storm 

features. The experiments performed and related conclusions are summarized as follows: 

• Comparisons are made between experiments that directly use hydrometeor-

mixing ratio as the control variables with that use the logarithmic mixing ratios 

as the control variables. Results show that there are a lot of spurious reflectivity 

echoes in the analyses that directly uses hydrometer-mixing ratios as the control 

variables. The gradient of the cost function becomes extremely large when 

background hydrometeor mixing ratios are small, making the total cost function 

difficult to converge to the optimal solution. The problem can be avoided when 

using the logarithmic hydrometeor mixing ratios as the control variables. 

• Hybrid En3DVar with four different weights (5%, 25%, 50%, 75%) given to the 

background error covariance B are compared based on RMSEs as well as 
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analyses/forecast of storm intensity and structure to obtain a relative optimal 

weight among them. They are also compared with pure En3DVar and 3DVar 

that actually have 0% and 100% weight of B. Hybrid En3DVar with 50% and 75% 

weight given to the static B performs similar and are much better than those with 

5% and 25% in terms of smaller RMSEs for both radial velocity and reflectivity 

forecasts but much of the RMSE difference is lost during the subsequent 

forecast. Hybrid En3DVar with 75% weight given to B was also found to better 

capture the hook echo structure of the major tornadic supercell storm in 45 min 

forecast of the reflectivity forecast, and 45 and 60 min forecasts of the low-level 

mesocyclone than the other experiments. Thus 75% is chosen to be the optimal 

weight of static B for hybrid En3DVar. 

• Hybrid En3DVar with 75% B was compared with 3DVar, EnKF, DfEnKF, and 

pure En3DVar based on both objective verification and analyses/forecasts of 

storm intensity/structures. Hybrid En3DVar with 75% weight of B obviously 

outperform 3DVar for better capturing the forecasts of the hook echo structure 

as well as the rotating updraft, and outperforms EnKF and DfEnKF in better 

capturing the reflectivity forecasts that are less than 20 dBZ. The low-level 

mesocyclone was better forecast by hybrid En3DVar than those of the others, 

indicative of stronger rotation and a larger tornado threat. The RMSE of radial 

velocity forecasts within the DA cycles from EnKF is much smaller than those 

of the others, indicating averaging the forecasts from different ensemble 

members could help to decrease the errors in velocity forecasts but the 

advantage is lost during the subsequent forecast.  
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In the above study, the advantage of hybrid En3DVar over 3DVar is most 

obvious for better capturing the storm structure, rotating updraft after including the 

flow-dependent ensemble covariance at the end of the DA period, though much of that 

advantage is lost in the subsequent forecast.  The advantage of hybrid En3DVar over 

EnKF and DfEnKF is not as clear except that hybrid En3Dvar better capture the 

reflectivity forecast below 20 dBZ as well as the strength of the low-level mesoscyclone. 

In the future, more storm cases are needed to further examine the advantage of hybrid 

En3DVar over pure 3DVar and EnKF and to see what, if anything can be done to better 

retain advantages gained in the DA through the subsequent forecast.   
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Chapter 6 Summary and Future Work 
 

6.1 Summary 

Studies have shown benefits of hybrid ensemble-variational data assimilation 

(DA) over pure ensemble or variational algorithms. Such advantages, if any, for 

convective-scale radar DA have not been clearly demonstrated, however. A hybrid 

ensemble-3DVar (En3DVar) system is developed recently based on the ARPS 3DVar 

and EnKF systems at CAPS. In this dissertation, the impact of combing the flow-

dependent background error covariance with the static one was examined for storm-

scale radar DA. Hybrid En3DVar is compared with 3DVar, EnKF, and pure En3DVar 

for radar DA through observing system simulation experiments (OSSEs) under both 

perfect and imperfect model assumptions. It is also applied to a real case including 

multiple tornadic supercells. For the real case, radar radial velocity and reflectivity data 

are assimilated every 5 minutes for 1 hour that is followed by short-term forecasts. 

DfEnKF that updates a single deterministic background forecast using the EnKF 

updating algorithm is introduced to have an algorithm-wise parallel comparison 

between EnKF and pure En3DVar. In this study, we sought to answer the following 

four questions:  

1) In principle, pure En3DVar and EnKF that use 100% ensemble covariance 

should be identical (under linearity and Gaussian error assumption), will their 

analyses actually be very close? If not, what are the sources of their difference? 

2) Does the relative performance of 3DVar, EnKF, pure/hybrid En3DVar change, 

if algorithms are tuned to their optimal states? 
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3) Does the results change after considering model errors? In what situation that 

the static covariance in the hybrid algorithm does help, if any, for the convective 

storms? 

4) What is relative performance of the algorithms for a real storm case? 

The first two questions are answered via perfect-model OSSEs. In the perfect-

model OSSEs, DfEnKF and pure En3DVar are compared and are found to perform 

differently when using the same localization radii. The serial (EnKF) versus global 

(pure En3DVar) nature of algorithms, and direct filter update (EnKF) versus variational 

minimization (En3DVar) are the major reasons for the differences. As a variational 

algorithm, pure En3DVar tends to adjust hail more than snow, because the analysis 

results are controlled to a large extent by the sensitivity of reflectivity with respect to 

individual hydrometeor, i.e., the gradient of the reflectivity operator with respect to the 

hydrometeor state variables. Hybrid En3DVar in radar data assimilation was also 

compared with 3DVar, EnKF, DfEnKF, and pure En3DVar. Sensitivity experiments 

were conducted first to obtain the optimal configurations for different algorithms before 

they are compared, which include the optimal background decorrelation scales for 

3DVar, optimal localization radii for EnKF, DfEnKF, and pure En3DVar, as well as the 

optimal hybrid weight for hybrid En3DVar. When the algorithms are tuned optimally, 

hybrid En3DVar does not outperform EnKF and pure En3DVar, though their analyses 

are all much better than 3DVar. When ensemble background error covariance is a good 

estimation of the true error distribution, pure ensemble-based DA methods can do a 

good job, and the advantage of static B is not obvious in hybrid DA.  
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Imperfect-model OSSEs are then used to examine whether the conclusions 

obtained based on the perfect-model OSSEs change after considering model errors. In 

the imperfect-model OSSEs, model errors are introduced by using different 

microphysical schemes in the truth run (Lin scheme) and in the forecasts (WSM6 

scheme). Sensitivity experiments are conducted to obtained the optimal configurations 

for different algorithms, similar to what have been done in the perfect-model OSSEs. 

Hybrid En3DVar then outperforms EnKF and pure En3DVar (3DVar) for better 

capturing the hail analyses below the freezing level (intensity) of the storm in the 

analysis. The advantage of hybrid En3DVar over pure ensemble-based methods is most 

obvious when ensemble background errors are systematically underestimated.  

Finally, ARPS hybrid En3DVar system is applied to the assimilation of radar 

data for a real tornadic supercell storm. Hybrid En3DVar is compared with 3DVar, 

EnKF, DfEnKF, and pure En3DVar based on both objective verification and 

analyses/forecasts of storm intensity/structures. Hybrid En3DVar with 75% weight of B 

obviously outperforms 3DVar for better capturing the forecasts of the hook echo 

structure as well as the rotating updraft, and outperforms EnKF and DfEnKF in better 

capturing the 35dBZ to 45dBZ reflectivity forecasts. The low-level mesocyclone is 

better forecast by hybrid En3DVar than those of the others, indicating stronger rotation 

and a larger tornado threat.  

In the process to answer the four major questions raised in the first paragraph, 

some issues arose and were investigated. For example, in the imperfect-model OSSEs, 

the assimilation of clear-air reflectivity (< 5 dBZ) by the variational DA algorithms was 

found to seriously degrade the analyses in storm region, with the intensity of the 



 176

reflectivity analysis being much weaker than that assimilates precipitation reflectivity 

(≥5 dBZ) only as well as the truth. When directly using hydrometeor-mixing ratios as 

the control variables, the gradient of the cost function becomes extremely large when 

background reflectivity is small. The background reflectivity tends to be small in the 

area where the observed reflectivity is also small (<5dBZ), especially after one or two 

cycles when the location errors of convective storms are greatly decreased by 

reflectivity data assimilation (DA). Thus the assimilation of the clear-air reflectivity 

involves more grids, on which the background reflectivity are very small, being 

included in to the calculation of the gradient, making the gradient excessively large and 

the assimilation of the precipitation reflectivity ineffective. To keep the storm analyses 

by precipitation reflectivity and at the same time suppress the spurious storms through 

clear-air reflectivity DA, a double-pass procedure was then proposed and found to be 

able to greatly alleviate the problem.  In the double-pass procedure, the radial velocity 

and precipitation reflectivity are assimilated together in the first pass, and the clear-air 

reflectivity is assimilated separately in the second pass. In this way, two cost functions 

with apparently different orders of magnitude of gradient are minimized separately 

without influencing the other. 

However, there still exist some problems with the double-pass procedure. First, 

small background reflectivity can still be included into calculation of the gradient in the 

first pass, and thus influences the assimilation of radial velocity and precipitation 

reflectivity, especially when significant location errors exist. Second, the background 

error covariance needs to be updated after assimilating radial velocity and precipitation 

in the first pass, using the same background error covariance in the second pass as the 
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first one will introduce errors into the DA process. In addition, the double-pass 

procedure involves minimizing two different cost functions with different orders of 

magnitude separately, which is a lot more expensive. So in the real case, an alternative 

way of using the logarithmic hydrometeor mixing ratios as the control variables are 

found to be able to solve the problem. By using the logarithmic hydrometeor mixing 

ratios as the control variables, the excessively large gradient of the cost function is 

avoided. 

In the imperfect-model OSSEs, the impacts of adding the mass continuity 

constraint are also examined using 3DVar, pure and hybrid En3DVar. Overall, adding 

the mass continuity constraint benefits the analyses (forecasts) in providing a little bit 

stronger vertical velocity analyses that are closer to the truth and smoothing the noises 

present in the velocity and hydrometer fields. 

 

6.2 Future work 

Our current studies show that the hybrid En3DVar algorithm has some 

advantages over stand-alone 3DVar and EnKF, especially when ensemble background 

errors are systematically underestimated. Given that our findings in this study are 

primarily based on OSSEs and study of one real case. More research is needed to 

improve the application of these algorithms to real storm cases. Possible follow-up 

studies applying ensemble variational DA to storm cases include: 

1) Applying the hybrid En3DVar to more real storm cases to better understand the 

relative performance of hybrid En3DVar for storm scale DA. 
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2) In our study, the nonlinear reflectivity observation operator is directly used to 

calculate the cost function. To get its gradient, the nonlinear reflectivity 

observation operator is linearized around the analysis of the former loop, instead 

of the initial first guess. Thus the use of the outer-loop is avoided in this study. 

Past studies indicate that using the linearized observation operator alongside 

with the outer-loop procedure can decrease the computational cost by increasing 

the convergence speed of the minimization. However, based on our preliminary 

tests, using the linearized reflectivity observation operator greatly increases the 

magnitude of the cost function. The performance of using the tangent linear 

reflectivity observation operator alongside the outer-loop procedure versus 

directly using the nonlinear observation operator needs investigation in terms of 

the computational cost and the performance in future. 

3) Past studies indicated that when data timing errors are present with the regular 

EnSRF, 4DEnSRF worked better than EnSRF (Wang et al., 2012). The four-

dimensional DA is expected to improve the analysis and related forecast when 

more radar volume scans are assimilated. Recently, the ARPS hybrid 4DEnVar 

has been developed at Center for Analysis and Prediction of Storms (CAPS). 

We will test the hybrid 4DEnVar algorithms (Liu and Xue 2016) based on the 

ARPS hybrid 4DEnVar system using OSSEs and real case studies to understand 

the potential benefits of hybrid En4DVar over En3DVar and 4DEnKF for storm-

scale radar DA. 
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